Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

As part of the state's 1997 electric utility restructuring legislation, Illinois established provisions for the disclosure of fuel mix and emissions data. All electric utilities and alternative...

2

Fuel Mix Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Hawaii requires the state’s retail electric suppliers to disclose details regarding the fuel mix of their electric generation to retail customers. Such information must be provided on customers’...

3

Fuel Mix Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

California's retail electricity suppliers must disclose to all customers the fuel mix used in the generation of electricity. Utilities must use a standard label created by the California Energy...

4

Fuel Mix Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Mix Disclosure Fuel Mix Disclosure Fuel Mix Disclosure < Back Eligibility Utility Program Info State Colorado Program Type Generation Disclosure Provider Colorado Public Utilities Commission In January 1999, the Colorado Public Utility Commission (PUC) adopted regulations requiring the state's utilities to disclose information regarding their fuel mix to retail customers. Utilities are required to provide this information as a bill insert or as a separate mailing twice annually, in April and October of every year. The PUC provides a suggested format for the disclosure. Fuel mix percentages are to be based on the power supply mix for the previous calendar year. Supporting documentation concerning the calculations used to determine the power supply mix percentages must be submitted to the PUC for approval.

5

Fuel Mix Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Mix Disclosure Fuel Mix Disclosure Fuel Mix Disclosure < Back Eligibility Utility Program Info State Delaware Program Type Generation Disclosure Provider Delaware Public Service Commission Delaware's 1999 restructuring law (HB 10) authorized the state Public Service Commission (PSC) to develop environmental disclosure requirements and consumer protection standards for green power marketing. The PSC's rules require all electric suppliers to disclose to the commission aggregate proportions of fuel resource mix for the electricity supplied to customers in Delaware for each quarter. In addition, electric suppliers must disclose their fuel resource mix to retail electric customers annually via bill inserts and "each other quarter' on the supplier's web site or by customer request. A standard label is not required; however, the reports

6

Fuel Mix Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disclosure Disclosure Fuel Mix Disclosure < Back Eligibility Utility Program Info State District of Columbia Program Type Generation Disclosure Provider Washington State Department of Commerce Washington's retail electric suppliers must disclose details regarding the fuel mix of their electric generation to customers. Electric suppliers must provide such information in a standard format annually to customers. In addition, most larger electric suppliers must provide at least two additional times annually a publication that contains the standard disclosure label, a customer service phone number to request the disclosure label or a reference to an electronic version of the disclosure label. (Small utilities and mutual light and power companies must provide the disclosure label at least annually to customers in the form of a

7

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Oregon's 1999 electric utility restructuring legislation requires electricity companies and electric service suppliers to disclose details regarding their fuel mix and emissions of electric...

8

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

In 2001, Nevada enacted legislation requiring the state’s electric utilities to provide details regarding the fuel mix and emissions of electric generation to their customers. Utilities must...

9

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Iowa adopted regulations in 2003 that generally require rate-regulated electric utilities to disclose to customers the fuel mix and estimated emissions, in pounds per megawatt-hour (MWh), of...

10

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Rhode Island requires all entities that sell electricity in the state to disclose details regarding the fuel mix and emissions of their electric generation to end-use customers. This information...

11

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Maine's 1997 restructuring legislation directed the state Public Utility Commission (PUC) to establish environmental disclosure rules for retail electric billing. The PUC rules require utilities to...

12

Fuel Mix and Emissions Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Minnesota Program Type Generation Disclosure Provider Minnesota Department of Commerice In September 2002, the Minnesota Public Utilities Commission (PUC) issued an order requiring the state's regulated electric utilities to disclose to customers details on the fuel mix and emissions of electric generation. Utilities must provide this information to customers in a standard format twice annually. Utilities may distribute this information to customers electronically. Disclosure information must also be filed with the PUC. In addition, in 2009, the Minnesota Pollution Control Agency began to transition to an inventory data management system that consolidates

13

Fuel Mix and Emissions Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Massachusetts Program Type Generation Disclosure Provider Executive Office of Energy and Environmental Affairs Massachusetts's 1997 electric utility restructuring legislation authorized the Massachusetts Department of Telecommunications and Energy (DTE)* to require certain electricity providers to disclose details on their fuel mix and emissions to end-use customers. In February 1998, the DTE issued final rules requiring competitive suppliers and distribution companies providing standard offer generation service or default generation service to provide this information to customers quarterly and upon request. * In 2007, the Massachusetts Department of Telecommunications and Energy

14

Fuel Mix and Emissions Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Virginia Program Type Generation Disclosure Provider Virginia State Corporation Commission Virginia's 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding electric generation. Legislation in 2007 and 2008 related to Electric Utility Regulation amended the restructuring laws, but still require emissions and fuel mix disclosure. Information must be provided to customers and to the Virginia State Corporation Commission (SCC) at least once annually. If any portion of this information is unavailable, the electricity provider must file a report

15

Fuel Mix and Emissions Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Michigan Program Type Generation Disclosure Provider Michigan Public Service Commission Michigan's Customer Choice and Electric Reliability Act of 2000 (P.A. 141) requires electric suppliers to disclose to customers details related to the fuel mix and emissions, in pounds per megawatt-hour (MWh) of electric generation. Electric suppliers must provide this information to customers twice annually in a standardized, uniform format. The Michigan Public Service Commission (MPSC) staff must calculate the regional electricity generation and environmental characteristics and make it available to be used by the state's generation providers. The web site above describes the

16

Fuel Mix and Emissions Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and Emissions Disclosure and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State District of Columbia Program Type Generation Disclosure Provider DC Public Service Commission Under regulations adopted by the D.C. Public Service Commission, all electricity suppliers and electricity companies operating in the District of Columbia must report to the Commission every six months the fuel mix of electricity sold and the emissions produced. The fuel mix report must be in a format similar to the information provided by the PJM Environmental Information Services (PJM EIS). Electricity suppliers and electricity companies must also provide a fuel mix report to customers twice annually, within the June and December billing cycles. Emissions information must be disclosed every six months on

17

Fuel Mix and Emissions Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Ohio Program Type Generation Disclosure Provider Public Utilities Commission of Ohio Ohio's 1999 electric industry restructuring law requires the state's electricity suppliers to disclose details regarding their fuel mix and emissions to customers. Electric utilities and competitive retail electric service providers of retail electric generation service must provide this information to their customers in a standard format several times per year. The Ohio Public Utilities Commission (PUCO) adopted rules in 2000 to implement this policy; the rules have been amended subsequently. There are separate rules for electric utilities providing a standard offer for retail

18

Fuel Mix and Emissions Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Maryland Program Type Generation Disclosure Provider Maryland Public Service Commission Maryland's 1999 electric utility restructuring legislation requires all electric companies and electricity suppliers to provide customers with details regarding the fuel mix and emissions of electric generation. Emissions data must be expressed in terms of pounds per megawatt-hour (MWh). This information must be provided to customers every six months and annually to the Maryland Public Service Commission (PSC). Past reports are available in Case No. 8738 through the [http://webapp.psc.state.md.us/Intranet/Casenum/caseform_new.cfm? PSC's

19

fuel mix | OpenEI  

Open Energy Info (EERE)

mix mix Dataset Summary Description The UK Department of Energy and Climate Change (DECC) publishes an annual "fuel mix disclosure data table" as defined in the Electricity (Fuel Mix Disclosure) Regulations 2005. This dataset represents April 1, 2009 - March 31, 2010. Source UK Department of Energy and Climate Change (DECC) Date Released March 31st, 2010 (4 years ago) Date Updated Unknown Keywords fuel mix UK Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon UK.fuel_.mix_.disclosure.4.2009.4.2010.xlsx (xlsx, 38.2 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment UK Open Government License (OGL)

20

Fuel Mix Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

In March 1999, the Florida Public Service Commission issued an order requiring the state's investor-owned electric utilities, which serve about 80% to 85% of the state's electric customers, to...

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel Mix Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

In April 1998, the Pennsylvania Public Utility Commission (PUC) adopted rules requiring retail electricity suppliers to "respond to reasonable requests made by consumers for information concerning...

22

Disclosure of Permitted Communication Concerning Fossil Fuel...  

Energy Savers (EERE)

Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted...

23

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

As part of Texas’s 1999 electric utility restructuring legislation, the state’s retail electric providers are required to disclose certain information in the form of a standardized “Electricity...

24

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Under Connecticut’s restructuring law (P.A. 98-28), electric suppliers and electric distribution companies must disclose annually to the Public Utilities Regulatory Authority (PURA) and to...

25

Disclosure of Permitted Communication Concerning Fossil Fuel Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosure of Permitted Communication Concerning Fossil Fuel Energy Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 This memo provides an overview of communications made to DOE staff on the subject of the rulemaking referenced above. The communications occurred at a meeting held on February 13, 2013. DOE 433 ex parte memo.pdf More Documents & Publications Disclosure of Permitted Communication Concerning Regional Standards Enforcement Framework Document -- Docket No. EERE-2011-BT-CE-0077

26

Fuel Mix and Environmental Characteristics Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

In July 2010, New Hampshire enacted legislation (SB 327) requiring investor-owned utilities and electric cooperatives to disclose the energy sources of their electricity and the environmental...

27

Generation Disclosure | Open Energy Information  

Open Energy Info (EERE)

Disclosure Disclosure Jump to: navigation, search Some states require electric utilities to provide their customers with specific information about the electricity that the utility supplies. This information, which generally must be shared with customers periodically, usually includes the utility's fuel mix percentages and emissions statistics. In states with restructured electricity markets, generation disclosure policies are designed to help consumers make informed decisions about the electricity and suppliers they choose. A few states that have not fully restructured their electricity markets require generation disclosure by utilities. [1] Generation Disclosure Incentives CSV (rows 1 - 40) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

28

Environmental Disclosure Requirements by State Â… August 2002  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Disclosure Requirements by State - August 2002 Environmental Disclosure Requirements by State - August 2002 State Disclosure Requirement Scope Frequency Distribution Effective Date Authority Legislation/ Regulation Verification Requirement Notes Full Disclosure Requirements Arkansas Standards to be set for disclosure of environmental impacts Electric service providers TBD TBD TBD Legislature 1999 Act 1556; Rules not yet developed TBD Restructuring delayed until 2003. California Fuel mix required in standard format. Electric service providers Quarterly Bill insert, offers, and written promotional materials (except ads) 1999 Legislature Title 20, Article 5, California Code of Regulation Report to Commission annually with supporting documentation. Suppliers not making specific claims may disclose system mix. Colorado Fuel mix. Standard format is suggested.

29

Heterogeneous Reburning By Mixed Fuels  

SciTech Connect

Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.

Anderson Hall

2009-03-31T23:59:59.000Z

30

Fuel Effects on Mixing-Controlled Combustion Strategies for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency...

31

Environmental Disclosure Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Disclosure Program Environmental Disclosure Program Environmental Disclosure Program < Back Eligibility Utility Program Info State New York Program Type Generation Disclosure Provider New York State Department of Public Service The New York Public Service Commission (PSC) requires all electric utilities, energy service companies, jurisdictional municipal electric utilities and jurisdictional cooperative electric utilities to disclose details regarding the fuel mix and emissions of the supplier's electric generation to customers. This information must be provided to retail customers in a standard format every 6 months. The PSC created New York's Environmental Disclosure Program via an order issued in December 1998. This program has been modified several times since it was established. A November 2008 PSC order reduced the frequency of the

32

Mixed Mode Fuel Injector And Injection System  

DOE Patents (OSTI)

A fuel injector includes a homogenous charge nozzle outlet set and a conventional nozzle outlet set that are controlled respectively by first and second three way needle control valves. Each fuel injector includes first and second concentric needle valve members. One of the needle valve members moves to an open position for a homogenous charge injection event, while the other needle valve member moves to an open position for a conventional injection event. The fuel injector has the ability to operate in a homogenous charge mode with a homogenous charge spray pattern, a conventional mode with a conventional spray pattern or a mixed mode.

Stewart, Chris Lee (Normal, IL); Tian, Ye (Bloomington, IL); Wang, Lifeng (Normal, IL); Shafer, Scott F. (Morton, IL)

2005-12-27T23:59:59.000Z

33

Influence of Mixing and Fuel Composition on Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixing and Fuel Composition Mixing and Fuel Composition on Emissions * Lean premixed combustion is effective for emission reduction More sensitive to perturbations including fuel gas composition variability * UC Irvine developed model relating fuel/air mixing and fuel composition to emissions Altering fuel distribution is a strategy to accommodate fuel composition changes * Results were used by 3 OEM's, 1 combustion technology developer and 1 user to help make decisions on how to handle the impact of LNG on combustor stability, and in the case of California installations, on how to respond to regulatory issues * As LNG is used in increasing quantities from more sources the variability of fuel gas should be more widespread, and manufacturers are likely to use this data in redesigning

34

Marine Fuel Oil on a Mixed Base  

Science Journals Connector (OSTI)

Three grades of high–viscosity marine fuel oil are manufactured according to TU 38. ... developing the composition and technology for production of marine fuel oils [1– 4].

S. V. Kotov; A. G. Oltyrev; I. N. Kankaeva…

2001-05-01T23:59:59.000Z

35

Risk analysis of shipping plutonium pits and mixed oxide fuel  

E-Print Network (OSTI)

, one possible option that has been identified for disposition of excess U.S. weapons plutonium is the transformation into mixed oxide (MOX) fuel, that then would be used as fuel in a commercial nuclear power plant. Any such process will involve...

Caldwell, Amy Baker

2012-06-07T23:59:59.000Z

36

Green Power Network: Environmental Disclosure Policies  

NLE Websites -- All DOE Office Websites (Extended Search)

govern_purch govern_purch Community Choice Aggregation Disclosure Policies Green Power Policies Net Metering Policies Environmental Disclosure Policies A number of states have adopted environmental disclosure policies, requiring electricity suppliers to provide information on fuel sources and, in some cases, emissions associated with electricity generation. The policies have been adopted in states with retail competition as well as in states with traditionally regulated electricity markets. Summaries of state environmental disclosure policies are provided below under the categories full, partial, or proposed. The term partial disclosure requirements refers to policies that are not mandatory, do not apply to all retail electricity suppliers, or do not result in direct disclosure to consumers.

37

Mixed reactant single chamber fuel cell, using products generated from the electrolysis of an aqueous electrolyte.  

E-Print Network (OSTI)

??A Mixed Reactant Single Chamber (MRSC) Fuel Cell is a relatively recent concept in the field of fuel cell engineering originally developed in the late… (more)

Jost, William C.

2008-01-01T23:59:59.000Z

38

Apparatus and method for mixing fuel in a gas turbine nozzle  

DOE Patents (OSTI)

A nozzle includes a fuel plenum and an air plenum downstream of the fuel plenum. A primary fuel channel includes an inlet in fluid communication with the fuel plenum and a primary air port in fluid communication with the air plenum. Secondary fuel channels radially outward of the primary fuel channel include a secondary fuel port in fluid communication with the fuel plenum. A shroud circumferentially surrounds the secondary fuel channels. A method for mixing fuel and air in a nozzle prior to combustion includes flowing fuel to a fuel plenum and flowing air to an air plenum downstream of the fuel plenum. The method further includes injecting fuel from the fuel plenum through a primary fuel passage, injecting fuel from the fuel plenum through secondary fuel passages, and injecting air from the air plenum through the primary fuel passage.

Johnson, Thomas Edward; Ziminsky, Willy Steve; Berry, Jonathan Dwight

2014-08-12T23:59:59.000Z

39

Power Flattening in ARIES-RS Fusion Breeder Reactor Using Mixed Fuels  

Science Journals Connector (OSTI)

This study presents the possibility of the power flattening in the ARIES-RS breeder reactor using mixed (Th,U)C or (Th,U)N fuels. Two different types of mixing, namely, homogeneous mixing (HM) and linear mixin...

Mustafa Übeyli

2004-12-01T23:59:59.000Z

40

Modeling of the mixed potential in hydrogen peroxide-based fuel cells  

E-Print Network (OSTI)

Modeling of the mixed potential in hydrogen peroxide-based fuel cells L. An, T.S. Zhao*, Z.H. Chai 28 February 2014 Available online 31 March 2014 Keywords: Fuel cell Hydrogen peroxide Mixed potential (HPOR) at the cathode of hydrogen peroxide-based fuel cells. The complicated physicochemical processes

Zhao, Tianshou

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Gasification Characteristics of Coal/Biomass Mixed Fuels  

SciTech Connect

A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co- produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle pores and energy exchange between the particle and its environment. This char-particle gasification model is capable of predicting the average mass loss rates, sizes, apparent densities, specific surface areas, and temperatures of the char particles produced when co-firing coal and biomass to the type environments established in entrained flow gasifiers operating at high temperatures and elevated pressures. A key result of this work is the finding that the reactivities of the mixed chars were not always in between the reactivities of the pure component chars at comparable gasification conditions. Mixed char reactivity to CO2 was lower than the reactivities of both the pure Wyodak coal and pure corn stover chars to CO2. In contrast, mixed char reactivity to H2O was higher than the reactivities of both the pure Wyodak coal and pure corn stover chars to H2O. This was found to be in part, a consequence of the reduced mass specific surface areas of the coal char particles formed during devolatilization when the coal and biomass particles are co-fired. The biomass particles devolatilize prior to the coal particles, impacting the temperature and the composition of the environment in which the coal particles devolatilize. This situation results in coal char particles within the mixed char that differ in specific surface area and reactivity from the coal char particles produced in the absence of the devolatilizing biomass particles. Due to presence of this “affected” coal char, it was not possible to develop a mixed char reactivity model that uses linear mixing rules to determine the reactivity of a mixed char from only the reactivities of the pure mixture components. However, it was possible to predict both mixed char specific surface area and reactivity for a wide range of fuel mixture rat os provided the specific surface area and reactivity of the affected coal char particles are known. Using the kinetic parameters determined for the Wyodak coal and corn stover chars, the model was found to adequately predict the observed conversion times and off-gas compositions

Mitchell, Reginald

2013-09-30T23:59:59.000Z

42

Contributions of weather and fuel mix to recent declines in U.S. energy and carbon intensity  

E-Print Network (OSTI)

in a lower energy-and-carbon-intensive mix of economicintensity into fuel mix and energy intensity terms. Thisof fuel mix and weather on energy and carbon intensity using

Davis, W. Bart; Sanstad, Alan H.; Koomey, Jonathan G.

2002-01-01T23:59:59.000Z

43

Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures  

Science Journals Connector (OSTI)

Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures ... (1-4) Although the concept of SOFCs was first reported more than one century ago,(5) major technological advances in cell materials, reactor configuration, operation mode, and balance of plant system integration and optimization were realized in the last 20–30 years only. ... The hybrid start-up process is optimized with respect to a specific setup as an example, but is of general nature and utility to similar systems. ...

Chao Su; Yubo Chen; Wei Wang; Ran Ran; Zongping Shao; João C. Diniz da Costa; Shaomin Liu

2014-05-23T23:59:59.000Z

44

Mixing Correlations for Smoke and Fuel Consumption of Direct Injection Engines  

Science Journals Connector (OSTI)

The mixing of fuel with air in a diesel engine strongly dictates the specific fuel consumption and exhaust smoke. Many experimental studies reported the optimum swirl for a given diesel engine at a given operatin...

P. A. Lakshminarayanan; Yogesh V. Aghav

2010-01-01T23:59:59.000Z

45

Enhanced air/fuel mixing for automotive Stirling engine turbulator-type combustors  

SciTech Connect

This patent describes a combustor for use in a Stirling engine and the like. It comprises: a combustor chamber; a fuel inlet couple to the chamber to inject fuel therein; a turbulator means disposed in the chambers downstream of the fuel inlet means for injecting combustion air into the chamber, the turbulator means being so positioned to cause a mixing of the combustion air and fuel injected in the chamber; diverter means for dividing the combustion air and creating a primary mixing zone downstream fa the primary mixing zone; and wherein the primary mixing zone comprises a fuel rich zone where combustion initiates and the secondary mixing zone has sufficient combustion air to complete combustion of the fuel.

Riecke, G.T.; Stotts, R.E.

1992-02-25T23:59:59.000Z

46

An Innovative Injection and Mixing System for Diesel Fuel Reforming  

SciTech Connect

This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

Spencer Pack

2007-12-31T23:59:59.000Z

47

Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle  

DOE Patents (OSTI)

A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

2013-12-17T23:59:59.000Z

48

Mechanized fuel treatment effects on soil compaction in Sierra Nevada mixed-conifer stands  

E-Print Network (OSTI)

Mechanized fuel treatment effects on soil compaction in Sierra Nevada mixed-conifer stands Emily E need to treat forest fuels is often justified as a need to reduce potential fire behavior as well in the United States, and fuel treatments are being prescribed at unprecedented scales. In many cases

Stephens, Scott L.

49

Disclosures | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosures Disclosures No. Title Inventors M-864 "Display of Tournament Bracket" Inventors Eliot Feibush, Michael Knyszek, Matthew Lotocki, Jared Miller, Andrew Zwicker. M-863 "Fueling method for small, steady-state, aneutronic FRC fusion reactors" Inventors Samuel A. Cohen, Daren Stotler, Michael Buttolph M-862 " A Heterodyne Laser-induced Fluorescence Technique to Determine Simultaneously the Bulk and Time Varying Molecule Velocity Distribution." Inventors Ahmed Diallo, Stephane Mazouffre.The method's primary goal is to determine simultaneously the bulk a M-861 "Increasing Solar Panel Efficiency And Reliability By Evaporative Cooling" Inventors..--.. Lewis Meixler, Charles Gentile, Patricia Hillyer, Dylan Carpe, Jason Wang, Caroline Brooks

50

Internal Gas Pressure Behavior in Mixed-Oxide Fuel Rods Fuels During Irradiation  

Science Journals Connector (OSTI)

Fuel / Symposium on Theoretical Models for Predicting In-Reactor Performance of Fuel and Cladding Material

T. B. Burley; M. D. Freshley

51

Techno-economic analysis of biomass to fuel conversion via the MixAlco process  

Science Journals Connector (OSTI)

Figure 2 depicts biomass-to-hydrocarbon fuels conversion via the MixAlco process. To make hydrocarbon ... -efficiency vapor-compression evaporator, (4) thermal conversion of salts to ketones, (5) hydrogenation...

Viet Pham; Mark Holtzapple…

2010-11-01T23:59:59.000Z

52

Assessment of the effectiveness of mixed uranium-plutonium fuel in VVÉR  

Science Journals Connector (OSTI)

An assessment of the cost-effectiveness of burning mixed uranium-plutonium fuel in VVÉR reactors is made as a function of the price of natural uranium. It is shown that for the present price structure, based on t...

N. N. Ponomarev-Stepnoi; V. F. Tsibul’skii

2007-11-01T23:59:59.000Z

53

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

54

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

55

Environmental Information Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

New Jersey’s 1999 electric utility restructuring law requires electricity suppliers to disclose to customers details regarding the fuel mix and emissions of the supplier’s electric generation....

56

Characteristics of a Mixed Thorium-Uranium Dioxide High-Burnup Fuel  

SciTech Connect

Future nuclear fuels must satisfy three sets of requirements: longer times between refueling; concerns for weapons proliferation; and development of a spent fuel form more suitable for direct geologic disposal. This project has investigated a fuel consisting of mixed thorium and uranium dioxide to satisfy these requirements. Results using the SCALE 4.3 code system indicated that the mixed Th-U fuel could be burned to 72 MWD/kg or 100 MWD/kg using 25% of 35% UO2 respectively. The uranium remained below 20% total fissile fraction throughout the cycle, making it unusable for weapons. Total plutonium production per MWD was a factor of 4.5 less in the Th-U fuel than in the conventional fuel; Pu-239 production per MWD was a factor of 6.5 less; and the plutonium produced was high in Pu-238, leading to a decay heat 5 times greater than that from plutonium derived from conventional fuel and 40 times greater than weapons grade plutonium. High decay heat would require active cooling of any crude weapon, lest the components surrounding the plutonium be melted. Spontaneous neutron production for plutonium from Th-U fuel was 2.3 times greater than that from conventional fuel and 15 times greater than that from weapons grade plutonium. High spontaneous neutron production drastically limits the probable yield of a crude weapon. Because ThO2 is the highest oxide of thorium, while UO2 can be oxidized further to U3O8, ThO2-UO2 fuel may be a superior wasteform if the spent fuel is ever to be exposed to oxygenated water. Even if the cost of fabricating the mixed Th-U fuel is $100/kg greater, the cost of the Th-U fuel is 13% to 15% less than that of the fuels using uranium only.

J. S. Herring; P. E. MacDonald

1999-06-01T23:59:59.000Z

57

Characteristics of a Mixed Thorium - Uranium Dioxide High-Burnup Fuel  

SciTech Connect

Future nuclear fuel must satisfy three sets of requirements: longer times between refueling; concerns for weapons proliferation; and development of a spent fuel form more suitable for direct geologic disposal. This project has investigated a fuel consisting of mixed thorium and uranium dioxide to satisfy these requirements. Results using the SCALE 4.3 code system indicated that the mixed Th-U fuel could be burned to 72 MWD/kg or 100 MWD/kg using 25% and 35% UO2 respectively. The uranium remained below 20 % total fissile fraction throughout the cycle, making it unusable for weapons. Total plutonium production per MWD was a factor of 4.5 less in the Th-U fuel than in the conventional fuel; Pu-239 production per MWD was a factor of 6.5 less; and the plutonium produced was high in Pu-238, leading to a decay heat 5 times greater than that from plutonium derived from conventional fuel and 40 times greater than weapons grade plutonium. High decay heat would require active cooling of any crude weapon, lest the components surrounding the plutonium be melted. Spontaneous neutron production for plutonium from Th-U fuel was 2.3 times greater than that from conventional fuel and 15 times greater than that from weapons grade plutonium. High spontaneous neutron production drastically limits the probable yield of a crude weapon. Because ThO2 is the highest oxide of thorium, while UO2 can be oxidized further to U3O8, ThO2- UO2 fuel may be a superior wasteform if the spent fuel is ever to be exposed to oxygenated water. Even if the cost of fabricating the mixed Th-U fuel is $100/kg greater, the cost of the Th-U fuel is 13% to 25% less than that of the fuels using uranium only.

Herring, James Stephen; Mac Donald, Philip Elsworth

1999-06-01T23:59:59.000Z

58

LANL disassembles "pits," makes mixed-oxide fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

at the MOX facility in South Carolina, the plutonium oxide from LANL will be blended with depleted uranium, fabricated into MOX fuel, and irradiated in domestic nuclear...

59

Fuels Treatment for Mixed Conifer Forests Alexander M. Evans The Forest Guild, New Mexico zander@forestguild.org  

E-Print Network (OSTI)

#12;Fuels Treatment for Mixed Conifer Forests Authors Alexander M. Evans ­ The Forest Guild, New.forestguild.org i #12;Fuels Treatment for Mixed Conifer Forests ii Executive Summary The goal of this guide is to provide a resource for managers of mixed conifer forests of the Southwestern plateaus and uplands

Stephens, Scott L.

60

Fuel treatment effectiveness in California yellow pine and mixed conifer forests H.D. Safford a,b,  

E-Print Network (OSTI)

Fuel treatment effectiveness in California yellow pine and mixed conifer forests H.D. Safford a Accepted 15 February 2012 Keywords: Fuel treatment Fire severity Yellow pine forests Mixed conifer forests or mixed conifer forests, in a variety of land- scape conditions. Most fires burned under warm, dry

North, Malcolm

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Multi-tube fuel nozzle with mixing features  

DOE Patents (OSTI)

A system includes a multi-tube fuel nozzle having an inlet plate and a plurality of tubes adjacent the inlet plate. The inlet plate includes a plurality of apertures, and each aperture includes an inlet feature. Each tube of the plurality of tubes is coupled to an aperture of the plurality of apertures. The multi-tube fuel nozzle includes a differential configuration of inlet features among the plurality of tubes.

Hughes, Michael John

2014-04-22T23:59:59.000Z

62

Disclosure of Permitted Communication Concerning Regional Standards  

NLE Websites -- All DOE Office Websites (Extended Search)

Disclosure of Permitted Communication Concerning Regional Standards Disclosure of Permitted Communication Concerning Regional Standards Enforcement Framework Document -- Docket No. EERE-2011-BT-CE-0077 Disclosure of Permitted Communication Concerning Regional Standards Enforcement Framework Document -- Docket No. EERE-2011-BT-CE-0077 This memo provides an overview of communications made to DOE staff on the subject of a policy for providing waivers from new regional furnace efficiency standards. memo_furnace_std_waiver_policy.pdf More Documents & Publications Disclosure of Permitted Communication Concerning Fossil Fuel Energy Consumption Reduction for New Construction and Major Renovations of Federal Buildings -- Docket No. EERE-2010-BT-STD-0031; RIN 1904-AB96 Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit

63

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Mississippi Program Type

64

OPTIMIZATION OF FUEL-AIR MIXING FOR A SCRAMJET COMBUSTOR GEOMETRY USING CFD AND A GENETIC ALGORITHM .  

E-Print Network (OSTI)

??A new methodology for the optimization of fuel-air mixing in a scramjet combustor using integrated Genetic Algorithms and Computational Fluid Dynamics is presented. A typical… (more)

Ahuja, Vivek

2008-01-01T23:59:59.000Z

65

Licensing issues associated with the use of mixed-oxide fuel in US commercial nuclear reactors  

SciTech Connect

On January 14, 1997, the Department of Energy, as part of its Record of Decision on the storage and disposition of surplus nuclear weapons materials, committed to pursue the use of excess weapons-usable plutonium in the fabrication of mixed-oxide (MOX) fuel for consumption in existing commercial nuclear power plants. Domestic use of MOX fuel has been deferred since the late 1970s, principally due to nuclear proliferation concerns. This report documents a review of past and present literature (i.e., correspondence, reports, etc.) on the domestic use of MOX fuel and provides discussion on the technical and regulatory issues that must be addressed by DOE (and the utility/consortia selected by DOE to effect the MOX fuel consumption strategy) in obtaining approval from the Nuclear Regulatory Commission to use MOX fuel in one or a group of existing commercial nuclear power plants.

Williams, D.L. Jr.

1997-04-01T23:59:59.000Z

66

The behaviour of transuranic mixed oxide fuel in a Candu-900 reactor  

SciTech Connect

The production of transuranic actinide fuels for use in current thermal reactors provides a useful intermediary step in closing the nuclear fuel cycle. Extraction of actinides reduces the longevity, radiation and heat loads of spent material. The burning of transuranic fuels in current reactors for a limited amount of cycles reduces the infrastructure demand for fast reactors and provides an effective synergy that can result in a reduction of as much as 95% of spent fuel waste while reducing the fast reactor infrastructure needed by a factor of almost 13.5 [1]. This paper examines the features of actinide mixed oxide fuel, TRUMOX, in a CANDU{sup R}* nuclear reactor. The actinide concentrations used were based on extraction from 30 year cooled spent fuel and mixed with natural uranium in 3.1 wt% actinide MOX fuel. Full lattice cell modeling was performed using the WIMS-AECL code, super-cell calculations were analyzed in DRAGON and full core analysis was executed in the RFSP 2-group diffusion code. A time-average full core model was produced and analyzed for reactor coefficients, reactivity device worth and online fuelling impacts. The standard CANDU operational limits were maintained throughout operations. The TRUMOX fuel design achieved a burnup of 27.36 MWd/kg HE. A full TRUMOX fuelled CANDU was shown to operate within acceptable limits and provided a viable intermediary step for burning actinides. The recycling, reprocessing and reuse of spent fuels produces a much more sustainable and efficient nuclear fuel cycle. (authors)

Morreale, A. C.; Ball, M. R.; Novog, D. R.; Luxat, J. C. [Dept. of Engineering Physics, McMaster Univ., 1280 Main St. W, Hamilton, ON (Canada)

2012-07-01T23:59:59.000Z

67

Preliminary effects of fire and mechanical fuel treatments on the abundance of small mammals in the mixed-conifer forest  

E-Print Network (OSTI)

in the mixed-conifer forest of the Sierra Nevada Andrew J. Amacher *, Reginald H. Barrett, Jason J. Moghaddas; received in revised form 19 October 2007; accepted 31 October 2007 Abstract Many western conifer forests fuel treatments on small mammal populations within Sierra Nevada mixed-conifer forests. Twelve mixed-conifer

Stephens, Scott L.

68

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

69

Fuel treatment effectiveness in California yellow pine and mixed conifer forests  

Science Journals Connector (OSTI)

We assessed the effectiveness of forest fuel thinning projects that explicitly removed surface and ladder fuels (all but one were combined mechanical and prescribed fire/pile burn prescriptions) in reducing fire severity and tree mortality in 12 forest fires that burned in eastern and southern California between 2005 and 2011. All treatments and fires occurred in yellow pine or mixed conifer forests, in a variety of landscape conditions. Most fires burned under warm, dry conditions, with moderate to high winds. With few exceptions, fire severity measures (bole char height, scorch and torch height, scorch and torch percentage) and tree mortality were much lower in forest stands treated for fuels than in neighboring untreated stands. Fire-tolerant species like Pinus jeffreyi and Pinus ponderosa exhibited much higher postfire survivorship than fire-intolerant species like Abies concolor. Among variables related to fire weather, fuel loading, and treatment age, ten-hour fuel moisture was found to be a better predictor of tree survival in untreated stands than in treated stands, while fuel loading was a better predictor of survival in treated stands. We did not find an effect of treatment age, but our oldest treatments (nine years when burned) were below the mean pre-Euroamerican settlement fire return interval for these forest types. Within treatments, fire severity decreased with distance from the treatment boundary, and canopy fires were almost always reduced to surface fires within 70 m of entering the treatment. In California yellow pine and mixed conifer forests, treatment prescriptions should allow for levels of fire-driven canopy tree mortality (c. 5–15%) that better mimic natural fires. Our results add significantly to the growing evidence that fuel treatments that include removal of surface and ladder fuels in these forest types are highly effective management tools for reducing fire severity and canopy tree mortality. In our opinion, quantitative assessments of fuel treatment effects on fire severity in frequent-fire forest types hardly merit further effort. Rather, we suggest that future work focus on documenting and comparing other ecological outcomes of fuel treatments in burned and unburned forest, such as effects on plant and animal diversity, soil conditions, and habitat heterogeneity.

H.D. Safford; J.T. Stevens; K. Merriam; M.D. Meyer; A.M. Latimer

2012-01-01T23:59:59.000Z

70

Fuel-Mix, Fuel Efficiency, and Transport Demand Affect Prospects for Biofuels in Northern Europe  

Science Journals Connector (OSTI)

Consumption structure parameters describe how the four road transport processes are being consumed, such as, for example, the amount of car-sharing and private vehicle ownership per capita—and are based on country-specific trend extrapolation using data provided by national statistical agencies and other research institutions (13-17, 35). ... As Ohrogge et al. point out, although there are uncertainties in the pace of electric car development and market penetration, future strategies aimed at promoting bioelectricity instead of ethanol for substituting conventional fuels like gasoline in cars and promoting more diesel engines in heavier vehicles may be the best route to the goal of reducing petroleum consumption and CO2 emissions (69). ... In the case of Sweden, where forest operations are highly and efficiently mechanized, this stage consumes more fossil fuels than other elements of the wood supply chain (such as silviculture and logging operations). ...

Ryan M. Bright; Anders Hammer Strømman

2010-02-17T23:59:59.000Z

71

First Observations of Nonhydrodynamic Mix at the Fuel-Shell Interface in Shock-Driven Inertial Confinement Implosions  

E-Print Network (OSTI)

A strong nonhydrodynamic mechanism generating atomic fuel-shell mix has been observed in strongly shocked inertial confinement fusion implosions of thin deuterated-plastic shells filled with [superscript 3]He gas. These ...

Amendt, P.

72

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K. NNL

2011-01-13T23:59:59.000Z

73

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Boyer, B. D. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K., NNL

2010-11-24T23:59:59.000Z

74

Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation  

SciTech Connect

The primary purpose of this report is to describe the strategy for coupling three process level models to produce an integrated Used Fuel Degradation Model (FDM). The FDM, which is based on fundamental chemical and physical principals, provides direct calculation of radionuclide source terms for use in repository performance assessments. The G-value for H2O2 production (Gcond) to be used in the Mixed Potential Model (MPM) (H2O2 is the only radiolytic product presently included but others will be added as appropriate) needs to account for intermediate spur reactions. The effects of these intermediate reactions on [H2O2] are accounted for in the Radiolysis Model (RM). This report details methods for applying RM calculations that encompass the effects of these fast interactions on [H2O2] as the solution composition evolves during successive MPM iterations and then represent the steady-state [H2O2] in terms of an “effective instantaneous or conditional” generation value (Gcond). It is anticipated that the value of Gcond will change slowly as the reaction progresses through several iterations of the MPM as changes in the nature of fuel surface occur. The Gcond values will be calculated with the RM either after several iterations or when concentrations of key reactants reach threshold values determined from previous sensitivity runs. Sensitivity runs with RM indicate significant changes in G-value can occur over narrow composition ranges. The objective of the mixed potential model (MPM) is to calculate the used fuel degradation rates for a wide range of disposal environments to provide the source term radionuclide release rates for generic repository concepts. The fuel degradation rate is calculated for chemical and oxidative dissolution mechanisms using mixed potential theory to account for all relevant redox reactions at the fuel surface, including those involving oxidants produced by solution radiolysis and provided by the radiolysis model (RM). The RM calculates the concentration of species generated at any specific time and location from the surface of the fuel. Several options being considered for coupling the RM and MPM are described in the report. Different options have advantages and disadvantages based on the extent of coding that would be required and the ease of use of the final product.

Buck, Edgar C.; Jerden, James L.; Ebert, William L.; Wittman, Richard S.

2013-08-30T23:59:59.000Z

75

The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility, IG-0887  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Use of Staff Augmentation The Use of Staff Augmentation Subcontracts at National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility DOE/IG-0887 May 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 15, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility" BACKGROUND Shaw AREVA MOX Services, LLC (MOX Services) is responsible for the design and construction of the National Nuclear Security Administration's (NNSA) nearly $5 billion Mixed

76

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network (OSTI)

for forecasting demand for alternative-fuel vehicles. In:preferences for alternative-fuel vehicles David Brownstonespondents' preferences for alternative-fuel vehicles. The e€

Brownston, David; Bunch, David S.; Train, Kenneth

1999-01-01T23:59:59.000Z

77

LIBS Spectral Data for a Mixed Actinide Fuel Pellet Containing Uranium, Plutonium, Neptunium and Americium  

SciTech Connect

Laser-induced breakdown spectroscopy (LIBS) was used to analyze a mixed actinide fuel pellet containing 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2}. The preliminary data shown here is the first report of LIBS analysis of a mixed actinide fuel pellet, to the authors knowledge. The LIBS spectral data was acquired in a plutonium facility at Los Alamos National Laboratory where the sample was contained within a glove box. The initial installation of the glove box was not intended for complete ultraviolet (UV), visible (VIS) and near infrared (NIR) transmission, therefore the LIBS spectrum is truncated in the UV and NIR regions due to the optical transmission of the window port and filters that were installed. The optical collection of the emission from the LIBS plasma will be optimized in the future. However, the preliminary LIBS data acquired is worth reporting due to the uniqueness of the sample and spectral data. The analysis of several actinides in the presence of each other is an important feature of this analysis since traditional methods must chemically separate uranium, plutonium, neptunium, and americium prior to analysis. Due to the historic nature of the sample fuel pellet analyzed, the provided sample composition of 75% UO{sub 2}/20% PuO{sub 2}/3% AmO{sub 2}/2% NpO{sub 2} cannot be confirm without further analytical processing. Uranium, plutonium, and americium emission lines were abundant and easily assigned while neptunium was more difficult to identify. There may be several reasons for this observation, other than knowing the exact sample composition of the fuel pellet. First, the atomic emission wavelength resources for neptunium are limited and such techniques as hollow cathode discharge lamp have different dynamics than the plasma used in LIBS which results in different emission spectra. Secondly, due to the complex sample of four actinide elements, which all have very dense electronic energy levels, there may be reactions and interactions occurring within the plasma, such as collisional energy transfer, that might be a factor in the reduction in neptunium emission lines. Neptunium has to be analyzed alone using LIBS to further understand the dynamics that may be occurring in the plasma of the mixed actinide fuel pellet sample. The LIBS data suggests that the emission spectrum for the mixed actinide fuel pellet is not simply the sum of the emission spectra of the pure samples but is dependent on the species present in the plasma and the interactions and reactions that occur within the plasma. Finally, many of the neptunium lines are in the near infrared region which is drastically reduced in intensity by the current optical setup and possibly the sensitivity of the emission detector in the spectral region. Once the optics are replaced and the optical collection system is modified and optimized, the probability of observing emission lines for neptunium might be increased significantly. The mixed actinide fuel pellet was analyzed under the experimental conditions listed in Table 1. The LIBS spectra of the fuel pellet are shown in Figures 1-49. The spectra are labeled with the observed wavelength and atomic species (both neutral (I) and ionic (II)). Table 2 is a complete list of the observed and literature based emission wavelengths. The literature wavelengths have references including NIST Atomic Spectra Database (NIST), B.A. Palmer et al. 'An Atlas of Uranium Emission Intensities in a Hollow Cathode Discharge' taken at the Kitt Peak National Observatory (KPNO), R.L. Kurucz 1995 Atomic Line Data from the Smithsonian Astrophysical Observatory (SAO), J. Blaise et al. 'The Atomic Spectrum of Plutonium' from Argonne National Laboratory (BFG), and M. Fred and F.S. Tomkins, 'Preliminary Term Analysis of Am I and Am II Spectra' (FT). The dash (-) shown under Ionic State indicates that the ionic state of the transition was not available. In the spectra, the dash (-) is replaced with a question mark (?). Peaks that are not assigned are most likely real features and not noise but cannot be confidently assi

Judge, Elizabeth J. [Los Alamos National Laboratory; Berg, John M. [Los Alamos National Laboratory; Le, Loan A. [Los Alamos National Laboratory; Lopez, Leon N. [Los Alamos National Laboratory; Barefield, James E. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

78

An integrated approach for the verification of fresh mixed oxide fuel (MOX) assemblies at light water reactor MOX recycle reactors  

SciTech Connect

This paper presents an integrated approach for the verification of mixed oxide (MOX) fuel assemblies prior to their being loaded into the reactor. There is a coupling of the verification approach that starts at the fuel fabrication plant and stops with the transfer of the assemblies into the thermal reactor. The key measurement points are at the output of the fuel fabrication plant, the receipt at the reactor site, and the storage in the water pool as fresh fuel. The IAEA currently has the capability to measure the MOX fuel assemblies at the output of the fuel fabrication plants using a passive neutron coincidence counting systems of the passive neutron collar (PNCL) type. Also. at the MOX reactor pool, the underwater coincidence counter (UWCC) has been developed to measure the MOX assemblies in the water. The UWCC measurement requires that the fuel assembly be lifted about two meters up in the storage rack to avoid interference from the fuel that is stored in the rack. This paper presents a new method to verify the MOX fuel assemblies that are in the storage rack without the necessity of moving the fuel. The detector system is called the Underwater MOX Verification System (UMVS). The integration and relationship of the three measurements systems is described.

Menlove, Howard O [Los Alamos National Laboratory; Lee, Sang - Yoon [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

79

Conversion of Mixed Oxygenates Generated from Synthesis Gas to Fuel Range Hydrocarbon  

SciTech Connect

The growing dependence in the U.S. on foreign crude oil supplies and increased concerns regarding greenhouse gas emission has generated considerable interest in research to develop renewable and environmentally friendly liquid hydrocarbon transportation fuels. One of the strategies for achieving this is to produce intermediate compounds such as alcohols and other simple oxygenates from biomass generated synthesis gas (mixture of carbon monoxide and hydrogen) and further convert them into liquid hydrocarbons. The focus of this research is to investigate the effects of mixed oxygenates intermediate product compositions on the conversion step to produce hydrocarbon liquids. A typical mixed oxygenate stream is expected to contain water (around 50%), alcohols, such as methanol and ethanol (around 35%), and smaller quantities of oxygenates such as acetaldehyde, acetic acid and ethyl acetate. However the ratio and the composition of the mixed oxygenate stream generated from synthesis gas vary significantly depending on the catalyst used and the process conditions. Zeolite catalyzed deoxygenation of methanol accompanied by chain growth is well understood under Methanol-to-Gasoline (MTG) like reaction conditions using an H-ZSM-5 zeolite as the catalyst6-8. Research has also been conducted to a limited extent in the past with higher alcohols, but not with other oxygenates present9-11. Also there has been little experimental investigation into mixtures containing substantial amounts of water. The latter is of particular interest because water separation from the hydrocarbon product would be less energy intensive than first removing it from the oxygenate intermediate stream prior to hydrocarbon synthesis, potentially reducing overall processing costs.

Ramasamy, Karthikeyan K.; Gerber, Mark A.; Lilga, Michael A.; Flake, Matthew D.

2012-08-19T23:59:59.000Z

80

Determination of Radial Power Profiles in Thorium-Plutonium Mixed Oxide Fuel Pellets.  

E-Print Network (OSTI)

??To be able to license fuel for use in commercial nuclear reactors its thermomechanical behavior needs to be well known. For this, fuel performance codes… (more)

fredriksson, patrik

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of existing United States` facilities for use as a mixed-oxide (MOX) fuel fabrication facility for plutonium disposition  

SciTech Connect

A number of existing US facilities were evaluated for use as a mixed-oxide fuel fabrication facility for plutonium disposition. These facilities include the Fuels Material Examination Facility (FMEF) at Hanford, the Washington Power Supply Unit 1 (WNP-1) facility at Hanford, the Barnwell Nuclear Fuel Plant (BNFP) at Barnwell, SC, the Fuel Processing Facility (FPF) at Idaho National Engineering Laboratory (INEL), the Device Assembly Facility (DAF) at the Nevada Test Site (NTS), and the P-reactor at the Savannah River Site (SRS). The study consisted of evaluating each facility in terms of available process space, available building support systems (i.e., HVAC, security systems, existing process equipment, etc.), available regional infrastructure (i.e., emergency response teams, protective force teams, available transportation routes, etc.), and ability to integrate the MOX fabrication process into the facility in an operationally-sound manner that requires a minimum amount of structural modifications.

Beard, C.A.; Buksa, J.J.; Chidester, K.; Eaton, S.L.; Motley, F.E.; Siebe, D.A.

1995-12-31T23:59:59.000Z

82

Miscible, multi-component, diesel fuels and methods of bio-oil transformation  

DOE Patents (OSTI)

Briefly described, embodiments of this disclosure include methods of recovering bio-oil products, fuels, diesel fuels, and the like are disclosed.

Adams, Thomas (Athens, GA); Garcia, Manuel (Quebec, CA); Geller, Dan (Athens, GA); Goodrum, John W. (Athens, GA); Pendergrass, Joshua T. (Jefferson, GA)

2010-10-26T23:59:59.000Z

83

Effects of Fuel-Shell Mix upon Direct-Drive, Spherical Implosions on OMEGA C. K. Li, F. H. Seguin, J. A. Frenje, S. Kurebayashi, and R. D. Petrasso*  

E-Print Network (OSTI)

Effects of Fuel-Shell Mix upon Direct-Drive, Spherical Implosions on OMEGA C. K. Li, F. H. Se September 2002) Fuel-shell mix and implosion performance are studied for many capsule types in direct shortfalls are likely to be caused by fuel-shell mix. DOI: 10.1103/PhysRevLett.89.165002 PACS numbers: 52

84

DISCLOSURE OF LOBBYING ACTIVITIES  

Gasoline and Diesel Fuel Update (EIA)

OF LOBBYING ACTIVITIES OF LOBBYING ACTIVITIES Approved by OMB Complete this form to disclose lobbying activities pursuant to 31 U.S.C. 1352 0348-0046 (See reverse for public burden disclosure.) 1. Type of Federal Action: 2. Status of Federal Action: 3. Report Type: a. contract a. bid/offer/application a. initial filing b. grant b. initial award b. material change c. cooperative agreement c. post-award For Material Change Only: d. loan year _________ quarter _________ e. loan guarantee date of last report ______________ f. loan insurance 4. Name and Address of Reporting Entity: 5. If Reporting Entity in No. 4 is a Subawardee, Enter Name

85

Lobbyist Disclosure Form - Silicon Valley | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lobbyist Disclosure Form - Silicon Valley.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Lobbyist Disclosure Form - First Solar Interested Parties - Shipp...

86

Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

87

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Information Disclosure to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on AddThis.com... More in this section... Federal State Advanced Search

88

OMB Burden Disclosure Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71.1 OMB Control Number 71.1 OMB Control Number (09/2012) (Classification) OMB Burden Disclosure Statement 1910-1800 Public reporting burden for this collection of information is estimated to average 10 (minutes) per response, including the time for reviewing instructions, searching exist ing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comme nts regarding this estimate or any other aspect of this information, including suggestions for reducing this burden, to Information, Records, and Resource Management, MA-41-GTN, Paperwork Reduction Project (1910-1800), U.S. Department of Energy, Washington, DC 20874-1290; and to the Office of Management and Budget (OMB), Paperwork Reduction Project (1910-1800),Washington, DC 20503.

89

42 MaxPlanckForschung 4 | 13 Turbulence is omnipresent: it plays an important role during planet formation, mixes fuel and air  

E-Print Network (OSTI)

on aircraft wings or car bodies, for example, is feared because it push- es up the fuel consumption. And tur formation, mixes fuel and air in the cylinder of an engine, but also increases the energy needed for pumps PHENOMENON In our blood vessels, the steady blood flow also switches time and again to turbulent motion

Falge, Eva

90

Analysis of Transuranic Mixed Oxide Fuel in a CANDU Nuclear Reactor.  

E-Print Network (OSTI)

?? The reprocessing of spent fuel is a key component in reducing the end waste from nuclear power plant operations and creating a sustainable closed… (more)

Morreale, Andrew C

2013-01-01T23:59:59.000Z

91

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

92

Energy Disclosure and Leasing Standards: Best Practices  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on Energy Disclosure and Leasing Standards: Best Practices.

93

Annual Confidential Financial Disclosure Report (OGE 450)  

Directives, Delegations, and Requirements

This Notice addresses Executive Branch confidential financial disclosure requirements. These requirements apply to career GS (GM) employees.

1999-10-01T23:59:59.000Z

94

Annual Confidential Financial Disclosure Report (OGE 450)  

Directives, Delegations, and Requirements

This Notice addresses the Executive Branch confidential disclosure requirements. These requirements apply to career GS (GM) employees.

2002-10-01T23:59:59.000Z

95

Annual Confidential Financial Disclosure Report (OGE 450)  

Directives, Delegations, and Requirements

This Notice addresses Executive Branch confidential financial disclosure requirements. These requirements apply to career GS (GM) employees.

2000-10-01T23:59:59.000Z

96

Thermal-Hydraulic Analysis of Advanced Mixed-Oxide Fuel Assemblies with VIPRE-01  

E-Print Network (OSTI)

depletion and core reshuffling, and fuel material thermal-physical properties. Additionally, a text-based coupling method is developed to facilitate the exchange of information between the neutronic code DRAGON and thermal-hydraulic code VIPRE-01. The new...

Bingham, Adam R.

2010-07-14T23:59:59.000Z

97

Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation  

SciTech Connect

Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

Yoon, S.S. [Corporate Research and Development Division, Hyundai-Kia Motors, Gyeonggi-do 445-706 (Korea); Anh, D.H. [Korea Electric Power Research Institute, Daejeon 305-380 (Korea); Chung, S.H. [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul 151-742 (Korea)

2008-08-15T23:59:59.000Z

98

Carbon Disclosure Project | Open Energy Information  

Open Energy Info (EERE)

Disclosure Project Disclosure Project Jump to: navigation, search Name Carbon Disclosure Project Place London, United Kingdom Zip EC1R 0NE Product A secretariat for 143 institutional investors with USD 20 trn under management, it aims to encourage the development of a common emissions measurement methodology and to facilitate its integration into general investment analysis. References Carbon Disclosure Project[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Carbon Disclosure Project is a company located in London, United Kingdom . References ↑ "Carbon Disclosure Project" Retrieved from "http://en.openei.org/w/index.php?title=Carbon_Disclosure_Project&oldid=343232

99

Safety of CANDU reactors utilizing plutonium-enriched mixed-oxide fuel  

SciTech Connect

Substantial quantities of plutonium have become available as a result of nuclear arms reduction agreements. Irradiation of plutonium enriched fuel in Canadian deuterium uranium (CANDU) heavy water moderated and cooled reactors, of which there are 22 in operation in Canada, has been evaluated as a means of managing it. This paper summarizes the results of a study of reactor safety.

Chan, P.; Feinroth, H.; Luxat, J.; Pendergast, D.

1994-12-31T23:59:59.000Z

100

Conversion of MixAlco Process Sludge to Liquid Transportation Fuels  

E-Print Network (OSTI)

Alco process, a method was developed to efficiently separate H2 using pressure swing adsorption (PSA) from the synthesis gas, with activated carbon and molecular sieve 5A as adsorbents. The H2 can be used to hydrogenate ketones generated from the Mix...

Teiseh, Eliasu 1973-

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint US/Russian Progress Report for Fiscal 1997. Volume 3 - Calculations Performed in the Russian Federation  

SciTech Connect

This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the Russian Federation during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the contaminated benchmarks that the United States and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

NONE

1998-06-01T23:59:59.000Z

102

High-Bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix - Parker Hannifin  

NLE Websites -- All DOE Office Websites (Extended Search)

Bandwidth Modulation of H Bandwidth Modulation of H 2 /Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix-Parker Hannifin Background In this congressionally directed project, Parker Hannifin Corporation (Parker), in cooperation with Georgia Institute of Technology (Georgia Tech), will enhance its micro-mixing injector platform to improve combustion operability in lean premix turbine systems by attenuating the combustion dynamics. This will be accomplished

103

Energy Use Disclosure Summary Sheet The following disclosure is comprised of three  

E-Print Network (OSTI)

a rating.The EUI is a unit of measurement that describes a building's energy use. EUI is comprised of three documents that are generated by the EPA's ENERGY STAR® measurement Energy Use Disclosure Summary Sheet Overview The following disclosure

104

Synthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah McNew, Tiorra Ross and Carsten Sievers  

E-Print Network (OSTI)

· Flash pyrolysis on biomass [1] · Short residence times and flexible feed · Bio-oils produced are close to dissociate hydrogen Goal: synthesize metal free, sulfur free, catalysts for HDO Biomass Pyrolysis OilSynthesis of Mixed Metal Oxides for Hydrodeoxygenation of Pyrolysis Oil for Alternative Fuels Sarah

Das, Suman

105

Study on capacity optimization of PEM fuel cell and hydrogen mixing gas-engine compound generator  

Science Journals Connector (OSTI)

Development of a small-scale power source not dependent on commercial power may result in various effects. For example, it may eliminate the need for long distance power-transmission lines, and mean that the amount of green energy development is not restricted to the dynamic characteristics of a commercial power grid. Moreover, the distribution of the independent energy source can be optimized with regionality in mind. This paper examines the independent power supply system relating to hydrogen energy. Generally speaking, the power demand of a house tends to fluctuate considerably over the course of a day. Therefore, when introducing fuel cell cogeneration into an apartment house, etc., low-efficiency operations in a low-load region occur frequently in accordance with load fluctuation. Consequently, the hybrid cogeneration system (HCGS) that uses a solid polymer membrane-type fuel cell (PEM-FC) and a hydrogen mixture gas engine (NEG) together to improve power generation efficiency during partial load of fuel cell cogeneration is proposed. However, since facility costs increase, if the HCGS energy cost is not low compared with the conventional method, it is disadvantageous. Therefore, in this paper, HCGS is introduced into 10 household apartments in Tokyo, and the power generation efficiency, carbon dioxide emissions and optimal capacity of a boiler and heat storage tank are investigated through analysis. Moreover, the system characteristics change significantly based on the capacity of PEM-FC and NEG that compose HCGS. Therefore, in this study, the capacity of PEM-FC and that of NEG are investigated, as well as the power generation efficiency, carbon dioxide emissions and the optimal capacity of a boiler and heat storage tank. Analysis revealed that the annual average power generation efficiency when the capacity of PEM-FC and NEG is 5 kW was 27.3%. Meanwhile, the annual average power generation efficiency of HCGS is 1.37 times that of the PEM-FC independent system, and 1.28 times that of the NEG independent system, respectively.

Shin’ya Obara; Itaru Tanno

2007-01-01T23:59:59.000Z

106

Are Vulnerability Disclosure Deadlines Justified?  

SciTech Connect

Vulnerability research organizations Rapid7, Google Security team, and Zero Day Initiative recently imposed grace periods for public disclosure of vulnerabilities. The grace periods ranged from 45 to 182 days, after which disclosure might occur with or without an effective mitigation from the affected software vendor. At this time there is indirect evidence that the shorter grace periods of 45 and 60 days may not be practical. However, there is strong evidence that the recently announced Zero Day Initiative grace period of 182 days yields benefit in speeding up the patch creation process, and may be practical for many software products. Unfortunately, there is also evidence that the 182 day grace period results in more vulnerability announcements without an available patch.

Miles McQueen; Jason L. Wright; Lawrence Wellman

2011-09-01T23:59:59.000Z

107

Registered_Lobbyist_Contact_Disclosure_Form.pdf | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

egisteredLobbyistContactDisclosureForm.pdf More Documents & Publications Lobbyist Disclosure Form - AltEn Interested Parties - Shipp Interested Parties - Smith Dawson & Andrews...

108

Annual Confidential Financial Disclosure Report (SF 450)  

Directives, Delegations, and Requirements

This Notice addresses the Executive Branch confidential financial disclosure requirements. These requirements apply to persons employed at the GS-15 level and below, except for Schedule C appointees.

1995-10-13T23:59:59.000Z

109

Annual Confidential Financial Disclosure Report (OGE 450)  

Directives, Delegations, and Requirements

This Notice addresses the Executive Branch confidential financial disclosure requirements. These requirements apply to career GS (GM) employees. (Replaces DOE N 326.7).

2001-10-01T23:59:59.000Z

110

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents (OSTI)

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

111

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

112

PUBLIC INTEREST DISCLOSURE (PID) POLICY AND PROCEDURES  

E-Print Network (OSTI)

i PUBLIC INTEREST DISCLOSURE (PID) POLICY AND PROCEDURES #12;PUBLIC INTEREST DISCLOSURE POLICY AND PROCEDURES 2 Contents 1. AUTHORISATION OF PROCEDURES 3 2. INTRODUCTION 3 2.1. Statement of commitment 3 2.2. Relationship to other Bureau policies 4 2.3. Application of procedures 4 3. RESPONSIBILITIES AND OBLIGATIONS 4

Greenslade, Diana

113

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel blends of at least 20% biodiesel fuel or that mix fuel from separate storage tanks and allow the user to select the percentage of renewable fuel. The maximum credit...

114

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

115

Fuel reduction and coarse woody debris dynamics with early season and late season prescribed fire in a Sierra Nevada mixed conifer forest  

Science Journals Connector (OSTI)

Fire exclusion has led to an unnatural accumulation and greater spatial continuity of organic material on the ground in many forests. This material serves both as potential fuel for forest fires and habitat for a large array of forest species. Managers must balance fuel reduction to reduce wildfire hazard with fuel retention targets to maintain other forest functions. This study reports fuel consumption and changes to coarse woody debris attributes with prescribed burns ignited under different fuel moisture conditions. Replicated early season burn, late season burn, and unburned control plots were established in old-growth mixed conifer forest in Sequoia National Park that had not experienced fire for more than 120 years. Early season burns were ignited during June 2002 when fuels were relatively moist, and late season burns were ignited during September/October 2001 when fuels were dry. Fuel loading and coarse woody debris abundance, cover, volume, and mass were evaluated prior to and after the burns. While both types of burns reduced fuel loading, early season burns consumed significantly less of the total dead and down organic matter than late season burns (67% versus 88%). This difference in fuel consumption between burning treatments was significant for most all woody fuel components evaluated, plus the litter and duff layers. Many logs were not entirely consumed – therefore the number of logs was not significantly changed by fire – but burning did reduce log length, cover, volume, and mass. Log cover, volume, and mass were reduced to a lesser extent by early season burns than late season burns, as a result of higher wood moisture levels. Early season burns also spread over less of the ground surface within the burn perimeter (73%) than late season burns (88%), and were significantly patchier. Organic material remaining after a fire can dam sediments and reduce erosion, while unburned patches may help mitigate the impact of fire on fire-sensitive species by creating refugia from which these species can recolonize burned areas. Early season burns may be an effective means of moderating potential ecosystem damage when treating heavy and/or continuous fuels resulting from long periods of fire exclusion, if burning during this season is not detrimental to other forest functions.

Eric E. Knapp; Jon E. Keeley; Elizabeth A. Ballenger; Teresa J. Brennan

2005-01-01T23:59:59.000Z

116

Fuel mix prospects  

Science Journals Connector (OSTI)

The World Energy Council tentatively assessed the more likely prospects beyond 2020. Four cases were selected covering the period 1990-2020 and three of the cases were taken on to 2100. The long-term prospects for nuclear power will not only depend upon the evolution of public perceptions and policies, but also developments with fast breeder reactors.

Michael Jefferson

1995-01-01T23:59:59.000Z

117

Confidential Financial Disclosure Report (OGE Form 450)  

Directives, Delegations, and Requirements

This Notice addresses the Executive Branch confidential financial disclosure reporting requirements. These requirements apply to career GS/GM employees as well as employees serving in excepted service positions designated EJ, EK, and EN.

2004-09-20T23:59:59.000Z

118

Confidential Financial Disclosure Reports (OGE 450)  

Directives, Delegations, and Requirements

The directive establishes requirements and responsibilities for Departmental elements and employees regarding filing Confidential Financial Disclosure Reports (OGE Form 450) in accordance with the Ethics in Government Act of 1978, as amended.

2008-12-09T23:59:59.000Z

119

Energy Disclosure and Leasing Standards: Best Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

joining the meeting To limit background noise, please put your phone or audio on mute. Energy Disclosure and Leasing Standards 2 | TAP Webinar eere.energy.gov The Parker Ranch...

120

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

SciTech Connect

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost. This report provides a techno-economic analysis of the production of mixed alcohols from MSW and compares it to the costs for a wood based plant. In this analysis, MSW is processed into refuse derived fuel (RDF) and then gasified in a plant co-located with a landfill. The resulting syngas is then catalytically converted to mixed alcohols. At a scale of 2000 metric tons per day of RDF, and using current technology, the minimum ethanol selling price at a 10% rate of return is approximately $1.85/gallon ethanol (early 2008 $). However, favorable economics are dependent upon the toxicity characteristics of the waste streams and that a market exists for the by-product scrap metal recovered from the RDF process.

Jones, Susanne B.; Zhu, Yunhua; Valkenburt, Corinne

2009-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Disclosures due to Health Care Reform Changes Disclosure of Grandfather Status  

E-Print Network (OSTI)

Disclosures due to Health Care Reform Changes Disclosure of Grandfather Status UCSD Medical Center of the Affordable Care Act that apply to other plans. Grandfathered health plans must comply with certain other believes this health plan coverage is a "grandfathered health plan" under the Patient Protection

Gleeson, Joseph G.

122

Initial response of conifer and California black oak seedlings following fuel reduction activities in a Sierra Nevada mixed conifer forest  

E-Print Network (OSTI)

in a Sierra Nevada mixed conifer forest Jason J. Moghaddas a,*, Robert A. York b , Scott L. Stephens, and fire regimes of mixed conifer forests in the Western United States (US) have been dramatically altered forest. The relative influences of stand-level light availability and substrate quality on conifer

Stephens, Scott L.

123

Microclimate effects of fuels-reduction and group-selection silviculture: Implications for fire behavior in Sierran mixed-conifer forests  

Science Journals Connector (OSTI)

Fire suppression and other past management practices in the western USA have led to dense conifer forests with high canopy cover and thick layers of surface fuels, changes likely to alter understory microclimate relative to historical conditions. Silvicultural treatments are used to restore forest resilience, but little is known about their microclimate-mediated effects on fire behavior. We measured fire-related microclimate variables for two years before and after experimental, operational-scale application of fuels-reduction thinning and group selection treatments in a Sierra Nevada mixed-conifer forest. Measurements included air speed, temperature, and relative humidity; soil temperature and moisture; and dead fuel moisture. Wind gust speed increased moderately (average 0.7 m s?1 or 31% increase) in thinned forest and sharply (average 2.5 m s?1 or 128% increase) in group-selection openings. Surprisingly, treatments did not affect air temperature or humidity. Soil temperatures increased by a mean of 4 °C in group openings but did not increase in thinned stands. Duff moisture in group selection openings was 72% of that in the control stands, but there were no effects on moisture in other fuel particle size classes, or in thinned stands. Soil moisture increased in group-selection openings at depths down to 0.7 m but did not change in thinned stands. Fire spread simulation modeling with \\{FMAPlus\\} indicated that elevated wind speeds could increase the fire rate of spread, but that increases are moderate and largely linear rather than exponential across the observed range of wind gust speeds. In general our results suggest that group selection openings placed in high canopy cover, Sierran mixed-conifer forests are distinct microclimatic environments that will have slightly different fire behavior than the surrounding matrix due to higher surface temperatures and faster wind speeds. Current fuels-reduction thinning practices in dry western forests, however, will have minimal microclimatic-mediated influence on wildfire behavior, and there is little cause for concern about a faster rate of fire spread or drier fuels in such stands.

Seth W. Bigelow; Malcolm P. North

2012-01-01T23:59:59.000Z

124

Investigation of Fuel Effects on Dilute, Mixing-Controlled Combustion in an Optical Direct-Injection Diesel Engine  

Science Journals Connector (OSTI)

School of Engineering, San Francisco State University, San Francisco, California 94132, and Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550 ... Additionally, data obtained from this study provide fundamental insights into NOx and PM formation mechanisms in diesel engines. ... Results show that increasing fuel oxygenation produces lower in-cylinder and engine-out soot levels, consistent with existing studies of the effects of fuel oxygenation on soot emissions from diesel engines. ...

A. S. (Ed) Cheng; Ansis Upatnieks; Charles J. Mueller

2007-05-25T23:59:59.000Z

125

Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.  

SciTech Connect

To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D simulations were performed to compare heat transfer predictions from CFD and the correlations. Section III of this document presents the results of this analysis.

Tzanos, C. P.; Dionne, B. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

126

High-bandwidth Modulation of H2/Syngas Fuel to Control Combustion Dynamics in Micro-Mixing Lean Premix Systems  

SciTech Connect

The goal of this program was to develop and demonstrate fuel injection technologies that will facilitate the development of cost-effective turbine engines for Integrated Gasification Combined Cycle (IGCC) power plants, while improving efficiency and reducing emissions. The program involved developing a next-generation multi-point injector with enhanced stability performance for lean premix turbine systems that burn hydrogen (H2) or synthesis gas (syngas) fuels. A previously developed injector that demonstrated superior emissions performance was improved to enhance static flame stability through zone staging and pilot sheltering. In addition, piezo valve technology was implemented to investigate the potential for enhanced dynamic stability through high-bandwidth modulation of the fuel supply. Prototype injector and valve hardware were tested in an atmospheric combustion facility. The program was successful in meeting its objectives. Specifically, the following was accomplished: Demonstrated improvement of lean operability of the Parker multi-point injector through staging of fuel flow and primary zone sheltering; Developed a piezo valve capable of proportional and high-bandwidth modulation of gaseous fuel flow at frequencies as high as 500 Hz; The valve was shown to be capable of effecting changes to flame dynamics, heat release, and acoustic signature of an atmospheric combustor. The latter achievement indicates the viability of the Parker piezo valve technology for use in future adaptively controlled systems for the mitigation of combustion instabilities, particularly for attenuating combustion dynamics under ultra-lean conditions.

Jeff Melzak; Tim Lieuwen; Adel Mansour

2012-01-31T23:59:59.000Z

127

Calibration parameters from Monte Carlo simulations for neutron coincidence assay of MOX (mixed oxide) fuel elements: A substitute for standards  

SciTech Connect

Results from application of a calculational model for the two- parameter (singles and doubles) passive neutron coincidence assay of finished Fast Breeder Reactor (FBR) subassemblies are compared with calibration measurements. Two assay instruments are considered; the Universal Fast Breeder Reactor Subassembly Counter (UFBC) and the Capsule Counter installed at the Japanese Plutonium Fuel Production Facility (PFPF). In the case of US Fast Flux Test Facility (FFTF) fuel, the absolute ratio of calculations to measurements for the multiplication-corrected coincidence calibration constant is +1.1 /+-/ 1.0% (average of four subassemblies) for the UFBC and /minus/1.3 /+-/ 0.6% (average of five subassemblies) for the Capsule Counter. For initial measurements of Japanese fuel in the Capsule Counter, the absolute ratio is /minus/1.0 /+-/ 0.7% for three JOYO subassemblies and +0.8 /+-/ 0.7% for one MONJU subassembly. Calculations of relative effects such as the change in coincidence response from, for example, subassembly can thickness of U enrichment are more accurate (better than 0.5%) than absolute calibration parameters. This very good accuracy offers more effective and less costly inspector verification of finished FBR fuel elements by reducing reliance on physical standards to expand the cross-calibration databases. 11 refs., 8 figs., 5 tabs.

Stewart, J.E.; Ferran, R.R.; Simmonds, S.M.; Menlove, H.O.

1989-01-01T23:59:59.000Z

128

Synthesis and Characterization of Mixed-Conducting Corrosion Resistant Oxide Supports - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Vijay K. Ramani (Primary Contact), Jai Prakash Illinois Institute of Technology (IIT) 10 W 33 rd Street 127 PH Chicago, IL 60616 Phone: (312) 567-3064 Email: ramani@iit.edu DOE Managers HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0000461 Subcontractor: Nissan Technical Center, North America (NTCNA) Farmington Hills, MI Project Start Date: September 1, 2010 Project End Date: August 31, 2013 Fiscal Year (FY) 2012 Objectives To develop and optimize innovative non-carbon mixed * conducting materials that will serve as corrosion resistant, high surface area supports for anode and

129

CORPORATE DISCLOSURE OF ENVIRONMENTAL CAPITAL EXPENDITURES: A TEST OF ALTERNATIVE THEORIES  

E-Print Network (OSTI)

CORPORATE DISCLOSURE OF ENVIRONMENTAL CAPITAL EXPENDITURES: A TEST OF ALTERNATIVE THEORIES Charles capital expenditure; environmental disclosure; environmental regulation; legitimacy theory; materiality DISCLOSURE OF ENVIRONMENTAL CAPITAL EXPENDITURES: A TEST OF ALTERNATIVE THEORIES Introduction The United

Paris-Sud XI, Université de

130

Attachment to Registered Lobbyist Disclosure Form: R  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Registered Lobbyist Disclosure Form: R. Paul Detwiler Registered Lobbyist Disclosure Form: R. Paul Detwiler April 17, 2009 10:10 - 11:15 am At the request of the staff of Pennsylvania State Sen. Jim Ferlo, I attended a meeting of the Pittsburgh Green Innovators to answer logistical questions regarding the availability of Recovery Act funding for energy efficiency and renewable energy projects in Pittsburgh. The meeting was attended by elected officials, their staffs, a representative of a private foundation and others; it focused on a particular project -- renovation of a former vocational school campus in Pittsburgh. The meeting was also attended by Charles J. Kolling, Jr., who identified himself as a registered lobbyist in response to a question I posed to those in attendance. My remarks were limited to logistical matters

131

V-206: Apache HTTP Server mod_rewrite and "httpOnly" Cookie Disclosure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

6: Apache HTTP Server modrewrite and "httpOnly" Cookie Disclosure Vulnerabilities V-206: Apache HTTP Server modrewrite and "httpOnly" Cookie Disclosure Vulnerabilities July 30,...

132

Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and 14C-based methodologies  

Science Journals Connector (OSTI)

Abstract 14C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). 14C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.

G.K.P. Muir; S. Hayward; B.G. Tripney; G.T. Cook; P. Naysmith; B.M.J. Herbert; M.H Garnett; M. Wilkinson

2014-01-01T23:59:59.000Z

133

E-IDR (Inventory Disclosure Record) PIA, Idaho National Laboratory...  

Office of Environmental Management (EM)

Disclosure Record) PIA, Idaho National Laboratory More Documents & Publications PIA - INL Education Programs Business Enclave Manchester Software 1099 Reporting PIA, Idaho...

134

Fuel Recovery: Valorization of RDF and PDF  

Science Journals Connector (OSTI)

Energy recovery of used materials can be performed as mixed municipal solid waste (MSW) incineration or as fuel recovery for co-combustion with conventional fuels. Recovered fuels are refuse derived fuel (RDF) wh...

Martin Frankenhaeuser; Helena Manninen

1996-01-01T23:59:59.000Z

135

Cost Accounting Standards Board Disclosure Statement (Form DS-2)  

E-Print Network (OSTI)

Cost Accounting Standards Board Disclosure Statement (Form DS-2) University of California, Irvine Revision Number 2, Effective Date April 1, 2012 #12;i COST ACCOUNTING STANDARDS BOARD DISCLOSURE STATEMENT AND CERTIFICATION C-1 Part I General Information I-1 Part II Direct Costs II-1 Part III Indirect Costs III-1 Part IV

Loudon, Catherine

136

U-251: Bugzilla LDAP Injection and Information Disclosure Vulnerabilities |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Bugzilla LDAP Injection and Information Disclosure 1: Bugzilla LDAP Injection and Information Disclosure Vulnerabilities U-251: Bugzilla LDAP Injection and Information Disclosure Vulnerabilities September 5, 2012 - 6:00am Addthis PROBLEM: Bugzilla LDAP Injection and Information Disclosure Vulnerabilities PLATFORM: Bugzilla 2.x Bugzilla 3.x Bugzilla 4.x ABSTRACT: Bugzilla is prone to an LDAP-injection vulnerability and an information-disclosure vulnerability reference LINKS: Bugzilla Homepage Bugzilla Security Advisory Bugtraq ID: 55349 Secunia Advisory SA50433 CVE-2012-3981 CVE-2012-4747 IMPACT ASSESSMENT: Medium Discussion: A vulnerability and a security issue have been reported, which can be exploited by malicious people to disclose potentially sensitive information and manipulate certain data. 1) Input passed via the username is not properly escaped before being used

137

Manufacturers' View on Benchmarking and Disclosure  

U.S. Energy Information Administration (EIA) Indexed Site

Association of Electrical and Association of Electrical and Medical Imaging Equipment Manufacturers Manufacturing Solutions for Energy Efficiency in Buildings Patrick Hughes Policy Director, High Performance Buildings National Electrical Manufacturers Association The Association of Electrical and Medical Imaging Equipment Manufacturers What is NEMA? The Association of Electrical Equipment and Medical Imaging Manufacturers Which policies encourage energy efficiency in buildings? Energy Savings Performance Contracts Tax Incentives Shaheen- Portman Benchmarking and Disclosure Bullitt Center Seattle, Washington The Association of Electrical Equipment and Medical Imaging Manufacturers Energy Savings Performance Contracts ESPCs pay for efficiency upgrades with

138

Vehicle Technologies Office Merit Review 2014: Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel effects...

140

HIPAA: Accounting of Disclosures Guidance Document A disclosure is a release, transfer, access to, or divulging of information outside of OHSU. In general,  

E-Print Network (OSTI)

HIPAA: Accounting of Disclosures Guidance Document A disclosure is a release, transfer, access to be tracked. See http://www.ohsu.edu/cc/hipaa/ads.shtml for more information about the ADS system. See http not need to be tracked. INCLUDED IN THE ACCOUNTING The following disclosures must be recorded using

Chapman, Michael S.

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Leveraging Portfolio Manager for Disclosure and Green Leasing Practices  

Energy.gov (U.S. Department of Energy (DOE))

A talk about developing paths and implementing rating and disclosure policies for the commercial building sector, giving a state, local and federal overview of these types of policies and where they’re in play.

142

Lobbyist Disclosure Form - AltEn | Department of Energy  

Energy Savers (EERE)

and Eric Bursch, OFW Law legislative assistant representing AltEn, discussed an AltEn biofuels project. Lobbyist Disclosure Form - AltEn.pdf More Documents & Publications Lobbyist...

143

Situational correlates of disclosure of child sexual abuse  

E-Print Network (OSTI)

SITUATIONAL CORRELATES OF DISCLOSURE OF CHILD SEXUAL ABUSE A Thesis by ELIZABETH STIRLING WILEY Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2003 Major Subject: Psychology SITUATIONAL CORRELATES OF DISCLOSURE OF CHILD SEXUAL ABUSE A Thesis by ELIZABETH STIRLING WILEY Submitted to Texas A&M University...

Wiley, Elizabeth Stirling

2005-02-17T23:59:59.000Z

144

Disclosure of asset valuations in corporate annual reports  

E-Print Network (OSTI)

DISCLOSURE OF ASSET VALUATIONS IN CORPORATE ANNUAL REPORTS A Thesis Charles 3. Ponder Approved as to style and content by: Head of Department and Chairman of Committee January 1955 Ll!3RARY A A M COLLEGE OF TEXAS DISCLOSURE OF ASSET... January 1955 Ma)or Subject: Accounting DISCXDSEm OP A88ET VAWATIONS IN COllPQRATE ANNSAI REPORTS IXI Nature of the Probles Xmnmtories Marbetable Seoarities Xavestseuts PAGE 15 V PixeA Assets VII Iataugible Assets Concise isa Bibliograyhy...

Ponder, Charles Bedford

2012-06-07T23:59:59.000Z

145

Evaluation of weapons-grade mixed oxide fuel performance in U.S. Light Water Reactors using COMETHE 4D release 23 computer code  

E-Print Network (OSTI)

The COMETHE 4D Release 23 computer code was used to evaluate the thermal, chemical and mechanical performance of weapons-grade MOX fuel irradiated under U.S. light water reactor typical conditions. Comparisons were made to and UO? fuels exhibited...

Bellanger, Philippe

2012-06-07T23:59:59.000Z

146

How Credit Market Conditions Impact the Effect of Voluntary Disclosure on Firms' Cost of Debt Capital  

E-Print Network (OSTI)

(abundant) suggesting that they value voluntary disclosure from borrowers differentially across credit market regimes. I draw upon the economic and finance literature on credit rationing to test whether the effects of voluntary disclosure on firms' cost...

Scott, Bret

2012-10-19T23:59:59.000Z

147

Advanced Topics for the Portfolio Manager Initiative: Energy Disclosure Policy Implementation  

Energy.gov (U.S. Department of Energy (DOE))

This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on the Energy Disclosure Policy Implementation

148

U-181: IBM WebSphere Application Server Information Disclosure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: IBM WebSphere Application Server Information Disclosure 1: IBM WebSphere Application Server Information Disclosure Vulnerability U-181: IBM WebSphere Application Server Information Disclosure Vulnerability June 1, 2012 - 7:00am Addthis PROBLEM: A vulnerability has been reported in IBM WebSphere Application Server. PLATFORM: IBM WebSphere Application Server 6.1.x IBM WebSphere Application Server 7.0.x IBM WebSphere Application Server 8.0.x ABSTRACT: The vulnerability is caused due to missing access controls in the Application Snoop Servlet when handling requests and can be exploited to disclose request and client information. Reference Links: Secunia Advisory 49352 CVE-2012-2170 Vendor Advisory IMPACT ASSESSMENT: High Discussion: WebSphere Application Server Administration Console is vulnerable to cross-site scripting, caused by improper validation of user-supplied input

149

T-578: Vulnerability in MHTML Could Allow Information Disclosure |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Vulnerability in MHTML Could Allow Information Disclosure 8: Vulnerability in MHTML Could Allow Information Disclosure T-578: Vulnerability in MHTML Could Allow Information Disclosure March 15, 2011 - 3:05pm Addthis PROBLEM: Microsoft Windows is prone to a vulnerability that may allow attackers to inject arbitrary script code into the current browser session. PLATFORM: Windows 2003 SP2, Vista SP2, 2008 SP2, XP SP3, 7; and prior service packs ABSTRACT: A vulnerability was reported in Microsoft MHTML. A remote user can conduct cross-site scripting attacks. reference LINKS: Microsoft Security Advisory (2501696) CVE-2011-0096 SecurityTracker Alert ID: 1025003 Bugtraq ID: 46055 IMPACT ASSESSMENT: Moderate Discussion: The vulnerability exists due to the way MHTML interprets MIME-formatted requests for content blocks within a document. It is possible under certain

150

BESC Submits 32 Gene Disclosures for Patents | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

News Careers Work with ORNL About ORNL Visiting ORNL Events and Conferences Highlights Success Stories Contact Us Index Home | ORNL | Highlights SHARE BESC submits 32 gene disclosures for future patents July 01, 2012 Plant geneticist Wellington Muchero examines phenotypic traits of Populus transgenic lines grown in a greenhouse. The Bioenergy Science Center (BESC) at Oak Ridge National Laboratory (ORNL) is preparing invention disclosures for 32 different genes that can help improve the yield of ethanol from cellulosic biomass. These genes or their variants function to overcome recalcitrance-difficulty in breaking down cellulosic biomass to release sugars. Several members of ORNL's Biosciences Division are submitting disclosures: 16 genes by Wellington Muchero, 10 genes by Udaya Kalluri, and

151

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vegetable oils or animal fats, either in pure form or mixed in any combination with petroleum-based diesel fuel. The definition of biodiesel is expanded for purposes of existing...

152

Benchmarking and Disclosure: Lessons from Leading Cities | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

Benchmarking and Disclosure: Lessons from Leading Cities Benchmarking and Disclosure: Lessons from Leading Cities Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

153

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols  

Energy.gov (U.S. Department of Energy (DOE))

Biomass is a renewable energy resource that can be converted into liquid fuel suitable for transportation applications and thus help meet the Energy Independence and Security Act renewable energy goals (U.S. Congress 2007). However, biomass is not always available in sufficient quantity at a price compatible with fuels production. Municipal solid waste (MSW) on the other hand is readily available in large quantities in some communities and is considered a partially renewable feedstock. Furthermore, MSW may be available for little or no cost.

154

Annual Confidential Financial Disclosure Report (OGE Form 450)  

Directives, Delegations, and Requirements

The Notice addresses the Executive Branch confidential financial disclosure reporting requirements. These requirements apply to career GS/GM and prevailing rate system and administratively determined employees as well as employees serving in excepted service positions designated EJ, EK, and EN. Cancels DOE N 326.13.

2007-12-20T23:59:59.000Z

155

Mixing enhancement by use of swirling jets  

SciTech Connect

It has been proposed that the mixing of fuel with air in the combustor of scramjet engines might be enhanced by the addition of swirl to the fuel jet prior to injection. This study investigated the effects of swirl on the mixing of a 30 deg wall jet into a Mach 2 flow. Cases with swirl and without swirl were investigated, with both helium and air simulating the fuel. Rayleigh scattering was used to visualize the flow, and seeding the fuel with water allowed it to be traced through the main flow. The results show that the addition of swirl to the fuel jet causes the fuel to mix more rapidly with the main flow, that larger amounts of swirl increase this effect, and that helium spreads better into the main flow than air. 12 refs.

Kraus, D.K.; Cutler, A.D.

1993-01-01T23:59:59.000Z

156

Internal baffling for fuel injector  

DOE Patents (OSTI)

A fuel injector includes a fuel delivery tube; a plurality of pre-mixing tubes, each pre-mixing tube comprising at least one fuel injection hole; an upstream tube support plate that supports upstream ends of the plurality of pre-mixing tubes; a downstream tube support plate that supports downstream ends of the plurality of pre-mixing tubes; an outer wall connecting the upstream tube support plate and the downstream tube support plate and defining a plenum therewith; and a baffle provided in the plenum. The baffle includes a radial portion. A fuel delivered in the upstream direction by the fuel delivery tube is directed radially outwardly in the plenum between the radial portion of the baffle and the downstream tube support plate, then in the downstream direction around an outer edge portion of the radial portion, and then radially inwardly between the radial portion and the upstream tube support plate.

Johnson, Thomas Edward; Lacy, Benjamin; Stevenson, Christian

2014-08-05T23:59:59.000Z

157

Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings  

Energy.gov (U.S. Department of Energy (DOE))

This presentation is part of the SEE Action Series and provides information on Energy Performance Benchmarking and Disclosure Policies for Public and Commercial Buildings

158

Estimated airborne release of plutonium from the Exxon Nuclear Mixed Oxide Fuel Plant at Richland, Washington as a result of postulated damage from severe wind and earthquake hazard  

SciTech Connect

The potential airborne releases of plutonium from postulated damage sustained by the Exxon Nuclear Company's Mixed Oxide Fabrication Plant at Richland, Washington, as a result of various levels of wind and earthquake hazard, are estimated. The releases are based on damage scenarios that range up to 250 mph for wind hazard and in excess of 1.0 g ground acceleration for seismic hazard, which were developed by other specialists. The approaches and factors used to estimate the releases (inventories of dispersible materials at risk, damage levels and ratios, fractional airborne releases of dispersible materials under stress, atmosphere exchange rates, and source term ranges) are discussed. Release estimates range from less than 10/sup -7/ g to greater than 14 g of plutonium over a four-day period.

Mishima, J.; Schwendiman, L.C.; Ayer, J.E.; Owzarski, E.L.

1980-02-01T23:59:59.000Z

159

INNOVATIVE TECHNIQUES TO IMPROVE MIXING AND PENETRATION IN SCRAMJET COMBUSTORS.  

E-Print Network (OSTI)

??Scramjet combustors are characterized by an extremely short residence time for the completion of fuel atomization, mixing and combustion. It is therefore desired to develop… (more)

MURUGAPPAN, SHANMUGAM

2005-01-01T23:59:59.000Z

160

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, December 1, 1980-February 28, 1981  

SciTech Connect

Information is presented concerning coolant mixing for wrapped and bare rod bundle geometry; bare rod subchannel geometry; LMFBR outlet plenum flow mixing; and theoretical determination of local temperature fields in LMFBR fuel rod bundles.

Todreas, N.E.

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, December 1, 1979-February 29, 1980  

SciTech Connect

Information is presented concerning bundle geometry with wrapped and bare rods; LMFBR outlet plenum flow mixing; and theoretical determination of local temperature fields in LMFBR fuel rod bundles.

Todreas, N.E.; Golay, M.W.; Wolf, L.

1980-01-01T23:59:59.000Z

162

Apparatus for inspecting fuel elements  

DOE Patents (OSTI)

This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

1984-12-21T23:59:59.000Z

163

Request from City of Alexandria for Public Disclosure of Documents Related  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

from City of Alexandria for Public Disclosure of Documents from City of Alexandria for Public Disclosure of Documents Related to Docket No. EO-05-01 Request from City of Alexandria for Public Disclosure of Documents Related to Docket No. EO-05-01 Docket No. EO-05-01: On behalf of the City of Alexandria, Virginia ("Alexandria"), we submit this request for public disclosure of documents and materials related to Order No. 202-05-3, dated December 20, 2005, in the above-referenced Department of Energy docket and public participation in the implementation of this Order. Alexandria is deeply concerned with this Order and its consequences, both intended and unintended. Request from City of Alexandria for Public Disclosure of Documents Related to Docket No. EO-05-01 More Documents & Publications Comments on Department of Energy's Emergency Order To Resume Limited

164

U-272: IBM WebSphere Commerce User Information Disclosure Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: IBM WebSphere Commerce User Information Disclosure 2: IBM WebSphere Commerce User Information Disclosure Vulnerability U-272: IBM WebSphere Commerce User Information Disclosure Vulnerability October 2, 2012 - 6:00am Addthis PROBLEM: IBM WebSphere Commerce User Information Disclosure Vulnerability PLATFORM: WebSphere Commerce Versions 6.0.0.0 to 6.0.0.11 WebSphere Commerce Versions 7.0.0.0 to 7.0.0.6 ABSTRACT: A vulnerability in WebSphere Commerce could allow disclosure of user personal data. reference LINKS: IBM Security Bulletin 1612484 X-Force Vulnerability Database (78867) Secunia Advisory SA50821 CVE-2012-4830 IMPACT ASSESSMENT: Medium Discussion: A remote unauthenticated attacker could exploit a security vulnerability in WebSphere Commerce to expose user personal data. The attack can be performed manually and the effort required is comparatively low.

165

PHOENIX NATURAL GAS LIMITED PRICE DETERMINATION REFERENCE Disclosures of interest  

E-Print Network (OSTI)

Member disclosures Martin Cave (Group Chairman) is a joint academic director of a Brussels-based think tank on regulation called CERRE (www.cerre.eu). This has occupied about ten days per year, mostly attending seminars in Brussels with regulators and regulatees. Another joint academic director is Prof C Waddams. They have not collaborated on any research projects, but he has chaired a panel which she was on. He has co-written a general book, or textbook, on regulation, which includes chapters on price control. The index lists three brief references to energy regulation: Baldwin, Cave &

Richard Taylor

2012-01-01T23:59:59.000Z

166

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report  

SciTech Connect

Four tasks are reported on: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

Todreas, N.E.; Golay, M.W.; Wold, L.

1981-02-01T23:59:59.000Z

167

Pulse Combustion Characteristics of Various Gaseous Fuels  

Science Journals Connector (OSTI)

Pulse combustion performance of fuels with low and high heating values is also compared. ... Selected gaseous fuels such as low molecular weight hydrocarbons, high molecular weight hydrocarbons, biofuels, and mixed fuels are tested for pulse combustion, and their operational properties are presented and compared. ... Heat transfer data for several exptl. ...

Wu Zhonghua; Arun S. Mujumdar

2008-02-06T23:59:59.000Z

168

Neutrino Mixing  

E-Print Network (OSTI)

In this review we present the main features of the current status of neutrino physics. After a review of the theory of neutrino mixing and oscillations, we discuss the current status of solar and atmospheric neutrino oscillation experiments. We show that the current data can be nicely accommodated in the framework of three-neutrino mixing. We discuss also the problem of the determination of the absolute neutrino mass scale through Tritium beta-decay experiments and astrophysical observations, and the exploration of the Majorana nature of massive neutrinos through neutrinoless double-beta decay experiments. Finally, future prospects are briefly discussed.

Carlo Giunti; Marco Laveder

2004-10-01T23:59:59.000Z

169

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

170

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

171

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Vehicle (PEV) Information Disclosure The Maryland Motor Vehicle Administration is allowed to provide the address of a registered PEV owner and information about...

172

Mixed ionic and electronic conductor based on Sr.sub.2Fe.sub.2-xM0.sub.XO.sub.6 perovskite  

SciTech Connect

In accordance with the present disclosure, a method for fabricating a symmetrical solid oxide fuel cell is described. The method includes synthesizing a composition comprising perovskite and applying the composition on an electrolyte support to form both an anode and a cathode.

Chen, Fanglin; Liu, Qiang

2014-07-15T23:59:59.000Z

173

Alternative Fuels Data Center: P-Series  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

P-Series to someone by P-Series to someone by E-mail Share Alternative Fuels Data Center: P-Series on Facebook Tweet about Alternative Fuels Data Center: P-Series on Twitter Bookmark Alternative Fuels Data Center: P-Series on Google Bookmark Alternative Fuels Data Center: P-Series on Delicious Rank Alternative Fuels Data Center: P-Series on Digg Find More places to share Alternative Fuels Data Center: P-Series on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels P-Series P-Series fuels are blends of natural gas liquids (pentanes plus), ethanol, and methyltetrahydrofuran (MeTHF), a biomass co-solvent. P-Series fuels are clear, colorless, 89-93 octane, liquid blends used either alone or mixed with gasoline in any proportion in flexible fuel vehicles. These fuels are

174

E-Print Network 3.0 - air fuel spray Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

and distribution of fuel drops in the spray field, fuel-air mixing... and amount of pollution are of importance in the combustion process. The fuel spray characteristics play......

175

Paducah DUF6 Conversion Final EIS - Appendix H: Contractor Disclosure Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Disclosure Statement H-2 Paducah DUF 6 Conversion Final EIS Disclosure Statement H-3 Paducah DUF 6 Conversion Final EIS APPENDIX H: CONTRACTOR DISCLOSURE STATEMENT Argonne National Laboratory (ANL) is the contractor assisting the U.S. Department of Energy (DOE) in preparing the environmental impact statement (EIS) for depleted UF 6 conversion. DOE is responsible for reviewing and evaluating the information and determining the appropriateness and adequacy of incorporating any data, analyses, or results in the EIS. DOE determines the scope and content of the EIS and supporting documents and will furnish direction to ANL, as appropriate, in preparing these documents. The Council on Environmental Quality's regulations (40 CFR 1506.5(c)), which have

176

Public Financial Disclosure Reports Filed by the Secretary and Deputy Secretary  

Energy.gov (U.S. Department of Energy (DOE))

The  Stop Trading on Congressional Knowledge (STOCK) Act requires online posting of the Public Financial Disclosure Report (OGE 278) filed by  the President, the Vice President, and any officer...

177

Annual Confidential Financial Disclosure Report (OGE Form 450 or 450-A)  

Directives, Delegations, and Requirements

This Notice address the Executive Branch confidential financial disclosure reporting requirements. These requirements apply to career GS/GM employees as well as employees serving in excepted service positions designate EJ, EK, and EN.

2003-09-29T23:59:59.000Z

178

Effect of board independence on incentive compensation and compensation disclosure : evidence from Europe  

E-Print Network (OSTI)

My thesis examines how the lack of board-of-director independence affects the structure and disclosure of executive compensation. I find that European companies with more insiders on their boards grant their executives ...

Muslu, Volkan

2005-01-01T23:59:59.000Z

179

Emotional Disclosure Through Journal Writing: Telehealth Intervention for Maternal Stress and Mother–Child Relationships  

Science Journals Connector (OSTI)

This study examines emotional disclosure through the activity of journaling as a means of coping with maternal stress associated with parenting a child with disruptive behaviors. Through a randomized control ...

Rondalyn V. Whitney; Gigi Smith

2014-12-01T23:59:59.000Z

180

Dialing Back Disclosure: Best Practices for Balancing Cooperation and Client Interests  

E-Print Network (OSTI)

) requires that parties "meet and confer" regarding issues related to the disclosure of ESI, but the Rule's motion for protective order). 5 Id. See The Sedona Conference®,The Sedona Conference® Cooperation

Oard, Doug

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Of Jordanian BanksExtent of Disclosure in the annual Reports Ahmed Al-Jayousi  

E-Print Network (OSTI)

1 Abstract Of Jordanian BanksExtent of Disclosure in the annual Reports By Ahmed Al-Jayousi Supervisor Dr. Munir Lutfi Co- Supervisor Dr. Nedal Al-Fayoumi This study aimed to examine the Extent

182

RADIATION DOSE ASPECTS IN THE HANDLING OF EMERGING NUCLEAR FUELS  

Science Journals Connector (OSTI)

......Prot. (2008) 28:161. 15 NUREG. Standard review plan for the review of an application for a Mixed Oxide (MOX) fuel...fabrication facility. (2000) NUREG-1718, US Nuclear Regulatory Commission. 16 IAEA. Safety of uranium fuel fabrication......

G. Nicolaou

2014-02-01T23:59:59.000Z

183

Vehicle Technologies Office Merit Review 2014: Fuel Effects on...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on...

184

The Effects of Firm Size, Corporate Governance Quality, and Bad News on Disclosure Compliance  

E-Print Network (OSTI)

://link.springer.com/article/10.1007%2Fs11142-011-9153-8>. Open Access Version: http://kuscholarworks.ku.edu/dspace/. Electronic copy available at: http://ssrn.com/abstract=955922 The effects of firm size, corporate governance quality, and bad news on disclosure compliance... Governance Quality, and Bad News on Disclosure Compliance. Review of Accounting Studies. Publisher's Official Version: Fs11142-011-9153-8>. Open Access Version: http://kuscholarworks.ku.edu/dspace/. Electronic...

Ettredge, Michael L.; Johnstone, Karla; Stone, Mary S.; Wang, Qian

2011-01-01T23:59:59.000Z

185

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

186

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

187

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents (OSTI)

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

188

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers National Energy Technology Laboratory Contact NETL...

189

Information Disclosure Policies: Evidence from the Electricity Industry  

E-Print Network (OSTI)

fuels (renewables, hydroelectric) represent approximately 9for clean sources like hydroelectric and renewables. As theuse of renewable and hydroelectric generation. Results also

Delmas, Magali A; SHIMSHACK, JAY P; Montes, Maria J.

2007-01-01T23:59:59.000Z

190

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

191

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

192

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

193

Premixed direct injection nozzle for highly reactive fuels  

DOE Patents (OSTI)

A fuel/air mixing tube for use in a fuel/air mixing tube bundle is provided. The fuel/air mixing tube includes an outer tube wall extending axially along a tube axis between an inlet end and an exit end, the outer tube wall having a thickness extending between an inner tube surface having a inner diameter and an outer tube surface having an outer tube diameter. The tube further includes at least one fuel injection hole having a fuel injection hole diameter extending through the outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.

Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin Paul; York, William David; Uhm, Jong Ho; Zuo, Baifang

2013-09-24T23:59:59.000Z

194

Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Washington Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15 13 15 11 11 9 10 21 79 154 1990's 181 154 180 4 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Washington Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

195

Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Minnesota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 48 106 337 1 3 11 2 1 385 315 1990's 56 49 52 78 289 194 709 172 50 64 2000's 101 118 13 42 71 154 13 54 46 47 2010's 12 20 9 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Minnesota Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

196

District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) District of Columbia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 2 1 46 0 0 0 0 0 0 0 1990's 0 0 0 0 0 0 0 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas District of Columbia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition)

197

Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Maryland Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 484 498 984 352 332 373 155 136 743 899 1990's 24 72 126 418 987 609 882 178 80 498 2000's 319 186 48 160 124 382 41 245 181 170 2010's 115 89 116 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Maryland Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

198

Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Iowa Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 57 64 68 23 53 45 44 40 34 82 1990's 81 46 45 84 123 96 301 137 17 12 2000's 44 39 23 143 30 31 46 40 27 3 2010's 2 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Iowa Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

199

Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Pennsylvania Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 3,127 10,532 5,621 3,844 82 221 196 247 254 305 1990's 220 222 132 110 252 75 266 135 80 119 2000's 261 107 103 126 131 132 124 145 123 205 2010's 4 2 2 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Pennsylvania Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

200

Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Missouri Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 65 60 2,129 1,278 326 351 1 1 2 1,875 1990's 0 0 0 0 371 4 785 719 40 207 2000's 972 31 62 1,056 917 15 78 66 6 10 2010's 18 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Missouri Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Rhode Island Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 257 951 718 594 102 130 182 109 391 219 1990's 51 92 155 126 0 27 42 18 1 1 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Rhode Island Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

202

Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 57 151 84 28 121 124 248 241 292 1990's 209 185 166 199 123 130 94 14 16 12 2000's 73 51 7 14 5 0 3 2 52 2010's 732 701 660 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Georgia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

203

Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Delaware Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

204

South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) South Dakota Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 24 50 1 0 0 0 0 10 16 1990's 10 3 10 9 61 37 87 30 4 5 2000's 13 5 3 57 5 4 0 1 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas South Dakota Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

205

New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) New Hampshire Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 774 720 582 328 681 509 362 464 492 592 1990's 205 128 96 154 160 90 147 102 103 111 2000's 180 86 66 58 91 84 92 9 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas New Hampshire Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

206

Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Connecticut Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 144 1,584 1,077 291 239 343 298 180 245 251 1990's 111 146 40 94 29 68 48 37 33 31 2000's 20 6 6 57 191 273 91 0 0 1 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Connecticut Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

207

South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) South Carolina Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 74 184 63 73 62 87 31 22 191 201 1990's 17 47 26 34 154 62 178 10 0 18 2000's 63 6 3 15 2 86 75 0 2010's 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas South Carolina Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

208

Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Tennessee Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 12 42 90 39 25 36 13 26 36 78 1990's 3 8 12 13 84 33 73 19 4 11 2000's 13 0 1 1 0 0 0 0 0 0 2010's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Tennessee Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

209

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

210

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

211

Microstructured Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Micro fuel cells ; Polymer electrolyte membrane fuel cells ; Proton exchange membrane fuel cells ...

Luc G. Frechette

2014-05-01T23:59:59.000Z

212

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

213

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

214

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

215

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

216

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

217

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

218

andradionuclide mixed wastes: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

Steam -> Electr. & Heat Av 50 Range 47-80 Landfill Gas MSW or Mixed residual waste LFG Biogas -> Electr. (and Heat) 100 Solid Recovered Fuel Sorted Biomass Energy Plants...

219

Housing & Residence Education Disclosure of Fire Safety Standards and Measures 1 Campus Fire Safety Right-to-Know  

E-Print Network (OSTI)

Housing & Residence Education Disclosure of Fire Safety Standards and Measures 1 Campus Fire Safety and death resulting from each fire. #12;Housing & Residence Education Disclosure of Fire Safety Standards) -- HVAC fan motor burned up -- Alpha Chi Omega -- 3/13/10 $1,500 (Greek) -- Futon mattress caught fire

Fang, Yuguang "Michael"

220

Housing & Residence Education Disclosure of Fire Safety Standards and Measures 1 Campus Fire Safety Right-to-Know  

E-Print Network (OSTI)

Housing & Residence Education Disclosure of Fire Safety Standards and Measures 1 Campus Fire Safety and death resulting from each fire. #12;Housing & Residence Education Disclosure of Fire Safety Standards) -- Grease Fire -- Beaty Towers -- 9/10/10 $100 (Greek) -- HVAC fan motor burned up -- Alpha Chi Omega -- 3

Slatton, Clint

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1-May 31, 1981  

SciTech Connect

Information is presented concerning wrapped and bare rod bundle geometry; bare rod subchannel geometry; LMFBR outlet plenum flow mixing; and theoretical determination of local temperature fields in LMFBR fuel rod bundles.

Todreas, N.E.

1981-08-01T23:59:59.000Z

222

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1980-May 31, 1980  

SciTech Connect

Experimental and theoretical work is reported on four tasks: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical local temperature files in LMFBR fuel rod bundles. (DLC)

Todreas, N.E.; Golay, M.W.; Wolf, L.

1980-01-01T23:59:59.000Z

223

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, September 1, 1980-November 30, 1980  

SciTech Connect

Four tasks are reported: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

Todreas, N.E.; Golay, M.W.; Wolf, L.

1981-02-01T23:59:59.000Z

224

Development of two mix model postprocessors for the investigation of shell mix in indirect drive implosion cores  

SciTech Connect

The presence of shell mix in inertial confinement fusion implosion cores is an important characteristic. Mixing in this experimental regime is primarily due to hydrodynamic instabilities, such as Rayleigh-Taylor and Richtmyer-Meshkov, which can affect implosion dynamics. Two independent theoretical mix models, Youngs' model and the Haan saturation model, were used to estimate the level of Rayleigh-Taylor mixing in a series of indirect drive experiments. The models were used to predict the radial width of the region containing mixed fuel and shell materials. The results for Rayleigh-Taylor mixing provided by Youngs' model are considered to be a lower bound for the mix width, while those generated by Haan's model incorporate more experimental characteristics and consequently have larger mix widths. These results are compared with an independent experimental analysis, which infers a larger mix width based on all instabilities and effects captured in the experimental data.

Welser-Sherrill, L.; Mancini, R. C. [Department of Physics, University of Nevada, Reno, Nevada 89557 (United States); Haynes, D. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Haan, S. W.; Koch, J. A.; Izumi, N.; Tommasini, R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Golovkin, I. E.; MacFarlane, J. J. [Prism Computational Sciences, Madison, Wisconsin 53703 (United States); Radha, P. B.; Delettrez, J. A.; Regan, S. P.; Smalyuk, V. A. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States)

2007-07-15T23:59:59.000Z

225

Conflict-of-Interest/Non-Disclosure Certificate For Reviewers Involved in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conflict-of-Interest/Non-Disclosure Certificate For Reviewers Conflict-of-Interest/Non-Disclosure Certificate For Reviewers Involved in the Selection of Subcontractors for NEUP Research and Development Funds Conflict-of-Interest/Non-Disclosure Certificate For Reviewers Involved in the Selection of Subcontractors for NEUP Research and Development Funds The Department of Energy has a policy that individuals with a conflict of interest cannot participate in the technical review of procurement proposals. This certification must be completed by individuals prior to their participation in the pre-application and/or proposal review processes. 1. I will not participate in the review of any pre-application or proposal involving a particular matter that would have a direct and predictable effect on any person, company or organization with which I have a

226

U-200: Red Hat Directory Server Information Disclosure Security Issue and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

200: Red Hat Directory Server Information Disclosure Security 200: Red Hat Directory Server Information Disclosure Security Issue and Vulnerability U-200: Red Hat Directory Server Information Disclosure Security Issue and Vulnerability June 27, 2012 - 7:00am Addthis PROBLEM: A security issue and a vulnerability have been reported in Red Hat Directory Server, which can be exploited by malicious users to disclose sensitive information. PLATFORM: Red Hat Directory Server 8.x ABSTRACT: If an LDAP user had changed their password, and the directory server had not been restarted since that change, an attacker able to bind to the directory server could obtain the plain text version of that user's password. Reference Links: Original Advisory Secunia ID 49734 CVE-2012-2678, CVE-2012-2746 IMPACT ASSESSMENT: Medium Discussion: 1) The security issue is caused due to new passwords being saved to the

227

Voluntary disclosure of intellectual capital in the Brazilian context: an investigation informed by the international context  

Science Journals Connector (OSTI)

This study investigates whether and how Brazilian companies disclose Intellectual Capital (IC) in their Annual Reports (ARs) and whether this voluntary disclosure behaves in a way similar to that in the international context. The study examines the ARs of the 25 top Brazilian open organisations (Social Capital) listed at BOVESPA (Sao Paulo Stock Exchange) on 31 December 2004. The 'content analysis' technique (Guthrie et al., 1999) was used together with Sveiby's classificatory framework (1997). The study revealed a: high incidence of voluntary IC disclosure in ARs of Brazilian organisations; trend towards disclosure in qualitative (narrative) terms; high frequency of External Capital (EC) as an IC category; similarity in the results obtained both in the Brazilian and the international contexts, particularly as regards similar studies in Australia and Sri Lanka: reporting EC is more in favour in the three contexts with differences regarding the most reported element.

Sandra Rolim Ensslin; Fernando Nitz De Carvalho

2007-01-01T23:59:59.000Z

228

U-200: Red Hat Directory Server Information Disclosure Security Issue and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Red Hat Directory Server Information Disclosure Security 0: Red Hat Directory Server Information Disclosure Security Issue and Vulnerability U-200: Red Hat Directory Server Information Disclosure Security Issue and Vulnerability June 27, 2012 - 7:00am Addthis PROBLEM: A security issue and a vulnerability have been reported in Red Hat Directory Server, which can be exploited by malicious users to disclose sensitive information. PLATFORM: Red Hat Directory Server 8.x ABSTRACT: If an LDAP user had changed their password, and the directory server had not been restarted since that change, an attacker able to bind to the directory server could obtain the plain text version of that user's password. Reference Links: Original Advisory Secunia ID 49734 CVE-2012-2678, CVE-2012-2746 IMPACT ASSESSMENT: Medium Discussion: 1) The security issue is caused due to new passwords being saved to the

229

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

230

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

231

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

232

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

233

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

234

Hog Fuel Drying Using Vapour Recompression  

E-Print Network (OSTI)

A continuous hog fuel drying pilot plant based on the principle of mixing hog fuel with a hot oil (e.g., crude tall oil) as the heat transfer medium, and recirculating the suspension through a steam heated exchanger was designed, built...

Azarniouch, M. K.; MacEachen, I.

1984-01-01T23:59:59.000Z

235

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

236

Alternative Fuels Data Center: Biodiesel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Definition Biodiesel Definition to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Definition on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Definition on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Definition on Google Bookmark Alternative Fuels Data Center: Biodiesel Definition on Delicious Rank Alternative Fuels Data Center: Biodiesel Definition on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Definition Biodiesel is defined as a fuel comprised of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats, either in pure form or mixed in any combination with petroleum-based diesel fuel. The

237

Introduction: mixing in microfluidics  

Science Journals Connector (OSTI)

...Wiggins Introduction: mixing in microfluidics Julio M. Ottino 1 Stephen...comprising the Theme Issue. Microfluidics|Mixing|Chaos|Diffusion...Introduction: mixing in microfluidics. | In this paper we briefly...

2004-01-01T23:59:59.000Z

238

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

239

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

240

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

242

Determinants of parental satisfaction with a child's disclosure of a gay or lesbian sexual orientation  

E-Print Network (OSTI)

This study was an attempt to begin to understand the phenomenon of coming out from the parental perspective. Specifically, it focused on the factors contained within a child�s disclosure of his or her sexual orientation and their impact on a...

Miller, Andrew D

2006-10-30T23:59:59.000Z

243

Annual Confidential Financial Disclosure Report (OGE Form 450 or 450A)  

Directives, Delegations, and Requirements

This Notice addresses the Executive Branch confidential financial disclosure reporting requirements. These requirements apply to career GS/GM and prevailing rate system and administratively determined employees as well as employees serving in excepted service positions designated EJ, EK, and EN.

2007-01-03T23:59:59.000Z

244

B.C. Invention Disclosure Guidelines Do you want to get royalty money from your research?  

E-Print Network (OSTI)

B.C. Invention Disclosure Guidelines Do you want to get royalty money from your research, and bring in licensing royalty sharing with inventors. If you feel your research has any commercial value royalty! Please contact OTTL Director Dr. Jason Wen at jason.wen@bc.edu or (617) 552-1682 and Dr. Jill

Huang, Jianyu

245

Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure  

E-Print Network (OSTI)

facility, the sum capacity of which does not exceed 30 megawatts. (4) Solar. For purposes1 Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure that a retail seller offers to sell to consumers in California under terms and conditions specific to an offer

246

Annual Confidential Financial Disclosure Report (OGE Form 450 or 450A)  

Directives, Delegations, and Requirements

This Notice addresses the Executive Branch confidential financial disclosure reporting requirements. These requirements apply to career GS/GM and prevailing rate system and administratively determined employees as well as employees serving in excepted service positions designated EJ, EK, and EN. (Note: It replaces DOE N 326.11, which expired 9-29-05.)

2005-09-30T23:59:59.000Z

247

Selecting the Number of Imputed Datasets When Using Multiple Imputation for Missing Data and Disclosure Limitation  

E-Print Network (OSTI)

Selecting the Number of Imputed Datasets When Using Multiple Imputation for Missing Data and disclosure limitation simultaneously. First, fill in the missing data to generate m completed datasets, then replace confidential values in each completed dataset with r imputations. I investigate how to select m

Reiter, Jerome P.

248

Understanding smart data disclosure policy success: the case of Green Button  

Science Journals Connector (OSTI)

Open data policies are expected to promote innovations that stimulate social, political and economic change. In pursuit of innovation potential, open data has expanded to wider environment involving government, business and citizens. The US government ... Keywords: Green Button, energy efficiency, innovation, open data, smart disclosure

Djoko Sigit Sayogo; Theresa A. Pardo

2013-06-01T23:59:59.000Z

249

Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed Copper-Iron-Inert Support Oxygen Carriers Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process Contact NETL Technology Transfer Group techtransfer@netl.doe.gov December 2012 This patent-pending technology, "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid Fuel Chemical Looping Combustion Process," provides a metal-oxide oxygen carrier for application in fuel combustion processes that use oxygen. This technology is available for licensing and/or further collaborative research with the U.S. Department of Energy's National Energy Technology Laboratory. Overview Patent Details U.S. Non-Provisional Patent Application No. 13/159,553; titled "Regenerable Mixed Copper-Iron-Inert Support Oxygen Carriers for Solid

250

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

251

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

252

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

253

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

254

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

255

Alternative fuels  

SciTech Connect

This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

Not Available

1991-07-01T23:59:59.000Z

256

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

257

Transmutation of Transuranic Elements in Advanced MOX and IMF Fuel Assemblies Utilizing Multi-recycling Strategies  

E-Print Network (OSTI)

of nuclear power plants worldwide. To do so efficiently, several new fuel assembly designs are proposed in this Thesis: these include (1) Mixed Oxide Fuel (MOX), (2) MOX fuel with Americium coating, (3) Inert-Matrix Fuel (IMF) with UOX as inner zone, and (4...

Zhang, Yunhuang

2011-02-22T23:59:59.000Z

258

Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price.  

E-Print Network (OSTI)

??In this thesis we examine how fuel price variation affects the optimal mix of services in intercity transportation. Towards this end, we make two main… (more)

Ryerson, Megan Smirti

2010-01-01T23:59:59.000Z

259

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

260

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

262

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

263

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

264

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

265

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

266

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

267

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

268

Fuel Research  

Science Journals Connector (OSTI)

... FUEL research was discussed by Sir Harry McGowan, who succeeds Sir William Larke as president of the Institute of Fuel, in ... has a ragged front, and new knowledge is continually changing relative national positions. Sir Harry McGowan referred to the domestic use of raw coal, which is still preferred to ...

1934-11-24T23:59:59.000Z

269

Mixed Conifer Forest  

Science Journals Connector (OSTI)

Mixed Conifer Forest occurs in an elevational band below Spruce-Fir Forest and above Ponderosa Pine Forest. It has diverse stands reflecting elevation, ... and others. A primary driver of Mixed Conifer Forest has...

John L. Vankat; John L. Vankat…

2013-01-01T23:59:59.000Z

270

Warm Mix Asphalt  

Science Journals Connector (OSTI)

Warm Mix Asphalt (WMA) technologies have potential to reduce the application temperature of Hot Mix Asphalt (HMA) and improve workability without ... a reduction in greenhouse gas emissions, decreased energy cons...

Martins Zaumanis

2014-01-01T23:59:59.000Z

271

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

272

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

273

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

274

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

275

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

276

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

277

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

278

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

279

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

280

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

282

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

283

V-206: Apache HTTP Server mod_rewrite and "httpOnly" Cookie Disclosure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Apache HTTP Server mod_rewrite and "httpOnly" Cookie 6: Apache HTTP Server mod_rewrite and "httpOnly" Cookie Disclosure Vulnerabilities V-206: Apache HTTP Server mod_rewrite and "httpOnly" Cookie Disclosure Vulnerabilities July 30, 2013 - 4:33am Addthis PROBLEM: Two vulnerabilities have been reported in Apache HTTP Server, which can be exploited by malicious people to disclose potentially sensitive information and compromise a vulnerable system. PLATFORM: Apache 2.0.x Apache HTTP Server 2.x ABSTRACT: Two vulnerabilities have been reported in Apache HTTP Server REFERENCE LINKS: CVE-2012-0053 CVE-2013-1862 http://secunia.com/advisories/54320/ IMPACT ASSESSMENT: Medium DISCUSSION: protocol.c in the Apache HTTP Server 2.2.x through 2.2.21 does not properly restrict header information during construction of Bad Request (aka 400)

284

California Fuel Cell Partnership: Alternative Fuels Research  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

285

HFAG Charm Mixing Averages  

E-Print Network (OSTI)

Recently the first evidence for charm mixing has been reported by several experiments. To provide averages of these mixing results and other charm results, a new subgroup of the Heavy Flavor Averaging Group has been formed. We here report on the method and results of averaging the charm mixing results.

B. Aa. Petersen

2007-12-10T23:59:59.000Z

286

Fuel Processing Valri Lightner  

E-Print Network (OSTI)

, ORNL, NETL #12;Accomplishments · Demonstrated in the lab an advanced fuel flexible fuel processor

287

Experiment Safety Assurance Package for the 40- to 52-GWd/MT Burnup Phase of Mixed Oxide Fuel Irradiation in Small I-hole Positions in the Advanced Test Reactor  

SciTech Connect

This experiment safety assurance package (ESAP) is a revision of the last mixed uranium and plutonium oxide (MOX) ESAP issued in June 2002). The purpose of this revision is to provide a basis to continue irradiation up to 52 GWd/MT burnup [as predicted by MCNP (Monte Carlo N-Particle) transport code The last ESAP provided basis for irradiation, at a linear heat generation rate (LHGR) no greater than 9 kW/ft, of the highest burnup capsule assembly to 50 GWd/MT. This ESAP extends the basis for irradiation, at a LHGR no greater than 5 kW/ft, of the highest burnup capsule assembly from 50 to 52 GWd/MT.

S. T. Khericha; R. C. Pedersen

2003-09-01T23:59:59.000Z

288

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-07-17T23:59:59.000Z

289

Ignition of deuterium-tritium fuel targets  

DOE Patents (OSTI)

Disclosed is a method of igniting a deuterium-tritium ICF fuel target to obtain fuel burn in which the fuel target initially includes a hollow spherical shell having a frozen layer of DT material at substantially uniform thickness and cryogenic temperature around the interior surface of the shell. The target is permitted to free-fall through a target chamber having walls heated by successive target ignitions, so that the target is uniformly heated during free-fall to at least partially melt the frozen fuel layer and form a liquid single-phase layer or a mixed liquid/solid bi-phase layer of substantially uniform thickness around the interior shell surface. The falling target is then illuminated from exteriorly of the chamber while the fuel layer is at substantially uniformly single or bi-phase so as to ignite the fuel layer and release energy therefrom. 5 figures.

Musinski, D.L.; Mruzek, M.T.

1991-08-27T23:59:59.000Z

290

Mox fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-05-15T23:59:59.000Z

291

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

Kantrowitz, M.L.; Rosenstein, R.G.

1998-10-13T23:59:59.000Z

292

MOX fuel arrangement for nuclear core  

DOE Patents (OSTI)

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

1998-01-01T23:59:59.000Z

293

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

294

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

295

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

296

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

297

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

298

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

299

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

300

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

302

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

303

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

304

Method and system for low-NO.sub.x dual-fuel combustion of liquid and/or gaseous fuels  

SciTech Connect

A method and apparatus for combustion in which a pressurized preheated liquid fuel is atomized and a portion thereof flash vaporized, creating a mixture of fuel vapor and liquid droplets. The mixture is mixed with primary combustion oxidant, producing a fuel/primary oxidant mixture which is then injected into a primary combustion chamber in which the fuel/primary oxidant mixture is partially combusted, producing a secondary gaseous fuel containing hydrogen and carbon oxides. The secondary gaseous fuel is mixed with a secondary combustion oxidant and injected into the second combustion chamber wherein complete combustion of the secondary gaseous fuel is carried out. The resulting second stage flue gas containing very low amounts of NO.sub.x is then vented from the second combustion chamber.

Gard, Vincent; Chojnacki, Dennis A; Rabovitser, Ioseph K

2014-12-02T23:59:59.000Z

305

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Carter, J.

2011-01-03T23:59:59.000Z

306

FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION  

SciTech Connect

The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

Jones, R.; Carter, J.

2010-10-13T23:59:59.000Z

307

Mixing of Pseudoscalar Mesons  

E-Print Network (OSTI)

Eta-eta' mixing is discussed in the quark-flavor basis with the hypothesis that the decay constants follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the axial vector anomaly - all mixing parameters are fixed to first order of flavor symmetry breaking. An alternative set of parameters is obtained from a phenomenological analysis. We also discuss mixing in the octet-singlet basis and show how the relevant mixing parameters are related to those in the quark-flavor basis. The dependence of the mixing parameters on the strength of the anomaly and the amount of flavor symmetry breaking is investigated. Finally, we present a few applications of the quark-flavor mixing scheme, such as radiative decays of vector mesons, the photon-pseudoscalar meson transition form factors, the coupling constants of eta and eta' to nucleons, and the isospin-singlet admixtures to the pi^0 meson.

Th. Feldmann; P. Kroll

2002-01-08T23:59:59.000Z

308

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

309

Nuclear Fuels  

Science Journals Connector (OSTI)

The core of a nuclear reactor is composed of a controlled critical configuration of a fissile material, which in strict a sense is the fuel. This fissile material is contained in a matrix, normally a ceramic c...

Rudy J. M. Konings; Thierry Wiss…

2011-01-01T23:59:59.000Z

310

Fuel economizer  

SciTech Connect

A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

Zwierzelewski, V.F.

1984-06-26T23:59:59.000Z

311

RADIATION DOSE ASPECTS IN THE HANDLING OF EMERGING NUCLEAR FUELS  

Science Journals Connector (OSTI)

......Radiol. Prot. (2008) 28:161. 15 NUREG. Standard review plan for the review of an application for a Mixed Oxide (MOX) fuel...facilities specific safety guide. (2010) IAEA Safety Standards Series No. SSG-6, International Atomic Energy......

G. Nicolaou

2014-02-01T23:59:59.000Z

312

Fuel reforming for scramjet thermal management and combustion optimization  

E-Print Network (OSTI)

Fuel reforming for scramjet thermal management and combustion optimization E. DANIAU* , M. BOUCHEZ in a Scramjet combustion chamber. Another critical point is that mixing and combustion should be sufficiently

Paris-Sud XI, Université de

313

Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...  

Energy Savers (EERE)

Synthesis, Volume 2: A Techno-economic Evaluation of the Production of Mixed Alcohols Biomass is a renewable energy resource that can be converted into liquid fuel suitable for...

314

Radiolysis Model Formulation for Integration with the Mixed Potential Model  

SciTech Connect

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel (UNF) and high-level radioactive waste. Within the UFDC, the components for a general system model of the degradation and subsequent transport of UNF is being developed to analyze the performance of disposal options [Sassani et al., 2012]. Two model components of the near-field part of the problem are the ANL Mixed Potential Model and the PNNL Radiolysis Model. This report is in response to the desire to integrate the two models as outlined in [Buck, E.C, J.L. Jerden, W.L. Ebert, R.S. Wittman, (2013) “Coupling the Mixed Potential and Radiolysis Models for Used Fuel Degradation,” FCRD-UFD-2013-000290, M3FT-PN0806058

Buck, Edgar C.; Wittman, Richard S.

2014-07-10T23:59:59.000Z

315

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

316

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

317

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

318

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. Fuel Cell...

319

No Fossils in This Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan for Environmental Teaching Plan for Environmental Teaching GM Environmental Science Club No Fossils in This Fuel Your PlanET Sixth through Eighth Grades (Can be easily adapted to any elementary/middle school level) Ingredients: Yeast, sugar ... what are you making? Sweet rolls? Not in Science Class! You're blending these ingredients to make an innovative form of fuel! That's right ... when these two simple ingredients are mixed, the yeast  a simple, living organism  breaks the sugar down into ethyl alcohol, or ethanol, and carbon dioxide. While you won't be burning the fuel to prove its usefulness, you can share with your students how ethanol is being used right now to power some of today's vehicles! Students will be able to experiment with the activity, and they will see how the fermentation that occurs can blow up a

320

Fuel Processing Valri Lightner  

E-Print Network (OSTI)

of Hydrogen · Fuel Processors for PEM Fuel Cells Nuvera Fuel Cells, Inc. GE Catalytica ANL PNNL University-Board Fuel Processing Barriers $35/kW Fuel Processor $10/kW Fuel Cell Power Systems $45/kW by 2010 BARRIERS · Fuel processor start-up/ transient operation · Durability · Cost · Emissions and environmental issues

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,225 1,736 1,807 1,582 4,278 2,390 2,537 1990's 27,720 36,088 36,741 35,503 37,347 39,116 40,334 40,706 39,601 41,149 2000's 42,519 42,243 44,008 44,762 44,016 43,386 38,938 41,197 40,286 39,447 2010's 37,316 35,339 37,397 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Alaska Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

322

Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Louisiana Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 121,848 123,993 104,292 102,185 123,008 121,936 134,132 1990's 82,828 83,733 86,623 74,925 66,600 75,845 69,235 71,155 63,368 68,393 2000's 69,174 63,137 63,031 56,018 55,970 45,837 46,205 51,499 42,957 39,002 2010's 40,814 42,633 42,123 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Louisiana Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

323

Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Oklahoma Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

324

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

325

Reaction-in-Flight Neutrons as a Signature for Shell Mixing in NIF capsules  

E-Print Network (OSTI)

We present analytic calculations and results from computational simulations showing that reaction-in-flight (RIF) neutrons act as a robust indicator for mixing of the ablator shell material into the fuel in DT capsules designed for the National Ignition Facility. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to downscattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.

A. C. Hayes; P. A. Bradley; G. P. Grim; Gerard Jungman; J. B. Wilhelmy

2009-07-17T23:59:59.000Z

326

Reaction-in-Flight Neutrons as a Signature for Shell Mixing in NIF capsules  

E-Print Network (OSTI)

We present analytic calculations and results from computational simulations showing that reaction-in-flight (RIF) neutrons act as a robust indicator for mixing of the ablator shell material into the fuel in DT capsules designed for the National Ignition Facility. The sensitivity of RIF neutrons to hydrodynamical mixing arises through the dependence of RIF production on charged-particle stopping lengths in the mixture of DT fuel and ablator material. Since the stopping power in the plasma is a sensitive function of the electron temperature and density, it is also sensitive to mix. RIF production scales approximately inversely with the degree of mixing taking place, and the ratio of RIF to downscattered neutrons provides a measure of the mix fraction and/or the mixing length. For sufficiently high-yield capsules, where spatially resolved RIF images may be possible, neutron imaging could be used to map RIF images into detailed mix images.

Hayes, A C; Grim, G P; Jungman, Gerard; Wilhelmy, J B

2009-01-01T23:59:59.000Z

327

Session H--NEPA Disclosure of Air Quality Impacts--Ahuja, Perrot USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008.  

E-Print Network (OSTI)

Session H--NEPA Disclosure of Air Quality Impacts--Ahuja, Perrot USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. . 193 National Environmental Policy Act Disclosure of Air Quality Impacts air quality and has the potential to impact human health and quality of life. Public concern about

Standiford, Richard B.

328

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

motor fuel containing at least 10% alcohol) or alternative fuels whenever feasible and cost effective. DOA must place a list of gasohol and alternative fueling station locations...

329

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

special fuels. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition,...

330

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

alternative fuel vehicles (AFVs) capable of operating on natural gas or liquefied petroleum gas (propane), or bi-fuel vehicles capable of operating on conventional fuel or...

331

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient...

332

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are...

333

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

334

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

335

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and alternative fuel vehicles; promotes the development, sale, distribution, and consumption of alternative fuels; promotes the development and use of alternative fuel vehicles...

336

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

providers to install biofuel fueling facilities. Fueling facilities include storage tanks and fuel pumps dedicated to dispensing E85 and biodiesel blends of 20% (B20). TDOT...

337

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

interest in the qualified property. Renewable fuel is defined as a fuel produced from biomass that is used to replace or reduce conventional fuel use. (Reference Florida Statutes...

338

Alternative Fuel Vehicle Resources  

Energy.gov (U.S. Department of Energy (DOE))

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

339

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Grants and Rebates The Arkansas Alternative Fuels Development Program (Program) provides grants to alternative fuel producers, feedstock processors, and...

340

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Exclusivity Contract Regulation Motor fuel franchise dealers may obtain alternative fuels from a supplier other than a franchise distributor. Any franchise provision that...

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Production and Retail Requirements All hydrogen fuel produced and sold in Michigan must meet state fuel quality requirements. Any retailer offering hydrogen fuel for sale...

342

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

that operate using at least 90% alternative fuel. Eligible alternative fuels include electricity, propane, natural gas, or hydrogen fuel. Medium-duty hybrid electric vehicles also...

343

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Promotion and Information The Center for Alternative Fuels (Center) promotes alternative fuels as viable energy sources in the state. The Center must assess the...

344

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85%...

345

Low Carbon Fuel Standards  

E-Print Network (OSTI)

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

346

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Labeling Requirement Retailers must display ratings on fueling pumps that are consistent with the percentage by volume of the alternative fuel being dispensed....

347

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

348

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

349

An Integrated Approach for Creating Model Diesel Fuels  

Science Journals Connector (OSTI)

An Integrated Approach for Creating Model Diesel Fuels ... There is growing recognition that the optimal fuel properties (i) are dependent on the engine operating conditions and (ii) can be different for different parts of the drive cycle. ... The total solution to this problem belongs to the general and very difficult class of mixed-integer nonlinear problems (MINLP). ...

Ioannis P. Androulakis; Mark D. Weisel; Chang S. Hsu; Kuangnan Qian; Larry A. Green; John T. Farrell; Kiyomi Nakakita

2004-11-19T23:59:59.000Z

350

Some peculiarities of turbulent mixing growth and perturbations at hydrodynamic instabilities  

Science Journals Connector (OSTI)

...aerohydrodynamics, gas dynamics, inertial thermonuclear fusion (ITF), etc. So, when compressing a thermonuclear target, growth of these instabilities...convergence, mixing of its material and thermonuclear fuel. It strongly reduces the neutron...

2013-01-01T23:59:59.000Z

351

Mixed-integer programming methods for supply chain optimization Christos Maravelias, University of Wisconsin -Madison  

E-Print Network (OSTI)

Zeolite upgrading Phenols &BTX Phenols &BTX AromaticsAromatics Fast pyrolysis Fast pyrolysis ­ industrial gases ­ chemicals SC under power constraints Biomass to fuels and chemicals #12;Mixed

Grossmann, Ignacio E.

352

Power Ecalene Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

Ecalene Fuels Inc Ecalene Fuels Inc Jump to: navigation, search Logo: Power Ecalene Fuels Inc Name Power Ecalene Fuels Inc Address 18300 W Highway 72 Place Arvada, Colorado Zip 80007 Sector Biofuels Product Mixed alcohol transportation fuel Website http://www.powerecalene.com/ Coordinates 39.862942°, -105.206509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.862942,"lon":-105.206509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

VISION - Verifiable Fuel Cycle Simulation of Nuclear Fuel Cycle Dynamics  

SciTech Connect

The U.S. DOE Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that - if implemented - would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deployment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential "exit" or "off ramp" approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. It is based on the current AFCI system analysis tool "DYMOND-US" functionalities in addition to economics, isotopic decay, and other new functionalities. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI and Generation IV reactor development studies.

Steven J. Piet; A. M. Yacout; J. J. Jacobson; C. Laws; G. E. Matthern; D. E. Shropshire

2006-02-01T23:59:59.000Z

354

Fuel Cells & Alternative Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and...

355

SSA Mixed Canopy Site  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed Canopy Site (SSA-Mix) Mixed Canopy Site (SSA-Mix) The TE canopy tower The mixed trees Terrestrial Ecology canopy access tower at the SSA mixed coniferous/deciduous site. A picture taken looking down from the TE canopy access tower at the SSA mixed auxiliary site, showing the aspen and spruce canopies. Back to the BOREAS Photo Page Index Other Sites: NSA Photos ||NSA-BP Photos | NSA-Fen Photos | NSA-OA Photos | NSA-OBS Photos | NSA-OJP Photos | NSA-UBS Photos | NSA-YJP Photos | NSA-Ops Photos SSA Photos || SSA-Airport Photos | SSA-Fen Photos | SSA-Mix Photos | SSA-OA Photos | SSA-OBS Photos | SSA-OJP Photos | SSA-YA Photos | SSA-YJP Photos | SSA-Ops Photos | ORNL DAAC Home || ORNL Home || NASA || Privacy, Security, Notices || Data Citation || Rate Us || Help | User Services - Tel: +1 (865) 241-3952 or E-mail: uso@daac.ornl.gov

356

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend...

357

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuels include liquid non-petroleum based fuel that can be placed in motor vehicle fuel tanks and used to operate on-road vehicles, including all forms of fuel commonly or...

358

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay the alternative fuels tax...

359

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Digg

360

Fuel reforming for fuel cell application.  

E-Print Network (OSTI)

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The piston dynamics under knock situation of diesel dual fuel engine: a numerical study  

Science Journals Connector (OSTI)

A compression ignition engine fueled by natural gas or Diesel Dual Fuel (DDF) engine is a promising engine for the future of a high oil price. Unfortunately, the DDF engine knocks easily: this leads to damage of pistons. So, the understanding of the ... Keywords: diesel dual fuel engine, knock, mixed-lubrication, modelling, piston secondary motion, simulation

Krisada Wannatong; Somchai Chanchaona; Surachai Sanitjai

2007-01-01T23:59:59.000Z

362

Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report  

SciTech Connect

This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

Todreas, N.E.; Cheng, S.K.; Basehore, K.

1984-08-01T23:59:59.000Z

363

Fossil fuel combined cycle power generation method  

DOE Patents (OSTI)

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

364

A Study of Fast Reactor Fuel Transmutation in a Candidate Dispersion Fuel Design  

SciTech Connect

Dispersion fuels represent a significant departure from typical ceramic fuels to address swelling and radiation damage in high burnup fuel. Such fuels use a manufacturing process in which fuel particles are encapsulated within a non-fuel matrix. Dispersion fuels have been studied since 1997 as part of an international effort to develop and test very high density fuel types for the Reduced Enrichment for Research and Test Reactors (RERTR) program.[1] The Idaho National Laboratory is performing research in the development of an innovative dispersion fuel concept that will meet the challenges of transuranic (TRU) transmutation by providing an integral fission gas plenum within the fuel itself, to eliminate the swelling that accompanies the irradiation of TRU. In this process, a metal TRU vector produced in a separations process is atomized into solid microspheres. The dispersion fuel process overcoats the microspheres with a mixture of resin and hollow carbon microspheres to create a TRUC. The foam may then be heated and mixed with a metal power (e.g., Zr, Ti, or Si) and resin to form a matrix metal carbide, that may be compacted and extruded into fuel elements. In this paper, we perform reactor physics calculations for a core loaded with the conceptual fuel design. We will assume a “typical” TRU vector and a reference matrix density. We will employ a fuel and core design based on the Advanced Burner Test Reactor (ABTR) design.[2] Using the CSAS6 and TRITON modules of the SCALE system [3] for preliminary scoping studies, we will demonstrate the feasibility of reactor operations. This paper will describe the results of these analyses.

Mark DeHart; Hongbin Zhang; Eric Shaber; Matthew Jesse

2010-11-01T23:59:59.000Z

365

Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Nebraska Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 9 1,838 63 2,006 2,470 2,689 2,142 2,199 1,948 2,088 1990's 2,361 2,032 1,437 791 890 15 315 134 11 4 2000's 339 6 1 13 39 16 19 33 28 18 2010's 12 9 4 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Nebraska Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

366

Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Ohio Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 69,169 69,850 64,812 62,032 43,866 24,444 5,182 18 44 348 1990's 849 891 1,051 992 1,432 904 1,828 1,423 1,194 1,200 2000's 1,442 1,149 79 1,002 492 579 423 608 460 522 2010's 353 296 366 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Ohio Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

367

Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Hawaii Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 3,190 2,993 2,899 2,775 2,449 2,655 2,630 2,461 2,801 2,844 1990's 2,817 2,725 2,711 2,705 2,831 2,793 2,761 2,617 2,715 2,752 2000's 2,769 2,689 2,602 2,602 2,626 2,606 2,613 2,683 2,559 2,447 2010's 2,472 2,467 2,510 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Hawaii Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

368

Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Massachusetts Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 15,366 21,828 17,586 10,732 6,545 3,668 2,379 1,404 876 692 1990's 317 120 105 61 154 420 426 147 68 134 2000's 26 16 137 324 80 46 51 15 13 10 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Massachusetts Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

369

Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Pennsylvania Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,270 1,530 1,924 1970's 2,251 2,419 2,847 2,725 1,649 1,760 3,043 3,210 2,134 2,889 1980's 1,320 1,580 3,278 3,543 5,236 4,575 4,715 5,799 4,983 4,767 1990's 6,031 3,502 3,381 4,145 3,252 3,069 3,299 2,275 1,706 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Pennsylvania Natural Gas Consumption by End Use Lease and Plant

370

Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Alaska Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 96,603 109,333 62,341 71,104 112,404 151,280 189,702 1990's 166,155 187,106 197,975 202,199 200,809 253,695 255,500 230,578 242,271 224,355 2000's 226,659 229,206 241,469 255,701 237,530 259,829 218,153 227,374 211,878 219,161 2010's 211,918 208,531 214,335 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Alaska Natural Gas Consumption by End Use Lease

371

Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Texas Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 183,870 204,390 193,822 189,173 229,053 200,239 163,218 1990's 228,485 125,198 123,111 130,916 139,427 178,827 177,508 144,787 176,262 136,708 2000's 141,785 135,786 114,919 123,585 129,825 134,434 138,558 154,323 166,500 169,631 2010's 157,751 147,268 163,325 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Lease Fuel Consumption Texas Natural Gas Consumption by End Use Lease

372

Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

and Plant Fuel Consumption (Million Cubic Feet) and Plant Fuel Consumption (Million Cubic Feet) Mississippi Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,582 9,158 8,521 1970's 7,893 5,840 9,153 6,152 5,357 7,894 4,836 4,979 5,421 8,645 1980's 4,428 4,028 7,236 6,632 7,202 6,296 6,562 8,091 7,100 5,021 1990's 7,257 4,585 4,945 4,829 3,632 3,507 3,584 3,652 3,710 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Lease and Plant Fuel Consumption Mississippi Natural Gas Consumption by End Use Lease and Plant

373

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

374

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

375

Mixed Semiconductor Nanocrystal Compositions  

NLE Websites -- All DOE Office Websites (Extended Search)

Mixed Semiconductor Nanocrystal Compositions Mixed Semiconductor Nanocrystal Compositions Mixed Semiconductor Nanocrystal Compositions Composition comprising one or more energy donors and one or more energy acceptors. Available for thumbnail of Feynman Center (505) 665-9090 Email Mixed Semiconductor Nanocrystal Compositions Composition comprising one or more energy donors and one or more energy acceptors, wherein energy is transferred from the energy donor to the energy acceptor and wherein: the energy acceptor is a colloidal nanocrystal having a lower band gap energy than the energy donor; the energy donor and the energy acceptor are separated by a distance of 40 nm or less; wherein the average peak absorption energy of the acceptor is at least 20 meV greater than the average peak emission energy of the energy donor; and

376

Brush Busters Mixing Guide  

E-Print Network (OSTI)

This easy-to-use guide gives mixing instructions for sprays to control huisache, mesquite, redberry cedar, saltcedar, tallowtree and yucca and to treat hardwood cut stumps. It can easily be attached to a sprayer if desired...

McGinty, Allan; Ueckert, Darrell

2004-02-05T23:59:59.000Z

377

Mixed Conduction in Rare-Earth Phosphates  

E-Print Network (OSTI)

fundamentals   of   mixed   protonic   and   electronic  the  fundamentals  of  mixed  protonic  and  electronic  better  fundamental  understanding  of  mixed  electronic  

Ray, Hannah Leung

2012-01-01T23:59:59.000Z

378

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

379

Fuel cell generating plant  

SciTech Connect

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

380

The role of disclosure of personal information in the evaluation of risk and trust in young peoples' online interactions  

Science Journals Connector (OSTI)

This study examined the relationship between the evaluation of risk, trust and disclosure of personal information in young peoples' online interactions. A series of 18 focus groups were conducted with young people aged 9-19years old. The results suggested ... Keywords: Adolescence, Internet, Risk, Trust

Jo Bryce; James Fraser

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

User-centric identity as a service-architecture for eIDs with selective attribute disclosure  

Science Journals Connector (OSTI)

Unique identification and secure authentication of users are essential processes in numerous security-critical areas such as e-Government, e-Banking, or e-Business. Therefore, many countries (particularly in Europe) have implemented national eID solutions ... Keywords: Austrian eID, authentication, citizen card, cloud computing, identity management, privacy, public cloud, selective attribute disclosure

Daniel Slamanig, Klaus Stranacher, Bernd Zwattendorfer

2014-06-01T23:59:59.000Z

382

LMFBR fuel component costs  

SciTech Connect

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

383

Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle...

384

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

385

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology...

386

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

387

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by...

388

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

389

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's...

390

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

391

Fuel combustion exhibiting low NO{sub x} and CO levels  

DOE Patents (OSTI)

Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

Keller, J.O.; Bramlette, T.T.; Barr, P.K.

1996-07-30T23:59:59.000Z

392

ADVANCED MIXING MODELS  

SciTech Connect

The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and schedule savings. The focus of the present work is to establish mixing criteria associated with the waste processing at SRS and to quantify the mixing time required to suspend sludge particles with the submersible jet pump. Literature results for a turbulent jet flow are reviewed briefly, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. One of the main objectives in the waste processing is to provide the DWPF a uniform slurry composition at a certain weight percentage (typically {approx}13 wt%) over an extended period of time. In preparation of the sludge for slurrying to DWPF, several important questions have been raised with regard to sludge suspension and mixing of the solid suspension in the bulk of the tank: (1) How much time is required to prepare a slurry with a uniform solid composition for DWPF? (2) How long will it take to suspend and mix the sludge for uniform composition in any particular waste tank? (3) What are good mixing indicators to answer the questions concerning sludge mixing stated above in a general fashion applicable to any waste tank/slurry pump geometry and fluid/sludge combination? Grenville and Tilton (1996) investigated the mixing process by giving a pulse of tracer (electrolyte) through the submersible jet nozzle and by monitoring the conductivity at three locations within the cylindrical tank. They proposed that the mixing process was controlled by the turbulent kinetic energy dissipation rate in the region far away from the jet entrance. They took the energy dissipation rates in the regions remote from the nozzle to be proportional to jet velocity and jet diameter at that location. The reduction in the jet velocity was taken to be proportional to the nozzle velocity and distance from the nozzle. Based on their analysis, a correlation was proposed. The proposed correlation was shown to be valid over a wide range of Reynolds numbers (50,000 to 300,000) with a relative standard deviation of {+-} 11.83%. An improved correlat

Lee, S; Richard Dimenna, R; David Tamburello, D

2008-11-13T23:59:59.000Z

393

Chemical Kinetic Modeling of Fuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

petroleum based fuels * Non-petroleum based fuels: - Biodiesel and new generation biofuels - Fischer-Tropsch (F-T) fuels - Oil sand derived fuels Reduce mechanisms for...

394

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

395

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

396

Hydrogen storage and integrated fuel cell assembly  

DOE Patents (OSTI)

Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.

Gross, Karl J. (Fremont, CA)

2010-08-24T23:59:59.000Z

397

A Parametric Study of the DUPIC Fuel Cycle to Reflect Pressurized Water Reactor Fuel Management Strategy  

SciTech Connect

For both pressurized water reactor (PWR) and Canada deuterium uranium (CANDU) tandem analysis, the Direct Use of spent PWR fuel In CANDU reactor (DUPIC) fuel cycle in a CANDU 6 reactor is studied using the DRAGON/DONJON chain of codes with the ENDF/B-V and ENDF/B-VI libraries. The reference feed material is a 17 x 17 French standard 900-MW(electric) PWR fuel. The PWR spent-fuel composition is obtained from two-dimensional DRAGON assembly transport and depletion calculations. After a number of years of cooling, this defines the initial fuel nuclide field in the CANDU unit cell calculations in DRAGON, where it is further depleted with the same neutron group structure. The resulting macroscopic cross sections are condensed and tabulated to be used in a full-core model of a CANDU 6 reactor to find an optimized channel fueling rate distribution on a time-average basis. Assuming equilibrium refueling conditions and a particular refueling sequence, instantaneous full-core diffusion calculations are finally performed with the DONJON code, from which both the channel power peaking factors and local parameter effects are estimated. A generic study of the DUPIC fuel cycle is carried out using the linear reactivity model for initial enrichments ranging from 3.2 to 4.5 wt% in a PWR. Because of the uneven power histories of the spent PWR assemblies, the spent PWR fuel composition is expected to differ from one assembly to the next. Uneven mixing of the powder during DUPIC fuel fabrication may lead to uncertainties in the composition of the fuel bundle and larger peaking factors in CANDU. A mixing method for reducing composition uncertainties is discussed.

Rozon, Daniel; Shen Wei [Institut de Genie Nucleaire (Canada)

2001-05-15T23:59:59.000Z

398

Fuels options conference  

SciTech Connect

The proceedings of the Fuels Options Conference held May 9-10, 1995 in Atlanta, Georgia are presented. Twenty-three papers were presented at the conference that dealt with fuels outlook; unconventional fuels; fuel specification, purchasing, and contracting; and waste fuels applications. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1995-09-01T23:59:59.000Z

399

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

400

Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Grants

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Replacement Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Replacement Grants

402

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

403

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

404

Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Labeling Requirement

405

Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Fueling Biofuel Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Fueling Infrastructure Tax Credit

406

Alternative Fuels Data Center: Alternative Fuels Promotion and Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Promotion and Information to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion and Information

407

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

408

Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Taxation Study Commission to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Taxation Study Commission

409

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

410

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

411

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

412

Alternative Fuels Data Center: Alternative Fuel Production Subsidy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Production Subsidy Prohibition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Production Subsidy Prohibition

413

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

414

Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Infrastructure Tax Credit

415

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

416

Alternative Fuels Data Center: Alternative Fuels Feasibility Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Feasibility Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Feasibility Study The North Carolina State Energy Office, Department of Administration,

417

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Registration

418

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

419

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

420

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

to policy makers such as fuel price, GHG emission (bothdimensions, namely, fuel price, GHG emissions and marketa FGIS results in higher fuel price, lower fuel consumption,

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Cost and Schedule of the Mixed Oxide Fuel Fabrication Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at the Savannah River Site" BACKGROUND In September 2000, the United States and Russia signed a Plutonium Management and Disposition Agreement for the disposal of surplus...

422

Neutron field characterisation at mixed oxide fuel plant  

Science Journals Connector (OSTI)

......plutonium oxide (PuO2) and 70 % depleted uranium oxide (UO2) are blended together...and typical field conditions. Health Phys. (1990) 58(6):691-704...Power Plants Quality Assurance, Health Care Radiation Dosage Radiation......

C. Passmore; M. Million; M. Kirr; J. Bartz; M. S. Akselrod; A. Devita; J. Berard

2012-06-01T23:59:59.000Z

423

The effect of self-disclosure and empathic responding on intimacy: testing an interpersonal process model of intimacy using an observational coding system  

E-Print Network (OSTI)

the evidence for the interpersonal process model of intimacy described by Reis and Shaver (1988), which proposes that self-disclosure and empathic responding are the basis of intimate interactions. The sample consisted of 108 community couples who completed...

Mitchell, Alexandra Elizabeth

2007-09-17T23:59:59.000Z

424

D^0 Mixing  

E-Print Network (OSTI)

An overview of selected experimental results in the field of $D^0$-$\\bar{D}^0$ oscillations is presented. The average results for the mixing parameters, $x=(0.89\\pm{0.26\\atop 0.27})%$ and $y=(0.75\\pm{0.17\\atop 0.18})%$, exclude the no-mixing hypothesis at the level of 6.7 standard deviations. No sign of CP violation in the $D^0$ system is observed. The measurements impose constraints on the parameter space of many New Physics models.

B. Golob

2009-05-07T23:59:59.000Z

425

Mixed crystal organic scintillators  

DOE Patents (OSTI)

A mixed organic crystal according to one embodiment includes a single mixed crystal having two compounds with different bandgap energies, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source, wherein the signal response signature does not include a significantly-delayed luminescence characteristic of neutrons interacting with the organic crystal relative to a luminescence characteristic of gamma rays interacting with the organic crystal. According to one embodiment, an organic crystal includes bibenzyl and stilbene or a stilbene derivative, the organic crystal having a physical property of exhibiting a signal response signature for neutrons from a radioactive source.

Zaitseva, Natalia P; Carman, M Leslie; Glenn, Andrew M; Hamel, Sebastien; Hatarik, Robert; Payne, Stephen A; Stoeffl, Wolfgang

2014-09-16T23:59:59.000Z

426

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on AddThis.com...

427

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on AddThis.com...

428

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell.

Singh, Prabhakar (Export, PA); George, Raymond A. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

429

Cover and startup gas supply system for solid oxide fuel cell generator  

DOE Patents (OSTI)

A cover and startup gas supply system for a solid oxide fuel cell power generator is disclosed. Hydrocarbon fuel, such as natural gas or diesel fuel, and oxygen-containing gas are supplied to a burner. Combustion gas exiting the burner is cooled prior to delivery to the solid oxide fuel cell. The system mixes the combusted hydrocarbon fuel constituents with hydrogen which is preferably stored in solid form to obtain a non-explosive gas mixture. The system may be used to provide both non-explosive cover gas and hydrogen-rich startup gas to the fuel cell. 4 figs.

Singh, P.; George, R.A.

1999-07-27T23:59:59.000Z

430

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

for sale fuel labeled as pure biodiesel unless the fuel contains no other type of petroleum product, is registered as biodiesel fuel with the federal government, and meets all...

431

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is 0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate...

432

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

E85 Definition E85 motor fuel is defined as an alternative fuel that is a blend of ethanol and hydrocarbon, of which the ethanol portion is 75-85% denatured fuel ethanol by volume...

433

Low Carbon Fuel Standards  

E-Print Network (OSTI)

S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

434

Fuel Processing [and Discussion  

Science Journals Connector (OSTI)

28 June 1990 research-article Fuel Processing [and Discussion] R. H. Allardice R. S...efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system...

1990-01-01T23:59:59.000Z

435

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Excise Tax Compressed natural gas (CNG) motor fuel is subject to the state fuel excise tax at the rate of 0.30 per 120 cubic feet, measured at 14.73 pounds per...

436

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL Atlanta Gas Light (AGL) offers a reduced cost lease on the BRC FuelMaker Phill CNG vehicle home fueling...

437

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel The sale of CNG by a fueling station for use as fuel to operate a motor vehicle is deregulated; however, separate...

438

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

the membrane for a PEM fuel cell would cost $5/ft (1990$) inmass-produced PEM fuel cell could cost $10/kW or less. Totalparameter for PEM fuel cells: thinner membranes cost less

Delucchi, Mark

1992-01-01T23:59:59.000Z

439

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blender Tax Credit A licensed fuel supplier who blends biodiesel or green diesel with diesel fuel may claim an income tax credit of 0.05 per gallon for fuel containing...

440

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

$ b materials cost, % a Fuel cell stack cost only. Includesof the cost of fuel-cell stacks, 1990$° Cost item GE Swan cAnnual maintenance cost of fuel cell stack and auxiliaries (

Delucchi, Mark

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0.33 times the rate for diesel For other alternative fuels, the rate is based on the energy content of the fuels as compared to diesel fuel, using a lower heating value of...

442

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

443

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Data Included in the Alternative Fuel Stations Download The following data fields are provided in the downloadable files for alternative fuel stations. Field Value Description fuel_type_code Type: string The type of alternative fuel the station provides. Fuel types are given as code values as described below: Value Description BD Biodiesel (B20 and above)

444

Diesel fuel qualities  

SciTech Connect

As a result of rising fuel costs, many ship operators are turning to less expensive, heavier grade fuels for their diesel engines. Use of these lower quality fuels without adequate preparation can cause increased engine wear and damage to fuel systems. The oil properties which affect pretreatment and cleaning requirements, specifications that should be used when purchasing these fuels, and procedures for confirming that bought fuels meet purchase specifications are discussed. (LCL)

Blenkey, N.

1981-02-01T23:59:59.000Z

445

Safeguards for spent fuels: Verification problems  

SciTech Connect

The accumulation of large quantities of spent nuclear fuels world-wide is a serious problem for international safeguards. A number of International Atomic Energy Agency (IAEA) member states, including the US, consider spent fuel to be a material form for which safeguards cannot be terminated, even after permanent disposal in a geologic repository. Because safeguards requirements for spent fuels are different from those of conventional bulk-handling and item-accounting facilities, there is room for innovation to design a unique safeguards regime for spent fuels that satisfies the goals of the nuclear nonproliferation treaty at a reasonable cost to both the facility and the IAEA. Various strategies being pursued for long-term management of spent fuels are examined with a realistic example to illustrate the problems of verifying safeguards under the present regime. Verification of a safeguards regime for spent fuels requires a mix of standard safeguards approaches, such as quantitative verification and use of seals, with other measures that are unique to spent fuels. 17 refs.

Pillay, K.K.S.; Picard, R.R.

1991-01-01T23:59:59.000Z

446

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

447

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

school districts must pay for the alternative fueling infrastructure, the incremental cost between a conventional and alternative fuel bus, and training for bus maintenance...

448

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

biodiesel fuel will be considered commercially available if the incremental purchase cost compared to conventional diesel fuel is not more than 0.25. To the maximum extent...

449

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

blend being sold. The labeling must follow established labeling specifications for petroleum-based fuels. An alternative fuel producer may provide the retailer with a label...

450

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG)....

451

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Alternative fuels subject to the New Mexico excise tax include liquefied petroleum gas (propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The...

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10% ethanol by volume must be labeled with the capital letter "E"...

453

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains...

454

Fuel Cells at NASCAR  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells at NASCAR Ned Stetson U.S. Department of Energy Fuel Cell Technologies Office Catherine Kummer - NASCAR Green Norm Bessette - Acumentrics Question and Answer * Please...

455

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Natural Gas Fueling Station Regulation Utility districts may own and operate natural gas fueling stations provided that the operation of the station is not...

456

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Exemption Propane, compressed natural gas, liquefied natural gas, and electricity used to operate motor vehicles are exempt from state fuel taxes. The Utah...

457

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas (CNG) Fueling Infrastructure Development The Oklahoma Legislature intends to increase the amount of CNG fueling infrastructure in the state, with the overall...

458

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Station Air Quality Permit Exemption Natural gas fueling stations are exempt from the requirement to file Air Pollutant Emission Notices, as they have a...

459

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel...

460

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

medium- and heavy-duty vehicles must implement strategies to reduce petroleum consumption and emissions by using alternative fuels and improving vehicle fleet fuel...

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina...

462

Automotive Fuel Cell Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

with AFCC, a private joint venture company in Canada, formed by combining the automotive fuel cell business of Ballard Power Systems with the fuel cell stack development...

463

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Taxation Study Commission The Taxation of Alternative Fuel and Electric-Powered Vehicles Commission (Commission) was established to study and report findings and...

464

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information...

465

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition, Fuel Use, and Emissions Reductions Requirements All state agencies and transit districts must purchase AFVs and use alternative fuels to operate those vehicles to the...

466

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and other renewable, biodegradable mono alkyl ester combustible fuel derived from biomass. Waivers to the B2 requirement for state agency vehicles may be granted if the fuel...

467

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel. Liquefied petroleum gas (propane) is exempt from LCFS requirements, as are non-biomass-based alternative fuels that are supplied in California for use in transportation at...

468

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

No county, city, village, town, or other political subdivision may levy or collect any excise, license, privilege, or occupational tax on motor vehicle fuel or alternative fuels,...

469

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own...

470

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Tax Credit An income tax credit is available to eligible taxpayers who construct or purchase and install qualified alternative fueling infrastructure. The...

471

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel, fuel-efficient, or low emission vehicles, unless such a purchase compromises health, safety, or law enforcement needs. Additionally, the state must develop procedures for...

472

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, qualified diesel fuel substitutes, E85, and a blend of hydrogen with propane or...

473

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

the purpose of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, qualified diesel fuel substitutes, E85, and a blend of hydrogen with...

474

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

but will be forfeited if a tax credit recipient stops dispensing alternative fuel or electricity for vehicle charging. Eligible fuels include any mixture of biodiesel and diesel...

475

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

air quality nonattainment areas. Qualified alternative fuels include biodiesel, electricity, natural gas, hydrogen, propane, and fuel mixtures containing at least 85% methanol...

476

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

duly licensed distributors, and sales of exported motor fuel. For taxation purposes, electricity is not considered an alternative fuel. (Reference House Bill 1142, 2014, and New...

477

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

liquid fuels, fuels other than alcohol derived from biological materials, and electricity. Any portion of the credit not used in the year the AFV is purchased or converted...

478

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

the purpose of the Program, clean fuels include propane, compressed natural gas, and electricity. For more information, see the Utah Clean Fuels and Vehicle Technology Grant and...

479

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

over the vehicle's useful life. Low carbon fuels include hydrogen, biomethane, electricity, or natural gas blends of at least 90%. State agencies must phase in fuel economy...

480

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

deadline. Fueling equipment for natural gas, liquefied petroleum gas (propane), electricity, E85, or diesel fuel blends containing a minimum of 20% biodiesel installed between...

Note: This page contains sample records for the topic "fuel mix disclosure" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

using alternative fuel. Recognized alternative fuels include propane, natural gas, electricity, hydrogen, and a blend of hydrogen with propane or natural gas. (Reference Arizona...

482

Modelling microscale fuel cells.  

E-Print Network (OSTI)

??The focus of this work is to investigate transport phenomena in recently developed microscale fuel cell designs using computational fluid dynamics (CFD). Two microscale fuel… (more)

Bazylak, Aimy Ming Jii

2009-01-01T23:59:59.000Z

483

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Vehicle Tax Credit South Carolina residents that claim the federal Alternative Motor Vehicle Credit for fuel cell vehicles (Internal Revenue Code Section 30B) are...

484

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicles must give preference to hybrid, plug-in hybrid electric, biodiesel, hydrogen, fuel cell, or flexible fuel vehicles when the performance, quality, and anticipated...

485

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Government fleets may finance the lease or purchase cost of alternative fuel vehicles and alternative fueling infrastructure through energy performance contracts where vehicle...

486

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

that the alternative fuel is not available within a reasonable distance andor the price of the alternative fuel is cost prohibitive, as determined by DOER. (Reference...

487

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

The vehicle power source includes the engine or motor and associated wiring, fuel lines, engine coolant system, fuel storage containers, and other components. (Reference...

488

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Eligible projects include powertrains and energy storageconversion devices (e.g., fuel cells and batteries), and implementation of clean fuels (e.g., natural gas, propane, and...

489

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) requires that hydrogen fuel used in internal combustion...

490

Fuel and Lubricant Effects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel and Lubricant Effects Fuels Research, DOE agreements 13415, 13425 Bruce G. Bunting, Mike Bunce, Kukwon Cho, Jun Qu, Robert Crawford, Jim Szybist, Scott Sluder, John Storey,...

491

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Regulations User Type Jurisdiction Biodiesel Ethanol Natural Gas Propane (LPG) Hydrogen Fuel Cells EVs HEVs or PHEVs NEVs Aftermarket Conversions Fuel Economy or Efficiency Idle...

492

Fuel Cell Technologies Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * 40 - 60% (electrical) * > 70% (electrical, hybrid fuel...

493

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Vehicle (AFV) Acquisition and Alternative Fuel Use Requirements A state agency that operates a vehicle fleet consisting of 15 vehicles or more must ensure that at...

494

The design, construction, and testing of a nuclear fuel rod thermal simulation system to study gallium/Zircaloy interactions  

E-Print Network (OSTI)

friends for their unending support and patience during this project. Thank you so much! NOMENCLATURE Abbreviations and Acronyms WGPu- weapons grade plutonium DOE- Department of Energy MOX- mixed oxide fuel WG MOX- weapons grade MOX fuel LWR- light... to be employed were immobilization and fissioning the WGPu as mixed oxide (MOX) fuel in commercial power reactors. Both approaches have many advantages and disadvantages and are currently being studied by scientists and engineers all over the world. The use...

Allison, Christopher Curtis

2012-06-07T23:59:59.000Z

495

Alternative Fuels Data Center: Alternative Fuel Public Transportation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Public Transportation Vehicle Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Public Transportation Vehicle Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

496

Alternative Fuels Data Center: Alternative Fuel Resale and Generation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Resale and Generation Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Resale and Generation Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

497

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Procurement Preference to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Procurement Preference on AddThis.com... More in this section... Federal State Advanced Search

498

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit for Residents to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit for Residents on AddThis.com... More in this section...

499

Alternative Fuels Data Center: Natural Gas Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Locations Infrastructure Development

500

Alternative Fuels Data Center: Alternative Fuel and Advanced Technology  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Advanced Technology Vehicle Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Advanced Technology Vehicle Grants on AddThis.com... More in this section... Federal