Sample records for fuel market assessment

  1. CALIFORNIA ALTERNATIVE FUELS MARKET ASSESSMENT

    E-Print Network [OSTI]

    , Contract Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director gas, propane, ethanol, electricity, alternative diesel fuels such as biodiesel and Fischer Tropsch, natural gas vehicles, propane vehicles, electric vehicles, ethanol fuel, E-85, biodiesel, Fischer

  2. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    None

    2000-07-01T23:59:59.000Z

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  3. A methodology for assessing the market benefits of alternative motor fuels: The Alternative Fuels Trade Model

    SciTech Connect (OSTI)

    Leiby, P.N.

    1993-09-01T23:59:59.000Z

    This report describes a modeling methodology for examining the prospective economic benefits of displacing motor gasoline use by alternative fuels. The approach is based on the Alternative Fuels Trade Model (AFTM). AFTM development was undertaken by the US Department of Energy (DOE) as part of a longer term study of alternative fuels issues. The AFTM is intended to assist with evaluating how alternative fuels may be promoted effectively, and what the consequences of substantial alternative fuels use might be. Such an evaluation of policies and consequences of an alternative fuels program is being undertaken by DOE as required by Section 502(b) of the Energy Policy Act of 1992. Interest in alternative fuels is based on the prospective economic, environmental and energy security benefits from the substitution of these fuels for conventional transportation fuels. The transportation sector is heavily dependent on oil. Increased oil use implies increased petroleum imports, with much of the increase coming from OPEC countries. Conversely, displacement of gasoline has the potential to reduce US petroleum imports, thereby reducing reliance on OPEC oil and possibly weakening OPEC`s ability to extract monopoly profits. The magnitude of US petroleum import reduction, the attendant fuel price changes, and the resulting US benefits, depend upon the nature of oil-gas substitution and the supply and demand behavior of other world regions. The methodology applies an integrated model of fuel market interactions to characterize these effects.

  4. Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  5. Marketing alternative fueled automobiles

    E-Print Network [OSTI]

    Zheng, Alex (Yi Alexis)

    2011-01-01T23:59:59.000Z

    Marketing alternative fueled vehicles is a difficult challenge for automakers. The foundation of the market, the terms of competition, and the customer segments involved are still being defined. But automakers can draw ...

  6. Fuel cell market applications

    SciTech Connect (OSTI)

    Williams, M.C.

    1995-12-31T23:59:59.000Z

    This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

  7. NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION NATURAL GAS MARKET ASSESSMENT PRELIMINARY RESULTS In Support.................................................................................... 6 Chapter 2: Natural Gas Demand.................................................................................................. 10 Chapter 3: Natural Gas Supply

  8. 1986 Cogeneration Market Assessment

    E-Print Network [OSTI]

    Wallace, D. G.

    increases and paper production which is basically a solid fuel fired steam turbine market will increase, thus increasing the application of steam turbines. Lastly, in the refuse market probably the least effect of lower oil prices will occur. Energy.... Project developers have more to worry about with dropping oil prices. tax reform, Alcon decisions. etc. than they do with potential changes to PURPA. General Market Trends Forecasts A recent article in Energy User News said that the number...

  9. MA3T Model Application at ORNL Assesses the Future of Fuel Cell Markets |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1, 1999InspectionsAnnualTheEnergia287-5834 E-mailfor the

  10. Liquid Fuels Market Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    fuels provisions of the CAAA90. Environmental costs associated with controlling pollution at refineries are implicitly assumed in the annual update of the refinery investment...

  11. Liquid Fuels Market Module

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5Let us countLighting UsefulLiquefied

  12. Market Transformation: Fuel Cell Early Adoption (Presentation...

    Office of Environmental Management (EM)

    Transformation: Fuel Cell Early Adoption (Presentation) Market Transformation: Fuel Cell Early Adoption (Presentation) Presented at the DOE Fuel Cell Pre-Solicitation Workshop held...

  13. 2010 Manufacturing Readiness Assessment Update to the 2008 Report for Fuel Cell Stacks and Systems for the Backup Power and Materials Handling Equipment Markets

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2012-08-01T23:59:59.000Z

    In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP) and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.

  14. 2008 FUEL CELL TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    2008 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 #12;2008 FUEL CELL TECHNOLOGIES MARKET REPORT i and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance

  15. Scrap tire derived fuel: Markets and issues

    SciTech Connect (OSTI)

    Serumgard, J. [Scrap Tire Management Council, Washington, DC (United States)

    1997-12-01T23:59:59.000Z

    More than 250 million scrap tires are generated annually in the United States and their proper management continues to be a solid waste management concern. Sound markets for scrap tires are growing and are consuming an ever increasing percentage of annual generation, with market capacity reaching more than 75% of annual generation in 1996. Of the three major markets - fuel, civil engineering applications, and ground rubber markets - the use of tires as a fuel is by far the largest market. The major fuel users include cement kilns, pulp and paper mills, electrical generation facilities, and some industrial facilities. Current issues that may impact the tire fuel market include continued public concern over the use of tires as fuels, the new EPA PM 2.5 standard, possible additional Clean Air emissions standards, access to adequate supplies of scrap tires, quality of processed tire derived fuel, and the possibility of creating a commodity market through the development of ASTM TDF standards.

  16. Moving toward a commercial market for hydrogen fuel cell vehicles...

    Energy Savers [EERE]

    Moving toward a commercial market for hydrogen fuel cell vehicles Moving toward a commercial market for hydrogen fuel cell vehicles Fuel cell vehicles and fueling stations...

  17. Alternative Fuels Market and Policy Trends (Presentation)

    SciTech Connect (OSTI)

    Schroeder, A. N.

    2013-09-01T23:59:59.000Z

    Market forces and policies are increasing opportunities for alternative fuels. There is no one-size-fits-all, catch-all, silver-bullet fuel. States play a critical role in the alternative fuel market and are taking a leading role.

  18. 2009 Fuel Cell Market Report, November 2010

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  19. 2010 FUEL CELL TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    2010 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2011 #12;i Authors This report was a collaborative and in the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland and the staff of the U.S. Department of Energy's Fuel Cell Technologies Program for their support and guidance

  20. Northwest Energy Market Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThreeNewsfuel combustionNorthwest

  1. 2009 Fuel Cell Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  2. 2008 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    DOE

    2010-06-01T23:59:59.000Z

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general business strategy and market focus, as well as, financial information for select publicly-traded companies.

  3. Market penetration scenarios for fuel cell vehicles

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.; Lomax, F.D. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Fuel cell vehicles may create the first mass market for hydrogen as an energy carrier. Directed Technologies, Inc., working with the US Department of Energy hydrogen systems analysis team, has developed a time-dependent computer market penetration model. This model estimates the number of fuel cell vehicles that would be purchased over time as a function of their cost and the cost of hydrogen relative to the costs of competing vehicles and fuels. The model then calculates the return on investment for fuel cell vehicle manufacturers and hydrogen fuel suppliers. The model also projects the benefit/cost ratio for government--the ratio of societal benefits such as reduced oil consumption, reduced urban air pollution and reduced greenhouse gas emissions to the government cost for assisting the development of hydrogen energy and fuel cell vehicle technologies. The purpose of this model is to assist industry and government in choosing the best investment strategies to achieve significant return on investment and to maximize benefit/cost ratios. The model can illustrate trends and highlight the sensitivity of market penetration to various parameters such as fuel cell efficiency, cost, weight, and hydrogen cost. It can also illustrate the potential benefits of successful R and D and early demonstration projects. Results will be shown comparing the market penetration and return on investment estimates for direct hydrogen fuel cell vehicles compared to fuel cell vehicles with onboard fuel processors including methanol steam reformers and gasoline partial oxidation systems. Other alternative fueled vehicles including natural gas hybrids, direct injection diesels and hydrogen-powered internal combustion hybrid vehicles will also be analyzed.

  4. Report: Efficiency, Alternative Fuels to Impact Market Through...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel efficiency improvements and increased use of alternative fuels will shrink gasoline's share of the liquid fuel market share by 14% through 2040, according to a new report...

  5. 2007 Fuel Cell Technologies Market Report

    SciTech Connect (OSTI)

    McMurphy, K.

    2009-07-01T23:59:59.000Z

    The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

  6. An analysis of heating fuel market behavior, 1989--1990

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    The purpose of this report is to fully assess the heating fuel crisis from a broader and longer-term perspective. Using EIA final, monthly data, in conjunction with credible information from non-government sources, the pricing phenomena exhibited by heating fuels in late December 1989 and early January 1990 are described and evaluated in more detail and more accurately than in the interim report. Additionally, data through February 1990 (and, in some cases, preliminary figures for March) make it possible to assess the market impact of movements in prices and supplies over the heating season as a whole. Finally, the longer time frame and the availability of quarterly reports filed with the Securities and Exchange Commission make it possible to weigh the impact of revenue gains in December and January on overall profits over the two winter quarters. Some of the major, related issues raised during the House and Senate hearings in January concerned the structure of heating fuel markets and the degree to which changes in this structure over the last decade may have influenced the behavior and financial performance of market participants. Have these markets become more concentrated Was collusion or market manipulation behind December's rising prices Did these, or other, factors permit suppliers to realize excessive profits What additional costs were incurred by consumers as a result of such forces These questions, and others, are addressed in the course of this report.

  7. 2010 Fuel Cell Technologies Market Report, June 2011

    SciTech Connect (OSTI)

    Not Available

    2011-06-01T23:59:59.000Z

    This report summarizes 2010 data on fuel cells, including market penetration and industry trends. It also covers cost, price, and performance trends, along with policy and market drivers and the future outlook for fuel cells.

  8. Sandia National Laboratories: DOE EERE Fuel Cell Market Transformation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EERE Fuel Cell Market Transformation activity Patent Awarded for the Fuel Cell Mobile Light On August 28, 2013, in Center for Infrastructure Research and Innovation (CIRI), CRF,...

  9. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  10. System Assessment Standards: Defining the Market for Assessment Services

    E-Print Network [OSTI]

    McKane, A. T.; Sheaffer, P. E.

    2008-01-01T23:59:59.000Z

    potential. A significant barrier to realizing this potential is the lack of market definition for system energy efficiency assessment services. This creates problems for service providers in establishing market value for their services and problems...

  11. Prospecting the Future for Hydrogen Fuel Cell Vehicle Markets

    E-Print Network [OSTI]

    Kurani, Kenneth S.; Turrentine, Thomas S.; Heffner, Reid R.; Congleton, Christopher

    2003-01-01T23:59:59.000Z

    as those for hydrogen and fuel cell vehicles (FCVs). 1 Wein the market if hydrogen and fuel cells are the best energypaper we argue that hydrogen and fuel cells will effectively

  12. Fuel Cell Vehicles and Hydrogen in Preparing for market launch

    E-Print Network [OSTI]

    California at Davis, University of

    Fuel Cell Vehicles and Hydrogen in California Preparing for market launch Catherine Dunwoody June 27, 2012 #12;2 A fuel cell vehicle is electric! 2 · 300-400 mile range · Zero-tailpipe emissions · To launch market and build capacity #12;12 H2 stations and vehicle growth #12;13 California Fuel Cell

  13. Overview of Aviation Fuel Markets for Biofuels Stakeholders

    SciTech Connect (OSTI)

    Davidson, C.; Newes, E.; Schwab, A.; Vimmerstedt, L.

    2014-07-01T23:59:59.000Z

    This report is for biofuels stakeholders interested the U.S. aviation fuel market. Jet fuel production represents about 10% of U.S. petroleum refinery production. Exxon Mobil, Chevron, and BP top producers, and Texas, Louisiana, and California are top producing states. Distribution of fuel primarily involves transport from the Gulf Coast to other regions. Fuel is transported via pipeline (60%), barges on inland waterways (30%), tanker truck (5%), and rail (5%). Airport fuel supply chain organization and fuel sourcing may involve oil companies, airlines, airline consortia, airport owners and operators, and airport service companies. Most fuel is used for domestic, commercial, civilian flights. Energy efficiency has substantially improved due to aircraft fleet upgrades and advanced flight logistic improvements. Jet fuel prices generally track prices of crude oil and other refined petroleum products, whose prices are more volatile than crude oil price. The single largest expense for airlines is jet fuel, so its prices and persistent price volatility impact industry finances. Airlines use various strategies to manage aviation fuel price uncertainty. The aviation industry has established goals to mitigate its greenhouse gas emissions, and initial estimates of biojet life cycle greenhouse gas emissions exist. Biojet fuels from Fischer-Tropsch and hydroprocessed esters and fatty acids processes have ASTM standards. The commercial aviation industry and the U.S. Department of Defense have used aviation biofuels. Additional research is needed to assess the environmental, economic, and financial potential of biojet to reduce greenhouse gas emissions and mitigate long-term upward price trends, fuel price volatility, or both.

  14. United States Industrial Motor-Driven Systems Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to...

  15. Cooling, Heating, and Power for Industry: A Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry: A Market Assessment, August 2003 Cooling, Heating, and Power for Industry: A Market Assessment, August 2003 Industrial applications of CHP have been around for decades,...

  16. United States Industrial Motor Systems Market Opportunities Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving...

  17. Commercial Lunar Transportation Study Market Assessment Summary

    E-Print Network [OSTI]

    Waliser, Duane E.

    1 Commercial Lunar Transportation Study Market Assessment Summary FOR RELEASE September 2010 This work has been performed under NASA Contract NNH06CC38B Futron Corporation #12;2 LUNAR TRANSPORTATION for NASA to demonstrate how a hypothetical new company entering the lunar transportation market

  18. Assessing the efficiency of US electricity markets

    SciTech Connect (OSTI)

    Arciniegas, I. E. (Ismael E.); Barrett, C. L. (Christopher L.); Marathe, A. (Achla)

    2001-01-01T23:59:59.000Z

    The recent California's energy crisis has raised doubts about the benefits of energy deregulation. While it is true that the California electricity market is in turmoil, other electricity markets like the Pennsylvania-New Jersey-Maryland (PJM) are doing fine. This paper assesses the mark of efficiency reached by the electricity markets in California, New York, and PJM. It also compares the degree of efficiency across markets (forward vs. real time) and across time. In terms of market efficiency no significant differences between the California and PJM electricity markets were discovered in the year of California's energy crisis (2000). This research suggests that differences in price behavior between these two markets during 2000 did not arise from differences in efficiency. According to our analysis and measure of efficiency, PJM and California electricity markets are more efficient than the New York market. Also, as these markets become more mature over time, their efficiency goes up. We also found evidence that multi-settlement scheduling system leads to higher efficiency.

  19. Phantom Power: The Status of Fuel Cell Technology Markets 

    E-Print Network [OSTI]

    Shipley, A. M.; Elliott, R. N.

    2003-01-01T23:59:59.000Z

    ) ? Phosphoric Acid Fuel Cell (PAFC) ? Solid Oxide Fuel Cell (SOFC) ? Molten Carbonate Fuel Cell (MCFC) In the teclmology descriptions that follow, these are matched to the various market segments where they will be most attractive, based on their operating...(flHV) 75% SOLID OXIDE FUEL CELL (SOFC) 200-250 KW Solid Oxide fuel cells in this size range will compete with the currently commercialized Phosphoric Acid fuel cells in the commercial and small industrial market. SOFC will be used only in facilities...

  20. Combined Heat and Power Market Potential for Opportunity Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    opportunity fuel(s) for distributed energy resources and combined heat and power (DERCHP) applications, examine the DERCHP technologies that can use them, and assess the...

  1. Industrial process heat market assessment

    SciTech Connect (OSTI)

    Bresnick, S.

    1981-12-01T23:59:59.000Z

    This report is designed to be a reference resource, giving a broad perspective of the potential HTGR market for industrial process heat. It is intended to serve as a briefing document for those wishing to obtain background information and also to serve as a starting point from which more detailed and refined studies may be undertaken. In doing so, the report presents a qualitative and quantitative description of the industrial process heat market in the US, provides a summary discussion of cogeneration experience to date, and outlines the existing institutional and financial framework for cogeneration. The intent is to give the reader an understanding of the current situation and experience in this area. The cogeneration area in particular is an evolving one because of regulations and tax laws, which are still in the process of being developed and interpreted. The report presents the latest developments in regulatory and legislative activities which are associated with that technology. Finally, the report presents a brief description of the three HTGR systems under study during the current fiscal year and describes the specific market characteristics which each application is designed to serve.

  2. Manufacturing Readiness Assessment for Fuel Cell Stacks and Systems for the Back-up Power and Material Handling Equipment Emerging Markets (Revised)

    SciTech Connect (OSTI)

    Wheeler, D.; Ulsh, M.

    2010-02-01T23:59:59.000Z

    This report details NREL's activity to address the need to understand the current status and associated risk levels of the polymer electrolyte membrane (PEM) fuel cell industry.

  3. 2010 Northwest Federal Market Assessment Report

    SciTech Connect (OSTI)

    Scanlon, Tim; Sandusky, William F.

    2011-09-01T23:59:59.000Z

    The primary intent of this market assessment is to provide insights on the effectiveness of current energy efficiency and renewable energy program offerings available to Federal sites in the region. The level of detail, quality and currency of the data used in this market assessment varies significantly by Federal agency and energy efficiency service provider. Limited access to some Federal sites, limited availability of key points of contact, time/resource constraints, and other considerations limited the total number of Federal agencies and energy efficiency service providers participating in the survey.

  4. Developments in U.S. Alternative Fuel Markets

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

  5. 2013 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell2 -of Energy 3 viEnergyFuel Cell

  6. Fuel Cells Market Exceeds $1.3 Billion in Worldwide Sales | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Market Exceeds 1.3 Billion in Worldwide Sales Fuel Cells Market Exceeds 1.3 Billion in Worldwide Sales December 1, 2014 - 5:14pm Addthis The market for fuel cells is...

  7. 2008 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies Plenary Session OverviewFUEL CELL

  8. Data Analysis of Early Fuel Cell Market Demonstrations (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

    2009-11-17T23:59:59.000Z

    Presentation about early fuel cell markets, the National Renewable Energy Laboratory's Hydrogen Secure Data Center and its role in data analysis and demonstrations, and composite data products, and results reported to multiple stakeholders.

  9. 2007 FINAL NATURAL GAS MARKET ASSESSMENT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2007 FINAL NATURAL GAS MARKET ASSESSMENT In Support of the 2007 Integrated Energy Policy Report FINALSTAFFREPORT DECEMBER 2007 CEC-200-2007-009-SF Arnold Schwarzenegger Director DISCLAIMER This report was prepared by the California Energy Commission staff. It does

  10. 2010 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell Technologies Market Report 2010 Fuel

  11. 2012 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell2 - FederalFuel Cell Technologies Market

  12. 2008 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

  13. 2007 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OFDecember| Department ofResearch:Energy

  14. 2011 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy MoreEnergyEnergyWednesday, May 2011

  15. 2012 Fuel Cell Technologies Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy19.xlsx2 AnnualDepartment2012FY12Facility This

  16. Early Markets: Fuel Cells for Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEMEnergy TaskEVERETTEagle County,Backup

  17. Transportation Fuel Market Stood at 2,332.57 MTOE in 2013 and...

    Open Energy Info (EERE)

    transportation fuel market has been segmented on the basis of fuel type into gasoline, diesel, aviation turbine fuel, and others. More than 90% of the global transportation fuel...

  18. 2010 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report describes data compiled in 2011 on trends in the fuel cell industry for 2010 with some comparison to previous years.

  19. 2011 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report describes data compiled in 2012 on trends in the fuel cell industry for 2011 with some comparison to previous years.

  20. 2012 Fuel Cell Technologies Market Report

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report describes data compiled in 2013 on trends in the fuel cell industry for 2012 with some comparison to previous years.

  1. Fuel Cell Markets Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey: EnergyFrisco,

  2. Fuel Cells Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey:

  3. Bunker Fuel Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda, Washington: Energy(B2G) (SmartBullittBuncombeBunker

  4. AEO 2013 Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor Contactsite. IfHome

  5. OpenEI Community - Fuel Cells Market

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen)

  6. Liquid Fuels Market Model (LFMM) Unveiling LFMM

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYear Jan Next MECS will be fieldedYear

  7. Transportation Fuel Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, Indiana (Utility Company)Library <InformationTopics

  8. Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?

    SciTech Connect (OSTI)

    Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

    2011-11-14T23:59:59.000Z

    For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

  9. Market Transformation: Fuel Cell Early Adoption (Presentation) | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECSEnergyEnergy Market

  10. Residential gas heat pump assessment: A market-based approach

    SciTech Connect (OSTI)

    Hughes, P.J.

    1995-09-01T23:59:59.000Z

    There has been considerable activity in recent years to develop technologies that could reduce or levelize residential and light-commercial building space cooling electrical use and heating/cooling energy use. For example, variable or multi-speed electric heat pumps, electric ground-source heat pumps, dual-fuel heat pumps, multi-function heat pumps, and electric cool storage concepts have been developed; and several types of gas heat pumps are emerging. A residential gas heat pump (GHP) benefits assessment is performed to assist gas utility and equipment manufacturer decision making on level of commitment to this technology. The methodology and generic types of results that can be generated are described. National market share is estimated using a market segmentation approach. The assessment design requires dividing the 334 Metropolitan Statistical Areas (MSAS) of the US into 42 market segments of relatively homogeneous weather and gas/electric rates (14 climate groupings by 3 rate groupings). Gas and electric rates for each MSA are evaluated to arrive at population-weighted rates for the market segments. GHPs are competed against 14 conventional equipment options in each homogeneous segment.

  11. Spent Fuel Transportation Risk Assessment

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverviewEnergy Spelman GraduateSpent

  12. Hydrogen Storage Needs for Early Motive Fuel Cell Markets

    SciTech Connect (OSTI)

    Kurtz, J.; Ainscough, C.; Simpson, L.; Caton, M.

    2012-11-01T23:59:59.000Z

    The National Renewable Energy Laboratory's (NREL) objective for this project is to identify performance needs for onboard energy storage of early motive fuel cell markets by working with end users, manufacturers, and experts. The performance needs analysis is combined with a hydrogen storage technology gap analysis to provide the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with information about the needs and gaps that can be used to focus research and development activities that are capable of supporting market growth.

  13. First AEO2015 Liquid Fuels Markets Working Group Meeting

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 3400, U.S.MajorMarkets EnergyConsumption5ValuesJune 2010

  14. NREL: Hydrogen and Fuel Cells Research - Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NREL isData and ResourcesEnergyHydrogenMarket

  15. A Unifying Approach to Assessing Market Power in Deregulated Electricity Markets

    E-Print Network [OSTI]

    Low, Steven H.

    A Unifying Approach to Assessing Market Power in Deregulated Electricity Markets Chenye Wu1 of Technology, 3University of California, Riverside Abstract--A competitive deregulated electricity market with increasingly active market players is foreseen to be the future of the electricity industry. In such settings

  16. ITP Distributed Energy: Combined Heat and Power Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

  17. Integrated Energy Systems (IES) for Buildings: A Market Assessment...

    Broader source: Energy.gov (indexed) [DOE]

    Heating, and Power for Industry: A Market Assessment, August 2003 The Future of Absorption Technology in America: A Critical Look at the Impact of Building, Cooling, Heating,...

  18. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Office of Environmental Management (EM)

    Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong...

  19. U.S. Fuel Cell Market Production and Deployment Continues Strong...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Fuel Cell Market Production and Deployment Continues Strong Growth U.S. Fuel Cell Market Production and Deployment Continues Strong Growth January 8, 2014 - 12:00am Addthis...

  20. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    models require accurate estimates of how the market shares of different fuel choices (electricity, gas, or oil)

  1. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect (OSTI)

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01T23:59:59.000Z

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  2. Geography of Existing and Potential Alternative Fuel Markets in the United States

    SciTech Connect (OSTI)

    Johnson, C.; Hettinger, D.

    2014-11-01T23:59:59.000Z

    When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

  3. Technique for estimating jet fuel prices from energy futures market

    SciTech Connect (OSTI)

    Vineyard, T.A.

    1988-05-01T23:59:59.000Z

    This report presents a statistical analysis of future prices of petroleum products for use in predicting the monthly average retail price of kerosene-type jet fuel. The method of least squares was employed to examine the relationship between kerosene-type jet fuel retail prices and energy futures prices. Regression equations were constructed for four of the petroleum commodities traded on the energy futures market: heating oil No. 2, leaded regular gasoline, crude oil, and unleaded gasoline. Thirty-nine regression equations were estimated by the method of least squares to relate the cash price of kerosene-type jet fuel to the futures prices of the above four petroleum commodities for contract periods of 1 to 12 months. The analysis revealed that 19 of the 39 first-order linear regression equations provided a good fit to the data. Specifically, heating oil No. 2 performed better than the order energy futures in predicting the price of kerosene-type jet fuel. The only information required to use these regression equations are energy futures prices which are available daily from the Wall Street Journal. 5 refs., 4 tabs.

  4. Fuel Cell Project Selected for First Ever Technology-to-Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Selected for First Ever Technology-to-Market SBIR Award Fuel Cell Project Selected for First Ever Technology-to-Market SBIR Award May 14, 2014 - 5:36pm Addthis The U.S....

  5. Complex System Method to Assess Commercial Vehicle Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption Complex System Method to Assess Commercial Vehicle Fuel Consumption Two case studies for commercial vehicle applications compare a baseline, contemporary vehicle...

  6. Low-e Storm Windows: Market Assessment and Pathways to Market Transformation

    SciTech Connect (OSTI)

    Cort, Katherine A.

    2013-06-08T23:59:59.000Z

    Field studies sponsored by the U.S. Department of Energy (DOE) have shown that the use of low-e storm windows can lead to significant heating and cooling energy savings in residential homes. This study examines the market for low-e storm windows based on market data, case studies, and recent experience with weatherization deployment programs. It uses information from interviews conducted with DOE researchers and industry partners involved in case studies and early deployment efforts related to low-e storm windows. In addition, this study examines potential barriers to market acceptance, assesses the market and energy savings potential, and identifies opportunities to transform the market for low-e storm windows and overcome market adoption barriers.

  7. Market Assessment and Commercialization Strategy for the Radial Sandia Cooler

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical Publications » Market Analysis Reports

  8. The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.

    SciTech Connect (OSTI)

    Santini, D. J.; Patterson, P. D.; Vyas, A. D.

    1999-12-08T23:59:59.000Z

    Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

  9. Spent Nuclear Fuel Alternative Technology Risk Assessment

    SciTech Connect (OSTI)

    Perella, V.F.

    1999-11-29T23:59:59.000Z

    A Research Reactor Spent Nuclear Fuel Task Team (RRTT) was chartered by the Department of Energy (DOE) Office of Spent Fuel Management with the responsibility to recommend a course of action leading to a final technology selection for the interim management and ultimate disposition of the foreign and domestic aluminum-based research reactor spent nuclear fuel (SNF) under DOE''s jurisdiction. The RRTT evaluated eleven potential SNF management technologies and recommended that two technologies, direct co-disposal and an isotopic dilution alternative, either press and dilute or melt and dilute, be developed in parallel. Based upon that recommendation, the Westinghouse Savannah River Company (WSRC) organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and provide a WSRC recommendation to DOE for a preferred SNF alternative management technology. A technology risk assessment was conducted as a first step in this recommendation process to determine if either, or both, of the technologies posed significant risks that would make them unsuitable for further development. This report provides the results of that technology risk assessment.

  10. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...

    Broader source: Energy.gov (indexed) [DOE]

    Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market - continuing America's leadership in clean...

  11. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    Fuel Cell Technologies Publication and Product Library (EERE)

    This document provides information about near-term markets (such as for forklifts and telecommunications) for proton exchange membrane fuel cells.

  12. Industrial Applications for Micropower: A Market Assessment,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    generation equipment less than 1 MW) such as microturbines, fuel cells, and reciprocating engines offers promise to renew growth in the U.S. industrial sector. Based on the...

  13. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01T23:59:59.000Z

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  14. Space weather and the electricity market: An initial assessment

    E-Print Network [OSTI]

    Schrijver, Karel

    Space weather and the electricity market: An initial assessment Kevin F. Forbes Department of Business and Economics, Catholic University of America, Washington, DC, USA O. C. St. Cyr Department of Physics, Catholic University of America, Washington, DC, USA NASA Goddard Space Flight Center, Greenbelt

  15. The Fuel Cell Mobile Light Project - A DOE Market Transformation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program webinar, "Fuel Cell Mobile Lighting," held on November 13, 2012. Fuel Cell Mobile Lighting Webinar Slides More Documents & Publications DOEBoeing Sponsored Projects...

  16. Environmental and economic assessment of microalgae-derived jet fuel

    E-Print Network [OSTI]

    Carter, Nicholas Aaron

    2012-01-01T23:59:59.000Z

    Significant efforts must be undertaken to quantitatively assess various alternative jet fuel pathways when working towards achieving environmental and economic United States commercial and military alternative aviation ...

  17. 2011 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell Technologies1 -2011Fuel Cell

  18. 2013 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell2 -of Energy 3 viEnergyFuel

  19. Early Markets: Fuel Cells for Backup Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEMEnergy TaskEVERETTEagle

  20. Early Markets: Fuel Cells for Material Handling Equipment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEMEnergy

  1. Fuel Cells Market Size | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey: EnergyFrisco,Store,FuelFuel

  2. 2008 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703 ProcessPresentations8Energy 88 Fuel

  3. 2008 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies Plenary Session OverviewFUEL

  4. 2010 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09Combustion2/2010 1Fuel Cell2010

  5. Phantom Power: The Status of Fuel Cell Technology Markets

    E-Print Network [OSTI]

    Shipley, A. M.; Elliott, R. N.

    Fuel cells have been touted as one of the most reliable and environmentally sound methods of producing high-quality electricity for use in the industrial sector. Fuel cell developers are racing to produce larger quantities of fuel cells at lower...

  6. Early Market Applications for Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune- BatteryVehicles |DataEarly Days

  7. Early Markets: Fuel Cells for Backup Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune- BatteryVehicles |DataEarly DaysBackup

  8. Early Markets: Fuel Cells for Material Handling Equipment | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal Register / Vol.6: RecordJune- BatteryVehicles |DataEarly

  9. Fuel Cells Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey: EnergyFrisco,Store,Fuel

  10. Global Fuel Cells Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI Reference LibraryAdd toWell2008)InformationGlobal Fuel Cells

  11. Connecticut Fuel Cell Activities: Markets, Programs, and Models |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex Flow WorkshopInformationData Dashboard

  12. DOE Releases 2013 Fuel Cell Technologies Market Report | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy81stEnforcement EffortMidwestEnergy Releases 2013

  13. 2007 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703 ProcessPresentations |Presentations7

  14. 2009 Fuel Cell Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703Conference Presentations |2009Energy9

  15. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment

  16. 2012 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy19.xlsx2 AnnualDepartment2012FY12Facility

  17. Connecticut Fuel Cell Activities: Markets, Programs, and Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptemberConfrontingFY 2011 FY 2011Connecticut

  18. Recovery Act Projects Funded for Fuel Cell Market Transformation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.June 8, 2015JuneDepartment of Energy

  19. Early Markets: Fuel Cells for Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisory Board Contributions EMEMEnergy TaskEVERETTEagleMaterial

  20. Early Market Applications for Fuel Cell Technologies | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy Chinaof EnergyImpactOn July 2, 2014 in theGroup Report |ofM A N A G E M E N TManyFuel

  1. Moving toward a commercial market for hydrogen fuel cell vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311,OfficialProductsUptake andUser ManualToward a PeacefulMOVING

  2. Moving toward a commercial market for hydrogen fuel cell vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil &315_ArnibanPriorityof EnergyDepartmentRepairDepartment of

  3. Report: Efficiency, Alternative Fuels to Impact Market Through 2040 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy using Fues CellsReport on SeparateAbout ThisSECOND

  4. FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT WELL TO WHEELS ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Preparation for the AB 1007 (Pavley) Alternative Transportation Fuels Plan Proceeding Prepared For: California Energy, Project Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director

  5. FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS,

    E-Print Network [OSTI]

    FULL FUEL CYCLE ASSESSMENT WELL TO TANK ENERGY INPUTS, EMISSIONS, AND WATER IMPACTS Prepared For Manager McKinley Addy, Project Manager Ray Tuvell, Manager EMERGING FUELS & TECHNOLOGY OFFICE Rosella Shapiro, Deputy Director FUELS AND TRANSPORTATION DIVISION B.B Blevins Executive Director DISCLAIMER

  6. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01T23:59:59.000Z

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  7. Physics challenges for advanced fuel cycle assessment

    SciTech Connect (OSTI)

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01T23:59:59.000Z

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  8. Connecticut Fuel Cell Activities: Markets, Programs, and Models...

    Broader source: Energy.gov (indexed) [DOE]

    Center for Advanced Technology, Inc. at the bi-monthly informational call for the DOE Fuel Cell Technologies Program on December 16, 2009 ccathydrogenct.pdf More Documents &...

  9. Second AEO2014 Liquids Fuels Markets Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptember 24, 2014 MEMORANDUM

  10. Fuel Cells Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey: EnergyFrisco,Store,

  11. Fuel Cells Market Trends | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown, New Jersey:

  12. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)YearD e s c r i b i

  13. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)YearD e s c r i b

  14. Describing Current & Potential Markets for Alternative-Fuel Vehicles

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21CompanySFoot)YearD e s c r i b4

  15. 2013 Fuel Cell Technologies Market Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |2Department ofDepartment of Energy(L

  16. AEO 2013 Liquid Fuels Markets Working Group 2

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor Contactsite. IfHome2

  17. AEO2014 Liquid Fuels Markets Working Group Meeting 1

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor3 Oil and Gas SupplyJuly

  18. AEO2015 Liquid Fuels Markets Working Group Presentation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I'26,282.1chemical7Host and Presentor3 Oil andForAssumptions

  19. OpenEI Community - Fuel Cells Market Analysis

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen)

  20. OpenEI Community - Fuel Cells Market Forecast

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen)

  1. OpenEI Community - Fuel Cells Market Size

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen)

  2. OpenEI Community - Fuel Cells Market Trends

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen)

  3. OpenEI Community - Global Fuel Cells Market

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellenceOfficeOhio: Energy Resourcesen)5/0 en Global

  4. MA3T Model Application at ORNL Assesses the Future of Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    Leveraging funding from the Fuel Cell Technologies Office, Oak Ridge National Lab (ORNL) has developed a model for simulating the market potential of fuel cell electric vehicles...

  5. Assessment of Fuel Cells as Auxiliary Power Systems for

    E-Print Network [OSTI]

    W gasoline SOFC technology development program APU applications can provide entry markets for fuel cell & Select APU Systems 2 · Summarize PEM and SOFC performance parameters · Determine most promising future Task 3: Develop design concepts · Truck Cab/SOFC/diesel · Transit bus/SOFC/CNG or diesel · Police

  6. FORESEEING THE MARKET FOR HYDROGEN FUEL-CELL VEHICLES: STAKEHOLDERS’ PERSPECTIVES AND MODELS OF NEW TECHNOLOGY DIFFUSION

    E-Print Network [OSTI]

    Collantes, Gustavo

    2005-01-01T23:59:59.000Z

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  7. Foreseeing the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders' Perspectives and Models of New Technology Diffusion

    E-Print Network [OSTI]

    Collantes, Gustavo O

    2005-01-01T23:59:59.000Z

    the Market for Hydrogen Fuel-Cell Vehicles: Stakeholders’dual superiority of hydrogen fuel-cell vehicles (FCVs) hasneeded to position the hydrogen-fuel cell combination as a

  8. capacity and the market for bio-fuels, a num-ber of breakthroughs are required

    E-Print Network [OSTI]

    Zhao, Yuxiao

    . "The world is on the verge of a catastrophe due to global warming." With those words in November 2007capacity and the market for bio-fuels, a num- ber of breakthroughs are required: ·Technical Fundraiser 011-36 31 28 tommy.hoglund@liu.se www.liu.se/expanding_excellence Bio-fuels and energy

  9. Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-06-01T23:59:59.000Z

    This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

  10. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  11. Addendum to industrial market assessment of the products of mild gasification

    SciTech Connect (OSTI)

    Not Available

    1992-05-01T23:59:59.000Z

    The objective of this report is to review and update the 1988 report by J. E. Sinor Consultants Inc., ``Industrial Market Assessment of the Products of Mild Gasification, and to more fully present market opportunities for two char-based products from the mild gasification process (MGP): Formcoke for the iron and steel industry, and activated carbon for wastewater cleanup and flue gas scrubbing. Please refer to the original report for additional details. In the past, coal conversion projects have and liquids produced, and the value of the residual char was limited to its fuel value. Some projects had limited success until gas and oil competition overwhelmed them. The strategy adopted for this assessment is to seek first a premium value for the char in a market that has advantages over gas and oil, and then to find the highest values possible for gases, liquids, and tars, either on-site or sold into existing markets. During the intervening years since the 1988 report, there have been many changes in the national economy, industrial production, international competition, and environmental regulations. The Clean Air Act Amendments of 1990 (CAAA) will have a large impact on industry. There is considerable uncertainty about how the Act will be implemented, but it specifically addresses coke-oven batteries. This may encourage industry to consider formcoke produced via mild gasification as a low-pollution substitute for conventional coke. The chemistry and technology of coke making steel were reviewed in the 1988 market assessment and will not be repeated here. The CAAA require additional pollution control measures for most industrial facilities, but this creates new opportunities for the mild gasification process.

  12. Integrated Energy Systems (IES) for Buildings: A Market Assessment

    SciTech Connect (OSTI)

    LeMar, P.

    2002-10-29T23:59:59.000Z

    Integrated Energy Systems (IES) combine on-site power or distributed generation technologies with thermally activated technologies to provide cooling, heating, humidity control, energy storage and/or other process functions using thermal energy normally wasted in the production of electricity/power. IES produce electricity and byproduct thermal energy onsite, with the potential of converting 80 percent or more of the fuel into useable energy. IES have the potential to offer the nation the benefits of unprecedented energy efficiency gains, consumer choice and energy security. It may also dramatically reduce industrial and commercial building sector carbon and air pollutant emissions and increase source energy efficiency. Applications of distributed energy and Combined heat and power (CHP) in ''Commercial and Institutional Buildings'' have, however, been historically limited due to insufficient use of byproduct thermal energy, particularly during summer months when heating is at a minimum. In recent years, custom engineered systems have evolved incorporating potentially high-value services from Thermally Activated Technologies (TAT) like cooling and humidity control. Such TAT equipment can be integrated into a CHP system to utilize the byproduct heat output effectively to provide absorption cooling or desiccant humidity control for the building during these summer months. IES can therefore expand the potential thermal energy services and thereby extend the conventional CHP market into building sector applications that could not be economically served by CHP alone. Now more than ever, these combined cooling, heating and humidity control systems (IES) can potentially decrease carbon and air pollutant emissions, while improving source energy efficiency in the buildings sector. Even with these improvements over conventional CHP systems, IES face significant technological and economic hurdles. Of crucial importance to the success of IES is the ability to treat the heating, ventilation, air conditioning, water heating, lighting, and power systems loads as parts of an integrated system, serving the majority of these loads either directly or indirectly from the CHP output. The CHP Technology Roadmaps (Buildings and Industry) have focused research and development on a comprehensive integration approach: component integration, equipment integration, packaged and modular system development, system integration with the grid, and system integration with building and process loads. This marked change in technology research and development has led to the creation of a new acronym to better reflect the nature of development in this important area of energy efficiency: Integrated Energy Systems (IES). Throughout this report, the terms ''CHP'' and ''IES'' will sometimes be used interchangeably, with CHP generally reserved for the electricity and heat generating technology subsystem portion of an IES. The focus of this study is to examine the potential for IES in buildings when the system perspective is taken, and the IES is employed as a dynamic system, not just as conventional CHP. This effort is designed to determine market potential by analyzing IES performance on an hour-by-hour basis, examining the full range of building types, their loads and timing, and assessing how these loads can be technically and economically met by IES.

  13. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  14. Environmental Assessment for power marketing policy for Southwestern Power Administration

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    Southwestern Power Administration (Southwestern) needs to renew expiring power sales contracts with new term (10 year) sales contracts. The existing contracts have been in place for several years and many will expire over the next ten years. Southwestern completed an Environmental Assessment on the existing power allocation in June, 1979 (a copy of the EA is attached), and there are no proposed additions of any major new generation resources, service to discrete major new loads, or major changes in operating parameters, beyond those included in the existing power allocation. Impacts from a no action plan, proposed alternative, and market power for less than 10 years are described.

  15. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  16. Preliminary Market Assessment for Cold Climate Heat Pumps

    SciTech Connect (OSTI)

    Sikes, Karen [Sentech, Inc.; Khowailed, Gannate [Sentech, Inc.; Abdelaziz, Omar [ORNL

    2011-09-01T23:59:59.000Z

    Cold climate heat pump (HP) technology is relevant to a substantial portion of the U.S. population, especially with more than one-third of U.S. housing stock concentrated in colder regions of the country and another 31% in the mixed-humid climate region. Specifically, it is estimated that in 2010 almost 1.37 million heating equipment units were shipped to the cold/very cold climate regions and that 1.41 million were shipped to the nation s mixed-humid region. On a national level, the trend in the last decade has indicated that shipments of gas furnaces have grown at a slower rate than HPs. This indicates a potential opportunity for the cold climate HP, a technology that may be initially slow to penetrate its potential market because of the less expensive operating and first costs of gas furnaces. Anticipated implementation of regional standards could also negatively affect gas furnace shipments, especially with the higher initial cost for more efficient gas furnaces. However, as of 2011, the fact that there are more than 500 gas furnace product models that already achieve the expected efficiency standard indicates that satisfying the regional standard will be a challenge but not an obstacle. A look at the heating fuel and equipment currently being used in the housing stock provides an insight into the competing equipment that cold climate HPs hope to replace. The primary target market for the cold climate HP is the 2.6 million U.S. homes using electric furnaces and HPs in the cold/very cold region. It is estimated that 4.75% of these homeowners either replace or buy new heating equipment in a given year. Accordingly, the project team could infer that the cold climate HP primary market is composed of 123,500 replacements of electric furnaces and conventional air-to-air HPs annually. A secondary housing market for the cold climate HP comprises homes in the mixed-humid region of the country that are using electric furnaces. Homes using gas furnaces across both the cold/very cold and mixed-humid regions represent another secondary market for the cold climate HP. The cold climate HP could also target as a secondary market homes across both the cold/very cold and mixed-humid regions that use propane and fuel oil as their primary heating fuel. The combined total of homes in these three secondary markets is 46 million, and we can also infer that about 2.2 million of these systems are replaced annually. When comparing heating equipment stock in 2001, 2005, and 2009 in the cold/very cold region of the country, it appears that gas furnaces are slowly losing market share and that electric furnaces and HPs are making gains. The fact that electricity-dependent heating equipment is rising in preference among homeowners in the colder regions of the country shows that future penetration of the cold climate HP holds promise. Accordingly, cold climate HP technology could achieve an attractive position, given certain favorable market conditions such as reaching a competitive cost point, strong federal incentives, a consistent level of reliable performance, and a product rollout by a credible market leader. The project team relied on payback analysis to estimate the potential market penetration for the cold climate HP in each of its primary and secondary markets. In this analysis, we assumed a $250 price premium for the cold climate HP over the baseline HP. Electricity and gas prices and emissions were based on the 2010 Buildings Energy Data Book. The average heating load was calculated as 25.2 MMBTU per year in the cold/very cold and mixed-humid regions of the United States. Typical installed costs were obtained from the technical document supporting the U.S. Department of Energy rulemaking. The analysis showed that the cold climate HP will have a 2.2 year payback period when replacing an existing electric HP in the colder regions of the nation. The cold climate HP will have a 6 year payback period when replacing gas furnaces in the same climate regions. Accordingly, we estimated that the cold climate HP will have a penetration ratio rangin

  17. A Global Market in Transition: Local Markets in Jeopardy NASEO-EIA Summer Fuels Conference

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil Electricity

  18. Hydrogen Fuel Cell Performance in the Key Early Markets of Material Handling Equipment and Backup Power (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.; Post, M.; Peters, M.

    2013-10-01T23:59:59.000Z

    This presentation summarizes the results of NREL's analysis of hydrogen fuel cell performance in the key early markets of material handling equipment (MHE) and backup power.

  19. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); November 2011 Composite Data Products - Deployment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-06-01T23:59:59.000Z

    This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). November 2011 Composite Data Products - Deployment November 30, 2011.

  20. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 1 2012 Composite Data Products - Deployment (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-06-01T23:59:59.000Z

    This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). Quarter 1 2012 Composite Data Products - Deployment March 8, 2012.

  1. An Assessment of the U.S. Residential Lighting Market

    SciTech Connect (OSTI)

    Jennings, Judy; Brown, Rich; Moezzi, Mithra; Mills, Evan; Sardinsky, Robert

    1995-10-01T23:59:59.000Z

    This report provides background data upon which residential lighting fixture energy conservation programs can be built. The current stock of residential lighting is described by usage level, lamp wattage, fixture type, and location within the house. Data are discussed that indicate that 25% of residential fixtures are responsible for 80% of residential lighting energy use, and that justify targeting these fixtures as candidates for retrofit with energy-efficient fixtures. Fixtures determined to have the highest energy use are hardwired ceiling fixtures in kitchens, living/family rooms, dining rooms, and outdoors. An assessment of the market for residential fixtures shows that nearly half of new residential fixtures are imported, 61% of new fixtures sold are hardwired, and about half of all new fixtures sold are for ceiling installation.

  2. What We've Learned from 2.5 Years of Early Market Fuel Cell Operation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.; Ainscough, C.

    2013-02-01T23:59:59.000Z

    This presentation describes the results of NREL technology assessments for two early market full cell applications, backup power and material handling equipment.

  3. A Monte Carlo based spent fuel analysis safeguards strategy assessment

    SciTech Connect (OSTI)

    Fensin, Michael L [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Sandoval, Nathan P [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Safeguarding nuclear material involves the detection of diversions of significant quantities of nuclear materials, and the deterrence of such diversions by the risk of early detection. There are a variety of motivations for quantifying plutonium in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguards nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from spent fuel; however, no single NDA technique can, in isolation, quantify elemental plutonium and other actinides of interest in spent fuel. A study has been undertaken to determine the best integrated combination of cost effective techniques for quantifying plutonium mass in spent fuel for nuclear safeguards. A standardized assessment process was developed to compare the effective merits and faults of 12 different detection techniques in order to integrate a few techniques and to down-select among the techniques in preparation for experiments. The process involves generating a basis burnup/enrichment/cooling time dependent spent fuel assembly library, creating diversion scenarios, developing detector models and quantifying the capability of each NDA technique. Because hundreds of input and output files must be managed in the couplings of data transitions for the different facets of the assessment process, a graphical user interface (GUI) was development that automates the process. This GUI allows users to visually create diversion scenarios with varied replacement materials, and generate a MCNPX fixed source detector assessment input file. The end result of the assembly library assessment is to select a set of common source terms and diversion scenarios for quantifying the capability of each of the 12 NDA techniques. We present here the generalized assessment process, the techniques employed to automate the coupled facets of the assessment process, and the standard burnup/enrichment/cooling time dependent spent fuel assembly library. We also clearly define the diversion scenarios that will be analyzed during the standardized assessments. Though this study is currently limited to generic PWR assemblies, it is expected that the results of the assessment will yield an adequate spent fuel analysis strategy knowledge that will help the down-select process for other reactor types.

  4. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ConocoPhillips and Nexant Corporatin 2004deerabbott.pdf More Documents & Publications Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects...

  5. World nuclear fuel market: proceedings of the international conference on nuclear energy

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Thirteen papers, along with discussion and comments, are divided into four conference sessions covering: the prospect for primary markets for enriched uranium; secondary trading markets for enriched uranium; the management of irradiatied fuel and economics of reprocessing; and an evaluation of plutonium recycling in thermal reactors. The speakers address technical, economic, and political issues relating to both front-end and back-end management of the fuel cycle. The papers were presented at the 9th International Conference on Nuclear Energy in Nice, France during October, 1982. A separate abstract was prepared for each of the 13 papers selected for the Energy Data Base (EDB), Energy Research Abstracts (ERA), and Energy Abstracts for Policy Analysis (EAPA). (DCK)

  6. Study of the competitive viability of minority fuel oil marketers. Final report

    SciTech Connect (OSTI)

    None

    1981-09-30T23:59:59.000Z

    Previous studies on the competitive viability of the fuel oil heating market had addressed some of the unique problems facing minority fuel oil marketers (MFMs) within the total market sector (TMS). This study focused on identifying and developing quantitative information on MFMs in the TMS. The specific objective was to determine whether the business problems experienced by MFMs were directly related to their minority status or were characterstic of any firm in the TMS operating under comparable conditions. As an overall conclusion, thorough investigation of the MFMs considered to constitute the universe of minoriy firms within the TMS did not reveal any evidence of overt discrimination affecting the competitive viability of MFMs. Upon analysis, the problems reported by MFMs could not be reasonably ascribed to discrimination on the basis of their minority business status. The study, however, did point up problems unique to MFMs as the result of typical operational and financial characteristics. For example, MFMs, compared to the TMS norm, have not been in the market as long and are smaller in terms of total assets, number of employees, number of trucks, number of accounts and annual volume of oil delivered. Their primary customers are low-income families in urban areas. Financial indicators suggest that the average MFM does not have long-term financial stability. The basis for this overall conclusion, derived by analyses of information from MFMs, as well as many independent sources, is summarized in three parts: (1) MFM industry profile; (2) financial analyses; and (3) problem analyses.

  7. Economic costs and environmental impacts of alternative fuel vehicle fleets in local government: An interim assessment

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    ; Environmental policy 1. Introduction High crude oil prices and increasing public awareness of the environmental to be attractive first markets for alternative fuel technologies given their scale, fuel consumption, and high

  8. Quantitative assessment of proposals on assurance of nuclear fuel supply

    SciTech Connect (OSTI)

    Tanaka, T.; Kuno, Y.; Tanaka, S. [University of Tokyo, 7-3-1 Hongou, Bunkyou-ku, Tokyo 112-0005 (Japan)

    2013-07-01T23:59:59.000Z

    The assurance of nuclear fuel supply has the potential to contribute to balancing peaceful use of nuclear power and nuclear nonproliferation. 5 proposals which provide the backup supply of the enrichment service in case of supply disruption, are investigated in this study. We investigated the 20 NPT countries which are non-nuclear-weapon states and possess operable commercial LWRs in October 2012 as potential participants for each proposal. As a result of literature researching, we have extracted factors that can be considered as important for a country to participate or not participate in the assurance of nuclear fuel supply. Then we have computed incentive and disincentive parameters for each country. The results show that the participation expectancy decreases in the order of IAEA Fuel Bank proposal, Russian LEU Reserve proposal, AFS proposal, WNA proposal and 6-Country proposal. The 'IAEA fuel bank proposal' would be triggered in case of the supply disruption which cannot be solved by the market mechanism and bilateral agreements.

  9. Radionuclide release rates from spent fuel for performance assessment modeling

    SciTech Connect (OSTI)

    Curtis, D.B.

    1994-11-01T23:59:59.000Z

    In a scenario of aqueous transport from a high-level radioactive waste repository, the concentration of radionuclides in water in contact with the waste constitutes the source term for transport models, and as such represents a fundamental component of all performance assessment models. Many laboratory experiments have been done to characterize release rates and understand processes influencing radionuclide release rates from irradiated nuclear fuel. Natural analogues of these waste forms have been studied to obtain information regarding the long-term stability of potential waste forms in complex natural systems. This information from diverse sources must be brought together to develop and defend methods used to define source terms for performance assessment models. In this manuscript examples of measures of radionuclide release rates from spent nuclear fuel or analogues of nuclear fuel are presented. Each example represents a very different approach to obtaining a numerical measure and each has its limitations. There is no way to obtain an unambiguous measure of this or any parameter used in performance assessment codes for evaluating the effects of processes operative over many millennia. The examples are intended to suggest by example that in the absence of the ability to evaluate accuracy and precision, consistency of a broadly based set of data can be used as circumstantial evidence to defend the choice of parameters used in performance assessments.

  10. Final assessment of MOX fuel performance experiment with Japanese PWR specification fuel in the HBWR

    SciTech Connect (OSTI)

    Fujii, Hajime; Teshima, Hideyuki; Kanasugi, Katsumasa [Mitsubishi Heavy Industries, Ltd., 1-1, Wadasaki-cho 1-chome, Hyogo-ku, Kobe 652-8585 (Japan); Kosaka, Yuji [Nuclear Development Corporation, 622-12 Funaishikawa, Tokai-mura, Ibaraki 319-1111 (Japan); Arakawa, Yasushi [The Kansai Electric Power Co., Inc., 8 Yokota, 13 Goichi, Mihama-cho, Mikata-gun, Fukui, 919-1141 (Japan)

    2007-07-01T23:59:59.000Z

    In order to obtain high burn-up MOX fuel irradiation performance data, SBR and MIMAS MOX fuel rods with Pu-fissile enrichment of about 6 wt% had been irradiated in the HBWR from 1995 to 2006. The peak burn-up of MOX pellet achieved 72 GWd/tM. In this test, fuel centerline temperature, rod internal pressure, stack length and cladding length were measured for MOX fuel and UO{sub 2} fuel as reference. MOX fuel temperature is confirmed to have no significant difference in comparison with UO{sub 2}, taking into account of adequate thermal conductivity degradation due to PuO{sub 2} addition and burn-up development. And the measured fuel temperature agrees well with FINE code calculation up to high burn-up region. Fission gas release of MOX is possibly greater than UO{sub 2} based on temperature and pressure assessment. No significant difference is confirmed between SBR and MIMAS MOX on FGR behavior. MOX fuel swelling rate agrees well with solid swelling rate in the literature. Cladding elongation data shows onset of PCMI in high power region. (authors)

  11. assessment market model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is free of arbitrage: thus, it can be used for risk management as well for option pricing issues. Calibration on European market data and numerical simulations illustrate well...

  12. ASSESSING THE PROLIFERATION RESISTANCE OF INNOVATIVE NUCLEAR FUEL CYCLES.

    SciTech Connect (OSTI)

    BARI,R.; ROGLANS,J.; DENNING,R.; MLADINEO,S.

    2003-06-23T23:59:59.000Z

    The National Nuclear Security Administration is developing methods for nonproliferation assessments to support the development and implementation of U.S. nonproliferation policy. This paper summarizes the key results of that effort. Proliferation resistance is the degree of difficulty that a nuclear material, facility, process, or activity poses to the acquisition of one or more nuclear weapons. A top-level measure of proliferation resistance for a fuel cycle system is developed here from a hierarchy of metrics. At the lowest level, intrinsic and extrinsic barriers to proliferation are defined. These barriers are recommended as a means to characterize the proliferation characteristics of a fuel cycle. Because of the complexity of nonproliferation assessments, the problem is decomposed into: metrics to be computed, barriers to proliferation, and a finite set of threats. The spectrum of potential threats of nuclear proliferation is complex and ranges from small terrorist cells to industrialized countries with advanced nuclear fuel cycles. Two general categories of methods have historically been used for nonproliferation assessments: attribute analysis and scenario analysis. In the former, attributes of the systems being evaluated (often fuel cycle systems) are identified that affect their proliferation potential. For a particular system under consideration, the attributes are weighted subjectively. In scenario analysis, hypothesized scenarios of pathways to proliferation are examined. The analyst models the process undertaken by the proliferant to overcome barriers to proliferation and estimates the likelihood of success in achieving a proliferation objective. An attribute analysis approach should be used at the conceptual design level in the selection of fuel cycles that will receive significant investment for development. In the development of a detailed facility design, a scenario approach should be undertaken to reduce the potential for design vulnerabilities. While, there are distinctive elements in each approach, an analysis could be performed that utilizes aspects of each approach.

  13. Market Share Elasticities for Fuel and Technology Choice in Home Heating and Cooling

    E-Print Network [OSTI]

    Wood, D.J.

    2010-01-01T23:59:59.000Z

    ing the Market for Home Heating and Cooling Equipment," LBLestimating the market shares of space-heating technologiesestimating the market shares of space-heating technologies

  14. assessing market penetration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    value of commodities and assets. The role of markets has been particularly suitable to pricing financial securities. This ... Chan, Nicholas T. 2001-07-01 275 A Survey of Database...

  15. Markets for power in the United States : an interim assessment

    E-Print Network [OSTI]

    Joskow, Paul L.

    2005-01-01T23:59:59.000Z

    The transition to competitive wholesale and retail markets for electricity in the U.S. has been a difficult and contentious process. This paper examines the progress that has been made in the evolution of wholesale and ...

  16. A Unifying Approach to Assessing Market Power in Deregulated Electricity Markets

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    as we move toward a future smart grid that includes significant penetration of renewable energy-ante. They are useful for tasks such as market design evaluation, merger analysis, operation planning, as well

  17. Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their...

    Broader source: Energy.gov (indexed) [DOE]

    Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts 2004 Diesel...

  18. Rapid Aging and Poisoning Protocols to AssessFuel and Lube Effects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Aging and Poisoning Protocols to AssessFuel and Lube Effects on Diesel Aftertreatment (Agreement 13415) Rapid Aging and Poisoning Protocols to AssessFuel and Lube Effects on...

  19. Assessing the Degree of Spot Market Integration For U.S. Natural Gas: Evidence from Daily Price Data

    E-Print Network [OSTI]

    to decouple the production and trading of the commodity natural gas from its transportation. Advocates arguedAssessing the Degree of Spot Market Integration For U.S. Natural Gas: Evidence from Daily Price Economics Abstract: This paper assesses the degree of market integration in the U.S. natural gas market

  20. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect (OSTI)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M. [French Alternative Energies and Atomic Energy Commission - CEA, CEA Cadarache, DEN/DEC/SESC, 13108 Saint Paul lez Durance (France); Di Marcello, V.; Van Uffelen, P.; Walker, C. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Hermann-von-Helmholtz-Platz 1, D- 76344 Eggenstein-Leopoldshafen (Germany)

    2013-07-01T23:59:59.000Z

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  1. Assessment of Fuel Economy Technologies for Light-Duty Vehicles

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2008-01-01T23:59:59.000Z

    An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

  2. Market Assessment of Distributed Energy in New Commercial and Institutional

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment3311, 3312), October 2012 (MECSEnergy PlansMaterials forBuilding and

  3. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAX 423 241 3897 OIGO R E W O R D I United

  4. United States Industrial Motor Systems Market Opportunities Assessment:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAX 423 241 3897 OIGO R E W O R D IExecutive

  5. Assessment of the Market for Compressed Air Efficiency Services

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr.August ContractDepartmentP r e p

  6. California CHP Market Assessment, July 2009 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request |82:91:4Applications | Department ofCalifornia CHP

  7. United States Industrial Motor Systems Market Opportunities Assessment:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18 MillionPresident Obama's FYof

  8. Assessment of the Market for Compressed Air Efficiency Services |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is alwaysISOSource Heat 1PowerofSystems |AsApril 1,and|Department

  9. Systems-Level Analysis & Bioenergy Market Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic SafetyGeothermal/Ground-Sourcepnnl.govSystems-Level Analysis &

  10. Advanced Microturbine System: Market Assessment, May 2003 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartment of Energy LWRTheOperationEnergy

  11. Industrial Applications for Micropower: A Market Assessment, November 1999

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovementINDIAN COUNTRY ENERGYEnergyIndustrial|

  12. Integrated Energy Systems (IES) for Buildings: A Market Assessment,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of Energy InvestingS10IS007ofDepartmentPilot

  13. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01T23:59:59.000Z

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  14. Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market

    E-Print Network [OSTI]

    Nagurney, Anna

    Supply Chains and Fuel Markets In the U.S., electric power generation accounts for 30% of the natural gas demand (over 50% in the summer), 90% of the coal demand, and over 45% of the residual fuel oil demand, the wholesale electricity price in New England decreased by 38% mainly because the delivered natural gas price

  15. An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England

    E-Print Network [OSTI]

    Nagurney, Anna

    a critical infrastructure for the functioning of our modern economies and societies. Electric power lightsAn Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling Abstract: In this paper, we develop a novel electric power supply chain network model with fuel supply

  16. Assessment of transition fuel cycle performance with and without a modified-open fuel cycle

    SciTech Connect (OSTI)

    Feng, B.; Kim, T. K.; Taiwo, T. A. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States)

    2012-07-01T23:59:59.000Z

    The impacts of a modified-open fuel cycle (MOC) option as a transition step from the current once-through cycle (OTC) to a full-recycle fuel cycle (FRC) were assessed using the nuclear systems analysis code DANESS. The MOC of interest for this study was mono-recycling of plutonium in light water reactors (LWR-MOX). Two fuel cycle scenarios were evaluated with and without the MOC option: a 2-stage scenario with a direct path from the current fleet to the final FRC, and a 3-stage scenario with the MOC option as a transition step. The FRC reactor (fast reactor) was assumed to deploy in 2050 for both scenarios, and the MOC reactor in the 3-stage scenario was assumed to deploy in 2025. The last LWRs (using either UOX or MOX fuels) come online in 2050 and are decommissioned by 2110. Thus, the FRC is achieved after 2110. The reprocessing facilities were assumed to be available 2 years prior to the deployment of the MOC and FRC reactors with maximum reprocessing capacities of 2000 tHM/yr and 500 tHM/t for LWR-UOX and LWR-MOX used nuclear fuels (UNFs), respectively. Under a 1% nuclear energy demand growth assumption, both scenarios were able to sustain a full transition to the FRC without delay. For the 3-stage scenario, the share of LWR-MOX reactors reaches a peak of 15% of installed capacity, which resulted in 10% lower cumulative uranium consumption and SWU requirements compared to the 2-stage scenario during the transition period. The peak UNF storage requirement decreases by 50% in the 3-stage scenario, largely due to the earlier deployment of the reprocessing plants to support the MOC fuel cycle. (authors)

  17. Assessment of the Geothermal Potential Within the BPA Marketing Area.

    SciTech Connect (OSTI)

    Lund, John W.; Allen, Eliot D.

    1980-07-01T23:59:59.000Z

    The potential of geothermal energy is estimated that can be used for direct heat applications and electrical power generation within the Bonneville Power Administration (BPA) marketing area. The BPA marketing area includes three principal states of Oregon, Washington, and Idaho and portions of California, Montana, Wyoming, Nevada, and Utah bordering on these three states. This area covers approximately 384,000 square miles and has an estimated population of 6,760,000. The total electrical geothermal potential within this marketing area is 4077 MW/sub e/ from hydrothermal resources and 16,000 MW/sub e/ from igneous systems, whereas the total thermal (wellhead) potential is 16.15 x 10/sup 15/ Btu/y. Approximately 200 geothermal resource sites were initially identified within the BPA marketing area. This number was then reduced to about 100 sites thought to be the most promising for development by the year 2000. These 100 sites, due to load area overlap, were grouped into 53 composite sites; 21-3/4 within BPA preference customer areas and 31-1/4 within nonpreference customer areas. The geothermal resource potential was then estimated for high-temperature (> 302/sup 0/F = 150/sup 0/C), intermediate-temperature (194 to 302/sup 0/F = 90 to 150/sup 0/C), and low-temperature (< 194/sup 0/F = 90/sup 0/C) resources.

  18. Belize-OAS Cellulosic Ethanol Market Assessment | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes Jump to: navigation, search

  19. Assess economic and market potential of technologies and initiatives | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon Capture andsoftwareAsian AgeEnergy Information

  20. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."Honda's More Powerful Fuel Cell Concept with Home Hydrogen

  1. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

  2. applications market assessment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meteorological models - Remote sensing Paciorek, Chris 83 Review Application of life cycle assessment to chemical processes CiteSeer Summary: The literature on the application...

  3. Coal briquetting in Haiti: A market and business assessment

    SciTech Connect (OSTI)

    Stevenson, G.G.; Willson, T.D.; Jean-Poix, C.; Medina, N.

    1987-06-01T23:59:59.000Z

    The investigation evaluated potential market size, financial viability, consumer acceptance, and the government policy role in promoting the manufacture and sale of briquettes in Haiti. Our results show a large and growing charcoal market in Port-au-Prince of 100,000 to 120,000 tonnes per year in 1985, much larger than previous estimates. This would support a 50,000 tonne per year coal briquetting plant. Wood users buying in lots of 100 pieces or less would provide a smaller, secondary market of about 6000 tonnes of charcoal equivalent per year. The size and competitive nature of the current charcoal transportation, wholesale, and retail distribution chain make it easily capable of distributing the coal briquettes. We investigated three coal briquetting options, each based on a different coal source: (1) Maissade lignite, (2) L'Azile lignite, and (3) imported coal. Financial analyses compare capital and operating costs with potential returns. Results indicate that the Maissade lignite is not economically viable in competition with charcoal at current charcoal prices. Both the L'Azile and imported coal options hold more promise. The investment incentives provided by Haitian government are very favorable to a coal briquetting venture. An increased tax on charcoal, currently priced below its social cost, is recommended.

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Driving-age Target market Heating fuel. Figure 3-7 shows theheating fuels and the home hydrogen reformation target marketheating fuel (percentages) Discussion 3.4.1 Overall impressions A “first order approximation” of the comparison between the target market

  5. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Driving-age Target market Heating fuel. Figure 3-7 shows theheating fuels and the home hydrogen reformation target marketheating fuel (percentages) Discussion 3.4.1 Overall impressions A “first order approximation” of the comparison between the target market

  6. Industrial market assessment of the products of mild gasification: Final report

    SciTech Connect (OSTI)

    Sinor, J.E.

    1988-01-01T23:59:59.000Z

    The goal of this study is to determine the best available conditions, in terms of market volumes and prices, for the products from a mild gasification facility. A process feasibility study will then have to determine the cost of building and operating a facility to make those products. The study is presented as a summary of the options available to a coal producer for creating added product value. For this reason, three specific coal mines owned by AMAX Inc. were chosen, and the options were analyzed from the viewpoint of increasing the total revenue derived from those coals. No specific mild gasification, or mild devolatilization technology was assumed during the assessment. The analysis considers only product prices, volumes, and specifications. It does not assign any intangible value or national benefit to substituting coal for oil or to producing a cleaner fuel. Although it would be desirable to conceive of a product slate which would be immune from energy price fluctuations, such a goal is probably unattainable and no particular emphasis was placed on it. 76 figs., 75 tabs.

  7. Market Assessment for Capturing Water Conservation Opportunities in the Federal Sector

    SciTech Connect (OSTI)

    Parker, Graham B.; Mcmordie, Katherine; Sullivan, Gregory P.; Elliott, Douglas B.

    2001-08-17T23:59:59.000Z

    The Department of Energy's Federal Energy Management Program (FEMP) is considering the development of a technology-specific Super-Energy Saving Performance Contract (ESPC) for water conservation. Prior to the development however, FEMP requires the completion of a market assessment to better understand the water conservation opportunities and the strategies available for capturing them. Thus, this market assessment has been undertaken to evaluate the water conservation opportunities and answer the key questions necessary for FEMP to make recommendations on whether or not to proceed with strategies for water conservation primarily through the development of a water conservation technology-specific performance contract.

  8. Environmental and economic assessment of alternative transportation fuels

    E-Print Network [OSTI]

    Withers, Mitch Russell

    2014-01-01T23:59:59.000Z

    Alternative fuels have the potential to mitigate transportation's impact on the environment and enhance energy security. In this work, we investigate two alternative fuels: liquefied natural gas (LNG) as an aviation fuel, ...

  9. Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric Generation Efficiency

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on U.S. Electric-of-service regulation to market-oriented environments for many U.S. electric generating plants. Our estimates of input their wholesale electricity markets improved the most. The results suggest modest medium-term efficiency benefits

  10. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 1, FEBRUARY 2007 85 A Reinforcement Learning Model to Assess Market

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    to Assess Market Power Under Auction-Based Energy Pricing Vishnuteja Nanduri, Student Member, IEEE segments of a deregulated power industry. In day-ahead (DA) energy markets, strategies such as uniform offer different levels of market power. In this paper, we present a nonzero sum stochastic game

  11. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  12. Super-Efficient Refrigerator Program (SERP) evaluation volume 2: Preliminary impact and market transformation assessment

    SciTech Connect (OSTI)

    Lee, A.D.; Conger, R.L.

    1996-08-01T23:59:59.000Z

    The Super Efficient Refrigerator Program (SERP) is a collaborative utility program intended to transform the market for energy-efficient and environmentally friendly refrigerators. It is one of the first examples of a large-scale {open_quotes}market transformation{close_quotes} energy efficiency program. This report documents the preliminary impact and market transformation evaluation of SERP ({open_quotes}the Program{close_quotes}). Pacific Northwest National Laboratory (PNNL) conducted this evaluation for the U.S. Department of Energy. This study focuses on the preliminary impact evaluation and market transformation assessment, but also presents limited process evaluation information. It is based on interviews with refrigerator dealers and manufacturers, interviews with utility participants, industry data, and information from the Program administrators. Results from this study complement those from prior process evaluation also conducted by PNNL. 42 refs., 5 figs., 4 tabs.

  13. Assessing Consumer Values and the Supply-Chain Market for the Integrated Water Heater/Dehumidifier

    SciTech Connect (OSTI)

    Ashdown, BG

    2005-01-11T23:59:59.000Z

    This paper presents a case study of the potential market for the dual-service residential integrated water heater/dehumidifier (WHD). Its principal purpose is to evaluate the extent to which this integrated appliance might penetrate the residential market sector, given current market trends, producer and consumer attributes, and technical parameters. The report's secondary purpose is to gather background information leading to a generic framework for conducting market analyses of technologies. This framework can be used to assess market readiness as well as factor preferred product attributes into the design to drive consumer demand for this product. This study also supports analysis for prototype design. A full market analysis for potential commercialization should be conducted after prototype development. The integrated WHD is essentially a heat-pump water heater (HPWH) with components and controls that allow dedicated dehumidification. Adequate residential humidity control is a growing issue for newly constructed residential homes, which are insulated so well that mechanical ventilation may be necessary to meet fresh air requirements. Leveraging its successful experience with the energy-efficient design improvement for the residential HPWH, the Oak Ridge National Laboratory's (ORNL's) Engineering Science and Technology Division's (ESTD's) Building Equipment Group designed a water-heating appliance that combines HPWH efficiency with dedicated dehumidification. This integrated appliance could be a low-cost solution for dehumidification and efficient electric water heating. ORNL is partnering with Western Carolina University, Asheville-Buncombe Technical Community College, American Carolina Stamping Company, and Clemson University to develop this appliance and assess its market potential. For practical purposes, consumers are indifferent to how water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. The principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the integrated WHD, and creating programs that embrace first-cost and life-cycle cost principles.

  14. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Toolsearch keywordsclear

  15. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA): Quarter 4 2013 Composite Data Products

    SciTech Connect (OSTI)

    Kurtz, J.; Sprik, S.

    2014-06-01T23:59:59.000Z

    This report includes the composite data products (CDPs) for early fuel cell market deployments in quarter 4 of 2013. Results are presented for ARRA (projects funded by the American Recovery and Reinvestment Act of 2009 [ARRA]) and Combined (projects funded by DOE Interagency Agreements [IAA], Department of Defense Defense Logistics Agency [DLA], and ARRA).

  16. Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 3 2012 Composite Data Products

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.

    2013-01-01T23:59:59.000Z

    This report from the U.S. Department of Energy's National Renewable Energy Laboratory includes early fuel cell market composite data products for the third quarter of 2012 for American Recovery and Reinvestment Act (ARRA) and combined (IAA, DLA, ARRA) deployment projects.

  17. An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling with Empirical Analysis for New England

    E-Print Network [OSTI]

    Nagurney, Anna

    a critical infrastructure for the functioning of our modern economies and societies. Electric power lightsAn Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling; revised April 2008 Abstract: In this paper, we develop a novel electric power supply chain network model

  18. Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their...

    Broader source: Energy.gov (indexed) [DOE]

    San Diego, CA August 29 - September 2, 2004 Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential Impacts 082904 "The fundamental problem is that...

  19. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    SciTech Connect (OSTI)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.; Torcellini, Paul; Hansen, David G.; Holmberg, David; Roth, Kurt

    2005-04-13T23:59:59.000Z

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The other four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.

  20. Market Transformation

    Fuel Cell Technologies Publication and Product Library (EERE)

    This Fuel Cell Technologies Program fact sheet outlines current status and challenges in the market transformation of hydrogen and fuel cell technologies.

  1. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    Spent Fuel Assay Using Nuclear Resonance Fluo- rescence,” Annual Meeting of the Institute of Nuclear Material Management,

  2. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01T23:59:59.000Z

    the mass of 239 Pu in a 17x17 PWR fuel assembly with 45 GWd/center of 40 GWd/MTU burn-up PWR fuel assembly with coolingrate for the 11 y cooled PWR fuel was used as a source term

  3. Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not FoundInformation DOEInformation Summary Big*The LA:UR- $-3233 Title:To

  4. Complex System Method to Assess Commercial Vehicle Fuel Consumption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|of EnergySeptemberCompletedDepartment of

  5. Assessment of Environmental Impacts of Shell GTL Fuel | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr.August 4,Energy Environmental

  6. Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments

    SciTech Connect (OSTI)

    Not Available

    1982-02-01T23:59:59.000Z

    The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

  7. Handbook for Small-Scale Densified Biomass Fuel (Pellets) Manufacturing for Local Markets.

    SciTech Connect (OSTI)

    Folk, Richard L.; Govett, Robert L.

    1992-07-01T23:59:59.000Z

    Wood pellet manufacturing in the Intermountain West is a recently founded and rapidly expanding energy industry for small-scale producers. Within a three-year period, the total number of manufacturers in the region has increased from seven to twelve (Folk et al., 1988). Small-scale industry development is evolving because a supply of raw materials from small and some medium-sized primary and secondary wood processors that has been largely unused. For the residue producer considering pellet fuel manufacturing, the wastewood generated from primary products often carries a cost associated with residue disposal when methods at-e stockpiling, landfilling or incinerating. Regional processors use these methods for a variety of reasons, including the relatively small amounts of residue produced, residue form, mixed residue types, high transportation costs and lack of a local market, convenience and absence of regulation. Direct costs associated with residue disposal include the expenses required to own and operate residue handling equipment, costs for operating and maintaining a combustor and tipping fees charged to accept wood waste at public landfills. Economic and social costs related to environmental concerns may also be incurred to include local air and water quality degradation from open-air combustion and leachate movement into streams and drinking water.

  8. Assessment of uranium-free nitride fuels for spent fuel transmutation in fast reactor systems 

    E-Print Network [OSTI]

    Szakaly, Frank Joseph

    2004-09-30T23:59:59.000Z

    The purpose of this work is to investigate the implementation of nitride fuels containing little or no uranium in a fast-spectrum nuclear reactor to reduce the amount of plutonium and minor actinides in spent nuclear fuel ...

  9. Assessment of Environmental Impacts of Shell GTL Fuel

    Broader source: Energy.gov (indexed) [DOE]

    complex: Carbon efficiency of SMDS process currently lower than than typical leading refinery Benefits upstream & product usage will (more than) offset this Vehicle fuel usage...

  10. Assessment of Nuclear Fuels using Radiographic Thickness Measurement Method

    SciTech Connect (OSTI)

    Muhammad Abir; Fahima Islam; Hyoung Koo Lee; Daniel Wachs

    2014-11-01T23:59:59.000Z

    The Convert branch of the National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI) focuses on the development of high uranium density fuels for research and test reactors for nonproliferation. This fuel is aimed to convert low density high enriched uranium (HEU) based fuel to high density low enriched uranium (LEU) based fuel for high performance research reactors (HPRR). There are five U.S. reactors that fall under the HPRR category, including: the Massachusetts Institute of Technology Reactor (MITR), the National Bureau of Standards Reactor (NBSR), the Missouri University Research Reactor (UMRR), the Advanced Test Reactor (ATR), and the High Flux Isotope Reactor (HFIR). U-Mo alloy fuel phase in the form of either monolithic or dispersion foil type fuels, such as ATR Full-size In center flux trap Position (AFIP) and Reduced Enrichment for Research and Test Reactor (RERTR), are being designed for this purpose. The fabrication process1 of RERTR is susceptible to introducing a variety of fuel defects. A dependable quality control method is required during fabrication of RERTR miniplates to maintain the allowable design tolerances, therefore evaluating and analytically verifying the fabricated miniplates for maintaining quality standards as well as safety. The purpose of this work is to analyze the thickness of the fabricated RERTR-12 miniplates using non-destructive technique to meet the fuel plate specification for RERTR fuel to be used in the ATR.

  11. Enterprise Assessments, Oak Ridge National Laboratory Irradiated Fuels

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic LawEnergyEnhanced5Plant2014Examination

  12. Distillate Fuel Oil Assessment for Winter 1995-1996

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline353/06) 2Yonthly Energy : b ra&le.com 1U.S.

  13. Spent Fuel Transportation Risk Assessment | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE's Nuclear EnergySmartOverviewEnergy Spelman

  14. Spent Fuel Transportation Risk Assessment | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium Transfer toSensorSoftware HelpsSouthAgendaSpectrum Policy SeminarSpent

  15. Vehicle Technologies Office Merit Review 2014: Alternative Fuel Market Development Program- Forwarding Wisconsin’s Fuel Choice

    Broader source: Energy.gov [DOE]

    Presentation given by Wisconsin Department of Administration at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  16. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect (OSTI)

    Morreale, A.C.; Luxat, J.C. [McMaster University, 1280 Main St. W. Hamilton, Ontario, L8S 4L7 (Canada); Friedlander, Y. [AMEC-NSS Ltd., 700 University Ave. 4th Floor, Toronto, Ontario, M5G 1X6 (Canada)

    2013-07-01T23:59:59.000Z

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  17. Assessment of California reformulated gasoline impact on vehicle fuel economy

    SciTech Connect (OSTI)

    Aceves, S., LLNL

    1997-01-01T23:59:59.000Z

    Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

  18. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    SciTech Connect (OSTI)

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01T23:59:59.000Z

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  19. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    SciTech Connect (OSTI)

    Peterson, D.; Haase, S.

    2009-07-01T23:59:59.000Z

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  20. Update of Market Assessment for Capturing Water Conservation Opportunities in the Federal Sector

    SciTech Connect (OSTI)

    Mcmordie, Katherine; Solana, Amy E.; Elliott, Douglas B.; Sullivan, Gregory P.; Parker, Graham B.

    2005-09-08T23:59:59.000Z

    This updated market assessment for capturing water conservation opportunities in the Federal sector is based on a new analytical approach that utilizes newly available data and technologies. The new approach fine-tunes the original assessment by using actual Federal water use, which is now tracked by DOE (as compared to using estimated water use). Federal building inventory data is also used to disseminate water use by end-use technology in the Federal sector. In addition, this analysis also examines the current issues and obstacles that face performance contracting of water efficiency projects at Federal sites.

  1. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    SciTech Connect (OSTI)

    Melaina, M.; Bremson, J.; Solo, K.

    2013-01-01T23:59:59.000Z

    The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

  2. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    the importance of fuel availability to choice of alternativeof adequate refueling availability for AFVs. Referenceslocate/enpol Refueling availability for alternative fuel

  3. assess fossil fuel: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ... Sheu, Elysia J. (Elysia Ja-Zeng) 2012-01-01 4 Atmospheric Lifetime of...

  4. Reactor physics assessment of thick silicon carbide clad PWR fuels

    E-Print Network [OSTI]

    Bloore, David A. (David Allan)

    2013-01-01T23:59:59.000Z

    High temperature tolerance, chemical stability and low neutron affinity make silicon carbide (SiC) a potential fuel cladding material that may improve the economics and safety of light water reactors (LWRs). "Thick" SiC ...

  5. Assessment of Research Needs for Advanced Fuel Cells

    SciTech Connect (OSTI)

    Penner, S.S.

    1985-11-01T23:59:59.000Z

    The DOE Advanced Fuel Cell Working Group (AFCWG) was formed and asked to perform a scientific evaluation of the current status of fuel cells, with emphasis on identification of long-range research that may have a significant impact on the practical utilization of fuel cells in a variety of applications. The AFCWG held six meetings at locations throughout the country where fuel cell research and development are in progress, for presentations by experts on the status of fuel cell research and development efforts, as well as for inputs on research needs. Subsequent discussions by the AFCWG have resulted in the identification of priority research areas that should be explored over the long term in order to advance the design and performance of fuel cells of all types. Surveys describing the salient features of individual fuel cell types are presented in Chapters 2 to 6 and include elaborations of long-term research needs relating to the expeditious introduction of improved fuel cells. The Introduction and the Summary (Chapter 1) were prepared by AFCWG. They were repeatedly revised in response to comments and criticism. The present version represents the closest approach to a consensus that we were able to reach, which should not be interpreted to mean that each member of AFCWG endorses every statement and every unexpressed deletion. The Introduction and Summary always represent a majority view and, occasionally, a unanimous judgment. Chapters 2 to 6 provide background information and carry the names of identified authors. The identified authors of Chapters 2 to 6, rather than AFCWG as a whole, bear full responsibility for the scientific and technical contents of these chapters.

  6. Assessment of ceramic coatings for metal fuel melting crucible

    SciTech Connect (OSTI)

    Kim, Ki-Hwan; Song, Hoon; Kim, Jong-Hwan; Oh, Seok-Jin; Kim, Hyung-Tae; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Yuseong, Daejeon 305-600 (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    The objective of this study is to develop a coating method and material for crucibles to prevent material interactions with the U-Zr/U-TRU-Zr fuels during the manufacturing of SFR fuels. Refractory coatings were applied to niobium substrates by vacuum plasma-spray coating method. Melt dipping tests conducted were the coated rods lowered into the fuel melt at 1600 C. degrees, and withdrawn and cooled outside the crucible in the inert atmosphere of the induction furnace. Melt dipping tests of the coated Nb rods indicated that plasma-sprayed Y{sub 2}O{sub 3} coating doesn't form significant reaction layer between fuel melt and coating layer. Melt dipping tests of the coated Nb rods showed that TiC, TaC, and Y{sub 2}O{sub 3} coatings exhibited the promising performance among other ceramic coatings. These materials could be promising candidate materials for the reusable melt crucible of metal fuel for SFR. In addition, in order to develop the vacuum plasma-spray coating method for re-usable crucible of metal fuel slugs to be overcome the issue of thermal expansion mismatch between coating material and crucible, various combinations of coating conditions were investigated to find the bonding effect on the substrate in pursuit of more effective ways to withstand the thermal stresses. It is observed that most coating methods maintained sound coating state in U-Zr melt. (authors)

  7. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31T23:59:59.000Z

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

  8. Assessment of uranium-free nitride fuels for spent fuel transmutation in fast reactor systems

    E-Print Network [OSTI]

    Szakaly, Frank Joseph

    2004-09-30T23:59:59.000Z

    The purpose of this work is to investigate the implementation of nitride fuels containing little or no uranium in a fast-spectrum nuclear reactor to reduce the amount of plutonium and minor actinides in spent nuclear fuel destined for the Yucca...

  9. Modelling the Effects of Nuclear Fuel Reservoir Operation in a Competitive Electricity Market

    E-Print Network [OSTI]

    Lykidi, Maria

    In many countries, the electricity systems are quitting the vertically integrated monopoly organization for an operation framed by competitive markets. In such a competitive regime one can ask what the optimal management ...

  10. FULL FUEL CYCLE ASSESSMENT: WELL-TO-WHEELS ENERGY INPUTS,

    E-Print Network [OSTI]

    First Southwest Company Ford Motor Co. Friends of the Earth/Blue Water Network General Motors California Electric Transportation Coalition California Fuel Cell Partnership California Invasive Plant Systems Inc Electric Power Research Institute Energy Independence Now Exxon Mobil Ferrellgas-Blue Rhino

  11. 2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09Combustion2/2010 1Fuel

  12. Geography of Existing and Potential Alternative Fuel Markets in the United States

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStation LocationsGeneseeValley of theEthanol8 F l

  13. Density limits and fueling: Prepared for data base assessment, 1985-1987. [Viewgraphs

    SciTech Connect (OSTI)

    Greenwald, M.; Sheffield, J.

    1987-09-21T23:59:59.000Z

    This paper contains viewgraph material assessing the density limits and fueling limits of different thermonuclear devices. Various density limits are considered with emphasis on the Murakami limit and the Hugill limit. (GSP)

  14. Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation 

    E-Print Network [OSTI]

    Woddi, Taraknath Venkat Krishna

    2008-10-10T23:59:59.000Z

    The recent civil nuclear cooperation proposed by the Bush Administration and the Government of India has heightened the necessity of assessing India's nuclear fuel cycle inclusive of nuclear materials and facilities. ...

  15. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01T23:59:59.000Z

    Time period Pre 07/2008 Lighting Technology (Nightly Cost,2 Self-reported Impacts of LED Lighting Technology Comparedto Fuel-based Lighting on Night Market Business Prosperity

  16. Methodologies to assess potential lifetime limits for extended burnup nuclear fuel 

    E-Print Network [OSTI]

    De Vore, Curtis Vincent

    1986-01-01T23:59:59.000Z

    METHODOLOGIES TO ASSESS POTENTIAL LIFETIME LIMITS FOR EXTENDED BURNUP NUCLEAR FUEL A Thesis by CURTIS VINCENT DE VORE Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1986 Major Subject: Nuclear Engineering METHODOLOGIES TO ASSESS POTENTIAL LIFETIME LIMITS FOR EXTENDED BURNUP NUCLEAR FUEL A Thesis by CURTIS VINCENT DE VORE Approved as to style and content by: K. L. Peddicord (Chair...

  17. Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms

    SciTech Connect (OSTI)

    Vinson, D.W.

    1998-11-06T23:59:59.000Z

    This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

  18. Energy Conservation Potential in Natural Gas Fueled Reciprocating Engines - A Preliminary Market Evaluation

    E-Print Network [OSTI]

    Johnson, D. M.

    1979-01-01T23:59:59.000Z

    A study was undertaken of the usage rates of both fuel and lubricants in reciprocating engines fueled with natural gas. The study was conducted to determine the potential for energy conservation, if use is made of more fuel efficient natural gas...

  19. Energy Conservation Potential in Natural Gas Fueled Reciprocating Engines - A Preliminary Market Evaluation 

    E-Print Network [OSTI]

    Johnson, D. M.

    1979-01-01T23:59:59.000Z

    A study was undertaken of the usage rates of both fuel and lubricants in reciprocating engines fueled with natural gas. The study was conducted to determine the potential for energy conservation, if use is made of more fuel efficient natural gas...

  20. Secretary Chu Announces $41.9 Million to Spur Growth of Fuel Cell Markets |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015ParentsMiddle School (6-8)Need forNext Generation EnergyDepartment of

  1. U.S. Fuel Cell Market Production and Deployment Continues Strong Growth |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergyTransportation&Department of Energy U.S. Fuel Cell

  2. Secretary Chu Announces $41.9 Million to Spur Growth of Fuel Cell Markets |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »Usage »DownloadSolarSequestration | Department of Energy

  3. 2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies PlenaryEnergy 09 Federal

  4. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the White Flag"Department of8,catalysts for3ServicesAugust|

  5. The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest for PumpingThe Facts on Gas Prices:The First

  6. The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartmentTheEnergy TheClean TechTheMODELCell Mobile

  7. ITP Industrial Distributed Energy: Combined Heat and Power Market Potential for Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGENDDepartmentSeptember 20092009 The U.S.Heat and

  8. Identification and Characterization of Near-Term Direct Hydrogen PEM Fuel Cell Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology VisionImproperIdahoans

  9. Identification and Characterization of Near-Term Direct Hydrogen Proton Exchange Membrane Fuel Cell Markets

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),Energy Petroleum Technology VisionImproperIdahoansThis report is a

  10. Corrosion of Spent Nuclear Fuel: The Long-Term Assessment

    SciTech Connect (OSTI)

    Rodney C. Ewing

    2004-10-07T23:59:59.000Z

    Spent nuclear fuel, essentially U{sub 2}, accounts for over 95% of the total radioactivity of all of the radioactive wastes in the United States that require disposal, disposition or remediation. The UO{sub 2} in SNF is not stable under oxiding conditions and may also be altered under reducing conditions. The alteration of SNF results in the formation of new uranium phases that can cause the release or retardation of actinide and fission product radionuclides. Over the long term, and depending on the extent to which the secondary uranium phases incorporate fission products and actinides, these alteration phases become the near-field source term.

  11. Operating experience feedback report: Assessment of spent fuel cooling. Volume 12

    SciTech Connect (OSTI)

    Ibarra, J.G.; Jones, W.R.; Lanik, G.F.; Ornstein, H.L.; Pullani, S.V.

    1997-02-01T23:59:59.000Z

    This report documents the results of an independent assessment by a team from the Office of Analysis and Evaluation of Operational Data of spent-fuel-pool (SFP) cooling in operating nuclear power plants. The team assessed the likelihood and consequences of an extended loss of SFP cooling and suggested corrective actions, based on their findings.

  12. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect (OSTI)

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31T23:59:59.000Z

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  13. Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production

    SciTech Connect (OSTI)

    Debra Pflughoeft-Hassett; Darren Naasz

    2009-06-16T23:59:59.000Z

    Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

  14. Performance Assessment Analyses Unique to Department of Energy Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Loo, Henry Hung Yiu; Duguid, J. O.

    2000-06-01T23:59:59.000Z

    This paper describes the iterative process of grouping and performance assessment that has led to the current grouping of the U.S. Department of Energy (DOE) spent nuclear fuel (SNF). The unique sensitivity analyses that form the basis for incorporating DOE fuel into the total system performance assessment (TSPA) base case model are described. In addition, the chemistry that results from dissolution of DOE fuel and high level waste (HLW) glass in a failed co-disposal package, and the effects of disposal of selected DOE SNF in high integrity cans are presented.

  15. Assessment of a hot hydrogen nuclear propulsion fuel test facility

    SciTech Connect (OSTI)

    Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

    1991-01-01T23:59:59.000Z

    Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

  16. Technology and Manufacturing Readiness of Early Market Motive and Non-Motive Hydrogen Storage Technologies for Fuel Cell Applications

    SciTech Connect (OSTI)

    Ronnebro, Ewa

    2012-06-16T23:59:59.000Z

    PNNL’s objective in this report is to provide DOE with a technology and manufacturing readiness assessment to identify hydrogen storage technologies’ maturity levels for early market motive and non-motive applications and to provide a path forward toward commercialization. PNNL’s Technology Readiness Assessment (TRA) is based on a combination of Technology Readiness Level (TRL) and Manufacturing Readiness Level (MRL) designations that enable evaluation of hydrogen storage technologies in varying levels of development. This approach provides a logical methodology and roadmap to enable the identification of hydrogen storage technologies, their advantages/disadvantages, gaps and R&D needs on an unbiased and transparent scale that is easily communicated to interagency partners. The TRA report documents the process used to conduct the TRA, reports the TRL and MRL for each assessed technology and provides recommendations based on the findings.

  17. Market driven strategy for acquisition of waste acceptance and transportation services for commercial spent fuel in the United States

    SciTech Connect (OSTI)

    Lemeshewky, W.; Macaluso, C.; Smith, P. [Dept. of Energy, Washington, DC (United States); Teer, B. [JAI Corp., Fairfax, VA (United States)

    1998-05-01T23:59:59.000Z

    The Department of Energy has the responsibility for the shipment of spent nuclear fuel (SNF) from commercial reactors to a Federal facility for storage and/or disposal. DOE has developed a strategy for a market driven approach for the acquisition of transportation services and equipment which will maximize the participation of private industry. To implement this strategy, DOE is planning to issue a Request for Proposal (RFP) for the provision of the required services and equipment to accept SNF from the utilities and transport the SNF to a Federal facility. The paper discusses this strategy and describes the RFP.

  18. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11T23:59:59.000Z

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  19. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in fiscal Year (FY)-1979 and early FY-1980. Volume 3 contains reports from 6 government contractors on LPG, anhydrous ammonia, and hydrogen energy systems. Report subjects include: simultaneous boiling and spreading of liquefied petroleum gas (LPG) on water; LPG safety research; state-of-the-art of release prevention and control technology in the LPG industry; ammonia: an introductory assessment of safety and environmental control information; ammonia as a fuel, and hydrogen safety and environmental control assessment.

  20. Market assessment of environmental issues affecting coal use for Los Alamos National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-03-20T23:59:59.000Z

    This is a market assessment of environmental issues affecting coal use through 2020. It was prepared by Los Alamos National Laboratories for the Fossil Energy R&D Program. It is based on interviews of representatives of 8 coal, coal technology, electricity and environmental groups concerned with the future of energy and the environment. Interviewees generally agreed that the U.S. and other countries would continue to need to use coal into the middle of the next century. The size of the market for coal would be determined by the ability of coal and coal technologies to meet environmental requirements at costs that would compete with natural gas. Outside the U.S., three interviewees suggested that there is a market for low cost coal technologies that will reduce the environmental impact of coal use, particularly in developing countries that have few alternative sources of energy. The principal environmental concerns mentioned in these interviews were: efficiency and carbon, air toxics, and NO{sub x}. Several also mentioned potential modifications to the SO{sub x} standards, a fine particulate standard, bottom and fly ash, and methane from coalbeds.

  1. Refueling Availability for Alternative Fuel Vehicle Markets: Sufficient Urban Station Coverage

    E-Print Network [OSTI]

    Melaina, Marc W; Bremson, Joel

    2008-01-01T23:59:59.000Z

    alternative fuels/engines. Energy Policy, 7–27. OPIS, 2007.OPIS Homepage [accessed January 16, 2007], available from /organizations, such as MPSI, OPIS, and the Lundberg Survey (

  2. Vehicle Technologies Office Merit Review 2014: Advancing Alternative Fuel Markets Adoption and Growth

    Broader source: Energy.gov [DOE]

    Presentation given by Greater Washington Region Clean Cities Coalition at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  3. Combined Heat and Power Market Potential for Opportunity Fuels, August 2004

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1. FeedstockCLEANSprings Gets anColoring andCombined Heat||

  4. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen| Department ofBatteries

  5. Second AEO2-015 Liquid Fuels Markets Working Group Meeting Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site.1 Relative Standard ErrorsSeptember 24, 2014 MEMORANDUM FOR: JOHN

  6. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergy Policy Act of 2005and Money |Hydropower

  7. Fuel Cell Project Selected for First Ever Technology-to-Market SBIR Award |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FYWednesday, December

  8. Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FYWednesday, DecemberCellEnergy

  9. Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: Final EnvironmentalCounties, IdahoTechnologiesEnergy Efficiency | DepartmentContinues

  10. Lucrative Opportunities in Asia Pacific to Help Global Bunker Fuel Market

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOf KilaueaInformation Other4Q07) WindLow VoltageGroup Jump

  11. Assumptions for Annual Energy Outlook 2014: Liquid Fuels Markets Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil and Gas Working Group5:

  12. Transportation Fuel Market Stood at 2,332.57 MTOE in 2013 and is Projected

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f <MaintainedInformationThePtyTownTramaTransportto Reach 2,698.36

  13. Heavy-Duty Trucks Poised to Accelerate Growth of American Alternative Transportation Fuels Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cn SunnybankD.jpgHanfordDepartment ofHeat Transfer inoperationSince 1988,

  14. Global Fuel Cells Market to Value USD910.3 million by 2018 | OpenEI

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <Glacial EnergyEnergy Information

  15. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    SciTech Connect (OSTI)

    Quiter, Brian; Ludewigt, Bernhard; Ambers, Scott

    2011-06-30T23:59:59.000Z

    In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of gamma rays with specific energies that are characteristic of the emitting isotope. NRF promises the unique capability of directly quantifying a specific isotope without the need for unfolding the combined responses of several fissile isotopes as is required in other measurement techniques. We have analyzed the potential of NRF as a non-destructive analysis technique for quantitative measurements of Pu isotopes in spent nuclear fuel (SNF). Given the low concentrations of 239Pu in SNF and its small integrated NRF cross sections, the main challenge in achieving precise and accurate measurements lies in accruing sufficient counting statistics in a reasonable measurement time. Using analytical modeling, and simulations with the radiation transport code MCNPX that has been experimentally tested recently, the backscatter and transmission methods were quantitatively studied for differing photon sources and radiation detector types. Resonant photon count rates and measurement times were estimated for a range of photon source and detection parameters, which were used to determine photon source and gamma-ray detector requirements. The results indicate that systems based on a bremsstrahlung source and present detector technology are not practical for high-precision measurements of 239Pu in SNF. Measurements that achieve the desired uncertainties within hour-long measurements will either require stronger resonances, which may be expressed by other Pu isotopes, or require quasi-monoenergetic photon sources with intensities that are approximately two orders of magnitude higher than those currently being designed or proposed.This work is part of a larger effort sponsored by the Next Generation Safeguards Initiative to develop an integrated instrument, comprised of individual NDA techniques with complementary features, that is fully capable of determining Pu mass in spent fuel assemblies.

  16. Market Assessment and Demonstration of Lignite FBC Ash Flowable Fill Applications

    SciTech Connect (OSTI)

    Alan E. Bland

    2003-09-30T23:59:59.000Z

    Montana-Dakota Utilities (MDU) and Western Research Institute (WRI) have been developing flowable fill materials formulated using ash from the Montana-Dakota Utilities R. M. Heskett Station in Mandan, North Dakota. MDU and WRI have partnered with the U.S. Department of Energy (DOE) and the North Dakota Industrial Commission (NDIC) to further the development of these materials for lignite-fired fluidized-bed combustion (FBC) facilities. The MDU controlled density fill (CDF) appears to be a viable engineering material and environmentally safe. WRI is pursuing the commercialization of the technology under the trademark Ready-Fill{trademark}. The project objectives were to: (1) assess the market in the Bismarck-Mandan area; (2) evaluate the geotechnical properties and environmental compatibility; and (3) construct and monitor demonstrations of the various grades of flowable fill products in full-scale demonstrations. The scope of initial phase of work entailed the following: Task I--Assess Market for MDU Flowable Fill Products; Task II--Assess Geotechnical and Environmental Properties of MDU Flowable Fill Products; and Task III--Demonstrate and Monitor MDU Flowable Fill Products in Field-Scale Demonstrations. The results of these testing and demonstration activities proved the following: (1) The market assessment indicated that a market exists in the Bismarck-Mandan area for structural construction applications, such as sub-bases for residential and commercial businesses, and excavatable fill applications, such as gas line and utility trench filling. (2) The cost of the MDU flowable fill product must be lower than the current $35-$45/cubic yard price if it is to become a common construction material. Formulations using MDU ash and lower-cost sand alternatives offer that opportunity. An estimated market of 10,000 cubic yards of MDU flowable fill products could be realized if prices could be made competitive. (3) The geotechnical properties of the MDU ash-based flowable fill can be modified to meet the needs of a range of applications from structural fill applications to excavatable applications, such as utility trench fill. (4) Environmental assessments using standard testing indicate that the environmental properties of the fill materials are compatible with numerous construction applications and do not pose a threat to either adjacent groundwater or soils. (5) WRI developed an Environmental Field Simulator (EFS) method for assessing the impact of flowable fill materials on adjacent soils and found that the zone of impact is less than a couple of inches, thereby posing no threat to adjacent soils. (6) Field-scale demonstrations of the MDU flowable fill were constructed and were successful for structural, as well as excavatable applications. Monitoring has demonstrated the geotechnical performance, environmental performance, and compatibility with common embed materials with the MDU flowable fill products. Technical and economic issues were identified that may hinder the commercial acceptance of MDU flowable fill materials, including: (1) the ability to produce a consistent product; (2) the ability to provide a product year round (cold weather retards strength development); and (3) the ability to evaluate and produce commercial quantities of MDU flowable fill using inexpensive materials.

  17. Assessment of light water reactor fuel damage during a reactivity initiated accident

    SciTech Connect (OSTI)

    MacDonald, P.E.; Seiffert, S.L.; Martinson, Z.R.; McCardell, R.K.; Owen, D.E.; Fukuda, S.K.

    1980-01-01T23:59:59.000Z

    This paper presents an assessment of LWR fuel damage during a reactivity initiated accident and comments on the adequacy of the present USNRC design requirements. Results from early SPERT tests are reviewed and compared with results from recent computer simulations and PBF tests. A progression of fuel rod and cladding damage events is presented. High strain rate deformation of relatively cool irradiated cladding early in the transient may result in fracture at a radial average peak fuel enthalpy of approximately 140 cal/g UO/sub 2/. Volume expansion of previously irradiated fuel upon melting may cause deformation and rupture of the cladding, and coolant channel blockage at higher peak enthalpies.

  18. A fuel cycle assessment guide for utility and state energy planners

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This guide, one in a series of documents designed to help assess fuel cycles, is a framework for setting parameters, collecting data, and analyzing fuel cycles for supply-side and demand-side management. It provides an automated tool for entering comparative fuel cycle data that are meaningful to state and utility integrated resource planning, collaborative, and regional energy planning activities. It outlines an extensive range of energy technology characteristics and environmental, social, and economic considerations within each stage of a fuel cycle. The guide permits users to focus on specific stages or effects that are relevant to the technology being evaluated and that meet the user`s planning requirements.

  19. Solar-parabolic dish-Stirling-engine-system module. Task 1: Topical report, market assessment/conceptual design

    SciTech Connect (OSTI)

    Not Available

    1982-11-30T23:59:59.000Z

    The major activities reported are: a market study to identify an early market for a dish-Stirling module and assess its commercial potential; preparation of a conceptual system and subsystem design to address this market; and preparation of an early sales implementation plan. A study of the reliability of protection from the effects of walk-off, wherein the sun's image leaves the receiver if the dish is not tracking, is appended, along with an optical analysis and structural analysis. Also appended are the relationship between PURPA and solar thermal energy development and electric utility pricing rationale. (LEW)

  20. Effect of market fuel variation and cetane improvers on CAI combustion in a GDI engine

    E-Print Network [OSTI]

    Cedrone, Kevin David

    2010-01-01T23:59:59.000Z

    There is continued interest in improving the fuel conversion efficiency of internal combustion engines and simultaneously reducing their emissions. One promising technology is that of Controlled Auto Ignition (CAI) combustion. ...

  1. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Winchester, N.

    The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

  2. Vehicle Technologies Office Merit Review 2014: Southeast Regional Alternative Fuels Market Initiatives Program

    Broader source: Energy.gov [DOE]

    Presentation given by Center for Transportation and the Environment, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  3. Carbon dioxide emission index as a mean for assessing fuel quality

    SciTech Connect (OSTI)

    Furimsky, E. [IMAF Group, Ottawa, ON (Canada)

    2008-07-01T23:59:59.000Z

    Carbon dioxide emission index, defined as the amount of CO{sub 2} released per unit of energy value, was used to rate gaseous, liquid and solid fuels. The direct utilization of natural gas is the most efficient option. The conversion of natural gas to synthesis gas for production of liquid fuels represents a significant decrease in fuel value of the former. The fuel value of liquids, such as gasoline, diesel oil, etc. is lower than that of natural gas. Blending gasoline with ethanol obtained either from bio-mass or via synthesis may decrease fuel value of the blend when CO{sub 2} emissions produced during the production of ethanol are included in total emissions. The introduction of liquid fuels produced by pyrolysis and liquefaction of biomass would result in the increase in the CO{sub 2} emissions. The CO{sub 2} emissions from the utilization of coal and petroleum coke are much higher than those from gaseous and liquid fuels. However, for petroleum coke, this is offset by the high value gaseous and liquid fuels that are simultaneously produced during coking. Conversion of low value fuels such as coal and petroleum coke to a high value chemicals via synthesis gas should be assessed as means for replacing natural gas and making it available for fuel applications.

  4. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

  5. Market Cost of Renewable Jet Fuel Adoption in the United States

    E-Print Network [OSTI]

    Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation,* Dominic McConnachie, Christoph Wollersheim and Ian A. Waitz Abstract The US Federal Aviation model of the aviation industry. If soybean oil is used as a feedstock, we find that meeting the aviation

  6. Miscellaneous: Uruguay energy supply options study assessing the market for natural gas - executive summary.

    SciTech Connect (OSTI)

    Conzelmann, G.; Veselka, T.; Decision and Information Sciences

    2008-03-04T23:59:59.000Z

    Uruguay is in the midst of making critical decisions affecting the design of its future energy supply system. Momentum for change is expected to come from several directions, including recent and foreseeable upgrades and modifications to energy conversion facilities, the importation of natural gas from Argentina, the possibility for a stronger interconnection of regional electricity systems, the country's membership in MERCOSUR, and the potential for energy sector reforms by the Government of Uruguay. The objective of this study is to analyze the effects of several fuel diversification strategies on Uruguay's energy supply system. The analysis pays special attention to fuel substitution trends due to potential imports of natural gas via a gas pipeline from Argentina and increasing electricity ties with neighboring countries. The Government of Uruguay has contracted with Argonne National Laboratory (ANL) to study several energy development scenarios with the support of several Uruguayan institutions. Specifically, ANL was asked to conduct a detailed energy supply and demand analysis, develop energy demand projections based on an analysis of past energy demand patterns with support from local institutions, evaluate the effects of potential natural gas imports and electricity exchanges, and determine the market penetration of natural gas under various scenarios.

  7. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. (USDOE, Washington, DC (United States)); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. (Pacific Northwest Lab., Richland, WA (United States))

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort's electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils [number sign]2 and [number sign]6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  8. Fort Lewis natural gas and fuel oil energy baseline and efficiency resource assessment

    SciTech Connect (OSTI)

    Brodrick, J.R. [USDOE, Washington, DC (United States); Daellenbach, K.K.; Parker, G.B.; Richman, E.E.; Secrest, T.J.; Shankle, S.A. [Pacific Northwest Lab., Richland, WA (United States)

    1993-02-01T23:59:59.000Z

    The mission of the US Department of Energy (DOE) Federal Energy Management Program (FEMP) is to lead the improvement of energy efficiency and fuel flexibility within the federal sector. Through the Pacific Northwest Laboratory (PNL), FEMP is developing a fuel-neutral approach for identifying, evaluating, and acquiring all cost-effective energy projects at federal installations; this procedure is entitled the Federal Energy Decision Screening (FEDS) system. Through a cooperative program between FEMP and the Army Forces Command (FORSCOM) for providing technical assistance to FORSCOM installations, PNL has been working with the Fort Lewis Army installation to develop the FEDS procedure. The natural gas and fuel oil assessment contained in this report was preceded with an assessment of electric energy usage that was used to implement a cofunded program between Fort Lewis and Tacoma Public Utilities to improve the efficiency of the Fort`s electric-energy-using systems. This report extends the assessment procedure to the systems using natural gas and fuel oil to provide a baseline of consumption and an estimate of the energy-efficiency potential that exists for these two fuel types at Fort Lewis. The baseline is essential to segment the end uses that are targets for broad-based efficiency improvement programs. The estimated fossil-fuel efficiency resources are estimates of the available quantities of conservation for natural gas, fuel oils {number_sign}2 and {number_sign}6, and fuel-switching opportunities by level of cost-effectiveness. The intent of the baseline and efficiency resource estimates is to identify the major efficiency resource opportunities and not to identify all possible opportunities; however, areas of additional opportunity are noted to encourage further effort.

  9. Commercial nuclear fuel from U.S. and Russian surplus defense inventories: Materials, policies, and market effects

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    Nuclear materials declared by the US and Russian governments as surplus to defense programs are being converted into fuel for commercial nuclear reactors. This report presents the results of an analysis estimating the market effects that would likely result from current plans to commercialize surplus defense inventories. The analysis focuses on two key issues: (1) the extent by which traditional sources of supply, such as production from uranium mines and enrichment plants, would be displaced by the commercialization of surplus defense inventories or, conversely, would be required in the event of disruptions to planned commercialization, and (2) the future price of uranium considering the potential availability of surplus defense inventories. Finally, the report provides an estimate of the savings in uranium procurement costs that could be realized by US nuclear power generating companies with access to competitively priced uranium supplied from surplus defense inventories.

  10. Assessment of the use of extended burnup fuel in light water power reactors

    SciTech Connect (OSTI)

    Baker, D.A.; Bailey, W.J.; Beyer, C.E.; Bold, F.C.; Tawil, J.J.

    1988-02-01T23:59:59.000Z

    This study has been conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission to review the environmental and economic impacts associated with the use of extended burnup nuclear fuel in light water power reactors. It has been proposed that current batch average burnup levels of 33 GWd/t uranium be increased to above 50 GWd/t. The environmental effects of extending fuel burnup during normal operations and during accident events and the economic effects of cost changes on the fuel cycle are discussed in this report. The physical effects of extended burnup on the fuel and the fuel assembly are also presented as a basis for the environmental and economic assessments. Environmentally, this burnup increase would have no significant impact over that of normal burnup. Economically, the increased burnup would have favorable effects, consisting primarily of a reduction: (1) total fuel requirements; (2) reactor downtime for fuel replacement; (3) the number of fuel shipments to and from reactor sites; and (4) repository storage requirements. 61 refs., 4 figs., 27 tabs.

  11. Assessment of the status of fuel cell/battery vehicle power systems

    SciTech Connect (OSTI)

    Escher, W.J.D.; Foster, R.W.

    1980-02-01T23:59:59.000Z

    An assessment of the status of the integrated fuel cell/battery power system concept for electric vehicle propulsion is reported. The fuel cell, operating on hydrogen or methanol (indirectly), acts as a very high capacity energy battery for vehicle sustaining operation, while a special power battery provides over-capacity transient power on demand, being recharged by the fuel cell, e.g., during cruising. A focused literature search and a set of industrial and Government contacts were carried out to establish views, outlooks, and general status concerning the concept. It is evident that, although vehicle battery R and D is being actively pursued, little of today's fuel cell work is directed to transportation usage. Only very limited attention has been, and is being, given to the fuel cell/battery power system concept itself. However, judging largely from computer-simulated driving cycle results, the concept can provide needed range capabilities and general operating flexibility to electric vehicles. New transportation applications, conventionally viewed as beyond the capability of electric vehicles, may thereby be practical, e.g., rail, trucks. In view of these potential and important benefits, and the absence of any comprehensive research, development, and demonstration activities which are supportive of the fuel cell/battery system concept, the initiation of an appropriate effort is recommended by the Assessment Team. This general recommendation is supported by applicable findings, observations, and conclusions.

  12. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    SciTech Connect (OSTI)

    Mahadevan, Kathyayani

    2011-10-04T23:59:59.000Z

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  13. Analyzing the proliferation resistance of advanced nuclear fuel cycles : in search of an assessment methodology for use in fuel cycle simulations

    E-Print Network [OSTI]

    Pierpoint, Lara Marie

    2008-01-01T23:59:59.000Z

    A methodology to assess proliferation resistance of advanced nuclear energy systems is investigated. The framework, based on Multi-Attribute Utility Theory (MAUT), is envisioned for use within early-stage fuel cycle ...

  14. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.; Adkins, Harold E.; Casella, Andrew M.; Qiao, Hong (Amy); Larche, Michael R.; Diaz, Aaron A.; Doctor, Steven R.

    2013-09-01T23:59:59.000Z

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  15. Market Assessment and Technical Feasibility Study of Pressurized Fluidized Bed Combustion Ash Use

    SciTech Connect (OSTI)

    Bland, A.E.; Brown, T.H. [Western Research Inst., Laramie, WY (United States)

    1996-12-31T23:59:59.000Z

    Western Research Institute in conjunction with the Electric Power Research Institute, Foster Wheeler Energy International, Inc. and the U.S. Department of Energy Technology Center (METC), has undertaken a research and demonstration program designed to examine the market potential and the technical feasibility of ash use options for pressurized fluidized bed combustion (PFBC) ashes. The assessment is designed to address six applications, including: (1) structural fill, (2) road base construction, (3) supplementary cementing materials in portland cement, (4) synthetic aggregate, and (5) agricultural/soil amendment applications. Ash from low-sulfur subbituminous coal-fired Foster Wheeler Energia Oy pilot circulating PFBC tests in Karhula, Finland, and ash from the high-sulfur bituminous coal-fired American Electric Power (AEP) bubbling PFBC in Brilliant, Ohio, were evaluated in laboratory and pilot-scale ash use testing. This paper addresses the technical feasibility of ash use options for PFBC unit using low- sulfur coal and limestone sorbent (karhula ash) and high-sulfur coal and dolomite sorbents (AEP Tidd ash).

  16. Management of spent nuclear fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee: Environmental assessment

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    On June 1, 1995, DOE issued a Record of Decision [60 Federal Register 28680] for the Department-wide management of spent nuclear fuel (SNF); regionalized storage of SNF by fuel type was selected as the preferred alternative. The proposed action evaluated in this environmental assessment is the management of SNF on the Oak Ridge Reservation (ORR) to implement this preferred alternative of regional storage. SNF would be retrieved from storage, transferred to a hot cell if segregation by fuel type and/or repackaging is required, loaded into casks, and shipped to off-site storage. The proposed action would also include construction and operation of a dry cask SNF storage facility on ORR, in case of inadequate SNF storage. Action is needed to enable DOE to continue operation of the High Flux Isotope Reactor, which generates SNF. This report addresses environmental impacts.

  17. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  18. Initial Market Assessment for Small-Scale Biomass-Based CHP

    SciTech Connect (OSTI)

    Brown, E.; Mann, M.

    2008-01-01T23:59:59.000Z

    The purpose of this report is to reexamine the energy generation market opportunities for biomass CHP applications smaller than 20 MW. This paper provides an overview of the benefits of and challenges for biomass CHP in terms of policy, including a discussion of the drivers behind, and constraints on, the biomass CHP market. The report provides a summary discussion of the available biomass supply types and technologies that could be used to feed the market. Two primary markets are outlined--rural/agricultural and urban--for small-scale biomass CHP, and illustrate the primary intersections of supply and demand for those markets. The paper concludes by summarizing the potential markets and suggests next steps for identifying and utilizing small-scale biomass.

  19. Technical evaluation and assessment of CNG/LPG bi-fuel and flex-fuel vehicle viability

    SciTech Connect (OSTI)

    Sinor, J E [Sinor (J.E.) Consultants, Inc., Niwot, CO (United States)

    1994-05-01T23:59:59.000Z

    This report compares vehicles using compressed natural gas (CNG), liquefied petroleum gas (LPG), and combinations of the two in bi-fuel or flex-fuel configurations. Evidence shows that environmental and energy advantages can be gained by replacing two-fuel CNG/gasoline vehicles with two-fuel or flex-fuel systems to be economically competitive, it is necessary to develop a universal CNG/LPG pressure-regulator-injector and engine control module to switch from one tank to the other. For flex-fuel CNG/LPG designs, appropriate composition sensors, refueling pumps, fuel tanks, and vaporizers are necessary.

  20. Environmentally based siting assessment for synthetic-liquid-fuels facilities. Final report

    SciTech Connect (OSTI)

    None

    1980-01-01T23:59:59.000Z

    A detailed assessment of the major environmental constraints to siting a synthetic fuels industry and the results of that assessment are used to determine on a regional basis the potential for development of such an industry with minimal environmental conflicts. Secondly, the ability to mitigate some of the constraining impacts through alternative institutional arrangements, especially in areas that are judged to have a low development potential is also assessed. Limitations of the study are delineated, but specifically, the study is limited geographically to well-defined boundaries that include the prime coal and oil shale resource areas. The critical factors used in developing the framework are air quality, water availability, socioeconomic capacity, ecological sensitivity, environmental health, and the management of Federally owned lands. (MCW)

  1. Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure fueled light water reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2013-02-01T23:59:59.000Z

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel “as-is” into existing LWRs while retaining their thermal–hydraulic characteristics. Another mandatory constraint is use of low enriched uranium (at or below 20 w/o). The feasibility of using this fuel is assessed by looking at two factors: cycle lengths and fuel material failure rates. Other considerations (e.g., safety parameters such as reactivity coefficients, feedback, etc.) were not considered at this stage of the study. The study includes the examination of increases in the TRISO kernel sizes without changing the thickness of any of the coating layers. In addition, cases where the buffer layer thickness is allowed to vary are also considered. The study shows that a naïve use of UO2 (even up to 20 w/o enrichment) results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. The increase of fissile inventory can be accomplished through multiple means, including higher particle packing fraction, higher enrichment, larger fuel kernel sizes, and the use of higher density fuels (that contain a higher number of U atoms per unit volume). In this study, starting with the recognized highest packing fraction practically achievable (44%), combinations of the other means have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios.

  2. Assessment of External Hazards at Radioactive Waste and Used Fuel Management Facilities - 13505

    SciTech Connect (OSTI)

    Gerchikov, Mark; Schneider, Glenn; Khan, Badi; Alderson, Elizabeth [AMEC NSS, 393 University Ave., Toronto, ON (Canada)] [AMEC NSS, 393 University Ave., Toronto, ON (Canada)

    2013-07-01T23:59:59.000Z

    One of the key lessons from the Fukushima accident is the importance of having a comprehensive identification and evaluation of risks posed by external events to nuclear facilities. While the primary focus has been on nuclear power plants, the Canadian nuclear industry has also been updating hazard assessments for radioactive waste and used fuel management facilities to ensure that lessons learnt from Fukushima are addressed. External events are events that originate either physically outside the nuclear site or outside its control. They include natural events, such as high winds, lightning, earthquakes or flood due to extreme rainfall. The approaches that have been applied to the identification and assessment of external hazards in Canada are presented and analyzed. Specific aspects and considerations concerning hazards posed to radioactive waste and used fuel management operations are identified. Relevant hazard identification techniques are described, which draw upon available regulatory guidance and standard assessment techniques such as Hazard and Operability Studies (HAZOPs) and 'What-if' analysis. Consideration is given to ensuring that hazard combinations (for example: high winds and flooding due to rainfall) are properly taken into account. Approaches that can be used to screen out external hazards, through a combination of frequency and impact assessments, are summarized. For those hazards that cannot be screened out, a brief overview of methods that can be used to conduct more detailed hazard assessments is also provided. The lessons learnt from the Fukushima accident have had a significant impact on specific aspects of the approaches used to hazard assessment for waste management. Practical examples of the effect of these impacts are provided. (authors)

  3. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  4. A comparative assessment of the economics of plutonium disposition including comparison with other nuclear fuel cycles

    SciTech Connect (OSTI)

    Williams, K.A.; Miller, J.W.; Reid, R.L.

    1997-05-01T23:59:59.000Z

    DOE has been evaluating three technologies for the disposition of approximately 50 metric tons of surplus plutonium from defense-related programs: reactors, immobilization, and deep boreholes. As part of the process supporting an early CY 1997 Record of Decision (ROD), a comprehensive assessment of technical viability, cost, and schedule has been conducted. Oak Ridge National Laboratory has managed and coordinated the life-cycle cost (LCC) assessment effort for this program. This paper discusses the economic analysis methodology and the results prior to ROD. Other objectives of the paper are to discuss major technical and economic issues that impact plutonium disposition cost and schedule. Also to compare the economics of a once-through weapons-derived MOX nuclear fuel cycle to other fuel cycles, such as those utilizing spent fuel reprocessing. To evaluate the economics of these technologies on an equitable basis, a set of cost estimating guidelines and a common cost-estimating format were utilized by all three technology teams. This paper also includes the major economic analysis assumptions and the comparative constant-dollar and discounted-dollar LCCs.

  5. Environmental assessment for decontaminating and decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA

    SciTech Connect (OSTI)

    Not Available

    1980-12-01T23:59:59.000Z

    The Department of Energy has prepared an environmental assessment on the proposed decontamination and decommissioning of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania. Based on the environmental assessment, which is available to the public on request, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, 42 USC 4321 et seq. Therefore, no environmental impact statement is required. The proposed action is to decontaminate and decommission the Westinghouse Advanced Reactors Division fuel fabrication facilities (the Plutonium Laboratory - Building 7, and the Advanced Fuels Laboratory - Building 8). Decontamination and decommissioning of the facilities would require removal of all process equipment, the associated service lines, and decontamination of the interior surfaces of the buildings so that the empty buildings could be released for unrestricted use. Radioactive waste generated during these activities would be transported in licensed containers by truck for disposal at the Department's facility at Hanford, Washington. Useable non-radioactive materials would be sold as excess material, and non-radioactive waste would be disposed of by burial as sanitary landfill at an approved site.

  6. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect (OSTI)

    Not Available

    1984-07-01T23:59:59.000Z

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  7. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA FewA LIMITED LIABILITYA

  8. Life cycle assessment of greenhouse gas emissions and non-CO? combustion effects from alternative jet fuels

    E-Print Network [OSTI]

    Stratton, Russell William

    2010-01-01T23:59:59.000Z

    The long-term viability and success of a transportation fuel depends on both economic and environmental sustainability. This thesis focuses specifically on assessing the life cycle greenhouse gas (GHG) emissions and non-CO ...

  9. Assessing U.S. ESCO industry performance and market trends: Results from the NAESCO database project

    E-Print Network [OSTI]

    Osborn, Julie; Goldman, Chuck; Hopper, Nicole; Singer, Terry

    2002-01-01T23:59:59.000Z

    Performance of the U.S. ESCO Industry: Results from theMarket Trends in the U.S. ESCO Industry: Results from theenergy service company (ESCO) industry in the United States.

  10. Emerging market entry and risk assessment process analysis in a biopharmaceutical supply chain organization

    E-Print Network [OSTI]

    White, Seth Brian

    2013-01-01T23:59:59.000Z

    .Amgen is attempting to increase the impact that its products make in people's lives. To meet this goal, the company is aggressively working to reach more patients through growth opportunities in international markets and ...

  11. Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageStationGreenhouse GasCalifornia State0 Cleanr Clean

  12. A Glimpse at What's Between the Covers of the Market Assessment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuelDepartmentPotawatomi Community -

  13. LNG as a fuel for railroads: Assessment of technology status and economics. Topical report, June-September 1992

    SciTech Connect (OSTI)

    Pera, C.J.; Moyer, C.B.

    1993-01-06T23:59:59.000Z

    The objective of the research was to investigate the feasibility of liquefied natural gas (LNG) as a fuel for railroads. The investigation included assessment of the status of relevant technologies (i.e., LNG-fueled locomotive engines, tender cars, refueling equipment), a review of current demonstration projects, and an analytical evaluation of LNG railroad economics.

  14. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    The Assistant Secretary for Environment has responsibility for identifying, characterizing, and ameliorating the environmental, health, and safety issues and public concerns associated with commercial operation of specific energy systems. The need for developing a safety and environmental control assessment for liquefied gaseous fuels was identified by the Environmental and Safety Engineering Division as a result of discussions with various governmental, industry, and academic persons having expertise with respect to the particular materials involved: liquefied natural gas, liquefied petroleum gas, hydrogen, and anhydrous ammonia. This document is arranged in three volumes and reports on progress in the Liquefied Gaseous Fuels (LGF) Safety and Environmental Control Assessment Program made in Fiscal Year (FY)-1979 and early FY-1980. Volume 1 (Executive Summary) describes the background, purpose and organization of the LGF Program and contains summaries of the 25 reports presented in Volumes 2 and 3. Annotated bibliographies on Liquefied Natural Gas (LNG) Safety and Environmental Control Research and on Fire Safety and Hazards of Liquefied Petroleum Gas (LPG) are included in Volume 1.

  15. NREL: TroughNet - Parabolic Trough Power Plant Market, Economic Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing Photo of two tractorWebmasterand

  16. Cooling, Heating, and Power for Industry: A Market Assessment, August 2003

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo:MarchPracticesPresentationApril 2002 ||

  17. 2008 CHP Baseline Assessment and Action Plan for the California Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OFDecember|AnnualEnergy

  18. 2008 CHP Baseline Assessment and Action Plan for the Hawaii Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OFDecember|AnnualEnergyDepartment of

  19. 2008 CHP Baseline Assessment and Action Plan for the Nevada Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENT OFDecember|AnnualEnergyDepartment

  20. United States Industrial Electric Motor Systems Market Opportunities Assessment - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAX 423 241 3897 OIGO R E W O R D I

  1. United States Industrial Motor-Driven Systems Market Assessment: Charting a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUE 08:59 FAX 423 241 3897 OIGO R E W O R D

  2. Assessment of Large Combined Heat and Power Market, April 2004 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr.August 4,EnergywithAssistedof

  3. U.S. DOE Motor System Market Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartmentTest forTechnologiesTribalInjury atEnergy 31, 2007HQ FU.S.

  4. United States Industrial Motor-Driven Systems Market Assessment: Charting a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of Energy $18 MillionPresident Obama's FYofRoadmap to Energy

  5. A Glimpse at What's Between the Covers of the Market Assessment |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHEEnergyReliability2015GrossA Few Simple Steps forAAA

  6. New DOE Reports Assess Offshore Wind Market and Supply Chain | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many DevilsForum |EnergyNew Catalytic ConversionNewDepartmentof

  7. New DOE Reports Assess Offshore Wind Market and Supply Chain | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEW HAMPSHIREof Energy Investigates Port Readiness for Offshoreofof

  8. Assessment of high-burnup LWR fuel response to reactivity-initiated accidents

    E-Print Network [OSTI]

    Liu, Wenfeng, Ph.D. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    The economic advantages of longer fuel cycle, improved fuel utilization and reduced spent fuel storage have been driving the nuclear industry to pursue higher discharge burnup of Light Water Reactor (LWR) fuel. A design ...

  9. An Assessment of Spent Fuel Reprocessing for Actinide Destruction and Resource Sustainability.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.; Smith, James D.

    2008-09-01T23:59:59.000Z

    The reprocessing and recycling of spent nuclear fuel can benefit the nuclear fuel cycle by destroying actinides or extending fissionable resources if uranium supplies become limited. The purpose of this study was to assess reprocessing and recycling in both fast and thermal reactors to determine the effectiveness for actinide destruction and resource utilization. Fast reactor recycling will reduce both the mass and heat load of actinides by a factor of 2, but only after 3 recycles and many decades. Thermal reactor recycling is similarly effective for reducing actinide mass, but the heat load will increase by a factor of 2. Economically recoverable reserves of uranium are estimated to sustain the current global fleet for the next 100 years, and undiscovered reserves and lower quality ores are estimated to contain twice the amount of economically recoverable reserves--which delays the concern of resource utilization for many decades. Economic analysis reveals that reprocessed plutonium will become competitive only when uranium prices rise to about %24360 per kg. Alternative uranium sources are estimated to be competitive well below that price. Decisions regarding the development of a near term commercial-scale reprocessing fuel cycle must partially take into account the effectiveness of reactors for actnides destruction and the time scale for when uranium supplies may become limited. Long-term research and development is recommended in order to make more dramatic improvements in actinide destruction and cost reductions for advanced fuel cycle technologies.The original scope of this work was to optimize an advanced fuel cycle using a tool that couples a reprocessing plant simulation model with a depletion analysis code. Due to funding and time constraints of the late start LDRD process and a lack of support for follow-on work, the project focused instead on a comparison of different reprocessing and recycling options. This optimization study led to new insight into the fuel cycle. AcknowledgementThe authors would like to acknowledge the support of Laboratory Directed Research and Development Project 125862 for funding this research.

  10. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    SciTech Connect (OSTI)

    Schneider, K.J.

    1982-09-01T23:59:59.000Z

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  11. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2ofFuel CellEnergySTORAGEMARKET

  12. Managing the transition toward self-sustaining alternative fuel vehicle markets : policy analysis using a dynamic behavioral spatial model

    E-Print Network [OSTI]

    Supple, Derek R. (Derek Richard)

    2007-01-01T23:59:59.000Z

    Designing public policy or industry strategy to bolster the transition to alternative fuel vehicles (AFVs) is a formidable challenge as demonstrated by historical failed attempts. The transition to new fuels occurs within ...

  13. Market Assessment of Refinery Outages Planned for October 2010 through January 2011

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 00.0 0.0 0.0 0.0 0.0 0.0 S

  14. Market Assessment of Refinery Outages Planned for March 2011 through June 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHz WaterMark B. Chadwick,Mark

  15. Market Assessment of Refinery Outages Planned for October 2010 through January 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a New 183-GHz WaterMark B.

  16. Integrated Energy Systems (IES) for Buildings: A Market Assessment(LeMar

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup | OpenHunan RunhuaInner Mongolia FengweiCSU InstituteIntegrated2002) |

  17. Liquefied gaseous fuels safety and environmental control assessment program: third status report

    SciTech Connect (OSTI)

    Not Available

    1982-03-01T23:59:59.000Z

    This Status Report contains contributions from all contractors currently participating in the DOE Liquefied Gaseous Fuels (LG) Safety and Environmental Control Assessment Program and is presented in two principal sections. Section I is an Executive Summary of work done by all program participants. Section II is a presentation of fourteen individual reports (A through N) on specific LGF Program activities. The emphasis of Section II is on research conducted by Lawrence Livermore National Laboratory (Reports A through M). Report N, an annotated bibliography of literature related to LNG safety and environmental control, was prepared by Pacific Northwest Laboratory (PNL) as part of its LGF Safety Studies Project. Other organizations who contributed to this Status Report are Aerojet Energy Conversion Company; Applied Technology Corporation; Arthur D. Little, Incorporated; C/sub v/ International, Incorporated; Institute of Gas Technology; and Massachusetts Institute of Technology. Separate abstracts have been prepared for Reports A through N for inclusion in the Energy Data Base.

  18. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    SciTech Connect (OSTI)

    Johnstone, Peter; Jacobson, Arne; Mills, Evan; Mumbi, Maina

    2009-02-11T23:59:59.000Z

    The notion of"productive use" is often invoked in discussions about whether new technologies improve productivity or otherwise enhance commerce in developing-country contexts. It an elusive concept,especially when quantitative measures are sought. Improved and more energy efficient illumination systems for off-gridapplication--the focus of the Lumina Project--provide a case in which a significant productivity benefit can be imagined, given the importance of light to the successful performance of many tasks, and the very low quality of baseline illumination provided by flame-based source. This Research Note summarizes self-reported quantitative and qualitative impacts of switching to LED lighting technology on the prosperity of night-market business owners and operators. The information was gathered in the context of our 2008 market testing field work in Kenya?s Rift Valley Province, which was performed in the towns of Maai Mahiu and Karagita by Arne Jacobson, Kristen Radecsky, Peter Johnstone, Maina Mumbi, and others. Maai Mahiu is a crossroads town; provision of services to travelers and freight carriers is a primary income source for the residents. In contrast, the primary income for Karagita's residents is from work in the large, factory style flower farms on the eastern shores of Lake Naivasha that specialize in producing cut flowers for export to the European market. According to residents, both towns had populations of 6,000 to 8,000 people in June 2008. We focused on quantifying the economics of fuel-based and LED lighting technology in the context of business use by night market vendors and shop keepers. Our research activities with the business owners and operators included baseline measurement of their fuel-based lighting use, an initial survey, offering for sale data logger equipped rechargeable LED lamps, monitoring the adoption of the LED lamps, and a follow-up survey.

  19. An Assessment of Energy and Environmental Issues Related to the Use of Gas-to-Liquid Fuels in Transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01T23:59:59.000Z

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO2 emissions produced during the conversion process.

  20. An assessment of energy and environmental issues related to the use of gas-to-liquid fuels in transportation

    SciTech Connect (OSTI)

    Greene, D.L.

    1999-11-01T23:59:59.000Z

    Recent technological advances in processes for converting natural gas into liquid fuels, combined with a growing need for cleaner, low-sulfur distillate fuel to mitigate the environmental impacts of diesel engines have raised the possibility of a substantial global gas-to-liquids (G-T-L) industry. This report examines the implications of G-T-L supply for U.S. energy security and the environment. It appears that a G-T-L industry would increase competitiveness in world liquid fuels markets, even if OPEC states are major producers of G-T-L's. Cleaner G-T-L distillates would help reduce air pollution from diesel engines. Implications for greenhouse gas (GHG) emissions could be positive or negative, depending on the sources of natural gas, their alternative uses, and the degree of sequestration that can be achieved for CO{sub 2} emissions produced during the conversion process.

  1. Hydrogen and Fuel Cell Activities

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cell Activities Mr. Pete Devlin U.S. Department of Energy Fuel Cell Technologies Program Market Transformation Manager Stationary Fuel Cell Applications First National...

  2. Assessment of innovative fuel designs for high performance light water reactors

    E-Print Network [OSTI]

    Carpenter, David Michael

    2006-01-01T23:59:59.000Z

    To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

  3. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Market potential of electric and natural gas vehicles: draft reportMarket potential of electric and natural gas vehicles” report

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Market potential of electric and natural gas vehicles: draft reportMarket potential of electric and natural gas vehicles” report

  5. Vehicle Technologies Office Merit Review 2014: Removing Barriers, Implementing Policies and Advancing Alternative Fuels Markets in New England

    Broader source: Energy.gov [DOE]

    Presentation given by Greater Portland Council of Governments at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  6. Tiger Teams Provide Coalitions Technical and Market Assistance. Clean Cities Alternative Fuel Information Series, Tiger Teams Technical Assistance Fact Sheet.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003 (Next ReleaseThomasTheoriesClean Cities

  7. Modeling mining economics and materials markets to inform criticality assessment and mitigation

    E-Print Network [OSTI]

    Poulizac, Claire Marie Franc?oise

    2013-01-01T23:59:59.000Z

    Conventional criticality-assessment methods drawn from the existing literature are often limited to evaluations of scarcity risks, or rely on price as an indicator of criticality. Such approaches, however, are ill-suited ...

  8. ASSESSMENT OF POSSIBLE CYCLE LENGTHS FOR FULLY-CERAMIC MICRO-ENCAPSULATED FUEL-BASED LIGHT WATER REACTOR CONCEPTS

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal Pasamehmetoglu; Francesco Venneri

    2012-04-01T23:59:59.000Z

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such a low enriched uranium fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel 'as-is' into existing LWRs while retaining their thermal-hydraulic characteristics. The feasibility of using this fuel is assessed by looking at cycle lengths and fuel failure rates. Other considerations (e.g., safety parameters, etc.) were not considered at this stage of the study. The study includes the examination of different TRISO kernel diameters without changing the coating layer thicknesses. The study shows that a naive use of UO{sub 2} results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. In this study, starting with the recognized highest packing fraction practically achievable (44%), higher enrichment, larger fuel kernel sizes, and the use of higher density fuels have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios. Finally, it is recognized that relaxing the geometry constraint will result in satisfactory cycle lengths even using UO{sub 2}-loaded TRISO particles-based fuel with enrichment at or below 20 w/o.

  9. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01T23:59:59.000Z

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  10. Project Information Form Project Title Assessment of Critical Barriers to Alternative and Renewable Fuel and

    E-Print Network [OSTI]

    California at Davis, University of

    studies and business case analysis, we will identify new business models and public policies attitudes, access to capital, and the strategies of incumbent and dominant market participants. Through case

  11. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuelDepartmentPotawatomi

  12. An Assessment of Industrial Cogeneration Potential in Pennsylvania 

    E-Print Network [OSTI]

    Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

    1983-01-01T23:59:59.000Z

    such as atmospheric fluidized bed combustion, coal-gasification combined cycles, fuel cells and bottoming cycles were analyzed in addition to the economic assessment of conventional cogeneration systems; Industry-specific rates of market penetration were developed...

  13. An Assessment of Industrial Cogeneration Potential in Pennsylvania

    E-Print Network [OSTI]

    Hinkle, B. K.; Qasim, S.; Ludwig, E. V., Jr.

    1983-01-01T23:59:59.000Z

    such as atmospheric fluidized bed combustion, coal-gasification combined cycles, fuel cells and bottoming cycles were analyzed in addition to the economic assessment of conventional cogeneration systems; Industry-specific rates of market penetration were developed...

  14. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

    2008-02-01T23:59:59.000Z

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  15. Assessment of helical-cruciform fuel rods for high power density LWRs

    E-Print Network [OSTI]

    Conboy, Thomas M

    2010-01-01T23:59:59.000Z

    In order to significantly increase the power density of Light Water Reactors (LWRs), the helical-cruciform (HC) fuel rod assembly has been proposed as an alternative to traditional fuel geometry. The HC assembly is a ...

  16. Methodologies to assess potential lifetime limits for extended burnup nuclear fuel

    E-Print Network [OSTI]

    De Vore, Curtis Vincent

    1986-01-01T23:59:59.000Z

    programs sponsored by DOE and the Electric Power Research Institute (EPRI) and executed by the utilities and fuel vendors. Within these programs, more efficient uranium utilization is being sought through improved fuel management methods, advanced fuel... is accessed including topical reports from vendors, utilities, EPRI, and the national laboratories. The information is collated for principal parameters of interest which encompass thermal and mechanical fuel rod performance. This information...

  17. Assessment of Technologies for Compliance with the Low Carbon Fuel Standard

    E-Print Network [OSTI]

    Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

    2009-01-01T23:59:59.000Z

    fuels (e.g. , compressed natural gas, oil derived from tar20% by volume), compressed natural gas, electricity, and

  18. Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs

    SciTech Connect (OSTI)

    Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

    1987-09-01T23:59:59.000Z

    This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

  19. Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 2: Final report

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    During Phase 1 of this program, the authors evaluated all known hydrogen storage technologies (including those that are now practiced and those that are development) in the context of fuel cell vehicles. They determined that among the development technologies, carbon sorbents could most benefit from closer scrutiny. During Phase 2 of this program, they tested ten different carbon sorbents at various practical temperatures and pressures, and developed the concept of the usable Capacity Ratio, which is the ratio of the mass of hydrogen that can be released from a carbon-filled tank to the mass of hydrogen that can be released from an empty tank. The authors also commissioned the design, fabrication, and NGV2 (Natural Gas Vehicle) testing of an aluminum-lined, carbon-composite, full-wrapped pressure vessel to store hydrogen at 78 K and 3,000 psi. They constructed a facility to pressure cycle the tank at 78 K and to temperature cycle the tank at 3,000 psi, tested one such tank, and submitted it for a burst test. Finally, they devised a means by which cryogenic compressed hydrogen gas tanks can be filled and discharged using standard hardware--that is, without using filters, valves, or pressure regulators that must operate at both low temperature and high pressure. This report describes test methods and test results of carbon sorbents and the design of tanks for cold storage. 7 refs., 91 figs., 10 tabs.

  20. DOE/EA-1760 Final Environmental Assessment for FutureFuel Chemical Company

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002DOE/EA-1313 Rev. 0Program Final45 FINAL60

  1. Assessment of Future ICE and Fuel-Cell Powered Vehicles and Their Potential

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from Tarasa U.S.LLC |AquionMr.August 4,Energy

  2. Rapid Aging and Poisoning Protocols to AssessFuel and Lube Effects on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11 Connecticut2 of 3)theDiesel Aftertreatment

  3. Environmental assessment for the manufacture and shipment of nuclear reactor fuel from the United States to Canada

    SciTech Connect (OSTI)

    Rangel, R.C.

    1999-02-01T23:59:59.000Z

    The US Department of Energy (DOE) has declared 41.9 tons (38 metric tons) of weapons-usable plutonium surplus to the United States` defense needs. A DOE Programmatic Environmental Impact Statement analyzed strategies for plutonium storage and dispositioning. In one alternative, plutonium as a mixed oxide (MOX) fuel would be irradiated (burned) in a reengineered heavy-water-moderated reactor, such as the Canadian CANDU design. In an Environmental Assessment (EA), DOE proposes to fabricate and transport to Canada a limited amount of MOX fuel as part of the Parallex (parallel experiment) Project. MOX fuel from the US and Russia would be used by Canada to conduct performance tests at Chalk River Laboratories. MOX fuel would be fabricated at Los Alamos National Laboratory and transported in approved container(s) to a Canadian port(s) of entry on one to three approved routes. The EA analyzes the environmental and human health effects from MOX fuel fabrication and transportation. Under the Proposed Action, MOX fuel fabrication would not result in adverse effects to the involved workers or public. Analysis showed that the shipment(s) of MOX fuel would not adversely affect the public, truck crew, and environment along the transportation routes.

  4. Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests

    SciTech Connect (OSTI)

    Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

    2012-09-01T23:59:59.000Z

    Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

  5. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01T23:59:59.000Z

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  6. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01T23:59:59.000Z

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  7. Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation

    E-Print Network [OSTI]

    Woddi, Taraknath Venkat Krishna

    2009-05-15T23:59:59.000Z

    assessment of India emphasizes the entwinment of the military and civilian facilities and would aid in moving forward with the separation plan. To estimate the existing uranium reserves in India, a complete historical assessment of ore production, conversion...

  8. Winter fuels report, week ending February 12, 1993. [Contains Glossary and feature article on Midwest Propane Markets

    SciTech Connect (OSTI)

    Not Available

    1993-02-18T23:59:59.000Z

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD's 1, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD'S; as well as selected National average prices. Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; selected cities; and a 6--10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  9. Reactor Physics Assessment of the Inclusion of Unseparated Neptunium in MOX Reactor Fuel

    SciTech Connect (OSTI)

    Ellis, Ronald James [ORNL

    2009-01-01T23:59:59.000Z

    Reducing the number of actinide separation streams in a spent fuel recovery process would reduce the cost and complexity of the process, and lower the quantity and numbers of solvents needed. It is more difficult and costly to separate Np and recombine it with Am-Cm prior to co-conversion than to simply co-strip it with the U-Pu-Np. Inclusion of the Np in mixed oxide (MOX) fuel for light water reactor (LWR) applications should not seriously affect the operating behavior of the reactor, nor should it pose insurmountable fuel design issues. In this work, the U, Pu, and Np from typical discharged and cooled PWR spent nuclear fuel are assumed to be used together in the preparation of MOX fuel for use in a pressurized water reactor (PWR). The reactor grade Pu isotopic vector is used in the model and the relative mass ratio of the Pu and Np content (Np/Pu mass is 0.061) from the cooled spent fuel is maintained but the overall Pu-Np MOX wt% is adjusted with respect to the U content (assumed to be at 0.25 wt% 235U enrichment) to offset reactivity and cycle length effects. The SCALE 5.1 scientific package (especially modules TRITON, NEWT, ORIGEN-S, ORIGEN-ARP) was used for the calculations presented in this paper. A typical Westinghouse 17x17 fuel assembly design was modeled at nominal PWR operating conditions. It was seen that U-Pu-Np MOX fuel with NpO2 and PuO2 representing 11.5wt% of the total MOX fuel would be similar to standard MOX fuel in which PuO2 is 9wt% of the fuel. The reactivity, isotopic composition, and neutron and ? sources, and the decay heat details for the discharged MOX fuel are presented and discussed in this paper.

  10. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    of a fossil fuel-based hydrogen infrastructure with carbonnatural gas based hydrogen infrastructure – optimizingan energy carrier, hydrogen infrastructure strategies, and

  11. Assessment of Technologies for Compliance with the Low Carbon Fuel Standard

    E-Print Network [OSTI]

    Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

    2009-01-01T23:59:59.000Z

    of U.S. croplands for biofuels increases greenhouse gasesthe indirect Effects of Biofuels Production. Renewable FuelsTyner, W. E. ; Birur, D. K. Biofuels for all? Understanding

  12. An Upflow Microbial Fuel Cell with an Interior Cathode: Assessment of

    E-Print Network [OSTI]

    /L, indicating efficient wastewater treatment. The analysis of impedance spectroscopy, generated by fitting. Microbial fuel cells achieve a comparable organic removal efficiency to current biological wastewater t

  13. DOE/EA-1760 Final Environmental Assessment for FutureFuel Chemical Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear1 ofDOE Office of4 Volume1530

  14. Operation of N Reactor and Fuels Fabrication Facilities, Hanford Reservation, Richland, Benton County, Washington: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1980-08-01T23:59:59.000Z

    Environmental data, calculations and analyses show no significant adverse radiological or nonradiological impacts from current or projected future operations resulting from N Reactor, Fuels Fabrication and Spent Fuel Storage Facilities. Nonoccupational radiation exposures resulting from 1978 N Reactor operations are summarized and compared to allowable exposure limits.

  15. Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards

    E-Print Network [OSTI]

    Rajagopal, Deepak

    2010-01-01T23:59:59.000Z

    E?ect of Biofuels on Crude Oil Markets. Agbioforum, 2010(assumption is that the oil market is competitive while it isemissions and market share of non-crude oil fuels. Thirdly,

  16. A Unifying Market Power Measure for Deregulated Transmission-Constrained Electricity Markets

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    1 A Unifying Market Power Measure for Deregulated Transmission-Constrained Electricity Markets concern when designing a deregulated electricity market. In this paper, we propose a new functional market of engineering constraints with market power assessment. Index Terms--Market power, electricity markets. I

  17. Dynamic modeling of physical phenomena for probabilistic assessment of spent fuel accidents

    SciTech Connect (OSTI)

    Benjamin, A.S.

    1997-11-01T23:59:59.000Z

    If there should be an accident involving drainage of all the water from a spent fuel pool, the fuel elements will heat up until the heat produced by radioactive decay is balanced by that removed by natural convection to air, thermal radiation, and other means. If the temperatures become high enough for the cladding or other materials to ignite due to rapid oxidation, then some of the fuel might melt, leading to an undesirable release of radioactive materials. The amount of melting is dependent upon the fuel loading configuration and its age, the oxidation and melting characteristics of the materials, and the potential effectiveness of recovery actions. The authors have developed methods for modeling the pertinent physical phenomena and integrating the results with a probabilistic treatment of the uncertainty distributions. The net result is a set of complementary cumulative distribution functions for the amount of fuel melted.

  18. Market assessment for active solar heating and cooling products. Category B: A survey of decision makers in the HVAC market place. Survey instruments

    SciTech Connect (OSTI)

    Lilien, G. L.; Johnston, P. E.

    1980-09-01T23:59:59.000Z

    Telephone screener questionnaires and mail-out questionnaires for marketing surveys for solar heating and cooling equipment are presented. Questionnaires are included for the residential segment, industrial segment, HVAC professionals segment, builder/developer segment, and the commercial segment. No results are reported. (WHK)

  19. Mixed waste paper to ethanol fuel

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Promotion and Information The Center for Alternative Fuels (Center) promotes alternative fuels as viable energy sources in the state. The Center must assess the...

  1. A best-estimate assessment of rod ejection fuel duty in PWRs

    SciTech Connect (OSTI)

    Risher, D.H.; Ray, S.; Johansen, B.J.; Holland, R.A.; Bachrach, U.; Derylo, G.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1996-11-01T23:59:59.000Z

    In August, 1994, the US Nuclear Regulatory Commission (NRC) issued Information Notice IN-94-64, notifying US utilities that recent experimental data (particularly from the CABRI test reactor) indicated that high burnup fuel undergoing a fast reactivity insertion accident (RIA) could undergo cladding failure at a much lower deposited energy in the fuel than was previously assumed. This could result in a larger number of fuel failures than currently assumed in the plant radiological release evaluation for this accident. The NRC stated that higher burnup fuel may be required to meet more restrictive criteria than those currently allowed for fuel failure, and that the NRC review of licensee requests to extend fuel burnup limits beyond those currently licensed would carefully consider this data. For PWRs, the NRC has identified the postulated control rod ejection accident as the RIA event of concern for this issue. It has become quite clear that in order to identify the impact of this new data, a very good best estimate knowledge of the enthalpy deposition during a rod ejection transient is needed. In the analysis presented in this paper, current licensed (1-D kinetics) methodology was first used for determining the limiting scenarios with respect to the high burnup fuel RIA issue for current core designs. A limiting plant case was then chosen for the 3-D transient analysis. The 3-D results are compared to the licensing basis results.

  2. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Nick R. Soelberg

    2010-11-01T23:59:59.000Z

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication.

  3. Life-cycle assessment of Greenhouse Gas emissions from alternative jet fuels

    E-Print Network [OSTI]

    Wong, Hsin Min

    2008-01-01T23:59:59.000Z

    The key motivation for this work was the potential impact of alternative jet fuel use on emissions that contribute to global climate change. This work focused on one specific aspect in examining the feasibility of using ...

  4. A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels

    E-Print Network [OSTI]

    Pearlson, Matthew Noah

    2011-01-01T23:59:59.000Z

    This thesis presents a model to quantify the economic costs and environmental impacts of producing fuels from hydroprocessed renewable oils (HRO) process. Aspen Plus was used to model bio-refinery operations and supporting ...

  5. Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels 

    E-Print Network [OSTI]

    Bettinger, J.; Koppel, P.; Margulies, A.

    1988-01-01T23:59:59.000Z

    "Stone & Webster Engineering Corporation, under Department of Energy sponsorship, is developing a wet oxidation system to generate steam for industrial processes by burning industrial waste materials and low-grade fuels. The program involves...

  6. An assessment of carbon sources for the production of synthetic fuels from nuclear hydrogen

    E-Print Network [OSTI]

    Leung, MinWah

    2007-01-01T23:59:59.000Z

    In the transportation sector, the current dependence on petroleum to satisfy large transportation fuel demand in the US is unsustainable. Oil resources are finite, and causing heavy US reliance on oil imports. Therefore, ...

  7. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    electricity, natural gas, and transportation fuels demandsnatural gas, or coal), it would also offer opportunities to improve the efficiency and reliability of energy supply by integrating the electricity and transportation

  8. Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels

    E-Print Network [OSTI]

    Bettinger, J.; Koppel, P.; Margulies, A.

    an assessment of wet oxidation technologies, followed by bench-scale and pilot unit testing and by eventual demonstration of the pilot unit at an industrial host site. This paper discusses the assessment conducted under the first phase of this effort, which...

  9. Assessment of ether and alcohol fuels from coal. Volume 2. Technical report

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    A unique route for the indirect liquefaction of coal to produce transportation fuel has been evaluated. The resultant fuel includes alkyl tertiary alkyl ethers and higher alcohols, all in the gasoline boiling range. When blended into gasoline, the ether fuel provides several advantages over the lower alcohols: (1) lower chemical oxygen content, (2) less-severe water-separation problems, and (3) reduced front-end volatility effects. The ether fuel also has high-octane quality. Further, it can be utilized as a gasoline substitute in all proportions. Production of ether fuel combines several steps, all of which are or have been practiced on an industrial scale: (1) coal gasification, (2) gas cleanup and shift to desired H/sub 2/:CO ratio, (3) conversion of synthesis gas to isobutanol, methanol, and higher alcohols, (4) separation of alcohols, (5) chemical dehydration of isobutanol to isobutylene, and (6) etherification of isobutylene with methanol. A pilot-plant investigation of the isobutanol synthesis step was performed. Estimates of ether-fuel manufacturing costs indicate this process route is significantly more costly than synthesis of methanol. However, the fuel performance features provide incentive for developing the necessary process and catalyst improvements. Co-production of higher-molecular-weight co-solvent alcohols represents a less-drastic form of methanol modification to achieve improvement in the performance of methanol-gasoline blends. Costs were estimated for producing several proportions of methanol plus higher alcohols from coal. Estimated fuel selling price increases regularly but modestly with higher alcohol content.

  10. Environmental Assessment: Relocation and storage of TRIGA{reg_sign} reactor fuel, Hanford Site, Richland, Washington

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    In order to allow the shutdown of the Hanford 308 Building in the 300 Area, it is proposed to relocate fuel assemblies (101 irradiated, three unirradiated) from the Mark I TRIGA Reactor storage pool. The irradiated fuel assemblies would be stored in casks in the Interim Storage Area in the Hanford 400 Area; the three unirradiated ones would be transferred to another TRIGA reactor. The relocation is not expected to change the offsite exposure from all Hanford Site 300 and 400 Area operations.

  11. Assessment of Failure Mechanisms for GFR Vented Fuel Pins Using Hexoloy Cladding

    SciTech Connect (OSTI)

    Jian Gan

    2008-09-01T23:59:59.000Z

    A near-term vented fuel pin concept as a back-up option for the gas-cooled fast reactor (GFR) system was evaluated. This work explored the feasibility of using mixed carbide fuel (U0.85P0.15)C with off-the-shelf monolithic SiC clad in order to meet requirements for GFR fuel with an average burnup of 10%. The stress loading on the SiC cladding due to fuel swelling and thermal stress due to temperature gradient were estimated based on the data from the development of carbide fuels in the 1970’s-1980’s and the materials properties for SiC tubes. The fuel swelling at the goal burnup (10%) is expected to produce a hoop stress of approximately 32 MPa in cladding, approaching the estimated maximum allowable hoop stress (~33 MPa) for a SiC cladding reliability of 99.99%. The estimated tensile thermal stress component (~121 MPa) near the outer surface of a monolithic SiC cladding is likely to limit its application at high temperatures.

  12. Assessment of a mechanistic model in U-Pu-Zr metallic alloy fuel fission-gas behavior simulations

    SciTech Connect (OSTI)

    Yun, D.; Rest, J.; Yacout, A. M. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States)

    2012-07-01T23:59:59.000Z

    A mechanistic kinetic rate theory model originally developed for the prediction of fission gas behavior in oxide nuclear fuels under steady-state and transient conditions has been assessed to look at its applicability to model fission gas behavior in U-Pu-Zr metallic alloy fuel. In order to capture and validate the underlying physics for irradiated U-Pu-Zr fuels, the mechanistic model was applied to the simulation of fission gas release, fission gas and fission product induced swelling, and the evolution of the gas bubble size distribution in three different fuel zones: the outer {alpha}-U, the intermediate, and the inner {gamma}-U zones. Due to its special microstructural features, the {alpha}-U zone in U-Pu-Zr fuels is believed to contribute the largest fraction of fission gas release among the different fuel zones. It is shown that with the use of small effective grain sizes, the mechanistic model can predict fission gas release that is consistent with (though slightly lower than) experimentally measured data. These simulation results are comparable to the experimentally measured fission gas release since the mechanism of fission gas transport through the densely distributed laminar porosity in the {alpha}-U zone is analogous to the mechanism of fission gas transport through the interconnected gas bubble porosity utilized in the mechanistic model. Detailed gas bubble size distributions predicted with the mechanistic model in both the intermediate zone and the high temperature {gamma}-U zone of U-Pu-Zr fuel are also compared to experimental measurements from available SEM micrographs. These comparisons show good agreements between the simulation results and experimental measurements, and therefore provide crucial guidelines for the selection of key physical parameters required for modeling these two zones. In addition, the results of parametric studies for several key parameters are presented for both the intermediate zone and the {gamma}-U zone simulations. (authors)

  13. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    9 Market Transformation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Market Transformation technical...

  14. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    SciTech Connect (OSTI)

    Sleaford, B W; Collins, B A; Ebbinghaus, B B; Bathke, C G; Prichard, A W; Wallace, R K; Smith, B W; Hase, K R; Bradley, K S; Robel, M; Jarvinen, G D; Ireland, J R; Johnson, M W

    2010-04-26T23:59:59.000Z

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.

  15. TRANSMISSION EFFECTS IN MARKET POWER ANALYSIS OF ELECTRICITY MARKETS

    E-Print Network [OSTI]

    Gross, George

    TRANSMISSION EFFECTS IN MARKET POWER ANALYSIS OF ELECTRICITY MARKETS Thomas J. Overbye George Gross-weber@uiuc.edu Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801 ABSTRACT This paper discusses the assessment of market power in bulk electricity markets, with the explicit

  16. Physical Market Conditions, Paper Market Activity,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPOPetroleum Reserves Vision,4newsSolarrd Physical Market

  17. Assessing and ordering investments in polluting fossil-fueled and zero-carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , the levelized cost of electricity (LCOE) is a misleading metric to assess investment in new capacities. Optimal LCOEs vary dramatically across technologies. Ranking technologies according to their LCOE would bring

  18. Development of the fundamental attributes and inputs for proliferation resistance assessments of nuclear fuel cycles 

    E-Print Network [OSTI]

    Giannangeli, Donald D. J., III

    2007-09-17T23:59:59.000Z

    threats such as theft or terrorism to future work. A new approach is presented that assesses the problem through four stages of proliferation: the diversion of nuclear material, the transportation of nuclear material from an internationally safeguarded...

  19. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01T23:59:59.000Z

    s kiosk illuminated by her LED lamp [1/2009] “A.N. ” Market:charge at a shop) “The [LED] lamp is very important and mylamp, hurricane lamp, and LED lamp illuminate night market

  20. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    Mobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

  1. Initial assessment of radiation behavior of very-high-density low-enriched-uranium fuels.

    SciTech Connect (OSTI)

    Hofman, G. L.; Meyer, M. L.; Snelgrove, J. L.; Dietz, M. L.; Strain, R. V.; Kim, K. H.

    1999-10-01T23:59:59.000Z

    Results from the postirradiation examinations of microplates irradiated in the RERTR-1 and -2 experiments in the ATR have shown several binary and ternary U-Mo alloys to be promising candidates for use in aluminum-based dispersion fuels with uranium densities up to 8 to 9 g/cm{sup 3}. Ternary alloys of uranium, niobium, and zirconium performed poorly, however, both in terms of fuel/matrix reaction and fission-gas-bubble behavior, and have been dropped from further study. Since irradiation temperatures achieved in the present experiments (approximately 70 C)are considerably lower than might be experienced in a high-performance reactor, a new experiment is being planned with beginning-of-cycle temperatures greater than 200 C in 8-g U/cm{sup 3} fuel.

  2. A Qualitative Assessment of Thorium-Based Fuels in Supercritical Pressure Water Cooled Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Mac Donald, Philip Elsworth

    2002-10-01T23:59:59.000Z

    The requirements for the next generation of reactors include better economics and safety, waste minimization (particularly of the long-lived isotopes), and better proliferation resistance (both intrinsic and extrinsic). A supercritical pressure water cooled reactor has been chosen as one of the lead contenders as a Generation IV reactor due to the high thermal efficiency and compact/simplified plant design. In addition, interest in the use of thorium-based fuels for Generation IV reactors has increased based on the abundance of thorium, and the minimization of transuranics in a neutron flux; as plutonium (and thus the minor actinides) is not a by-product in the thorium chain. In order to better understand the possibility of the combination of these concepts to meet the Generation IV goals, the qualitative burnup potential and discharge isotopics of thorium and uranium fuel were studied using pin cell analyses in a supercritical pressure water cooled reactor environment. Each of these fertile materials were used in both nitride and metallic form, with light water reactor grade plutonium and minor actinides added. While the uranium-based fuels achieved burnups that were 1.3 to 2.7 times greater than their thorium-based counterparts, the thorium-based fuels destroyed 2 to 7 times more of the plutonium and minor actinides. The fission-to-capture ratio is much higher in this reactor as compared to PWR’s and BWR’s due to the harder neutron spectrum, thus allowing more efficient destruction of the transuranic elements. However, while the uranium-based fuels do achieve a net depletion of plutonium and minor actinides, the breeding of these isotopes limits this depletion; especially as compared to the thorium-based fuels.

  3. Krypton-85 health risk assessment for a nuclear fuel reprocessing plant

    SciTech Connect (OSTI)

    Mellinger, P.J.; Brackenbush, L.W.; Tanner, J.E.; Gilbert, E.S.

    1984-08-01T23:59:59.000Z

    The risks involved in the routine release of /sup 85/Kr from nuclear fuel reprocessing operations to the environment were compared to those resulting from the capture and storage of /sup 85/Kr. Instead of releasing the /sup 85/Kr to the environment when fuel is reprocessed, it can be captured, immobilized and stored. Two alternative methods of capturing /sup 85/Kr (cryogenic distillation and fluorocarbon absorption) and one method of immobilizing the captured gas (ion implantation/sputtering) were theoretically incorporated into a representative fuel reprocessing plant, the Barnwell Nuclear Fuel Plant, even though there are no known plans to start up this facility. Given the uncertainties in the models used to generate lifetime risk numbers (0.02 to 0.027 radiation induced fatal cancers expected in the occupational workforce and 0.017 fatal cancers in the general population), the differences in total risks for the three situations, (i.e., no-capture and two-capture alternatives) cannot be considered meaningful. It is possible that no risks would occur from any of the three situations. There is certainly no reason to conclude that risks from /sup 85/Kr routinely released to the environment are greater than those that would result from the other two situations considered. Present regulations mandate recovery and disposal of /sup 85/Kr from the off gases of a facility reprocessing spent fuel from commercial sources. Because of the lack of a clear-cut indication that recovery woud be beneficial, it does not seem prudent to burden the facilities with a requirement for /sup 85/Kr recovery, at least until operating experience demonstrates the incentive. The probable high aging of the early fuel to be processed and the higher dose resulting from the release of the unregulated /sup 3/H and /sup 14/C also encourage delaying implementation of the /sup 85/Kr recovery in the early plants.

  4. Technical and economic assessment of particle control technology for direct coal fueled turbines: Final report

    SciTech Connect (OSTI)

    DiBella, C.A.W.; Thomas, R.L.; Rubow, L.N.; Zaharchuk, R.

    1987-02-01T23:59:59.000Z

    Gilbert/Commomwealth (1984) analyzed ten different concepts for high-temperature, high-pressure control of gas stream particulate matter in coal-fueled pressurized fluidized-bed combustion (PFBC) systems. This paper analyzes the five higher ranking concepts of the Gilbert study at direct coal fueled turbine conditions which are even more severe than PFBC conditions. The five concepts are ceramic crossflow filter, ceramic bag filter, granular bed filter, and advanced cyclones. Five ranking factors were used: economic, design, operations complexity, materials/mechanical, and development status. (DLC)

  5. Assessment of the safety of spent fuel transportation in urban environs

    SciTech Connect (OSTI)

    Sandoval, R.P.; Weber, J.P.; Levine, H.S.; Romig, A.D.; Johnson, J.D.; Luna, R.E.; Newton, G.J.; Wong, B.A.; Marshall, R.W. Jr.; Alvarez, J.L.

    1983-06-01T23:59:59.000Z

    The results of a program to provide an experimental data base for estimating the radiological consequences from a hypothetical sabotage attack on a light-water-reactor spent fuel shipping cask in a densely populated area are presented. The results of subscale and full-scale experiments in conjunction with an analytical modeling study are described. The experimental data were used as input to a reactor-safety consequence model to predict radiological health consequences resulting from a hypothetical sabotage attack on a spent-fuel shipping cask in the Manhattan borough of New York City. The results of these calculations are presented.

  6. Global MSW Generation in 2007 estimated at two billion tons Global Waste Management Market Assessment 2007, Key Note Publications Ltd ,

    E-Print Network [OSTI]

    Columbia University

    analyses the global waste market, with particular reference to municipal solid waste (MSW). Key NoteGlobal MSW Generation in 2007 estimated at two billion tons Global Waste Management Market between growth in wealth and increase in waste -- the more affluent a society becomes, the more waste

  7. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    Mobile Electricity” Technologies, Early California Household Markets, and Innovation ManagementMobile Electricity” Technologies, Early California Household Markets, and Innovation Managementtechnology-management, and strategic-marketing lenses to the problem of commercializing H 2 FCVs, other EDVs, and other Mobile

  8. United States Industrial Electric Motor Systems Market Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Industry MotorMaster+ User Manual New Motor Systems Market Assessment AMO and LBNL are currently developing an update to the original Motor Systems Market Assessment. The...

  9. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

  10. Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine

    SciTech Connect (OSTI)

    Reader, G.T.; Potter, I.J. [Univ. of Calgary, Alberta (Canada). Dept. of Mechanical Engineering

    1995-12-31T23:59:59.000Z

    The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

  11. Biennial Assessment of the Fifth Power Plan Interim Report on Fuel Price Assumptions

    E-Print Network [OSTI]

    . In addition, the delivered price of coal to power plants located in the region will be affected by diesel fuel The Fifth Power Plan includes price forecasts for natural gas, oil, and coal. Natural gas prices have by far costs for trains that deliver coal to the plants. Recent higher prices for coal are partially related

  12. Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation 

    E-Print Network [OSTI]

    Woddi, Taraknath Venkat Krishna

    2009-05-15T23:59:59.000Z

    Facility .......................................................................27 TABLE VIII Reprocessing Plants...............................................................................28 TABLE IX Uranium Ore Details... water production and spent fuel reprocessing technology. When this program was devised, India did not have any existing power reactors and there were no commercial fast breeder reactor systems anywhere in the world. On the heels of Bhabha?s nuclear...

  13. Development of the fundamental attributes and inputs for proliferation resistance assessments of nuclear fuel cycles

    E-Print Network [OSTI]

    Giannangeli, Donald D. J., III

    2007-09-17T23:59:59.000Z

    of the facility, access controls, detectability, required skills and time), and “institutional barriers” which cover safeguards and other extrinsic measures to prevent proliferation. Each element of the system or fuel cycle is reviewed against a specific threat... Control System ......................................................57 IV.B. Transportation Stage............................................................................................57 IV.B.1. Material Handling...

  14. Assessment of the potential of colloidal fuels in future energy usage. Final report. [97 references

    SciTech Connect (OSTI)

    Not Available

    1980-02-25T23:59:59.000Z

    Pulverized coal has been an increasing important source of energy over the past century. Most large utility boilers, all modern coking plants, and many industrial boilers and blast furnaces employ pulverized coal as a major feed stream. In periods of oil shortages, such as during World Wars I and II, the concept of adding powdered coal to oil for use in combustion equipment originally designed for oil has been actively pursued but rarely used. Over this same period of time, there have been attempts to use air suspensions of coal dust in diesel engines in Germany, and in turbines in various countries. The economic advantages to be enjoyed by substitution of powdered coal in oil are not generally realized. Oil costs at $30/bbl represent a fuel value of about $5.00/10/sup 6/ Btu; coal at $25/ton is equivalent to approximately $1.00/10/sup 6/ Btu. Although capital costs for the use of coal are higher than those associated with the use of oil, coal is clearly becoming the least costly fuel. Not only are considerable cost advantages possible, but an improvement in balance of payments and an increase in reliability of fuel supplies are other potential benefits. It is therefore recommended that increased national attention be given to develop these finer grinds of carbonaceous fuels to be used in various suspending fluids. Technical areas where significant additional support appear desirable are described.

  15. EISA 2007: Focus on Renewable Fuels Standard Program

    Broader source: Energy.gov (indexed) [DOE]

    Multi Media Issues Multi- -Media Issues Fuel Blends Market Fuel Blends Market Absorption Absorption 5 Program Considerations Throughout the Supply Chain What's our baseline?...

  16. Oil Market Assessment

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    Based on Energy Information Administration (EIA) contacts and trade press reports, overall U.S. and global oil supplies appear to have been minimally impacted by yesterday's terrorist attacks on the World Trade Center and the Pentagon.

  17. Assessing and ordering investments in polluting fossil-fueled and zero-carbon capital

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , a process known as mothballing or early scrapping. Finally, the levelized cost of electricity (LCOE) is a misleading metric to assess investment in new capacities. Optimal LCOEs vary dramatically across technologies. Ranking technologies according to their LCOE would bring too little investment in renewable power, and too

  18. Clark and Clegg 1 ASSESSING THE IMPACT OF UNITED KINGDOM FUEL PRICE

    E-Print Network [OSTI]

    Clegg, Richard G.

    shortage of petrol. This paper describes the effects of these protests on the city of York (population 100k of the use of their car for journeys and a willingness to spend free and working time queuing outside petrol, contributes to pollution and creates congestion hotspots in the vicinity of petrol stations. An assessment

  19. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Brunton, Jack; Furukawa, Vance; Frost, Grant; Danna, Mike; Figueroa, Al; Scroppo, Joseph

    1992-11-01T23:59:59.000Z

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation's molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  20. Molten carbonate fuel cell product development test environmental assessment/protection plan

    SciTech Connect (OSTI)

    Not Available

    1992-11-01T23:59:59.000Z

    Objective of proposed action is to conduct a 250-kW product development test of M-C Power Corporation`s molten carbonate fuel cell concept, at the Kaiser Permanente San Diego Medical Center. Review of environmental impacts of this test indicate the following: no impact on solid waste disposal, water quality, noise levels, floodplains, wetlands, ecology, historic areas, or socioeconomic resources. Impact on air quality are expected to be positive.

  1. alternative fuel program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 2 CALIFORNIA ALTERNATIVE FUELS MARKET...

  2. alternative fuel provider: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 2 CALIFORNIA ALTERNATIVE FUELS MARKET...

  3. alternative fuels program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Fuels? Alternative Fuels, the Smart Choice: Alternative fuels - biodiesel, electricity, ethanol (E85), natural gas 2 CALIFORNIA ALTERNATIVE FUELS MARKET...

  4. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    E-Print Network [OSTI]

    Tracy, Jennifer

    2010-01-01T23:59:59.000Z

    testing of emerging off-grid White-LED illumination systems,the economics behind off-grid lighting products for smallAvailable in the Kenyan Off-Grid Lighting Market Jennifer

  5. Nuclear fuel cycle assessment of India: a technical study for U.S.-India cooperation

    E-Print Network [OSTI]

    Woddi, Taraknath Venkat Krishna

    2008-10-10T23:59:59.000Z

    accumulation for the Mysore facility, P1 centrifuges of 3 SWU/yr capacities with a total plant load of 2000 SWU/yr was assumed. There were reports claiming failure of this project because of its inability to produce weapons-grade enriched uranium [31... the existing uranium reserves in India, a complete historical assessment of ore production, conversion, and processing capabilities was performed using open source information and compared to independent reports. Nuclear energy and plutonium production...

  6. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31T23:59:59.000Z

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  7. Idaho National Laboratory Materials and Fuels Complex Natural Phenomena Hazards Flood Assessment

    SciTech Connect (OSTI)

    Gerald Sehlke; Paul Wichlacz

    2010-12-01T23:59:59.000Z

    This report presents the results of flood hazards analyses performed for the Materials and Fuels Complex (MFC) and the adjacent Transient Reactor Experiment and Test Facility (TREAT) located at Idaho National Laboratory. The requirements of these analyses are provided in the U.S. Department of Energy Order 420.1B and supporting Department of Energy (DOE) Natural Phenomenon Hazard standards. The flood hazards analyses were performed by Battelle Energy Alliance and Pacific Northwest National Laboratory. The analyses addressed the following: • Determination of the design basis flood (DBFL) • Evaluation of the DBFL versus the Critical Flood Elevations (CFEs) for critical existing structures, systems, and components (SSCs).

  8. Assessing and Managing the Risks of Fuel Compounds: Ethanol Case Study

    SciTech Connect (OSTI)

    Layton, D.W.; Rice, D.W.

    2002-02-04T23:59:59.000Z

    We have implemented a suite of chemical transport and fate models that provide diagnostic information about the behavior of ethanol (denoted EtOH) and other fuel-related chemicals released to the environment. Our principal focus is on the impacts to water resources, as this has been one of the key issues facing the introduction of new fuels and additives. We present analyses comparing the transport and fate of EtOH, methyl tertiary butyl ether (MTBE), and 2,2,4 trimethyl pentane (TMP) for the following cases (1) discharges to stratified lakes, subsurface release in a surficial soil, (3) cross-media transfer from air to ground water, and (4) fate in a regional landscape. These compounds have significantly different properties that directly influence their behavior in the environment. EtOH, for example, has a low Henry's law constant, which means that it preferentially partitions to the water phase instead of air. An advantageous characteristic of EtOH is its rapid biodegradation rate in water; unlike MTBE or TMP, which degrade slowly. As a consequence, EtOH does not pose a significant risk to water resources. Preliminary health-protective limits for EtOH in drinking water suggest that routine releases to the environment will not result in levels that threaten human health.

  9. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector

    SciTech Connect (OSTI)

    Not Available

    1991-07-01T23:59:59.000Z

    The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

  10. Energy storage for the electricity grid : benefits and market potential assessment guide : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Inc., Livermore, CA); Corey, Garth P. (KTech Corporation, Albuquerque, NM)

    2010-02-01T23:59:59.000Z

    This guide describes a high-level, technology-neutral framework for assessing potential benefits from and economic market potential for energy storage used for electric-utility-related applications. The overarching theme addressed is the concept of combining applications/benefits into attractive value propositions that include use of energy storage, possibly including distributed and/or modular systems. Other topics addressed include: high-level estimates of application-specific lifecycle benefit (10 years) in $/kW and maximum market potential (10 years) in MW. Combined, these criteria indicate the economic potential (in $Millions) for a given energy storage application/benefit. The benefits and value propositions characterized provide an important indication of storage system cost targets for system and subsystem developers, vendors, and prospective users. Maximum market potential estimates provide developers, vendors, and energy policymakers with an indication of the upper bound of the potential demand for storage. The combination of the value of an individual benefit (in $/kW) and the corresponding maximum market potential estimate (in MW) indicates the possible impact that storage could have on the U.S. economy. The intended audience for this document includes persons or organizations needing a framework for making first-cut or high-level estimates of benefits for a specific storage project and/or those seeking a high-level estimate of viable price points and/or maximum market potential for their products. Thus, the intended audience includes: electric utility planners, electricity end users, non-utility electric energy and electric services providers, electric utility regulators and policymakers, intermittent renewables advocates and developers, Smart Grid advocates and developers, storage technology and project developers, and energy storage advocates.

  11. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  12. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    C. E. S. Thomas, "Hydrogen and Fuel Cells: Pathway to a4-2 incorporates hydrogen and fuel cells into a roadmap thatdevelopment efforts. Hydrogen and fuel-cell technologies are

  13. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  14. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    modes, allowing, say, fuel- cell costs to slide down ancurve that plots fuel-cell cost in dollars per kilowatt2002. ) production, fuel-cell cost is assumed to fall by

  15. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    None

    1980-10-01T23:59:59.000Z

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2007-01-01T23:59:59.000Z

    fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

  17. Niche Marketing

    E-Print Network [OSTI]

    McCorkle, Dean; Anderson, David P.

    2009-05-01T23:59:59.000Z

    Niche markets are small, specialized markets for goods or services. Agricultural producers have many opportunities for niche marketing, and this strategy can contribute to the profitability of a firm. Examples of niche markets are included...

  18. Tri-County solid waste-to-fuel production project feasibility study

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    The analysis and preliminary findings of refuse-derived fuel and recovered components markets are presented. Other topics covered are: municipal solid waste composition, quantity and constraints; technical assessment and capital cost assessment; economic feasibility of burning process residue to generate steam; review of commercially available equipment for the densification of refuse-derived fuel; final pre-feasibility analysis for the Tri-County Municipal Solid Waste to Fuel Production Project; preliminary economic and sensitivity analysis for the Tri-County Project; risks assessment for the Tri-County Project; and environmental, health, safety, and socioeconomic assessment for the Tri-County Project. (MHR)

  19. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01T23:59:59.000Z

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  20. More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01T23:59:59.000Z

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports on the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.

  1. Assessing the Predictive Capability of the LIFEIV Nuclear Fuel Performance Code using Sequential Calibration

    SciTech Connect (OSTI)

    Stull, Christopher J. [Los Alamos National Laboratory; Williams, Brian J. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory

    2012-07-05T23:59:59.000Z

    This report considers the problem of calibrating a numerical model to data from an experimental campaign (or series of experimental tests). The issue is that when an experimental campaign is proposed, only the input parameters associated with each experiment are known (i.e. outputs are not known because the experiments have yet to be conducted). Faced with such a situation, it would be beneficial from the standpoint of resource management to carefully consider the sequence in which the experiments are conducted. In this way, the resources available for experimental tests may be allocated in a way that best 'informs' the calibration of the numerical model. To address this concern, the authors propose decomposing the input design space of the experimental campaign into its principal components. Subsequently, the utility (to be explained) of each experimental test to the principal components of the input design space is used to formulate the sequence in which the experimental tests will be used for model calibration purposes. The results reported herein build on those presented and discussed in [1,2] wherein Verification & Validation and Uncertainty Quantification (VU) capabilities were applied to the nuclear fuel performance code LIFEIV. In addition to the raw results from the sequential calibration studies derived from the above, a description of the data within the context of the Predictive Maturity Index (PMI) will also be provided. The PMI [3,4] is a metric initiated and developed at Los Alamos National Laboratory to quantitatively describe the ability of a numerical model to make predictions in the absence of experimental data, where it is noted that 'predictions in the absence of experimental data' is not synonymous with extrapolation. This simply reflects the fact that resources do not exist such that each and every execution of the numerical model can be compared against experimental data. If such resources existed, the justification for numerical models would be reduced considerably. The authors note that the PMI is primarily intended to provide a high-level, quantitative description of year-to-year (or version-to-version) improvements in numerical models, where these descriptions can be used as a means of justifying funding requests to support further model development research. It is in this context that the present report should be considered: the availability of data from experimental tests should be viewed as a time-dependent variable, where experiments are added to the calibration suite as resources become available. For the present report, the experimental data is of course already available (permitting demonstration of the proposed methodology). Furthermore, the authors are not proposing this methodology as the answer to the question of how to allocate resources for experimental tests, and readers are directed to [5] and the references contained in Section 1 of [5] for additional information on the subject. However, the strength of this methodology is that it offers a means by which to select the sequence of experiments in a pre-arranged experimental campaign (a situation for which the methods discussed in [5] are less appropriate). The report is organized as follows. Section 2 describes the methodology employed to formulate the sequences of experiments for the calibrations performed for this study. Section 3 then presents the results associated with two sequences; supplementary results are provided in the Appendix. The report then concludes in Section 4 with a brief summary.

  2. Self-reported Impacts of LED Lighting Technology Compared to Fuel-based Lighting on Night Market Business Prosperity in Kenya

    E-Print Network [OSTI]

    Johnstone, Peter

    2009-01-01T23:59:59.000Z

    Project includes an Off-Grid Lighting Technology Assessmentand the market success of off-grid lighting solutions forillumination systems for off-grid application—the focus of

  3. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

    2011-06-01T23:59:59.000Z

    Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

  4. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

  5. Essays on the dynamics of alternative fuel vehicle adoption : insights from the market for hybrid-electric vehicles in the United States

    E-Print Network [OSTI]

    Keith, David Ross

    2012-01-01T23:59:59.000Z

    Despite growing energy security and environmental concerns about dependence on oil as a transportation fuel, gasoline remains the overwhelmingly dominant fuel used by the US automotive fleet. Numerous previous efforts to ...

  6. Sandia National Laboratories: DOE Fuel Cell Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets On March 6, 2015, in Capabilities, Center for Infrastructure...

  7. Sandia National Laboratories: fueling infrastructure development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fueling infrastructure development New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets On March 6, 2015, in Capabilities, Center for...

  8. Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

  9. Market Allocation (MARKAL) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & Gas »ofMarketingSmartManufacturingMarch8,ofMarkAcceptance

  10. Market Transformation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOil & GasTechnical Publications » Market Analysis Transformation

  11. MARKET BASED APPROACHES

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy andTermsDepartment1| Department ofEnergy .EofMARKET

  12. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle

    SciTech Connect (OSTI)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01T23:59:59.000Z

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

  13. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01T23:59:59.000Z

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  14. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01T23:59:59.000Z

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  15. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    R. H. Williams, Solar hydrogen: moving beyond fossil fuels.J. S. Cannon, Harnessing Hydrogen: The Key to Sustainablefuel cell power systems hydrogen vs. methanol: a comparative

  16. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01T23:59:59.000Z

    challenges facing hydrogen storage technologies, refuelinguncertainties surrounding hydrogen storage, fuel-cell-system1) vehicle range/hydrogen storage and 2) home refueling. 1:

  17. High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication

    E-Print Network [OSTI]

    Naramore, Michael J

    2010-08-03T23:59:59.000Z

    The objective of this work was to evaluate a new high conductivity nuclear fuel form. Uranium dioxide (UO2) is a very effective nuclear fuel, but it’s performance is limited by its low thermal conductivity. The fuel concept considered here is a...

  18. High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication 

    E-Print Network [OSTI]

    Naramore, Michael J

    2010-08-03T23:59:59.000Z

    The objective of this work was to evaluate a new high conductivity nuclear fuel form. Uranium dioxide (UO2) is a very effective nuclear fuel, but it’s performance is limited by its low thermal conductivity. The fuel concept considered here is a...

  19. Fuel Prices and New Vehicle Fuel Economy in Europe

    E-Print Network [OSTI]

    Klier, Thomas

    This paper evaluates the effect of fuel prices on new vehicle fuel economy in the eight largest European markets. The analysis spans the years 2002–2007 and uses detailed vehicle registration and specification data to ...

  20. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1998 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  1. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    Gasoline and Diesel Fuel Update (EIA)

    Petroleum Marketing Annual 1995 337 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  2. Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil...

    U.S. Energy Information Administration (EIA) Indexed Site

    Petroleum Marketing Annual 1999 295 Table 46. Refiner No. 2 Distillate, Diesel Fuel, and Fuel Oil Volumes by PAD District and State (Thousand Gallons per Day) - Continued...

  3. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    SciTech Connect (OSTI)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01T23:59:59.000Z

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  4. Fuel Cell Technologies Office Launches National Laboratory Tech...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office Launches National Laboratory Tech-to-Market Activities Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November 3, 2014 -...

  5. HVAC Market Study:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal848 Unlimited Release1/2 HR 1.00 $ ForHVAC Market

  6. Sandia Energy - Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry Simmons Is OneMarket

  7. Natural Gas Marketed Production

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 3,958,315storage35Market

  8. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19

    SciTech Connect (OSTI)

    Schneider, K.J.

    1982-09-01T23:59:59.000Z

    Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

  9. Forest Fuels ReductionForest Fuels Reduction Department of

    E-Print Network [OSTI]

    Bolding, M. Chad

    the initial fuels reduction treatments leave the site with regard to long-term forest vegetation and soil are the productivity and cost rates for alternative choices of equipment for mechanical fuels reduction; what reduction operations for existing markets and new markets? (eg. biomass energy) Research Rationale

  10. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1995-03-01T23:59:59.000Z

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  11. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01T23:59:59.000Z

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water Reactor (PWR) assemblies. In addition to consideration of this 'naive' use of TRISO fuel in LWRs, several refined options are briefly examined and others are identified for further consideration including the use of advanced, high density fuel forms and larger kernel diameters and TRISO packing fractions. The combination of 800 {micro}m diameter kernels of 20% enriched UN and 50% TRISO packing fraction yielded reactivity sufficient to achieve comparable burnup to present-day PWR fuel.

  12. Assessing the Performance of LED-Based Flashlights Available in the Kenyan Off-Grid Lighting Market

    SciTech Connect (OSTI)

    Tracy, Jennifer; Jacobson, Arne; Mills, Evan

    2010-03-02T23:59:59.000Z

    Low cost rechargeable flashlights that use LED technology are increasingly available in African markets. While LED technology holds promise to provide affordable, high quality lighting services, the widespread dissemination of low quality products may make it difficult to realize this potential. This study includes performance results for three brands of commonly available LED flashlights that were purchased in Kenya in 2009. The performance of the flashlights was evaluated by testing five units for each of the three brands. The tests included measurements of battery capacity, time required to charge the battery, maximum illuminance at one meter, operation time and lux-hours from a fully charged battery, light distribution, and color rendering. All flashlights tested performed well below the manufacturers? rated specifications; the measured battery capacity was 30-50percent lower than the rated capacity and the time required to fully charge the battery was 6-25percent greater than the rated time requirement. Our analysis further shows that within each brand there is considerable variability in each performance indicator. The five samples within a single brand varied from each other by as much as 22percent for battery capacity measurements, 3.6percent for the number of hours required for a full charge, 23percent for maximum initial lux, 38percent for run time, 11percent for light distribution and by as much as 200percent for color rendering. Results obtained are useful for creating a framework for quality assurance of off-grid LED products and will be valuable for informing consumers, distributors and product manufacturers about product performance.

  13. Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperational Management »EnergyHubs |

  14. Sandia National Laboratories: Market Transformation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and NREL Announce Two New H2FIRST Reports New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets Sandians Participate in 46th Annual...

  15. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  16. Petroleum marketing annual 1994

    SciTech Connect (OSTI)

    NONE

    1995-08-24T23:59:59.000Z

    The Petroleum Marketing Annual (PMA) provides information and statistical data on a variety of crude oils and refined petroleum products. The publication presents statistics on crude oil costs and refined petroleum products sales for use by industry, government, private sector analysis, educational institutions, and consumers. Data on crude oil include the domestic first purchase price, the fob and landed cost of imported crude oil, and the refiners` acquisition cost of crude oil. Refined petroleum product sales data include motor gasoline, distillates, residuals, aviation fuels, kerosene, and propane. The Petroleum Marketing Division, Office of Oil and Gas, Energy Information Administration ensures the accuracy, quality, and confidentiality of the published data in the Petroleum Marketing Annual. For this production, all estimates have been recalculated since their earlier publication in the Petroleum Marketing Monthly (PMM). These calculations made use of additional data and corrections that were received after the PMM publication date.

  17. Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I

    SciTech Connect (OSTI)

    None

    1982-01-31T23:59:59.000Z

    The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

  18. Market Transformation

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market transformation subprogram.

  19. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01T23:59:59.000Z

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  20. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    SciTech Connect (OSTI)

    NONE

    1998-12-01T23:59:59.000Z

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ``DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.`` DOE`s Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site.