National Library of Energy BETA

Sample records for fuel infrastructure development

  1. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  2. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  3. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  4. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electric Vehicles Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing

  5. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Development Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center:

  6. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  7. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  8. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity, and Retail Availability for Low-Carbon Scenarios | Department of Energy Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel

  9. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and ...

  10. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Environmental Management (EM)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April ...

  11. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project Home Infrastructure Security Energy Transportation Energy Facilities Partnership Capabilities News News &...

  12. United States Fuel Resiliency: US Fuels Supply Infrastructure | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy United States Fuel Resiliency: US Fuels Supply Infrastructure United States Fuel Resiliency: US Fuels Supply Infrastructure Report: United States Fuel Resiliency - U.S. Fuels Supply Infrastructure Study: (1) Infrastructure Characterization; (II) Vulnerability to Natural and Physical Threats; and (III) Vulnerability and Resilience This report assesses the U.S. fuels supply transportation, storage, and distribution (TS&D) infrastructure, its vulnerabilities (natural and physical

  13. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    1996-11-01

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  14. Infrastructure Development and Financial Analysis

    Broader source: Energy.gov [DOE]

    Infrastructure Development and Financial Analysis quantifies the total costs of scenarios for developing the hydrogen infrastructure, including production, delivery, and utilization. By combining...

  15. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    Panel at the U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure ... More Documents & Publications Bio-Derived Liquids to Hydrogen Distributed Reforming ...

  16. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen, Fuel Cells and Infrastructure Technologies program's 2002 annual progress report. 33098.pdf (22.09 MB) More Documents & Publications Webinar: Photosynthesis for Hydrogen ...

  17. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  18. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  19. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Hydrogen Infrastructure Testing and Research Facility Text Version The Hydrogen Infrastructure Testing and Research Facility (HITRF) at NREL's Energy Systems Integration Facility (ESIF) consists of hydrogen storage, compression, and dispensing capabilities for fuel cell vehicle fueling and component testing. The HITRF is the first facility of its kind in Colorado and will be available to industry for use in research and development activities. In addition to fueling

  20. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  1. Webinar: Overview of the Hydrogen Fueling Infrastructure Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology ...

  2. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program ...

  3. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    fry.pdf (257.11 KB) More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  4. Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    California Ramps Up Biofuels Infrastructure to someone by E-mail Share Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Facebook Tweet about Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Twitter Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Google Bookmark Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure on Delicious Rank Alternative Fuels Data Center: California Ramps

  5. Kerala Industrial Infrastructure Development Corporation Kinfra...

    Open Energy Info (EERE)

    Kerala Industrial Infrastructure Development Corporation Kinfra Jump to: navigation, search Name: Kerala Industrial Infrastructure Development Corporation (Kinfra) Place:...

  6. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Britta K. Gross Manager, Hydrogen and Electrical Infrastructure General Motors Corporation NREL Alt Fuel Lessons Learned -- Hydrogen Infrastructure -- Sacramento, CA April 3, 2008 * Very limited access to today's stations - Stations not made available or... - No-go access contracts/liability clauses or ... - Assurance of access by customers/drivers * "OEM x vehicles/drivers have priority over OEM y" * e.g. "Can't fuel on Tuesday and Thursday afternoons 4-7pm" * Very limited

  7. Hydrogen Vehicles and Fueling Infrastructure in China

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Vehicles and Fueling Infrastructure in China Prof. Jinyang Zheng Director of IPE, Zhejiang University Director of Engineering Research Center for High Pressure Process Equipment and Safety, Ministry of Education Vice Director of China National Safety Committee of Pressure Vessels Vice President of CMES-P.R. China China Representative of ISO/TC197 and ISO/TC58 U.S. Department of Transportation and U. S. Department of Energy Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons

  8. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel...

    Office of Environmental Management (EM)

    Hydrogen Infrastructure and Fuel Cell Electric Vehicle EERE Success Story-Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle January 13, 2015 - 11:31am Addthis H2USA, ...

  9. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  10. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Broader source: Energy.gov [DOE]

    Agenda for Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  11. Transportation Infrastructure Requirement Resources | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National Governors ...

  12. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alt Fuel Lessons Learned: Hydrogen Infrastructure NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California gross_nrel_nha_03apr2008.pdf (643.57 KB) More Documents & Publications Transportation and Stationary Power Integration Workshop: ""An Automaker's Views on the Transition to Hydrogen and Fuel Cell Vehicles Lessons and

  13. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program | Department of Energy FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program This FY 2003 Progress Report presents a description of the fuel cell and hydrogen research conducted by the Hydrogen, Fuel Cells and Infrastructure Technologies Program in fiscal year 2003 (FY 2003), projects to be implemented in FY 2004, and the research priorities for FY

  14. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Readiness Workshop | Department of Energy and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market Readiness Workshop Presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Program Manager, at the Hydrogen Infrastructure Market Readiness Workshop, February 16, 2011, in Washington, D.C. DOE Hydrogen and Fuel Cell Overview (1.66 MB) More Documents & Publications DOE

  15. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  16. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  17. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned for Hydrogen Dean Fry, BP April 3, 2008 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 UNITED STATES Department of Energy Infrastructure Lessons Learned Fueling Station Location and Customer Selection Coordination between the OEM and Hydrogen Station Developer is crucial for optimal selection of sites / customers ISSUE Suboptimal site selection has resulted in low station utilization SOLUTIONS Clear understanding /

  18. Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  19. Hydrogen Vehicles and Fueling Infrastructure in China | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fueling Infrastructure in China Hydrogen Vehicles and Fueling Infrastructure in China Presentation given by Jinyang Zheng of Zhejiang University at the CNG and Hydrogen Lessons Learned Workshop on December 10, 2009 cng_h2_workshop_10_zheng.pdf (1.35 MB) More Documents & Publications Safety and Regulatory Structure for CNG, CNG-Hydrogen, Hydrogen Vehicles and Fuels in China Overview of DOE - DOT December 2009 CNG and Hydrogen Fuels Workshop

  20. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  1. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues | Department of Energy Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. csd_workshop_2_elrick.pdf (1004.25 KB) More Documents & Publications FCEVs and Hydrogen in California Vision for Rollout of Fuel Cell Vehicles and

  2. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect (OSTI)

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  3. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Bill Elrick California Fuel Cell Partnership 3/19/2013 The cars are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017 launch of affordable FCEV 1/28/13 Toyota partnership with BMW 1/24/2013 Toyota announces sedan-type FCEV launch in 2015 9/24/12 The buses are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017

  4. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    Broader source: Energy.gov [DOE]

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in different regions of the United States, which represent a range of disruption types and liquid fuels infrastructure systems configurations. The impact estimates have two fundamental steps: defining the stressing event and estimating the event's impact in terms of a performance metric. The metric used to evaluate the level of impact is how well the liquid fuels sector performs its mission of providing fuel to consumers during and after a stressing event. The liquid fuels system responded well to each stressing event, though the size and duration of fuel shortage impacts for specific regions and cities varied widely.

  5. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Growth of the NGV Market: Lessons Learned Lessons Learned Roadmap for Infrastructure Development Roadmap for Infrastructure Development Stephe Yborra Director of Market Analysis, Education & Communications Clean Vehicle Education Foundation Director of Marketing & Communications NGVAmerica " " Roadmap For Development of Roadmap For Development of NGV Fueling Infrastructure NGV Fueling Infrastructure and and Analysis of Vehicular Analysis of Vehicular

  6. NREL: Hydrogen and Fuel Cells Research - Hydrogen Infrastructure Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Research Facility Video (Text Version) Hydrogen Infrastructure Testing and Research Facility Video (Text Version) Below is the text version of the Hydrogen Infrastructure Testing and Research Facility video. Welcome to the U.S. Department of Energy's National Renewable Energy Laboratory. Through DOE support and in collaboration with industry, NREL researchers are working on vehicle and hydrogen infrastructure projects that aim to enable more rapid inclusion of fuel cell and hydrogen

  7. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST). ...

  8. Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation Report | Department of Energy Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report This document summarizes the comments provided by the Merit Review Panel at the U.S. Department of Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Merit Review and Peer Evaluation, held on May 19-22, 2003, in Berkeley, California.

  9. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency and Conservation Loan Program, and More | Department of Energy Fueling Infrastructure Technology, Energy Efficiency and Conservation Loan Program, and More DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology, Energy Efficiency and Conservation Loan Program, and More November 14, 2014 - 9:04am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the

  10. Hydrogen Fuel Cells Backup Infrastructure Cleanly and Quietly | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Hydrogen Fuel Cells Backup Infrastructure Cleanly and Quietly Hydrogen Fuel Cells Backup Infrastructure Cleanly and Quietly August 25, 2010 - 1:00pm Addthis Sprint Nextel Corp. is deploying new fuel cells - such as these from ReliOn - to sites throughout the country. | Photo courtesy of Sprint Nextel Corp. Sprint Nextel Corp. is deploying new fuel cells - such as these from ReliOn - to sites throughout the country. | Photo courtesy of Sprint Nextel Corp. Maya Payne Smart Former

  11. NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure April 30, 2014 A new project led by the Energy Department's National Renewable Energy Laboratory (NREL) and Sandia National Laboratories will support H2USA, a public-private partnership co-launched by industry and the Energy Department, and will work to ensure that hydrogen fuel cell vehicle owners have a positive fueling experience as fuel cell electric vehicles are introduced starting in 2014-2015. By tackling the

  12. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  13. California Low Carbon Fuels Infrastructure Investment Initiative

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  15. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KB) More Documents & Publications Proceedings of the 2005 Hydrogen Pipeline Working Group Workshop City of Tulare Renewable Biogas Fuel Cell Project Microsoft Word - AL2003-04.doc

  16. Transportation Energy Futures Series: Alternative Fuel Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel ... A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable ...

  17. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen | Department of Energy Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. 43669.pdf (1.5 MB) More Documents & Publications IPHE Infrastructure Workshop - Workshop Proceedings, February 25-26, 2010 Sacramento, CA Hydrogen Energy Storage for Grid and Transportation Services Workshop Hydrogen

  18. California Low Carbon Fuels Infrastructure Investment Initiative...

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt082tibowen2012o.pdf (647.19 KB) More Documents & ...

  19. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure

    SciTech Connect (OSTI)

    Wilson, Michael; Corbet, Thomas F.; Baker, Arnold B.; O'Rourke, Julia M.

    2015-04-01

    This report presents a methodology for estimating the impacts of events that damage or disrupt liquid fuels infrastructure. The impact of a disruption depends on which components of the infrastructure are damaged, the time required for repairs, and the position of the disrupted components in the fuels supply network. Impacts are estimated for seven stressing events in regions of the United States, which were selected to represent a range of disruption types. For most of these events the analysis is carried out using the National Transportation Fuels Model (NTFM) to simulate the system-level liquid fuels sector response. Results are presented for each event, and a brief cross comparison of event simulation results is provided.

  20. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  1. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K.

    1993-06-01

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  2. Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report

    Broader source: Energy.gov [DOE]

    The Department of Energy’s Hydrogen, Fuel Cells and Infrastructure Technologies program’s 2002 annual progress report.

  3. Fuel Cell Vehicle and Infrastructure Learning Demonstration Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2008-10-13

    Presentation on the Fuel Cell Vehicle and Infrastructure Learning Demonstration project prepared for the 215th Electrochemical Society Meeting.

  4. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. | Department of Energy Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from

  5. Fuel Fabrication Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  6. United States Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Resiliency Volume II U.S. Fuels Supply Infrastructure Vulnerability to Natural and Physical Threats FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. . Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes

  7. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  8. Appendix G - GPRA06 hydrogen, fuel cells, and infrastructure technologies (HFCIT) program

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The target markets for the Office of Hydrogen, Fuel Cells, and Infrastructure Technologies (HFCIT) program include transportation (cars and light trucks) and stationary (particularly residential and commercial) applications.

  9. NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-02-01

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  10. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor

  11. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Hitchcock, David

    2012-06-29

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations

  12. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  13. Fuel Fabrication Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs CONVERT Fuel Fabrication Development (CONVERT) The nation looks to our uranium-processing capabilities to optimize fabrication of a fuel, which will enable certain ...

  14. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure The facility houses equipment such as glove box, fume hoods, oxygen-free nanopure water system and ultrasonic processors. Schlenk-type techniques are routinely used...

  15. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  16. United States Fuel Resiliency Volume III U.S. Fuels Supply Infrastructure

    Broader source: Energy.gov (indexed) [DOE]

    Volume III U.S. Fuels Supply Infrastructure Vulnerabilities and Resiliency FINAL REPORT Prepared for: Office of Energy Policy and Systems Analysis U.S. Department of Energy September 2014 INTEK Inc. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees or contractors, makes any warranty, express or implied, or assumes any legal liability or

  17. Infrastructure Requirements for an Expanded Fuel Ethanol Industry

    SciTech Connect (OSTI)

    Reynolds, Robert E.

    2002-01-15

    This report provides technical information specifically related to ethanol transportation, distribution, and marketing issues. This report required analysis of the infrastructure requirements for an expanded ethanol industry.

  18. Hydrogen Infrastructure for the Next Generation of Fuel Cell Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy This feasibility report assesses the technical and economic feasibility of developing a vacant, undeveloped General Services Administration-owned property into an income-producing site equipped with a hydrogen fueling station and a covered 175-stall parking structure with roof-top solar panels. According to the analysis, the proposed station will enable the third-party owner to combine income streams by selling excess solar power back to the grid, leasing the covered

  19. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet describes the initiation of NREL’s evaluation of a fuel cell hybrid electric bus at Hickam Air Force Base in Honolulu, Hawaii as part of DOE’s Hydrogen, Fuel Cells & Infrastructure Technologies Program.

  20. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure (D2SA) Co-Chairs: Christopher Beggio, Sandia National Laboratories Robin Goldstone, Lawrence Livermore National Laboratories 1 Contributors * Bill Allcock, Argonne Leadership Computing Facility * Chris Beggio, Sandia National Laboratories * Clay England, Oak Ridge Leadership Computing Facility * Doug Fuller, Oak Ridge Leadership Computing Facility * Robin Goldstone, Lawrence Livermore National Laboratory * Jason Hick, National Energy Research Scientific Computing Center * Kyle

  1. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development

    Broader source: Energy.gov [DOE]

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California

  2. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Todays society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS, examines the interrelationships between infrastructure networks. CIMS development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwins theory of evolution. A GA can be coupled with CIMS to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS and the preliminary results.

  3. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  4. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  5. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  6. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  7. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Proceedings NREL/BK-560-43669 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina

  8. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  9. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina National Renewable Energy Laboratory S. McQueen and J. Brinch Energetics Incorporated Sacramento, California April 3, 2008 Proceedings NREL/BK-560-43669 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Workshop Proceedings M.W. Melaina

  10. Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells & Infrastructure Technologies Program FY2003 Merit Review & Peer Evaluation Report May 19-22, 2003 Berkeley, California October 2003 Dear Colleague: This document summarizes the comments provided by the Merit Review Panel at the U.S. DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program (HFCIT) FY 2003 Merit Review and Peer Evaluation, held on May 19-22, 2003 in Berkeley, California. The recommendations of the panel have been taken into consideration by

  11. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE)

    H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. Through...

  12. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micro-grid for a Safe, Secure, E cient, and Cost-e ective Electric Power Infrastructure !"#$%"&%'&"&()*+%,-./-"(&*"0.-"+.-1&.,2-"+2$&01&!"#$%"&3.-,.-"+%.#4&"&5.67822$& 9"-+%#&3.(,"#14&:.-&+82&;#%+2$&!+"+2'&<2,"-+(2#+&.:&=#2-/1>'&?"+%.#"*&?)6*2"-&

  13. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L; Duleep, Gopal

    2013-06-01

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  14. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Broader source: Energy.gov (indexed) [DOE]

    This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013. ...

  15. Mixed oxide fuel development

    SciTech Connect (OSTI)

    Leggett, R.D.; Omberg, R.P.

    1987-05-08

    This paper describes the success of the ongoing mixed-oxide fuel development program in the United States aimed at qualifying an economical fuel system for liquid metal cooled reactors. This development has been the cornerstone of the US program for the past 20 years and has proceeded in a deliberate and highly disciplined fashion with high emphasis on fuel reliability and operational safety as major features of an economical fuel system. The program progresses from feature testing in EBR-II to qualifying full size components in FFTF under fully prototypic conditions to establish a basis for extending allowable lifetimes. The development program started with the one year (300 EFPD) core, which is the FFTF driver fuel, continued with the demonstration of a two year (600 EFPD) core and is presently evaluating a three year (900 EFPD) fuel system. All three of these systems, consistent with other LMR fuel programs around the world, use fuel pellets gas bonded to a cladding tube that is assembled into a bundle and fitted into a wrapper tube or duct for ease of insertion into a core. The materials of construction progressed from austenitic CW 316 SS to lower swelling austenitic D9 to non swelling ferritic/martensitic HT9. 6 figs., 2 tabs.

  16. Nuclear Infrastructure Development: Strategies and Methods for Engaging Nuclear Energy Seeking States

    SciTech Connect (OSTI)

    Frazar, Sarah L.; Kessler, Carol A.; Kreyling, Sean J.; Morris, Frederic A.; Mathews, Caroline E.; Bissani, Mo; Vergino, Eileen; Essner, Jonathan; Babcock, Rose A.; Eipeldauer, Dawn; Shipwash, Jacqueline; Apt, Kenneth E.

    2009-01-31

    This is the final report for the three infrastructure development workshops PNNL hosted or supported: the two infrastructure development seminars and the Como conference

  17. Fuel Cell Development Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and

  18. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  19. Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    Broader source: Energy.gov [DOE]

    This 2008 report from Oak Ridge National Laboratory summarizes the results of analyses funded by the U.S. Department of Energy to evaluate alternative scenarios for deployment of hydrogen fuel cell vehicles and fueling infrastructure in response to the requirements of Section 811 of the Energy Policy Act of 2005 and the recommendations of the National Academy of Sciences Report, The Hydrogen Economy, published in 2004.

  20. NGV fleet fueling station business plan: A public, private and utility partnership to identify economical business options for implementation of CNG fueling infrastructure

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The City of Long Beach recently incorporated an additional 61 natural gas vehicles (NGV) within its own fleet, bringing the City`s current NGV fleet to 171 NGVs. During January 1992, the City opened its first public access compressed natural gas (CNG) fueling station (86 CFM). This action served as the City`s first step toward developing the required CNG infrastructure to accommodate its growing NGV fleet, as well as those of participating commercial and private fleet owners. The City of Long Beach is committed to promoting NGVs within its own fleet, as well as encouraging NGV use by commercial and private fleet owners and resolving market development barriers. The NGV Business Plan provides recommendations for priority locations, station size and design, capital investment, partnership and pricing options. The NGV Business Plan also includes an econometric model to calculate CNG infrastructure cost recovery options, based on CNG market research within the City of Long Beach and Southern California area. Furthermore, the NGV Business Plan provides the City with a guide regarding CNG infrastructure investment, partnerships and private fueling programs. Although the NGV Business Plan was developed to address the prevailing CNG-related issues affecting the City of Long Beach, the methodology used within the NGV Business Plan and, more significantly, the accompanying econometric model will assist local governments, nation-wide, in the successful implementation of similar CNG infrastructures required for effective market penetration of NGVs.

  1. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station Technologies

    Broader source: Energy.gov [DOE]

    As part of the U.S. Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $1.4 million investment to Wallingford- based Proton Energy Systems to collect and analyze performance data for hydrogen fueling stations and advanced refueling components. The projects will also help to track the performance and technical progress of innovative refueling systems to find ways to lower costs and improve operation. These investments are part of the Department's broader strategy to advance U.S. leadership in hydrogen and fuel cell technological innovation and help the industry bring these technologies into the marketplace at lower cost.

  2. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  3. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  4. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    SciTech Connect (OSTI)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  5. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results ...

  6. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal agencies, state agencies, hydrogen providers, energy companies, technology developers, national labs, academia, and other trade associations or non-profit organizations. ...

  7. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect (OSTI)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M.

    2012-07-01

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to

  8. IPHE Infrastructure Workshop Proceedings

    SciTech Connect (OSTI)

    2010-02-01

    This proceedings contains information from the IPHE Infrastructure Workshop, a two-day interactive workshop held on February 25-26, 2010, to explore the market implementation needs for hydrogen fueling station development.

  9. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  10. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  11. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  12. Plasmatron Fuel Reformer Development and Internal Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications ...

  13. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  14. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect (OSTI)

    Simon Cobb

    2011-04-30

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  15. Fuel Cycle Research and Development Advanced Fuels Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    near-term accident tolerant LWR fuel technology n Perform research and development of long-term transmutation options 2 ATF AFC Fuel Development Life Cycle Irradiation ...

  16. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  17. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth; Chen, Fanglin; Popov, Branko; Chao, Yuh; Xue, Xingjian

    2012-09-15

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  18. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth

    2011-07-31

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  19. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect (OSTI)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on “green fuels” which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PI’s have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  20. Development of a public key infrastructure across multiple enterprises

    SciTech Connect (OSTI)

    Sharick, T.M.; Long, J.P.; Desind, B.J.

    1997-05-01

    Main-stream applications are beginning to incorporate public key cryptography. It can be difficult to deploy this technology without a robust infrastructure to support it. It can also be difficult to deploy a public key infrastructure among multiple enterprises when different applications and standards must be supported. This discussion chronicles the efforts by a team within the US Department of Energy`s Nuclear Weapons Complex to build a public key infrastructure and deploy applications that use it. The emphasis of this talk will be on the lessons learned during this effort and an assessment of the overall impact of this technology.

  1. Baylor University - Renewable Aviation Fuels Development Center...

    Open Energy Info (EERE)

    University - Renewable Aviation Fuels Development Center Jump to: navigation, search Name: Baylor University - Renewable Aviation Fuels Development Center Address: One Bear Place...

  2. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    SciTech Connect (OSTI)

    none,

    2009-08-01

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Cells and Infrastructure Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  3. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Gas Turbines - Fact Sheet, May 2014 | Department of Energy Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 GE Global Research developed and tested new fuel-flexible gas turbine nozzle technology concepts that will enable end users to efficiently generate power and heat from industrial off-gases and gasified industrial,

  4. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORNL/TM-2013/222 Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Revised July 2013 1 Prepared by David L. Greene Oak Ridge National Laboratory Gopal Duleep HD Systems 1 This is a revised version of the paper originally published in June 2013. DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web

  5. Fuel cell development for transportation: Catalyst development

    SciTech Connect (OSTI)

    Doddapaneni, N.; Ingersoll, D.

    1996-12-31

    Fuel cells are being considered as alternative power sources for transportation and stationary applications. The degradation of commonly used electrode catalysts (e.g. Pt, Ag, and others) and corrosion of carbon substrates are making commercialization of fuel cells incorporating present day technologies economically problematic. Furthermore, due to the instability of the Pt catalyst, the performance of fuel cells declines on long-term operation. When methanol is used as the fuel, a voltage drop, as well as significant thermal management problems can be encountered, the later being due to chemical oxidation of methanol at the platinized carbon at the cathode. Though extensive work was conducted on platinized electrodes for both the oxidation and reduction reactions, due to the problems mentioned above, fuel cells have not been fully developed for widespread commercial use. Several investigators have previously evaluated metal macrocyclic complexes as alternative catalysts to Pt and Pt/Ru in fuel cells. Unfortunately, though they have demonstrated catalytic activity, these materials were found to be unstable on long term use in the fuel cell environment. In order to improve the long-term stability of metal macrocyclic complexes, we have chemically bonded these complexes to the carbon substrate, thereby enhancing their catalytic activity as well as their chemical stability in the fuel cell environment. We have designed, synthesized, and evaluated these catalysts for O{sub 2} reduction, H{sub 2} oxidation, and direct methanol oxidation in Proton Exchange Membrane (PEM) and aqueous carbonate fuel cells. These catalysts exhibited good catalytic activity and long-term stability. In this paper we confine our discussion to the initial performance results of some of these catalysts in H{sub 2}/O{sub 2} PEM fuel cells, including their long-term performance characteristics as well as CO poisoning effects on these catalysts.

  6. FY2015 ceramic fuels development annual highlights

    SciTech Connect (OSTI)

    Mcclellan, Kenneth James

    2015-09-22

    Key challenges for the Advanced Fuels Campaign are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Ceramic fuel development activities for fiscal year 2015 fell within the areas of 1) National and International Technical Integration, 2) Advanced Accident Tolerant Ceramic Fuel Development, 3) Advanced Techniques and Reference Materials Development, and 4) Fabrication of Enriched Ceramic Fuels. High uranium density fuels were the focus of the ceramic fuels efforts. Accomplishments for FY15 primarily reflect the prioritization of identification and assessment of new ceramic fuels for light water reactors which have enhanced accident tolerance while also maintaining or improving normal operation performance, and exploration of advanced post irradiation examination techniques which will support more efficient testing and qualification of new fuel systems.

  7. Natural Gas in the Rocky Mountains: Developing Infrastructure

    Reports and Publications (EIA)

    2007-01-01

    This Supplement to the Energy Information Administration's Short-Term Energy Outlook analyzes current natural gas production, pipeline and storage infrastructure in the Rocky Mountains, as well as prospective pipeline projects in these states. The influence of these factors on regional prices and price volatility is examined.

  8. Sandia Energy - Center for Infrastructure Research and Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    More Efficient Fuel Cells under Development by Engineers Read More Permalink Gallery High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for Infrastructure...

  9. Development of alkaline fuel cells.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  10. sustainable development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainable development - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  11. IPHE Infrastructure Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    IPHE Infrastructure Workshop IPHE Infrastructure Workshop This interactive workshop, held February 25-26, 2010, in Sacramento, CA, focused on realistic, practical issues with the aim of producing information to help develop policies, technologies, and incentives that will contribute to the success of hydrogen fuel retailers. Organizers of the workshop include IPHE (International Partnership for Hydrogen and Fuel Cells in the Economy), the U.S. Department of Energy, California Fuel Cell

  12. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  13. New developments in RTR fuel recycling

    SciTech Connect (OSTI)

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A.

    2013-07-01

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  14. Hydrogen and Infrastructure Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of Energy Fuel Cell Technologies Program Fuel Cells: Diverse Fuels and Applications More than $40 million from the 2009 American Recovery and Reinvestment Act to fund 12 projects to deploy up to 1,000 fuel cells Recovery Act Funding for Fuel Cells COMPANY AWARD APPLICATION Delphi Automotive $2.4 M Auxiliary Power FedEx

  15. Development of portable fuel cells

    SciTech Connect (OSTI)

    Nakatou, K.; Sumi, S.; Nishizawa, N.

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  16. EERE Success Story—Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle

    Broader source: Energy.gov [DOE]

    H2USA, a public-private partnership, was co-launched by DOE and industry partners to promote advancing hydrogen infrastructure to support more transportation energy options for consumers. Through...

  17. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Energy Savers [EERE]

    Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in ...

  18. Chapter 7: Advancing Systems and Technologies to Produce Cleaner Fuels | Natural Gas Delivery Infrastructure Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Offshore Safety and Spill Prevention Unconventional Oil and Gas ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Natural Gas Delivery Infrastructure Chapter 7: Technology Assessments Introduction and Background The U.S. natural gas delivery system is an extensive network composed of over 315,000 miles of transmission pipeline and over 2.1 million miles of distribution mains. 1 In 2015, this system moved over 25 trillion cubic feet

  19. THE MISSION AND ACCOMPLISHMENTS FROM DOE’S FUEL CYCLE RESEARCH AND DEVELOPMENT (FCRD) ADVANCED FUELS CAMPAIGN

    SciTech Connect (OSTI)

    J. Carmack; L. Braase; F. Goldner

    2015-09-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.

  20. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Research and Development Materials Recovery and Waste Form Development Campaign Overview Jim Bresee, DOE NE NEET Webinar September 17, 2014 Campaign Objectives  Develop advanced fuel cycle material recovery and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion to provide options for future fuel cycle policy decisions  Campaign strategy is based

  1. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  2. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission ...

  3. Final report for the Integrated and Robust Security Infrastructure (IRSI) laboratory directed research and development project

    SciTech Connect (OSTI)

    Hutchinson, R.L.; Hamilton, V.A.; Istrail, G.G.; Espinoza, J.; Murphy, M.D.

    1997-11-01

    This report describes the results of a Sandia-funded laboratory-directed research and development project titled {open_quotes}Integrated and Robust Security Infrastructure{close_quotes} (IRSI). IRSI was to provide a broad range of commercial-grade security services to any software application. IRSI has two primary goals: application transparency and manageable public key infrastructure. IRSI must provide its security services to any application without the need to modify the application to invoke the security services. Public key mechanisms are well suited for a network with many end users and systems. There are many issues that make it difficult to deploy and manage a public key infrastructure. IRSI addressed some of these issues to create a more manageable public key infrastructure.

  4. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  5. Biodiesel Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for biodiesel. Biodiesel Vehicle and Infrastructure Codes and Standards Chart Vehicles Storage Dispensing Infrastructure Engine Testing: Fuel Systems: Fuel Lubricants: Powertrain Systems: Containers: Dispensing Operations: Dispensing

  6. Geothermal power development in Hawaii. Volume II. Infrastructure and community-services requirements, Island of Hawaii

    SciTech Connect (OSTI)

    Chapman, G.A.; Buevens, W.R.

    1982-06-01

    The requirements of infrastructure and community services necessary to accommodate the development of geothermal energy on the Island of Hawaii for electricity production are identified. The following aspects are covered: Puna District-1981, labor resources, geothermal development scenarios, geothermal land use, the impact of geothermal development on Puna, labor resource requirments, and the requirements for government activity.

  7. Hydrogen Infrastructure Strategies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Strategies Prof. Joan Ogden University of California, Davis Presented at the NREL Workshop on Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Sacramento, CA April 3, 2008 H 2 2 H 2 TRANSITION => MULTIPLE TRANSITIONS Vehicle technology Fuel Supply infrastructure New, low carbon primary supply ALL ALT FUELS/VEHICLES FACE THESE ISSUES TO SOME DEGREE FIRST STEPS OF THESE TRANSITIONS ARE UNDERWAY (Though Not Exclusively Tied to H 2 ) FOCUS OF

  8. Vehicle Technologies Office Merit Review 2014: Unlocking Private Sector Financing for Alternative Fuel Vehicles and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Association of State Energy Officials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  9. DOE Announces Notice of Intent to Issue Hydrogen and Fuel Cell Research, Development, and Demonstration FOA

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office, a Funding Opportunity Announcement (FOA) entitled "Hydrogen and Fuel Cell Technologies Research, Development, and Demonstration" on or about December 10, 2015. The FOA will offer up to $35 million, subject to appropriations, for hydrogen production, delivery, and storage research and development; demonstration and deployment of infrastructure components; consortia topics for fuel cell performance and durability and advanced hydrogen storage materials research; and cost and performance analysis for hydrogen production, storage, and fuel cells.

  10. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  11. Overview of Fuel Cell Electric Bus Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility &

  12. International Hydrogen Infrastructure Update Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    Download the presentation slides from the Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Update" held on August 30, 2016.

  13. Argentina to Ecuador: Highlights encompassing exploration, development, and infrastructure

    SciTech Connect (OSTI)

    Aufranc, J.L.

    1997-04-01

    In recent years mining has expanded significantly in Argentina due to many developments, which include elimination, or reduction to reasonable levels, of a very high level of economic instability. It was a situation that lasted for many decades and that made it very difficult to plan or calculate taxes during the term of a project. Nevertheless, a very important legal security for property rights-which included mining-existed, together with the absence of expropriations. The world and regional conditions with respect to the globalization of activities changed in many ways: the international trade accords such as Mercosur, communications, transportation, the easy access to information through data processing, satellites, etc. Nationalism and the monopolistic statism-with an emotional rejection to foreign capital-have almost disappeared, especially in Argentina. It should be mentioned that the main state companies, i.e. oil, gas, airlines, coal, maritime companies, water, electricity, steel, etc., had the national colors in their logos. In this circumstance, the European concept was followed, without its efficiency and administrative culture. Now, irreversibly, the state manager disappears, and the economy opens-together with the free flow of capital to enter and leave. Convertibility and the set of rules related to mining created a framework necessary for the mining sector`s awakening and the beginning of development of important projects such as Bajo de la Alumbrera and Salar del Hombre Muerto.

  14. California Fuel Cell Partnership CaFCP | Open Energy Information

    Open Energy Info (EERE)

    fuel cell vehicles under real driving conditions and to assist in the development of a hydrogen infrastructure. References: California Fuel Cell Partnership (CaFCP)1 This...

  15. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The

  16. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-06-10

    This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

  17. Cross-Cutting Hydrogen Station Infrastructure Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cross-Cutting Hydrogen Station Infrastructure Review Cross-Cutting Hydrogen Station Infrastructure Review The U.S. Department of Energy (DOE)'s Fuel Cell Technologies Office (FCTO) hosted a cross-cutting review on June 10, 2016, to evaluate FCTO's activities related to hydrogen station infrastructure, discuss the critical technical barriers to expanding hydrogen infrastructure and the strategies to overcome them, and gather feedback to better inform strategies to address research, development,

  18. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOE's ...

  19. Review of Transportation Issues & Comparison of Infrastructure Costs for a Renewable Fuels Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the inter-regional transportation issues and associated costs for increased distribution of renewable fuels with the assumption that ethanol will be used to meet the standards.

  20. High Density Fuel Development for Research Reactors

    SciTech Connect (OSTI)

    Daniel Wachs; Dennis Keiser; Mitchell Meyer; Douglas Burkes; Curtis Clark; Glenn Moore; Jan-Fong Jue; Totju Totev; Gerard Hofman; Tom Wiencek; Yeon So Kim; Jim Snelgrove

    2007-09-01

    An international effort to develop, qualify, and license high and very high density fuels has been underway for several years within the framework of multi-national RERTR programs. The current development status is the result of significant contributions from many laboratories, specifically CNEA in Argentina, AECL in Canada, CEA in France, TUM in Germany, KAERI in Korea, VNIIM, RDIPE, IPPE, NCCP and RIARR in Russia, INL, ANL and Y-12 in USA. These programs are mainly engaged with UMo dispersion fuels with densities from 6 to 8 gU/cm3 (high density fuel) and UMo monolithic fuel with density as high as 16 gU/cm3 (very high density fuel). This paper, mainly focused on the French & US programs, gives the status of high density UMo fuel development and perspectives on their qualification.

  1. Development of Reversible Fuel Cell Systems at Proton Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Fuel Cell Systems at Proton Energy Everett Anderson NRELDOE Reversible Fuel Cell Workshop 19 April 2011 Development of Reversible Fuel Cell Systems at Proton Energy ...

  2. Update On Monolithic Fuel Fabrication Development

    SciTech Connect (OSTI)

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  3. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    SciTech Connect (OSTI)

    Cochran, John Russell; Ouchi, Yuichiro; Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  4. Technology development goals for automotive fuel cell power systems. Final report, Appendix B-2

    SciTech Connect (OSTI)

    Thomas, C.E.; James, B.D.

    1995-07-01

    Directed Technologies, Inc. has previously submitted a detailed technical assessment and concept design for a mid-size, five-passenger fuel cell electric vehicle (FCEV), under contract to the Argonne National Laboratory. As a supplement to that contract, DTI has reviewed the literature and conducted a preliminary evaluation of two energy carriers for the FCEV: hydrogen and methanol. This report compares the estimated fuel efficiency, cost of producing and delivering the fuel, and the resultant life cycle costs of the FCEV when fueled directly by hydrogen and when fueled by methanol with on-board reforming to produce the required hydrogen-rich gas for the fuel cell. This work will be supplemented and expanded under the Ford contract with the Department of Energy to develop the FCEV and its fuel infrastructure.

  5. Molybdenum-base cermet fuel development

    SciTech Connect (OSTI)

    Gurwell, W.E.; Moss, R.W.; Pilger, J.P.; White, G.D.

    1987-07-01

    Development of a multimegawatt (MMW) space nuclear power system requires identification and resolution of several technical feasibility issues before selecting one or more promising system concepts. Demonstration of reactor fuel fabrication technology is required for cermet-fueled reactor concepts. MMW reactor fuel development activity at Pacific Northwest Laboratory (PNL) is focused on producing a molybdenum-matrix uranium-nitride (UN) fueled cermet. This cermet is to have a high matrix density (greater than or equal to95%) for high strength and high thermal conductance coupled with a high particle (UN) porosity (approx.25%) for retention of released fission gas at high burnup. Fabrication process development involves the use of porous TiN microspheres as surrogate fuel material until porous UN microspheres become available. Process development has been conducted in the areas of microsphere synthesis, particle sealing/coating, and high-energy-rate forming (HERF) and vacuum hot press consolidation techniques. This paper summarizes the status of these activities.

  6. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  7. NREL: Hydrogen and Fuel Cells Research - Energy Department Announces New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tools for Hydrogen Fueling Infrastructure Deployment Energy Department Announces New Tools for Hydrogen Fueling Infrastructure Deployment April 21, 2015 The Energy Department has announced two new tools and the release of two reports developed through H2USA to support hydrogen fueling infrastructure deployment. H2USA is a public-private partnership launched in 2013 to overcome the critical barriers to hydrogen infrastructure and enable the commercialization of fuel cell electric vehicles.

  8. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D; Pawel, Steven J; Theiss, Timothy J; Janke, Christopher James

    2012-07-01

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more

  9. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Multi-Year Research, Development and Demonstration Plan Page 3.2 - 1 3.2 Hydrogen Delivery Delivery is an essential component of any future hydrogen infrastructure. It encompasses those processes needed to transport hydrogen from a central or semi-central production facility to the final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems, including those used in vehicles,

  10. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment K. Moriarty National Renewable Energy Laboratory M. Kass and T. Theiss Oak Ridge National Laboratory Technical Report NREL/TP-5400-61684 November 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National

  11. Fuel Cycle Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  12. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    SciTech Connect (OSTI)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  13. Artificial Photosynthesis: An Alternative to Fuel Cell Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Artificial Photosynthesis: An Alternative to Fuel Cell Development December 15, 2015 Artificial Photosynthesis: An Alternative to Fuel Cell Development Photosynthesis research at ...

  14. Report of the Fuel Cycle Research and Development Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear...

  15. Bioenergy Science Center to Develop Better Ways of Making Fuel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bioenergy Science Center to Develop Better Ways of Making Fuel From Plants NREL among ... develop processes for converting plants including switchgrass and poplar trees into fuels. ...

  16. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations December 11, 2015 - ...

  17. Design and Development of High-Performance Polymer Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Development of High-Performance Polymer Fuel Cell Membranes Design and Development of High-Performance Polymer Fuel Cell Membranes A presentation to the High Temperature ...

  18. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Office of Environmental Management (EM)

    Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role ...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Energy Savers [EERE]

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The ...

  20. Supertruck - Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  1. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD ... More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine

  2. Fuel Cycle Research & Development Documents | Department of Energy

    Office of Environmental Management (EM)

    June 22, 2015 Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ... The result of the accident tolerant fuel development activities, if successful, ...

  3. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ...

  4. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling ...

  5. NEAC Fuel Cycle Research and Development Subcommittee Report...

    Office of Environmental Management (EM)

    Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting NEAC Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting PDF ...

  6. Integrated Tool Development for Used Fuel Disposition Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase I Report Integrated Tool Development for Used Fuel Disposition Natural System Evaluation Phase...

  7. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Grants The Maryland Energy Administration administers the Maryland Alternative Fuel Infrastructure Program (AFIP), which provides grants to develop public access alternative fueling and charging infrastructure. Only Maryland-based private businesses are eligible, and projects must take place in the state. Grant awards will range from $35,000 to $500,000 and applicant cost share must be at least 50%. Applications will be accepted on a competitive basis through February 10, 2017.

  9. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Grants The Maryland Energy Administration administers the Maryland Alternative Fuel Infrastructure Program (AFIP), which provides grants to develop public access alternative fueling and charging infrastructure. Only Maryland-based private businesses are eligible, and projects must take place in the state. Grant awards will range from $35,000 to $500,000 and applicant cost share must be at least 50%. Applications will be accepted on a competitive basis through February 10, 2017.

  10. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    evaluate different disposal designs and sites; inform the development of regulatory ... that rates the potential ability of alternative fuel cycle options to achieve desired ...

  11. NP-MHTGR Fuel Development Program Results

    SciTech Connect (OSTI)

    Maki, John Thomas; Petti, David Andrew; Hobbins, Richard Redfield; McCardell, Richard K.; Shaber, Eric Lee; Southworth, Finis Hio

    2002-10-01

    In August 1988, the Secretary of Energy announced a strategy to acquire New Production Reactor capacity for producing tritium. The strategy involved construction of a New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) where the Idaho National Engineering and Environmental Laboratory (INEEL) was selected as the Management and Operations contractor for the project. Immediately after the announcement in August 1988, tritium target particle development began with the INEEL selected as the lead laboratory. Fuel particle development was initially not considered to be on a critical path for the project, therefore, the fuel development program was to run concurrently with the design effort of the NP-MHTGR.

  12. Advanced LWR Nuclear Fuel Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... through LWRS program funding and industry cost-sharing. * Coordinate project development among research organizations associated with the U.S commercial nuclear industry, to the ...

  13. Appendix B: Hydrogen, Fuel Cells, and Infrastructure Technologies Program inputs for FY 2008 benefits estimates

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.

  14. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720 Hydrogen as a Vehicle Fuel into September 2005 the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates Santa Monica, California

  15. Advanced LWR Nuclear Fuel Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Reactor Sustainability R&D Program Advanced Instrumentation, Information, and Control Systems Technologies Overview Bruce P. Hallbert DOE-NE Webinar September 16, 2014 Light Water Sustainability Program Goals and Scope * Develop the fundamental scientific basis to understand, predict, and measure changes in materials and structures, systems, and components (SSCs) as they age in environments * Apply this knowledge to develop and demonstrate methods and technologies that support safe and

  16. Alternative Fuels Data Center: Hydrogen Research and Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Research and Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Research and Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Research and Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Research and Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Research and Development on Digg Find More places to share

  17. Alternative Fuels Data Center: Electricity Research and Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Research and Development to someone by E-mail Share Alternative Fuels Data Center: Electricity Research and Development on Facebook Tweet about Alternative Fuels Data Center: Electricity Research and Development on Twitter Bookmark Alternative Fuels Data Center: Electricity Research and Development on Google Bookmark Alternative Fuels Data Center: Electricity Research and Development on Delicious Rank Alternative Fuels Data Center: Electricity Research and Development on Digg Find

  18. Development of an Automated Security Risk Assessment Methodology Tool for Critical Infrastructures.

    SciTech Connect (OSTI)

    Jaeger, Calvin D.; Roehrig, Nathaniel S.; Torres, Teresa M.

    2008-12-01

    This document presents the security automated Risk Assessment Methodology (RAM) prototype tool developed by Sandia National Laboratories (SNL). This work leverages SNL's capabilities and skills in security risk analysis and the development of vulnerability assessment/risk assessment methodologies to develop an automated prototype security RAM tool for critical infrastructures (RAM-CITM). The prototype automated RAM tool provides a user-friendly, systematic, and comprehensive risk-based tool to assist CI sector and security professionals in assessing and managing security risk from malevolent threats. The current tool is structured on the basic RAM framework developed by SNL. It is envisioned that this prototype tool will be adapted to meet the requirements of different CI sectors and thereby provide additional capabilities.

  19. Deep Burn: Development of Transuranic Fuel for High-Temperature...

    Office of Scientific and Technical Information (OSTI)

    DB HTR (INL, GA, Logos); (2) Spent Fuel Management - (a) TRISO (tri-structural isotropic) ... Reprocessing METROX (metal recovery from oxide fuel) Process Development (ANL). ...

  20. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Technologies Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" ...

  1. Indonesian fuel consumers shouldering development costs

    SciTech Connect (OSTI)

    Not Available

    1984-08-22

    A graph shows how Indonesia's prices for regular and premium leaded gasolines and diesel fuel compare to the world average price, in US dollars per gallon: USA $0.28 lower for regular leaded gasoline, $0.30 lower for premium leaded, and $0.48 lower for diesel. Such proximity to world averages is of note in the context that Indonesia, a developing country with pressing needs for industrial and social development, does not internally provide the deep consumer subsidies that have long persisted in many such oil-producing countries. Although the other three countries shown on the graph have recently moved to cut internal fuel price subsidies, they still price these three important fuels more deeply below the world average than does Indonesia. A table details Indonesia's internal market price changes over time, by petroleum product. A chart tracks Indonesia's oil exports since 1966. The year of the first world oil price shock, 1973, shows a dramatic increase in exports, but that near-doubling was not repeated during the period of the second price shock, 1978-1979. As of 182, exports (by now including condensates) had fallen to pre-Arab Oil Embargo levels. This issue contains the fuel price/tax series and the principal industrial fuel prices for August 1984 for countries of the Western Hemisphere. Also, beginning with this issue, Energy Detente will appear only in English rather than both English and Spanish, as heretofore.

  2. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas; Daumueller, Andrew Nicholas

    2012-02-01

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New

  3. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and

  4. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell ...

  5. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  6. Iowa Renewable Fuels Association IRFA | Open Energy Information

    Open Energy Info (EERE)

    Product: Fosters the development and growth of renewable fuels industry through education, promotion and infrastructure development in Iowa. Coordinates: 33.831879,...

  7. NREL: Energy Analysis - Electric Infrastructure Systems Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Buildings Electric Infrastructure Systems Energy Sciences Geothermal Hydrogen and Fuel Cells Solar Vehicles and Fuels Research Wind Geospatial Analysis Key Activities ...

  8. infrastructure | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies.

  9. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.8 Education and Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Education and Outreach Multi-Year Research, Development and Demonstration Plan Page 3.8 - 1 3.8 Education and Outreach Expanding the role of hydrogen and fuel cell technologies as an integral part of the Nation's energy portfolio requires sustained education and outreach efforts. Increased efforts are required to facilitate near-term demonstration projects and early market fuel cell and hydrogen infrastructure installations, to increase public awareness and understanding, and to lower barriers

  10. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waste to return of research reactor fuel of U.S. origin. In addition, Snl supports the nrC in the development of technical bases to support various rule-making activities...

  11. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Steve Magee; Richard Gehman

    2005-07-12

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at ...

  13. Tubular solid oxide fuel cell development program

    SciTech Connect (OSTI)

    Ray, E.R.; Cracraft, C.

    1995-12-31

    This paper presents an overview of the Westinghouse Solid Oxide Fuel Cell (SOFC) development activities and current program status. The Westinghouse goal is to develop a cost effective cell that can operate for 50,000 to 100,000 hours. Progress toward this goal will be discussed and test results presented for multiple single cell tests which have now successfully exceeded 56,000 hours of continuous power operation at temperature. Results of development efforts to reduce cost and increase power output of tubular SOFCs are described.

  14. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect (OSTI)

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  15. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data

  16. Automotive Fuel Cell Research and Development Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Research and Development Needs Automotive Fuel Cell Research and Development Needs Presentation by USCAR FreedomCARFuel Cell Tech Team Industry for DOE Fuel Cell Pre-Solicitation Workshop - March 16, 2010 Golden, CO fuelcell_pre-solicitation_wkshop_mar10_gittleman.pdf (235.45 KB) More Documents & Publications Automotive Perspective on Membrane Evaluation Transportation Fuel Cell R&D Needs (Presentation) DOE Fuel Cell Pre-Solicitation Workshop - Breakout Group 2: MEAs,

  17. Update on US High Density Fuel Fabrication Development

    SciTech Connect (OSTI)

    C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

    2007-03-01

    Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

  18. EM Transfers Coal to Fuel Economic Development | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfers Coal to Fuel Economic Development EM Transfers Coal to Fuel Economic Development May 16, 2016 - 12:15pm Addthis A front loader dumps a bucket of coal into the first of ...

  19. Solid Oxide Fuel Cell and Power System Development at PNNL

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials ...

  20. Fuel Cell Development and Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

  1. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    SciTech Connect (OSTI)

    Rick Meeker; L. Baldwin; Steinar Dale; Alexander Domijan; Davild Larbalestier; Hui Li; Peter McLaren; Sastry Pamidi; Horatio Rodrigo; Michael Steurer

    2010-03-31

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintaining system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach

  2. Fuel Cell Technologies Manufacturing Research and Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Within the Office of Energy Efficiency and Renewable Energy (EERE), the Fuel Cell Technologies Office (FCTO) supports manufacturing research and development (R&D) activities to improve processes and reduce the cost of components and systems for hydrogen production, delivery, and storage over the

  3. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  4. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing

  5. NEAC Fuel Cycle Research and Development Subcommittee Report for December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11, 2015 Meeting | Department of Energy Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting NEAC Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting Fuel Cycle Research and Development Subcommittee Report (146.05 KB) More Documents & Publications MEETING MATERIALS: DECEMBER 11, 2015 MEETING MATERIALS: JUNE 26, 2015 MEETING MATERIALS: DECEMBER 10, 2014

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while

  7. Connecticut Fuel Cell Programs - From Demonstration to Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Fuel Cell Programs - From Demonstration to Deployment September 12, 2007 Lise ... Wind 7 Project 100 Onsite DG Company Development Demonstration Industry Infrastructure ...

  8. Infrastructure Security Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Summary Energy, Climate, and Infrastructure Executive Summary / 3 Message from the VP Rick Stulen, Vice President Energy, Climate, & Infrastructure Security SMU Access to reliable, affordable, and sustainable sources of energy is essential for all modern economies. Since the late 1950s, we Americans have not been energy self-sufficient. Our addiction to foreign oil and fossil fuels puts our economy, our environment, and ultimately our national security at risk. Furthermore, there

  9. Fuel Cell Technologies Office Multi-Year Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan | Department of Energy Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan describes the goals, objectives, technical targets, tasks, and schedules for all activities within the Fuel Cell Technologies (FCT) Office, which is part of the U.S. Department

  10. Development of fuel processors for transportation and stationary fuel cell systems

    SciTech Connect (OSTI)

    Mitchell, W.L.; Bentley, J.M.; Thijssen, J.H.J.

    1996-12-31

    Five years of development effort at Arthur D. Little have resulted in a family of low-cost, small-scale fuel processor designs which have been optimized for multiple fuels, applications, and fuel cell technologies. The development activities discussed in this paper involve Arthur D. Little`s proprietary catalytic partial oxidation fuel processor technology. This technology is inherently compact and fuel-flexible, and has been shown to have system efficiencies comparable to steam reformers when integrated properly with a wide range of fuel cell types.

  11. Requirements and potential development pathways for fission energy supply infrastructures of the 21st century - a systems viewpoint.

    SciTech Connect (OSTI)

    Wade, D. C.

    1999-06-14

    Using an energy supply systems approach, we envision attributes and characteristic needs of a future global fission-based energy supply infrastructure, enumerate potential pathways for meeting those needs, and identify the underlying enabling science and technology developments for R and D efforts to meet the needs.

  12. Used Fuel Disposition Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Used Fuel Disposition Research & Development Used Fuel Disposition Research & Development A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful release of radioactive material. A typical spent nuclear fuel cask sitting on a railcar. Since the early 1960s, the United States has safely conducted more than 3,000 shipments of used nuclear fuel without any harmful

  13. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Broader source: Energy.gov (indexed) [DOE]

    heavy-duty truck fuel efficiency. deer12deojeda.pdf (1.53 MB) More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program)

  14. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California PDF icon...

  15. Used Fuel Disposition Campaign Disposal Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Disposal Research and Development Roadmap Rev. 01 Used Fuel Disposition Campaign Disposal Research and Development Roadmap Rev. 01 The U.S. Department of Energy Office of Nuclear...

  16. Supertruck - Development and Demonstration of a Fuel-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  17. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D ...

  18. Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy...

    Open Energy Info (EERE)

    Development Plan Hydrogen Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Cell Economic Development Plan Hydrogen Roadmap AgencyCompany Organization:...

  19. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    Funding Opportunity Announcement DE-FOA-0001412: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations includes up to $35 million in funding across four areas of interest: research and development (R&D) for hydrogen fuel technologies; demonstration and deployment for manufacturing technologies and Climate Action Champions; R&D within consortia for fuel cell performance and durability and hydrogen storage materials; and cost and performance analyses for hydrogen production and delivery, hydrogen storage, and fuel cells.

  20. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role hydrogen and fuel cells can play in a portfolio of technology options available to address the energy-related challenges faced by nations around the world. It offers examples of real-world hydrogen and fuel cell applications and the progress of the technologies, including government policies

  1. Solid oxide fuel cell power system development

    SciTech Connect (OSTI)

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  2. Tubular solid oxide fuel cell developments

    SciTech Connect (OSTI)

    Bratton, R.J.; Singh, P.

    1995-08-01

    An overview of the tubular solid oxide fuel cell (SOFC) development at Westinghouse is presented in this paper. The basic operating principles of SOFCs, evolution in tubular cell design and performance improvement, selection criteria for cell component materials, and cell processing techniques are discussed. The commercial goal is to develop a cell that can operate for 5 to 10 years. Results of cell test operated for more than 50,000 hours are presented. Since 1986, significant progress has been made in the evolution of cells with higher power, lower cost and improved thermal cyclic capability. Also in this period, successively larger multi-kilowatt electrical generators systems have been built and successfully operated for more than 7000 hours.

  3. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    SciTech Connect (OSTI)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

  4. Automotive Fuel Cell Research and Development Needs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    USCAR / FreedomCAR Fuel Cell Tech Team Industry Members Craig Gittleman, David Masten and Scott Jorgensen General Motors James Waldecker, Shinichi Hirano and Mark Mehall Ford Motor Company Tarek Abdel-Baset Chrysler LLC Automotive Fuel Cell R&D Needs DOE Fuel Cell Pre-Solicitation Workshop March 16, 2010 Golden, CO General Motors - Ford - Chrysler Overview * Purpose: To provide automotive OEM perspective on topics recommended for study in the DOE Fuel Cell Subprogram * Categories described

  5. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of our reactor designs employ a concurrent engineering approach that addresses the integration of safety, operations, security, and safeguards from the conceptual design level. Capabilities include core design, thermal hydraulics, waste characterization, simulator development, and severe service and accident testing. Design assessments include: safety, security, vulnerability, siting, emergency planning, and fuel cycle impact. organization 6221 serves as a window to sister organizations

  6. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines

    SciTech Connect (OSTI)

    2008-12-01

    General Electric Global Research will define, develop, and test new fuel nozzle technology concepts for gas turbine operation on a wide spectrum of opportunity fuels and/or fuel blends. This will enable gas turbine operation on ultra-low Btu fuel streams such as very weak natural gas, highly-diluted industrial process gases, or gasified waste streams that are out of the capability range of current turbine systems.

  7. Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994

    SciTech Connect (OSTI)

    1994-01-31

    Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

  8. Developments in U.S. Alternative Fuel Markets

    Reports and Publications (EIA)

    2001-01-01

    The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

  9. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

  10. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  11. NREL Developed Mobile App for Alternative Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Released - News Releases | NREL NREL Developed Mobile App for Alternative Fueling Station Locations Released New application for iPhone helps users find stations offering electricity, biodiesel, natural gas, and other alternative fuels. November 7, 2013 iPhone users now have access to a free application that locates fueling stations offering alternative fuels, including electricity, natural gas, biodiesel, e85 Ethanol, propane and hydrogen. The Energy Department's (DOE) National Renewable

  12. US RERTR FUEL DEVELOPMENT POST IRRADIATION EXAMINATION RESULTS

    SciTech Connect (OSTI)

    A. B. Robinson; D. M. Wachs; D. E. Burkes; D. D. Keiser

    2008-10-01

    Post irradiation examinations of irradiated RERTR plate type fuel at the Idaho National Laboratory have led to in depth characterization of fuel behavior and performance. Both destructive and non-destructive examination capabilities at the Hot Fuels Examination Facility (HFEF) as well as recent results obtained are discussed herein. New equipment as well as more advanced techniques are also being developed to further advance the investigation into the performance of the high density U-Mo fuel.

  13. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    SciTech Connect (OSTI)

    Stephen C. Yborra

    2007-04-30

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high

  14. Alternative Fuels Data Center: Research and Development of Electricity as a

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Fuel Research and Development of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Research and Development of

  15. Hydrogen and Infrastructure Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Costs Hydrogen and Infrastructure Costs Presentation by Fred Joseck, U.S. Department of Energy Fuel Cell Technologies Program, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. wkshp_market_readiness_joseck.pdf (659.13 KB) More Documents & Publications Overview of Hydrogen and Fuel Cells: National Academy of Sciences March 2011 Analysis of a Cluster Strategy for Near Term Hydrogen Infrastructure Rollout in Southern California

  16. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accident Tolerant LWR Fuels - Update and Status David Henderson, Acting Director, Fuel Cycle R&D Office of Nuclear Energy NEAC Meeting December 10, 2014 Presentation Overview  Background: Where does ATF fit in NE?  Status: Where is the ATF Program and where is it going?  Collaborations: University and International Partners  Funding  Questions Deputy Assistant Secretary for Fuel Cycle Technologies John Herczeg (Andrew Griffith, acting ADAS) NE-5 Office of Systems Engineering

  17. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Expands International Effort to Develop Fuel-Efficient Trucks DOE Expands International Effort to Develop Fuel-Efficient Trucks June 30, 2008 - 2:15pm Addthis GOTHENBURG, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Volvo Group CEO Leif Johansson today agreed to expand cooperation to develop more fuel-efficient trucks. Once contractual negotiations are complete later this year, the

  18. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs) Presentation by Michael Veenstra, Ford Motor Company, at the U.S. Department of Energy's Polymer and ...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Energy Savers [EERE]

    Year Research, Development, and Demonstration Plan Planned program activities for 2011-2020 Fuel Cell Technologies Office NOTICE This report was prepared as an account of work ...

  20. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel ...

  1. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  2. HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report

    SciTech Connect (OSTI)

    Brian D. James, Peter O. Schmidt, Julie Perez

    2008-12-01

    This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

  3. PEM fuel cell applications and their development at International Fuel Cells

    SciTech Connect (OSTI)

    Fuller, T.F.; Gorman, M.E.; Van Dine, L.L.

    1996-12-31

    International Fuel Cells (IFC) is involved with the full spectrum of fuel cell power plants including the development of Proton Exchange Membrane (PEM) fuel cell systems. The extensive background in systems, design, materials and manufacturing technologies has been brought to bear on the development of highly competitive PEM power plants. IFC is aggressively pursuing these opportunities and is developing low-cost designs for a wide variety of PEM fuel cell applications with special emphasis on portable power and transportation. Experimental PEM power plants for each of these applications have been successfully tested.

  4. Infrastructure Development of Single Cell Testing Capability at A0 Facility

    SciTech Connect (OSTI)

    Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

    2009-09-01

    The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the

  5. Metallic Fuel Casting Development and Parameter Optimization Simulations

    SciTech Connect (OSTI)

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  6. Development of probabilistic design method for annular fuels

    SciTech Connect (OSTI)

    Ozawa, Takayuki

    2007-07-01

    The increase of linear power and burn-up during the reactor operation is considered as one measure to ensure the utility of fast reactors in the future; for this the application of annular oxide fuels is under consideration. The annular fuel design code CEPTAR was developed in the Japan Atomic Energy Agency (JAEA) and verified by using many irradiation experiences with oxide fuels. In addition, the probabilistic fuel design code BORNFREE was also developed to provide a safe and reasonable fuel design and to evaluate the design margins quantitatively. This study aimed at the development of a probabilistic design method for annular oxide fuels; this was implemented in the developed BORNFREE-CEPTAR code, and the code was used to make a probabilistic evaluation with regard to the permissive linear power. (author)

  7. Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  8. Infrastructure Assurance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Assurance - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, ...

  10. Linear air-fuel sensor development

    SciTech Connect (OSTI)

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  11. The DOE Advanced Gas Reactor Fuel Development and Qualification Program

    SciTech Connect (OSTI)

    David Petti

    2010-09-01

    The high outlet temperatures and high thermal-energy conversion efficiency of modular High Temperature Gas-cooled Reactors (HTGRs) enable an efficient and cost effective integration of the reactor system with non-electricity generation applications, such as process heat and/or hydrogen production, for the many petrochemical and other industrial processes that require temperatures between 300C and 900C. The Department of Energy (DOE) has selected the HTGR concept for the Next Generation Nuclear Plant (NGNP) Project as a transformative application of nuclear energy that will demonstrate emissions-free nuclear-assisted electricity, process heat, and hydrogen production, thereby reducing greenhouse-gas emissions and enhancing energy security. The objective of the DOE Advanced Gas Reactor (AGR) Fuel Development and Qualification program is to qualify tristructural isotropic (TRISO)-coated particle fuel for use in HTGRs. The Advanced Gas Reactor Fuel Development and Qualification Program consists of five elements: fuel manufacture, fuel and materials irradiations, post-irradiation examination (PIE) and safety testing, fuel performance modeling, and fission-product transport and source term evaluation. An underlying theme for the fuel development work is the need to develop a more complete, fundamental understanding of the relationship between the fuel fabrication process and key fuel properties, the irradiation and accident safety performance of the fuel, and the release and transport of fission products in the NGNP primary coolant system. An overview of the program and recent progress is presented.

  12. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation slides from the Fuel Cell Technologies Office webinar "2nd International Hydrogen Infrastructure Challenges Webinar" held on March 10, 2015. 2nd International Hydrogen ...

  13. Alternative Transportation Refueling Infrastructure in the U...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lack of adequate refueling infrastructure is a major barrier to the success of alternative motor fuels. A transition from fossil petroleum to alternative, low-carbon transportation ...

  14. Policy Option for Hydrogen Vehicles and Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation by Stefan Unnasch at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  15. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Heydorn, Edward C

    2013-03-12

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a real-world retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation's hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations

  16. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Massachusetts Institute of Technology 2004_deer_bromberg.pdf (404.01 KB) More Documents & Publications Hydrogen generation from plasmatron reformers and use for diesel exhaust aftertreatment Onboard

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle and Infrastructure Rebate Program The Arkansas Energy Office, a division of the Arkansas Economic Development Commission, administers the Arkansas Gaseous Fuels Vehicle Rebate Program (Program), funded by the Clean-Burning Motor Fuel Development Fund. The Program provides 50% of the incremental cost, up to $4,500, of a qualified compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) vehicle, and provides 50% of the conversion cost, up to

  18. Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of a Dimethyl Ether (DME)-Fueled Shuttle Bus Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Alternative Fuels lDimethyl Ether Rheology and ...

  19. Development of Advanced High Temperature Fuel Cell Membranes | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advanced High Temperature Fuel Cell Membranes Development of Advanced High Temperature Fuel Cell Membranes Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005. htmwg05_irvin_doe_review.pdf (108.37 KB) More Documents & Publications 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with Frozen-in Free Volume for use in High Temperature Fuel Cells

  20. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect (OSTI)

    Li, W.Y.; Li, Z.; Xie, K.C.

    2009-07-01

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  1. NONDESTRUCTIVE EXAMINATION OF FUEL PLATES FOR THE RERTR FUEL DEVELOPMENT EXPERIMENTS

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; S.C. Taylor; G.A. Moore; D.M. Sterbentz

    2012-09-01

    Nuclear fuel is the core component of reactors that is used to produce the neutron flux required for irradiation research purposes as well as commercial power generation. The development of nuclear fuels with low enrichments of uranium is a major endeavor of the RERTR program. In the development of these fuels, the RERTR program uses nondestructive examination (NDE) techniques for the purpose of determining the properties of nuclear fuel plate experiments without imparting damage or altering the fuel specimens before they are irradiated in a reactor. The vast range of properties and information about the fuel plates that can be characterized using NDE makes them highly useful for quality assurance and for analyses used in modeling the behavior of the fuel while undergoing irradiation. NDE is also particularly useful for creating a control group for post-irradiation examination comparison. The two major categories of NDE discussed in this paper are X-ray radiography and ultrasonic testing (UT) inspection/evaluation. The radiographic scans are used for the characterization of fuel meat density and homogeneity as well as the determination of fuel location within the cladding. The UT scans are able to characterize indications such as voids, delaminations, inclusions, and other abnormalities in the fuel plates which are generally referred to as debonds as well as to determine the thickness of the cladding using ultrasonic acoustic microscopy methods. Additionally, the UT techniques are now also being applied to in-canal interim examination of fuel experiments undergoing irradiation and the mapping of the fuel plate surface profile to determine fuel swelling. The methods used to carry out these NDE techniques, as well as how they operate and function, are described along with a description of which properties are characterized.

  2. UC Davis Models: Geospatial Station Network Design Tool and Hydrogen Infrastructure Rollout Economic Analysis Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UC Davis Models Geospatial Station Network Design Tool & Hydrogen Infrastructure Rollout Economic Analysis Model (University of California-Davis) Objectives Analyze regional strategies for early rollout of hydrogen infrastructure in support of fuel cell vehicle commercialization. Estimate how many hydrogen fueling stations would be needed and how much it will cost to develop cost competitive hydrogen supply. Compare the cost of hydrogen from different types and sizes of hydrogen stations

  3. Hydrogen & Fuel Cells: Review of National Research and Development...

    Open Energy Info (EERE)

    Development (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Focus Area:...

  4. Infrastructure and Operations | National Nuclear Security Administrati...

    National Nuclear Security Administration (NNSA)

    term needs. The Associate Administrator for Infrastructure and Operations develops and executes NNSA's infrastructure investment, maintenance, and operations programs and policies....

  5. Field measurements to support IAEA procedures development for fuel assembly and fuel rod active length verification

    SciTech Connect (OSTI)

    Belew, W.L.; Cooley, J.N.; Whitaker, J.M.

    1992-07-17

    The activities performed in verification of reactor fuel rods and assemblies by International Atomic Energy Agency (IAEA) safeguards inspectors include measurements of the length of the enriched uranium sections in fuel assemblies and fuel rods. These measurements are normally made with the IAEA hand-held gamma monitor (HM-4) on fuel elements containing only enriched uranium. Many fuel rods currently in use contain natural uranium end sections and several different [sup 235]U enrichment zones. To support development of standard procedures for IAEA nondestructive assay (NDA) measurements, a field measurement campaign was carried out to evaluate the FM-4 measurements and to investigate the feasibility of extending the HM-4 measurements to fuel rods and assemblies containing both natural and enriched uranium sections. The results show that the enriched fuel length can be measured to within [plus minus] 1 to 2 cm in the presence of natural uranium sections and to within [plus minus] 0.5 = when only enriched uranium is present. Based on the results from these measurements, a standard procedure, Measurement of Active Fuel Length in Fuel Assemblies and Fuel Rods Using the HM-4,'' has been drafted for review by the IAEA.

  6. Field measurements to support IAEA procedures development for fuel assembly and fuel rod active length verification

    SciTech Connect (OSTI)

    Belew, W.L.; Cooley, J.N.; Whitaker, J.M.

    1992-07-17

    The activities performed in verification of reactor fuel rods and assemblies by International Atomic Energy Agency (IAEA) safeguards inspectors include measurements of the length of the enriched uranium sections in fuel assemblies and fuel rods. These measurements are normally made with the IAEA hand-held gamma monitor (HM-4) on fuel elements containing only enriched uranium. Many fuel rods currently in use contain natural uranium end sections and several different {sup 235}U enrichment zones. To support development of standard procedures for IAEA nondestructive assay (NDA) measurements, a field measurement campaign was carried out to evaluate the FM-4 measurements and to investigate the feasibility of extending the HM-4 measurements to fuel rods and assemblies containing both natural and enriched uranium sections. The results show that the enriched fuel length can be measured to within {plus_minus} 1 to 2 cm in the presence of natural uranium sections and to within {plus_minus} 0.5 = when only enriched uranium is present. Based on the results from these measurements, a standard procedure, ``Measurement of Active Fuel Length in Fuel Assemblies and Fuel Rods Using the HM-4,`` has been drafted for review by the IAEA.

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Propane Equipment and Infrastructure Liability Exemption Propane equipment, infrastructure, and fuel providers are exempt from civil liability for personal injury or property ...

  8. Development of Erbia-bearing Super High Burnup Fuel

    SciTech Connect (OSTI)

    Akio, Yamamoto; Toshikazu, Takeda; Hironobu, Unesaki; Masaaki, Mori; Masatoshi Yamasaki

    2006-07-01

    In this paper, concept and development plan of the Erbia (Er{sub 2}O{sub 3})-bearing super high burnup (Er-SHB) fuel for LWRs are described. In order to reduce the number of spent fuel assemblies, utilization of high burnup fuels with higher uranium enrichment is effective. However, the upper limitation of enrichment for LWR fuels is 5 wt% and current advanced fuel assemblies for LWRs are already reaching this limit. Though various efforts to overcome the 5 wt% enrichment limit have been undergoing, it will require considerable cost that may offset the economic benefit of high burnup fuels. We are proposing another pathway. By adding low content ({>=}0.2 wt%) of Erbia in all UO{sub 2} powder, reactivity of high enrichment (>5 wt%) fuel is suppressed under that of current fuel assemblies, i.e. we leverage the negative reactivity credit of Erbia. Since Erbia is mixed into UO{sub 2} powder just after the re-conversion, we can avoid most of the criticality safety issues appearing in the front-end stream. Namely, major improvements and re-licensing for equipments in transportation, storage and fabrication process will not be necessary. Therefore, the Er-SHB fuel will significantly contribute to reduction of fuel cycle cost. (authors)

  9. Modernizing Infrastructure Permitting

    Broader source: Energy.gov [DOE]

    On May 14, 2014, the Obama Administration released a comprehensive plan to accelerate and expand Federal infrastructure permitting reform government-wide. The Office of Electricity Delivery and Energy Reliability is actively engaged in this process for transmission development.

  10. Hydrogen Infrastructure Strategies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies Hydrogen Infrastructure Strategies Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California ogden.pdf (4.18 MB) More Documents & Publications Geographically-Based Infrastructure Analysis for California H2FIRST Reference Station Design Task: Project Deliverable 2-2 Utah Clean Cities Transportation Sector Petroleum Reduction Technologies Program

  11. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes

  12. Fuel Cells for Transportation- Research and Development: Program Abstracts

    Broader source: Energy.gov [DOE]

    Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant developmental program in the early 1990s. This progress has stimulated enormous interest worldwide in developing fuel cell products for transportation as well as for stationary and portable power applications. The potential markets are huge, but so are the R&D risks. Given the potential for PEM fuel cells to deliver large economic and environmental benefits to the Nation, DOE continues to take a leadership role in developing and validating this technology. DOE’s strategy to implement its Fuel Cells for Transportation program has three components: an R&D strategy, a fuels strategy, and a management strategy.

  13. In Situ Nuclear Characterization Infrastructure

    SciTech Connect (OSTI)

    James A. Smith; J. Rory Kennedy

    2011-11-01

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  14. Development of an External Fuel Processor for a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

    2008-02-28

    A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell

  15. Hydrogen, Fuel Cells and Infrastructure Technologies Program: Multiyear Research, Development and Demonstration Plan

    SciTech Connect (OSTI)

    Milliken, J.

    2007-10-01

    This plan includes goals, objectives, technical targets, tasks, and schedules for Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen Program.

  16. DOE Publishes Roadmap for Developing Cleaner Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publishes Roadmap for Developing Cleaner Fuels DOE Publishes Roadmap for Developing Cleaner Fuels July 7, 2006 - 2:52pm Addthis Research Aimed at Making Cellulosic Ethanol a Practical Alternative to Gasoline WASHINGTON, DC -- The U.S. Department of Energy (DOE) today released an ambitious new research agenda for the development of cellulosic ethanol as an alternative to gasoline. The 200-page scientific "roadmap" cites recent advances in biotechnology that have made cost-effective

  17. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect (OSTI)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C.

    2004-02-04

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  18. FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

    2010-03-01

    Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Feasibility Study Grants The Wyoming State Energy Office (SEO) offers grants of up to $5,000 to municipalities in the state to conduct feasibility studies related to acquiring alternative fuel vehicles or developing fueling infrastructure. Awardees must submit final feasibility studies to the SEO within 180 days of the grant execution date. Eligible applicants are required to provide at least a 10% cash match. Other terms and conditions may apply. Funding is not currently

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Parking Incentive Programs The California Department of General Services (DGS) and California Department of Transportation (DOT) must develop and implement AFV parking incentive programs in public parking facilities operated by DGS with 50 or more parking spaces and park-and-ride lots owned and operated by DOT. The incentives must provide meaningful and tangible benefits to drivers, such as preferential spaces, reduced fees, and fueling infrastructure. Fueling

  1. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the

  2. A review of nuclear fuel cycle options for developing nations

    SciTech Connect (OSTI)

    Harrison, R.K.; Scopatz, A.M.; Ernesti, M.

    2007-07-01

    A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

  3. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers

  4. Surrogate Model Development for Fuels for Advanced Combustion Engines

    SciTech Connect (OSTI)

    Anand, Krishnasamy; Ra, youngchul; Reitz, Rolf; Bunting, Bruce G

    2011-01-01

    The fuels used in internal-combustion engines are complex mixtures of a multitude of different types of hydrocarbon species. Attempting numerical simulations of combustion of real fuels with all of the hydrocarbon species included is highly unrealistic. Thus, a surrogate model approach is generally adopted, which involves choosing a few representative hydrocarbon species whose overall behavior mimics the characteristics of the target fuel. The present study proposes surrogate models for the nine fuels for advanced combustion engines (FACE) that have been developed for studying low-emission, high-efficiency advanced diesel engine concepts. The surrogate compositions for the fuels are arrived at by simulating their distillation profiles to within a maximum absolute error of 4% using a discrete multi-component (DMC) fuel model that has been incorporated in the multi-dimensional computational fluid dynamics (CFD) code, KIVA-ERC-CHEMKIN. The simulated surrogate compositions cover the range and measured concentrations of the various hydrocarbon classes present in the fuels. The fidelity of the surrogate fuel models is judged on the basis of matching their specific gravity, lower heating value, hydrogen/carbon (H/C) ratio, cetane number, and cetane index with the measured data for all nine FACE fuels.

  5. E15 and Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 and Infrastructure K. Moriarty National Renewable Energy Laboratory J. Yanowitz Ecoengineering, Inc. Produced under direction of Renewable Fuels Association by the National Renewable Energy Laboratory (NREL) under Technical Services Agreement No. TSA 14-665 and Task No. WTJZ.1000. Strategic Partnership Project Report NREL/TP-5400-64156 May 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for

  6. International Hydrogen Infrastructure Challenges Workshop Summary - NOW,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NEDO, and DOE | Department of Energy Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Download presentation slides from the DOE Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE" held on December 16, 2013. International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE Webinar Slides

  7. Developing measurement indices to enhance protection and resilience of U.S. critical infrastructure and key resources.

    SciTech Connect (OSTI)

    Fisher, R. E.; Norman, M.

    2010-07-01

    The US Department of Homeland Security (DHS) is developing indices to better assist in the risk management of critical infrastructures. The first of these indices is the Protective Measures Index - a quantitative index that measures overall protection across component categories: physical security, security management, security force, information sharing, protective measures and dependencies. The Protective Measures Index, which can also be recalculated as the Vulnerability Index, is a way to compare differing protective measures (eg fence versus security training). The second of these indices is the Resilience Index, which assesses a site's resilience and consists of three primary components: robustness, resourcefulness and recovery. The third index is the Criticality Index, which assesses the importance of a facility. The Criticality Index includes economic, human, governance and mass evacuation impacts. The Protective Measures Index, Resilience Index and Criticality Index are being developed as part of the Enhanced Critical Infrastructure Protection initiative that DHS protective security advisers implement across the nation at critical facilities. This paper describes two core themes: determination of the vulnerability, resilience and criticality of a facility and comparison of the indices at different facilities.

  8. High power density fuel cell stack development for automotive applications

    SciTech Connect (OSTI)

    Pow, R.; Reindl, M.; Tilmetz, W.

    1996-12-31

    This paper describes the joint development by Daimler-Benz and Ballard Power Systems of a high power-density fuel cell stack and its demonstration in a 6-passenger Minivan.

  9. Fuel Cells for Transportation - Research and Development: Program...

    Broader source: Energy.gov (indexed) [DOE]

    Remarkable progress has been achieved in the development of proton-exchange-membrane(PEM) fuel cell technology since the U.S. Department of Energy (DOE) initiated a significant ...

  10. Fuel Cell Technologies Program Multi-Year Research, Development...

    Energy Savers [EERE]

    Program Management and Operations are covered in Chapter 6. Page 3 - 2 Multi-Year Research, Development and Demonstration Plan 2012 Technical Plan Figure 3.0.1. Fuel Cell ...

  11. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

  12. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    SciTech Connect (OSTI)

    none,

    2010-11-01

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and commercialization.

  13. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect (OSTI)

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-05-31

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  14. Lessons and Challenges for Early Hydrogen Refueling Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy and Challenges for Early Hydrogen Refueling Infrastructure Lessons and Challenges for Early Hydrogen Refueling Infrastructure Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California lessons_melaina_final.pdf (1.16 MB) More Documents & Publications Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Hydrogen Infrastructure Strategies Technical

  15. Development of a high-output dual-fuel engine

    SciTech Connect (OSTI)

    Danyluk, P.R. . Fairbanks Morse Engineering Division)

    1993-10-01

    This paper presents the results of a new dual-fuel engine development program. The engine is the largest commercially available in terms of power output (650 hp/cyl) and features very low emissions (1 g/hp-hr NO[sub x]) and excellent fuel consumption (43 percent thermal efficiency). A two-cylinder turbocharged prototype was designed and built for the initial development. Results from testing on 18-cylinder production versions are also reported.

  16. GIS-based Geospatial Infrastructure of Water Resource Assessment for Supporting Oil Shale Development in Piceance Basin of Northwestern Colorado

    SciTech Connect (OSTI)

    Zhou, Wei; Minnick, Matthew D; Mattson, Earl D; Geza, Mengistu; Murray, Kyle E.

    2015-04-01

    Oil shale deposits of the Green River Formation (GRF) in Northwestern Colorado, Southwestern Wyoming, and Northeastern Utah may become one of the first oil shale deposits to be developed in the U.S. because of their richness, accessibility, and extensive prior characterization. Oil shale is an organic-rich fine-grained sedimentary rock that contains significant amounts of kerogen from which liquid hydrocarbons can be produced. Water is needed to retort or extract oil shale at an approximate rate of three volumes of water for every volume of oil produced. Concerns have been raised over the demand and availability of water to produce oil shale, particularly in semiarid regions where water consumption must be limited and optimized to meet demands from other sectors. The economic benefit of oil shale development in this region may have tradeoffs within the local and regional environment. Due to these potential environmental impacts of oil shale development, water usage issues need to be further studied. A basin-wide baseline for oil shale and water resource data is the foundation of the study. This paper focuses on the design and construction of a centralized geospatial infrastructure for managing a large amount of oil shale and water resource related baseline data, and for setting up the frameworks for analytical and numerical models including but not limited to three-dimensional (3D) geologic, energy resource development systems, and surface water models. Such a centralized geospatial infrastructure made it possible to directly generate model inputs from the same database and to indirectly couple the different models through inputs/outputs. Thus ensures consistency of analyses conducted by researchers from different institutions, and help decision makers to balance water budget based on the spatial distribution of the oil shale and water resources, and the spatial variations of geologic, topographic, and hydrogeological Characterization of the basin. This endeavor

  17. Location and Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facts, Figures » Location and Infrastructure Location and Infrastructure The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. April 12, 2012 Aerial View of Los Alamos National Laboratory The central Laboratory technical area is featured in this aerial view. Boundary Peak, separating the Santa Fe National Forest and

  18. DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS

    SciTech Connect (OSTI)

    Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

    2003-02-27

    The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

  19. Development and perspectives of fuel cell technology in Italy

    SciTech Connect (OSTI)

    Vellone, R.

    1997-07-01

    In Italy, most of the energy is derived from fossil fuel and the energy system is heavily dependent on imported fuel, consequently there is a growing need to diversity energy sources and to optimize the efficient utilization of energy. The Italian government is demonstrating a certain commitment towards the promotion of renewable energy sources and innovative technologies, with limited impact on the environment and possibly with improved energy efficiency. In this context, fuel cells could lead various benefits for the country. The purpose of the paper is to review the Italian interest for the development and application of the fuel cell technology and to provide information about the current status of the Italian fuel cell program.

  20. Distribution Infrastructure and End Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution Infrastructure and End Use Distribution Infrastructure and End Use The expanded Renewable Fuel Standard (RFS2) created under the Energy Independence and Security Act (EISA) of 2007 requires 36 billion gallons of biofuels to be blended into transportation fuel by 2022. Meeting the RFS2 target introduces new challenges for U.S. infrastructure, as modifications will be needed to transport and deliver renewable fuels that are not compatible with existing petroleum infrastructure. The

  1. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Software Development: Applications, Infrastructure, and Middleware/Networks

    SciTech Connect (OSTI)

    Williams, Dean N.

    2011-06-30

    The status of and future plans for the Program for Climate Model Diagnosis and Intercomparison (PCMDI) hinge on software that PCMDI is either currently distributing or plans to distribute to the climate community in the near future. These software products include standard conventions, national and international federated infrastructures, and community analysis and visualization tools. This report also mentions other secondary software not necessarily led by or developed at PCMDI to provide a complete picture of the overarching applications, infrastructures, and middleware/networks. Much of the software described anticipates the use of future technologies envisioned over the span of next year to 10 years. These technologies, together with the software, will be the catalyst required to address extreme-scale data warehousing, scalability issues, and service-level requirements for a diverse set of well-known projects essential for predicting climate change. These tools, unlike the previous static analysis tools of the past, will support the co-existence of many users in a productive, shared virtual environment. This advanced technological world driven by extreme-scale computing and the data it generates will increase scientists productivity, exploit national and international relationships, and push research to new levels of understanding.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) and Infrastructure Initiative The West Virginia NGV Task Force was established to perform a cost-benefit analysis of NGVs; research and analyze the potential for the state to operate pilot public-access natural gas fueling stations; communicate with executive agencies in states that are in the process of transitioning their fleets to natural gas and encourage infrastructure development; explore partnerships with the natural gas industry; examine options for modernizing

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Infrastructure Grants The South Dakota Governor's Office of Economic Development administers the Ethanol Infrastructure Incentive Program, providing grants to offset the cost of installing ethanol blender pumps and underground storage tanks (UST) for ethanol at retail fueling stations throughout the state. Awardees may receive up to $29,054 per blender pump. Additionally, awardees may receive up to $40,000 per station for the installation of a UST that allows for the use of ethanol

  4. Alternative Fuel News, Vol. 7, No. 3

    SciTech Connect (OSTI)

    Not Available

    2003-11-01

    Quarterly magazine with articles on recent additions to the Clean Cities Alternative Fuel Station Locator database, biodiesel buying co-ops, and developing the CNG infrastructure in Bangladesh. Also a memo from CIVITAS 2003.

  5. HTGR Spent Fuel Treatment Program. HTGR Spent Fuel Treatment Development Program Plan

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    The spent fuel treatment (SFT) program plan addresses spent fuel volume reduction, packaging, storage, transportation, fuel recovery, and disposal to meet the needs of the HTGR Lead Plant and follow-on plants. In the near term, fuel refabrication will be addressed by following developments in fresh fuel fabrication and will be developed in the long term as decisions on the alternatives dictate. The formulation of this revised program plan considered the implications of the Nuclear Waste Policy Act of 1982 (NWPA) which, for the first time, established a definitive national policy for management and disposal of nuclear wastes. Although the primary intent of the program is to address technical issues, the divergence between commercial and government interests, which arises as a result of certain provisions of the NWPA, must be addressed in the economic assessment of technically feasible alternative paths in the management of spent HTGR fuel and waste. This new SFT program plan also incorporates a significant cooperative research and development program between the United States and the Federal Republic of Germany. The major objective of this international program is to reduce costs by avoiding duplicate efforts.

  6. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Infrastructure All Categories Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Clean Cities Petroleum Use Reduction Vehicles Program Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Laws & Incentives Regulated Fleets State & Alt Fuel Providers Federal Fleets OR Go Sort by: Category Most Recent Most Popular 55 results Fuel Trends -

  7. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  8. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision Important applications of these capabilities include performing assessment of facility vulnerabilities and resultant consequences of a range of attack scenarios related to nuclear facilities after

  9. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to enhance the nation's security and prosperity through sustainable, transformative approaches to our most challenging energy, climate, and infrastructure problems. vision the capability set needed to address safe and secure management of these radioactive materials includes a broad set of engineering and scientific disciplines such as physics; nuclear, mechanical, civil, and systems engineering; and chemistry. In addition, Sandia has a tool set that enhances the ability to perform high level

  10. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  11. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  12. Hydrogen Infrastructure Market Readiness Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Hydrogen Infrastructure Market Readiness Workshop Agenda Page 1 of 2 NREL/DOE Workshop at the Gaylord National, Washington D.C., February 16-17, 2011 Transitioning to an economically viable hydrogen infrastructure requires near-term cost reductions in hydrogen fueling equipment. This workshop will convene stakeholders and technology experts to review and discuss fueling equipment costs, market readiness, and business strategies for early markets such as fuel cell electric vehicles, material

  13. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  14. Multiscale Multiphysics Developments for Accident Tolerant Fuel Concepts

    SciTech Connect (OSTI)

    Gamble, K. A.; Hales, J. D.; Yu, J.; Zhang, Y.; Bai, X.; Andersson, D.; Patra, A.; Wen, W.; Tome, C.; Baskes, M.; Martinez, E.; Stanek, C. R.; Miao, Y.; Ye, B.; Hofman, G. L.; Yacout, A. M.; Liu, W.

    2015-09-01

    U3Si2 and iron-chromium-aluminum (Fe-Cr-Al) alloys are two of many proposed accident-tolerant fuel concepts for the fuel and cladding, respectively. The behavior of these materials under normal operating and accident reactor conditions is not well known. As part of the Department of Energy’s Accident Tolerant Fuel High Impact Problem program significant work has been conducted to investigate the U3Si2 and FeCrAl behavior under reactor conditions. This report presents the multiscale and multiphysics effort completed in fiscal year 2015. The report is split into four major categories including Density Functional Theory Developments, Molecular Dynamics Developments, Mesoscale Developments, and Engineering Scale Developments. The work shown here is a compilation of a collaborative effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory and Anatech Corp.

  15. Coal-fueled diesel technology development: Nozzle development for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Lee, M.; White, R.A.

    1994-01-01

    Direct injection of a micronized coal water mixture fuel into the combustion chambers of a diesel engine requires atomizing an abrasive slurry fuel with accurately sized orifices. Five injector orifice materials were evaluated: diamond compacts, chemical vapor deposited diamond tubes, thermally stabilized diamond, tungsten carbide with cobalt binder, and tungsten carbide with nickel binder with brazed and mechanically mounted orifice inserts. Nozzle bodies were fabricated of Armco 17-4 precipitation hardening stainless steel and Stellite 6B in order to withstand cyclic injection pressures and elevated temperatures. Based on a total of approximately 200 cylinder hours of engine operation with coal water mixture fuel diamond compacts were chosen for the orifice material.

  16. IDAHO BIODIESEL INFRASTRUCTURE PROJECT DOE'S INITIATIVE ON COOPERATIVE PROGRAMS WITH STATES FOR RESEARCH, DEVELOPMENT AND DEMONSTRATION GRANT NO. DE-FC36-02GO12021. Final report

    SciTech Connect (OSTI)

    CROCKETT, JOHN

    2006-12-31

    The Idaho Energy Division issued a Request for Proposal (RFP) on March 14, 2006, inviting qualified licensed fuel wholesalers, fuel retailers, and vehicle fleet operators to provide proposals to construct and/or install infrastructure for biodiesel utilization in Idaho. The intent was to improve the ability of private and/or non-Federal public entities in Idaho to store, transport, or offer for sale biodiesel within the state. The RFP provided up $100,000 for co-funding the projects with a minimum 50% cash cost match. Four contracts were subsequetnly awarded that resulted in three new bidodiesel storage facilities immediately serving about 45 fueling stations from Sandpoint to Boise. The project also attracted considerable media attention and Idaho became more knowledgeable about biodiesel.

  17. Fuel Cycle Research and Development Presentation Title

    Office of Environmental Management (EM)

    Severe Accident Test Station (SATS) and alloy developments Presented by Sebastien ... Ridge National Laboratory Severe Accident Test Station at ORNL National facility for ...

  18. Sodium removal process development for LMFBR fuel subassemblies

    SciTech Connect (OSTI)

    Simmons, C.R.; Taylor, G.R.

    1981-10-01

    Two 37-pin scale models of Clinch River Breeder Reactor Plant fuel subassemblies were designed, fabricated and used at Westinghouse Advanced Reactors Division in the development and proof-testing of a rapid water-based sodium removal process for the ORNL Hot Experimental Facility, Liquid Metal Fast Breeder Reactor Fuel Reprocessing Cycle. Through a series of development tests on one of the models, including five (5) sodium wettings and three (3) high temperature sodium removal operations, optimum process parameters for a rapid water vapor-argon-water rinse process were identified and successfully proof-tested on a second model containing argon-pressurized, sodium-corroded model fuel pins simulating the gas plenum and cladding conditions expected for spent fuel pins in full scale subassemblies. Based on extrapolations of model proof test data, preliminary process parameters for a water vapor-nitrogen-water rinse process were calculated and recommended for use in processing full scale fuel subassemblies in the Sodium Removal Facility of the Fuel Receiving Cell, ORNL HEF.

  19. Solid Fuels Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  20. Clean Fuels/Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  1. Development of technology of high density LEU dispersion fuel fabrication.

    SciTech Connect (OSTI)

    Wiencek, T.; Totev, T.; Nuclear Engineering Division

    2007-01-01

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates.

  2. Development of technology of high density LEU dispersion fuel fabrication

    SciTech Connect (OSTI)

    Wiencek, Tom; Totev, Totju

    2008-07-15

    Advanced Materials Fabrication Facilities at Argonne National Laboratory have been involved in development of LEU dispersion fuel for research and test reactors from the beginning of RERTR program. This paper presents development of technology of high density LEU dispersion fuel fabrication for full size plate type fuel elements. A brief description of Advanced Materials Fabrication Facilities where development of the technology was carried out is given. A flow diagram of the manufacturing process is presented. U-Mo powder was manufactured by the rotating electrode process. The atomization produced a U-Mo alloy powder with a relatively uniform size distribution and a nearly spherical shape. Test plates were fabricated using tungsten and depleted U-7 wt.% Mo alloy, 4043 Al and Al-2 wt% Si matrices with Al 6061 aluminum alloy for the cladding. During the development of the technology of manufacturing of full size high density LEU dispersion fuel plates special attention was paid to meet the required homogeneity, bonding, dimensions, fuel out of zone and other mechanical characteristics of the plates. (author)

  3. High temperature solid oxide fuel development activities

    SciTech Connect (OSTI)

    Ray, E.R.

    1993-11-01

    This paper presents an overview of the Westinghouse tubular SOFC development activities and current program status. Goal is to develop a cell that can operate for 50,000 to 100,000 h. Test results are presented for multiple single cell tests which have now successfully exceeded 40,000 hours of continuous power operation at temperature. Two 25-kW SOFC customer tests units were delivered in 1992; a 20-kW SOFC system is bein manufactured and will be operated by Southern California Edison in 1995. Megawatt class generators are being developed.

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a ...

  5. H2USA Accomplishments Push Hydrogen Infrastructure Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy H2USA Accomplishments Push Hydrogen Infrastructure Forward H2USA Accomplishments Push Hydrogen Infrastructure Forward April 21, 2015 - 4:47pm Addthis A fuel cell electric vehicle (FCEV) at a fueling station in California. A fuel cell electric vehicle (FCEV) at a fueling station in California. Sunita Satyapal Director, Fuel Cell Technologies Office In 2013, auto manufacturers started announcing fuel cell electric vehicle (FCEV) commercialization plans. Since then, Toyota, Hyundai,

  6. Energy Infrastructure Events and Expansions Infrastructure Security...

    Broader source: Energy.gov (indexed) [DOE]

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S. ...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Infrastructure Incentives Study The Georgia Joint Alternative Fuels Infrastructure Study Committee will evaluate how providing market incentives for AFV fueling infrastructure may lead to AFV market deployment. The Committee will provide a report of its recommendations and proposed legislation by December 1, 2016. (Reference Senate Resolution 1038

  8. Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2011-05-01

    Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

  9. BWR Spent Nuclear Fuel Integrity Research and Development Survey for UKABWR Spent Fuel Interim Storage

    SciTech Connect (OSTI)

    Bevard, Bruce Balkcom; Mertyurek, Ugur; Belles, Randy; Scaglione, John M.

    2015-10-01

    The objective of this report is to identify issues and support documentation and identify and detail existing research on spent fuel dry storage; provide information to support potential R&D for the UKABWR (United Kingdom Advanced Boiling Water Reactor) Spent Fuel Interim Storage (SFIS) Pre-Construction Safety Report; and support development of answers to questions developed by the regulator. Where there are gaps or insufficient data, Oak Ridge National Laboratory (ORNL) has summarized the research planned to provide the necessary data along with the schedule for the research, if known. Spent nuclear fuel (SNF) from nuclear power plants has historically been stored on site (wet) in spent fuel pools pending ultimate disposition. Nuclear power users (countries, utilities, vendors) are developing a suite of options and set of supporting analyses that will enable future informed choices about how best to manage these materials. As part of that effort, they are beginning to lay the groundwork for implementing longer-term interim storage of the SNF and the Greater Than Class C (CTCC) waste (dry). Deploying dry storage will require a number of technical issues to be addressed. For the past 4-5 years, ORNL has been supporting the U.S. Department of Energy (DOE) in identifying these key technical issues, managing the collection of data to be used in issue resolution, and identifying gaps in the needed data. During this effort, ORNL subject matter experts (SMEs) have become expert in understanding what information is publicly available and what gaps in data remain. To ensure the safety of the spent fuel under normal and frequent conditions of wet and subsequent dry storage, intact fuel must be shown to: 1.Maintain fuel cladding integrity; 2.Maintain its geometry for cooling, shielding, and subcriticality; 3.Maintain retrievability, and damaged fuel with pinhole or hairline cracks must be shown not to degrade further. Where PWR (pressurized water reactor) information is

  10. Development of Fuel Shuffling Module for PHISICS

    SciTech Connect (OSTI)

    Allan Mabe; Andrea Alfonsi; Cristian Rabiti; Aaron Epiney; Michael Lineberry

    2013-06-01

    PHISICS (Parallel and Highly Innovative Simulation for the INL Code System) [4] code toolkit has been in development at the Idaho National Laboratory. This package is intended to provide a modern analysis tool for reactor physics investigation. It is designed with the mindset to maximize accuracy for a given availability of computational resources and to give state of the art tools to the modern nuclear engineer. This is obtained by implementing several different algorithms and meshing approaches among which the user will be able to choose, in order to optimize his computational resources and accuracy needs. The software is completely modular in order to simplify the independent development of modules by different teams and future maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3]. In the following the structure of the different PHISICS modules is briefly recalled, focusing on the new shuffling module (SHUFFLE), object of this paper.

  11. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Savers [EERE]

    Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer ...

  12. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Presentation given at the ...

  13. BISON and MARMOT Development for Modeling Fast Reactor Fuel Performance

    SciTech Connect (OSTI)

    Gamble, Kyle Allan Lawrence; Williamson, Richard L.; Schwen, Daniel; Zhang, Yongfeng; Novascone, Stephen Rhead; Medvedev, Pavel G.

    2015-09-01

    BISON and MARMOT are two codes under development at the Idaho National Laboratory for engineering scale and lower length scale fuel performance modeling. It is desired to add capabilities for fast reactor applications to these codes. The fast reactor fuel types under consideration are metal (U-Pu-Zr) and oxide (MOX). The cladding types of interest include 316SS, D9, and HT9. The purpose of this report is to outline the proposed plans for code development and provide an overview of the models added to the BISON and MARMOT codes for fast reactor fuel behavior. A brief overview of preliminary discussions on the formation of a bilateral agreement between the Idaho National Laboratory and the National Nuclear Laboratory in the United Kingdom is presented.

  14. Development of a Flexible Computerized Management Infrastructure for a Commercial Nuclear Power Plant

    SciTech Connect (OSTI)

    Ali, Syed Firasat; Hajek, Brian K.; Usman, Shoaib

    2006-05-01

    The report emphasizes smooth transition from paper-based procedure systems (PBPSs) to computer-based procedure systems (CBPSs) for the existing commercial nuclear power plants in the U.S. The expected advantages and of the transition are mentioned including continued, safe and efficient operation of the plants under their recently acquired or desired extended licenses. The report proposes a three-stage survey to aid in developing a national strategic plan for the transition from PBPSs to CBPSs. It also includes a comprehensive questionnaire that can be readily used for the first stage of the suggested survey.

  15. Electrometallurgical treatment of oxide spent fuel - engineering-scale development.

    SciTech Connect (OSTI)

    Karell, E. J.

    1998-04-22

    Argonne National Laboratory (ANL) has developed the electrometallurgical treatment process for conditioning various Department of Energy (DOE) spent fuel types for long-term storage or disposal. This process uses electrorefining to separate the constituents of spent fuel into three product streams: metallic uranium, a metal waste form containing the cladding and noble metal fission products, and a ceramic waste form containing the transuranics, and rare earth, alkali, and alkaline earth fission products. While metallic fuels can be directly introduced into the electrorefiner, the actinide components of oxide fuels must first be reduced to the metallic form. The Chemical Technology Division of AFT has developed a process to reduce the actinide oxides that uses lithium at 650 C in the presence of molten LiCl, yielding the actinide metals and Li{sub 2}O. A significant amount of work has already been accomplished to investigate the basic chemistry of the lithium reduction process and to demonstrate its applicability to the treatment of light-water reactor- (LWR-) type spent fuel. The success of this work has led to conceptual plans to construct a pilot-scale oxide reduction facility at ANL's Idaho site. In support of the design effort, a series of laboratory- and engineering-scale experiments is being conducted using simulated fuel. These experiments have focused on the engineering issues associated with scaling-up the process and proving compatibility between the reduction and electrorefining steps. Specific areas of investigation included reduction reaction kinetics, evaluation of various fuel basket designs, and issues related to electrorefining the reduced product. This paper summarizes the results of these experiments and outlines plans for future work.

  16. Development of Pellet Technologies for Plasma Fueling

    SciTech Connect (OSTI)

    Kapralov, V.G.; Kuteev, B.V.; Baranov, G.A.

    2005-01-15

    This contribution presents recent results of pellet technologies development for plasma fuelling in magnetic confinement machines with open or closed magnetic configuration. The current status of ITV7 pellet injector for GOL3 multimirror linear machine, PGS2.2 pellet guide system of ITV4 in-situ pellet injector for TUMAN- 3M tokamak and ITV5 centrifuge pellet injector for Globus-M spherical tokamak is reported. New results on modeling of tangential pellet injection into TUMAN-3M tokamak are discussed as well.

  17. Carbonate fuel cell powerplant development and commercialization

    SciTech Connect (OSTI)

    Williams, M.C.

    1997-04-01

    CFC powerplants offer the potential for ultrahigh efficiency energy conversion and the enhancement of the quality of our environment. Since combustion is not utilized, CFCs generate very low amounts of NOx. CFC powerplants have been exempt from air permitting requirements in California, Massachusetts. CFC is attractive for both polluted urban areas and remote applications. It is ideal as a distributed generator (sited at or near the electricity user). The US CFC developers enjoy the support of user groups (utility, other end-user members). DOE cooperates with GRI and EPRI in funding the US CFC program.

  18. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    2010-07-01

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  19. Development of alternative fuels from coal-derived syngas

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  20. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju; Pandit, Arka; Crittenden, John; Xu, Ming; Perrings, Charles; Wang, Dali; Li, Ke; French, Steve

    2010-10-01

    and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  1. Developing State and National Evaluation Infrastructures- Guidance for the Challenges and Opportunities of EM&V

    SciTech Connect (OSTI)

    Schiller, Steven R.; Goldman, Charles A.

    2011-06-24

    Evaluating the impacts and effectiveness of energy efficiency programs is likely to become increasingly important for state policymakers and program administrators given legislative mandates and regulatory goals and increasing reliance on energy efficiency as a resource. In this paper, we summarize three activities that the authors have conducted that highlight the expanded role of evaluation, measurement and verification (EM&V): a study that identified and analyzed challenges in improving and scaling up EM&V activities; a scoping study that identified issues involved in developing a national efficiency EM&V standard; and lessons learned from providing technical assistance on EM&V issues to states that are ramping up energy efficiency programs. The lessons learned are summarized in 13 EM&V issues that policy makers should address in each jurisdiction and which are listed and briefly described. The paper also discusses how improving the effectiveness and reliability of EM&V will require additional capacity building, better access to existing EM&V resources, new methods to address emerging issues and technologies, and perhaps foundational documents and approaches to improving the credibility and cross jurisdictional comparability of efficiency investments. Two of the potential foundational documents discussed are a national EM&V standard or resource guide and regional deemed savings and algorithm databases.

  2. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAFETY, CODES AND STANDARDS SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use

  3. Natural Gas Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle and Infrastructure Codes and Standards Chart Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for natural gas. Vehicle Safety: Vehicle Fuel Systems: Vehicle Containers: Vehicle Fuel System Components: Dispensing Component Standards: Dispensing Operations:

  4. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  5. PEM fuel cell stack development for automotive applications

    SciTech Connect (OSTI)

    Ernst, W.D.

    1996-12-31

    Presently, the major challenges to the introduction of fuel cell power systems for automotive applications are to maximize the effective system power density and minimize cost. The material cost, especially for Platinum, had been a significant factor until recent advances by Los Alamos National Laboratory and others in low Platinum loading electrode design has brought these costs within control. Since the initiation of its PEM stack development efforts, MTI has focused on applying its system and mechanical engineering heritage on both increasing power density and reducing cost. In May of 1995, MTI was selected (along with four other companies) as a subcontractor by the Ford Motor Company to participate in Phase I of the DOE Office of Transportation Technology sponsored PNGV Program entitled: {open_quotes}Direct-Hydrogen-Fueled Proton-Exchange-Membrane (PEM) Fuel Cell System for Transportation Applications{close_quotes}. This Program was instituted to: (1) Advance the performance and economic viability of a direct-hydrogen-fueled PEM fuel cell system, (2) Identify the critical problems that must be resolved before system scale-up and vehicle integration, and (3) Integrate the fuel cell power system into a sub-scale vehicle propulsion system. The Phase I objective was to develop and demonstrate a nominal 10 kW stack meeting specific criteria. Figure I is a photograph of the stack used for these demonstrations. After completion of Phase I, MTI was one of only two companies selected to continue into Phase II of the Program. This paper summarizes Phase I stack development and results.

  6. Deep Burn: Development of Transuranic Fuel for High-Temperature...

    Office of Scientific and Technical Information (OSTI)

    discusses: (1) Core and Fuel Analysis; (2) Spent Fuel Management; (3) Fuel Cycle Integration of the HTR (high temperature helium-cooled reactor); (4) TRU (transuranic elements) ...

  7. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.4 Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUEL CELLS SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.4 - 1 3.4 Fuel Cells Fuel cells efficiently convert diverse fuels directly into electricity without combustion, and they are key elements of a broad portfolio for building a competitive, secure, and sustainable clean energy economy. They offer a broad range of benefits, including reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power (through the use of hydrogen derived from

  8. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Project Assistance News & Features Spanish Resources Contacts The AFDC is a resource of the U.S. Department of Energy's Clean Cities program. Contacts | Web Site Policies | U.S. ...

  9. Demonstration of Decision Support Tools for Sustainable Development - An Application on Alternative Fuels in the Greater Yellowstone-Teton Region

    SciTech Connect (OSTI)

    Shropshire, D.E.; Cobb, D.A.; Worhach, P.; Jacobson, J.J.; Berrett, S.

    2000-12-30

    The Demonstration of Decision Support Tools for Sustainable Development project integrated the Bechtel/Nexant Industrial Materials Exchange Planner and the Idaho National Engineering and Environmental Laboratory System Dynamic models, demonstrating their capabilities on alternative fuel applications in the Greater Yellowstone-Teton Park system. The combined model, called the Dynamic Industrial Material Exchange, was used on selected test cases in the Greater Yellow Teton Parks region to evaluate economic, environmental, and social implications of alternative fuel applications, and identifying primary and secondary industries. The test cases included looking at compressed natural gas applications in Teton National Park and Jackson, Wyoming, and studying ethanol use in Yellowstone National Park and gateway cities in Montana. With further development, the system could be used to assist decision-makers (local government, planners, vehicle purchasers, and fuel suppliers) in selecting alternative fuels, vehicles, and developing AF infrastructures. The system could become a regional AF market assessment tool that could help decision-makers understand the behavior of the AF market and conditions in which the market would grow. Based on this high level market assessment, investors and decision-makers would become more knowledgeable of the AF market opportunity before developing detailed plans and preparing financial analysis.

  10. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions. With at least three major auto manufacturers expected to release fuel cell electric vehicles in the 2015 to 2017 timeframe, the need for a reliable U.S. hydrogen fueling infrastructure is greater than ever. That's why the National Renewable Energy Laboratory (NREL), with fund- ing from the U.S. Department of Energy Fuel Cell Technologies Office, is using a robot in the Energy Systems Integration

  11. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at ...

  12. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  13. Pennsylvania Regional Infrastructure Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTC Team 1 Pennsylvania Regional Infrastructure Project Presentation by: The Concurrent Technologies Corporation (CTC) Team January 6, 2004 The CTC Team 2 Presentation Outline Introduction of CTC Team CTC Background Technical Approach - CTC Team Member Presentations Conclusions The CTC Team 3 The CTC Project Team Concurrent Technologies Corporation Program Management and Coordination Hydrogen Delivery and Storage Material Development Hydrogen Sensors Concurrent Technologies Corporation Program

  14. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr.

    1995-09-01

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  15. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced

  16. Hydrogen Vehicle and Infrastructure Codes and Standards Citations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle and Infrastructure Codes and Standards Citations Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used for U.S. hydrogen vehicle and infrastructure projects. Hydrogen Vehicle and Infrastructure Codes and Standards Citations (318.31 KB) More Documents & Publications Stationary and Portable Fuel Cell Systems Codes and Standards Citations National Template: Hydrogen Vehicle and Infrastructure

  17. GIS-Based Infrastructure Modeling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GIS-Based Infrastructure Modeling GIS-Based Infrastructure Modeling Presentation by NREL's Keith Parks at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. parks_gis_infrastructure_modeling.pdf (993.56 KB) More Documents & Publications DOE Hydrogen Transition Analysis Workshop Geographically-Based Infrastructure Analysis for California Hydrogen and FCV Implementation Scenarios, 2010 - 2025

  18. Geographically-Based Infrastructure Analysis for California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Geographically-Based Infrastructure Analysis for California Geographically-Based Infrastructure Analysis for California Presentation by Joan Ogden of the University of California at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C. ogden_geo_infrastructure_analysis.pdf (5.39 MB) More Documents & Publications Hydrogen Infrastructure Strategies Consumer Water Heater, UEF - v1.0 EIS-0105: Draft

  19. 2nd International Hydrogen Infrastructure Challenges Webinar Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy nd International Hydrogen Infrastructure Challenges Webinar Slides 2nd International Hydrogen Infrastructure Challenges Webinar Slides Presentation slides from the Fuel Cell Technologies Office webinar "2nd International Hydrogen Infrastructure Challenges Webinar" held on March 10, 2015. 2nd International Hydrogen Infrastructure Challenges Webinar Slides (790.16 KB) More Documents & Publications International Hydrogen Infrastructure Challenges Workshop

  20. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Vehicle Policy Development The California Energy Commission (CEC) must prepare and submit an Integrated Energy Policy Report (IEPR) to the governor on a biannual basis. The IEPR provides an overview of major energy trends and issues facing the state, including those related to transportation fuels, technologies, and infrastructure. The IEPR also examines potential effects of alternative fuels use, vehicle efficiency improvements, and shifts in transportation modes on public health and

  2. Geographically Based Hydrogen Demand and Infrastructure Analysis

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  3. State Experience in Hydrogen Infrastructure in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Experience in Hydrogen Infrastructure in California State Experience in Hydrogen Infrastructure in California Presentation by Gerhard Achtelik, California Air Resources Board, at the Hydrogen Infrastructure Market Readiness Workshop, February 17, 2011, in Washington, DC. wkshp_market_readiness_achtelik.pdf (973.13 KB) More Documents & Publications Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) FCEVs and Hydrogen in California Fuel Cell Electric

  4. Recent developments at the cathode processor for spent fuel treatment.

    SciTech Connect (OSTI)

    Westphal, B. R.; Vaden, D.; Hua, T. Q.; Willit, J. L.; Laug, D. V.

    2002-07-29

    As part of the spent fuel treatment program at Argonne National Laboratory, a vacuum distillation process is being employed for the recovery of uranium following an electrorefining process. Distillation of a molten salt electrolyte, primarily consisting of a eutectic mixture of lithium and potassium chlorides with minor amounts of fission product chlorides, from uranium is achieved by a batch operation called cathode processing. Described in this paper are recent developments, both equipment and process-related, at the cathode processor during the treatment of blanket-type spent fuel. For the equipment developments, the installation of a new induction heating coil has produced significant improvements in equipment performance. The process developments include the elimination of a process step and the study of plutonium in the uranium product.

  5. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    SciTech Connect (OSTI)

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  6. Proceedings of the 1996 Windsor workshop on alternative fuels

    SciTech Connect (OSTI)

    1996-10-01

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  7. HyDIVE (Hydrogen Dynamic Infrastructure and Vehicle Evolution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation by NREL's Cory Welch at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel ... Refueling Infrastructure 2010 - 2025 Scenario Analysis Meeting Agenda for August 9 - ...

  8. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Paper Analysis of the Hydrogen NRELCP-540-37903 Infrastructure Needed to March 2005 Enable Commercial Introduction of Hydrogen- Fueled Vehicles Preprint M. Melendez and...

  9. Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis

    Broader source: Energy.gov [DOE]

    Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  10. More Efficient Fuel Cells under Development by Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy ... Solar panels only produce electricity when the sun is shining, and wind turbines are only ...

  11. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    2013-08-30

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  12. IPHE Infrastructure Workshop- Workshop Proceedings, February 25-26, 2010 Sacramento, CA

    Broader source: Energy.gov [DOE]

    Proceedings of the February 2010 International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) Infrastructure Workshop.

  13. Fuel Cell Power | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Power Place: United Kingdom Product: Information provider of fuel cells and their supporting infrastructure. References: Fuel Cell Power1 This article is a stub. You...

  14. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  15. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration courtesy of FuelCell Energy, Inc. Project Description The goal of this ... It is now be- ing incorporated into FuelCell Energy's commercial Direct FuelCell ...

  16. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Energy Savers [EERE]

    SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer ...

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  18. Development of 50 kW Fuel Processor for Stationary Fuel Cell Applications

    SciTech Connect (OSTI)

    James F. Stevens; Balaji Krishnamurthy; Paolina Atanassova; Kerry Spilker

    2007-08-29

    The objective of the project was to develop and test a fuel processor capable of producing high hydrogen concentration (>98%) with less than ppm quantities of carbon dioxide and carbon monoxide at lower capital cost and higher efficiency, compared to conventional natural gas reformers. It was intended that we achieve our objective by developing simple reactor/process design, and high durability CO2 absorbents, to replace pressure swing adsorption (PSA) or membrane separators. Cost analysis indicated that we would not meet DOE cost goals so the project was terminated before construction of the full scale fuel processor. The work on adsorbent development was focused on the development of calcium oxide-based reversible CO2 absorbents with various microstructures and morphologies to determine the optimum microstructure for long-term reversible CO2 absorption. The effect of powder production process variables was systematically studied including: the final target compositions, the reagents from which the final products were derived, the pore forming additives, the processing time and temperature. The sorbent materials were characterized in terms of their performance in the reversible reaction with CO2 and correlation made to their microstructure.

  19. DOE Announces Webinars on Compressed Natural Gas Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    estimate the cost to install fueling infrastructure for vehicles that run on propane. Curtis Donaldson from CleanFUEL USA discusses key components of a propane station, how a...

  20. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Mueller, C J

    2009-12-09

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real

  1. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J

    2009-09-04

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel

  2. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For many years we have supported the development of a nuclear powered moon base. While current concepts focus on Stirling engine power systems, the Fission Surface power program lead to our initial discoveries of a closed Brayton cycle power system. For the current program, Sandia has developed a reactor simulator to drive Stirling engines under moon-like conditions at naSa. In the past year, Sandia has teamed with northrop Grumman aerospace to develop a Solar Electric propulsion (SEp) system

  3. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.'' This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft[sup 2] cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  4. Simulated Coal-Gas-Fueled Molten Carbonate Fuel Cell Development Program. Final report

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This final report summarizes the technical work performed under Department of Energy Contract DE-AC21-91MC27393, ``Simulated Coal- Gas-Fueled Molten Carbonate Fuel Cell Development Program.`` This work consists of five major tasks and their respective subtasks as listed below. A brief description of each task is also provided. The Stack Design Requirements task focused on requirements and specification for designing, constructing, and testing a nominal 100-kilowatt integrated stack and on requirements for the balance-of-plant equipment to support a 1000-kilowatt integrated stack demonstrator. The Stack Design Preparation task focused on the mechanical design of a 100-kilowatt stack comprised of 8-ft{sup 2} cells incorporating the new cell configuration and component technology improvements developed in the previous DOE MCFC contract. Electrode Casting focused on developing a faster drying solvent for use in the electrode tape casting process. Electrode Heat Treatment was directed at scaling up the laboratory continuous debinding process to a new full-size IFC debinding oven coupled to a continuous belt furnace that will both debind and sinter the electrodes in one continuous process train. Repeat Part Quality Assurance and Testing provided the appropriate effort to ensure consistent, high-quality, reproducible and comparable repeat parts.

  5. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  6. International symposium on fuel rod simulators: development and application

    SciTech Connect (OSTI)

    McCulloch, R.W.

    1981-05-01

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  7. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.

  8. Argonne's Resilient Infrastructure Initiative | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Resilient Infrastructure Initiative Share Topic Energy Energy efficiency Building design Security Facility security Browse By - Any - General Argonne Information Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy

  9. Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells Development of Ultra-low Platinum Alloy Cathode Catalyst for PEM Fuel Cells These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. 7_usc_popov.pdf (1.59 MB) More Documents & Publications DOE's Fuel Cell Catalyst R&D Activities 2006 Alkaline Membrane Fuel Cell Workshop Final Report Highly Dispersed Alloy Cathode Catalyst for Durability

  10. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons ...

  11. Effects of Fuel and Air Impurities on PEM Fuel Cell Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen,Fuel Cells and Infrastructure Technologies 2007 Kickoff Meeting Effects of Fuel and Air Impurities on PEM Fuel Cell Performance Rod Borup Eric Brosha Fernando Garzon (PI) ...

  12. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss064_jadin_2011_o.pdf (1020.57 KB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor

  13. Supertruck - Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace059_jadin_2012_o.pdf (1.56 MB) More Documents & Publications Supertruck - Development and Demonstration of a Fuel-Efficient Class 8

  14. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2003-05-31

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a

  15. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (1.4 kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.

    1981-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.4 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a stainless steel canister representative of actual fuel canisters, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel near-surface drywell tests being conducted at E-MAD, the spent fuel deep geologic storage test being conducted in Climax granite on the Nevada Test Site, and for five constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  16. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20, develop a 60% peak-efficient, 5,000 hour durable, direct hydrogen fuel cell power system for transportation at a cost of $40/kW with an ultimate cost target of $30/kW. * By 2020, develop distributed generation and micro-CHP fuel cell systems (5 kW) operating on natural gas or LPG that achieve 45% electrical efficiency and 60,000 hours durability at an equipment cost of $1500/kW. * By 2020, develop medium-scale CHP fuel cell systems (100 kW-3 MW) that achieve 50% electrical efficiency, 90%

  17. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - 3.4 Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    17, develop a 60% peak-efficient, 5,000 hour durable, direct hydrogen fuel cell power system for transportation at a cost of $30/kW. * By 2020, develop distributed generation and micro-CHP fuel cell systems (5 kW) operating on natural gas or LPG that achieve 45% electrical efficiency and 60,000 hours durability at an equipment cost of $1500/kW. * By 2020, develop medium-scale CHP fuel cell systems (100 kW-3 MW) that achieve 50% electrical efficiency, 90% CHP efficiency, and 80,000 hours

  18. Hydrogen Delivery Infrastructure Option Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC This presentation does not contain any proprietary or confidential information Tan-Ping Chen Nexant Jim Campbell Bhadra Grover Air Liquide Stefan Unnasch TIAX Glyn Hazelden GTI Graham Moore Chevron Matt Ringer NREL Ray Hobbs Pinnacle West 2 Presentation Outline Project Background Knowledge Collected and

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Solicitation | Department of Energy Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation The Fuel Cell Technologies Office of the Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy is soliciting financial assistance Applications with the objective of supporting industry efforts and the President's Hydrogen Fuel Initiative in

  20. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  1. Used fuel disposition research and development roadmap - FY10 status.

    SciTech Connect (OSTI)

    Nutt, W. M.

    2010-10-01

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in

  2. Task Force on Biofuels Infrastructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Task Force on Biofuels Infrastructure Task Force on Biofuels Infrastructure Under the federal Renewable Fuels Standard (RFS) adopted in 2005 and amended in 2007, the United States is committed to a substantial (five-fold) increase in its use of biofuels by 2022. The National Commission on Energy Policy (NCEP) convened a Biofuels Infrastructure Task Force in 2008 to examine the infrastructure implications of this relatively swift and unprecedented shift in the composition of the nation's

  3. DOE Has Issued Request for Information Regarding Hydrogen Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and FCEVs | Department of Energy Has Issued Request for Information Regarding Hydrogen Infrastructure and FCEVs DOE Has Issued Request for Information Regarding Hydrogen Infrastructure and FCEVs December 18, 2013 - 12:00am Addthis The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office has issued a request for information (RFI) seeking feedback from interested stakeholders regarding strategies for a robust market introduction of hydrogen supply, infrastructure, and fuel cell

  4. Hydrogen Infrastructure Market Readiness Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Market Readiness Workshop Hydrogen Infrastructure Market Readiness Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) hosted the Hydrogen Infrastructure Market Readiness Workshop February 16-17, 2011, in Washington, D.C. Stakeholders and technology experts convened to review and discuss fueling equipment costs, market readiness, and business strategies for early markets such as fuel cell electric vehicles, material handling equipment, and

  5. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the computational, physics, and engineering capability spans multiple physics phenomenologies, engineering disciplines, and brings to bear massively parallel processing computational power to solve very complex problems that result in realistic estimates of potential consequences resulting from these types of postulated accidents. the Sar that is developed must go through rigorous external review before it goes to the national Security Council for approval prior to launch. this process provides

  6. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    SciTech Connect (OSTI)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  7. Development of Dual-Fuel Engine for Class 8 Applications | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dual-Fuel Engine for Class 8 Applications Development of Dual-Fuel Engine for Class 8 Applications Highlights roadmap towards 55% brake thermal efficiency and progress to meet ...

  8. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" held on March 10, 2015.

  9. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck Development and Demonstration of a ...

  10. SuperTruck … Development and Demonstration of a Fuel-Efficient...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer Supertruck - Development and Demonstration of a ...

  11. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  12. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  13. Energy and Infrastructure Future Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rush Robinett Energy &Infrastructure Future Group Sandia National Laboratories rdrobin@sandia.gov Energy & Infrastructure Future Overview 2 Sandia's Core Purpose "Helping our Nation Secure a Peaceful and Free World through Technology" * National Security Laboratory * Broad mission in developing science and technology applications to meet our rapidly changing, complex national security challenges * Safety, security and reliability of our nation's nuclear weapon stockpile 3

  14. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-7809W Current work is centered on development of the Supercritical Carbon Dioxide (sCo2) Closed Brayton Cycle. Using supercritical fluids, Brayton Cycles can achieve higher energy conversion efficiencies in 1/100th of the volume and 1/10th the cost of comparable steam rankine cycles. the technology is being demonstrated in the nuclear Energy Systems laboratory/Brayton lab

  15. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  16. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). | Department of Energy Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). Fact sheet describes the study being conducted on fuel cell

  17. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Vehicles (FCVs) Polymer and Composite Materials R&D Gaps for Hydrogen Systems Michael ... SAE J2594 Design for recycling PEM fuel cell system 09-2003 Perf. ...

  18. Used Fuel Disposition Campaign Disposal Research and Development Roadmap

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology (OFCT) has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and...

  19. DOE Transfers Coal to Fuel Paducah Area Economic Development | Department

    Energy Savers [EERE]

    Department of Energy Research Projects to Advance Solid Oxide Fuel Cell Technology DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology July 13, 2015 - 10:00am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected for funding 16 solid oxide fuel cell (SOFC) technology research projects. Fuel cells are a modular, efficient, and virtually pollution-free power generation technology. In Fiscal Year (FY) 2015, NETL issued two

  20. Development of Reversible Fuel Cell Systems at Proton Energy

    Broader source: Energy.gov [DOE]

    Presentation by Everett Anderson, PROTON ON SITE, at the NREL Reversible Fuel Cells Workshop, April 19, 2011

  1. Lean Gasoline System Development for Fuel Efficient Small Car

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. International Partnership for Hydrogen and Fuel Cells in the Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partnership for Hydrogen and Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE), which was created in 2003 to foster international cooperation on hydrogen and fuel cell R&D, common codes and standards, and information sharing on infrastructure development. The IPHE's 17 partners organize, evaluate, and

  3. Analyzing water/wastewater infrastructure interdependencies.

    SciTech Connect (OSTI)

    Gillette, J. L.; Fisher, R. E.; Peerenboom, J. P.; Whitfield, R. G.

    2002-03-26

    This paper describes four general categories of infrastructure interdependencies (physical, cyber, geographic, and logical) as they apply to the water/wastewater infrastructure, and provides an overview of one of the analytic approaches and tools used by Argonne National Laboratory to evaluate interdependencies. Also discussed are the dimensions of infrastructure interdependency that create spatial, temporal, and system representation complexities that make analyzing the water/wastewater infrastructure particularly challenging. An analytical model developed to incorporate the impacts of interdependencies on infrastructure repair times is briefly addressed.

  4. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    SciTech Connect (OSTI)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These

  5. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  6. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Environmental Management (EM)

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure ...

  7. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State & Alt Fuel Providers All Categories Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Clean Cities Petroleum Use Reduction Vehicles Program Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Laws & Incentives Regulated Fleets State & Alt Fuel Providers Federal Fleets OR Go Sort by: Category Most Recent Most Popular 6 results

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit An income tax credit is available for 50% of the cost of alternative fueling infrastructure, up to $5,000. Qualifying infrastructure includes electric vehicle supply equipment and equipment to dispense fuel that is 85% or more natural gas, propane, or hydrogen. Unused credits may be carried over into future tax years. The credit expires December 31, 2017. For additional information, including information on how to claim the credit, please see the New

  9. Hydrogen Distribution and Delivery Infrastructure Basics | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Before hydrogen can become a mainstream energy carrier, we must first develop and build the infrastructure (e.g. the miles of transmission and distribution pipelines, bulk storage ...

  10. Tarini Infrastructure Ltd | Open Energy Information

    Open Energy Info (EERE)

    Place: New Delhi, Delhi (NCT), India Zip: 110024 Sector: Hydro Product: New Delhi-based small hydro project developer. References: Tarini Infrastructure Ltd.1 This article is a...

  11. Green Infrastructure Bonds | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    allowing the Department of Business, Economic Development, and Tourism to issue Green Infrastructure Bonds to secture low-cost financing for clean energy installations,...

  12. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  13. Development of low temperature solid oxide fuel cells

    SciTech Connect (OSTI)

    Bakker, W.T.; Goldstein, R.

    1996-12-31

    The historical focus of the electric utility industry has been central station power plants. These plants are usually sited outside urban areas and electricity was delivered via high voltage transmission lines. Several things are beginning to change this historical precedent One is the popular concern with EMF as a health hazard. This has rendered the construction of new lines as well as upgrading old ones very difficult. Installation of power generating equipment near the customer enables the utility to better utilize existing transmission and distribution networks and defer investments. Power quality and lark of disturbances and interruptions is also becoming increasingly more important to many customers. Grid connected, but dedicated small power plants can greatly improve power quality. Finally the development of high efficiency, low emission, modular fuel cells promises near pollution free localized power generation with an efficiency equal to or exceeding that of even the most efficient central power stations.

  14. DOE Issues Request for Information on Fuel Cell Research and Development Needs

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office is seeking feedback from the research community and relevant stakeholders to assist in the development of topics for a potential funding opportunity announcement in 2015 for fuel cells and fuel cell systems designed for transportation, as well as stationary and early market applications, including cross-cutting stack and balance of plant component technology.

  15. Geospatial Analysis and Optimization of Fleet Logistics to Exploit Alternative Fuels and Advanced Transportation Technologies: Preprint

    SciTech Connect (OSTI)

    Sparks, W.; Singer, M.

    2010-06-01

    This paper describes how the National Renewable Energy Laboratory (NREL) is developing geographical information system (GIS) tools to evaluate alternative fuel availability in relation to garage locations and to perform automated fleet-wide optimization to determine where to deploy alternative fuel and advanced technology vehicles and fueling infrastructure.

  16. Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a $100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. 7_intelligent.pdf (22.28 KB) More Documents & Publications 2012 Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program 2011 Pathways to Commercial Success: Technologies and

  17. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect (OSTI)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  18. President's Hydrogen Fuel Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen Infrastructure and Fuel Cell Technologies put on an Accelerated Schedule. President Bush commits a total $1.7 billion over first 5 years

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    The Wisconsin Department of Agriculture, Trade and Consumer Protection must pursue the establishment and maintenance of sufficient alternative fueling infrastructure at public ...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    two competitive grant programs to fund projects that reduce greenhouse gas (GHG) emissions in the transportation sector. The Delaware Alternative Fueling Infrastructure Grant...

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    through a joint request for proposals (RFP), boost private investment in natural gas fueling infrastructure, and encourage greater coordination between state and local...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    E15 Infrastructure Grant Program The Minnesota Department of Agriculture may establish a program to provide grants to eligible fuel retailers for equipment and installation costs ...

  3. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect (OSTI)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  4. Energy Department Investments to Advance Hydrogen Infrastructure and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Technologies | Department of Energy Investments to Advance Hydrogen Infrastructure and Fueling Technologies Energy Department Investments to Advance Hydrogen Infrastructure and Fueling Technologies July 18, 2012 - 1:24pm Addthis As part of the Energy Department's commitment to give American businesses more options to cut energy costs and reduce reliance on imported oil, the Department today announced a $2.4 million investment to collect and analyze performance data for hydrogen

  5. Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen

    Broader source: Energy.gov (indexed) [DOE]

    Presentation for Dec. 17, 2008 hydrogen bimonthly informational call and meeting series for state and regional initiatives. nha_webinar_steve_medwin_pres.pdf (226.04 KB) More Documents & Publications Full Fuel-Cycle Comparison of Forklift Propulsion Systems An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment The Hydrogen Tax Incentive Act of 2008 Energy

    Access the recording and download the presentation slides from the Fuel Cell Technologies

  6. Interdependence of Electricity System Infrastructure and Natural...

    Office of Environmental Management (EM)

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - ...

  7. National labs team to develop better, cheaper fuel cells | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the proton and electrons combine with the oxygen. Thursday, Oct. 8, was National Hydrogen and Fuel Cell Day, dedicated to increasing awareness of this renewable energy technology. ...

  8. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    (use of diverse, domestic fuels, including hydrogen, natural gas, biogas, and methanol); reduced air pollution, criteria pollutants, water use; and highly reliable grid support. ...

  9. Recent Developments on the Production of Transportation Fuels...

    Office of Scientific and Technical Information (OSTI)

    The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to ...

  10. Recent developments in the production of liquid fuels via catalytic...

    Office of Scientific and Technical Information (OSTI)

    The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to ...

  11. Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Unmanned Undersea Vehicles | Department of Energy Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles Fossil Energy-Developed Fuel Cell Technology Being Adapted by Navy for Advanced Unmanned Undersea Vehicles January 31, 2013 - 12:00pm Addthis An unmanned undersea vehicle (UUV) being deployed during a U.S. Office of Naval Research demonstration near Panama City. Solid oxide fuel cell technology being developed by the Office of

  12. AC Transit Demos Three Prototype Fuel Cell Buses | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Results SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet).

  13. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  14. Development and Demonstration of a Fuel-Efficient Class 8 Highway...

    Energy Savers [EERE]

    More Documents & Publications Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle Vehicle ...

  15. Final Report for NFE-07-00912: Development of Model Fuels Experimental...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets Citation Details In-Document Search ...

  16. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect (OSTI)

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  17. Development of LWR Fuels with Enhanced Accident Tolerance

    SciTech Connect (OSTI)

    Lahoda, Edward J.; Boylan, Frank A.

    2015-10-30

    Significant progress was made on the technical, licensing, and business aspects of the Westinghouse Electric Company’s Enhanced Accident Tolerant Fuel (ATF) by the Westinghouse ATF team. The fuel pellet options included waterproofed U15N and U3Si2 and the cladding options SiC composites and zirconium alloys with surface treatments. Technology was developed that resulted in U3Si2 pellets with densities of >94% being achieved at the Idaho National Laboratory (INL). The use of U3Si2 will represent a 15% increase in U235 loadings over those in UO₂ fuel pellets. This technology was then applied to manufacture pellets for 6 test rodlets which were inserted in the Advanced Test Reactor (ATR) in early 2015 in zirconium alloy cladding. The first of these rodlets are expected to be removed in about 2017. Key characteristics to be determined include verification of the centerline temperature calculations, thermal conductivity, fission gas release, swelling and degree of amorphization. Waterproofed UN pellets have achieved >94% density for a 32% U3Si2/68% UN composite pellet at Texas A&M University. This represents a U235 increase of about 31% over current UO2 pellets. Pellets and powders of UO2, UN, and U3Si2the were tested by Westinghouse and Los Alamos National Laboratory (LANL) using differential scanning calorimetry to determine what their steam and 20% oxygen corrosion temperatures were as compared to UO2. Cold spray application of either the amorphous steel or the Ti2AlC was successful in forming an adherent ~20 micron coating that remained after testing at 420°C in a steam autoclave. Tests at 1200°C in 100% steam on coatings for Zr alloy have not been successful, possibly due to the low density of the coatings which allowed steam transport to the base zirconium metal. Significant modeling and testing

  18. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Many standards development organizations (SDOs) are working to develop codes and standards needed for the utilization of alternative fuel vehicle technologies. This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane. Propane Vehicle and Infrastructure Codes and Standards Chart Vehicle Systems Safety: Vehicle Tanks and Piping: Vehicle Components: Vehicle Dispensing Systems: Vehicle Dispensing System Components: Storage Systems: Storage

  19. SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tractor & Trailer | Department of Energy SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss064_jadin_2012_o.pdf (2.16 MB) More Documents & Publications SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8

  20. Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program) | Department of Energy Engine (DOE SuperTruck Program) Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck Program) Discusses engine efficiency contributions of enhanced fuel injection rematched to new piston geometry, improved charge air system, revised base engine components reduce friction and turbocompounding. deer11_deojeda.pdf (2.06 MB) More Documents & Publications Development and Demonstration of a Fuel-Efficient HD Engine

  1. Nuclear hybrid energy infrastructure

    SciTech Connect (OSTI)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  2. Development of a 5 kW Prototype Coal-Based Fuel Cell

    SciTech Connect (OSTI)

    Chuang, Steven S.C.; Mirzababaei, Jelvehnaz; Rismanchian, Azadeh

    2014-01-20

    The University of Akron Fuel Cell Laboratory pioneered the development of a laboratory scale coal-based fuel cell, which allows the direct use of high sulfur content coal as fuel. The initial research and coal fuel cell technology development (“Coal-based Fuel Cell,” S. S. C. Chuang, PCT Int. Appl. 2006, i.e., European Patent Application, 35 pp. CODEN: PIXXD2 WO 2006028502 A2 20060316) have demonstrated that it is feasible to electrochemically oxidize carbon to CO2, producing electricity. The key innovative concept of this coal-based fuel cell technology is that carbon in coal can be converted through an electrochemical oxidation reaction into manageable carbon dioxide, efficiently generating electricity without involving coal gasification, reforming, and water-gas shift reaction. This study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reaction. A carbon injection system was developed to inject the solid fuel without bringing air into the anode chamber; a fuel cell stack was developed and tested to demonstrate the feasibility of the fuel cell stack. Further improvement of anode catalyst activity and durability is needed to bring this novel coal fuel cell to a highly efficient, super clean, multi-use electric generation technology, which promises to provide low cost electricity by expanding the utilization of U.S. coal supplies and relieving our dependence on foreign oil.

  3. Geographically-Based Infrastructure Analysis

    Broader source: Energy.gov (indexed) [DOE]

    January 26, 2006 Geographically-Based Infrastructure Analysis (GIA) Utilizes GIS, ... Geographically-based Infrastructure Analysis GIS Transportation Technologies & Systems ...

  4. Underground Storage Tanks: New Fuels and Compatibility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    high octane ethanol blended fuels will require careful consideration of material compatibility issues with existing infrastructure Outline: 1. Ethanol blended fuels ...

  5. Before the House Transportation and Infrastructure Subcommittee on Economic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development, Public Buildings, and Emergency Management | Department of Energy Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management Before the House Transportation and Infrastructure Subcommittee on Economic Development, Public Buildings, and Emergency Management By: Drury Crawley, Office of Energy

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Vehicle and Infrastructure Cash-Flow Evaluation Model VICE 2.0: Vehicle

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit An income tax credit is available for 25% of the cost to purchase, construct, and install qualified alternative fueling infrastructure. Qualified property includes equipment used to distribute, dispense, or store alternative fuel. Eligible fuels include natural gas and propane. The entire credit must be taken in three equal annual installments beginning with the taxable year in which the facility is placed into service. Unused credits may be carried

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit for Residents Through the Residential Energy Tax Credit program, qualified residents may receive a tax credit for 25% of alternative fuel infrastructure project costs, up to $750. Qualified residents may receive a tax credit for 50% of project costs, up to $750. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other fuels that the Oregon Department of Energy approves. A

  9. Fuel Cycle Research & Development Technical Monthly-March 2012

    SciTech Connect (OSTI)

    Miller, Michael C.

    2012-05-10

    meeting. Kenneth Dayman, the graduate student from University of Texas, completed an initial draft of his master's thesis. His research will contribute to the multivariate classifier currently under development. Sarah Bender, the graduate student from Pennsylvania State University, presented her work on a poster and in a conference paper at the MARC IX meeting. A mass balance flowsheet for the fast reactor fuel was completed and a model simulation is scheduled to begin construction next month. The development of a mass balance flowsheet for light water reactor fuel will predict the behavior of the separation process using mathematical functions. The completed flowsheet will be utilized as the basis for constructing the model simulation for the electrochemical separations. Comments and review of the model from the MPACT Working Group meeting have been used to evaluate updates to the EChem model. A preliminary physical security layout has been developed in ATLAS. Thermal stability tests for high temperature microfluidic interconnections were completed on all compounds tested for bonding strength. An interconnection strategy was determined based on these results that we expect will allow for operation at 400C in the first generation of sampling systems. Design of the sampling system using the chosen interconnections was initiated, with handoff to an external foundry for fabrication based on ANL specified process conditions expected by the middle of the month. Monte Carlo simulations of the sampling system were conducted under conditions of realistic sampling size distributions, electrorefiner inhomogeneity distributions, and detector efficiencies. These simulations were used to establish a baseline limit of detection for system operation, assuming an on-line separation step is conducted before detection. Sensor for measuring density and depth of molten electrolyte - The procurement effort continued. 80% of the components ordered to assemble the double bubbler have arrived at

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to use pressure swing adsorption to remove impurities from gaseous hydrogen for use in fuel cells. This is done at the point of production. Other technologies include membrane and...

  11. Alternative Fuels Data Center: Fisher Coachworks Develops Plug...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Regional Heavy-Duty LNG Fueling Station March 21, 2015 Photo of a street sweeper New Hampshire Fleet Revs up With Natural Gas March 7, 2015 Photo of a truck pulling into a CNG ...

  12. Solid Oxide Fuel Cell and Power System Development at PNNL |...

    Broader source: Energy.gov (indexed) [DOE]

    Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu20119chick.pdf (1.77 MB) More Documents & Publications Solid Oxide Fuel Cell (SOFC) Technology for Greener ...

  13. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities All Categories Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Clean Cities Petroleum Use Reduction Vehicles Program Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Laws & Incentives Regulated Fleets State & Alt Fuel Providers Federal Fleets OR Go Sort by: Category Most Recent Most Popular 9 results Petroleum Use Reduction -

  14. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Regulated Fleets All Categories Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Clean Cities Petroleum Use Reduction Vehicles Program Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Laws & Incentives Regulated Fleets State & Alt Fuel Providers Federal Fleets OR Go Sort by: Category Most Recent Most Popular 7 results Federal Fleets -

  15. Laboratory Directed Research and Development (LDRD) on Mono-uranium Nitride Fuel Development for SSTAR and Space Applications

    SciTech Connect (OSTI)

    Choi, J; Ebbinghaus, B; Meiers, T; Ahn, J

    2006-02-09

    The US National Energy Policy of 2001 advocated the development of advanced fuel and fuel cycle technologies that are cleaner, more efficient, less waste-intensive, and more proliferation resistant. The need for advanced fuel development is emphasized in on-going DOE-supported programs, e.g., Global Nuclear Energy Initiative (GNEI), Advanced Fuel Cycle Initiative (AFCI), and GEN-IV Technology Development. The Directorates of Energy & Environment (E&E) and Chemistry & Material Sciences (C&MS) at Lawrence Livermore National Laboratory (LLNL) are interested in advanced fuel research and manufacturing using its multi-disciplinary capability and facilities to support a design concept of a small, secure, transportable, and autonomous reactor (SSTAR). The E&E and C&MS Directorates co-sponsored this Laboratory Directed Research & Development (LDRD) Project on Mono-Uranium Nitride Fuel Development for SSTAR and Space Applications. In fact, three out of the six GEN-IV reactor concepts consider using the nitride-based fuel, as shown in Table 1. SSTAR is a liquid-metal cooled, fast reactor. It uses nitride fuel in a sealed reactor vessel that could be shipped to the user and returned to the supplier having never been opened in its long operating lifetime. This sealed reactor concept envisions no fuel refueling nor on-site storage of spent fuel, and as a result, can greatly enhance proliferation resistance. However, the requirement for a sealed, long-life core imposes great challenges to research and development of the nitride fuel and its cladding. Cladding is an important interface between the fuel and coolant and a barrier to prevent fission gas release during normal and accidental conditions. In fabricating the nitride fuel rods and assemblies, the cladding material should be selected based on its the coolant-side corrosion properties, the chemical/physical interaction with the nitride fuel, as well as their thermal and neutronic properties. The US NASA space reactor, the

  16. Alternative Fuels in Public Transit: A Match Made on the Road

    SciTech Connect (OSTI)

    Not Available

    2002-03-01

    Brochure addressing alternative fuel modes of transportation for public transit, challenges, fuels, infrastructure, cast studies, guidance, and resources.

  17. NREL Develops High-Speed Scanner to Monitor Fuel Cell Material Defects

    SciTech Connect (OSTI)

    2015-09-01

    This highlight describes results of recent work in which polymer electrolyte membrane fuel cell electrodes with intentionally introduced known defects were imaged and analyzed using a fuel cell scanner recently developed at NREL. The highlight is being developed for the September 2015 Alliance S&T Board meeting.

  18. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting van002_wang_2013_o.pdf (1.64 MB) More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015:

  19. Toward developing a computational capability for PEM fuel cell design and optimization.

    SciTech Connect (OSTI)

    Wang, Chao Yang; Luo, Gang; Jiang, Fangming; Carnes, Brian; Chen, Ken Shuang

    2010-05-01

    In this paper, we report the progress made in our project recently funded by the US Department of Energy (DOE) toward developing a computational capability, which includes a two-phase, three-dimensional PEM (polymer electrolyte membrane) fuel cell model and its coupling with DAKOTA (a design and optimization toolkit developed and being enhanced by Sandia National Laboratories). We first present a brief literature survey in which the prominent/notable PEM fuel cell models developed by various researchers or groups are reviewed. Next, we describe the two-phase, three-dimensional PEM fuel cell model being developed, tested, and later validated by experimental data. Results from case studies are presented to illustrate the utility of our comprehensive, integrated cell model. The coupling between the PEM fuel cell model and DAKOTA is briefly discussed. Our efforts in this DOE-funded project are focused on developing a validated computational capability that can be employed for PEM fuel cell design and optimization.

  20. Transmission Infrastructure Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRANSMISSION INFRASTRUCTURE PROGRAM DOE Tribal Energy Summit 2015 SECRETARYOF ENERGY'S FINANCING ROUNDTABLE Tracey A. LeBeau Senior Vice President & Transmission Infrastructure Program Manager 1 Program Description Western's Loan Authority * $3.25 billion permanent authority (revolving) * Goal: Attract investment in infrastructure & address market needs * Commercial underwriting standards TIP Portfolio Management Fundamentals * Reflective of Market Need(s) * Ensure Funds Revolve 2 Recent