Sample records for fuel infrastructure development

  1. Sandia National Laboratories: fueling infrastructure development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fueling infrastructure development New Report Describes Joint Opportunities for Natural Gas and Hydrogen Fuel-Cell Vehicle Markets On March 6, 2015, in Capabilities, Center for...

  2. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructure Development to someone by

  3. Hydrogen Fueling Systems and Infrastructure

    E-Print Network [OSTI]

    ;Projects Hydrogen Infrastructure Development · Turnkey Commercial Hydrogen Fueling Station · Autothermal

  4. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities

  5. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNew HampshirePropane Buses

  6. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2NorthAvailabilityBasics

  7. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01T23:59:59.000Z

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  8. California Low Carbon Fuels Infrastructure Investment Initiative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Carbon Fuels Infrastructure Investment Initiative California Low Carbon Fuels Infrastructure Investment Initiative 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  9. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual Progress Report...

  10. Hydrogen, Fuel Cells and Infrastructure Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit Review and Peer Evaluation Report Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003...

  11. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Broader source: Energy.gov (indexed) [DOE]

    Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen On April...

  12. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and...

  13. Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Program Overview

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure.5Hydrogen, Fuel Cells & Infrastructure Technologies Program (EERE) President's Office of Science Berkeley, California #12;President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1

  14. Hydrogen, Fuel Infrastructure

    E-Print Network [OSTI]

    be powered by hydrogen, and pollution-free." "Join me in this important innovation to make our air for the foreseeable future. Even with the significant energy efficiency benefits that gasoline- electric hybrid - fossil fuels like natural gas and coal; renewable energy sources such as solar radiation, wind

  15. Research and development of Proton-Exchange-Membrane (PEM) fuel cell system for transportation applications. Fuel cell infrastructure and commercialization study

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    This paper has been prepared in partial fulfillment of a subcontract from the Allison Division of General Motors under the terms of Allison`s contract with the U.S. Department of Energy (DE-AC02-90CH10435). The objective of this task (The Fuel Cell Infrastructure and Commercialization Study) is to describe and prepare preliminary evaluations of the processes which will be required to develop fuel cell engines for commercial and private vehicles. This report summarizes the work undertaken on this study. It addresses the availability of the infrastructure (services, energy supplies) and the benefits of creating public/private alliances to accelerate their commercialization. The Allison prime contract includes other tasks related to the research and development of advanced solid polymer fuel cell engines and preparation of a demonstration automotive vehicle. The commercialization process starts when there is sufficient understanding of a fuel cell engine`s technology and markets to initiate preparation of a business plan. The business plan will identify each major step in the design of fuel cell (or electrochemical) engines, evaluation of the markets, acquisition of manufacturing facilities, and the technical and financial resources which will be required. The process will end when one or more companies have successfully developed and produced fuel cell engines at a profit. This study addressed the status of the information which will be required to prepare business plans, develop the economic and market acceptance data, and to identify the mobility, energy and environment benefits of electrochemical or fuel cell engines. It provides the reader with information on the status of fuel cell or electrochemical engine development and their relative advantages over competitive propulsion systems. Recommendations and descriptions of additional technical and business evaluations that are to be developed in more detail in Phase II, are included.

  16. Sandia National Laboratories: Hydrogen Fueling Infrastructure...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Station Technology Linde, Sandia Partnership Looks to Expand Hydrogen Fueling Network On February 26, 2015, in Center for Infrastructure Research and Innovation (CIRI), Energy,...

  17. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California fry.pdf More Documents &...

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  19. Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier 2North Carolina forFuels

  20. Hydrogen Fueling Infrastructure Research and Station Technology

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  1. Modeling hydrogen fuel distribution infrastructure

    E-Print Network [OSTI]

    Pulido, Jon R. (Jon Ramon), 1974-

    2004-01-01T23:59:59.000Z

    This thesis' fundamental research question is to evaluate the structure of the hydrogen production, distribution, and dispensing infrastructure under various scenarios and to discover if any trends become apparent after ...

  2. Office of Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    . Hydrogen Storage 2. Hydrogen Production 3. Fuel Cell Cost Reduction #12;Major Fuel Cell Decisions FuelOffice of Hydrogen, Fuel Cells & Infrastructure Technologies (proposed) Steve Chalk May 6, 2002 #12 DAS Associate DASIndustrial Technologies Implementation A Director Solar Energy Technologies Director

  3. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructur...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure...

  4. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure Technologies Program...

  5. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

  6. Hydrogen,Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    ;The President's FY04 Budget Request for FreedomCAR and Hydrogen Fuel Initiatives 4.0Office of Nuclear commercialization decision by 2015. Fuel Cell Vehicles in the Showroom and Hydrogen at Fueling Stations by 2020 #12

  7. Identifying Challenges for Sustained Adoption of Alternative Fuel Vehicles and Infrastructure

    E-Print Network [OSTI]

    Struben, Jeroen J.R.,

    2007-04-27T23:59:59.000Z

    This paper develops a dynamic, behavioral model with an explicit spatial structure to explore the co-evolutionary dynamics between infrastructure supply and vehicle demand. Vehicles and fueling infrastructure are ...

  8. Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles

    E-Print Network [OSTI]

    California at Davis, University of

    Hydrogen Infrastructure Strategies to Enable Fuel Cell Vehicles Prof. Joan Ogden University;Cluster Strategy => GOOD FUELING CONVENIENCE W/ SPARSE EARLY NETWORK (Vehicles Most important insight from STEPS research: A portfolio approach combining efficiency, alt fuels

  9. NREL UL Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-01-01T23:59:59.000Z

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  10. Assessment of capital requirements for alternative fuels infrastructure under the PNGV program

    SciTech Connect (OSTI)

    Stork, K.; Singh, M.; Wang, M.; Vyas, A.

    1998-12-31T23:59:59.000Z

    This paper presents an assessment of the capital requirements of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a new Generation of Vehicles is currently investigating. The six fuels include two petroleum-based fuels (reformulated gasoline and low-sulfur diesel) and four alternative fuels (methanol, ethanol, dimethyl ether, and hydrogen). This study develops estimates of cumulative capital needs for establishing fuels production and distribution infrastructure to accommodate 3X vehicle fuel needs. Two levels of fuel volume-70,000 barrels per day and 1.6 million barrels per day-were established for meeting 3X-vehicle fuel demand. As expected, infrastructure capital needs for the high fuel demand level are much higher than for the low fuel demand level. Between fuel production infrastructure and distribution infrastructure, capital needs for the former far exceed those for the latter. Among the four alternative fuels, hydrogen bears the largest capital needs for production and distribution infrastructure.

  11. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergyFuel

  12. California Low Carbon Fuels Infrastructure Investment Initiative |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Change Request |82:91:4Applications |

  13. DOE Hydrogen, Fuel Cells, and Infrastructure Technologies

    E-Print Network [OSTI]

    : Economic Analysis of Stationary PEM Fuel Cell Systems · Harry Stone, Economist and Principal Investigator. #12;8 Skill Set ­ Models (Battelle) Battelle Team: Economic Analysis of Stationary PEM Fuel Cell Systems Economic analysis of stationary fuel cells and their associated markets to understand the cost

  14. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  15. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategic Initiatives for Hydrogen Delivery Workshop City of Tulare Renewable Biogas Fuel Cell Project Transportation and Stationary Power Integration Workshop Agenda,...

  16. Costs Associated With Propane Vehicle Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi Site Office (FSO)CorporateCosmic

  17. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22T23:59:59.000Z

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  18. Alternative Fuels Data Center: California Ramps Up Biofuels Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructureFuels in ItsLimousine

  19. National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure

    E-Print Network [OSTI]

    National Renewable Energy Laboratory DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program Systems Analysis Workshop July 28-29, 2004 Washington, D.C. Margaret K. Mann Hydrogen Analysis to address the nation's energy and environmental goals. · The NREL Hydrogen Analysis Group provides

  20. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01T23:59:59.000Z

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  1. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    analysis of hydrogen infrastructure development strategiesalso presented. Keywords: Hydrogen Infrastructure, Renewableof a Tasmanian hydrogen infrastructure is performed

  2. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel...

  3. Alternative Fuels Data Center: Natural Gas Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce OperatingPropane

  4. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| DepartmentDepartment ofTankTest Site2009 DOETechnology Showcase |

  5. Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    M.W. , Initiating hydrogen infrastructures: preliminaryNatural Gas Based Hydrogen Infrastructure – Optimizingof a Fossil Fuel-Based Hydrogen Infrastructure with Carbon

  6. United States Fuel Resiliency: US Fuels Supply Infrastructure | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan-Japan JointGreen Property Funds ) )BSHof

  7. Alcohol-fueled vehicles: An alternative fuels vehicle, emissions, and refueling infrastructure technology assessment

    SciTech Connect (OSTI)

    McCoy, G.A.; Kerstetter, J.; Lyons, J.K. [and others

    1993-06-01T23:59:59.000Z

    Interest in alternative motor vehicle fuels has grown tremendously over the last few years. The 1990 Clean Air Act Amendments, the National Energy Policy Act of 1992 and the California Clean Air Act are primarily responsible for this resurgence and have spurred both the motor fuels and vehicle manufacturing industries into action. For the first time, all three U.S. auto manufacturers are offering alternative fuel vehicles to the motoring public. At the same time, a small but growing alternative fuels refueling infrastructure is beginning to develop across the country. Although the recent growth in alternative motor fuels use is impressive, their market niche is still being defined. Environmental regulations, a key driver behind alternative fuel use, is forcing both car makers and the petroleum industry to clean up their products. As a result, alternative fuels no longer have a lock on the clean air market and will have to compete with conventional vehicles in meeting stringent future vehicle emission standards. The development of cleaner burning gasoline powered vehicles has signaled a shift in the marketing of alternative fuels. While they will continue to play a major part in the clean vehicle market, alternative fuels are increasingly recognized as a means to reduce oil imports. This new role is clearly defined in the National Energy Policy Act of 1992. The Act identifies alternative fuels as a key strategy for reducing imports of foreign oil and mandates their use for federal and state fleets, while reserving the right to require private and municipal fleet use as well.

  8. Hydrogen Fuel Infrastructure PON-11-609 Attachment F Local Health Impacts Information

    E-Print Network [OSTI]

    Hydrogen Fuel Infrastructure PON-11-609 Attachment F ­ Local Health Impacts Information Air Quality Percentage of population under 5 years and over 65 years of age #12;Hydrogen Fuel Infrastructure PON-11

  9. Building Out Alternative Fuel Retail Infrastructure: Government Fleet Spillovers in E85

    E-Print Network [OSTI]

    Corts, Kenneth S.

    2009-01-01T23:59:59.000Z

    biodiesel, hydrogen, and plug-in electric vehicles and their fueling infrastructure would be useful. Each technology

  10. Community Development Block Grant/Economic Development Infrastructure Financing (CDBG/EDIF) (Oklahoma)

    Broader source: Energy.gov [DOE]

    Community Development Block Grant/Economic Development Infrastructure Financing (CDBG/EDIF) provides public infrastructure financing to help communities grow jobs, enable new business startups and...

  11. ME 5xx: Fuel Cell Vehicles & Hydrogen Infrastructure Instructors: D. Siegel and A. Stefanopoulou

    E-Print Network [OSTI]

    Stefanopoulou, Anna

    ME 5xx: Fuel Cell Vehicles & Hydrogen Infrastructure Instructors: D. Siegel and A. Stefanopoulou infrastructure, and potential benefits & barriers to the use of hydrogen as a vehicular fuel. Emphasis is placed Course statement: This course covers essential aspects of fuel cell vehicle technology, hydrogen fueling

  12. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on...

  13. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15T23:59:59.000Z

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  14. Questions, Answers, and Clarifications PON12606 December 14, 2012 1 Hydrogen Fuel Infrastructure

    E-Print Network [OSTI]

    Infrastructure Questions, Answers and Clarifications Hydrogen Fuel Infrastructure Solicitation PON-12Questions, Answers, and Clarifications PON12606 December 14, 2012 1 Hydrogen Fuel for multiple hydrogen fueling stations? A.6 No. Q.7 Can the 65% Energy Commission share be increased to 75%? A

  15. NREL UL E15 Fuel Dispensing Infrastructure Intermediate Blends Performance Testing (Presentation)

    SciTech Connect (OSTI)

    Moriarty, K.; Clark, W.

    2011-02-01T23:59:59.000Z

    Presentation provides an overview of NREL's project to determine compatibility and safe performance of installed fuel dispensing infrastructure with E15.

  16. Fuel Cell Vehicle Infrastructure Learning Demonstration: Status and Results; Preprint

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

    2008-09-01T23:59:59.000Z

    Article prepared for ECS Transactions that describes the results of DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project.

  17. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To: CongestionDevelopment ofofthePerformanceofPathway Options

  18. Building Energy Supply Infrastructures and Urban Sustained Development of Shenyang

    E-Print Network [OSTI]

    Feng, G.; Wang, Y.; Gao, Y.

    2006-01-01T23:59:59.000Z

    Urban energy supply is a necessary infrastructure of civic development. Shenyang is an old industrial-based center in the northeast. Its development influences the economic development of the whole old northeast industry base. This paper analyses...

  19. Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international cooperation, research and development, environment and hea

    E-Print Network [OSTI]

    Zürich, Universität

    Infrastructure, human resources, international cooperation, research and development, environment and health, societal issues, industrial innovation, Infrastructure, human resources, international Infrastructure, human resources, international cooperation, research and development, environment and health

  20. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  1. Texas Hydrogen Highway Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase - Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Hitchcock, David

    2012-06-29T23:59:59.000Z

    The Texas Hydrogen Highway project has showcased a hydrogen fuel cell transit bus and hydrogen fueling infrastructure that was designed and built through previous support from various public and private sector entities. The aim of this project has been to increase awareness among transit agencies and other public entities on these transportation technologies, and to place such technologies into commercial applications, such as a public transit agency. The initial project concept developed in 2004 was to show that a skid-mounted, fully-integrated, factory-built and tested hydrogen fueling station could be used to simplify the design, and lower the cost of fueling infrastructure for fuel cell vehicles. The approach was to design, engineer, build, and test the integrated fueling station at the factory then install it at a site that offered educational and technical resources and provide an opportunity to showcase both the fueling station and advanced hydrogen vehicles. The two primary technology components include: Hydrogen Fueling Station: The hydrogen fueling infrastructure was designed and built by Gas Technology Institute primarily through a funding grant from the Texas Commission on Environmental Quality. It includes hydrogen production, clean-up, compression, storage, and dispensing. The station consists of a steam methane reformer, gas clean-up system, gas compressor and 48 kilograms of hydrogen storage capacity for dispensing at 5000 psig. The station is skid-mounted for easy installation and can be relocated if needed. It includes a dispenser that is designed to provide temperaturecompensated fills using a control algorithm. The total station daily capacity is approximately 50 kilograms. Fuel Cell Bus: The transit passenger bus built by Ebus, a company located in Downey, CA, was commissioned and acquired by GTI prior to this project. It is a fuel cell plug-in hybrid electric vehicle which is ADA compliant, has air conditioning sufficient for Texas operations, and regenerative braking for battery charging. It uses a 19.3 kW Ballard PEM fuel cell, will store 12.6 kg of hydrogen at 350 Bar, and includes a 60 kWh battery storage system. The objectives of the project included the following: (a) To advance commercialization of hydrogen-powered transit buses and supporting infrastructure; (b) To provide public outreach and education by showcasing the operation of a 22-foot fuel cell hybrid shuttle bus and Texas first hydrogen fueling infrastructure; and (c) To showcase operation of zero-emissions vehicle for potential transit applications. As mentioned above, the project successfully demonstrated an early vehicle technology, the Ebus plug-in hybrid fuel cell bus, and that success has led to the acquisition of a more advanced vehicle that can take advantage of the same fueling infrastructure. Needed hydrogen station improvements have been identified that will enhance the capabilities of the fueling infrastructure to serve the new bus and to meet the transit agency needs. Over the course of this project, public officials, local government staff, and transit operators were engaged in outreach and education activities that acquainted them with the real world operation of a fuel cell bus and fueling infrastructure. Transit staff members in the Dallas/Ft. Worth region were invited to a workshop in Arlington, Texas at the North Central Texas Council of Governments to participate in a workshop on hydrogen and fuel cells, and to see the fuel cell bus in operation. The bus was trucked to the meeting for this purpose so that participants could see and ride the bus. Austin area transit staff members visited the fueling site in Austin to be briefed on the bus and to participate in a fueling demonstration. This led to further meetings to determine how a fuel cell bus and fueling station could be deployed at Capital Metro Transit. Target urban regions that expressed additional interest during the project in response to the outreach meetings and showcase events include San Antonio and Austin, Texas. In summary, the project objectives wer

  2. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20T23:59:59.000Z

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Compressed Natural Gas (CNG) Fueling Infrastructure Development The Oklahoma Legislature intends to increase the amount of CNG fueling infrastructure in the state, with the overall...

  4. Nuclear Infrastructure Development: Strategies and Methods for Engaging Nuclear Energy Seeking States

    SciTech Connect (OSTI)

    Frazar, Sarah L.; Kessler, Carol A.; Kreyling, Sean J.; Morris, Frederic A.; Mathews, Caroline E.; Bissani, Mo; Vergino, Eileen; Essner, Jonathan; Babcock, Rose A.; Eipeldauer, Dawn; Shipwash, Jacqueline; Apt, Kenneth E.

    2009-01-31T23:59:59.000Z

    This is the final report for the three infrastructure development workshops PNNL hosted or supported: the two infrastructure development seminars and the Como conference

  5. The geography of strategy : an exploration of alternative frameworks for transportation infrastructure strategy development

    E-Print Network [OSTI]

    Dunn, Travis P

    2010-01-01T23:59:59.000Z

    This thesis introduces the notion of a strategy development framework for transportation infrastructure systems. A strategy development framework has several dimensions: the organizations that own.infrastructure, the ...

  6. Infrastructure Development - Building America Top Innovations | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information for Departmentof Energy

  7. Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Duleep, Gopal [HD Systems

    2013-06-01T23:59:59.000Z

    Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

  8. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    SciTech Connect (OSTI)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01T23:59:59.000Z

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  9. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  10. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  11. Kerala Industrial Infrastructure Development Corporation Kinfra | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin Zhongdiantou New EnergyKenosistec SrlKenyon MunicipalEnergy

  12. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY

    E-Print Network [OSTI]

    ~--- - ~ .. INFRASTRUCTURE FOR HYDROGEN FUEL CELL VEHICLES: A SOUTHERN CALIFORNIA CASE STUDY Joan FUEL CELL VEHICLES: .A SOUTHERN CALIFORNIA CASE STUDY JoanM. Ogden Center for Energy and Environmental production, fuel cell vehicles are among the leading contenders in emerging markets for zero emission

  13. Technology Commercialization Showcase 2008 Hydrogen, Fuel Cells & Infrastructure

    E-Print Network [OSTI]

    : Multiple fuel feedstocks, usable waste heat, and cheap catalysts · Cons: Slow start-up, poor transient Carbonate Fuel Cell (MCFC) · Pros: Multiple fuel feedstocks and usable waste heat · Cons: Slow start

  14. Hydrogen fueling station development and demonstration

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Daney, D.; Daugherty, M.; Hill, D.; Prenger, F.C.

    1996-09-01T23:59:59.000Z

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project sought to develop and demonstrate a hydrogen fueling station for vehicles. Such stations are an essential infrastructural element in the practical application of hydrogen as vehicle fuel, and a number of issues such as safety, efficiency, design, and operating procedures can only be accurately addressed by a practical demonstration. Regardless of whether the vehicle is powered by an internal combustion engine or fuel cell, or whether the vehicle has a liquid or gaseous fuel tank, the fueling station is a critical technology that is the link between the local storage facility and the vehicle.

  15. NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in Many Devils Wash, Shiprock,Departmentsensor developmentfrom the

  16. Working inside the Cloud: Developing a Cloud Computing Infrastructure

    E-Print Network [OSTI]

    Krause, Rolf

    UROP 2012 Working inside the Cloud: Developing a Cloud Computing Infrastructure Cloud computing and live-migration of running VM. USI participates to the development of the first European Cloud computing for a motivated student that will have a chance to improve his/her knowledge on Cloud computing, Java and/or Ruby

  17. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014Contributing DataDepartmentGuide forDavis-Bacon ActEnergy

  18. Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission »AdvancedServicesDepartment

  19. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution AndControllingCoolCorrective

  20. Breakthrough Vehicle Development - Fuel Cells

    Fuel Cell Technologies Publication and Product Library (EERE)

    Document describing research and development program for fuel cell power systems for transportation applications.

  1. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuildingCoalComplex Flow WorkshopInformation

  2. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP) (Fact Sheet) |EnergyIssues |

  3. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP) (Fact Sheet) |EnergyIssues

  4. DOE Announces Webinars on Hydrogen Fueling Infrastructure Technology,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube| Department of Energy -State Efficiency,ofofofRFIResearchthe BioenergyEnergy

  5. FY 2003 Progress Report for Hydrogen, Fuel Cells and Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport in Representative GeologicReportingEnergy3,Energy FY 09 Lab Call:

  6. DOE Hydrogen and Fuel Cell Overview: 2011 Hydrogen Infrastructure Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJulyD&D Project|StatementDOEDepartment

  7. Simulating Impacts of Disruptions to Liquid Fuels Infrastructure |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus GroupSherrell R. GreeneTianyueon DPF

  8. Connecticut Company to Advance Hydrogen Infrastructure and Fueling Station

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptemberConfrontingFY 2011 FY 2011 FY1

  9. Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2of EnergySustainable

  10. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prevQuick Guide:U.N.JuneAs part of itsRefiningHydrogen |

  11. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe Solar Power Project Groundof|than Ever | Departmentof

  12. Hydrogen Fueling Infrastructure Research and Station Technology Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination Detector WorkshopHydrogenEnergyfor

  13. NREL: News - NREL, Sandia Team to Improve Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid Integration NRELCost of Automotive Fuel Cells 914 NREL714

  14. Hydrogen Vehicles and Fueling Infrastructure in China | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReview |Panel

  15. Hydrogen, Fuel Cells and Infrastructure Technologies Program FY2003 Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen andReview and Peer

  16. Hydrogen, Fuel Cells and Infrastructure Technologies Program: 2002 Annual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducationHydrogen andReview and

  17. Refueliing Infrastructure for Alternative Fuel Vehicles: Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S.Department of Energyfor

  18. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S.Department of

  19. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18,new2004_v1.3_5.0.zipFlorida4 U.S.Department ofHydrogen |

  20. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfrared Mapping

  1. infrastructure

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 |0/%2A0/%2Agtri

  2. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared Mapping HelpsMicro-grid

  3. Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared Mapping

  4. Sandia National Laboratories: hydrogen fuel cell and infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced hydrogen storage systems that will enable longer driving ranges and help make fuel-cell systems competitive for different platforms and vehicle sizes. These advances in...

  5. Hydrogen Fuel Cells Backup Infrastructure Cleanly and Quietly | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral Testimony ofMonitoring, Protectionof Energy

  6. Sandia Energy - Widespread Hydrogen Fueling Infrastructure Is the Goal of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWater Power PersonnelH2FIRST

  7. Infrastructure development assistance modeling for nuclear power plant

    SciTech Connect (OSTI)

    Park, J. H.; Hwang, K.; Park, K. M.; Kim, S. W.; Lee, S. M. [Korea Hydro and Nuclear Power Co., LTD, 23, 106 gil, Yeongdong-daero, Gangnam-gu, 153-791 (Korea, Republic of)

    2012-07-01T23:59:59.000Z

    The purpose of this paper is to develop a model, a general frame to be utilized in assisting newcomer countries to start a nuclear power program. A nuclear power plant project involves technical complexity and high level of investment with long duration. Considering newcomers are mostly developing countries that lack the national infrastructure, key infrastructure issues may constitute the principal constraints to the development of a nuclear power program. In this regard, it is important to provide guidance and support to set up an appropriate infrastructure when we help them with the first launch of nuclear power plant project. To date, as a sole nuclear power generation company, KHNP has been invited many times to mentor or assist newcomer countries for their successful start of a nuclear power program since Republic of Korea is an exemplary case of a developing country which began nuclear power program from scratch and became a major world nuclear energy country in a short period of time. Through hosting events organized to aid newcomer countries' initiation of nuclear power projects, difficulties have been recognized. Each event had different contents according to circumstances because they were held as an unstructured and one-off thing. By developing a general model, we can give more adequate and effective aid in an efficient way. In this paper, we created a model to identify necessary infrastructures at the right stage, which was mainly based on a case of Korea. Taking into account the assistance we received from foreign companies and our own efforts for technological self-reliance, we have developed a general time table and specified activities required to do at each stage. From a donor's perspective, we explored various ways to help nuclear infrastructure development including technical support programs, training courses, and participating in IAEA technical cooperation programs on a regular basis. If we further develop the model, the next task would be to make the model more sophisticated as a 'semi-tailored model' so that it can be applied to a certain country reflecting its unique conditions. In accordance with its degree of established infrastructure, we can adjust or modify the model. Despite lots of benefits of using this model, there remain limitations such as time and budget constraints. These problems, however, can be addressed by cooperating with international organization such as the IAEA and other companies that share the same goal of helping newcomer countries introduce nuclear power. (authors)

  8. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01T23:59:59.000Z

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  9. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report Photoelectrochemical Hydrogen Production

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2003 Progress Report 1 Photoelectrochemical Hydrogen Production Eric L. Miller (Primary Contact), Daniela Paluselli, Bjorn Marsen, Richard HPEs based on best available materials systems. · Demonstrate 7.5% solar-to-hydrogen (STH) efficiency

  10. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.D Electrolytic Processes

    E-Print Network [OSTI]

    Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 125 II.D Electrolytic Processes II.D.1 Photoelectrochemical Systems for Hydrogen Production Ken Varner, Scott Warren, J.A. Turner of the identified semiconductor materials as required. · Determine if existing photovoltaic (PV) device structures

  11. Questions and Answers for March 8, 2012 PON11609: Hydrogen Fuel Infrastructure

    E-Print Network [OSTI]

    1 Questions and Answers for March 8, 2012 PON11609: Hydrogen Fuel Infrastructure Renewable Hydrogen 1. What if a proposal meets (or exceeds) the renewable hydrogen content requirement through for renewable hydrogen, does there have to be a physical pathway, or can there be credits that can be traded

  12. Page 1 of 2 PON-11-609 Special Terms and Conditions Hydrogen Fuel Infrastructure

    E-Print Network [OSTI]

    Page 1 of 2 PON-11-609 Special Terms and Conditions Hydrogen Fuel Infrastructure ATTACHMENT N the Commission for the 5% of the total project cost. 2. 33% Renewable Hydrogen Performance Incentive Recipient elected in its proposal to dispense renewable hydrogen at

  13. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report AAS Atomic Adsorption Spectroscopy

    E-Print Network [OSTI]

    Maleate dc Direct Current DCM Dichloromethane DCSF Diesel Combustion Simulation Facility DECSE Diesel Diesel Oxidation Catalyst DOE Department of Energy DPF Diesel Particulate Filter #12;Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report 620 DPG Distributed Power Generation DSC Differential

  14. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated agingDepartmentDevelopment and1 |AdvancedDepartment of

  15. Hydrogen Fuel Quality - Focus: Analytical Methods Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen Fuel Quality Results...

  16. SARC: Development and Support of a Sarcoma Research Consortium Infrastructure

    SciTech Connect (OSTI)

    Arkison, Jim

    2007-10-29T23:59:59.000Z

    SARC is a non-for-profit organization whose mission and vision is to advocate for the collaboration on the design of clinical trials on sarcoma, to further the knowledge regarding the diagnosis and treatment of sarcoma and provide accurate and up to date information to physicians, patients and families. The objectives are to assist in the development of the infrastructure for the continued growth and spectrum of clinical research, to facilitate biannual meeting of investigators, and to develop a preclinical research base that would design and conduct research that would improve the process of drug treatments selected for clinical research trials.

  17. Dynamics in Behavioral Response to a Fuel Cell Vehicle Fleet and Hydrogen Fueling Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2007-01-01T23:59:59.000Z

    to the FCV and hydrogen infrastructure over time and canvalued the FCV and hydrogen infrastructure (including range,response to FCV and hydrogen infrastructure questions among

  18. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    SciTech Connect (OSTI)

    Moriarty, K.; Kass, M.; Theiss, T.

    2014-11-01T23:59:59.000Z

    A high octane fuel and specialized vehicle are under consideration as a market opportunity to meet federal requirements for renewable fuel use and fuel economy. Infrastructure is often cited as a barrier for the introduction of a new fuel. This report assesses infrastructure readiness for E25 (25% ethanol; 75% gasoline) and E25+ (more than 25% ethanol). Both above-ground and below-ground equipment are considered as are the current state of stations, codes and regulations, and materials compatibility.

  19. Dynamics in Behavioral Response to Fuel-Cell Vehicle Fleet and Hydrogen Infrastructure: An Exploratory Study

    E-Print Network [OSTI]

    Shaheen, Susan; Martin, Elliot; Lipman, Timothy

    2008-01-01T23:59:59.000Z

    response to FCV and hydrogen infrastructure questions amongits supporting hydrogen infrastructure. In 2006, UC Berke-standing of hydrogen FCVs and infrastructure, researchers at

  20. Advanced Electrical, Optical and Data Communication Infrastructure Development

    SciTech Connect (OSTI)

    Simon Cobb

    2011-04-30T23:59:59.000Z

    The implementation of electrical and IT infrastructure systems at the North Carolina Center for Automotive Research , Inc. (NCCAR) has achieved several key objectives in terms of system functionality, operational safety and potential for ongoing research and development. Key conclusions include: (1) The proven ability to operate a high speed wireless data network over a large 155 acre area; (2) Node to node wireless transfers from access points are possible at speeds of more than 50 mph while maintaining high volume bandwidth; (3) Triangulation of electronic devices/users is possible in areas with overlapping multiple access points, outdoor areas with reduced overlap of access point coverage considerably reduces triangulation accuracy; (4) Wireless networks can be adversely affected by tree foliage, pine needles are a particular challenge due to the needle length relative to the transmission frequency/wavelength; and (5) Future research will use the project video surveillance and wireless systems to further develop automated image tracking functionality for the benefit of advanced vehicle safety monitoring and autonomous vehicle control through 'vehicle-to-vehicle' and 'vehicle-to-infrastructure' communications. A specific advantage realized from this IT implementation at NCCAR is that NC State University is implementing a similar wireless network across Centennial Campus, Raleigh, NC in 2011 and has benefited from lessons learned during this project. Consequently, students, researchers and members of the public will be able to benefit from a large scale IT implementation with features and improvements derived from this NCCAR project.

  1. New York, NY Vehicle Purchase & Infrastructure Development Incentives

    Broader source: Energy.gov [DOE]

    The New York State Energy Research and Development Authority (NYSERDA) administers the New York City Private Fleet Alternative Fuel/Electric Vehicle Program (Program) in cooperation with New York...

  2. Advanced Fuel Reformer Development Putting the `Fuel' in Fuel Cells

    E-Print Network [OSTI]

    in North Haven, CT · Two major platform technologies under development ­ RCL® catalytic combustors for gas with Microlith® Catalytic Reactors very high surface area Ultra compact Short contact time Rapid thermal response controller, AGB) Reformate Flow Control Thermal balance é Fuel, Air, Water #12;Reformer Controls · Automated

  3. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  4. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth

    2011-07-31T23:59:59.000Z

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  5. Hydrogen Fuel Cell Development in Columbia (SC)

    SciTech Connect (OSTI)

    Reifsnider, Kenneth [University of South Carolina; Chen, Fanglin [University of South Carolina; Popov, Branko [University of South Carolina; Chao, Yuh [University of South Carolina; Xue, Xingjian [University of South Carolina

    2012-09-15T23:59:59.000Z

    This is an update to the final report filed after the extension of this program to May of 2011. The activities of the present program contributed to the goals and objectives of the Fuel Cell element of the Hydrogen, Fuel Cells and Infrastructure Technologies Program of the Department of Energy through five sub-projects. Three of these projects have focused on PEM cells, addressing the creation of carbon-based metal-free catalysts, the development of durable seals, and an effort to understand contaminant adsorption/reaction/transport/performance relationships at low contaminant levels in PEM cells. Two programs addressed barriers in SOFCs; an effort to create a new symmetrical and direct hydrocarbon fuel SOFC designs with greatly increased durability, efficiency, and ease of manufacturing, and an effort to create a multiphysics engineering durability model based on electrochemical impedance spectroscopy interpretations that associate the micro-details of how a fuel cell is made and their history of (individual) use with specific prognosis for long term performance, resulting in attendant reductions in design, manufacturing, and maintenance costs and increases in reliability and durability.

  6. Hydrogen Strategies: an Integrated Resource Planning Analysis for the Development of Hydrogen Energy Infrastructures

    E-Print Network [OSTI]

    Pigneri, Attilio

    2005-01-01T23:59:59.000Z

    concepts and knowledge in hydrogen energy systems and theirInternational Hydrogen Energy Congress and Exhibition IHECthe Development of Hydrogen Energy Infrastructures Attilio

  7. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L. [Pacific Northwest National Laboratory, Richland, WA; San Marchi, Christopher W.

    2013-10-01T23:59:59.000Z

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  8. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01T23:59:59.000Z

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  9. Development of Green Fuels From Algae - The University of Tulsa

    SciTech Connect (OSTI)

    Crunkleton, Daniel; Price, Geoffrey; Johannes, Tyler; Cremaschi, Selen

    2012-12-03T23:59:59.000Z

    The general public has become increasingly aware of the pitfalls encountered with the continued reliance on fossil fuels in the industrialized world. In response, the scientific community is in the process of developing non-fossil fuel technologies that can supply adequate energy while also being environmentally friendly. In this project, we concentrate on â??green fuelsâ?ť which we define as those capable of being produced from renewable and sustainable resources in a way that is compatible with the current transportation fuel infrastructure. One route to green fuels that has received relatively little attention begins with algae as a feedstock. Algae are a diverse group of aquatic, photosynthetic organisms, generally categorized as either macroalgae (i.e. seaweed) or microalgae. Microalgae constitute a spectacularly diverse group of prokaryotic and eukaryotic unicellular organisms and account for approximately 50% of global organic carbon fixation. The PIâ??s have subdivided the proposed research program into three main research areas, all of which are essential to the development of commercially viable algae fuels compatible with current energy infrastructure. In the fuel development focus, catalytic cracking reactions of algae oils is optimized. In the species development project, genetic engineering is used to create microalgae strains that are capable of high-level hydrocarbon production. For the modeling effort, the construction of multi-scaled models of algae production was prioritized, including integrating small-scale hydrodynamic models of algae production and reactor design and large-scale design optimization models.

  10. Sandia National Laboratories: Hydrogen Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Infrastructure Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and...

  11. Development of alkaline fuel cells.

    SciTech Connect (OSTI)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari [Colorado School of Mines, Golden, CO; Horan, James L. [Colorado School of Mines, Golden, CO; Caire, Benjamin R. [Colorado School of Mines, Golden, CO; Ziegler, Zachary C. [Colorado School of Mines, Golden, CO; Herring, Andrew M. [Colorado School of Mines, Golden, CO; Yang, Yuan [Colorado School of Mines, Golden, CO; Zuo, Xiaobing [Argonne National Laboratory, Argonne, IL; Robson, Michael H. [University of New Mexico, Albuquerque, NM; Artyushkova, Kateryna [University of New Mexico, Albuquerque, NM; Patterson, Wendy [University of New Mexico, Albuquerque, NM; Atanassov, Plamen Borissov [University of New Mexico, Albuquerque, NM

    2013-09-01T23:59:59.000Z

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  12. Transportation Sector Market Transition: Using History and Geography to Envision Possible Hydrogen Infrastructure Development and Inform Public Policy

    SciTech Connect (OSTI)

    Brown, E.

    2008-08-01T23:59:59.000Z

    This report covers the challenges to building an infrastructure for hydrogen, for use as transportation fuel. Deployment technologies and policies that could quicken deployment are addressed.

  13. "Developing Nationally Significant Infrastructure: the Future Role of Energy Planning"

    E-Print Network [OSTI]

    Martin, Ralph R.

    to about 1/3 of current overall capacity. The 2003 Energy Review placed growing emphasis on renewable energy. There is currently a national target of 5% renewable generation by 2007, and 10% by 2015 infrastructure in 2005.4 Emphasis was placed upon clean energy: renewable energy and the efficient use of natural

  14. 2004 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review Presentation COST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR

    SciTech Connect (OSTI)

    Mark K. Gee

    2004-04-01T23:59:59.000Z

    The objective is to assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

  15. Development of infrastructure asset management software solutions for municipalities in South Africa

    E-Print Network [OSTI]

    von Holdt, Christopher James

    2009-05-15T23:59:59.000Z

    This Record of Study presents the development of infrastructure asset management software solutions for municipalities in South Africa. The study was performed within a multidisciplinary engineering consulting company in South Africa...

  16. Infrastructure Development and Financial Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of BlytheDepartment ofEnergy Information for Departmentof

  17. FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE

    E-Print Network [OSTI]

    DRAFT FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE DEMONSTRATION that complements FreedomCAR to develop both a low-cost hydrogen infrastructure and advanced hydrogen fuel cell a strategy to develop a hydrogen economy that emphasizes co-developing hydrogen infrastructure in parallel

  18. GNEP Nations Hold Infrastructure Development Working Group Meeting |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM RevisedFundingEnergy Issues RelatedDepartment of

  19. A Roadmap to Funding Infrastructure Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1 WindtheEnergy InformationOfand Range Province |Roadmap to

  20. Enhanced Accident Tolerant LWR Fuels: Metrics Development

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; Lori Braase; Rose Montgomery; Chris Stanek; Robert Montgomery; Lance Snead; Larry Ott; Mike Billone

    2013-09-01T23:59:59.000Z

    The Department of Energy (DOE) Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) is conducting research and development on enhanced Accident Tolerant Fuels (ATF) for light water reactors (LWRs). This mission emphasizes the development of novel fuel and cladding concepts to replace the current zirconium alloy-uranium dioxide (UO2) fuel system. The overall mission of the ATF research is to develop advanced fuels/cladding with improved performance, reliability and safety characteristics during normal operations and accident conditions, while minimizing waste generation. The initial effort will focus on implementation in operating reactors or reactors with design certifications. To initiate the development of quantitative metrics for ATR, a LWR Enhanced Accident Tolerant Fuels Metrics Development Workshop was held in October 2012 in Germantown, MD. This paper summarizes the outcome of that workshop and the current status of metrics development for LWR ATF.

  1. New developments in RTR fuel recycling

    SciTech Connect (OSTI)

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A. [AREVA, Tour AREVA, 1 place Jean Millier, 92084 Paris La Defense (France)

    2013-07-01T23:59:59.000Z

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  2. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01T23:59:59.000Z

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  3. Developing an Autonomy Infusion Infrastructure for Robotic Exploration1,2

    E-Print Network [OSTI]

    Waliser, Duane E.

    1 Developing an Autonomy Infusion Infrastructure for Robotic Exploration1,2 Maria G. Bualat being developed at NASA and within academia. However, infusion into missions has always been a difficult. Furthermore, infusion of new technologies into missions is made more difficult by the variety of software

  4. Overview of Fuel Cell Electric Bus Development | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Electric Bus Development Overview of Fuel Cell Electric Bus Development Presentation slides from the Fuel Cell Technologies Office webinar ""Fuel Cell Buses"" held...

  5. Building Out Alternative Fuel Retail Infrastructure: Government Fleet Spillovers in E85

    E-Print Network [OSTI]

    Corts, Kenneth S.

    2009-01-01T23:59:59.000Z

    recent years when ethanol and alternative fuel mandates andwww.eere.energy.gov/afdc/fuels/ethanol_laws.html. Appendixto renewable fuels—primarily ethanol and biodiesel—which

  6. Rapid development of a wireless infrastructure monitoring system

    E-Print Network [OSTI]

    Brooks, James Raymond, 1973-

    2004-01-01T23:59:59.000Z

    Much academic literature exists in the fields of Product Development and Project Management. This thesis uses the framework provided by the literature to analyze a case study development project which the author led from ...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    national and regional initiatives; and Assess and develop potential deployment strategies and infrastructure requirements for the commercialization of hydrogen fuel cell vehicles....

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Fueling Infrastructure Grant The Maryland Energy Administration provides funding through the Natural Gas Refilling Station Grant Program to develop publicly accessible...

  9. Sandia National Laboratories: Center for Infrastructure Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Research and Innovation Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure...

  10. Plasmatron Fuel Reformer Development and Internal Combustion...

    Broader source: Energy.gov (indexed) [DOE]

    Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle Applications* L. Bromberg MIT Plasma Science and Fusion Center Cambridge MA 02139 * Work supported by US...

  11. Models and Solution Approaches for Development and Installation of PEV Infrastructure

    E-Print Network [OSTI]

    Kim, Seok

    2012-02-14T23:59:59.000Z

    ). PEVs represent solution to these concerns in that they provide higher fuel efficiency and lower greenhouse gas (GHG) emissions than internal combustion engine vehicles1 (ICEVs). The market for PEVs has been steadily growing. Recently, rising gas... in PEVs is one of the key barriers in the more widespread adoption of PEV. Drivers who have long-distance commutes hesitate to replace their ICEVs with PEVs due to range anxiety. In this situation, PEV infrastructure could encourage people to replace...

  12. RESEARCH INFRASTRUCTURES Roadmap 2008

    E-Print Network [OSTI]

    Horn, David

    RESEARCH INFRASTRUCTURES FOR FRANCE Roadmap 2008 #12;INTRODUCTION European research infrastructures and development, benefiting to Europe's economy and competitiveness. This roadmap for the research infrastructures....................................................................................................6 3. The roadmap: existing and already decided RIs and others at the planning stage

  13. Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.

    SciTech Connect (OSTI)

    Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

    1999-09-08T23:59:59.000Z

    The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

  14. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L [ORNL; Leiby, Paul Newsome [ORNL; James, Brian [Directed Technologies, Inc.; Perez, Julie [Directed Technologies, Inc.; Melendez, Margo [National Renewable Energy Laboratory (NREL); Milbrandt, Anelia [National Renewable Energy Laboratory (NREL); Unnasch, Stefan [Life Cycle Associates; Rutherford, Daniel [TIAX, LLC; Hooks, Matthew [TIAX, LLC

    2008-03-01T23:59:59.000Z

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen res

  15. Hydrogen Delivery Infrastructure Option Analysis

    Broader source: Energy.gov (indexed) [DOE]

    Infrastructure Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop...

  16. Impact of alternative nuclear fuel cycle options on infrastructure and fuel requirements, actinide and waste inventories, and economics

    E-Print Network [OSTI]

    Guérin, Laurent, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    The nuclear fuel once-through cycle (OTC) scheme currently practiced in the U.S. leads to accumulation of uranium, transuranic (TRU) and fission product inventories in the spent nuclear fuel. Various separation and recycling ...

  17. Update On Monolithic Fuel Fabrication Development

    SciTech Connect (OSTI)

    C. R Clark; J. M. Wight; G. C. Knighton; G. A. Moore; J. F. Jue

    2005-11-01T23:59:59.000Z

    Efforts to develop a viable monolithic research reactor fuel plate have continued at Idaho National Laboratory. These efforts have concentrated on both fabrication process refinement and scale-up to produce full sized fuel plates. Advancements have been made in the production of U-Mo foil including full sized foils. Progress has also been made in the friction stir welding and transient liquid phase bonding fabrication processes resulting in better bonding, more stable processes and the ability to fabricate larger fuel plates.

  18. Liquid fuel reformer development: Autothermal reforming of Diesel fuel

    SciTech Connect (OSTI)

    Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

    2000-07-24T23:59:59.000Z

    Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

  19. Optimal Design of a Fossil Fuel-Based Hydrogen Infrastructure with Carbon Capture and Sequestration: Case Study in Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ni, Jason; Johnson, Joshua; Lin, Zhenhong; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    Infrastructure with Carbon Capture and Sequestration: CaseINFRASTRUCTURE WITH CARBON CAPTURE AND SEQUESTRATION: CASEhydrogen production with carbon capture and sequestration,

  20. Pellet Fueling Technology Development S. K. Combs

    E-Print Network [OSTI]

    Pellet Fueling Technology Development S. K. Combs Fusion Energy Division, Oak Ridge National/10/00 Pellet Sizes Are Relevant for Fueling Applications on Any Present Experimental Fusion Device and Future pellet injector technology ÂĄ Hydrogen properties ÂĄ Ice/pellet formation techniques ÂĄ Acceleration

  1. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2013-06-28T23:59:59.000Z

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

  2. IFR fuel cycle--pyroprocess development

    SciTech Connect (OSTI)

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-11-01T23:59:59.000Z

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as ``pyroprocessing,`` featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs.

  3. IFR fuel cycle--pyroprocess development

    SciTech Connect (OSTI)

    Laidler, J.J.; Miller, W.E.; Johnson, T.R.; Ackerman, J.P.; Battles, J.E.

    1992-01-01T23:59:59.000Z

    The Integral Fast Reactor (IFR) fuel cycle is based on the use of a metallic fuel alloy, with nominal composition U-2OPu-lOZr. In its present state of development, this fuel system offers excellent high-burnup capabilities. Test fuel has been carried to burnups in excess of 20 atom % in EBR-II irradiations, and to peak burnups over 15 atom % in FFTF. The metallic fuel possesses physical characteristics, in particular very high thermal conductivity, that facilitate a high degree of passive inherent safety in the IFR design. The fuel has been shown to provide very large margins to failure in overpower transient events. Rapid overpower transient tests carried out in the TREAT reactor have shown the capability to withstand up to 400% overpower conditions before failing. An operational transient test conducted in EBR-II at a power ramp rate of 0.1% per second reached its termination point of 130% of normal power without any fuel failures. The IFR metallic fuel also exhibits superior compatibility with the liquid sodium coolant. Equally as important as the performance advantages offered by the use of metallic fuel is the fact that this fuel system permits the use of an innovative reprocessing method, known as pyroprocessing,'' featuring fused-salt electrorefining of the spent fuel. Development of the IFR pyroprocess has been underway at the Argonne National Laboratory for over five years, and great progress has been made toward establishing a commercially-viable process. Pyroprocessing offers a simple, compact means for closure of the fuel cycle, with anticipated significant savings in fuel cycle costs.

  4. Vehicle Technologies Office Merit Review 2014: Unlocking Private Sector Financing for Alternative Fuel Vehicles and Fueling Infrastructure

    Broader source: Energy.gov [DOE]

    Presentation given by National Association of State Energy Officials at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting...

  5. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report I. INTRODUCTION

    E-Print Network [OSTI]

    energy industries, academia, environmental organizations, federal and state government agencies Secretary for Energy Efficiency and Renewable Energy (EERE), the new Office of Hydrogen, Fuel Cells and fuels that lead to a clean and sustainable energy future. Fuel cell vehicles running on renewable

  6. Analysis of the Hydrogen Infrastructure Needed to Enable Commercial Introduction of Hydrogen-Fueled Vehicles: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization|EnergyAnalysisHeatConference

  7. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety GoalsEnergy Begins Extended Testing of Hybrid

  8. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    SciTech Connect (OSTI)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30T23:59:59.000Z

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

  9. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    SciTech Connect (OSTI)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01T23:59:59.000Z

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  10. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    help fleets make informed purchasing decisions and help researchers assess whether fuel cell vehicles can meet commercialization requirements. This evaluation is one of several DOE...

  11. Department of Energy Environmental Management cost infrastructure development program: Cost analysis requirements

    SciTech Connect (OSTI)

    Custer, W.R. Jr.; Messick, C.D.

    1996-03-31T23:59:59.000Z

    This report was prepared to support development of the Department of Energy Environmental Management cost infrastructure -- a new capability to independently estimate and analyze costs. Currently, the cost data are reported according to a structure that blends level of effort tasks with product and process oriented tasks. Also. the budgetary inputs are developed from prior year funding authorizations and from contractor-developed parametric estimates that have been adjusted to planned funding levels or appropriations. Consequently, it is difficult for headquarters and field-level activities to use actual cost data and technical requirements to independently assess the costs generated and identify trends, potential cost savings from process improvements, and cost reduction strategies.

  12. Electric Drive Vehicle Demonstration and Vehicle Infrastructure...

    Broader source: Energy.gov (indexed) [DOE]

    Utilization Data Base Evaluate Infrastructure Effectiveness Develop Sustainable Business Models Develop Models For Future Infrastructure Deployments Relevance MILESTONES...

  13. NP-MHTGR Fuel Development Program Results

    SciTech Connect (OSTI)

    Maki, John Thomas; Petti, David Andrew; Hobbins, Richard Redfield; McCardell, Richard K.; Shaber, Eric Lee; Southworth, Finis Hio

    2002-10-01T23:59:59.000Z

    In August 1988, the Secretary of Energy announced a strategy to acquire New Production Reactor capacity for producing tritium. The strategy involved construction of a New Production Modular High Temperature Gas-Cooled Reactor (NP-MHTGR) where the Idaho National Engineering and Environmental Laboratory (INEEL) was selected as the Management and Operations contractor for the project. Immediately after the announcement in August 1988, tritium target particle development began with the INEEL selected as the lead laboratory. Fuel particle development was initially not considered to be on a critical path for the project, therefore, the fuel development program was to run concurrently with the design effort of the NP-MHTGR.

  14. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared MappingInfrastructure

  15. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.4 Fuel Cells Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - 3.4 Fuel Cells Fuel Cells technical plan section of the Fuel Cell...

  16. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report IV.C Fuel Processing Subsystem and Components

    E-Print Network [OSTI]

    testing on gasoline and delivered integrated FCPS to ANL. · Developed design criteria for scrubber media

  17. Used Fuel Disposition Campaign Disposal Research and Development...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications Used Fuel Disposition Campaign Disposal Research and Development Roadmap Used Fuel Disposition Campaign International Activities Implementation Plan Review of...

  18. Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Development and Test Laboratory may include: * Fuel cell and fuel cell component manufacturers * Certification laboratories * Government agencies * Universities * Other...

  19. Sandia National Laboratories: solid-oxide fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxide fuel cell More Efficient Fuel Cells under Development by Engineers On July 10, 2014, in Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage,...

  20. Coal-fueled diesel technology development -- Fuel injection equipment for coal-fueled diesel engines

    SciTech Connect (OSTI)

    Johnson, R.N.; Hayden, H.L.

    1994-01-01T23:59:59.000Z

    Because of the abrasive and corrosive nature of coal water slurries, the development of coal-fueled diesel engine technology by GE-Transportation Systems (GE-TS) required special fuel injection equipment. GE-Corporate Research and Development (GE-CRD) undertook the design and development of fuel injectors, piston pumps, and check valves for this project. Components were tested at GE-CRD on a simulated engine cylinder, which included a cam-actuated jerk pump, prior to delivery to GE-TS for engine testing.

  1. Hydrogen Transition Infrastructure Analysis

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2005-05-01T23:59:59.000Z

    Presentation for the 2005 U.S. Department of Energy Hydrogen Program review analyzes the hydrogen infrastructure needed to accommodate a transitional hydrogen fuel cell vehicle demand.

  2. Global Infrastructures Abstract/Summary

    E-Print Network [OSTI]

    Sahay, Sundeep

    facilities, electricity supply, state of the physical building etc. The socioeconomic and geopolitical in large hospitals (and other corporate infrastructures) and infrastructures supporting the governance the practical development of infrastructures supporting the governance of the health care sector in developing

  3. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOEDepartment of EnergySmallDesignDetectingin Gas

  4. Economic Analysis of Hydrogen Energy Station Concepts: Are "H 2E-Stations" a Key Link to a Hydrogen Fuel Cell Vehicle Infrastructure?

    E-Print Network [OSTI]

    Lipman, Timothy E.; Edwards, Jennifer L.; Kammen, Daniel M.

    2002-01-01T23:59:59.000Z

    Ideally a robust hydrogen infrastructure would rapidlya serviceable hydrogen infrastructure that is extensiveadding hydrogen dispensing infrastructure to a gasoline

  5. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section VII. Conversion Devices

    E-Print Network [OSTI]

    addition on flame stability, combustor acoustics, emissions and efficiency in a gas turbine. · Establish burner that simulates the basic features of gas turbine combustors. · Apply advanced experimental problem areas in practical gas turbine combustors where hydrogen enrichment of hydrocarbon fuels could

  6. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section III. Hydrogen Storage

    E-Print Network [OSTI]

    of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted as an automotive fuel. However, the lack of convenient and cost-effective hydrogen storage, particularly for an on market for cost-effective and efficient high-pressure hydrogen storage systems. The world's premier

  7. High-pressure coal fuel processor development

    SciTech Connect (OSTI)

    Greenhalgh, M.L. (Caterpillar, Inc., Peoria, IL (United States))

    1992-12-01T23:59:59.000Z

    Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

  8. Infrastructure Development of the Science and Engineering Alliance (IDSEA) Annual Report 1995 - 1996

    SciTech Connect (OSTI)

    None

    1998-10-14T23:59:59.000Z

    This document is intended to serve two purposes: (1) a program status report on the progress the Science and Engineering Alliance (SEA) made since receiving initial Department of Energy (DOE) support for infrastructure development; and (2) a summary report of the activities administered by the SEA compiled in a single document under the auspices of the SEA Program. In 1995, a universal resource locator (URL) on the World Wide Web (WWW) was established for easy access to pertinent information about the SEA Program. The information pointed to by the URL is updated periodically, and the interested reader is urged to access the WWW for more information.

  9. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel...

  10. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Energy Savers [EERE]

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations March 3, 2015 - 2:33pm...

  11. Development of Light Water Reactor Fuels with Enhanced Accident...

    Energy Savers [EERE]

    Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to Congress Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to...

  12. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The...

  13. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Cover Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Cover Cover of the Fuel Cell Technologies Office Multi-Year Research, Development,...

  14. 2010 Hydrogen and Fuel Cell Global Commercialization & Development...

    Broader source: Energy.gov (indexed) [DOE]

    2010 Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update This report outlines the role...

  15. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-06-10T23:59:59.000Z

    This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

  16. Development of an Automated Security Risk Assessment Methodology Tool for Critical Infrastructures.

    SciTech Connect (OSTI)

    Jaeger, Calvin D.; Roehrig, Nathaniel S.; Torres, Teresa M.

    2008-12-01T23:59:59.000Z

    This document presents the security automated Risk Assessment Methodology (RAM) prototype tool developed by Sandia National Laboratories (SNL). This work leverages SNL's capabilities and skills in security risk analysis and the development of vulnerability assessment/risk assessment methodologies to develop an automated prototype security RAM tool for critical infrastructures (RAM-CITM). The prototype automated RAM tool provides a user-friendly, systematic, and comprehensive risk-based tool to assist CI sector and security professionals in assessing and managing security risk from malevolent threats. The current tool is structured on the basic RAM framework developed by SNL. It is envisioned that this prototype tool will be adapted to meet the requirements of different CI sectors and thereby provide additional capabilities.

  17. The role of research in improving infrastructure : an analysis of U.S. transportation research & development

    E-Print Network [OSTI]

    Frazier, Kyle Andrew

    2010-01-01T23:59:59.000Z

    Infrastructure systems are central to quality of life and economic competitiveness in nations worldwide, but daunting challenges stand in the way of providing systems capable of delivering needed infrastructure services. ...

  18. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Steve Magee; Richard Gehman

    2005-07-12T23:59:59.000Z

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  19. GIS-and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development

    SciTech Connect (OSTI)

    Zhou, Wei (Wendy) [Wendy; Minnick, Matthew; Geza, Mengistu; Murray, Kyle; Mattson, Earl

    2012-09-30T23:59:59.000Z

    The Colorado School of Mines (CSM) was awarded a grant by the National Energy Technology Laboratory (NETL), Department of Energy (DOE) to conduct a research project en- titled GIS- and Web-based Water Resource Geospatial Infrastructure for Oil Shale Development in October of 2008. The ultimate goal of this research project is to develop a water resource geo-spatial infrastructure that serves as “baseline data” for creating solutions on water resource management and for supporting decisions making on oil shale resource development. The project came to the end on September 30, 2012. This final project report will report the key findings from the project activity, major accomplishments, and expected impacts of the research. At meantime, the gamma version (also known as Version 4.0) of the geodatabase as well as other various deliverables stored on digital storage media will be send to the program manager at NETL, DOE via express mail. The key findings from the project activity include the quantitative spatial and temporal distribution of the water resource throughout the Piceance Basin, water consumption with respect to oil shale production, and data gaps identified. Major accomplishments of this project include the creation of a relational geodatabase, automated data processing scripts (Matlab) for database link with surface water and geological model, ArcGIS Model for hydrogeologic data processing for groundwater model input, a 3D geological model, surface water/groundwater models, energy resource development systems model, as well as a web-based geo-spatial infrastructure for data exploration, visualization and dissemination. This research will have broad impacts of the devel- opment of the oil shale resources in the US. The geodatabase provides a “baseline” data for fur- ther study of the oil shale development and identification of further data collection needs. The 3D geological model provides better understanding through data interpolation and visualization techniques of the Piceance Basin structure spatial distribution of the oil shale resources. The sur- face water/groundwater models quantify the water shortage and better understanding the spatial distribution of the available water resources. The energy resource development systems model reveals the phase shift of water usage and the oil shale production, which will facilitate better planning for oil shale development. Detailed descriptions about the key findings from the project activity, major accomplishments, and expected impacts of the research will be given in the sec- tion of “ACCOMPLISHMENTS, RESULTS, AND DISCUSSION” of this report.

  20. Summary report on transportation of nuclear fuel materials in Japan : transportation infrastructure, threats identified in open literature, and physical protection regulations.

    SciTech Connect (OSTI)

    Cochran, John Russell; Ouchi, Yuichiro (Japan Atomic Energy Agency, Japan); Furaus, James Phillip; Marincel, Michelle K.

    2008-03-01T23:59:59.000Z

    This report summarizes the results of three detailed studies of the physical protection systems for the protection of nuclear materials transport in Japan, with an emphasis on the transportation of mixed oxide fuel materials1. The Japanese infrastructure for transporting nuclear fuel materials is addressed in the first section. The second section of this report presents a summary of baseline data from the open literature on the threats of sabotage and theft during the transport of nuclear fuel materials in Japan. The third section summarizes a review of current International Atomic Energy Agency, Japanese and United States guidelines and regulations concerning the physical protection for the transportation of nuclear fuel materials.

  1. Development of a structural health monitoring system for the life assessment of critical transportation infrastructure.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Jauregui, David Villegas (New Mexico State University, Las Cruces, NM); Daumueller, Andrew Nicholas (New Mexico State University, Las Cruces, NM)

    2012-02-01T23:59:59.000Z

    Recent structural failures such as the I-35W Mississippi River Bridge in Minnesota have underscored the urgent need for improved methods and procedures for evaluating our aging transportation infrastructure. This research seeks to develop a basis for a Structural Health Monitoring (SHM) system to provide quantitative information related to the structural integrity of metallic structures to make appropriate management decisions and ensuring public safety. This research employs advanced structural analysis and nondestructive testing (NDT) methods for an accurate fatigue analysis. Metal railroad bridges in New Mexico will be the focus since many of these structures are over 100 years old and classified as fracture-critical. The term fracture-critical indicates that failure of a single component may result in complete collapse of the structure such as the one experienced by the I-35W Bridge. Failure may originate from sources such as loss of section due to corrosion or cracking caused by fatigue loading. Because standard inspection practice is primarily visual, these types of defects can go undetected due to oversight, lack of access to critical areas, or, in riveted members, hidden defects that are beneath fasteners or connection angles. Another issue is that it is difficult to determine the fatigue damage that a structure has experienced and the rate at which damage is accumulating due to uncertain history and load distribution in supporting members. A SHM system has several advantages that can overcome these limitations. SHM allows critical areas of the structure to be monitored more quantitatively under actual loading. The research needed to apply SHM to metallic structures was performed and a case study was carried out to show the potential of SHM-driven fatigue evaluation to assess the condition of critical transportation infrastructure and to guide inspectors to potential problem areas. This project combines the expertise in transportation infrastructure at New Mexico State University with the expertise at Sandia National Laboratories in the emerging field of SHM.

  2. Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline

    SciTech Connect (OSTI)

    Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

    2012-07-01T23:59:59.000Z

    In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

  3. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report II.C Fossil-Based

    E-Print Network [OSTI]

    , noncatalytic decomposition of hydrogen sulfide (H2S) in H2S-rich waste streams into hydrogen and elemental at an industrial site. Approach · Develop a numerical model for the superadiabatic H2S decomposition reactor viability of the concept. · Designed and constructed a state-of-the-art superadiabatic H2S decomposition

  4. Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section II. Hydrogen Production and Delivery

    E-Print Network [OSTI]

    Renewable Energy Laboratory 1617 Cole Blvd. Golden, CO 80401 (303) 384-7705, fax: (303) 384-6363, e-mail: ed_wolfum@nrel.gov DOE Technology Development Manager: Roxanne Danz (202) 586-7260, fax: (202) 586-9811, e-mail: Roxanne. · Successfully operated trickle-bed bioreactors with volumes of 1L and 5L, and showed that the performance

  5. The SAMGrid database server component: its upgraded infrastructure and future development path

    SciTech Connect (OSTI)

    Loebel-Carpenter, L.; White, S.; Baranovski, A.; Garzoglio, G.; Herber, R.; Illingworth, R.; Kennedy, R.; Kreymer, A.; Kumar, A.; Lueking, L.; Lyon, A.; Merritt, W.; Terekhov, I.; Trumbo, J.; Veseli, S.; /Fermilab; Burgon-Lyon, M.; St. Denis, R.; /Glasgow U.; Belforte, S.; /INFN, Trieste; Kerzel, U.; /Karlsruhe U.; Bartsch, V.; Leslie, M.; /Oxford

    2004-12-01T23:59:59.000Z

    The SAMGrid Database Server encapsulates several important services, such as accessing file metadata and replica catalog, keeping track of the processing information, as well as providing the runtime support for SAMGrid station services. Recent deployment of the SAMGrid system for CDF has resulted in unification of the database schema used by CDF and D0, and the complexity of changes required for the unified metadata catalog has warranted a complete redesign of the DB Server. We describe here the architecture and features of the new server. In particular, we discuss the new CORBA infrastructure that utilizes python wrapper classes around IDL structs and exceptions. Such infrastructure allows us to use the same code on both server and client sides, which in turn results in significantly improved code maintainability and easier development. We also discuss future integration of the new server with an SBIR II project which is directed toward allowing the DB Server to access distributed databases, implemented in different DB systems and possibly using different schema.

  6. Sandia National Laboratories: hydrogen fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cell More Efficient Fuel Cells under Development by Engineers On July 10, 2014, in Center for Infrastructure Research and Innovation (CIRI), Energy, Energy Storage, Energy Storage...

  7. 2nd International Hydrogen Infrastructure Challenges Webinar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nd International Hydrogen Infrastructure Challenges Webinar Slides 2nd International Hydrogen Infrastructure Challenges Webinar Slides Presentation slides from the Fuel Cell...

  8. Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector

    SciTech Connect (OSTI)

    Stephen C. Yborra

    2007-04-30T23:59:59.000Z

    Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high per-vehicle fuel use, central fueling and sensitivity to fuel costs, fleets will continue to be the primary target for NGV deployment and station development efforts. The transit sector is projected to continue to account for the greatest vehicular natural gas use and for new volume growth. New tax incentives and improved life-cycle economics also create opportunities to deploy additional vehicles and install related vehicular natural gas fueling infrastructure in the refuse, airport and short-haul sectors. Focusing on fleets generates the highest vehicular natural gas throughout but it doesn't necessarily facilitate public fueling infrastructure because, generally, fleet operators prefer not to allow public access due to liability concerns and revenue and tax administrative burdens. While there are ways to overcome this reluctance, including ''outside the fence'' retail dispensers and/or co-location of public and ''anchor'' fleet dispensing capability at a mutually convenient existing or new retail location, each has challenges that complicate an already complex business transaction. Partnering with independent retail fuel station companies, especially operators of large ''truck stops'' on the major interstates, to include natural gas at their facilities may build public fueling infrastructure and demand enough to entice the major oil companies to once again engage. Garnering national mass media coverage of success in California and Utah where vehicular natural gas fueling infrastructure is more established will help pave the way for similar consumer market growth and inclusion of public accessibility at stations in other regions. There isn't one ''right'' business model for growing the nation's NGV inventory and fueling infrastructure. Different types of station development and ownership-operation strategies will continue to be warranted for different customers in different markets. Factors affecting NGV deployment and station development include: regional air quality compliance status and the state and/or local political climate regarding mandates and/or in

  9. Research and Development of a PEM Fuel Cell, Hydrogen Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility Technical paper...

  10. Hydrogen & Fuel Cells: Review of National Research and Development...

    Open Energy Info (EERE)

    Hydrogen & Fuel Cells: Review of National Research and Development (R&D) Programs Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen & Fuel Cells: Review of...

  11. Development and Demonstration of Fischer-Tropsch Fueled Heavy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fischer-Tropsch Fueled Heavy-Duty Vehicles with Control Technologies for Reduced Diesel Exhaust Emissions Development and Demonstration of Fischer-Tropsch Fueled Heavy-Duty...

  12. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    E: Acronyms Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix E: Acronyms Appendix E: Acronyms section of the Fuel Cell Technologies...

  13. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Executive Summary Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Executive Summary Executive Summary section of the Fuel Cell Technologies...

  14. Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase...

  15. Fuel Fabrication Capability Research and Development Plan

    SciTech Connect (OSTI)

    Senor, David J.; Burkes, Douglas

    2014-04-17T23:59:59.000Z

    The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors. Therefore, the overriding motivation behind the FFC R&D program described in this plan is to foster closer integration between fuel design and fabrication to reduce programmatic risk. These motivating factors are all interrelated, and progress addressing one will aid understanding of the others. The FFC R&D needs fall into two principal categories, 1) baseline process optimization, to refine the existing fabrication technologies, and 2) manufacturing process alternatives, to evaluate new fabrication technologies that could provide improvements in quality, repeatability, material utilization, or cost. The FFC R&D Plan examines efforts currently under way in regard to coupon, foil, plate, and fuel element manufacturing, and provides recommendations for a number of R&D topics that are of high priority but not currently funded (i.e., knowledge gaps). The plan ties all FFC R&D efforts into a unified vision that supports the overall Convert Program schedule in general, and the fabrication schedule leading up to the MP-1 and FSP-1 irradiation experiments specifically. The fabrication technology decision gates and down-selection logic and schedules are tied to the schedule for fabricating the MP-1 fuel plates, which will provide the necessary data to make a final fuel fabrication process down-selection. Because of the short turnaround between MP-1 and the follow-on FSP-1 and MP-2 experiments, the suite of specimen types that will be available for MP-1 will be the same as those available for FSP-1 and MP-2. Therefore, the only opportunity to explore parameter space and alternative processing is between now and 2016 when the candidate processes are down-selected in preparation for the MP-1, FSP-1, and MP-2 plate manufacturing campaigns. A number of key risks identified by the FFC are discussed in this plan, with recommended mitigating actions for those activities within FFC, and identification of risks that are impacted by activities in other areas of the Convert Program. The R&D Plan does not include discussion of FFC initiatives related to production-scale manufacturing of fuel (e.g., establishment of the Pilot Line Production Facility), rather, the goal of this plan is to document the R&D activities needed ultimately to enable high-quality and cost-effective production of the fuel by the commercial fuel fabricator. The intent is for this R&D Plan to be a living document that will be reviewed and updated on a regular basis (e.g., annually) to ensure that FFC R&D activities remain properly aligned to the needs of the Convert Program. This version of the R&D Plan represents the first annual review and revision.

  16. Our Nation's Energy Infrastructure: Toward Stronger and Smarter Grid

    E-Print Network [OSTI]

    Amin, S. Massoud

    prior authorization. Material from the Electric Power Research Institute (EPRI), and support from EPRI electrical energy infrastructure ­ Transforming the Network into a Smart Grid ­ Developing an Expanded and Using Alternative Transportation Fuels · Greening the electric power supply ­ Expanding the Use

  17. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell...

  18. Fuel Cells for Transportation - Research and Development: Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development: Program Abstracts Fuel Cells for Transportation - Research and Development: Program Abstracts Remarkable progress has been achieved in the development of...

  19. Development of a Turnkey Hydrogen Fueling Station Final Report

    SciTech Connect (OSTI)

    David E. Guro; Edward Kiczek; Kendral Gill; Othniel Brown

    2010-07-29T23:59:59.000Z

    The transition to hydrogen as a fuel source presents several challenges. One of the major hurdles is the cost-effective production of hydrogen in small quantities (less than 1MMscf/month). In the early demonstration phase, hydrogen can be provided by bulk distribution of liquid or compressed gas from central production plants; however, the next phase to fostering the hydrogen economy will likely include onsite generation and extensive pipeline networks to help effect a pervasive infrastructure. Providing inexpensive hydrogen at a fleet operator’s garage or local fueling station is a key enabling technology for direct hydrogen Fuel Cell Vehicles (FCVs). The objective of this project was to develop a comprehensive, turnkey, stand-alone, commercial hydrogen fueling station for FCVs with state-of-the-art technology that is cost-competitive with current hydrocarbon fuels. Such a station would promote the advent of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. Air Products, partnering with the U.S. Department of Energy (DOE), The Pennsylvania State University, Harvest Energy Technology, and QuestAir, developed a turnkey hydrogen fueling station on the Penn State campus. Air Products aimed at designing a station that would have 65% overall station efficiency, 82% PSA (pressure swing adsorption) efficiency, and the capability of producing hydrogen at $3.00/kg (gge) H2 at mass production rates. Air Products designed a fueling station at Penn State from the ground up. This project was implemented in three phases. The first phase evaluated the various technologies available in hydrogen generation, compression, storage, and gas dispensing. In the second phase, Air Products designed the components chosen from the technologies examined. Finally, phase three entailed a several-month period of data collection, full-scale operation, maintenance of the station, and optimization of system reliability and performance. Based on field data analysis, it was determined by a proprietary hydrogen-analysis model that hydrogen produced from the station at a rate of 1500 kg/day and when produced at 1000 stations per year would be able to deliver hydrogen at a price of $3.03/kg (gge) H2. The station’s efficiency was measured to be 65.1%, and the PSA was tested and ran at an efficiency of 82.1%, thus meeting the project targets. From the study, it was determined that more research was needed in the area of hydrogen fueling. The overall cost of the hydrogen energy station, when combined with the required plot size for scaled-up hydrogen demands, demonstrated that a station using steam methane reforming technology as a means to produce on–site hydrogen would have limited utility in the marketplace. Alternative hydrogen supplies, such as liquid or pipeline delivery to a refueling station, need to be included in the exploration of alternative energy site layouts. These avenues need to be explored before a definitive refueling station configuration and commercialization pathway can be determined.

  20. INFRASTRUCTURE FOR ALTERNATIVE FUELS

    E-Print Network [OSTI]

    California at Davis, University of

    ? · Self sufficient/no government support · Low cost per mile: Better price per mile than gasoline NETWORK? EARLY NETWORK CHARACTERISTICS: · Gov't support · More about awareness than gasoline displacement retention · Corporate responsibility · Increase sales at retail stores · Make money on the sale

  1. Electric Power Infrastructure Reliability and Security (EPIRS) Reseach and Development Initiative

    SciTech Connect (OSTI)

    Rick Meeker; L. Baldwin; Steinar Dale; Alexander Domijan; Davild Larbalestier; Hui Li; Peter McLaren; Sastry Pamidi; Horatio Rodrigo; Michael Steurer

    2010-03-31T23:59:59.000Z

    Power systems have become increasingly complex and face unprecedented challenges posed by population growth, climate change, national security issues, foreign energy dependence and an aging power infrastructure. Increased demand combined with increased economic and environmental constraints is forcing state, regional and national power grids to expand supply without the large safety and stability margins in generation and transmission capacity that have been the rule in the past. Deregulation, distributed generation, natural and man-made catastrophes and other causes serve to further challenge and complicate management of the electric power grid. To meet the challenges of the 21st century while also maintaining system reliability, the electric power grid must effectively integrate new and advanced technologies both in the actual equipment for energy conversion, transfer and use, and in the command, control, and communication systems by which effective and efficient operation of the system is orchestrated - in essence, the 'smart grid'. This evolution calls for advances in development, integration, analysis, and deployment approaches that ultimately seek to take into account, every step of the way, the dynamic behavior of the system, capturing critical effects due to interdependencies and interaction. This approach is necessary to better mitigate the risk of blackouts and other disruptions and to improve the flexibility and capacity of the grid. Building on prior Navy and Department of Energy investments in infrastructure and resources for electric power systems research, testing, modeling, and simulation at the Florida State University (FSU) Center for Advanced Power Systems (CAPS), this project has continued an initiative aimed at assuring reliable and secure grid operation through a more complete understanding and characterization of some of the key technologies that will be important in a modern electric system, while also fulfilling an education and outreach mission to provide future energy workforce talent and support the electric system stakeholder community. Building upon and extending portions of that research effort, this project has been focused in the following areas: (1) Building high-fidelity integrated power and controls hardware-in-the-loop research and development testbed capabilities (Figure 1). (2) Distributed Energy Resources Integration - (a) Testing Requirements and Methods for Fault Current Limiters, (b) Contributions to the Development of IEEE 1547.7, (c) Analysis of a STATCOM Application for Wind Resource Integration, (d) Development of a Grid-Interactive Inverter with Energy Storage Elements, (e) Simulation-Assisted Advancement of Microgrid Understanding and Applications; (3) Availability of High-Fidelity Dynamic Simulation Tools for Grid Disturbance Investigations; (4) HTS Material Characterization - (a) AC Loss Studies on High Temperature Superconductors, (b) Local Identification of Current-Limiting Mechanisms in Coated Conductors; (5) Cryogenic Dielectric Research; and (6) Workshops, education, and outreach.

  2. IPHE Infrastructure Workshop - Workshop Proceedings, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles and Hydrogen Fuel Stations Moving toward a commercial market for hydrogen fuel cell vehicles Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues...

  3. Solid Oxide Fuel Cell and Power System Development at PNNL

    Broader source: Energy.gov (indexed) [DOE]

    Solid Oxide Fuel Cell and Power Solid Oxide Fuel Cell and Power S t D l t t PNNL S t D l t t PNNL System Development at PNNL System Development at PNNL Larry Chick Energy Materials...

  4. A cooperation model and demand-oriented ICT Infrastructure for SME Development and Production Networks in the field of Microsystem

    E-Print Network [OSTI]

    Boyer, Edmond

    A cooperation model and demand-oriented ICT Infrastructure for SME Development and Production of Small Medium Enterprises (SME) in this branch refers to organizational issues, arising from the specific SME´s lack of sufficient human resources and an effective management of cross company knowledge about

  5. Ballard fuel cell development for the new energy environment

    SciTech Connect (OSTI)

    Dunnison, D.; Smith, D. [Ballard Power Systems, Inc., Burnaby, British Columbia (Canada); Torpey, J. [GPU International, Parsippany, NJ (United States)

    1997-09-01T23:59:59.000Z

    Ballard Power Systems is the world leader in the development of Proton Exchange Membrane (PEM) fuel cells. PEM fuel cells use a solid polymer membrane as the electrolyte. These fuel cells are compact and produce powerful electric current relative to their size. PEM fuel cells can deliver higher power density than other types of fuel cells, resulting in reduced cost, weight and volume, and improved performance. The PEM fuel cell is the only fuel cell considered practical for both transportation and stationary applications. Ballard fuel cells are the heart of BGS`s products. The proprietary zero-emission engine converts natural gas, methanol or hydrogen fuel into electricity without combustion.

  6. Parallel digital forensics infrastructure.

    SciTech Connect (OSTI)

    Liebrock, Lorie M. (New Mexico Tech, Socorro, NM); Duggan, David Patrick

    2009-10-01T23:59:59.000Z

    This report documents the architecture and implementation of a Parallel Digital Forensics infrastructure. This infrastructure is necessary for supporting the design, implementation, and testing of new classes of parallel digital forensics tools. Digital Forensics has become extremely difficult with data sets of one terabyte and larger. The only way to overcome the processing time of these large sets is to identify and develop new parallel algorithms for performing the analysis. To support algorithm research, a flexible base infrastructure is required. A candidate architecture for this base infrastructure was designed, instantiated, and tested by this project, in collaboration with New Mexico Tech. Previous infrastructures were not designed and built specifically for the development and testing of parallel algorithms. With the size of forensics data sets only expected to increase significantly, this type of infrastructure support is necessary for continued research in parallel digital forensics. This report documents the implementation of the parallel digital forensics (PDF) infrastructure architecture and implementation.

  7. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect (OSTI)

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01T23:59:59.000Z

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  8. Infrastructure Development of the Science and Engineering Alliance (IDSEA). Annual report, 1995--1996

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This document is intended to serve two purposes: (1) a program status report on the progress the Science and Engineering Alliance (SEA) made since receiving initial Department of Energy (DOE) support for infrastructure development; and (2) a summary report of the activities administered by the SEA compiled in a single document under the auspices of the SEA Program. In 1995, a universal resource locator (URL) on the World Wide Web (WWW) was established for easy access to pertinent information about the SEA Program. The information pointed to by the URL is updated periodically, and the interested reader is urged to access the WWW for more information. The SEA is a university-government-industry partnership that seeks ways to enhance the research and teaching capability of its members. The SEA program continues to evolve into a very successful interdisciplinary program. It is a model inter-HBCU collaboration, and an excellent example of how cooperation between universities and a national laboratory can capitalize on their individual strengths to expand research opportunities for minority students and researchers. The members are committed to developing collaborative research programs, enhance teaching techniques, and modify science and engineering curriculum to improve student training.

  9. Development of a Turnkey H2 Fueling

    E-Print Network [OSTI]

    fuel equivalent to gasoline prices · Completed, on-schedule. Phase 3: System Deployment · Scale-up of a stand-alone, fully integrated H2 Fueling Station based on reforming of natural gas To build technologies for small scale reforming applications used in hydrogen fueling stations SMR's tend to have lower

  10. Fuel Cell Development and Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

  11. Fuel Cell Development Status | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP) (Fact Sheet) |Energy

  12. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d rSiC Research

  13. Coated Particle Fuel Development Lab (CPFDL) | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t zManufacturing:DOECoach ComplianceCoated Particle Fuel

  14. Overview of Fuel Cell Electric Bus Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartmentOutreach toTransmission and6/15/2015Energy

  15. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 5.0 Systems Integration Fuel Cell Technologies Office Multi-Year Research, Development,...

  16. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Year Research, Development, and Demonstration Plan - Appendix C: Hydrogen Quality Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan -...

  17. agr fuel development: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring term 2013 (TB2) Mathematics Websites Summary: ) Political Economy of fossil fuel subsidies in developing countries Climate Change & Development Thurs 7th Simon Bolivar,...

  18. Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Ris National Laboratory

    E-Print Network [OSTI]

    Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risř National Laboratory N. Hagenb a Topsoe Fuel Cell A/S, Nymřllevej 55, DK-2800 Lyngby, Denmark b Risř National Laboratory, DTU, DK-4000 Roskilde, Denmark ABSTRACT Topsoe Fuel Cell A/S (TOFC) and Risř National Laboratory (Risř

  19. Update on US High Density Fuel Fabrication Development

    SciTech Connect (OSTI)

    C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

    2007-03-01T23:59:59.000Z

    Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

  20. CHALLENGES IN DEVELOPMENT AND OPERATION OF MEMS MICROBIAL FUEL CELLS

    E-Print Network [OSTI]

    Steckl, Andrew J.

    CHALLENGES IN DEVELOPMENT AND OPERATION OF MEMS MICROBIAL FUEL CELLS A. Fraiwan1 , S. Sundermier1 Microbial Fuel Cells, Micro-sized, Power Density, Limiting Factors INTRODUCTION Microbial fuel cells (MFCs fuel cells (MFCs) have been a major focus for renewable energy production. With the successful

  1. Light-Duty Fuel Cell Vehicles State of Development

    E-Print Network [OSTI]

    Light-Duty Fuel Cell Vehicles State of Development Fuel Cell Vehicles (FCVs) An international race is under way to commercialize fuel cell vehicles (FCVs). The competition is characterized by rapid by taking full advantage of the characteristics and capabilities of fuel cells. But most of the vehicles

  2. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01T23:59:59.000Z

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  3. Infrastructure Infrastructure for Research & Development

    E-Print Network [OSTI]

    automatischen 1.2-m-Teleskope STELLA-I und STELLA-II und das 80-cm-RoboTel, das Spec- tropolarimeter PEPSI sowie PEPSI, and the solar telescope GREGOR. Possible participation is considered in RAVE and 2nd Gener- ation Glasfasertechnik: Sortierhilfe Ummantelte Glasfaser zum Einsatz unter variabler mechanischer Belastung bei PEPSI

  4. Fuel Cycle Research and Development Presentation Title

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FYWednesday,Newsletter

  5. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartmentaboutInformation ResourcesResearch

  6. Nitride Fuel Development at the INL

    SciTech Connect (OSTI)

    W.E. Windes

    2007-06-01T23:59:59.000Z

    A new method for fabricating nitride-based fuels for nuclear applications is under development at the Idaho National Laboratory (INL). A primary objective of this research is the development of a process that could be operated as an automated or semi-automated technique reducing costs, worker doses, and eventually improving the final product form. To achieve these goals the fabrication process utilizes a new cryo-forming technique to produce microspheres formed from sub-micron oxide powder to improve material handling issues, yield rapid kinetics for conversion to nitrides, and reduced material impurity levels within the nitride compounds. The microspheres are converted to a nitride form within a high temperature particle fluidizing bed using a carbothermic process that utilizes a hydrocarbon – hydrogen - nitrogen gas mixture. A new monitor and control system using differential pressure changes in the fluidizing gas allows for real-time monitoring and control of the spouted bed reactor during conversion. This monitor and control system can provide real-time data that is used to control the gas flow rates, temperatures, and gas composition to optimize the fluidization of the particle bed. The small size (0.5 µm) of the oxide powders in the microspheres dramatically increases the kinetics of the conversion process yielding reduced process times and temperatures. Initial studies using surrogate ZrO2 powder have yielded conversion efficiencies of 90 -95 % nitride formation with only small levels of oxide and carbide contaminants present. Further studies are being conducted to determine optimal gas mixture ratios, process time, and temperature range for providing complete conversion to a nitride form.

  7. Sandia National Laboratories: Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regulation, ... Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port On March 13, 2014, in Center for Infrastructure Research and...

  8. Modelling and control strategy development for fuel cell electric vehicles

    E-Print Network [OSTI]

    Peng, Huei

    Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

  9. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    4.0 Systems Analysis Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis Systems Analysis section of the Fuel Cell...

  10. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2.0 Program Benefits Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 2.0 Program Benefits Program Benefits section of the Fuel Cell...

  11. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Section 3.0 Technical Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.0 Technical Plan Technical Plan section of the Fuel...

  12. Proceedings of the 1993 Windsor Workshop on Alternative Fuels

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This report contains viewgraph papers on the following topics on alternative fuels: availability of alternative fueled engines and vehicles; emerging technologies; overcoming barriers to alternative fuels commercialization; infrastructure issues; and new initiatives in research and development.

  13. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel Cell Technologies Program Overview: 2012 DOE Hydrogen Compression, Storage, and Dispensing Workshop Refueling Infrastructure for...

  14. Technology Readiness Levels for Advanced Nuclear Fuels and Materials Development

    SciTech Connect (OSTI)

    Jon Carmack

    2014-01-01T23:59:59.000Z

    The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. The TRL process has been developed and successfully used by the Department of Defense (DOD) for development and deployment of new technology and systems for defense applications. In addition, NASA has also successfully used the TRL process to develop and deploy new systems for space applications. Advanced nuclear fuels and materials development is a critical technology needed for closing the nuclear fuel cycle. Because the deployment of a new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management and tracking tool. This report provides definition of the technology readiness level assessment process as defined for use in assessing nuclear fuel technology development for the Advanced Fuel Campaign (AFC).

  15. Part B: Project Summary ITR: A Scalable Enabling IT Infrastructure for Developing Regions (ICT4B)

    E-Print Network [OSTI]

    Mankoff, Jennifer

    , low-power devices, 2) a new approach to low-cost networking based on intermittent connectivity (rather for social science research. The expected 10-100 times reduction in device cost stems from the co times reduction in infrastructure cost comes largely from 1) the focus on intermittent networking, which

  16. Coal-fueled diesel technology development. Final report, March 3, 1988--January 31, 1994

    SciTech Connect (OSTI)

    none,

    1994-01-31T23:59:59.000Z

    Since 1979, the US Department of Energy has been sponsoring Research and Development programs to use coal as a fuel for diesel engines. In 1984, under the partial sponsorship of the Burlington Northern and Norfolk Southern Railroads, GE completed a 30-month study on the economic viability of a coal-fueled locomotive. In response to a GE proposal to continue researching the economic and technical feasibility of a coal-fueled diesel engine for locomotives, DOE awarded a contract to GE Corporate Research and Development for a three-year program that began in March 1985 and was completed in 1988. That program was divided into two parts: an Economic Assessment Study and a Technical Feasibility Study. The Economic Assessment Study evaluated the benefits to be derived from development of a coal-fueled diesel engine. Seven areas and their economic impact on the use of coal-fueled diesels were examined; impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The Technical Feasibility Study used laboratory- and bench-scale experiments to investigate the combustion of coal. The major accomplishments of this study were the development of injection hardware for coal water slurry (CWS) fuel, successful testing of CWS fuel in a full-size, single-cylinder, medium-speed diesel engine, evaluation of full-scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions. Full combustion of CWS fuel was accomplished at full and part load with reasonable manifold conditions.

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    1 Hydrogen Production Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production Hydrogen Production technical plan...

  18. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    2 Hydrogen Delivery Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.2 Hydrogen Delivery Hydrogen Delivery technical plan section...

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3 Hydrogen Storage Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage Hydrogen Storage technical plan section of...

  20. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  1. Development of Advanced High Temperature Fuel Cell Membranes

    Broader source: Energy.gov [DOE]

    Presentation on Development of Advanced High Temperature Fuel Cell Membranes to the High Temperature Membrane Working Group Meeting held in Arlington, Virginia, May 26,2005.

  2. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    A: Budgetary Information Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix A: Budgetary Information Appendix A: Budgetary...

  3. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6 Technology Validation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.6 Technology Validation Technology Validation technical...

  4. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Appendix D: Project Evaluation Form Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix D: Project Evaluation Form Appendix D: Project...

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    9 Market Transformation Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.9 Market Transformation Market Transformation technical...

  6. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Preface and Document Revision History Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Preface and Document Revision History Preface and...

  7. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    6.0 Program Management Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 6.0 Program Management Program Management section of the...

  8. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.8 Education and Outreach Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.8 Education and Outreach Education and Outreach...

  9. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Broader source: Energy.gov (indexed) [DOE]

    Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" held on March...

  10. Lean Gasoline System Development for Fuel Efficient Small Car...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting ace063smith2013o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

  11. Developments in U.S. Alternative Fuel Markets

    Reports and Publications (EIA)

    2001-01-01T23:59:59.000Z

    The alternative fueled vehicle (AFV)/alternative fuels industry experienced a number of market-related changes in the second half of the 1990s. This article describes each of the alternative transportation fuels and the AFVs in detail. It provides information on the development to date and looks at trends likely to occur in the future.

  12. TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS

    SciTech Connect (OSTI)

    J.M. Wight; G.A. Moore; S.C. Taylor

    2008-10-01T23:59:59.000Z

    This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

  13. Infrastructure Development of Single Cell Testing Capability at A0 Facility

    SciTech Connect (OSTI)

    Dhanaraj, Nandhini; Padilla, R.; Reid, J.; Khabiboulline, T.; Ge, M.; Mukherjee, A.; Rakhnov, I.; Ginsburg, C.; Wu, G.; Harms, E.; Carter, H.; /Fermilab

    2009-09-01T23:59:59.000Z

    The objective of this technical note is to document the details of the infrastructure development process that was realized at the A0 photo injector facility to establish RF cold testing capability for 1.3 GHz superconducting niobium single cell cavities. The activity began the last quarter of CY 2006 and ended the first quarter of CY 2009. The whole process involved addressing various aspects such as design of vertical insert and lifting fixture, modification of existing RF test station and design of new couplers, development of a Temperature Mapping (T-Map) system, radiation considerations for the test location (north cave), update of existing High Pressure Rinse (HPR) system, preparation of necessary safety documents and eventually obtaining an Operational Readiness Clearance (ORC). Figure 1 illustrates the various components of the development process. In the past, the north cave test station at A0 has supported the cold testing 3.9 GHz nine cell and single cell cavities, thus some of the components were available for use and some needed modification. The test dewar had the capacity to accommodate 1.3 GHz single cells although a new vertical insert that could handle both cavity types (1.3 and 3.9 GHz) had to be designed. The existing cryogenic system with an average capacity of {approx} 0.5 g/sec was deemed sufficient. The RF system was updated with broadband components and an additional amplifier with higher power capacity to handle higher gradients usually achieved in 1.3 GHz cavities. The initial testing phase was arbitrated to proceed with fixed power coupling. A new temperature mapping system was developed to provide the diagnostic tool for hot spot studies, quench characterization and field emission studies. The defining feature of this system was the use of diode sensors instead of the traditional carbon resistors as sensing elements. The unidirectional current carrying capacity (forward bias) of the diodes provided for the ease of multiplexing of the system, thus substantially reducing the number of cables required to power the sensors. The high gradient capacity of the 1.3 GHz cavities required a revision of the radiation shielding and interlocks. The cave was updated as per the recommendations of the radiation safety committee. The high pressure rinse system was updated with new adapters to assist the rinsing 1.3 GHz single cell cavities. Finally, a proposal for cold testing 1.3 GHz single cell cavities at A0 north cave was made to the small experiments approval committee, radiation safety committee and the Tevatron cryogenic safety sub-committee for an operational readiness clearance and the same was approved. The project was classified under research and development of single cell cavities (project 18) and was allocated a budget of $200,000 in FY 2007.

  14. Hydrogen Infrastructure Transition Analysis: Milestone Report

    SciTech Connect (OSTI)

    Melendez, M.; Milbrandt, A.

    2006-01-01T23:59:59.000Z

    This milestone report identifies a minimum infrastructure that could support the introduction of hydrogen vehicles and develops and evaluates transition scenarios supported by this infrastructure.

  15. Metallic Fuel Casting Development and Parameter Optimization Simulations

    SciTech Connect (OSTI)

    R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

    2013-03-01T23:59:59.000Z

    One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

  16. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2, 2003Toolsearch keywordsclear search showFUELS

  17. Applying the Energy Service Company Model to Advance Deployment of Fleet Natural Gas Vehicles and Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta3ApplianceApplying the Energy Service Company

  18. Intermediate Temperature Solid Oxide Fuel Cell Development

    SciTech Connect (OSTI)

    S. Elangovan; Scott Barnett; Sossina Haile

    2008-06-30T23:59:59.000Z

    Solid oxide fuel cells (SOFCs) are high efficiency energy conversion devices. Present materials set, using yttria stabilized zirconia (YSZ) electrolyte, limit the cell operating temperatures to 800 C or higher. It has become increasingly evident however that lowering the operating temperature would provide a more expeditious route to commercialization. The advantages of intermediate temperature (600 to 800 C) operation are related to both economic and materials issues. Lower operating temperature allows the use of low cost materials for the balance of plant and limits degradation arising from materials interactions. When the SOFC operating temperature is in the range of 600 to 700 C, it is also possible to partially reform hydrocarbon fuels within the stack providing additional system cost savings by reducing the air preheat heat-exchanger and blower size. The promise of Sr and Mg doped lanthanum gallate (LSGM) electrolyte materials, based on their high ionic conductivity and oxygen transference number at the intermediate temperature is well recognized. The focus of the present project was two-fold: (a) Identify a cell fabrication technique to achieve the benefits of lanthanum gallate material, and (b) Investigate alternative cathode materials that demonstrate low cathode polarization losses at the intermediate temperature. A porous matrix supported, thin film cell configuration was fabricated. The electrode material precursor was infiltrated into the porous matrix and the counter electrode was screen printed. Both anode and cathode infiltration produced high performance cells. Comparison of the two approaches showed that an infiltrated cathode cells may have advantages in high fuel utilization operations. Two new cathode materials were evaluated. Northwestern University investigated LSGM-ceria composite cathode while Caltech evaluated Ba-Sr-Co-Fe (BSCF) based pervoskite cathode. Both cathode materials showed lower polarization losses at temperatures as low as 600 C than conventional manganite or cobaltite cathodes.

  19. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01T23:59:59.000Z

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  20. Fully Ceramic Microencapsulated Fuel Development for LWR Applications

    SciTech Connect (OSTI)

    Snead, Lance Lewis [ORNL; Besmann, Theodore M [ORNL; Terrani, Kurt A [ORNL; Voit, Stewart L [ORNL

    2012-01-01T23:59:59.000Z

    The concept, fabrication, and key feasibility issues of a new fuel form based on the microencapsulated (TRISO-type) fuel which has been specifically engineered for LWR application and compacted within a SiC matrix will be presented. This fuel, the so-called fully ceramic microencapsulated fuel is currently undergoing development as an accident tolerant fuel for potential UO2 replacement in commercial LWRs. While the ability of this fuel to facilitate normal LWR cycle performance is an ongoing effort within the program, this will not be a focus of this paper. Rather, key feasibility and performance aspects of the fuel will be presented including the ability to fabricate a LWR-specific TRISO, the need for and route to a high thermal conductivity and fully dense matrix that contains neutron poisons, and the performance of that matrix under irradiation and the interaction of the fuel with commercial zircaloy clad.

  1. DOE Publishes Roadmap for Developing Cleaner Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"WaveInteractions and Policy (2009)|Publishes Roadmap for Developing

  2. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    SciTech Connect (OSTI)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01T23:59:59.000Z

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  3. The Development of Methanol Industry and Methanol Fuel in China

    SciTech Connect (OSTI)

    Li, W.Y.; Li, Z.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China)

    2009-07-01T23:59:59.000Z

    In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

  4. HyPro: A Financial Tool for Simulating Hydrogen Infrastructure Development, Final Report

    SciTech Connect (OSTI)

    Brian D. James, Peter O. Schmidt, Julie Perez

    2008-12-01T23:59:59.000Z

    This report summarizes a multi-year Directed Technologies Inc. (DTI) project to study the build-out of hydrogen production facilities during the transition from gasoline internal combustion engine vehicle to hydrogen fuel cell vehicles. The primary objectives of the project are to develop an enhanced understanding of hydrogen production issues during the transition period (out to 2050) and to develop recommendations for the DOE on areas of further study. These objectives are achieved by conducting economic and scenario analysis to predict how industry would provide the hydrogen production, delivery and dispensing capabilities necessary to satisfy increased hydrogen demand. The primary tool used for the analysis is a custom created MatLab simulation tool entitled HyPro (short for Hydrogen Production). This report describes the calculation methodology used in HyPro, the baseline assumptions, the results of the baseline analysis and several corollary studies. The appendices of this report included a complete listing of model assumptions (capital costs, efficiencies, feedstock prices, delivery distances, etc.) and a step-by-step manual on the specific operation of the HyPro program. This study was made possible with funding from the U.S. Department of Energy (DOE).

  5. Development of Sensors for Automotive PEM-based Fuel Cells

    E-Print Network [OSTI]

    FC Series 200 - 50 kW PEM #12;2 Development of Sensors for Automotive PEM-based Fuel Cells ­ Program Thermal Management System Cabin safety / H2 sensor Fuel Cell Stack / CO, H2 , RH, O2 , pressure sensors streams: before, in, and after reformer, before and in fuel cell stack: CO, H2, O2, H2S, NH3. ­Safety [H2

  6. Development of Fuel Shuffling Module for PHISICS

    SciTech Connect (OSTI)

    Allan Mabe; Andrea Alfonsi; Cristian Rabiti; Aaron Epiney; Michael Lineberry

    2013-06-01T23:59:59.000Z

    PHISICS (Parallel and Highly Innovative Simulation for the INL Code System) [4] code toolkit has been in development at the Idaho National Laboratory. This package is intended to provide a modern analysis tool for reactor physics investigation. It is designed with the mindset to maximize accuracy for a given availability of computational resources and to give state of the art tools to the modern nuclear engineer. This is obtained by implementing several different algorithms and meshing approaches among which the user will be able to choose, in order to optimize his computational resources and accuracy needs. The software is completely modular in order to simplify the independent development of modules by different teams and future maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3]. In the following the structure of the different PHISICS modules is briefly recalled, focusing on the new shuffling module (SHUFFLE), object of this paper.

  7. In Situ Nuclear Characterization Infrastructure

    SciTech Connect (OSTI)

    James A. Smith; J. Rory Kennedy

    2011-11-01T23:59:59.000Z

    To be able to evolve microstructure with a prescribed in situ process, an effective measurement infrastructure must exist. This interdisciplinary infrastructure needs to be developed in parallel with in situ sensor technology. This paper discusses the essential elements in an effective infrastructure.

  8. INFRASTRUCTURE Engineering and Physical Sciences

    E-Print Network [OSTI]

    Berzins, M.

    the vital research that underpins this development. The UK Government Strategy for National Infrastructure and resilient infrastructure supplying water, energy, communications, transport systems and waste systems. Infrastructure is a broad topic and is relevant to other sectors including Healthcare, Renewable and Clean Energy

  9. Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and Infrastructure Technologies Program

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report documents the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Hydrogen, Fuel Ce

  10. Deep-Burn Modular Helium Reactor Fuel Development Plan

    SciTech Connect (OSTI)

    McEachern, D

    2002-12-02T23:59:59.000Z

    This document contains the workscope, schedule and cost for the technology development tasks needed to satisfy the fuel and fission product transport Design Data Needs (DDNs) for the Gas Turbine-Modular Helium Reactor (GT-MHR), operating in its role of transmuting transuranic (TRU) nuclides in spent fuel discharged from commercial light-water reactors (LWRs). In its application for transmutation, the GT-MHR is referred to as the Deep-Burn MHR (DB-MHR). This Fuel Development Plan (FDP) describes part of the overall program being undertaken by the U.S. Department of Energy (DOE), utilities, and industry to evaluate the use of the GT-MHR to transmute transuranic nuclides from spent nuclear fuel. The Fuel Development Plan (FDP) includes the work on fuel necessary to support the design and licensing of the DB-MHR. The FDP is organized into ten sections. Section 1 provides a summary of the most important features of the plan, including cost and schedule information. Section 2 describes the DB-MHR concept, the features of its fuel and the plan to develop coated particle fuel for transmutation. Section 3 describes the knowledge base for fabrication of coated particles, the experience with irradiation performance of coated particle fuels, the database for fission product transport in HTGR cores, and describes test data and calculations for the performance of coated particle fuel while in a repository. Section 4 presents the fuel performance requirements in terms of as-manufactured quality and performance of the fuel coatings under irradiation and accident conditions. These requirements are provisional because the design of the DB-MHR is in an early stage. However, the requirements are presented in this preliminary form to guide the initial work on the fuel development. Section 4 also presents limits on the irradiation conditions to which the coated particle fuel can be subjected for the core design. These limits are based on past irradiation experience. Section 5 describes the Design Data Needs to: (1) fabricate the coated particle fuel, (2) predict its performance in the reactor core, (3) predict the radionuclide release rates from the reactor core, and (4) predict the performance of spent fuel in a geological repository. The heart of this fuel development plan is Section 6, which describes the development activities proposed to satisfy the DDNs presented in Section 5. The development scope is divided into Fuel Process Development, Fuel Materials Development, Fission Product Transport, and Spent Fuel Disposal. Section 7 describes the facilities to be used. Generally, this program will utilize existing facilities. While some facilities will need to be modified, there is no requirement for major new facilities. Section 8 states the Quality Assurance requirements that will be applied to the development activities. Section 9 presents detailed costs organized by WBS and spread over time. Section 10 presents a list of the types of deliverables that will be prepared in each of the WBS elements. Four Appendices contain supplementary information on: (a) design data needs, (b) the interface with the separations plant, (c) the detailed development schedule, and (d) the detailed cost estimate.

  11. NONDESTRUCTIVE EXAMINATION OF FUEL PLATES FOR THE RERTR FUEL DEVELOPMENT EXPERIMENTS

    SciTech Connect (OSTI)

    N.E. Woolstenhulme; S.C. Taylor; G.A. Moore; D.M. Sterbentz

    2012-09-01T23:59:59.000Z

    Nuclear fuel is the core component of reactors that is used to produce the neutron flux required for irradiation research purposes as well as commercial power generation. The development of nuclear fuels with low enrichments of uranium is a major endeavor of the RERTR program. In the development of these fuels, the RERTR program uses nondestructive examination (NDE) techniques for the purpose of determining the properties of nuclear fuel plate experiments without imparting damage or altering the fuel specimens before they are irradiated in a reactor. The vast range of properties and information about the fuel plates that can be characterized using NDE makes them highly useful for quality assurance and for analyses used in modeling the behavior of the fuel while undergoing irradiation. NDE is also particularly useful for creating a control group for post-irradiation examination comparison. The two major categories of NDE discussed in this paper are X-ray radiography and ultrasonic testing (UT) inspection/evaluation. The radiographic scans are used for the characterization of fuel meat density and homogeneity as well as the determination of fuel location within the cladding. The UT scans are able to characterize indications such as voids, delaminations, inclusions, and other abnormalities in the fuel plates which are generally referred to as debonds as well as to determine the thickness of the cladding using ultrasonic acoustic microscopy methods. Additionally, the UT techniques are now also being applied to in-canal interim examination of fuel experiments undergoing irradiation and the mapping of the fuel plate surface profile to determine fuel swelling. The methods used to carry out these NDE techniques, as well as how they operate and function, are described along with a description of which properties are characterized.

  12. Development of Pellet Technologies for Plasma Fueling

    SciTech Connect (OSTI)

    Kapralov, V.G. [State Polytechnical University (Russian Federation); Kuteev, B.V. [NFI RRC 'Kurchatov institute' (Russian Federation); Baranov, G.A. [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation)] (and others)

    2005-01-15T23:59:59.000Z

    This contribution presents recent results of pellet technologies development for plasma fuelling in magnetic confinement machines with open or closed magnetic configuration. The current status of ITV7 pellet injector for GOL3 multimirror linear machine, PGS2.2 pellet guide system of ITV4 in-situ pellet injector for TUMAN- 3M tokamak and ITV5 centrifuge pellet injector for Globus-M spherical tokamak is reported. New results on modeling of tangential pellet injection into TUMAN-3M tokamak are discussed as well.

  13. DEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION

    E-Print Network [OSTI]

    from central production plants; however, the next phase to fostering the hydrogen economy will likely of the hydrogen fuel economy for buses, fleet vehicles, and ultimately personal vehicles. In order to demonstrateDEVELOPMENT OF A TURNKEY COMMERCIAL HYDROGEN FUELING STATION David E. Guro Air Products

  14. Increasing Biofuel Deployment and Utilization through Development of Renewable Super Premium: Infrastructure Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News Community Connections:HAZARD ANALYSES OFIncreasing

  15. Controlled Hydrogen Fleet and Infrastructure Demonstration Project

    SciTech Connect (OSTI)

    Dr. Scott Staley

    2010-03-31T23:59:59.000Z

    This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

  16. Development of Technical Nuclear Forensics for Spent Research Reactor Fuel

    E-Print Network [OSTI]

    Sternat, Matthew Ryan 1982-

    2012-11-20T23:59:59.000Z

    , an inverse analysis was developed to re-construct the burnup, initial uranium isotopic compositions, and cooling time of a research reactor spent fuel sample. A convergence acceleration technique was used that consisted of an analytical calculation to predict...

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    3.7 Hydrogen Safety, Codes and Standards Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards...

  18. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report offers examples of real-world applications and technical progress of hydrogen and fuel cell technologies, including policies adopted by countries to increase technology development and com

  19. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    B: InputOutput Matrix Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Appendix B: InputOutput Matrix Appendix B: InputOutput Matrix...

  20. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    5 Manufacturing R&D Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.5 Manufacturing R&D Manufacturing R&D technical plan section...

  1. FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

    2010-03-01T23:59:59.000Z

    Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Authorization for Alternative Fuel Infrastructure Incentives Local governments may use income from the infrastructure surtax to provide loans, grants, or rebates to residential or...

  3. A review of nuclear fuel cycle options for developing nations

    SciTech Connect (OSTI)

    Harrison, R.K.; Scopatz, A.M.; Ernesti, M. [The University of Texas at Austin, Pickle Research Campus, Building 159, Austin, TX 78712 (United States)

    2007-07-01T23:59:59.000Z

    A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

  4. LG Solid Oxide Fuel Cell (SOFC) Model Development

    SciTech Connect (OSTI)

    Haberman, Ben; Martinez-Baca, Carlos; Rush, Greg

    2013-03-31T23:59:59.000Z

    This report presents a summary of the work performed by LG Fuel Cell Systems Inc. during the project LG Solid Oxide Fuel Cell (SOFC) Model Development (DOE Award Number: DE-FE0000773) which commenced on October 1, 2009 and was completed on March 31, 2013. The aim of this project is for LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (?LGFCS?) to develop a multi-physics solid oxide fuel cell (SOFC) computer code (MPC) for performance calculations of the LGFCS fuel cell structure to support fuel cell product design and development. A summary of the initial stages of the project is provided which describes the MPC requirements that were developed and the selection of a candidate code, STAR-CCM+ (CD-adapco). This is followed by a detailed description of the subsequent work program including code enhancement and model verification and validation activities. Details of the code enhancements that were implemented to facilitate MPC SOFC simulations are provided along with a description of the models that were built using the MPC and validated against experimental data. The modeling work described in this report represents a level of calculation detail that has not been previously available within LGFCS.

  5. Status of Fuel Development and Manufacturing for Space Nuclear Reactors at BWX Technologies

    SciTech Connect (OSTI)

    Carmack, W.J.; Husser, D.L.; Mohr, T.C.; Richardson, W.C. [BWX Technologies, PO Box 785, Lynchburg, VA 24505-0785 (United States)

    2004-02-04T23:59:59.000Z

    New advanced nuclear space propulsion systems will soon seek a high temperature, stable fuel form. BWX Technologies Inc (BWXT) has a long history of fuel manufacturing. UO2, UCO, and UCx have been fabricated at BWXT for various US and international programs. Recent efforts at BWXT have focused on establishing the manufacturing techniques and analysis capabilities needed to provide a high quality, high power, compact nuclear reactor for use in space nuclear powered missions. To support the production of a space nuclear reactor, uranium nitride has recently been manufactured by BWXT. In addition, analytical chemistry and analysis techniques have been developed to provide verification and qualification of the uranium nitride production process. The fabrication of a space nuclear reactor will require the ability to place an unclad fuel form into a clad structure for assembly into a reactor core configuration. To this end, BWX Technologies has reestablished its capability for machining, GTA welding, and EB welding of refractory metals. Specifically, BWX Technologies has demonstrated GTA welding of niobium flat plate and EB welding of niobium and Nb-1Zr tubing. In performing these demonstration activities, BWX Technologies has established the necessary infrastructure to manufacture UO2, UCx, or UNx fuel, components, and complete reactor assemblies in support of space nuclear programs.

  6. Development of an External Fuel Processor for a Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Daniel Birmingham; Crispin Debellis; Mark Perna; Anant Upadhyayula

    2008-02-28T23:59:59.000Z

    A 250 kW External Fuel Processor was developed and tested that will supply the gases needed by a pipeline natural gas fueled, solid oxide fuel cell during all modes of operation. The fuel processor consists of three major subsystems--a desulfurizer to remove fuel sulfur to an acceptable level, a synthesis gas generator to support plant heat-up and low load fuel cell operations, and a start gas generator to supply a non-flammable, reducing gas to the fuel cell during startup and shutdown operations. The desulfurization subsystem uses a selective catalytic sulfur oxidation process that was developed for operation at elevated pressure and removes the fuel sulfur to a total sulfur content of less than 80 ppbv. The synthesis gas generation subsystem uses a waterless, catalytic partial oxidation reactor to produce a hydrogen-rich mixture from the natural gas and air. An operating window was defined that allows carbon-free operation while maintaining catalyst temperatures that will ensure long-life of the reactor. The start gas subsystem generates an oxygen-free, reducing gas from the pipeline natural gas using a low-temperature combustion technique. These physically and thermally integrated subsystems comprise the 250 kW External Fuel Processor. The 250 kW External Fuel Processor was tested at the Rolls-Royce facility in North Canton, Ohio to verify process performance and for comparison with design specifications. A step wise operation of the automatic controls through the startup, normal operation and shutdown sequences allowed the control system to be tuned and verified. A fully automated system was achieved that brings the fuel processor through its startup procedure, and then await commands from the fuel cell generator module for fuel supply and shutdown. The fuel processor performance met all design specifications. The 250 kW External Fuel Processor was shipped to an American Electric Power site where it will be tested with a Rolls-Royce solid oxide fuel cell generator module.

  7. Pellet fueling technology development leading to efficient fueling of ITER burning plasmas

    SciTech Connect (OSTI)

    Baylor, L.R.; Combs, S.K.; Jernigan, T.C.; Houlberg, W.A.; Owen, L.W.; Rasmussen, D.A.; Maruyama, S.; Parks, P.B. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6169 (United States)

    2005-05-15T23:59:59.000Z

    Pellet injection is the primary fueling technique planned for core fueling of ITER [ITER Technical Basis 2002 ITER EDA Documentation Series (Vienna: IAEA)] burning plasmas. Efficient core plasma fueling with deuterium and tritium D-T is a requirement for achieving high fusion gain and it cannot be achieved with gas fueling. Injection of pellets from the inner wall has been shown on present day tokamaks to provide efficient fueling and is planned for use on ITER. Modeling of the fueling deposition from inner wall pellet injection using the Parks ExB drift model indicates that pellets have the capability to fuel well inside the separatrix. Gas fueling calculations show very poor neutral penetration due to the high density and wide scrape off layer. Isotopically mixed D-T pellets can provide efficient tritium fueling that will minimize tritium wall loading when compared to gas puffing. Currently the performance of the ITER inner wall guide tube design is under test with initial results indicating that pellet speeds in excess of 300 m/s will lead to fragmented pellets. The ITER pellet injection technology requirements and remaining development issues are discussed along with a plan to reach the design goal for employment on ITER.

  8. A GIS-based Assessment of Coal-based Hydrogen Infrastructure Deployment in the State of Ohio

    E-Print Network [OSTI]

    Johnson, Nils; Yang, Christopher; Ogden, J

    2009-01-01T23:59:59.000Z

    9] Moore RB, Raman V. Hydrogen infrastructure for fuel cellSperling D. The hydrogen infrastructure transition model (a 50-year hydrogen infrastructure for urban Beijing. Davis,

  9. Pellet Fueling Technology Development Leading to Efficient Fueling of ITER Burning Plasmas

    SciTech Connect (OSTI)

    Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, Thomas C [ORNL; Houlberg, Wayne A [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Owen, Larry W [ORNL; Parks, P. B. [General Atomics; Rasmussen, David A [ORNL

    2005-01-01T23:59:59.000Z

    Pellet injection is the primary fueling technique planned for central fueling of the ITER burning plasma, which is a requirement for achieving high fusion gain. Injection of pellets from the inner wall has been shown on present day tokamaks to provide efficient fueling and is planned for use on ITER [1,2]. Significant development of pellet fueling technology has occurred as a result of the ITER R&D process. Extrusion rates with batch extruders have reached more than 1/2 of the ITER design specification of 1.3 cm3/s [3] and the ability to fuel efficiently from the inner wall by injecting through curved guide tubes has been demonstrated on several fusion devices. Modeling of the fueling deposition from inner wall pellet injection has been done using the Parks et al. ExB drift model [4] shows that inside launched pellets of 3mm size and speeds of 300 m/s have the capability to fuel well inside the separatrix. Gas fueling on the other hand is calculated to have very poor fueling efficiency due to the high density and wide scrape off layer compared to current machines. Isotopically mixed D/T pellets can provide efficient tritium fueling that will minimize tritium wall loading when compared to gas puffing of tritium. In addition, the use of pellets as an ELM trigger has been demonstrated and continues to be investigated as an ELM mitigation technique. During the ITER CDA and EDA the U.S. was responsible for ITER fueling system design and R&D and is in good position to resume this role for the ITER pellet fueling system. Currently the performance of the ITER guide tube design is under investigation. A mockup is being built that will allow tests with different pellet sizes and repetition rates. The results of these tests and their implication for fueling efficiency and central fueling will be discussed. The ITER pellet injection technology developments to date, specified requirements, and remaining development issues will be presented along with a plan to reach the design goal in time for employment on ITER.

  10. Final Report on National NGV Infrastructure

    SciTech Connect (OSTI)

    GM Sverdrup; JG DeSteese; ND Malcosky

    1999-01-07T23:59:59.000Z

    This report summarizes work fimded jointly by the U.S. Department of Energy (DOE) and by the Gas Research Institute (GRI) to (1) identi& barriers to establishing sustainable natural gas vehicle (NGV) infrastructure and (2) develop planning information that can help to promote a NGV infrastructure with self-sustaining critical maw. The need for this work is driven by the realization that demand for NGVS has not yet developed to a level that provides sufficient incentives for investment by the commercial sector in all necessary elements of a supportive infrastructure. The two major objectives of this project were: (1) to identifi and prioritize the technical barriers that may be impeding growth of a national NGV infrastructure and (2) to develop input that can assist industry in overcoming these barriers. The approach used in this project incorporated and built upon the accumulated insights of the NGV industry. The project was conducted in three basic phases: (1) review of the current situation, (2) prioritization of technical infrastructure btiiers, and (3) development of plans to overcome key barriers. An extensive and diverse list of barriers was obtained from direct meetings and telephone conferences with sixteen industry NGV leaders and seven Clean Cities/Clean Corridors coordinators. This information is filly documented in the appendix. A distillation of insights gained in the interview process suggests that persistent barriers to developing an NGV market and supporting infrastructure can be grouped into four major categories: 1. Fuel station economics 2. Value of NGVs from the owner/operator perspective 3. Cooperation necessary for critical mass 4. Commitment by investors. A principal conclusion is that an efficient and effective approach for overcoming technical barriers to developing an NGV infrastructure can be provided by building upon and consolidating the relevant efforts of the NGV industry and government. The major recommendation of this project is the establishment of an ad hoc NGV Infrastructure Working Group (NGV-I WG) to address the most critical technical barriers to NGV infrastructure development. This recommendation has been considered and approved by both the DOE and GRI and is the basis of continued collaboration in this area.

  11. The Program for Climate Model Diagnosis and Intercomparison (PCMDI) Software Development: Applications, Infrastructure, and Middleware/Networks

    SciTech Connect (OSTI)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-30T23:59:59.000Z

    The status of and future plans for the Program for Climate Model Diagnosis and Intercomparison (PCMDI) hinge on software that PCMDI is either currently distributing or plans to distribute to the climate community in the near future. These software products include standard conventions, national and international federated infrastructures, and community analysis and visualization tools. This report also mentions other secondary software not necessarily led by or developed at PCMDI to provide a complete picture of the overarching applications, infrastructures, and middleware/networks. Much of the software described anticipates the use of future technologies envisioned over the span of next year to 10 years. These technologies, together with the software, will be the catalyst required to address extreme-scale data warehousing, scalability issues, and service-level requirements for a diverse set of well-known projects essential for predicting climate change. These tools, unlike the previous static analysis tools of the past, will support the co-existence of many users in a productive, shared virtual environment. This advanced technological world driven by extreme-scale computing and the data it generates will increase scientists’ productivity, exploit national and international relationships, and push research to new levels of understanding.

  12. Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis

    SciTech Connect (OSTI)

    Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

    2012-07-03T23:59:59.000Z

    A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

  13. Recent Developments in Mems-Based Micro Fuel Cells

    E-Print Network [OSTI]

    Pichonat, T

    2007-01-01T23:59:59.000Z

    Micro fuel cells ($\\mu$-FC) represent promising power sources for portable applications. Today, one of the technological ways to make $\\mu$-FC is to have recourse to standard microfabrication techniques used in the fabrication of micro electromechanical systems (MEMS). This paper shows an overview on the applications of MEMS techniques on miniature FC by presenting several solutions developed throughout the world. It also describes the latest developments of a new porous silicon-based miniature fuel cell. Using a silane grafted on an inorganic porous media as the proton-exchange membrane instead of a common ionomer such as Nafion, the fuel cell achieved a maximum power density of 58 mW cm-2 at room temperature with hydrogen as fuel.

  14. Infrastructure Projects | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn Other News link toInfluenceInfrared MappingInfrastructure

  15. Social infrastructure

    E-Print Network [OSTI]

    Kurlbaum, Ryan E. (Ryan Edward)

    2013-01-01T23:59:59.000Z

    Current urbanization patterns and aging transportation infrastructures have marginalized millions of US citizens. The result is that 4 .5 million US residents live within 100 meters of a four-lane highway' and have become ...

  16. Lively Infrastructure

    E-Print Network [OSTI]

    Amin, Ash

    2014-10-06T23:59:59.000Z

    and slack within and across the city’s infrastructural networks (Lahoud, 2010; Vale and Campanella, 2005; Batty, 2013). Importantly, this writing shows that there is nothing purely technical or mechanical about even the most digitised infrastructures... given to, and commanded by, building a house piece by piece when time and resource allow, the measures taken to pirate water and electricity, build sanitary pits, and make indoor or outdoor showers and kitchens, making a house into a home...

  17. Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Growth of the NGV Market: Lessons Learned Roadmap for Infrastructure Development Presented at...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Fueling Infrastructure Incentives The Alternative Fuel Transportation Program (Program) will provide loans for up to 80% of the cost to convert fleet vehicles...

  19. Energy Transmission and Infrastructure

    SciTech Connect (OSTI)

    Mathison, Jane

    2012-12-31T23:59:59.000Z

    The objective of Energy Transmission and Infrastructure Northern Ohio (OH) was to lay the conceptual and analytical foundation for an energy economy in northern Ohio that will: • improve the efficiency with which energy is used in the residential, commercial, industrial, agricultural, and transportation sectors for Oberlin, Ohio as a district-wide model for Congressional District OH-09; • identify the potential to deploy wind and solar technologies and the most effective configuration for the regional energy system (i.e., the ratio of distributed or centralized power generation); • analyze the potential within the district to utilize farm wastes to produce biofuels; • enhance long-term energy security by identifying ways to deploy local resources and building Ohio-based enterprises; • identify the policy, regulatory, and financial barriers impeding development of a new energy system; and • improve energy infrastructure within Congressional District OH-09. This objective of laying the foundation for a renewable energy system in Ohio was achieved through four primary areas of activity: 1. district-wide energy infrastructure assessments and alternative-energy transmission studies; 2. energy infrastructure improvement projects undertaken by American Municipal Power (AMP) affiliates in the northern Ohio communities of Elmore, Oak Harbor, and Wellington; 3. Oberlin, OH-area energy assessment initiatives; and 4. a district-wide conference held in September 2011 to disseminate year-one findings. The grant supported 17 research studies by leading energy, policy, and financial specialists, including studies on: current energy use in the district and the Oberlin area; regional potential for energy generation from renewable sources such as solar power, wind, and farm-waste; energy and transportation strategies for transitioning the City of Oberlin entirely to renewable resources and considering pedestrians, bicyclists, and public transportation as well as drivers in developing transportation policies; energy audits and efficiency studies for Oberlin-area businesses and Oberlin College; identification of barriers to residential energy efficiency and development of programming to remove these barriers; mapping of the solar-photovoltaic and wind-energy supply chains in northwest Ohio; and opportunities for vehicle sharing and collaboration among the ten organizations in Lorain County from the private, government, non-profit, and educational sectors. With non-grant funds, organizations have begun or completed projects that drew on the findings of the studies, including: creation of a residential energy-efficiency program for the Oberlin community; installation of energy-efficient lighting in Oberlin College facilities; and development by the City of Oberlin and Oberlin College of a 2.27 megawatt solar photovoltaic facility that is expected to produce 3,000 megawatt-hours of renewable energy annually, 12% of the College’s yearly power needs. Implementation of these and other projects is evidence of the economic feasibility and technical effectiveness of grant-supported studies, and additional projects are expected to advance to implementation in the coming years. The public has benefited through improved energydelivery systems and reduced energy use for street lighting in Elmore, Oak Harbor, and Wellington; new opportunities for assistance and incentives for residential energy efficiency in the Oberlin community; new opportunities for financial and energy savings through vehicle collaboration within Lorain County; and decreased reliance on fossil fuels and expanded production of renewable energy in the region. The dissemination conference and the summary report developed for the conference also benefited the public, but making the findings and recommendations of the regional studies broadly available to elected officials, city managers, educators, representatives of the private sector, and the general public.

  20. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  1. Hydrogen Infrastructure Market Readiness: Opportunities and Potential...

    Broader source: Energy.gov (indexed) [DOE]

    methane reformer SOTA State-of-the-Art v Executive Summary Recent progress with fuel cell electric vehicles (FCEVs) has focused attention on hydrogen infrastructure as a...

  2. International Hydrogen Infrastructure Challenges Workshop Summary...

    Broader source: Energy.gov (indexed) [DOE]

    presentation slides from the DOE Fuel Cell Technologies Office webinar "International Hydrogen Infrastructure Challenges Workshop Summary - NOW, NEDO, and DOE" held on December 16,...

  3. An Update in the Development of Alternate Liquid Fuels

    E-Print Network [OSTI]

    Rose, M. J.

    1979-01-01T23:59:59.000Z

    Since the development of "Alternate Liquid Fuels" (ALF) in FY '77 approximately 16.6 million gallons of ALF have been produced, and consumed at Brookhaven National Laboratory. Conservatively this represents an initial saving of over $1,253,000 thru...

  4. An Update in the Development of Alternate Liquid Fuels 

    E-Print Network [OSTI]

    Rose, M. J.

    1979-01-01T23:59:59.000Z

    Since the development of "Alternate Liquid Fuels" (ALF) in FY '77 approximately 16.6 million gallons of ALF have been produced, and consumed at Brookhaven National Laboratory. Conservatively this represents an initial saving of over $1,253,000 thru...

  5. Development of an engine fuel and spark controller

    E-Print Network [OSTI]

    Suter, William Gregory

    1999-01-01T23:59:59.000Z

    The objective of this research was to develop an engine control unit (ECU) for a four cylinder engine to be used in a Formula SAE racers. The ECU must provide effective fuel injection and spark ignition control and provide for easy adjustment...

  6. RITA Office of Research, Development and Technology This month: Rutgers' Center for Advanced Infrastructure and Transportation | February 2013

    E-Print Network [OSTI]

    Neimark, Alexander V.

    on New York and New Jersey, bringing powerful high winds and a storm surge that caused nearly $60 billion prepare for and recover from future extreme weather events. On October 29, 2012, Hurricane Sandy landed of infrastructure react to severe weather conditions--is lost. Keeping infrastructure in a "state of good repair

  7. Development of alternative fuels from coal-derived syngas

    SciTech Connect (OSTI)

    Brown, D.M.

    1992-05-19T23:59:59.000Z

    The overall objectives of this program are to investigate potential technologies for the conversion of coal-derived synthesis gas to oxygenated fuels, hydrocarbon fuels, fuel intermediates, and octane enhancers; and to demonstrate the most promising technologies at DOE's LaPorte, Texas, Slurry Phase Alternative Fuels Development Unit (AFDU). BASF continues to have difficulties in scaling-up the new isobutanol synthesis catalyst developed in Air Products' laboratories. Investigations are proceeding, but the proposed operation at LaPorte in April is now postponed. DOE has accepted a proposal to demonstrate Liquid Phase Shift (LPS) chemistry at LaPorte as an alternative to isobutanol. There are two principal reasons for carrying out this run. First, following the extensive modifications at the site, operation on a relatively benign'' system is needed before we start on Fischer-Tropsch technology in July. Second, use of shift catalyst in a slurry reactor will enable DOE's program on coal-based Fischer-Tropsch to encompass commercially available cobalt catalysts-up to now they have been limited to iron-based catalysts which have varying degrees of shift activity. In addition, DOE is supportive of continued fuel testing of LaPorte methanol-tests of MIOO at Detroit Diesel have been going particularly well. LPS offers the opportunity to produce methanol as the catalyst, in the absence of steam, is active for methanol synthesis.

  8. HYDROGEN FUEL CELL BUS EVALUATION

    Broader source: Energy.gov [DOE]

    This paper describes the prototype fuel cell bus, fueling infrastructure, and maintenance facility for an early technology adopter.

  9. Genetically Modified Bacteria for Fuel Production: Development of Rhodobacteria as a Versatile Platform for Fuels Production

    SciTech Connect (OSTI)

    None

    2010-07-01T23:59:59.000Z

    Electrofuels Project: Penn State is genetically engineering bacteria called Rhodobacter to use electricity or electrically generated hydrogen to convert carbon dioxide into liquid fuels. Penn State is taking genes from oil-producing algae called Botryococcus braunii and putting them into Rhodobacter to produce hydrocarbon molecules, which closely resemble gasoline. Penn State is developing engineered tanks to support microbial fuel production and determining the most economical way to feed the electricity or hydrogen to the bacteria, including using renewable sources of power like solar energy.

  10. High-pressure coal fuel processor development. Final report

    SciTech Connect (OSTI)

    Greenhalgh, M.L. [Caterpillar, Inc., Peoria, IL (United States)

    1992-12-01T23:59:59.000Z

    Caterpillar shares DOE/METC interest in demonstrating the technology required to displace petroleum-based engine fuels with various forms of low cost coal. Current DOE/METC programs on mild gasification and coal-water-slurries are addressing two approaches to this end. Engine and fuel processor system concept studies by Caterpillar have identified a third, potentially promising, option. This option includes high-pressure fuel processing of run-of-the-mine coal and direct injection of the resulting low-Btu gas stream into an ignition assisted, high compression ratio diesel engine. The compactness and predicted efficiency of the system make it suitable for application to line-haul railroad locomotives. Two overall conclusions resulted from Task 1. First direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risk associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept. The significant conclusions from Task 2 were: An engine concept, derived from a Caterpillar 3600 series engine, and a fuel processor concept, based on scaling up a removable-canister configuration from the test rig, appear feasible; and although the results of this concept study are encouraging, further, full-scale component research and development are required before attempting a full-scale integrated system demonstration effort.

  11. 160 C PROTON EXCHANGE MEMBRANE (PEM) FUEL CELL SYSTEM DEVELOPMENT

    SciTech Connect (OSTI)

    L.G. Marianowski

    2001-12-21T23:59:59.000Z

    The objectives of this program were: (a) to develop and demonstrate a new polymer electrolyte membrane fuel cell (PEMFC) system that operates up to 160 C temperatures and at ambient pressures for stationary power applications, and (b) to determine if the GTI-molded composite graphite bipolar separator plate could provide long term operational stability at 160 C or higher. There are many reasons that fuel cell research has been receiving much attention. Fuel cells represent environmentally friendly and efficient sources of electrical power generation that could use a variety of fuel sources. The Gas Technology Institute (GTI), formerly Institute of Gas Technology (IGT), is focused on distributed energy stationary power generation systems. Currently the preferred method for hydrogen production for stationary power systems is conversion of natural gas, which has a vast distribution system in place. However, in the conversion of natural gas into a hydrogen-rich fuel, traces of carbon monoxide are produced. Carbon monoxide present in the fuel gas will in time cumulatively poison, or passivate the active platinum catalysts used in the anodes of PEMFC's operating at temperatures of 60 to 80 C. Various fuel processors have incorporated systems to reduce the carbon monoxide to levels below 10 ppm, but these require additional catalytic section(s) with sensors and controls for effective carbon monoxide control. These CO cleanup systems must also function especially well during transient load operation where CO can spike 300% or more. One way to circumvent the carbon monoxide problem is to operate the fuel cell at a higher temperature where carbon monoxide cannot easily adsorb onto the catalyst and poison it. Commercially available polymer membranes such as Nafion{trademark} are not capable of operation at temperatures sufficiently high to prevent this. Hence this project investigated a new polymer membrane alternative to Nafion{trademark} that is capable of operation at temperatures up to 160 C.

  12. Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M

    2005-01-01T23:59:59.000Z

    for building up hydrogen infrastructure that are guided byModeling Regional Hydrogen Infrastructure Development . inNATURAL GAS BASED HYDROGEN INFRASTRUCTURE – OPTIMIZING

  13. Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Ris N. Christiansen1

    E-Print Network [OSTI]

    1 Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risř N. Christiansen1 , J. Hansen2 , H. Holm-Larsen1 , S. Linderoth3 , P. Larsen3 , P. Hendriksen3 , M. Mogensen3 1 Topsře Fuel Cell A Background Topsoe Fuel Cell A/S (TOFC) and Risř National Laboratory (Risř) are jointly carrying out

  14. Development of an SI DI Ethanol Optimized Flex Fuel Engine Using...

    Broader source: Energy.gov (indexed) [DOE]

    Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain Development of an SI DI Ethanol Optimized Flex Fuel Engine Using Advanced Valvetrain...

  15. 11.479 Water and Sanitation Infrastructure Planning in Developing Countries, Spring 2004

    E-Print Network [OSTI]

    Davis, Jennifer

    Policy and planning for the provision of water supply and sanitation services in developing countries. Reviews available technologies, but emphasizes the planning and policy process, including economic, social, environmental, ...

  16. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley (Sam) I.

    2014-12-01T23:59:59.000Z

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  17. Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure

    SciTech Connect (OSTI)

    Cal Ozaki

    2010-06-01T23:59:59.000Z

    To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

  18. MASTERSpatial Development and Infrastructure Systems Department of Civil, Environmental and Geomatic Engineering

    E-Print Network [OSTI]

    living space Our living space is a valuable commodity that requires careful ­ sustainable ­ handling are specia- lists, who can assume the responsibilities of designing our living space for sustainable solutions for sustainable living space and infra- structure system development. Demanding and diverse

  19. Models and Solution Approaches for Development and Installation of PEV Infrastructure 

    E-Print Network [OSTI]

    Kim, Seok

    2012-02-14T23:59:59.000Z

    ..................................................................... 19 2.7 Economic Dispatch and Locational Marginal Price ............................. 21 2.8 Summary .............................................................................................. 24 3. PEV PARKING BUILDING DEVELOPMENT PROBLEM... ................................................................ 40 3.2 Forecasts of Power Price Used for Numerical Example ............................ 41 3.3 Methods and Parameters of GA Operators ................................................ 44 4.1 Generation Data for Example Network...

  20. Wind Energy Workforce Development: A Roadmap to a Wind Energy Educational Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2011-05-01T23:59:59.000Z

    Wind Powering America national technical director Ian Baring-Gould made this presentation about workforce development in the wind energy industry to an audience at the American Wind Energy Association's annual WINDPOWER conference in Anaheim. The presentation outlines job projections from the 20% Wind Energy by 2030 report and steps to take at all levels of educational institutions to meet those projections.

  1. Development of a Flexible Computerized Management Infrastructure for a Commercial Nuclear Power Plant

    SciTech Connect (OSTI)

    Ali, Syed Firasat; Hajek, Brian K.; Usman, Shoaib

    2006-05-01T23:59:59.000Z

    The report emphasizes smooth transition from paper-based procedure systems (PBPSs) to computer-based procedure systems (CBPSs) for the existing commercial nuclear power plants in the U.S. The expected advantages and of the transition are mentioned including continued, safe and efficient operation of the plants under their recently acquired or desired extended licenses. The report proposes a three-stage survey to aid in developing a national strategic plan for the transition from PBPSs to CBPSs. It also includes a comprehensive questionnaire that can be readily used for the first stage of the suggested survey.

  2. Hydrogen, Fuel Cells & Infrastructure Technologies

    E-Print Network [OSTI]

    Techno-Economic Analysis of H2 Production by Gasification of Biomass, GTI 2.60 v Project completed. 31 Project Completed Summary Comment 1 H2 from Biomass: Catalytic Reforming of Pyrolysis Vapors, NREL 3.28 v Water Gas Shift, NREL 3.23 v Project funding discontinued based on unfavorable economic analysis. 6

  3. Logistical and transportation infrastructure in Asia : potential for growth and development to support increasing trade with Europe

    E-Print Network [OSTI]

    Deonás, Nikolaos, 1978-

    2004-01-01T23:59:59.000Z

    This thesis examines the implications of the rapid growth in demand for trade between Europe and Asia for the existing transportation network and logistical infrastructure. In general terms, technologies need to improve ...

  4. Project identification and evaluation techniques for transportation infrastructure : assessing their role in metropolitan areas of developing countries

    E-Print Network [OSTI]

    Kumar, Vimal, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    Project identification and evaluation of transportation infrastructure play a vital role in shaping and sustaining the forms of cities all over the world. These cities differ substantially in character and urban form and ...

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    final point of use and those required to load the energy carrier directly onto a given fuel cell system. Successful commercialization of hydrogen-fueled fuel cell systems,...

  6. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity...

    Broader source: Energy.gov (indexed) [DOE]

    of these opportunity fuels with readily available pipeline gases. fuel-flexiblecombustionsystemsfactsheet.pdf More Documents & Publications Fuel-Flexible, Low-Emissions...

  7. Energy Infrastructure Events and Expansions Infrastructure Security...

    Office of Environmental Management (EM)

    Year-in-Review: 2010 Energy Infrastructure Events and Expansions Infrastructure Security and Energy Restoration Office of Electricity Delivery and Energy Reliability U.S....

  8. HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM

    E-Print Network [OSTI]

    HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM IN PENNSYLVANIA HYDROGEN REGIONAL INFRASTRUCTURE PROGRAM date ­ November 23, 2004 · Contract end date ­ March 31, 2006 #12;Hydrogen Regional Infrastructure Program in Pennsylvania Hydrogen Regional Infrastructure Program in Pennsylvania · Objectives ­ Capture

  9. 2nd International Hydrogen Infrastructure Challenges Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    issues facing hydrogen infrastructure fuel cell electric vehicles in the U.S. Europe, Germany, Scandinavia, and Japan. o H2 Fueling o H2 Quality o H2 metering o H2 Station...

  10. Developing State and National Evaluation Infrastructures- Guidance for the Challenges and Opportunities of EM&V

    SciTech Connect (OSTI)

    Schiller, Steven R.; Goldman, Charles A.

    2011-06-24T23:59:59.000Z

    Evaluating the impacts and effectiveness of energy efficiency programs is likely to become increasingly important for state policymakers and program administrators given legislative mandates and regulatory goals and increasing reliance on energy efficiency as a resource. In this paper, we summarize three activities that the authors have conducted that highlight the expanded role of evaluation, measurement and verification (EM&V): a study that identified and analyzed challenges in improving and scaling up EM&V activities; a scoping study that identified issues involved in developing a national efficiency EM&V standard; and lessons learned from providing technical assistance on EM&V issues to states that are ramping up energy efficiency programs. The lessons learned are summarized in 13 EM&V issues that policy makers should address in each jurisdiction and which are listed and briefly described. The paper also discusses how improving the effectiveness and reliability of EM&V will require additional capacity building, better access to existing EM&V resources, new methods to address emerging issues and technologies, and perhaps foundational documents and approaches to improving the credibility and cross jurisdictional comparability of efficiency investments. Two of the potential foundational documents discussed are a national EM&V standard or resource guide and regional deemed savings and algorithm databases.

  11. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    power. In these scenarios, hydrogen fuel could be produced for use: (1) in stationary fuel cells to produce electricity and heat and (2) as a transportation fuel in fuel cell...

  12. Lean Gasoline System Development for Fuel Efficient Small Cars

    SciTech Connect (OSTI)

    None

    2013-08-30T23:59:59.000Z

    The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

  13. Development of 50 kW Fuel Processor for Stationary Fuel Cell Applications

    SciTech Connect (OSTI)

    James F. Stevens; Balaji Krishnamurthy; Paolina Atanassova; Kerry Spilker

    2007-08-29T23:59:59.000Z

    The objective of the project was to develop and test a fuel processor capable of producing high hydrogen concentration (>98%) with less than ppm quantities of carbon dioxide and carbon monoxide at lower capital cost and higher efficiency, compared to conventional natural gas reformers. It was intended that we achieve our objective by developing simple reactor/process design, and high durability CO2 absorbents, to replace pressure swing adsorption (PSA) or membrane separators. Cost analysis indicated that we would not meet DOE cost goals so the project was terminated before construction of the full scale fuel processor. The work on adsorbent development was focused on the development of calcium oxide-based reversible CO2 absorbents with various microstructures and morphologies to determine the optimum microstructure for long-term reversible CO2 absorption. The effect of powder production process variables was systematically studied including: the final target compositions, the reagents from which the final products were derived, the pore forming additives, the processing time and temperature. The sorbent materials were characterized in terms of their performance in the reversible reaction with CO2 and correlation made to their microstructure.

  14. LNG infrastructure and equipment

    SciTech Connect (OSTI)

    Forgash, D.J.

    1995-12-31T23:59:59.000Z

    Sound engineering principals have been used by every company involved in the development of the LNG infrastructure, but there is very little that is new. The same cryogenic technology that is used in the manufacture and sale of nitrogen, argon, and oxygen infrastructure is used in LNG infrastructure. The key component of the refueling infrastructure is the LNG tank which should have a capacity of at least 15,000 gallons. These stainless steel tanks are actually a tank within a tank separated by an annular space that is void of air creating a vacuum between the inner and outer tank where superinsulation is applied. Dispensing can be accomplished by pressure or pump. Either works well and has been demonstrated in the field. Until work is complete on NFPA 57 or The Texas Railroad Commission Rules for LNG are complete, the industry is setting the standards for the safe installation of refueling infrastructure. As a new industry, the safety record to date has been outstanding.

  15. Development of biomass as an alternative fuel for gas turbines

    SciTech Connect (OSTI)

    Hamrick, J T [Aerospace Research Corp., Roanoke, VA (USA)

    1991-04-01T23:59:59.000Z

    A program to develop biomass as an alternative fuel for gas turbines was started at Aerospace Research Corporation in 1980. The research culminated in construction and installation of a power generation system using an Allison T-56 gas turbine at Red Boiling Springs, Tennessee. The system has been successfully operated with delivery of power to the Tennessee Valley Authority (TVA). Emissions from the system meet or exceed EPA requirements. No erosion of the turbine has been detected in over 760 hours of operation, 106 of which were on line generating power for the TVA. It was necessary to limit the turbine inlet temperature to 1450{degrees}F to control the rate of ash deposition on the turbine blades and stators and facilitate periodic cleaning of these components. Results of tests by researchers at Battelle Memorial Institute -- Columbus Division, give promise that deposits on the turbine blades, which must be periodically removed with milled walnut hulls, can be eliminated with addition of lime to the fuel. Operational problems, which are centered primarily around the feed system and engine configuration, have been adequately identified and can be corrected in an upgraded design. The system is now ready for development of a commercial version. The US Department of Energy (DOE) provided support only for the evaluation of wood as an alternative fuel for gas turbines. However, the system appears to have high potential for integration into a hybrid system for the production of ethanol from sorghum or sugar cane. 7 refs., 23 figs., 18 tabs.

  16. IDAHO BIODIESEL INFRASTRUCTURE PROJECT DOE'S INITIATIVE ON COOPERATIVE PROGRAMS WITH STATES FOR RESEARCH, DEVELOPMENT AND DEMONSTRATION GRANT NO. DE-FC36-02GO12021. Final report

    SciTech Connect (OSTI)

    CROCKETT, JOHN

    2006-12-31T23:59:59.000Z

    The Idaho Energy Division issued a Request for Proposal (RFP) on March 14, 2006, inviting qualified licensed fuel wholesalers, fuel retailers, and vehicle fleet operators to provide proposals to construct and/or install infrastructure for biodiesel utilization in Idaho. The intent was to improve the ability of private and/or non-Federal public entities in Idaho to store, transport, or offer for sale biodiesel within the state. The RFP provided up $100,000 for co-funding the projects with a minimum 50% cash cost match. Four contracts were subsequetnly awarded that resulted in three new bidodiesel storage facilities immediately serving about 45 fueling stations from Sandpoint to Boise. The project also attracted considerable media attention and Idaho became more knowledgeable about biodiesel.

  17. Transportation Infrastructure

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy

  18. Infrastructure Ecology for Sustainable and Resilient Urban Infrastructure Design

    SciTech Connect (OSTI)

    Jeong, Hyunju [Georgia Institute of Technology; Pandit, Arka [Georgia Institute of Technology; Crittenden, John [Georgia Institute of Technology; Xu, Ming [University of Michigan; Perrings, Charles [Arizona State University; Wang, Dali [ORNL; Li, Ke [University of Georgia; French, Steve [Georgia Institute of Technology

    2010-10-01T23:59:59.000Z

    The population growth coupled with increasing urbanization is predicted to exert a huge demand on the growth and retrofit of urban infrastructure, particularly in water and energy systems. The U.S. population is estimated to grow by 23% (UN, 2009) between 2005 and 2030. The corresponding increases in energy and water demand were predicted as 14% (EIA, 2009) and 20% (Elcock, 2008), respectively. The water-energy nexus needs to be better understood to satisfy the increased demand in a sustainable manner without conflicting with environmental and economic constraints. Overall, 4% of U.S. power generation is used for water distribution (80%) and treatment (20%). 3% of U.S. water consumption (100 billion gallons per day, or 100 BGD) and 40% of U.S. water withdrawal (340 BGD) are for thermoelectric power generation (Goldstein and Smith, 2002). The water demand for energy production is predicted to increase most significantly among the water consumption sectors by 2030. On the other hand, due to the dearth of conventional water sources, energy intensive technologies are increasingly in use to treat seawater and brackish groundwater for water supply. Thus comprehending the interrelation and interdependency between water and energy system is imperative to evaluate sustainable water and energy supply alternatives for cities. In addition to the water-energy nexus, decentralized or distributed concept is also beneficial for designing sustainable water and energy infrastructure as these alternatives require lesser distribution lines and space in a compact urban area. Especially, the distributed energy infrastructure is more suited to interconnect various large and small scale renewable energy producers which can be expected to mitigate greenhouse gas (GHG) emissions. In the case of decentralized water infrastructure, on-site wastewater treatment facility can provide multiple benefits. Firstly, it reduces the potable water demand by reusing the treated water for non-potable uses and secondly, it also reduces the wastewater load to central facility. In addition, lesser dependency on the distribution network contributes to increased reliability and resiliency of the infrastructure. The goal of this research is to develop a framework which seeks an optimal combination of decentralized water and energy alternatives and centralized infrastructures based on physical and socio-economic environments of a region. Centralized and decentralized options related to water, wastewater and stormwater and distributed energy alternatives including photovoltaic (PV) generators, fuel cells and microturbines are investigated. In the context of the water-energy nexus, water recovery from energy alternatives and energy recovery from water alternatives are reflected. Alternatives recapturing nutrients from wastewater are also considered to conserve depleting resources. The alternatives are evaluated in terms of their life-cycle environmental impact and economic performance using a hybrid life cycle assessment (LCA) tool and cost benefit analysis, respectively. Meeting the increasing demand of a test bed, an optimal combination of the alternatives is designed to minimize environmental and economic impacts including CO2 emissions, human health risk, natural resource use, and construction and operation cost. The framework determines the optimal combination depending on urban density, transmission or conveyance distance or network, geology, climate, etc. Therefore, it will be also able to evaluate infrastructure resiliency against physical and socio-economic challenges such as population growth, severe weather, energy and water shortage, economic crisis, and so on.

  19. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J

    2009-09-04T23:59:59.000Z

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and do-decane which are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For the cycloalkanes, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multidimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

  20. Recent Progress in the Development of Diesel Surrogate Fuels

    SciTech Connect (OSTI)

    Pitz, W J; Mueller, C J

    2009-12-09T23:59:59.000Z

    There has been much recent progress in the area of surrogate fuels for diesel. In the last few years, experiments and modeling have been performed on higher molecular weight components of relevance to diesel fuel such as n-hexadecane (n-cetane) and 2,2,4,4,6,8,8-heptamethylnonane (iso-cetane). Chemical kinetic models have been developed for all the n-alkanes up to 16 carbon atoms. Also, there has been much experimental and modeling work on lower molecular weight surrogate components such as n-decane and n-dodecane that are most relevant to jet fuel surrogates, but are also relevant to diesel surrogates where simulation of the full boiling point range is desired. For two-ring compounds, experimental work on decalin and tetralin recently has been published. For multi-component surrogate fuel mixtures, recent work on modeling of these mixtures and comparisons to real diesel fuel is reviewed. Detailed chemical kinetic models for surrogate fuels are very large in size. Significant progress also has been made in improving the mechanism reduction tools that are needed to make these large models practicable in multi-dimensional reacting flow simulations of diesel combustion. Nevertheless, major research gaps remain. In the case of iso-alkanes, there are experiments and modeling work on only one of relevance to diesel: iso-cetane. Also, the iso-alkanes in diesel are lightly branched and no detailed chemical kinetic models or experimental investigations are available for such compounds. More components are needed to fill out the iso-alkane boiling point range. For the aromatic class of compounds, there has been no new work for compounds in the boiling point range of diesel. Most of the new work has been on alkyl aromatics that are of the range C7 to C8, below the C10 to C20 range that is needed. For the chemical class of cycloalkanes, experiments and modeling on higher molecular weight components are warranted. Finally for multi-component surrogates needed to treat real diesel, the inclusion of higher molecular weight components is needed in models and experimental investigations.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Distribution Infrastructure Tax Credit Biofuels Production Facility Tax Credit Fuel Cell Vehicle Tax Credit Hydrogen and Fuel Cell Tax Exemption Idle Reduction Weight...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    after Ohio's legislative session ends. Last Updated November 2014 State Incentives School Bus Retrofit Grant Program Alternative Fuel and Fueling Infrastructure Incentives...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Government fleets may finance the lease or purchase cost of alternative fuel vehicles and alternative fueling infrastructure through energy performance contracts where vehicle...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Fueling Infrastructure Grants The Tennessee Department of Transportation (TDOT) engages in public-private partnerships with transportation fuel providers to install biofuel...

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Blend Retailer Tax Credit Biofuel Infrastructure Grants Biodiesel Producer Tax Refund Fuel Cell Motor Vehicle Tax Deduction Alternative Fuel Vehicle (AFV) Demonstration Grants...

  6. Catalysts and materials development for fuel cell power generation

    E-Print Network [OSTI]

    Weiss, Steven E

    2005-01-01T23:59:59.000Z

    Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

  7. Nuclear fuel cycles for mid-century development

    E-Print Network [OSTI]

    Parent, Etienne, 1977-

    2003-01-01T23:59:59.000Z

    A comparative analysis of nuclear fuel cycles was carried out. Fuel cycles reviewed include: once-through fuel cycles in LWRs, PHWRs, HTGRs, and fast gas cooled breed and burn reactors; single-pass recycle schemes: plutonium ...

  8. DEVELOPMENT OF ALTERNATIVE FUELS AND CHEMICALS FROM SYNTHESIS GAS

    SciTech Connect (OSTI)

    Peter J. Tijrn

    2003-05-31T23:59:59.000Z

    This Final Report for Cooperative Agreement No. DE-FC22-95PC93052, the ''Development of Alternative Fuels and Chemicals from Synthesis Gas,'' was prepared by Air Products and Chemicals, Inc. (Air Products), and covers activities from 29 December 1994 through 31 July 2002. The overall objectives of this program were to investigate potential technologies for the conversion of synthesis gas (syngas), a mixture primarily of hydrogen (H{sub 2}) and carbon monoxide (CO), to oxygenated and hydrocarbon fuels and industrial chemicals, and to demonstrate the most promising technologies at the LaPorte, Texas Alternative Fuels Development Unit (AFDU). Laboratory work was performed by Air Products and a variety of subcontractors, and focused on the study of the kinetics of production of methanol and dimethyl ether (DME) from syngas, the production of DME using the Liquid Phase Dimethyl Ether (LPDME{trademark}) Process, the conversion of DME to fuels and chemicals, and the production of other higher value products from syngas. Four operating campaigns were performed at the AFDU during the performance period. Tests of the Liquid Phase Methanol (LPMEOH{trademark}) Process and the LPDME{trademark} Process were made to confirm results from the laboratory program and to allow for the study of the hydrodynamics of the slurry bubble column reactor (SBCR) at a significant engineering scale. Two campaigns demonstrated the conversion of syngas to hydrocarbon products via the slurry-phase Fischer-Tropsch (F-T) process. Other topics that were studied within this program include the economics of production of methyl tert-butyl ether (MTBE), the identification of trace components in coal-derived syngas and the means to economically remove these species, and the study of systems for separation of wax from catalyst in the F-T process. The work performed under this Cooperative Agreement has continued to promote the development of technologies that use clean syngas produced from any one of a variety of sources (including coal) for the production of a spectrum of alternative fuels (hydrocarbons and oxygenate fuels), octane enhancers, and chemicals and chemical intermediates. In particular, the data from the 1995 LPMEOH{trademark} campaign provided confirmation of assumptions used in the design of the catalyst reduction system at the Kingsport LPMEOH{trademark} Commercial Demonstration Project, and the alternate methanol catalyst has been in use there since late 1998. The kinetic model was also expanded to allow for more accurate prediction of methanol production and carbon dioxide (CO{sub 2}) conversion, and more accurate modeling of by-product formation for the alternate methanol catalyst. The outstanding performance results of the LPMEOH{trademark} Process at Kingsport can be attributed in large part to the body of work performed since 1981 in collaboration between the U.S. Department of Energy (DOE) and Air Products. In addition, a pilot-plant-tested LPDME{trademark} Process has been demonstrated, and the product cost of DME from coal-derived syngas can be competitive in certain locations and applications. The need for liquid fuels will continue to be a critical concern for this nation in the 21st century. Efforts are needed to ensure the development and demonstration of economically competitive, efficient, environmentally responsible technologies that produce clean fuels and chemicals from coal under DOE's Vision 21 concept. These liquids will be a component of the fuel mix that will provide the transition from the current reliance on carbon-based fuels to the ultimate use of H{sub 2} as a means of energy transport. Indirect liquefaction, which converts the syngas (H{sub 2} and CO) produced by the gasification of coal to sulfur- and nitrogen-free liquid products, is a key component of the Vision 21 initiative. The results from this current program provide continued support to the objectives for the conversion of domestic coal to electric power and co-produced clean liquid fuels and chemicals in an environmentally superior manner.

  9. Development of Light Water Reactor Fuels with Enhanced Accident Tolerance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOEDepartment of EnergySmallDesignDetectingin-

  10. Uncertainty Analyses of Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Laurence F. Miller; J. Preston; G. Sweder; T. Anderson; S. Janson; M. Humberstone; J. MConn; J. Clark

    2008-12-12T23:59:59.000Z

    The Department of Energy is developing technology, experimental protocols, computational methods, systems analysis software, and many other capabilities in order to advance the nuclear power infrastructure through the Advanced Fuel Cycle Initiative (AFDI). Our project, is intended to facilitate will-informed decision making for the selection of fuel cycle options and facilities for development.

  11. Development of Commercial-Length Nuclear Fuel Post-Irradiation Examination Capabilities at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Ott, Larry J [ORNL; Spellman, Donald J [ORNL; Bevard, Bruce Balkcom [ORNL; Chesser, Joel B [ORNL; Morris, Robert Noel [ORNL

    2009-01-01T23:59:59.000Z

    The U.S. Department of Energy Fissile Materials Disposition Program is pursuing disposal of surplus weapons-usable plutonium by reactor irradiation as the fissile constituent of mixed oxide (MOX) fuel. Lead test assemblies (LTAs) have been irradiated for approximately 36 months in Duke Energy s Catawba-1 nuclear power plant. Per the MOX fuel qualification plan, destructive post-irradiation examinations (PIEs) are to be performed on second-cycle rods (irradiated to an average burnup of approximately 42 GWd/MTHM). These LTA bundles are planned to be returned to the reactor and further irradiated to approximately 52 GWd/MTHM. Nondestructive and destructive PIEs of these commercially irradiated weapons-derived MOX fuel rods will be conducted at the Oak Ridge National Laboratory (ORNL) in the Irradiated Fuels Examination Laboratory (IFEL). PIE began in early 2009. In order to support the examination of the irradiated full-length (~3.66 m) MOX fuel rods, ORNL in 2004 began to develop the necessary infrastructure and equipment for the needed full-scope PIE capabilities. The preparations included modifying the IFEL building to handle a commercial spent-fuel shipping cask; procurement of cask-handling equipment and a skid to move the cask inside the building; development of in-cell handling equipment for cask unloading; and design, fabrication, and testing of the automated, state-of-the-art PIE examination equipment. This paper describes these activities and the full-scope PIE capabilities available at ORNL for commercial full-length fuel rods.

  12. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    in the Office of Fuel Cell Technologies, SCS participates in the DOE's Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review (AMR) where all of...

  13. Development of fission gas swelling and release models for metallic nuclear fuels

    E-Print Network [OSTI]

    Andrews, Nathan Christopher

    2012-01-01T23:59:59.000Z

    Fuel swelling and fission gas generation for fast reactor fuels are of high importance since they are among the main limiting factors in the development of metallic fast reactor fuel. Five new fission gas and swelling ...

  14. Recent developments in proton exchange membranes for fuel cells

    SciTech Connect (OSTI)

    Devanathan, Ramaswami

    2008-07-23T23:59:59.000Z

    Proton exchange membranes (PEMs) that operate at temperatures above 120 °C are needed to avoid catalyst poisoning, speed up electrochemical reactions, simplify the design and reduce the cost of fuel cells. This review summarizes developments in PEMs over the last five years. In order to design new membranes for elevated temperature operation, one must understand the chemistry, morphology and dynamics of protons and small molecules in existing membranes. The integration of experiments with modeling and simulation can shed light on the hierarchical structure of the membrane and dynamical processes associated with molecular transport. Based on such a fundamental understanding, membranes can be modified by controlling the polymer chemistry and architecture or adding inorganic fillers that can retain water under low relative humidity conditions. In addition, the development of anhydrous membranes based on phosphoric acid doped polymers, ionic liquid-infused polymer gels and solid acids can enable fuel cell operation above 150 °C. Considerable work remains to be done to identify proton transport mechanisms in novel membranes and evaluate membrane durability under real world operating conditions.

  15. Used fuel disposition research and development roadmap - FY10 status.

    SciTech Connect (OSTI)

    Nutt, W. M. (Nuclear Engineering Division)

    2010-10-01T23:59:59.000Z

    Since 1987 the U.S. has focused research and development activities relevant to the disposal of commercial used nuclear fuel and U.S. Department of Energy (DOE) owned spent nuclear fuel and high level waste on the proposed repository at Yucca Mountain, Nevada. At the same time, the U.S. successfully deployed a deep geologic disposal facility for defense-related transuranic waste in bedded salt at the Waste Isolation Pilot Plant. In 2009 the DOE established the Used Fuel Disposition Campaign (UFDC) within the Office of Nuclear Energy. The Mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. The U.S. national laboratories have participated on these programs and has conducted research and development related to these issues to a limited extent. However, a comprehensive research and development (R&D) program investigating a variety of geologic media has not been a part of the U.S. waste management program since the mid 1980s. Such a comprehensive R&D program is being developed in the UFDC with a goal of meeting the UFDC Grand Challenge to provide a sound technical basis for absolute confidence in the safety and security of long-term storage, transportation, and disposal of used nuclear fuel and wastes from the nuclear energy enterprise. The DOE has decided to no longer pursue the development of a repository at Yucca Mountain, Nevada. Since a repository site will ultimately have to be selected, sited, characterized, designed, and licensed, other disposal options must now be considered. In addition to the unsaturated volcanic tuff evaluated at Yucca Mountain, several different geologic media are under investigation internationally and preliminary assessments indicate that disposal of used nuclear fuel and high level waste in these media is feasible. Considerable progress has been made in the U.S. and other nations in understanding disposal concepts in different geologic media, but gaps in knowledge still exist. A principal aspect of concern to the UFDC as it considers the broad issues of siting a repository in different geologic media are the marked differences in the regulatory bases for assessing suitability and safety of a repository between the U.S. and other nations. Because the probability based - risked informed nature of the current U.S. regulations for high-level radioactive waste and spent nuclear fuel is sufficiently different from other regulations, information gained in previous studies, while useful, likely need to be supplemented to enable more convincing communication with the public, better defense of the numerical models, and stronger safety cases. Thus, it was recognized when the UFDC was established that there were readily identified disposal-related R&D opportunities to address knowledge gaps. An effort to document these research opportunities was a key component of Fiscal Year (FY) 2010 engineered system, natural system, and system-level modeling activities for a range of disposal environments. A principal contribution to identifying these gaps was a workshop held to gather perspectives from experts both within and external to the UFDC regarding R&D opportunities. In the planning for FY2010 it was expected that these activities would culminate with a UFDC research and development roadmap that would identify the knowledge gaps, discuss the R&D needed to fill these gaps, and prioritize the proposed R&D over both the near- and long-term. A number of knowledge gaps and needed R&D were identified and are discussed in this report. However, these preliminary R&D topics have not been evaluated in detail nor have they been prioritized to support future planning efforts. This will be completed in FY11 and the final UFDC Research and Development Roadmap will be completed. This report discusses proposed R&D topics in three areas related to repository siting, design, and performance: natural systems

  16. Scanning the Technology Energy Infrastructure Defense Systems

    E-Print Network [OSTI]

    Amin, S. Massoud

    , and algorithmic develop- ments. Keywords--Critical infrastructure protection, electric power grid, emergency, the United Kingdom, and Italy in 2003 underscored electricity infrastructure's vulnerabilities [1 infrastructures and increased demand for high-quality and reliable electricity for our digital economy is becoming

  17. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptional sErvicE

  18. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptional

  19. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptionalto enhance

  20. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptionalto

  1. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party AgreementInfraredExcEptionaltoCurrent

  2. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-Party

  3. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supported the

  4. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supported thethe

  5. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supported

  6. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supportedFrom a

  7. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have supportedFrom

  8. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we have

  9. Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many years we haveto enhance the

  10. International symposium on fuel rod simulators: development and application

    SciTech Connect (OSTI)

    McCulloch, R.W. (comp.)

    1981-05-01T23:59:59.000Z

    Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.

  11. A Mul&-Scale Design and Control Framework for Dynamically Coupled Sustainable and Resilient Infrastructures,

    E-Print Network [OSTI]

    Daly, Samantha

    electricity. -RedistribuRng power demand over Rme in both infrastructures with the electric power infrastructure. This is the project's test bed applicaRon. 0 FUEL PUMP PHEV BATTERY Outlet Personal TransportaRon Infrastructure Electric

  12. Hydrogen Fuel Quality - Focus: Analytical Methods Development & Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e& FuelInvitedinEnergyFuel Cells

  13. California Hydrogen Infrastructure Project

    SciTech Connect (OSTI)

    Edward C. Heydorn

    2013-03-12T23:59:59.000Z

    Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ���¢��������real-world���¢������� retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation���¢��������s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products���¢�������� Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user���¢��������s fueling experience.

  14. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect (OSTI)

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09T23:59:59.000Z

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  15. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  16. Advanced Automotive Fuels Research, Development, and Commercialization Cluster (OH)

    SciTech Connect (OSTI)

    Linkous, Clovis; Hripko, Michael; Abraham, Martin; Balendiran, Ganesaratnam; Hunter, Allen; Lovelace-Cameron, Sherri; Mette, Howard; Price, Douglas; Walker, Gary; Wang, Ruigang

    2013-08-31T23:59:59.000Z

    Technical aspects of producing alternative fuels that may eventually supplement or replace conventional the petroleum-derived fuels that are presently used in vehicular transportation have been investigated. The work was centered around three projects: 1) deriving butanol as a fuel additive from bacterial action on sugars produced from decomposition of aqueous suspensions of wood cellulose under elevated temperature and pressure; 2) using highly ordered, openly structured molecules known as metal-organic framework (MOF) compounds as adsorbents for gas separations in fuel processing operations; and 3) developing a photocatalytic membrane for solar-driven water decomposition to generate pure hydrogen fuel. Several departments within the STEM College at YSU contributed to the effort: Chemistry, Biology, and Chemical Engineering. In the butanol project, sawdust was blended with water at variable pH and temperature (150 – 250{degrees}C), and heated inside a pressure vessel for specified periods of time. Analysis of the extracts showed a wide variety of compounds, including simple sugars that bacteria are known to thrive upon. Samples of the cellulose hydrolysate were fed to colonies of Clostridium beijerinckii, which are known to convert sugars to a mixture of compounds, principally butanol. While the bacteria were active toward additions of pure sugar solutions, the cellulose extract appeared to inhibit butanol production, and furthermore encouraged the Clostridium to become dormant. Proteomic analysis showed that the bacteria had changed their genetic code to where it was becoming sporulated, i.e., the bacteria were trying to go dormant. This finding may be an opportunity, as it may be possible to genetically engineer bacteria that resist the butanol-driven triggering mechanism to stop further fuel production. Another way of handling the cellulosic hydrolysates was to simply add the enzymes responsible for butanol synthesis to the hydrolytic extract ex-vivo. These enzymes are generally not available commercially, however, and those that are can be quite expensive. Accordingly, the genes responsible for enzyme synthesis were inserted into other microorganisms in order to accelerate enzyme production. This was demonstrated for two of the required enzymes in the overall series. In the MOF project, a number of new MOF compounds were synthesized and characterized, as well as some common MOFs well-known for their adsorption properties. Selectivity for specific gases such as CO{sub 2} and H{sub 2} was demonstrated, although it was seen that water vapor would frequently act as an interferent. This work underscored the need to test MOF compounds under real world conditions, i.e., room temperature and above instead of liquid N{sub 2} temperature, and testing adsorption using blends of gases instead of pure components. In the solar membrane project, thin films of CdTe and WO{sub 3} were applied to steel substrates and used as p-type and n-type semiconductors, respectively, in the production of H{sub 2} and O{sub 2}. Testing with {sup 2}H and {sup 18}O isotopically labeled water enabled substantiation of net water-splitting.

  17. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell Technologies Market Report

  18. Fuel Cell Technologies Office Multi-Year Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartment of Energy's2ofFuel CellEnergy About the2015

  19. Hydrogen and Fuel Cell Technologies Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D eReviewEducation » ForFuel

  20. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

    1997-12-31T23:59:59.000Z

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  1. INFRASTRUCTURE SECURITY & ENERGY

    E-Print Network [OSTI]

    Schrijver, Karel

    INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY DELIVERY & ENERGY RELIABILITY Delivery and Energy Reliability #12;INFRASTRUCTURE SECURITY & ENERGY RESTORATION OFFICE of ELECTRICITY Federal agencies to support waivers and specific response legal authorities #12;INFRASTRUCTURE SECURITY

  2. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    and Fuel Cells Program. View other sections of the MYRD&D Plan. MYRD&D Plan Section 5.0 Systems Integration, 2012 More Documents & Publications Fuel Cell Technologies Office...

  3. Development of Reversible Fuel Cell Systems at Proton Energy

    Broader source: Energy.gov (indexed) [DOE]

    H 2 N i C d P b a c i d Energy Storage System Source: Mitlitsky, et al, "Regenerative Fuel Cells", Energy and Fuels, 1998. Packaged specific energy of up to 1,000 Whrkg...

  4. Lean Gasoline System Development for Fuel Efficient Small Car

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. NREL: Workforce Development and Education Programs - Hydrogen and Fuel Cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: GridTruck Platooning Testing

  6. Fuel Cycle Research & Development | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino, Undersecretary11-161-LNG |of EnergyWorkFuel

  7. Fuel Cells for Transportation - Research and Development: Program Abstracts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport inEnergy0.pdfTechnologies Program (FCTP)Overviewgreen h y d r o g| Department

  8. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e a s t e rthe Nationof

  9. Lean Gasoline System Development for Fuel Efficient Small Car | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PMDepartment ofs o u t h e a s t e rthe

  10. Used Fuel Disposition Research & Development | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you sureReportsofDepartmentSeries | DepartmentResourcesUnlocking theUsed Fuel

  11. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL EDUCATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30,CraftyChair's Overview DEERI Office of ENERGYTHEPROGRAM

  12. 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S. DEPARTMENTTechnologies09Combustion2/2010

  13. Hydrogen and Fuel Cell Technologies Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrent Technology »Clean HYDROGEN

  14. Hydrogen and Fuel Cell Technologies Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContaminationCurrent Technology »Clean

  15. Development of Reversible Fuel Cell Systems at Proton Energy | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOx Reductionofof

  16. Plasmatron Fuel Reformer Development and Internal Combustion Engine Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of EnergyPlanned Audits

  17. Automotive Fuel Cell Research and Development Needs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments fromof Energy Automation World Features New WhiteAutomotive

  18. Alternative Fuels Data Center: Electricity Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels Clean Cities ReflectsElectricity Printable

  19. Integrated Tool Development for Used Fuel Disposition Natural System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment of EnergyIndustry Research U.S. Department ofof

  20. Development of advanced mixed oxide fuels for plutonium management

    SciTech Connect (OSTI)

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01T23:59:59.000Z

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

  1. Development of OTM Syngas Process and Testing of Syngas Derived Ultra-clean Fuels in Diesel Engines and Fuel Cells

    SciTech Connect (OSTI)

    E.T. (Skip) Robinson; James P. Meagher; Prasad Apte; Xingun Gui; Tytus R. Bulicz; Siv Aasland; Charles Besecker; Jack Chen Bart A. van Hassel; Olga Polevaya; Rafey Khan; Piyush Pilaniwalla

    2002-12-31T23:59:59.000Z

    This topical report summarizes work accomplished for the Program from November 1, 2001 to December 31, 2002 in the following task areas: Task 1: Materials Development; Task 2: Composite Development; Task 4: Reactor Design and Process Optimization; Task 8: Fuels and Engine Testing; 8.1 International Diesel Engine Program; 8.2 Nuvera Fuel Cell Program; and Task 10: Program Management. Major progress has been made towards developing high temperature, high performance, robust, oxygen transport elements. In addition, a novel reactor design has been proposed that co-produces hydrogen, lowers cost and improves system operability. Fuel and engine testing is progressing well, but was delayed somewhat due to the hiatus in program funding in 2002. The Nuvera fuel cell portion of the program was completed on schedule and delivered promising results regarding low emission fuels for transportation fuel cells. The evaluation of ultra-clean diesel fuels continues in single cylinder (SCTE) and multiple cylinder (MCTE) test rigs at International Truck and Engine. FT diesel and a BP oxygenate showed significant emissions reductions in comparison to baseline petroleum diesel fuels. Overall through the end of 2002 the program remains under budget, but behind schedule in some areas.

  2. Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    of a fossil fuel-based hydrogen infrastructure with carbonnatural gas based hydrogen infrastructure – optimizingan energy carrier, hydrogen infrastructure strategies, and

  3. Sandia National Laboratories: hydrogen fuel expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expertise Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  4. Sandia National Laboratories: hydrogen fueling station

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    station Widespread Hydrogen Fueling Infrastructure Is the Goal of H2FIRST Project On June 4, 2014, in Capabilities, Center for Infrastructure Research and Innovation (CIRI),...

  5. Close this window print this page MATSUSHITA BATTERY DEVELOPS NEW MICRO FUEL CELL

    E-Print Network [OSTI]

    to miniaturize the system, improve the reliability and reduce the cost. Notes and Technology Details 1. Fuel cellClose this window print this page MATSUSHITA BATTERY DEVELOPS NEW MICRO FUEL CELL TECHNOLOGY for fuel cells powering portable devices that makes it possible to reduce the size of the fuel cell to one

  6. Michigan E85 Infrastructure

    SciTech Connect (OSTI)

    Sandstrom, Matthew M.

    2012-03-30T23:59:59.000Z

    This is the final report for a grant-funded project to financially assist and otherwise provide support to projects that increase E85 infrastructure in Michigan at retail fueling locations. Over the two-year project timeframe, nine E85 and/or flex-fuel pumps were installed around the State of Michigan at locations currently lacking E85 infrastructure. A total of five stations installed the nine pumps, all providing cost share toward the project. By using cost sharing by station partners, the $200,000 provided by the Department of Energy facilitated a total project worth $746,332.85. This project was completed over a two-year timetable (eight quarters). The first quarter of the project focused on project outreach to station owners about the incentive on the installation and/or conversion of E85 compatible fueling equipment including fueling pumps, tanks, and all necessary electrical and plumbing connections. Utilizing Clean Energy Coalition (CEC) extensive knowledge of gasoline/ethanol infrastructure throughout Michigan, CEC strategically placed these pumps in locations to strengthen the broad availability of E85 in Michigan. During the first and second quarters, CEC staff approved projects for funding and secured contracts with station owners; the second through eighth quarters were spent working with fueling station owners to complete projects; the third through eighth quarters included time spent promoting projects; and beginning in the second quarter and running for the duration of the project was spent performing project reporting and evaluation to the US DOE. A total of 9 pumps were installed (four in Elkton, two in Sebewaing, one in East Lansing, one in Howell, and one in Whitmore Lake). At these combined station locations, a total of 192,445 gallons of E85, 10,786 gallons of E50, and 19,159 gallons of E30 were sold in all reporting quarters for 2011. Overall, the project has successfully displaced 162,611 gallons (2,663 barrels) of petroleum, and reduced regional GHG emissions by 375 tons in the first year of station deployment.

  7. Sandia Energy - Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home StationaryUpperWakeInfrastructure

  8. Alternative Fuels Data Center: Biodiesel Related Links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructure Development

  9. Electrolytic hydrogen production infrastructure options evaluation. Final subcontract report

    SciTech Connect (OSTI)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01T23:59:59.000Z

    Fuel-cell electric vehicles have the potential to provide the range, acceleration, rapid refueling times, and other creature comforts associated with gasoline-powered vehicles, but with virtually no environmental degradation. To achieve this potential, society will have to develop the necessary infrastructure to supply hydrogen to the fuel-cell vehicles. Hydrogen could be stored directly on the vehicle, or it could be derived from methanol or other hydrocarbon fuels by on-board chemical reformation. This infrastructure analysis assumes high-pressure (5,000 psi) hydrogen on-board storage. This study evaluates one approach to providing hydrogen fuel: the electrolysis of water using off-peak electricity. Other contractors at Princeton University and Oak Ridge National Laboratory are investigating the feasibility of producing hydrogen by steam reforming natural gas, probably the least expensive hydrogen infrastructure alternative for large markets. Electrolytic hydrogen is a possible short-term transition strategy to provide relatively inexpensive hydrogen before there are enough fuel-cell vehicles to justify building large natural gas reforming facilities. In this study, the authors estimate the necessary price of off-peak electricity that would make electrolytic hydrogen costs competitive with gasoline on a per-mile basis, assuming that the electrolyzer systems are manufactured in relatively high volumes compared to current production. They then compare this off-peak electricity price goal with actual current utility residential prices across the US.

  10. Fuel Cycle Research & Development Technical Monthly-March 2012

    SciTech Connect (OSTI)

    Miller, Michael C. [Los Alamos National Laboratory

    2012-05-10T23:59:59.000Z

    Several MPACT BCPs were executed in February, reflecting the shift in MPACT priorities directed late last year. Work continued on the FY2014 IPL, also bringing it in line with the new priorities. Preparations were made for the March MPACT Working Group meeting, in conjunction with Savannah River which is hosting the meeting. Steps were taken to initiate a new project with the World Institute for Nuclear Security, including discussions with WINS staff and preliminary work on the required procurement documentation. Several hardware issues were worked through. The newest detector array is working at LANL. A thorough analysis of previously collected Pu sample data using recently developed analysis code with improved spectral energy calibrations was completed. We now have a significantly better understanding of measurement uncertainties. Post-test analyses of the salt and sensor material for the first sensor test are almost complete. Sensor testing with different arrangements will continue and will be oriented based on post-test analysis of the first sensor test. Sensor materials for the next couple of tests are being fabricated. Materials with different annealing temperatures are being prepared for analysis. Fast Neutron Imaging to Quantify Nuclear Materials - The imager detectors repairs are complete and work with the imager is under way. The milestone requiring a report on LANSCE experiments was completed and submitted. Analysis of previous experiments and comparisons to simulations is near complete. Results are being compared with previous LANSCE-LSDS and RPI results. Additional data library (TENDL) is also being checked to see whether there are differences in the simulation results. The mid-year MIP Monitor project accomplishments and progress was presented at the MPACT meeting held in March at SRNL. Discussions around the meeting included inquiries into the feasibility of collecting process measurement data at H-Canyon, and it was explored further after the meeting. Kenneth Dayman, the graduate student from University of Texas, completed an initial draft of his master's thesis. His research will contribute to the multivariate classifier currently under development. Sarah Bender, the graduate student from Pennsylvania State University, presented her work on a poster and in a conference paper at the MARC IX meeting. A mass balance flowsheet for the fast reactor fuel was completed and a model simulation is scheduled to begin construction next month. The development of a mass balance flowsheet for light water reactor fuel will predict the behavior of the separation process using mathematical functions. The completed flowsheet will be utilized as the basis for constructing the model simulation for the electrochemical separations. Comments and review of the model from the MPACT Working Group meeting have been used to evaluate updates to the EChem model. A preliminary physical security layout has been developed in ATLAS. Thermal stability tests for high temperature microfluidic interconnections were completed on all compounds tested for bonding strength. An interconnection strategy was determined based on these results that we expect will allow for operation at 400C in the first generation of sampling systems. Design of the sampling system using the chosen interconnections was initiated, with handoff to an external foundry for fabrication based on ANL specified process conditions expected by the middle of the month. Monte Carlo simulations of the sampling system were conducted under conditions of realistic sampling size distributions, electrorefiner inhomogeneity distributions, and detector efficiencies. These simulations were used to establish a baseline limit of detection for system operation, assuming an on-line separation step is conducted before detection. Sensor for measuring density and depth of molten electrolyte - The procurement effort continued. 80% of the components ordered to assemble the double bubbler have arrived at the INL. Pratap Sadasivan, and his team have been working on the new metrics for proliferation a

  11. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies that can provide energy for an array of applications, including...

  12. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activities to help implement and promote commercial and pre-commercial hydrogen and fuel cell systems in real world operating environments. These activities also provide...

  13. Fuel Cell Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under investigation by the program. The systems applications include hydrogen fuel cell energy systems for on-road light duty vehicles; material and freight handling...

  14. DEVELOPMENT OF A RENEWABLE HYDROGEN PRODUCITON AND FUEL CELL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications GATE Center for Automotive Fuel Cell Systems at Virginia Tech Education and Outreach Fact Sheet Hydrogen Education Curriculum Path at Michigan Technological University...

  15. Report of the Fuel Cycle Research and Development Subcommittee...

    Energy Savers [EERE]

    fuels, an important post Fukushima issue, and on issues related to the report of the Blue Ribbon Commission on America's Nuclear Future (BRC) as related to the responsibility...

  16. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Hydrogen and Fuel Cell Vehicles (FCVs) Presentation by Michael Veenstra, Ford Motor Company, at the U.S. Department of Energy's Polymer and Composite Materials Meeting,...

  17. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Currently, hydrogen production is capital-intensive. Widespread adoption of hydrogen fuel cells requires consumers to have access to cost-competitive hydrogen. Steam methane...

  18. Used Fuel Disposition Campaign Disposal Research and Development Roadmap

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFact Sheet UraniumEnergyRev.

  19. Used Fuel Disposition Campaign Disposal Research and Development Roadmap |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartment of Energy OfficeFact Sheet

  20. Fuel Cell Technologies Office Multi-Year Research, Development, and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil Energy FYWednesday,

  1. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of Energy1904-AC19CommunicationWIPP |

  2. DOE Publishes Roadmap for Developing Cleaner Fuels | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOEDepartment| Department ofPublishes

  3. Fuel Cycle Research & Development Documents | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12 OPAM Revised DOEDepartmentaboutInformation ResourcesResearch

  4. Sandia Energy - More Efficient Fuel Cells under Development by Engineers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink Gallery MesaMonitoring HomeMore

  5. DOE Expands International Effort to Develop Fuel-Efficient Trucks |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy ThisStandardsSeptember 7,Media Contact Cameron Salony,6

  6. Alternative Fuels Data Center: Hydrogen Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.Tier

  7. Alternative Fuels Data Center: Idle Reduction Research and Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C.TierIdaho County Employs FFVsIdle Reduction

  8. Baylor University - Renewable Aviation Fuels Development Center | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions IncBay County, Florida: Energy ResourcesBayWaEnergy

  9. Fuel Cell Economic Development Plan Hydrogen Roadmap | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°, -86.0529604° ShowCounty, California:Frontier,FryeBio One

  10. SelfSelf--healing Powerhealing Power Delivery InfrastructureDelivery Infrastructure

    E-Print Network [OSTI]

    Amin, S. Massoud

    Network/Systems Initiative Complex interactive networks: · Energy infrastructure: Electric power gridsSelfSelf--healing Powerhealing Power Delivery InfrastructureDelivery Infrastructure Massoud Amin, D developed while the author was at the Electric Power Research Institute (EPRI) in Palo Alto, CA. EPRI

  11. Pellet Fueling Technology Development for Efficient Fueling of Burning Plasmas in ITER

    SciTech Connect (OSTI)

    Baylor, Larry R [ORNL; Parks, P. B. [General Atomics; Jernigan, Thomas C [ORNL; Caughman, John B [ORNL; Combs, Stephen Kirk [ORNL; Foust, Charles R [ORNL; Houlberg, Wayne A [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Rasmussen, David A [ORNL

    2007-01-01T23:59:59.000Z

    Pellet injection from the inner wall is planned for use on ITER as the primary core fueling system since gas fueling is expected to be highly inefficient in burning plasmas. Tests of the inner wall guide tube have shown that 5mm pellets with up to 300 m/s speeds can survive intact and provide the necessary core fueling rate. Modeling and extrapolation of the inner wall pellet injection experiments from today's smaller tokamaks leads to the prediction that this method will provide efficient core fueling beyond the pedestal region. Using pellets for triggering of frequent small edge localized modes is an attractive additional benefit that the pellet injection system can provide. A description of the ITER pellet injection system capabilities for fueling and ELM triggering are presented and performance expectations are discussed.

  12. Proceedings of the 1996 Windsor workshop on alternative fuels

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document contains information which was presented at the 1996 Windsor Workshop on Alternative Fuels. Topics include: international links; industry topics and infrastructure issues; propane; engine developments; the cleanliness of alternative fuels; heavy duty alternative fuel engines; California zev commercialization efforts; and in-use experience.

  13. Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS

    E-Print Network [OSTI]

    Boyer, Edmond

    Stresa, Italy, 26-28 April 2006 RECENT DEVELOPMENTS IN MEMS-BASED MICRO FUEL CELLS Tristan Pichonat ABSTRACT Micro fuel cells (µ-FC) represent promising power sources for portable applications. Today, one describes the latest developments of a new porous silicon- based miniature fuel cell. Using a silane grafted

  14. Algorithm Development for Electrochemical Impedance Spectroscopy Diagnostics in PEM Fuel Cells

    E-Print Network [OSTI]

    Victoria, University of

    Algorithm Development for Electrochemical Impedance Spectroscopy Diagnostics in PEM Fuel Cells-board fuel cell diagnostic hardware. Impedance can identify faults that cannot be identified solely by a drop Abstract The purpose of this work is to develop algorithms to identify fuel cell faults using

  15. Sustainable Infrastructure

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    of renewables State of Oregon (2006) Alt. fuel and hybrid light duty state vehicles Green bldg. policy level #12;Island Population 1 Azores-San miguel 140,000 2 Bahamas-N.Providence 307,000 3 Big Island 148 and Tobago 1,305,000 13 Crete 623,666 14 Malta 419,285 15 Guadaloupe 408,000 16 Martinique 401,000 17 Bahamas

  16. Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development

    SciTech Connect (OSTI)

    Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

    2010-08-01T23:59:59.000Z

    The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

  17. Advanced LWR Nuclear Fuel Cladding System Development Trade-Off Study

    SciTech Connect (OSTI)

    Kristine Barrett; Shannon Bragg-Sitton

    2012-09-01T23:59:59.000Z

    The Advanced Light Water Reactor (LWR) Nuclear Fuel Development Research and Development (R&D) Pathway encompasses strategic research focused on improving reactor core economics and safety margins through the development of an advanced fuel cladding system. To achieve significant operating improvements while remaining within safety boundaries, significant steps beyond incremental improvements in the current generation of nuclear fuel are required. Fundamental improvements are required in the areas of nuclear fuel composition, cladding integrity, and the fuel/cladding interaction to allow power uprates and increased fuel burn-up allowance while potentially improving safety margin through the adoption of an “accident tolerant” fuel system that would offer improved coping time under accident scenarios. With a development time of about 20 – 25 years, advanced fuel designs must be started today and proven in current reactors if future reactor designs are to be able to use them with confidence.

  18. Lessons and Challenges for Early Hydrogen Refueling Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen Conference, April 2-3, 2008, Sacramento, California lessonsmelainafinal.pdf More...

  19. Deadline Extended for RFI Regarding Hydrogen Infrastructure and...

    Energy Savers [EERE]

    for a robust market introduction of hydrogen supply, infrastructure, and fuel cell electric vehicles (FCEVs). This input will augment financing strategies that DOE...

  20. Quadrennial Energy Review Public Meeting #13: Energy Infrastructure...

    Energy Savers [EERE]

    Carnavos Director of Gas Supply Consolidated Edison Opportunities and Challenges for Natural Gas and Liquid Fuels Transmission, Storage and Distribution Infrastructure Good...

  1. Coal-fueled high-speed diesel engine development

    SciTech Connect (OSTI)

    Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

    1991-11-01T23:59:59.000Z

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  2. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    SciTech Connect (OSTI)

    Gladstein, Neandross and Associates

    2005-09-01T23:59:59.000Z

    Evaluates opportunities to integrate hydrogen into the fueling stations of the Interstate Clean Transportation Corridor--an existing network of LNG fueling stations in California and Nevada.

  3. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01T23:59:59.000Z

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  4. Alternative Renewable Fuels 'Plus' Research and Development Fund (Ontario, Canada)

    Broader source: Energy.gov [DOE]

    "Exploration of new markets and new uses for bioproducts, alternative renewable fuels and their co-products will contribute to the long term sustainability of Ontario's agri-food, energy and rural...

  5. Fuel Cell Technologies Office Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    delivery technologies that can serve future markets. Nascent markets, such as the use of fuel cells in backup power sources and MHE, will likely continue to take advantage of the...

  6. Infrastructure for large-scale tests in marine autonomy

    E-Print Network [OSTI]

    Hummel, Robert A. (Robert Andrew)

    2012-01-01T23:59:59.000Z

    This thesis focuses on the development of infrastructure for research with large-scale autonomous marine vehicle fleets and the design of sampling trajectories for compressive sensing (CS). The newly developed infrastructure ...

  7. Interdependence of Electricity System Infrastructure and Natural...

    Energy Savers [EERE]

    Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure - EAC 2011 Interdependence of Electricity System Infrastructure and Natural Gas Infrastructure -...

  8. Fuel Cycle Research & Development Technical Monthly - June 2012

    SciTech Connect (OSTI)

    Miller, Michael C. [Los Alamos National Laboratory

    2012-07-25T23:59:59.000Z

    Topics are: (1) MPACT Campaign - (a) Management and Integration - Coordination meetings between NE and NA-22, NA-24, and NA-82 were conducted the week of June 11th. Preparations are being made for the next MPACT working group meeting, scheduled for Aug 28-30 at Idaho Falls. In addition to covering accomplishments and discussing future plans, a site tour of INL facilities (MFC, EBR, ATR, INTEC) is being organized. (2) Accounting and Control Technologies - (a) Microcalorimetry - Now operating 256-pixel array at LANL. We are in the process of tuning detector parameters to improve and optimize performance. Preliminary measurements show approximate number of live pixels is similar to that observed previously at NIST. Continuing to study contribution to systematic error from uncertainties in tabulated gamma-ray energies. (b) Electrochemical Sensor - Testing of sensors fashioned from different precursor materials continued. SEM analysis of all used sensors has been or will be performed. (c) Lead Slowing Down Spectrometer - Ongoing perturbation calculations are providing information on the fundamental systematic error limits of LSDS. In order to achieve separating the contribution of Pu and 235U to the signal, there will need to be tight controls on systematic errors. Continuing to look into a He4 detector. Research into local construction of a He4 detector continued. We have started to apply the algorithm to test the LSDS using experimental data from previous RPI measurements. PNNL also developed a plan to address the lack of statistics in the MCNP modeling of the NGSI 64 assemblies. The ISU graduate student built and tested a fission chamber to gain experience with them. (d) Fast Neutron Imaging to Quantify Nuclear Materials - The imaging detector design was modified for each pixel to have an 8 x 8 pixel array. Quotations and purchasing process for components, including the new PSD scintillator are in progress. (e) Fast Neutron Multiplicity Analysis - The team submitted two papers to the upcoming INMM meeting that are related to the fast neutron multiplicity R&D effort. Progress was made on the project's main goal of designing a concept for a prototype fast-neutron multiplicity counter. We started laying out the outline for the final report. We have been working with our ORNL collaborators to develop a new digitizer system to support our experimental campaign planned for next year. (3) MPACT Analysis Tools - (a) Multi-isotope Process Monitor - Fuel characterization framework development continued during June. A report describing the methodologies is being completed. Kenneth Dayman, from University of Texas, spent a week at PNNL wrapping up his master's research and working on a journal submission covering that work. The target journal is the IEEE transactions on Nuclear Science; submission is planned for the end of July. A proposal to instrument H-Canyon is being prepared in conjunction with SRNL and the NNSA's NGSI program. The impact of gamma-ray spectrum counting statistics on the precision of relative radioisotope component intensities as reconstructed via Principal Component Regression (PCR) continued in June with Monte Carlo simulations of a two-component (i.e., two radioisotope) system. This work generalizes earlier studies in FY12 in which Poisson counting variations of only a single spectrum component were simulated. (b) Modeling and Simulation for Analysis of Safeguards Performance (Electrochemical) - Preliminary insights into safeguards challenges and the initial design for an electrochemical plant have been written up into an INMM paper and will be presented at the INMM Summer Meeting. Work is currently adding a new visualization capability for integrating materials accountancy with physical protection. (c) Material Control including Process Monitoring (Pattern Recognition, Sensors) - Fabrication of quartz chips continued at an external foundry. Awaiting delivery of the heat exchange manifold and chip holder. (d) MPACT System Integration and Technical Support - The initial report on cost-basis metrics for nucle

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Infrastructure Tax Credit A tax credit is available for 25% of the cost to install or retrofit fueling pumps that dispense gasoline fuel blends of at least 85%...

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL Atlanta Gas Light (AGL) offers a reduced cost lease on the BRC FuelMaker Phill CNG vehicle home fueling...

  11. Subtask 3.4 - Fischer - Tropsch Fuels Development

    SciTech Connect (OSTI)

    Joshua Strege; Anthony Snyder; Jason Laumb; Joshua Stanislowski; Michael Swanson

    2012-05-01T23:59:59.000Z

    Under Subtask 3.4, the Energy & Environmental Research Center (EERC) examined the opportunities and challenges facing Fischerâ??Tropsch (FT) technology in the United States today. Work was completed in two distinct budget periods (BPs). In BP1, the EERC examined the technical feasibility of using modern warm-gas cleanup techniques for FT synthesis. FT synthesis is typically done using more expensive and complex cold-gas sweetening. Warm-gas cleanup could greatly reduce capital and operating costs, making FT synthesis more attractive for domestic fuel production. Syngas was generated from a variety of coal and biomass types; cleaned of sulfur, moisture, and condensables; and then passed over a pilot-scale FT catalyst bed. Laboratory and modeling work done in support of the pilot-scale effort suggested that the catalyst was performing suboptimally with warm-gas cleanup. Long-term trends showed that the catalyst was also quickly deactivating. In BP3, the EERC compared FT catalyst results using warm-gas cleanup to results using cold-gas sweetening. A gas-sweetening absorption system (GSAS) was designed, modeled, and constructed to sweeten syngas between the gasifier and the pilot-scale FT reactor. Results verified that the catalyst performed much better with gas sweetening than it had with warm-gas cleanup. The catalyst also showed no signs of rapid deactivation when the GSAS was running. Laboratory tests in support of this effort verified that the catalyst had deactivated quickly in BP1 because of exposure to syngas, not because of any design flaw with the pilot-scale FT reactor itself. Based on these results, the EERC concludes that the two biggest issues with using syngas treated with warm-gas cleanup for FT synthesis are high concentrations of CO{sub 2} and volatile organic matter. Other catalysts tested by the EERC may be more tolerant of CO{sub 2}, but volatile matter removal is critical to ensuring long-term FT catalyst operation. This subtask was funded through the EERCâ??U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding for BP1 was provided by the North Dakota Industrial Commissionâ??s (NDIC) Renewable Energy Council.

  12. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  13. Newsletters Researchers at Penn State announce breakthrough in microbial fuel cell development

    E-Print Network [OSTI]

    & Publishing Researchers at Penn State announce breakthrough in microbial fuel cell development A technological breakthrough has made it possible to use microbial fuel cells for large-scale electricity production has been devised. It is hoped that the combination of the two will allow microbial fuel cells

  14. Development of high-power electrodes for a liquid-feed direct methanol fuel cell

    E-Print Network [OSTI]

    Development of high-power electrodes for a liquid-feed direct methanol fuel cell C. Lim, C.Y. Wang for a liquid-feed direct methanol fuel cell (DMFC) were fabricated by using a novel method of modi®ed Na.V. All rights reserved. Keywords: Direct methanol fuel cells; Membrane-electrode assembly (MEA); Polymer

  15. Development of a Natural Gas-to-Hydrogen Fueling System

    E-Print Network [OSTI]

    -life compressors ­ Accurate dispensing ­ Capital outlay & return on investment #12;3 Goals and Objectives > Goals-pressure compressors and fuel purification systems > Commercialization pathway ­ ANGI International > In-kind support 2/20052/20048/2002Compressor 7/20042/20048/2002Dispenser 2/20038/2002Fast Fill Testing 2

  16. Development of ultrafast computed tomography of highly transient fuel sprays

    E-Print Network [OSTI]

    Gruner, Sol M.

    as an important step for optimizing the operation of internal-combustion engines to improve efficiency and reduce-generation automotive internal combustion engines.1 Among these is gasoline direct-injection (GDI) technology, which has. In a combustion system employing GDI, the fuel is directly injected into the combustion chamber instead of the air

  17. Methods and apparatuses for the development of microstructured nuclear fuels

    DOE Patents [OSTI]

    Jarvinen, Gordon D. (Los Alamos, NM); Carroll, David W. (Los Alamos, NM); Devlin, David J. (Santa Fe, NM)

    2009-04-21T23:59:59.000Z

    Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.

  18. Fuel

    SciTech Connect (OSTI)

    NONE

    1999-10-01T23:59:59.000Z

    Two subjects are covered in this section. They are: (1) Health effects of possible contamination at Paducah Gaseous Diffusion Plant to be studied; and (2) DOE agrees on test of MOX fuel in Canada.

  19. Sandia Energy - Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Water Infrastructure Security Water Infrastructure...

  20. Carbonate fuel cell system development for industrial cogeneration. Final report Mar 80-Aug 81

    SciTech Connect (OSTI)

    Schnacke, A.W.; Reinstrom, R.M.; Najewicz, D.J.; Dawes, M.H.

    1981-09-01T23:59:59.000Z

    A survey of various industries was performed to investigate the feasibility of using natural gas-fueled carbonate fuel cell power plants as a cogeneration heat and power source. Two applications were selected: chlorine/caustic soda and aluminum. Three fuel processor technologies, conventional steam reforming, autothermal reforming and an advanced steam reformer concept were used to define three thermodynamic cycle concepts for each of the two applications. Performance and economic studies were conducted for the resulting systems. The advanced steam reformer was found among those studied to be most attractive and was evaluated further and compared to internally reforming the fuel within the fuel cell anodes. From the results of the studies it was concluded that the issues most affecting gas-fired carbonate fuel cell power plant commercial introduction are fuel cell and stack development, fuel reformer technology and the development of reliable, cost-effective heat transfer equipment.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Infrastructure Tax Credit NOTE: This incentive originally expired on December 31, 2013, but was retroactively extended through December 31, 2014 by Public Law...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fueling Infrastructure Permitting and Safety Individuals or entities must submit an application and pay a 10 fee to the State Fire Marshall or a certified designee before...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Grants Alternative Fuel Vehicle (AFV) Fleet Technical Assistance added 252015 Biofuels Research Grants Ethanol Infrastructure Grants Low Emission Vehicle (LEV) Sales Tax...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle and Infrastructure Grants The Massachusetts Department of Energy Resources' Clean Vehicle Project offers grant funding for public and private fleets to...

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicles and Infrastructure Grant Program The Colorado Energy Office (CEO), the Regional Air Quality Council (RAQC), and the Colorado Department of Transportation...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Fuel Infrastructure Tax Credit NOTE: This incentive expires December 31, 2014, but will remain posted until the federal tax filing deadline. A tax credit is available for...

  7. Science based integrated approach to advanced nuclear fuel development - vision, approach, and overview

    SciTech Connect (OSTI)

    Unal, Cetin [Los Alamos National Laboratory; Pasamehmetoglu, Kemal [IDAHO NATIONAL LAB; Carmack, Jon [IDAHO NATIONAL LAB

    2010-01-01T23:59:59.000Z

    Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Rcactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems is critical. In order to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating the phase and microstructural behavior of the nuclear fuel system materials and matrices. The purpose of this paper is to identify the modeling and simulation approach in order to deliver predictive tools for advanced fuels development. The coordination between experimental nuclear fuel design, development technical experts, and computational fuel modeling and simulation technical experts is a critical aspect of the approach and naturally leads to an integrated, goal-oriented science-based R & D approach and strengthens both the experimental and computational efforts. The Advanced Fuels Campaign (AFC) and Nuclear Energy Advanced Modeling and Simulation (NEAMS) Fuels Integrated Performance and Safety Code (IPSC) are working together to determine experimental data and modeling needs. The primary objective of the NEAMS fuels IPSC project is to deliver a coupled, three-dimensional, predictive computational platform for modeling the fabrication and both normal and abnormal operation of nuclear fuel pins and assemblies, applicable to both existing and future reactor fuel designs. The science based program is pursuing the development of an integrated multi-scale and multi-physics modeling and simulation platform for nuclear fuels. This overview paper discusses the vision, goals and approaches how to develop and implement the new approach.

  8. Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary900Steep SlopeStochasticPlan

  9. Alternative Fuels Data Center: Biodiesel Fueling Station Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructure Development to someone

  10. Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructure Development to

  11. Development of a liquid-fueled micro-combustor

    E-Print Network [OSTI]

    Peck, Jhongwoo, 1976-

    2008-01-01T23:59:59.000Z

    Advances in Micro-Electro-Mechanical Systems (MEMS) have made possible the development of shirtbutton-sized gas turbine engines for use as portable power sources. As part of an effort to develop a microscale gas turbine ...

  12. Development and validation of a combustion model for a fuel cell off-gas burner

    E-Print Network [OSTI]

    Collins, William Tristan

    2008-10-14T23:59:59.000Z

    Development and Validation of a Combustion Model for a Fuel Cell Off-Gas Burner W. Tristan Collins Magdalene College University of Cambridge A dissertation submitted to the University of Cambridge for the degree of Doctor of Philosophy June 2008... Development and Validation of a Combustion Model for a Fuel Cell Off-Gas Burner W. Tristan Collins A low-emissions power generator comprising a solid oxide fuel cell coupled to a gas turbine has been developed by Rolls-Royce Fuel Cell Systems. As part...

  13. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    SciTech Connect (OSTI)

    Schmitten, P.F.; Wright, J.B.

    1980-08-01T23:59:59.000Z

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  14. Coal-fueled diesel technology development Emissions Control

    SciTech Connect (OSTI)

    Van Kleunen, W.; Kaldor, S.; Gal, E.; Mengel, M.; Arnold, M.

    1994-01-01T23:59:59.000Z

    GEESI Emissions Control program activity ranged from control concept testing of 10 CFM slipstream from a CWS fuel single cylinder research diesel engine to the design, installation, and operation of a full-size Emissions Control system for a full-size CWS fuel diesel engine designed for locomotive operation.Early 10 CFM slipstream testing program activity was performed to determine Emissions Characteristics and to evaluate Emissions Control concepts such a Barrier filtration, Granular bed filtration, and Cyclone particulate collection for reduction of particulate and gaseous emissions. Use of sorbent injection into the engine exhaust gas upstream of the barrier filter or use of sorbent media in the granular bed filter were found to provide reduction of exhaust gas SO{sub 2} and NO{sub x} in addition to collection of ash particulate. Emergence of the use of barrier filtration as a most practical Emissions Control concept disclosed a need to improve cleanability of the filter media in order to avoid reduction of turbocharger performance by excessive barrier filter pressure drop. The next progression of program activity, after the slipstream feasibility state, was 500 CFM cold flow testing of control system concepts. The successful completion of 500 CFM cold flow testing of the Envelope Filter led to a subsequent progression to a similar configuration Envelope Filter designed to operate at 500 CFM hot gas flow from the CWS fuel research diesel engine in the GETS engine test laboratory. This Envelope Filter included the design aspect proven by cold flow testing as well as optimization of the selection of the installed filter media.

  15. Public Works Transportation Infrastructure Study

    E-Print Network [OSTI]

    Minnesota, University of

    Public Works Transportation Infrastructure Study Minneapolis City of Lakes Minneapolis Public Works Transportation Infrastructure Study #12;Public Works Transportation Infrastructure Study Minneapolis City Works Transportation Infrastructure Study Minneapolis City of Lakes Background: · Currently, funding

  16. Development and Demonstration of a Fuel-Efficient HD Engine ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    piston geometry, improved charge air system, revised base engine components reduce friction and turbocompounding. deer11deojeda.pdf More Documents & Publications Development...

  17. Integrated Tool Development for Used Fuel Disposition Natural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    nuclear waste repository. The report describes progress in development of an integrated modeling framework that can be used for systematically analyzing the performance of a...

  18. Developing a High Thermal Conductivity Fuel with Silicon Carbide Additives

    SciTech Connect (OSTI)

    baney, Ronald; Tulenko, James

    2012-11-20T23:59:59.000Z

    The objective of this research is to increase the thermal conductivity of uranium oxide (UO{sub 2}) without significantly impacting its neutronic properties. The concept is to incorporate another high thermal conductivity material, silicon carbide (SiC), in the form of whiskers or from nanoparticles of SiC and a SiC polymeric precursor into UO{sub 2}. This is expected to form a percolation pathway lattice for conductive heat transfer out of the fuel pellet. The thermal conductivity of SiC would control the overall fuel pellet thermal conductivity. The challenge is to show the effectiveness of a low temperature sintering process, because of a UO{sub 2}-SiC reaction at 1,377°C, a temperature far below the normal sintering temperature. Researchers will study three strategies to overcome the processing difficulties associated with pore clogging and the chemical reaction of SiC and UO{sub 2} at temperatures above 1,300°C:

  19. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Environmental Management (EM)

    Systems Analysis 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure...

  20. 2nd International Hydrogen Infrastructure Challenges Webinar

    Broader source: Energy.gov [DOE]

    On Tuesday, March 10, at 8 a.m. EDT, the Fuel Cell Technologies Office will present a webinar to summarize the 2nd international information exchange on the hydrogen refueling infrastructure challenges and potential solutions to support the successful global commercialization of hydrogen fuel cell electric vehicles.