National Library of Energy BETA

Sample records for fuel including federal

  1. EO 13031: Federal Alternative Fueled Vehicle Leadership

    Broader source: Energy.gov [DOE]

    The purpose of this order is to ensure that the Federal Government exercise leadership in the use of alternative fueled vehicles (AFVs).

  2. Including Retro-Commissioning in Federal Energy Savings Performance

    Energy Savers [EERE]

    Contracts | Department of Energy Including Retro-Commissioning in Federal Energy Savings Performance Contracts Including Retro-Commissioning in Federal Energy Savings Performance Contracts Document describes guidance on the importance of (and steps to) including retro-commissioning in federal energy savings performance contracts (ESPCs). PDF icon 11_2_includingretrocommissioning.pdf More Documents & Publications Enabling Mass-Scale Financing for Federal Energy, Water, and Sustainability

  3. Alternative Fuels Data Center: Federal Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center: Federal Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives on Digg Find More places to share Alternative Fuels Data

  4. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy...

  5. Alternative Fuels Data Center: Federal and State Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal and State Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Federal and State Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Federal and State Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Federal and State Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Federal and State Laws and Incentives

  6. Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Federal Laws and

  7. Alternative Fuels Data Center: Federal Laws and Incentives for Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Electricity to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Electricity on Google Bookmark Alternative Fuels Data Center: Federal Laws

  8. Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for

  9. Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Hydrogen on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives

  10. Alternative Fuels Data Center: Federal Laws and Incentives for Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Propane to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Propane on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for

  11. Alternative Fuels Data Center: Federal Laws and Incentives for Idle

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduction Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels

  12. Executive Order 13031-Federal Alternative Fueled Vehicle Leadership |

    Energy Savers [EERE]

    Department of Energy 3031-Federal Alternative Fueled Vehicle Leadership Executive Order 13031-Federal Alternative Fueled Vehicle Leadership The purpose of this order is to ensure that the Federal Government exercise leadership in the use of alternative fueled vehicles (AFVs). PDF icon Executive Order 13031-Federal Alternative Fueled Vehicle Leadership More Documents & Publications Executive Order 12969-Federal Acquisition and Community RightTo-Know EO 13089 -- Coral Reef Protection

  13. Fuel Cell Meeting Agenda: Matching Federal Government Needs with Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient Fuel Cells | Department of Energy Meeting Agenda: Matching Federal Government Needs with Energy Efficient Fuel Cells Fuel Cell Meeting Agenda: Matching Federal Government Needs with Energy Efficient Fuel Cells This agenda provides information about the Fuel Cell Meeting on April 26, 2007 in Washington, DC. PDF icon fuel_cell_mtng_agenda.pdf More Documents & Publications Draft Agenda U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry Agenda

  14. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document...

  15. Federal Fuel Cell Tax Incentives: An Investment in Clean and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies A brief created by...

  16. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal ... More Documents & Publications Procuring Fuel Cells for Stationary Power: A Guide for ...

  17. Procuring Fuel Cells for Stationary Power: A Guide for Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, "Procuring Fuel Cells for ...

  18. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings | Department of Energy Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in a Supplemental Notice of Proposed Rulemaking. File fossilfuel.docx More Documents & Publications Fossil Fuel-Generated Energy Consumption

  19. Fossil Fuel-Generated Energy Consumption Reduction for New Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings and Major Renovations of Federal Buildings OIRA Comparison Document | Department of Energy Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Document details the Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings in an OIRA Comparison Document. File fossilfuel_compare2014.docx More

  20. Including Retro-Commissioning in Federal Energy Savings Performance...

    Energy Savers [EERE]

    More Documents & Publications Enabling Mass-Scale Financing for Federal Energy, Water, and Sustainability Projects Retro-Commissioning Increases Data Center...

  1. Federal Government Support for Fuel Cell Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Government Support for Fuel Cell Technologies Federal Government Support for Fuel Cell Technologies Presented by the U.S. Department of Energy on Hydrogen and Fuel Cell State and Regional Initiatives, June 11, 2009 PDF icon state_and_regional_initiatives_budget_2009.pdf More Documents & Publications Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen Fuel Cell Budget: 2011 Stakeholders Webinar-Budget Briefing DOE Hydrogen and

  2. Alternative Fuels and Advanced Vehicles Data Center - Federal...

    Open Energy Info (EERE)

    Incentives and Laws Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fuels and Advanced Vehicles Data Center - Federal and State Incentives and...

  3. DOE Releases Request for Information on Critical Materials, Including Fuel

    Energy Savers [EERE]

    Cell Platinum Group Metal Catalysts | Department of Energy Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts DOE Releases Request for Information on Critical Materials, Including Fuel Cell Platinum Group Metal Catalysts February 17, 2016 - 3:03pm Addthis The U.S. Department of Energy (DOE) has released a Request for Information (RFI) on critical materials in the energy sector, including fuel cell platinum group metal catalysts. The RFI is

  4. Federal Support for Hydrogen and Fuel Cell Technologies | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Federal Support for Hydrogen and Fuel Cell Technologies Federal Support for Hydrogen and Fuel Cell Technologies This presentation, which focuses on federal support for hydrogen and fuel cell technologies, was given by Patrick Davis at the State and Regional Hydrogen and Fuel Cell Initiatives Meeting in May 2007. PDF icon states_call0507.pdf More Documents & Publications FY 2011 Budget Roll-Out Presentation FY 2007 Operating Plan for DOE--March 16, 2007.xls FY 2007 Operating Plan

  5. Federal Government Support for Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Anheuser-Busch (St. Louis, MO) 1.1 million 23 fuel cells in class-1 lift trucks FedEx Freight East (Harrison, AR) 1.3 million 35 fuel cells in class-1 lift trucks GENCO ...

  6. NREL: Technology Deployment - NREL's Federal Fueling Station Data Supports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Superstorm Sandy Recovery NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery January 22, 2013 In the aftermath of Superstorm Sandy, millions of Americans remained without electricity as emergency responders, security officials, and regular citizens all experienced a lack of access to vehicle fuels. As fuel shortages spread and lines grew at the few fueling stations that had electricity, officials from General Services Administration (GSA) Fleet and the U.S. Department of

  7. Including Retro-Commissioning in Federal Energy Savings Performance...

    Energy Savers [EERE]

    the cost of the survey. Developing a detailed scope of work and a fixed price for this work is important to eliminate risk to the Agency and the ESCo. Including a detailed scope...

  8. Fuel cell repeater unit including frame and separator plate

    DOE Patents [OSTI]

    Yamanis, Jean; Hawkes, Justin R; Chiapetta, Jr., Louis; Bird, Connie E; Sun, Ellen Y; Croteau, Paul F

    2013-11-05

    An example fuel cell repeater includes a separator plate and a frame establishing at least a portion of a flow path that is operative to communicate fuel to or from at least one fuel cell held by the frame relative to the separator plate. The flow path has a perimeter and any fuel within the perimeter flow across the at least one fuel cell in a first direction. The separator plate, the frame, or both establish at least one conduit positioned outside the flow path perimeter. The conduit is outside of the flow path perimeter and is configured to direct flow in a second, different direction. The conduit is fluidly coupled with the flow path.

  9. Sales of Fossil Fuels Produced from Federal and Indian Lands...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2012 ii This report...

  10. Federal Fuels Taxes and Tax Credits (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Provides a review and update of the handling of federal fuels taxes and tax credits, focusing primarily on areas for which regulations have changed or the handling of taxes or credits has been updated in Annual Energy Outlook 2009.

  11. Alternative Fuels Data Center: Federal Laws and Incentives for Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Federal Laws and Incentives for Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Federal Laws

  12. Guidance. Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246

    SciTech Connect (OSTI)

    none,

    2011-04-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  13. NNSS Alternative Fuel Vehicle Management Program receives federal award |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Alternative Fuel Vehicle Management Program receives federal award | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact

  14. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect (OSTI)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  15. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    SciTech Connect (OSTI)

    Stinton, David P; McGervey, Joseph; Curran, Scott

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

  16. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies A brief created by the US Fuel Cell Council that covers federal fuel cell tax incentives PDF icon 200810_itc.pdf More Documents & Publications Fuel Cell Financing for Tax-Exempt Entities Fuel Cell Tax Incentives: How Monetization Lowers the Government Outlay ITC Role in U.S. Fuel Cell Project

  17. Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Fuel Cell Tax Incentives; An investment in clean and efficient technologies On October 3 rd , 2008, Congress passed and President Bush signed into law a highly anticipated eight-year extension of the Investment Tax Credit (ITC) for fuel cell technology. The tax credit extension was included in the Emergency Economic Stabilization Act of 2008. A long-term extension of the ITC has been a top priority for the industry, as it is expected to accelerate full-scale commercialization of fuel

  18. Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Makers | Department of Energy Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers Download presentation slides from the May 8, 2012, Fuel Cell Technologies Program webinar, "Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers." PDF icon Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar Slides More Documents & Publications Fuel Cell Technologies Overview:

  19. Fifth annual report to congress. Federal alternative motor fuels programs

    SciTech Connect (OSTI)

    1996-09-01

    This report presents the status of the US Department of Energy`s alternative fuel vehicle demonstration and performance tracking programs being conducted in accordance with the Energy Policy and Conservation Act. These programs comprise the most comprehensive data collection effort ever undertaken on alternative transportation fuels and alternative fuel vehicles. The report summarizes tests and results from the fifth year. Electric vehicles are not included in these programs, and the annual report does not include information on them. Since the inception of the programs, great strides have been made in developing commercially viable alternative fuel vehicle technologies. However, as is the case in the commercialization of all new technologies, some performance problems have been experienced on vehicles involved in early demonstration efforts. Substantial improvements have been recorded in vehicle practicality, safety, and performance in real-world demonstrations. An aspect of particular interest is emissions output. Results from light duty alternative fuel vehicles have demonstrated superior inservice emissions performance. Heavy duty alternative fuel vehicles have demonstrated dramatic reductions in particulate emissions. However, emissions results from vehicles converted to run on alternative fuel have not been as promising. Although the technologies available today are commercially viable in some markets, further improvements in infrastructure and economics will result in greater market expansion. Information is included in this report on light and heavy duty vehicles, transit buses, vehicle conversions, safety, infrastructure support, vehicle availability, and information dissemination.

  20. Procuring Fuel Cells for Stationary Power: A Guide for Federal Decision Makers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Federal Facilities Guide to Fuel Cells May 8, 2012 - Outline * Distributed Generation and Fuel Cell Power Overview (Pete Devlin 1 ) * How Does a Fuel Cell Work (Jacob Spendelow 2 ) * Guide Summary - How FC CHP can help Federal Facilities (Pete Devlin 1 ) - Third Party Financing (Greg Moreland 3 ) - Project Screening (Joe McGervey 3 ) - Detailed Planning (Joe McGervey 3 ) - Model (Michael Penev 4 ) - Project

  1. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing Department of Energy (DOE), including National Nuclear Security Administration (NNSA), Federal workers with a safe and healthful workplace. Cancels DOE O 440.1A. Certified 6/17/2011. Canceled by DOE O 440.1B Chg 1.

  2. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Natural Gas Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles - Workshop American Gas Association, Washington, D.C. Fred Joseck Fuel Cell Technologies Office Office of Sustainable Transportation U.S. Department of Energy September 9, 2014 2 | Fuel Cell Technologies Office eere.energy.gov The Potential for Natural Gas in Transportation With ample NG resources available , four potential pathways to

  3. Fact #682: July 4, 2011 Federal Alternative Fuel Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: July 4, 2011 Federal Alternative Fuel Use Fact #682: July 4, 2011 Federal Alternative Fuel Use The Federal Government used nearly 9 million gasoline-gallon equivalents of alternative fuel in 2010. The majority of the fuel used (92%) was E-85, a combination of 85% ethanol and 15% gasoline. The Government's use of liquefied petroleum gas (LPG), compressed natural gas (CNG), and liquefied natural gas (LNG) has declined over the last few years. In 2010, electricity use grew due to a large

  4. SBIR/STTR FY15 Phase 1 Release 2 Awards Announced-Includes Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes | Department of Energy 1 Release 2 Awards Announced-Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes SBIR/STTR FY15 Phase 1 Release 2 Awards Announced-Includes Fuel Cell-Battery Electric Hybrid Truck and Fuel Cell Manufacturing Quality Control Processes May 28, 2015 - 8:51am Addthis The U.S. Department of Energy has announced the 2015 Small Business

  5. SBIR/STTR FY15 Release 1 Awards Announced-Includes Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Innovation Research and Small Business Technology Transfer (SBIRSTTR) Phase I ... fuel R&D. Projects selected for negotiation include: Non-Platinum Group Metal (PGM) ...

  6. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal

    Broader source: Energy.gov (indexed) [DOE]

    Facility Decision Makers | Department of Energy Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers," originally presented on May 8, 2012. In addition to this text version of the audio, you can access the presentation slides. Kristen Nawoj: Hello everyone and welcome to the Fuel Cell Technologies Office's webinar series at the Department of Energy. Today you will be learning about Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility

  7. Matching Federal Government Energy Needs with Energy Efficient Fuel Cells

    Broader source: Energy.gov [DOE]

    This presentation by Keith Spitznagel of LOGANEnergy was given at the Fuel Cell Meeting in April 2007.

  8. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Decision Makers | Department of Energy Facility Decision Makers Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers This step-by-step manual guides readers through the process of implementing a fuel cell stationary power project. The guide outlines the basics of fuel cell technology and describes how fuel cell projects can meet on-site energy service needs as well as support strategic agency objectives and sustainability requirements. This guide will help

  9. Guidance: Requirements for Installing Renewable Fuel Pumps at Federal Fleet Fueling Centers under EISA Section 246: Federal Fleet Program, Federal Energy Management Program, U.S. Department of Energy, March 2011

    SciTech Connect (OSTI)

    Not Available

    2011-03-01

    On December 19, 2007, the Energy Independence and Security Act of 2007 (EISA) was signed into law as Public Law 110-140. Section 246(a) of EISA directs Federal agencies to install at least one renewable fuel pump at each Federal fleet fueling center under their jurisdiction by January 1, 2010. Section 246(b) requires the President to submit an annual report to Congress on Federal agency progress in meeting this renewable fuel pump installation mandate. This guidance document provides guidelines to help agencies understand these requirements and how to comply with EISA Section 246.

  10. SBIR/STTR FY16 Phase 1 Release 1 Awards Announced-Includes Four for Fuel

    Energy Savers [EERE]

    Cell Membrane Development | Department of Energy Awards Announced-Includes Four for Fuel Cell Membrane Development SBIR/STTR FY16 Phase 1 Release 1 Awards Announced-Includes Four for Fuel Cell Membrane Development January 28, 2016 - 12:36pm Addthis The Energy Department has announced the 2016 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 Awards, including four projects focused on durable and inexpensive polymer electrolyte membranes

  11. SBIR/STTR Release 2 Topics Announced—Includes Hydrogen and Fuel Cells

    Broader source: Energy.gov [DOE]

    The 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 2 topics include fuel cell-battery electric hybrid trucks and in-line quality control devices for polymer electrolyte membrane (PEM) fuel cells.

  12. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011

    Broader source: Energy.gov [DOE]

    This paper was prepared in response to recent requests that the U.S. Energy Information Administration (EIA) provide updated summary information regarding fossil fuel production on federal and...

  13. Federal Energy and Water Management Award Winner 22nd Operations Group Fuel

    Energy Savers [EERE]

    Efficiency Office | Department of Energy 22nd Operations Group Fuel Efficiency Office Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office PDF icon fewm13_mcconnellafb_highres.pdf PDF icon fewm13_mcconnellafb.pdf More Documents & Publications Air Force Achieves Fuel Efficiency through Industry Best Practices Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in

  14. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Chg 1 dated 8-21-12. Cancels DOE M 440.1-1A. Admin Chg 1, dated 3-14-13.

  15. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Supersedes DOE O 440.1B Chg 1.

  16. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Map Appendix State/area maps Figure A1. Fossil fuel production on federal and Indian lands, FY 2014 Source: U.S. Energy Information Administration based on U.S. Department of the Interior, Office of Natural Resources Revenue. "ONNR Statistical Information Site" (http://statistics.onrr.gov). July 2015 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2014 24 Figure A2. Changes in fossil fuels production (trillion

  17. SBIR/STTR FY15 Release 1 Awards Announced-Includes Fuel Cell Catalyst and

    Energy Savers [EERE]

    Hydrogen Contamination Detection R&D | Department of Energy Release 1 Awards Announced-Includes Fuel Cell Catalyst and Hydrogen Contamination Detection R&D SBIR/STTR FY15 Release 1 Awards Announced-Includes Fuel Cell Catalyst and Hydrogen Contamination Detection R&D January 21, 2015 - 11:34am Addthis The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 Awards, including

  18. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2011 March 2012 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Sales of Fossil Fuels Produced on Federal and Indian Lands, FY 2003 through FY 2011 i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  19. Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers OCTOBER 2011 Fuel Cell Technologies Program Oak Ridge National Laboratory 2 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness

  20. Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy,

  1. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Table 3. Sales of crude oil and lease condensate production from federal and Indian lands, FY 2003-14 million barrels Notes: Totals may not equal sum of components because of independent rounding. Onshore federal excludes volumes on Indian lands. Offshore federal only includes areas in federal waters. Source: U.S. Energy Information Administration based on U.S. Department of the Interior, Office of Natural Resources Revenue. "ONNR Statistical Information Site"

  2. Federal Support for Hydrogen and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... dependency on oil for transportation and natural gas for power generation * 22% increase ... for domestic manufacturing * Includes language supporting R&D in new energy technology ...

  3. Hydraulically actuated fuel injector including a pilot operated spool valve assembly and hydraulic system using same

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL)

    2002-01-01

    The present invention relates to hydraulic systems including hydraulically actuated fuel injectors that have a pilot operated spool valve assembly. One class of hydraulically actuated fuel injectors includes a solenoid driven pilot valve that controls the initiation of the injection event. However, during cold start conditions, hydraulic fluid, typically engine lubricating oil, is particularly viscous and is often difficult to displace through the relatively small drain path that is defined past the pilot valve member. Because the spool valve typically responds slower than expected during cold start due to the difficulty in displacing the relatively viscous oil, accurate start of injection timing can be difficult to achieve. There also exists a greater difficulty in reaching the higher end of the cold operating speed range. Therefore, the present invention utilizes a fluid evacuation valve to aid in displacement of the relatively viscous oil during cold start conditions.

  4. Alternative fuel vehicles for the Federal fleet: Results of the 5-year planning process. Executive Order 12759, Section 11

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    This report describes five-year plans for acquisition of alternative fuel vehicles (AFVs) by the Federal agencies. These plans will be used to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. This effort supplements and extends the demonstration and testing of AFVs established by the Department of Energy under the alternative Motor Fuels Act of 1988.

  5. Zirconium-based alloys, nuclear fuel rods and nuclear reactors including such alloys, and related methods

    DOE Patents [OSTI]

    Mariani, Robert Dominick

    2014-09-09

    Zirconium-based metal alloy compositions comprise zirconium, a first additive in which the permeability of hydrogen decreases with increasing temperatures at least over a temperature range extending from 350.degree. C. to 750.degree. C., and a second additive having a solubility in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. At least one of a solubility of the first additive in the second additive over the temperature range extending from 350.degree. C. to 750.degree. C. and a solubility of the second additive in the first additive over the temperature range extending from 350.degree. C. to 750.degree. C. is higher than the solubility of the second additive in zirconium over the temperature range extending from 350.degree. C. to 750.degree. C. Nuclear fuel rods include a cladding material comprising such metal alloy compositions, and nuclear reactors include such fuel rods. Methods are used to fabricate such zirconium-based metal alloy compositions.

  6. A STUDY OF THE DISCREPANCY BETWEEN FEDERAL AND STATE MEASUREMENTS OF ON-HIGHWAY FUEL CONSUMPTION

    SciTech Connect (OSTI)

    Hwang, HL

    2003-08-11

    Annual highway fuel taxes are collected by the Treasury Department and placed in the Highway Trust Fund (HTF). There is, however, no direct connection between the taxes collected by the Treasury Department and the gallons of on-highway fuel use, which can lead to a discrepancy between these totals. This study was conducted to determine how much of a discrepancy exists between the total fuel usages estimated based on highway revenue funds as reported by the Treasury Department and the total fuel usages used in the apportionment of the HTF to the States. The analysis was conducted using data from Highway Statistics Tables MF-27 and FE-9 for the years 1991-2001. It was found that the overall discrepancy is relatively small, mostly within 5% difference. The amount of the discrepancy varies from year to year and varies among the three fuel types (gasoline, gasohol, special fuels). Several potential explanations for these discrepancies were identified, including issues on data, tax measurement, gallon measurement, HTF receipts, and timing. Data anomalies caused by outside forces, such as deferment of tax payments from one fiscal year to the next, can skew fuel tax data. Fuel tax evasion can lead to differences between actual fuel use and fuel taxes collected. Furthermore, differences in data collection and reporting among States can impact fuel use data. Refunds, credits, and transfers from the HTF can impact the total fuel tax receipt data. Timing issues, such as calendar year vs. fiscal year, can also cause some discrepancy between the two data sources.

  7. Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary

    SciTech Connect (OSTI)

    Levi, M. P.; O'Grady, M. J.

    1980-02-01

    The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

  8. SBIR/STTR Release 2 Topics Announced-Includes Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    trucks and in-line quality control devices for polymer electrolyte membrane (PEM) fuel cells. The Fuel Cell Technologies Office (FCTO) aims to build on other early niche market ...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Exemption and Refund for Government Fleet Vehicles State excise tax does not apply to special fuels, including gaseous special fuels, when used in state or federal government owned vehicles. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition, state excise tax paid on special fuels used in state or federal government vehicles is subject to a refund, as long as the tax was

  10. Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Natural Gas Lease Fuel Consumption (Million Cubic Feet) Federal Offshore--Gulf of Mexico Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 2000's 0 114,017 109,277 98,372 90,025 78,139 102,242 115,528 102,389 103,976 2010's 108,490 101,217 93,985 95,207 93,855 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  11. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 1. Fossil fuel sales of production from federal lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 679 3,939 33.0% 93 347 14.7% 6,798 6,981 35.7% 436 8,960 40.6%

  12. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint US/Russian Progress Report for Fiscal 1997. Volume 3 - Calculations Performed in the Russian Federation

    SciTech Connect (OSTI)

    1998-06-01

    This volume of the progress report provides documentation of reactor physics and criticality safety studies conducted in the Russian Federation during fiscal year 1997 and sponsored by the Fissile Materials Disposition Program of the US Department of Energy. Descriptions of computational and experimental benchmarks for the verification and validation of computer programs for neutron physics analyses are included. All benchmarks include either plutonium, uranium, or mixed uranium and plutonium fuels. Calculated physics parameters are reported for all of the contaminated benchmarks that the United States and Russia mutually agreed in November 1996 were applicable to mixed-oxide fuel cycles for light-water reactors.

  13. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet Ryan Daley, John Nangle, Gabrial Boeckman, and Mackay Miller Technical Report NREL/TP-5400-61777 May 2014 NREL is

  14. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Hydrogen Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transitioning the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Mark S. Smith Vehicle Technologies Office/ Clean Cities Team September 9, 2014 2 * Nearly 600,000 AFVs on the road in the US * Over 14,500 alternative fueling and charging stations * Long term goal of 2.5B gal/year by 2020 Alternative Fuel use during Clean Cities 20+ year history Nearly 6.5 Billion Gallons of Petroleum Reduction since 1993 3 Natural Gas dominates current alt-fuel

  15. Performance of Trasuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Interim Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; Brian Boer; Gilles Youinou; Abderrafi M. Ougouag

    2011-03-01

    The current focus of the Deep Burn Project is on once-through burning of transuranice (TRU) in light water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles would be pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell calculations have been performed using the DRAGON-4 code in order assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells containing typical UO2 and MOX fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Loading of TRU-only FCM fuel into a pin without significant quantities of uranium challenges the design from the standpoint of several key reactivity parameters, particularly void reactivity, and to some degree, the Doppler coefficient. These unit cells, while providing an indication of how a whole core of similar fuel would behave, also provide information of how individual pins of TRU-only FCM fuel would influence the reactivity behavior of a heterogeneous assembly. If these FCM fuel pins are included in a heterogeneous assembly with LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance of the TRU-only FCM fuel pins may be preserved. A configuration such as this would be similar to CONFU assemblies analyzed in previous studies. Analogous to the plutonium content limits imposed on MOX fuel, some amount of TRU-only FCM pins in an otherwise-uranium fuel assembly may give acceptable reactivity performance. Assembly calculations will be performed in future work to explore the design options for heterogeneous assemblies of this type and their impact on reactivity coefficients.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary Tables Key Federal Legislation The information below includes a brief chronology and

  17. Energy Department Announces Advanced Fuel-Efficient Vehicle Technologies Funding Opportunity, Includes Alternative Fuels Workplace Safety Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    U.S. Department of Energy Secretary Ernest Moniz announced more than $55 million in funding for vehicle technology advancements while touring the newest vehicle technologies at the Washington Auto Show last week. One specific topic is focused on the development of alternative fuel vehicle workplace safety programs.

  18. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Table 7. Sales of fossil fuel production from federal and Indian lands by state/area, FY 2003-14 trillion Btu State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 75 57 51 47 40 42 60 88 86 71 46 29 Alaska 61 66 68 52 32 28 27 23 21 19 18 21 Arizona 258 273 280 193 180 162 157 154 164 163 167 158 Arkansas 7 8 10 10 10 11 15 18 14 13 11 11 California 141 125 124 139 146 129 116 115 121 125 121 119 Colorado 785 842 960 906 905 931 846 868 917 952 875 877 Florida 0 - - - - -

  19. Worker Safety and Health Program for DOE (Including the National Nuclear Security Administration) Federal and Contractor Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-10-20

    This document was developed to assist the Department of Energy (DOE or the Department) Federal and contractor employees in effectively developing, managing, and implementing a worker safety and health program. Cancels DOE G 440.1-1A and DOE G 440.1-8. Adm Chg 1, dated 3-22-13.

  20. Worker Safety and Health Program for DOE (Including the National Nuclear Security Administration) Federal and Contractor Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-10-20

    This document was developed to assist the Department of Energy (DOE or the Department) Federal and contractor employees in effectively developing, managing, and implementing a worker safety and health program. Supersedes DOE G 440.1-1A and DOE G 440.1-8.

  1. SBIR/STTR Phase II Release 1 Award Winners Announced, Includes Two Hydrogen and Fuel Cell Projects

    Broader source: Energy.gov [DOE]

    The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase II Release 1 award winners, including two hydrogen and fuel cell projects in Colorado and New Jersey.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition and Specifications Alternative fuels include biofuel, ethanol, methanol, hydrogen, coal-derived liquid fuels, electricity, natural gas, propane gas, or a synthetic transportation fuel. Biofuel is defined as a renewable, biodegradable, combustible liquid or gaseous fuel derived from biomass or other renewable resources that can be used as transportation fuel, combustion fuel, or refinery feedstock and that meets ASTM specifications and federal quality requirements for

  3. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); Summers, Cathy A. (Albany, OR); Gerdemann, Steve (Albany, OR); Oryshchyn, Danylo B. (Philomath, OR); Turner, Paul (Independence, OR); Patrick, Brian R. (Chicago, IL)

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  4. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FACT SHEET Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals: 1 Provide a Tax Credit for the Production of Advanced Technology Vehicles Current Law A tax credit is allowed for plug-in electric drive motor vehicles. A plug-in electric drive motor vehicle is a vehicle that has at

  5. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  6. Table 1.14 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Sales of Fossil Fuels Produced on Federal and American Indian Lands, Fiscal Years 2003-2011 Fiscal Year 7 Crude Oil and Lease Condensate Natural Gas Plant Liquids 1 Natural Gas 2 Coal 3 Total Fossil Fuels 4 Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Sales 5,6 Sales as Share of Total U.S. Production Million Barrels Trillion Btu Percent

  7. Electrolytic/fuel cell bundles and systems including a current collector in communication with an electrode thereof

    DOE Patents [OSTI]

    Hawkes, Grant L.; Herring, James S.; Stoots, Carl M.; O'Brien, James E.

    2013-03-05

    Electrolytic/fuel cell bundles and systems including such bundles include an electrically conductive current collector in communication with an anode or a cathode of each of a plurality of cells. A cross-sectional area of the current collector may vary in a direction generally parallel to a general direction of current flow through the current collector. The current collector may include a porous monolithic structure. At least one cell of the plurality of cells may include a current collector that surrounds an outer electrode of the cell and has at least six substantially planar exterior surfaces. The planar surfaces may extend along a length of the cell, and may abut against a substantially planar surface of a current collector of an adjacent cell. Methods for generating electricity and for performing electrolysis include flowing current through a conductive current collector having a varying cross-sectional area.

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Fleets Under the Energy Policy Act (EPAct) of 1992, 75% of new light-duty vehicles acquired by covered federal fleets must be alternative fuel vehicles (AFVs). As amended in January 2008, Section 301 of EPAct 1992 defines AFVs to include hybrid electric vehicles, fuel cell vehicles, and advanced lean burn vehicles. Fleets that use fuel blends containing at least 20% biodiesel (B20) may earn credits toward their annual requirements. Federal fleets are also required to use alternative

  9. Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    highest potential to save aviation fuel. All MAF personnel are encouraged to propose fuel savings ideas. These ideas are then processed as initiatives, assigned a primary point of contact, and routed through an analysis process to prepare the initiative for presenta- tion to the Air Force's corporate structure. The corporate structure then evaluates and determines the initiatives with the highest potential fuel savings. Fuel-saving efforts focus on six major areas: policy, planning, execution,

  10. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Table 5. Sales of natural gas plant liquids production from federal and Indian lands, FY 2003-14 million barrels Fiscal Year Offshore Federal Onshore Federal Total Federal Indian Lands 2003 51 42 93 2 2004 62 41 104 2 2005 56 40 96 2 2006 46 39 85 2 2007 59 44 103 3 2008 53 50 103 3 2009 45 47 93 3 2010 58 73 131 3 2011 52 79 131 3 2012 45 85 130 4 2013 45 63 108 4 2014 48 69 117 4 Notes: Totals may not equal sum of components because of independent rounding. Onshore federal excludes volumes

  11. Gulf of Mexico Federal Offshore Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Federal Offshore Alabama, Louisiana,

  12. Federal Alternative Motor Fuels Programs Fifth Annual Report to Congress - 1996

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Abstract This annual report to Congress presents the current status of the U.S. Department of Energy's alterna- tive fuel vehicle demonstration and performance tracking programs being conducted across the country in accordance with the Energy Policy and Conservation Act (42 U.S.C. 6374, et seq.). These programs, which comprise the most compre- hensive data collection effort ever undertaken on alternative transporta- tion fuels and alternative fuel vehi- cles, are beginning their sixth year. This

  13. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs.

  14. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  15. Federal Offshore--Gulf of Mexico Natural Gas Plant Fuel Consumption

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Gulf of Mexico Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 2/29/2016 Next Release Date: 3/31/2016 Referring Pages: Natural Gas Plant Fuel Consumption Gulf of Mexico Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas

  16. What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)

    SciTech Connect (OSTI)

    Schwab, A.

    2013-04-01

    This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

  17. Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8/183 [Flush right, 12 pt. Arial or Helvetica, bold] [Cover page margins: 1 in. all around with a gutter of 0.25 in., mirror margins, no page number] Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference? [Sink title 2.75 in. from top margin, initial caps, 24 pt. Arial or Helvetica, bold, flush left] October 2008 [18 pt. Arial or Helvetica, bold, flush left] Prepared by Dr. David L. Greene Oak Ridge National Laboratory Dr. K. G.

  18. Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation

    SciTech Connect (OSTI)

    Michael A. Pope; R. Sonat Sen; Brian Boer; Abderrafi M. Ougouag; Gilles Youinou

    2011-09-01

    The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

  19. Federal Fuels Taxes and Tax Credits (Update) (released in AEO2008)

    Reports and Publications (EIA)

    2008-01-01

    The Annual Energy Outlook 2008 (AEO) reference case incorporates current regulations that pertain to the energy industry. This section describes the handling of federal taxes and tax credits in AEO2008, focusing primarily on areas where regulations have changed or the handling of taxes or tax credits has been updated.

  20. Vehicle Technologies Office Merit Review 2015: Developing Kinetic Mechanisms for New Fuels and Biofuels, Including CFD Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Livermore National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  1. Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor

    DOE Patents [OSTI]

    Kelley; Dana A. (New Milford, CT), Farooque; Mohammad (Danbury, CT), Davis; Keith (Southbury, CT)

    2007-10-02

    A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

  2. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Table 2. Fossil fuel sales of production from Indian lands, FY 2003-14 Fiscal Year Crude Oil and Lease Condensate Natural Gas Plant Liquids 2 Natural Gas Coal Fossil Fuels Million Barrels 1 Trillion Btu Percent of U.S. Total Million Barrels 1 Trillion Btu Percent of U.S. Total Billion Cubic Feet 1 Trillion Btu Percent of U.S. Total Million Short Tons 1 Trillion Btu Percent of U.S. Total Trillion Btu Percent of U.S. Total 2003 10 59 0.5% 2 6 0.3% 283 291 1.5% 30 616 2.8% 972 1.7% 2004 10 58

  3. Fuel cell integral bundle assembly including ceramic open end seal and vertical and horizontal thermal expansion control

    DOE Patents [OSTI]

    Zafred, Paolo R. (Murrysville, PA); Gillett, James E. (Greensburg, PA)

    2012-04-24

    A plurality of integral bundle assemblies contain a top portion with an inlet fuel plenum and a bottom portion containing a base support, the base supports a dense, ceramic air exhaust manifold having four supporting legs, the manifold is below and connects to air feed tubes located in a recuperator zone, the air feed tubes passing into the center of inverted, tubular, elongated, hollow electrically connected solid oxide fuel cells having an open end above a combustion zone into which the air feed tubes pass and a closed end near the inlet fuel plenum, where the open end of the fuel cells rest upon and within a separate combination ceramic seal and bundle support contained in a ceramic support casting, where at least one flexible cushion ceramic band seal located between the recuperator and fuel cells protects and controls horizontal thermal expansion, and where the fuel cells operate in the fuel cell mode and where the base support and bottom ceramic air exhaust manifolds carry from 85% to all of the weight of the generator.

  4. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Table 10. Sales of natural gas plant liquids production from federal and Indian lands by state/area, FY 2003-14 million barrels State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 0 0 0 0 1 1 1 1 1 1 1 1 Alaska 0 0 0 0 0 0 0 0 - - - 0 Arizona - - - - - - 0 0 0 0 - - Arkansas - - - - - - - - - - - - California 0 0 0 0 0 0 0 0 0 0 0 0 Colorado 1 1 1 1 1 3 5 8 9 11 6 7 Florida - - - - - - - - - - - - Illinois - - - - - - - - - - - - Indiana - - - - - - - - - - - - Kansas 0 0

  5. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    SciTech Connect (OSTI)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Re, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  6. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOE Patents [OSTI]

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  7. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Table 11. Sales of coal production from federal and Indian lands by state/area, FY 2003-14 million short tons State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 0 0 0 0 0 0 1 3 3 2 1 0 Alaska 0 0 0 0 0 0 0 0 0 0 0 0 Arizona 13 13 14 9 9 8 8 8 8 8 8 8 Arkansas 0 0 0 0 0 0 0 0 0 0 0 0 California 0 0 0 0 0 0 0 0 0 0 0 0 Colorado 22 22 25 22 22 23 18 19 19 19 17 17 Florida 0 0 0 0 0 0 0 0 0 0 0 0 Illinois 0 0 0 0 0 0 0 0 0 0 0 0 Indiana 0 0 0 0 0 0 0 0 0 0 0 0 Kansas 0 0 0 0

  8. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Table 8. Sales of crude oil and lease condensate production from federal and Indian lands by state/area, FY 2003-14 million barrels State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 0 0 0 0 0 0 0 0 0 0 0 0 Alaska 4 5 5 3 0 0 0 1 1 0 1 1 Arizona 0 0 0 0 0 0 0 0 0 0 0 0 Arkansas 0 0 0 0 0 0 0 0 0 0 0 0 California 23 21 21 23 24 21 19 19 19 19 19 19 Colorado 4 4 5 6 5 5 5 4 4 5 4 5 Florida 0 - - - - - - - - - - - Illinois 0 0 0 0 0 0 0 0 0 0 0 0 Indiana 0 0 0 0 0 0 0 0 0 0

  9. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Table 9. Sales of natural gas production from federal and Indian lands by state/area, FY 2003-14 billion cubic feet State 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 Alabama 71 53 48 44 36 34 30 32 27 20 21 20 Alaska 35 37 40 35 28 25 24 20 16 16 13 13 Arizona 0 0 0 0 0 0 0 0 0 0 - - Arkansas 7 8 9 10 10 10 15 18 14 12 11 10 California 6 5 5 7 7 7 7 7 10 13 8 8 Colorado 290 348 406 404 412 424 431 425 461 487 469 465 Florida - - - - - - - - - - - - Illinois - - - - - - - - - -

  10. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany

    Broader source: Energy.gov [DOE]

    This environmental assessment (EA) will evaluate the potential environmental impacts of a DOE proposal to accept used nuclear fuel from the Federal Republic of Germany at DOEs Savannah River Site (SRS) for processing and disposition. This used nuclear fuel is composed of kernels containing thorium and U.S.-origin highly enriched uranium (HEU) embedded in small graphite spheres that were irradiated in nuclear reactors used for research and development purposes.

  11. Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)

    SciTech Connect (OSTI)

    Eudy, L.; Chandler, K.

    2010-11-01

    This document describes the fuel cell transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA). This document provides a description of the demonstration sites, funding sources, and data collection activities for fuel cell transit bus evaluations currently planned from FY10 through FY12.

  12. Financial Incentives for Hydrogen and Fuel Cell Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Market Transformation » Financial Incentives for Hydrogen and Fuel Cell Projects Financial Incentives for Hydrogen and Fuel Cell Projects Find information about federal and state financial incentives for hydrogen fuel cell projects. Federal Incentives The Emergency Economic Stabilization Act of 2008 includes tax incentives to help minimize the cost of hydrogen and fuel cell projects. It offers an investment tax credit of 30% for qualified fuel cell property or $3,000/kW of the fuel

  13. NREL: Technology Deployment - Federal Energy Management Program...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    assistance to help federal fleets maximize their use of alternative fuels and compare strategies for reducing fuel use through FEMP's Sustainable Federal Fleets program....

  14. FY16 SBIR Phase II Release 1 Awards Announced: Includes Hydrogen Contaminants Detection, Fuel Cell and Hydrogen Catalysis, and Alkaline Membrane Electrolysis

    Broader source: Energy.gov [DOE]

    The Energy Department has announced the 2016 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase II Release 1 awards, including three projects focused on catalysis for fuel cell and hydrogen production as well as hydrogen contaminants detection.

  15. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Vehicle Resources Alternative Fuel Vehicle Resources Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these alternatives often produce less harmful emissions and contribute to a reduction in petroleum dependence. Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992,

  16. H.R. 5299: A Bill to amend the Internal Revenue Code of 1986 to phase out the tax subsidies for alcohol fuels involving alcohol produced from feedstocks eligible to receive Federal agricultural subsidies. Introduced in the House of Representatives, One Hundred Third Congress, Second Session, November 29, 1994

    SciTech Connect (OSTI)

    1994-12-31

    The report H.R. 5299 is a bill to amend the Internal Revenue Code of 1986 to phase out the tax subsidies of alcohol fuels involving alcohol produced from feedstocks eligible to receive Federal agriculture subsidies. The proposed legislative text is included.

  17. Fossil and synthetic fuels: miscellaneous. Part 1. Hearings before the Subcommittee on Fossil and Synthetic Fuels of the Committee on Energy and Commerce, House of Representatives, Ninety-Seventh Congress, First Session on Extension of IEA antitrust defense authorities, February 26, 1981, H. R. 2166, Department of Transportation authorization request, April 8, 1981, Gasohol usage in federal vehicles, July 30, 1981

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Part I of the hearing record covers testimony relating to the extension of antitrust defense availability to the International Energy Agency (IEA); an authorization request by the Department of Transportation (DOT) to comply with pipeline safety regulations; and the administration's reluctance to promote gasohol use in federal vehicles. The first day's hearing included discussion of H.R. 2166, which extended the IEA authority by amending the Energy Policy and Conservation Act, and the testimony of four witnesses representing federal agencies involved in international affairs. On the second day, three DOT witnesses described pipeline-safety programs, enforcement, and procedures, with emphasis on the transport of liquefied natural gas. On the third day, nine witnesses representing gasohol-producing states, the US Army Equipment Research and Development Command, federal fleet services, and DOE examined the appropriateness and compliance record of Executive Order 12261 mandating gasohol for federally owned or leased vehicles. At issue was the need to convert Midwest grains to fuel at a time when oil is plentiful, the performance of alcohol fuels, and the administration's preference for working through the marketplace. Additional material submitted for the record follows each day's testimony. (DCK)

  18. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  19. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  20. Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?

    Broader source: Energy.gov [DOE]

    The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required.

  1. Optical-Engine Study of a Low-Temperature Combustion Strategy Employing a Dual-Row, Narrow-Included-Angle Nozzle and Early, Direct Injection of Diesel Fuel

    Broader source: Energy.gov [DOE]

    Insight into mechanisms causing observed sharp emissions increase with diesel fuel injection is gained through experiments in an optical engine employing a similar low-temperature combustion strategy of early, direct injection of diesel fuel.

  2. Federal Energy Subsidies | Open Energy Information

    Open Energy Info (EERE)

    Federal Energy Subsidies Jump to: navigation, search Does wind energy receive federal subsidies, and if so how much? Do other forms of energy receive subsidies? Do fossil fuels...

  3. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives » Federal Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local

  6. A DOE EFRC Center 'title' was established at Princeton University and will focus on the science underlying the development of non-petroleum-based fuels, including carbon-neutral biofuels, and their optimal use in transportation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research and Education Opportunities at the Combustion Energy Frontier Research Center The Combustion Energy Frontier Research Center (CEFRC) has been established at Princeton University by the U.S. Department of Energy (DOE). This Center focuses on the science underlying the development of non-petroleum-based fuels, including biofuels, and their optimal use in transportation. Fundamental insights in combustion and fuel chemistry ranging from quantum chemistry to turbulence-chemistry

  7. Study concerning the utilization of the ocean spreading center environment for the conversion of biomass to a liquid fuel. (Includes Appendix A: hydrothermal petroleum genesis). [Supercritical water

    SciTech Connect (OSTI)

    Steverson, M.; Stormberg, G.

    1985-01-01

    This document contains a report on the feasibility of utilizing energy obtained from ocean spreading centers as process heat for the conversion of municipal solid wastes to liquid fuels. The appendix contains a paper describing hydrothermal petroleum genesis. Both have been indexed separately for inclusion in the Energy Data Base. (DMC)

  8. Preparation of the Second Shipment of Spent Nuclear Fuel from the Ustav Jaderneho Vyzkumu Rez (UJV Rez), a.s., Czech Republic to the Russian Federation for Reprocessing - 13478

    SciTech Connect (OSTI)

    Trtilek, Radek; Podlaha, Josef [UJV Rez, a. s., Hlavni 130, 25068 Husinec-Rez (Czech Republic)] [UJV Rez, a. s., Hlavni 130, 25068 Husinec-Rez (Czech Republic)

    2013-07-01

    After more than 50 years of operation of the LVR-15 research reactor operated by the UJV Rez, a. s. (formerly Nuclear Research Institute - NRI), a large amount of the spent nuclear fuel (SNF) of Russian origin has been accumulated. In 2005 UJV Rez, a. s. jointed the Russian Research Reactor Fuel Return (RRRFR) program under the United States (US) - Russian Global Threat Reduction Initiative (GTRI) and started the process of SNF shipment from the LVR-15 research reactor back to the Russian Federation (RF). In 2007 the first shipment of SNF was realized. In 2011, preparation of the second shipment of spent fuel from the Czech Republic started. The experience obtained from the first shipment will be widely used, but some differences must be taken into the account. The second shipment will be realized in 2013 and will conclude the return transport of all, both fresh and spent, high-enriched nuclear fuel from the Czech Republic to the Russian Federation. After the shipment is completed, there will be only low-enriched nuclear fuel on the territory of the Czech Republic, containing maximum of 20% of U-235, which is the conventionally recognized limit between the low- and high-enriched nuclear materials. The experience (technical, organizational, administrative, logistic) obtained from the each SNF shipment as from the Czech Republic as from other countries using the Russian type research reactors are evaluated and projected onto preparation of next shipment of high enriched nuclear fuel back to the Russian Federation. The results shown all shipments provided by the UJV Rez, a. s. in the frame of the GTRI Program have been performed successfully and safely. It is expected the experience and results will be applied to preparation and completing of the Chinese Miniature Neutron Source Reactors (MNSR) Spent Nuclear Fuel Repatriation in the near future. (authors)

  9. Federal Register

    National Nuclear Security Administration (NNSA)

    2479 Federal Register / Vol. 67, No. 86 / Friday, May 3, 2002 / Notices Mariner Document (MMD) transactions. Given the sheer volume of inquiries, the Coast Guard has determined that making available a list of service agents that provide a complete drug test service would be beneficial to mariners. Request for Submissions The Coast Guard wants to identify for mariners those service agents who provide a complete drug test service. A complete drug test service includes the specimen collection,

  10. Federal Register

    National Nuclear Security Administration (NNSA)

    54 Federal Register / Vol. 69, No. 143 / Tuesday, July 27, 2004 / Notices accordance with the comprehensive set of DOE requirements and applicable regulatory requirements that have been established to protect public health and the environment. These requirements encompass a wide variety of areas, including radiation protection, facility design criteria, fire protection, emergency preparedness and response, and operational safety requirements. * Cylinder management activities will be conducted in

  11. Alternatives to traditional transportation fuels: An overview

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

  12. Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation

    SciTech Connect (OSTI)

    Wenzel, Thomas P.

    2010-03-02

    This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

  13. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  14. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  15. Federal Fleet Files, FEMP, Vol. 2, No. 23- December 2009

    SciTech Connect (OSTI)

    2009-12-08

    December 2009 update of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  16. Federal Fleet Files, FEMP, Vol. 2, No. 9 - July 2010

    SciTech Connect (OSTI)

    2010-07-06

    July 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  17. Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010

    SciTech Connect (OSTI)

    2010-11-12

    November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  18. Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010

    SciTech Connect (OSTI)

    2010-06-10

    June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  19. Federal Fleet Files, FEMP, Vol. 2, No. 4 - January 2010

    SciTech Connect (OSTI)

    2010-01-05

    January 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  20. Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010

    SciTech Connect (OSTI)

    2010-10-19

    October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  1. Federal Fleet Files, FEMP, Vol. 2, No. 10 - September 2010

    SciTech Connect (OSTI)

    2010-09-07

    September 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  2. Federal Fleet Files, FEMP, Vol. 2, No. 5 - March 2010

    SciTech Connect (OSTI)

    2010-03-02

    March 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  3. Federal Fleet Files: Vol. , No. 1 - October 2009

    SciTech Connect (OSTI)

    2009-10-04

    October 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  4. Federal Fleet Files, FEMP, Vol. 1, No. 3 - July 2009

    SciTech Connect (OSTI)

    2009-07-24

    July 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  5. Federal Energy and Water Management Award Winner 22nd Operations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    22nd Operations Group Fuel Efficiency Office Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office PDF icon fewm13mcconnellafbhighres.pdf ...

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Local Examples Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Search Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    About the Data Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Summary Tables Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples Summary

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Search Federal State Local Examples

  15. Applying Section 404(r) of the Clean Water Act to Federal Projects Which Involve the Discharge of Dredged or Fill Materials into Waters of the U.S., Including Wetlands (CEQ, 1980)

    Broader source: Energy.gov [DOE]

    This Council on Environmental Quality memorandum establishes procedures for coordinating agency views and formulating Administration policy prior to requesting Congressional action on projects that may be subject to Section 404(r) of the Clean Water Act (Federal Water Pollution Control Act, as amended).

  16. WIPP Documents - Federal Regulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Regulations 40 CFR Part 191 Environmental radiation protection standards for management and disposal of spent nuclear fuel, high-level and transuranic radioactive wastes. 40 CFR Part 194 Criteria for the certification and re-certification of the Waste Isolation Pilot Plant's compliance with the 40 CFR Part 191 disposal regulations.

  17. Webinar: Procuring Fuel Cells for Stationary Power: A Guide for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers Webinar: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision ...

  18. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Definition AFVs include vehicles propelled to a significant extent by electricity from a battery that has a capacity of at least four kilowatt-hours and can be recharged from an external source and vehicles propelled solely by compressed natural gas, hydrogen, or propane and that meet or exceed Tier 2, Bin 2 federal exhaust emissions standards. (Reference Nevada Revised Statutes 484A.196 through 484A.197

  20. Federal Buildings Supplemental Survey 1993

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Consumption and Expenditures for Sum of Major Fuels, Electricity, and Natural Gas in FBSS Buildings in Federal Region 3, 1993 Sum of Sum of Major Major Electricity Natural...

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the United States to contain a minimum volume of renewable fuels. The RFS originated with the Energy Policy Act of 2005 and was expanded and extended by the Energy Independence and Security Act of 2007 (EISA). The RFS requires renewable fuel to be blended into transportation fuel in increasing amounts each year, escalating to 36 billion

  2. Federal Fleet Files: Vol. 1, No. 2 - June 2009

    SciTech Connect (OSTI)

    2009-06-12

    June 2009 issue of the FEMP Federal Fleet Files monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  3. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

  4. Determining Price Reasonableness in Federal ESPCs

    SciTech Connect (OSTI)

    Shonder, J.A.

    2005-03-08

    This document reports the findings and implementation recommendations of the Price Reasonableness Working Group to the Federal ESPC Steering Committee. The working group was formed to address concerns of agencies and oversight organizations related to pricing and fair and reasonable price determination in federal energy savings performance contracts (ESPCs). This report comprises the working group's recommendations and is the proposed draft of a training curriculum on fair and reasonable price determination for users of federal ESPCs. The report includes: (1) A review of federal regulations applicable to determining price reasonableness of federal ESPCs (section 2), (2) Brief descriptions of the techniques described in Federal Acquisition Regulations (FAR) 15.404-1 and their applicability to ESPCs (section 3), and (3) Recommended strategies and procedures for cost-effectively completing price reasonableness determinations (sections 4). Agencies have struggled with fair and reasonable price determinations in their ESPCs primarily because this alternative financing vehicle is relatively new and relatively rare in the federal sector. The methods of determining price reasonableness most familiar to federal contracting officers (price competition based on the government's design and specifications, in particular) are generally not applicable to ESPCs. The regulatory requirements for determining price reasonableness in federal ESPCs have also been misunderstood, as federal procurement professionals who are inexperienced with ESPCs are further confused by multiple directives, including Executive Order 13123, which stresses life-cycle cost-effectiveness. Uncertainty about applicable regulations and inconsistent practice and documentation among agencies have fueled claims that price reasonableness determinations have not been sufficiently rigorous in federal ESPCs or that the prices paid in ESPCs are generally higher than the prices paid for similar goods and services obtained through conventional procurements. While claims of excessive prices are largely unsubstantiated and based on anecdotal evidence, the perception that there is a problem is shared by many in the ESPC community and has been noted by auditors and oversight organizations. The Price Reasonableness Working Group determined that a more formal emphasis on FAR 15.404-1 in the ESPC process could remove much of the doubt about price reasonableness determinations. The working group's recommended consensus policy on price reasonableness stresses the price analysis techniques described in the FAR that are applicable to ESPCs and includes guidance for agencies use of these techniques in determining price reasonableness for their ESPC delivery orders. The recommended policy and guidance, if communicated to federal ESPC stakeholders, can ensure that agencies will comply with the FAR in awarding ESPCs, obtain fair and reasonable prices and best value for the government, and follow procedures that provide auditable documentation of due diligence in price reasonableness determinations.

  5. Matching National Laboratory Needs with Energy Efficient Fuel Cells

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office, Federal Energy Management Program, and U.S. Fuel Cell Council hosted a fuel cell meeting on September 2021, 2007.

  6. Strengthening Federal

    Energy Savers [EERE]

    Jan. 24 / Administration of George W. Bush, 2007 Executive Order 13423- Strengthening Federal Environmental, Energy, and Transportation Management January 24, 2007 By the authority vested in me as President by the Constitution and the laws of the United States of America, and to strengthen the environmental, energy, and transpor- tation management of Federal agencies, it is hereby ordered as follows: Section 1. Policy. It is the policy of the United States that Federal agencies conduct their

  7. Federal Register

    National Nuclear Security Administration (NNSA)

    8646 Federal Register / Vol. 66, No. 143 / Wednesday, July 25, 2001 / Notices the Director of OMB provide interested Federal agencies and the public an early opportunity to comment on information collection requests. The Office of Management and Budget (OMB) may amend or waive the requirement for public consultation to the extent that public participation in the approval process would defeat the purpose of the information collection, violate State or Federal law, or substantially interfere with

  8. Federal Register

    National Nuclear Security Administration (NNSA)

    9906 Federal Register / Vol. 67, No. 251 / Tuesday, December 31, 2002 / Notices provide an MMAP authorization for all fishers who participate in an integrated Category I or II fishery, provided that the fisher holds a valid Federal fishing permit or license for the affected regulated fishery. A fisher who participates in state and/ or Federal fisheries not yet integrated with the MMAP registration system must continue to send in the registration form to NMFS. Dated: December 16, 2002. Rebecca

  9. Federal Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events Skip navigation links Residential Commercial Industrial Federal Agriculture About five percent of BPA's total electric supply goes to power facilities around...

  10. Natural Gas Delivered to Consumers in North Carolina (Including...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in North Carolina (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  11. Distributed Energy Resources at Federal Facilities. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    SciTech Connect (OSTI)

    Pitchford, P.

    2001-07-16

    This two-page overview describes how the use of distributed energy resources at Federal facilities is being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Regulated Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 7 results Federal Fleets -

  13. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 54 results Fuel Trends -

  14. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration

    Broader source: Energy.gov [DOE]

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation’s Federal Transit Administration (FTA).

  15. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix

    Broader source: Energy.gov [DOE]

    This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation’s Federal Transit Administration (FTA).

  16. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  17. Federal Register

    National Nuclear Security Administration (NNSA)

    8014 Federal Register / Vol. 61, No. 249 / Thursday, December 26, 1996 / Notices SUMMARY: The Department of Defense (DoD) announces a meeting of the Defense Partnership Council. Notice of this meeting is required under the Federal Advisory Committee Act. This meeting is open to the public. The topics to be covered are the Federal Managers Association (FMA) membership on the Council and a discussion of general DoD Human Resources initiatives. DATES: The meeting is to be held January 22, 1997, in

  18. The role of the Federal Relighting Initiative in emission controls

    SciTech Connect (OSTI)

    Nicholls, A.K.; Purcell, C.W.; Friedman, J.R.

    1992-10-01

    The Department of Energy`s (DOE) Federal Relighting Initiative (FRI), under the Federal Energy Management Program (FEMP), has developed a comprehensive process to assist federal agencies in meeting the nation`s energy mandate. This mandate states that federal facilities must use 20% less energy by the year 2000, based on 1985 consumption levels. Because lighting accounts for about 40% of total federal electricity consumption, the FRI was conceived to help reduce energy use in this important area while improving lighting quality and increasing productivity through relighting. Selected federal rules and regulations provide guidance on the types of energy efficiency techniques required, life-cycle costing methods and lighting levels that should be employed to achieve the federal mandate. Although the central focus of this paper is on the environment, this paper takes the perspective that the energy efficiency gains achieved through the FRI would produce both environmental and economic benefits for the United States. For example, improvements in energy efficiency would reduce electricity demand, and would consequently reduce the emissions associated with fossil fuel combustion for power production. These reduced emissions include carbon dioxide, which is associated with the potential for global climate change, and heavy metals, which pose a potential health threat to humans and aquatic ecosystems. Economic benefits of the FRI would include reduced federal expenditures on energy or, possibly, avoiding new power plant construction.This paper begins with a brief overview of the FRI process. Next, current lighting energy use in federal buildings is evaluated and the potential future energy savings achievable through full implementation of the FRI are estimated. The paper then translates these energy savings into avoided emissions of carbon dioxide and heavy metals and into avoided fuel expenditures.

  19. The role of the Federal Relighting Initiative in emission controls

    SciTech Connect (OSTI)

    Nicholls, A.K.; Purcell, C.W.; Friedman, J.R.

    1992-10-01

    The Department of Energy's (DOE) Federal Relighting Initiative (FRI), under the Federal Energy Management Program (FEMP), has developed a comprehensive process to assist federal agencies in meeting the nation's energy mandate. This mandate states that federal facilities must use 20% less energy by the year 2000, based on 1985 consumption levels. Because lighting accounts for about 40% of total federal electricity consumption, the FRI was conceived to help reduce energy use in this important area while improving lighting quality and increasing productivity through relighting. Selected federal rules and regulations provide guidance on the types of energy efficiency techniques required, life-cycle costing methods and lighting levels that should be employed to achieve the federal mandate. Although the central focus of this paper is on the environment, this paper takes the perspective that the energy efficiency gains achieved through the FRI would produce both environmental and economic benefits for the United States. For example, improvements in energy efficiency would reduce electricity demand, and would consequently reduce the emissions associated with fossil fuel combustion for power production. These reduced emissions include carbon dioxide, which is associated with the potential for global climate change, and heavy metals, which pose a potential health threat to humans and aquatic ecosystems. Economic benefits of the FRI would include reduced federal expenditures on energy or, possibly, avoiding new power plant construction.This paper begins with a brief overview of the FRI process. Next, current lighting energy use in federal buildings is evaluated and the potential future energy savings achievable through full implementation of the FRI are estimated. The paper then translates these energy savings into avoided emissions of carbon dioxide and heavy metals and into avoided fuel expenditures.

  20. Federally Led Accident Investigation Reports | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federally Led Accident Investigation Reports Federally Led Accident Investigation Reports Includes Pre-March 2011 Type A Reports June 1, 1999 Type A Accident Investigation Board...

  1. Biogas Markets and Federal Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets and Federal Policy Biogas Markets and Federal Policy National policy and legislative outlook for biogas and fuel cells. Presented by Patrick Serfass, American Biogas Council, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado. PDF icon june2012_biogas_workshop_serfass.pdf More Documents & Publications State Level Incentives for Biogas-Fuel Cell Projects Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells

  2. Federal Utility Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

  3. Matching Government Needs with Energy Efficient Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Government Needs with Energy Efficient Fuel Cells Matching Government Needs with Energy Efficient Fuel Cells The Fuel Cell Technologies Office, Federal Energy Management Program, and U.S. Fuel Cell Council hosted a fuel cell meeting on April 26, 2007. This meeting brought together federal facility managers and fuel cell manufacturers to discuss the federal government's early adoption of commercially available fuel cell systems. The group discussed niche markets such as emergency

  4. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State & Alt Fuel Providers All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 6 results

  5. Federal Fleet Files, FEMP, Vol. 2, No. 3 - December 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01

    December 2009 update of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  6. Federal Fleet Files, FEMP, Vol. 2, No. 9 - July 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    July 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  7. Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  8. Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  9. Federal Fleet Files, FEMP, Vol. 2, No. 10 - September 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    September 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  10. Federal Fleet Files, FEMP, Vol. 2, No. 4 - January 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    January 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  11. Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  12. Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  13. Federal Fleet Files, FEMP, Vol. 2, No. 5 - March 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    March 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  14. Federal Fleet Files, FEMP, Vol. 2, No. 1 - October 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    October 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  15. Federal Fleet Files, FEMP, Vol. 1, No. 3 - July 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    July 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  16. Federal Electronics Challenge Gold Award

    Broader source: Energy.gov [DOE]

    On June 18th, DOE Headquarters was presented the Federal Electronics Challenge Gold Award for exemplary performance in Green Computing, including green procurement, energy efficient operations and...

  17. Federal Financial Report

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    FEDERAL FINANCIAL REPORT (Follow form instructions) 1. Federal Agency and Organizational Element 2. Federal Grant or Other Identifying Number Assigned by Federal Agency Page of to ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate is in effect during months ethanol fuel blends must be sold, transferred, or used to operate motor vehicles to reduce carbon monoxide emissions and attain federal or state air quality standards. (Reference Alaska Statutes 43.40.01

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Renewable Fuel Sales Volume Goals The Wisconsin Legislature sets goals for minimum annual renewable fuel sales volumes based on annual renewable fuel volumes required under the federal Renewable Fuel Standard. On an annual basis, the Wisconsin Department of Agriculture, Trade and Consumer Protection (DATCP), in cooperation with the Department of Commerce, the Department of Revenue, and the Energy Office, must determine whether the annual goals for the previous year were met. If the goals were

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a...

  2. Federal Register

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    65541 Vol. 79, No. 214 Wednesday, November 5, 2014 NUCLEAR REGULATORY COMMISSION 10 CFR Part 50 [NRC-2014-0238] RIN 3150-AJ48 Definition of a Utilization Facility AGENCY: Nuclear Regulatory Commission. ACTION: Direct final rule; correction. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is correcting the docket identification number and Regulation Identifier Number (RIN) for a Direct Final Rule published in the Federal Register (FR) on October 17, 2014, to amend the NRC's regulations to

  3. Federal Register

    National Nuclear Security Administration (NNSA)

    5551 Federal Register / Vol. 61, No. 241 / Friday, December 13, 1996 / Notices cash prices for fresh pork bellies is intended to reflect changes in cash market practices. The CME indicates, specifically, that the quantity of frozen pork bellies being placed into cold storage is declining because more pork bellies are being utilized as fresh pork bellies. The CME notes that, as a result of this trend, the demand for pork bellies is becoming less seasonal and is tending to follow more closely the

  4. Federal Register

    National Nuclear Security Administration (NNSA)

    10 Federal Register / Vol. 63, No. 150 / Wednesday, August 5, 1998 / Notices and Hopewell Townships, Mercer County, New Jersey, to replace an existing deteriorating pipeline stream crossing. The new steel pipeline crossing will be 14 inches in diameter and approximately 250 feet long, and will be excavated four feet under the existing stream bed, at a point approximately 1,500 feet west of the intersection of Jacobs Creek and Bear Tavern Roads. The pipeline crossing is part of maintenance work

  5. Federal Register

    National Nuclear Security Administration (NNSA)

    2985 Federal Register / Vol. 65, No. 251 / Friday, December 29, 2000 / Notices collection; and (6) Reporting and/or Recordkeeping burden. OMB invites public comment. The Department of Education is especially interested in public comment addressing the following issues: (1) Is this collection necessary to the proper functions of the Department; (2) will this information be processed and used in a timely manner; (3) is the estimate of burden accurate; (4) how might the Department enhance the

  6. Notice of Proposed Rulemaking, Federal Register, 75 FR 63404...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    433 and 435, October 15, 2010 Document details the notice of proposed rulemaking for Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

  7. Proposed Rule Correction, Federal Register, 75 FR 66008, October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 27, 2010 Document displays a correction to the notice of proposed rulemaking for Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

  8. Federal Interagency Geothermal Activities

    SciTech Connect (OSTI)

    Anderson, Arlene; Prencipe, Loretta; Todaro, Richard M.; Cuyler, David; Eide, Elizabeth

    2011-06-01

    This collaborative document describes the roles and responsibilities of key Federal agencies in the development of geothermal technologies including the U.S. Department of Energy (DOE); the U.S. Department of Agriculture (USDA), including the U.S. Forest Service; the U.S. Department of Interior (DOI), including the United States Geological Survey (USGS) and Bureau of Land Management (BLM); the Environmental Protection Agency (EPA); and the Department of Defense (DOD).

  9. Federal Register

    National Nuclear Security Administration (NNSA)

    989 Federal Register / Vol. 67, No. 173 / Friday, September 6, 2002 / Notices 1 The only exception to this decision was the Sandia National Laboratory in New Mexico, which will ship its TRU waste to the Los Alamos National Laboratory for disposal preparation and storage before disposal at WIPP. SANDEL, E. A. MS. SAUL, E. L. MR. SCHAEFER, J. C. MR. SCHAEFER JR, W. J. MR. SCHNEIDER, P. A. MR. SCHREGARDOUS, D. R. MR. SCHUBERT, D. CAPT SHEA, R. M. MAJGEN SHECK, E. E. MR. SHEPHARD, M. R. MS. SIMON,

  10. Federal Register

    National Nuclear Security Administration (NNSA)

    49 Federal Register / Vol. 69, No. 143 / Tuesday, July 27, 2004 / Notices halseypj@oro.doe.gov or check the Web site at www.oakridge.doe.gov/em/ssab. SUPPLEMENTARY INFORMATION: Purpose of the Board: The purpose of the Board is to make recommendations to DOE in the areas of environmental restoration, waste management, and related activities. Tentative Agenda 8 a.m.-Introductions, overview of meeting agenda and logistics (Dave Mosby) 8:15 a.m.-Past year evaluation-Board and stakeholder survey

  11. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  12. Federal Energy and Water Management Awards

    Broader source: Energy.gov [DOE]

    Fact sheet for the Federal Energy and Water Management Awards, including history, legislative drivers, goals and objectives, and event details.

  13. Bootstrapping a Sustainable North American PEM Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference? The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. ...

  14. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Policy Act of 2005 Enacted August 8, 2005 The table below provides a summary of the Energy Policy Act (EPAct) of 2005 (Public Law 109-58) provisions related to alternative fuels and vehicles, air quality, fuel efficiency, and other transportation topics. Note that although legislation authorizes funding for activities, the funds still must be appropriated through a separate federal budgeting process. For more information, visit the EPAct website. Reference Description Section 701 Federal Fleet

  16. Federal Fleet Files, FEMP, Vol. 1, No. 2 - June 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    June 2009 issue of the FEMP Federal Fleet Files monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  17. Proposed Rule Correction, Federal Register, 75 FR 66008, October 27, 2010

    Broader source: Energy.gov [DOE]

    Document displays a correction to the notice of proposed rulemaking for Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings, which was published in the Federal Register on October 15, 2010.

  18. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 9 results Petroleum Use Reduction -

  19. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumption and Efficiency All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 15 results

  20. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Petroleum Use Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results

  1. Federal Regulations | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Regulations Federal Regulations keyboard-621831_960_720.jpg Cybersecurity Atomic Energy Act of 1954 (pdf) Computer Fraud and Abuse Act of 1986 Electronic Communications Privacy Act of 1986 Federal Information Security Management Act of 2002 (Title III of E-Gov) Homeland Security Act of 2002 (includes Cyber Security Act of 2002 and Critical Infrastructure Act of 2002) Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism Act Cyber

  2. THE MISSION AND ACCOMPLISHMENTS FROM DOE’S FUEL CYCLE RESEARCH AND DEVELOPMENT (FCRD) ADVANCED FUELS CAMPAIGN

    SciTech Connect (OSTI)

    J. Carmack; L. Braase; F. Goldner

    2015-09-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.

  3. Federal Methanol Fleet Project final report

    SciTech Connect (OSTI)

    West, B.H.; McGill, R.N.; Hillis, S.L.; Hodgson, J.W.

    1993-03-01

    The Federal Methanol Fleet Project concluded with the termination of data collection from the three fleet sites in February 1991. The Lawrence Berkeley Laboratory (LBL) completed five years of operation, Argonne National Laboratory (ANL) completed its fourth year in the project, and Oak Ridge National Laboratory (ORNL) completed its third. Twenty of the thirty-nine vehicles in the fleet were powered by fuel methanol (typically M85, 85 % methanol, 15 % unleaded gasoline, although the LBL fleet used M88), and the remaining control vehicles were comparable gasoline vehicles. Over 2.2 million km (1.4 million miles) were accumulated on the fleet vehicles in routine government service. Data collected over the years have included vehicle mileage and fuel economy, engine oil analysis, emissions, vehicle maintenance, and driver acceptance. Fuel economies (on an energy basis) of the methanol and gasoline vehicles of the same type were comparable throughout the fleet testing. Engine oil analysis has revealed higher accumulation rates of iron and other metals in the oil of the methanol vehicles, although no significant engine damage has been attributed to the higher metal content. Vehicles of both fuel types have experienced degradation in their emission control systems, however, the methanol vehicles seem to have degraded their catalytic converters at a higher rate. The methanol vehicles have required more maintenance than their gasoline counterparts, in most cases, although the higher levels of maintenance cannot be attributed to ``fuel-related`` repairs. According to the daily driver logs and results from several surveys, drivers of the fleet vehicles at all three sites were generally satisfied with the methanol vehicles.

  4. Federal Methanol Fleet Project final report

    SciTech Connect (OSTI)

    West, B.H.; McGill, R.N. ); Hillis, S.L.; Hodgson, J.W. )

    1993-03-01

    The Federal Methanol Fleet Project concluded with the termination of data collection from the three fleet sites in February 1991. The Lawrence Berkeley Laboratory (LBL) completed five years of operation, Argonne National Laboratory (ANL) completed its fourth year in the project, and Oak Ridge National Laboratory (ORNL) completed its third. Twenty of the thirty-nine vehicles in the fleet were powered by fuel methanol (typically M85, 85 % methanol, 15 % unleaded gasoline, although the LBL fleet used M88), and the remaining control vehicles were comparable gasoline vehicles. Over 2.2 million km (1.4 million miles) were accumulated on the fleet vehicles in routine government service. Data collected over the years have included vehicle mileage and fuel economy, engine oil analysis, emissions, vehicle maintenance, and driver acceptance. Fuel economies (on an energy basis) of the methanol and gasoline vehicles of the same type were comparable throughout the fleet testing. Engine oil analysis has revealed higher accumulation rates of iron and other metals in the oil of the methanol vehicles, although no significant engine damage has been attributed to the higher metal content. Vehicles of both fuel types have experienced degradation in their emission control systems, however, the methanol vehicles seem to have degraded their catalytic converters at a higher rate. The methanol vehicles have required more maintenance than their gasoline counterparts, in most cases, although the higher levels of maintenance cannot be attributed to fuel-related'' repairs. According to the daily driver logs and results from several surveys, drivers of the fleet vehicles at all three sites were generally satisfied with the methanol vehicles.

  5. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 1 result Generated_thumb20140804-6137-1paywcu AFV

  6. Natural Gas Delivered to Consumers in Texas (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Texas (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug...

  7. Natural Gas Delivered to Consumers in New Mexico (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexico (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to Consumers in New Mexico (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul...

  8. RERTR Fuel Developmemt and Qualification Plan

    SciTech Connect (OSTI)

    Dan Wachs

    2007-01-01

    In late 2003 it became evident that U-Mo aluminum fuels under development exhibited significant fuel performance problems under the irradiation conditions required for conversion of most high-powered research reactors. Solutions to the fuel performance issue have been proposed and show promise in early testing. Based on these results, a Reduced Enrichment Research and Test Reactor (RERTR) program strategy has been mapped to allow generic fuel qualification to occur prior to the end of FY10 and reactor conversion to occur prior to the end of FY14. This strategy utilizes a diversity of technologies, test conditions, and test types. Scoping studies using miniature fuel plates will be completed in the time frame of 2006-2008. Irradiation of larger specimens will occur in the Advanced Test Reactor (ATR) in the United States, the Belgian Reactor-2 (BR2) reactor in Belgium, and in the OSIRIS reactor in France in 2006-2009. These scoping irradiation tests provide a large amount of data on the performance of advanced fuel types under irradiation and allow the down selection of technology for larger scale testing during the final stages of fuel qualification. In conjunction with irradiation testing, fabrication processes must be developed and made available to commercial fabricators. The commercial fabrication infrastructure must also be upgraded to ensure a reliable low enriched uranium (LEU) fuel supply. Final qualification of fuels will occur in two phases. Phase I will obtain generic approval for use of dispersion fuels with density less than 8.5 g-U/cm3. In order to obtain this approval, a larger scale demonstration of fuel performance and fabrication technology will be necessary. Several Materials Test Reactor (MTR) plate-type fuel assemblies will be irradiated in both the High Flux Reactor (HFR) and the ATR (other options include the BR2 and Russian Research Reactor, Dmitrovgrad, Russia [MIR] reactors) in 2008-2009. Following postirradiation examination, a report detailing very-high density fuel behavior will be submitted to the U.S. Nuclear Regulatory Commission (NRC). Assuming acceptable fuel behavior, it is anticipated that NRC will issue a Safety Evaluation Report granting generic approval of the developed fuels based on the qualification report. It is anticipated that Phase I of fuel qualification will be completed prior to the end of FY10. Phase II of the fuel qualification requires development of fuels with density greater than 8.5 g-U/cm3. This fuel is required to convert the remaining few reactors that have been identified for conversion. The second phase of the fuel qualification effort includes both dispersion fuels with fuel particle volume loading on the order of 65 percent, and monolithic fuels. Phase II presents a larger set of technical unknowns and schedule uncertainties than phase I. The final step in the fuel qualification process involves insertion of lead test elements into the converting reactors. Each reactor that plans to convert using the developed high-density fuels will develop a reactor specific conversion plan based upon the reactor safety basis and operating requirements. For some reactors (FRM-II, High-Flux Isotope Reactor [HFIR], and RHF) conversion will be a one-step process. In addition to the U.S. fuel development effort, a Russian fuel development strategy has been developed. Contracts with Russian Federation institutes in support of fuel development for Russian are in place.

  9. Federal Activities in the Bioeconomy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Zia Haq, Department of Energy Federal Activities in the Bioeconomy 2 DOE Joins Farm to Fly 2.0 * We appreciate the hard work in approving alternative fuels and commitment to sustainable growth made by the aviation industry. * DOE is actively committed to accelerating the adoption of alternative fuels by this market. * In 2013, USDA and FAA made a commitment to the aviation industry to help meet their goals with the Farm to Fly 2.0 agreement. This effort seeks to enable the use of commercially

  10. Creating an Energy Awareness Campaign: A Handbook for Federal Energy

    Office of Environmental Management (EM)

    Managers | Department of Energy Creating an Energy Awareness Campaign: A Handbook for Federal Energy Managers Creating an Energy Awareness Campaign: A Handbook for Federal Energy Managers Federal Energy Management Program handbook describes how federal energy manager can start and manage an energy awareness campaign to reduce energy, water, and fuel consumption in agencies. PDF icon Creating an Energy Awareness Campaign: A Handbook for Federal Energy Managers More Documents &

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Purchase and Pricing Agreement Requirements The Colorado state fleet and the Colorado Department of Transportation (CDOT) must purchase natural gas vehicles (NGVs) where natural gas fueling is available or planned, whenever possible. Where NGVs are not viable options, other alternative fuel vehicles (AFVs) such as plug-in electric, hybrid electric, and propane vehicles, must be considered. All new vehicles purchased must be either alternatively fueled or exceed federal Corporate Average

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel and Renewable Diesel Definitions Biodiesel is defined as the monoalkyl esters of long chain fatty acids derived from plant or animals that meet the registration requirements for fuels and fuel additives established in Section 211 of the Clean Air Act, Title 42 of the U.S. Code of Federal Regulations, section 7545, and the requirements of ASTM D6751. Renewable diesel is defined as diesel fuel derived from biomass using a thermal depolymerization process that meets the registration

  13. California and Connecticut: National Fuel Cell Bus Programs Drive Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Higher | Department of Energy Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August 21, 2013 - 12:00am Addthis In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses. During this study-€the National Fuel Cell Bus

  14. Liquid Fuels Taxes and Credits (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01

    Provides a review of the treatment of federal fuels taxes and tax credits in Annual Energy Outlook 2010.

  15. Exploring Ways to Standardize Federal Energy Contracts

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers ways to standardize federal energy contracts and initial findings, including savings calculations, assurances and guarantees, equipment performance standards, pricing, and more.

  16. Vehicle Technologies Office: Federal Laboratory Consortium Excellence in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Transfer Awards | Department of Energy Federal Laboratory Consortium Excellence in Technology Transfer Awards Vehicle Technologies Office: Federal Laboratory Consortium Excellence in Technology Transfer Awards 2011 Laser-Induced Fluorescence Fiber-Optic Measurement of Fuel in Oil (Oak Ridge National Laboratory). Oak Ridge National Laboratory's Laser-Induced Fluorescence Fiber-Optic Measurement of Fuel in Oil technology received the Federal Laboratory Consortium Award for

  17. Federal Energy Management Program Report Template | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy Management Program Report Template Federal Energy Management Program Report Template Template to create reports for the Federal Energy Management Program (FEMP) PDF icon 53483.pdf More Documents & Publications DOE Fuel Cell Subprogram (Presentation) Testing and Validation of Vehicle to Grid Communication Standards Risk Management Tool Attributes:

  18. Fuel Cell Technologies Office American Energy and Manufacturing Competitiveness Parternship: Fuel Cell Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2/19/2013 eere.energy.gov Fuel Cell Technologies Office American Energy & Manufacturing Competitiveness Partnership http://www.aemcsummit.compete.org/ Fuel Cell Manufacturing Dr. Sunita Satyapal Director, Fuel Cell Technologies Office Dr. Nancy Garland Technology Development Manager, Manufacturing R&D, Fuel Cell Technologies Office 2 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov The Future of Fuel Cell Manufacturing Panel Session * Federal program: DOE Fuel

  19. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The laboratory studies have included work with a Navistar V-8 turbodiesel engine, demonstration of engine operation on DME-diesel blends and instrumentation for evaluating fuel properties. The field studies have involved performance, efficiency and emissions measurements with the Champion Motorcoach ''Defender'' shuttle bus which will be converted to DME-fueling. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have completed engine combustion studies on DME-diesel blends up to 30 wt% DME addition.

  20. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

    1994-01-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

  1. Fuel transfer system

    DOE Patents [OSTI]

    Townsend, H.E.; Barbanti, G.

    1994-03-01

    A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

  2. NREL: Transportation Research - Fuels Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Performance Photo of a man working with laboratory equipment. NREL fuel performance chemists evaluate a broad range of performance criteria, including storage stability....

  3. UESC Energy Solutions for Federal Agencies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solutions for Federal Agencies UESC Energy Solutions for Federal Agencies This presentation includes an overview of UESC strategies and services by Pepco Energy Services....

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Definition - Internal Revenue Code The Internal Revenue Service (IRS) defines alternative fuels as liquefied petroleum gas (propane), compressed natural gas, liquefied natural gas, liquefied hydrogen, liquid fuel derived from coal through the Fischer-Tropsch process, liquid hydrocarbons derived from biomass, and P-Series fuels. Biodiesel, ethanol, and renewable diesel are not considered alternative fuels by the IRS. While the term "hydrocarbons" includes liquids that

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Grants As part of the Delaware Clean Transportation Incentive Program, the Delaware Department of Natural Resources and Environmental Control (DNREC) provides grant funding for public and private alternative fueling stations, including DC fast electric vehicle supply equipment (EVSE), natural gas, propane, and hydrogen fueling infrastructure. The grant funds 75% of the cost of public access fueling infrastructure and 50% of the cost of private access fueling

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Residential Compressed Natural Gas (CNG) Fueling Infrastructure Rebate The Nebraska Energy Office (NEO) offers rebates for qualified CNG fueling infrastructure that is installed at a residence after January 4, 2016. The rebate amount is 50% of the cost of the fueling infrastructure, up to $2,500 for each installation. Qualified fueling infrastructure includes new dispensers certified for use with CNG from a private home or residence for non-commercial use. Fueling infrastructure is not eligible

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit For tax years beginning before January 1, 2020, a tax credit is available for up to 75% of the cost of installing commercial alternative fueling infrastructure. Eligible alternative fuels include natural gas, propane, and electricity. The infrastructure must be new and must not have been previously installed or used to fuel alternative fuel vehicles. A tax credit is also available for up to 50% of the cost of installing a residential compressed natural gas

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a variety of alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new AFVs; the conversion of conventional vehicles to operate on alternative fuels; and the construction or purchase of fueling stations or equipment. The maximum loan amount is $750,000 per borrower, and the

  10. Vehicle and Fuel Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Fuel Use Vehicle and Fuel Use Vehicle and Fuel Use Mission The team evaluates and incorporates the requirements for vehicle and fuel use, as deemed appropriate for LM operations and approved by LM, as defined in: Executive Order (EO) 13693, Planning for Federal Sustainability in the Next Decade, and DOE Order 436.1, Departmental Sustainability The team advocates natural resource sustainability by evaluating vehicle and fuel use. Scope The team evaluates vehicle and fuel-use goals,

  11. Renewable Fuel Standards Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuel Standards Resources Renewable Fuel Standards Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum reduction path as an alternative to the mandate. Find renewable fuel standards resources. State Clean Energy Practices: Renewable Fuel Standards Understanding and Informing the Policy Environment: State-Level Renewable Fuel Standards.

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Stations All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Arra-thumb ARRA

  13. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Production All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 16 results Biofuelsatlas BioFuels Atlas

  14. An Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... needed for the fueling infrastructure. "This new project brings important federal know-how and resources to accelerate improvements in refueling infrastructure that support the ...

  15. Notices and Rules Related to Federal Energy Management | Department of

    Energy Savers [EERE]

    Energy Laws & Requirements » Notices and Rules Related to Federal Energy Management Notices and Rules Related to Federal Energy Management The U.S. Department of Energy (DOE) is required by law to establish and periodically update mandatory federal energy-efficiency requirements. DOE's Federal Energy Management Program (FEMP) issues notices and rules related to federal energy management, which include new federal commercial and residential buildings, federal procurement of

  16. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  17. Fuel cells and fuel cell catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Rice, Cynthia A.; Waszczuk, Piotr; Wieckowski, Andrzej

    2006-11-07

    A direct organic fuel cell includes a formic acid fuel solution having between about 10% and about 95% formic acid. The formic acid is oxidized at an anode. The anode may include a Pt/Pd catalyst that promotes the direct oxidation of the formic acid via a direct reaction path that does not include formation of a CO intermediate.

  18. Emissions from Buses with DDC 6V92 Engines Using Synthetic Diesel Fuel

    SciTech Connect (OSTI)

    Paul Norton; Keith Vertin; Nigel N. Clark; Donald W. Lyons; Mridul Gautam; Stephen Goguen; James Eberhardt

    1999-05-03

    Synthetic diesel fuel can be made from a variety of feedstocks, including coal, natural gas and biomass. Synthetic diesel fuels can have very low sulfur and aromatic content, and excellent autoignition characteristics. Moreover, synthetic diesel fuels may also economically competitive with California diesel fuel if .roduced in large volumes. Previous engine laboratory and field tests using a heavy-duty chassis dynamometer indicate that synthetic diesel fuel made using the Fischer-Tropsch (F-T) catalytic conversion process is a promising alternative fuel, because it can be used in unmodified diesel engines, and can reduce exhaust emissions substantially. The objective of this study was a preliminary assessment of the emissions from older model transit operated on Mossgas synthetic diesel fuel. The study compared emissions from transit buses operating on Federal no. 2 Diesel fuel, Mossgas synthetic diesel (MGSD), and a 50/50 blend of the two fuels. The buses were equipped with unmodified Detroit Diesel 6V92 2-stroke diesel engines. Six 40-foot buses were tested. Three of the buses had recently rebuilt engines and were equipped with an oxidation catalytic converter. Vehicle emissions measurements were performed using West Virginia University's unique transportable chassis dynamometer. The emissions were measured over the Central Business District (CBD) driving cycle. The buses performed well on both neat and blended MGSD fuel. Three buses without catalytic converters were tested. Compared to their emissions when operating on Federal no. 2 diesel fuel, these buses emitted an average of 5% lower oxides of nitrogen (NOx) and 20% lower particulate matter (PM) when operating on neat MGSD fuel. Catalyst equipped buses emitted an average of 8% lower NOx and 31% lower PM when operating on MGSD than when operating on Federal no. 2 diesel fuel.

  19. DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT

    SciTech Connect (OSTI)

    Elana M. Chapman; Shirish Bhide; Andre L. Boehman; David Klinikowski

    2003-04-01

    The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. The strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. Within the Combustion Laboratory of the Penn State Energy Institute, they have installed and equipped a Navistar V-8 direct-injection turbodiesel engine for measurement of gaseous and particulate emissions and examination of the impact of fuel composition on diesel combustion. They have also reconfigured a high-pressure viscometer for studies of the viscosity, bulk modulus (compressibility) and miscibility of blends of diesel fuel, dimethyl ether and lubricity additives. The results include baseline emissions, performance and combustion measurements on the Navistar engine for operation on a federal low sulfur diesel fuel (300 ppm S). Most recently, they have examined blends of an oxygenated fuel additive (a liquid fuel called CETANER{trademark}) produced by Air Products, for comparison with dimethyl ether blended at the same weight of oxygen addition, 2 wt.%. While they have not operated the engine on DME yet, they are now preparing to do so. A fuel system for delivery of DME/Diesel blends has been configured and initial investigations at low DME blend ratios (around 5-10 vol%) will begin shortly. They have also performed viscosity measurements on diesel fuel, DME and 50-50 blends of DME in diesel. These tests have verified that DME has a much lower viscosity than the diesel fuel and that the viscosity of the blended fuel is also much lower than the diesel base fuel. This has implications for the injection and atomization of the DME/diesel blends.

  20. Commissioning for Federal Facilities | Department of Energy

    Office of Environmental Management (EM)

    for Federal Facilities Commissioning for Federal Facilities Guide describes building commissioning, recommissioning, retrocommissioning, and continuous commissioning for federal facilities. PDF icon commissioning_fed_facilities.pdf More Documents & Publications Chapter 9: Commissioning the Building Guide to Operating and Maintaining EnergySmart Schools Example Retro-Commissioning Scope of Work to Include Services as Part of an ESPC Investment-Grade Audit

  1. Federal Energy and Water Management Award Winner Kelly Jaramillo |

    Energy Savers [EERE]

    Department of Energy Kelly Jaramillo Federal Energy and Water Management Award Winner Kelly Jaramillo PDF icon fewm13_jaramillo_highres.pdf PDF icon fewm13_jaramillo.pdf More Documents & Publications 2013 Federal Energy and Water Management Award Winner Sandrine Schultz Federal Energy and Water Management Award Winners William Kuster, John McDuffie, Dennis Svalstad, William Turnbull and Steven White Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency

  2. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cells Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells can provide clean power for applications ranging from less than a watt to multiple megawatts. Our transportation-including personal vehicles, trucks, buses, marine vessels, and other specialty vehicles such as lift trucks and ground support equipment, as well as auxiliary power units for traditional

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Infrastructure Tax Credit for Businesses Business owners and others may be eligible for a tax credit of 35% of eligible costs for qualified alternative fuel infrastructure projects, or the incremental or conversion cost of two or more AFVs. Qualified infrastructure includes facilities for mixing, storing, compressing, or dispensing fuels for vehicles operating on alternative fuels. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85),

  4. Electric power monthly, September 1990. [Glossary included

    SciTech Connect (OSTI)

    Not Available

    1990-12-17

    The purpose of this report is to provide energy decision makers with accurate and timely information that may be used in forming various perspectives on electric issues. The power plants considered include coal, petroleum, natural gas, hydroelectric, and nuclear power plants. Data are presented for power generation, fuel consumption, fuel receipts and cost, sales of electricity, and unusual occurrences at power plants. Data are compared at the national, Census division, and state levels. 4 figs., 52 tabs. (CK)

  5. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  6. Federal Energy Management Tools | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tools Federal Energy Management Tools logo_femp.png The Federal Energy Management Program (FEMP) offers links to tools that can help agencies reduce energy use and meet federal laws and requirements. Tools include software, calculators, data sets, and databases created by the U.S. Department of Energy and other federal organizations. To find a tool, browse by title, description, topic, or type. Click a column heading to sort the table. Title Description Type Category Building Life Cycle Cost

  7. Coordination of Federal Transmission Permitting on Federal Lands...

    Energy Savers [EERE]

    Planning Coordination of Federal Transmission Permitting on Federal Lands (216(h)) Coordination of Federal Transmission Permitting on Federal Lands (216(h)) On October 23, 2009, ...

  8. Fuel axial relocation in ballooning fuel rods. [PWR; BWR

    SciTech Connect (OSTI)

    Siefken, L.J.

    1983-01-01

    Fuel movement, in the longitudinal direction in ballooning fuel rods, shifts the position of heat generation and may cause an increase in cladding temperature in the ballooning region. This paper summarizes the axial fuel relocation data obtained in fuel rod tests conducted in the United States and the Federal Republic of Germany, describes a model for calculating fuel axial relocation, and gives a quantitative analysis of the impact of fuel relocation on cladding temperature. The amount of fuel relocation in 18 ballooned fuel rods was determined from neutron radiographs, niobium gamma decay counts, and photomicrographs. The fuel rods had burnups in the range of 0 to 35,000 MWd/t and cladding hoop strains varying from 0 to 72%.

  9. Pump apparatus including deconsolidator

    DOE Patents [OSTI]

    Sonwane, Chandrashekhar; Saunders, Timothy; Fitzsimmons, Mark Andrew

    2014-10-07

    A pump apparatus includes a particulate pump that defines a passage that extends from an inlet to an outlet. A duct is in flow communication with the outlet. The duct includes a deconsolidator configured to fragment particle agglomerates received from the passage.

  10. Federal Utility Partnership Working Group Industry Commitment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    level of energy use at the lowest life-cycle cost through integrated energy management techniques including fuel neutral analysis of the full range of opportunities for...

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Incremental Cost Allocation The U.S. General Services Administration (GSA) must allocate the incremental cost of purchasing alternative fuel vehicles (AFVs) across the entire fleet of vehicles distributed by GSA. This mandate also applies to other federal agencies that procure vehicles for federal fleets. For more information, see the GSA's AFV website. (Reference 42 U.S. Code 13212 (c)) Point of Contact U.S. General Services Administration Phone: (703) 605-5630

  12. Federal Biomass Activities

    Office of Environmental Management (EM)

    Biomass Federal Biomass Activities Activities Dana Arnold Dana Arnold Office of the Federal Environmental Office of the Federal Environmental Executive Executive September 10, 2009 September 10, 2009 OFEE OFEE Established in the Clinton Administration Established in the Clinton Administration Part of the White House Council on Environmental Part of the White House Council on Environmental Quality Quality Works with Federal agencies to make the operations Works with Federal agencies to make the

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) Weight Exemption NGVs may exceed the federal maximum gross vehicle weight limit by an amount equal to the difference of the weight of the natural gas tank and fueling system and the weight of a comparable diesel tank and fueling system. The NGV must not exceed a maximum gross vehicle weight of 82,000 pounds. (Reference Public Law 114-94, 2015, and 23 U.S. Code 127(s)

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Vehicle (NGV) Inspection Requirements To pass the state vehicle inspection, an NGV owner must be able to provide proof that the fuel tank on the vehicle has met inspection requirements and falls within the manufacturer's recommended service life, as required by Title 49 of the U.S. Code of Federal Regulations, section 571.304. Fleet operators must also be able to prove that a certified technician inspected the vehicle's fuel tank. (Reference Texas Statutes, Transportation Code

  15. Dual Tank Fuel System

    DOE Patents [OSTI]

    Wagner, Richard William; Burkhard, James Frank; Dauer, Kenneth John

    1999-11-16

    A dual tank fuel system has primary and secondary fuel tanks, with the primary tank including a filler pipe to receive fuel and a discharge line to deliver fuel to an engine, and with a balance pipe interconnecting the primary tank and the secondary tank. The balance pipe opens close to the bottom of each tank to direct fuel from the primary tank to the secondary tank as the primary tank is filled, and to direct fuel from the secondary tank to the primary tank as fuel is discharged from the primary tank through the discharge line. A vent line has branches connected to each tank to direct fuel vapor from the tanks as the tanks are filled, and to admit air to the tanks as fuel is delivered to the engine.

  16. Fuel injector system

    DOE Patents [OSTI]

    Hsu, Bertrand D. (Erie, PA); Leonard, Gary L. (Schenctady, NY)

    1988-01-01

    A fuel injection system particularly adapted for injecting coal slurry fuels at high pressures includes an accumulator-type fuel injector which utilizes high-pressure pilot fuel as a purging fluid to prevent hard particles in the fuel from impeding the opening and closing movement of a needle valve, and as a hydraulic medium to hold the needle valve in its closed position. A fluid passage in the injector delivers an appropriately small amount of the ignition-aiding pilot fuel to an appropriate region of a chamber in the injector's nozzle so that at the beginning of each injection interval the first stratum of fuel to be discharged consists essentially of pilot fuel and thereafter mostly slurry fuel is injected.

  17. Restrictions on Federal Employees Acceptance of Gifts

    Energy Savers [EERE]

    Restrictions on Federal Employees Acceptance of Gifts As the holiday season approaches, it is important to remember there are restrictions on Federal employees accepting gifts from outside sources and from other Federal employees. Just as there is no "working lunch" exception to the gift prohibition, there is no "holiday party" exception. A gift includes anything of monetary value, including a gratuity, favor, discount, entertainment, training, transportation, lodging, and

  18. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFVs and HEVs All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 20 results Generated_thumb20140804-20533-1loi25i AFV

  19. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Driving Patterns All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 8 results Generated_thumb20150707-30390-mmwhbn

  20. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results Generated_thumb20130810-31804-53z5da Carbon

  1. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trends All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Generated_thumb20150812-20436-7eyqju Average

  2. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 2 results Generated_thumb20150813-22546-19hiukh

  3. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws & Incentives All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 10 results - Biodiesel_li_by_state Biodiesel

  4. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Program All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 2 results Ccities_map Clean Cities Coalition Locations

  5. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results Freight_tons_thumbnail

  6. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Market All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 7 results Generated_thumb20150623-24606-9p4e26 AFV

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in West Virginia (Million Cubic Feet) Year Jan Feb Mar Apr...

  8. Transportation fuels from wood

    SciTech Connect (OSTI)

    Baker, E.G.; Elliott, D.C.; Stevens, D.J.

    1980-01-01

    The various methods of producing transportation fuels from wood are evaluated in this paper. These methods include direct liquefaction schemes such as hydrolysis/fermentation, pyrolysis, and thermochemical liquefaction. Indirect liquefaction techniques involve gasification followed by liquid fuels synthesis such as methanol synthesis or the Fischer-Tropsch synthesis. The cost of transportation fuels produced by the various methods are compared. In addition, three ongoing programs at Pacific Northwest Laboratory dealing with liquid fuels from wood are described.

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Technician Training The Alternative Fuels Technician Certification Act (Act) regulates the training, testing, and certification of technicians and trainees who install, modify, repair, or renovate equipment used in alternative fueling infrastructure and in the conversion of any engine to operate on an alternative fuel. This includes original equipment manufacturer engines dedicated to operate on an alternative fuel. Plug-in electric vehicles (PEVs), PEV charging infrastructure, and PEV

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Tax Credit for Residents Through the Residential Energy Tax Credit program, qualified residents may receive a tax credit for 25% of alternative fuel infrastructure project costs, up to $750. Beginning January 1, 2016, qualified residents may receive a tax credit for 50% of project costs, up to $750. Qualified alternative fuels include electricity, natural gas, gasoline blended with at least 85% ethanol (E85), propane, and other fuels that the Oregon Department

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY) 2004 and subsequent model year passenger cars, light-duty trucks, and medium-duty passenger vehicles meeting specified exhaust standards. The LEV II standards represent the maximum exhaust emissions for LEVs, Ultra Low Emission Vehicles, and Super Ultra Low Emission Vehicles, including flexible fuel, bi-fuel, and dual-fuel vehicles when operating on an alternative fuel. MY 2009 and

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Use and Vehicle Acquisition Requirements State agency fleets with more than 15 vehicles, excluding emergency and law enforcement vehicles, may not purchase or lease a motor vehicle unless the vehicle uses compressed or liquefied natural gas, propane, ethanol or fuel blends of at least 85% ethanol (E85), methanol or fuel blends of at least 85% methanol (M85), biodiesel or fuel blends of at least 20% biodiesel (B20), or electricity (including plug-in hybrid electric vehicles).

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Infrastructure Grants The Texas Commission on Environmental Quality (TCEQ) administers the Alternative Fueling Facilities Program (AFFP) as part of the Texas Emissions Reduction Plan. AFFP provides grants for 50% of eligible costs, up to $600,000, to construct, reconstruct, or acquire a facility to store, compress, or dispense alternative fuels in Texas air quality nonattainment areas. Qualified alternative fuels include biodiesel, electricity, natural gas, hydrogen, propane,

  14. FEDERAL ASSISTANCE BUDGET INFORMATION (CONSTRUCTION) | Department of Energy

    Office of Environmental Management (EM)

    FEDERAL ASSISTANCE BUDGET INFORMATION (CONSTRUCTION) FEDERAL ASSISTANCE BUDGET INFORMATION (CONSTRUCTION) Form provides information on the federal assistance budget for construction projects, including calculation of the federal award needed to meet requirements, exclusions, and the proposed method for calculating the non-federal share. PDF icon FEDERAL ASSISTANCE BUDGET INFORMATION (CONSTRUCTION) More Documents & Publications DOE F 4600.4 DOE F 4600.5 DOE F 4600.3

  15. Effects of Climate Change on Federal Hydropower (Report to Congress) |

    Office of Environmental Management (EM)

    Department of Energy Effects of Climate Change on Federal Hydropower (Report to Congress) Effects of Climate Change on Federal Hydropower (Report to Congress) The U.S. Department of Energy (DOE), in consultation with the federal Power Marketing Administrations (PMAs) and other federal agencies, including federal dam owners, has prepared a comprehensive assessment examining the effects of climate change on water available for hydropower at federal facilities and on the marketing of power from

  16. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    SciTech Connect (OSTI)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  17. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    SciTech Connect (OSTI)

    Pitchford, P.; Brown, T.

    2001-07-16

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

  18. Organic fuel cells and fuel cell conducting sheets

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

    2007-10-16

    A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

  19. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    which assigns a RIN to each gallon of renewable fuel. Entities regulated by RFS include oil refiners, blenders, and gasoline and diesel importers. The volumes required of each...

  20. Fuel nozzle assembly

    DOE Patents [OSTI]

    Johnson, Thomas Edward (Greer, SC); Ziminsky, Willy Steve (Simpsonville, SC); Lacey, Benjamin Paul (Greer, SC); York, William David (Greer, SC); Stevenson, Christian Xavier (Inman, SC)

    2011-08-30

    A fuel nozzle assembly is provided. The assembly includes an outer nozzle body having a first end and a second end and at least one inner nozzle tube having a first end and a second end. One of the nozzle body or nozzle tube includes a fuel plenum and a fuel passage extending therefrom, while the other of the nozzle body or nozzle tube includes a fuel injection hole slidably aligned with the fuel passage to form a fuel flow path therebetween at an interface between the body and the tube. The nozzle body and the nozzle tube are fixed against relative movement at the first ends of the nozzle body and nozzle tube, enabling the fuel flow path to close at the interface due to thermal growth after a flame enters the nozzle tube.

  1. Fuel Cell Animation - Fuel Cell Stack (Text Version) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stack (Text Version) Fuel Cell Animation - Fuel Cell Stack (Text Version) This text version of the fuel cell animation demonstrates how a fuel cell uses hydrogen to produce electricity, with only water and heat as byproducts. Fuel cell stack with electrical circuit. Fuel cell: The amount of power produced by a fuel cell depends on several factors, including fuel cell type, cell size, temperature at which it operates, and pressure at which the gases are supplied to the cell. A single fuel cell

  2. Low contaminant formic acid fuel for direct liquid fuel cell

    DOE Patents [OSTI]

    Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

    2009-11-17

    A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

  3. Federal Agency NEPA Procedures

    Broader source: Energy.gov [DOE]

    Each Federal agency is required to develop NEPA procedures that supplement the CEQ Regulations. Developed in consultation with CEQ, Federal agency NEPA procedures must meet the standards in the CEQ...

  4. Federal Financial Report

    Broader source: Energy.gov [DOE]

    Federal Financial Report, as posted on the U.S. Department of Energy's Better Buildings Neighborhood Program website.

  5. Award Number: Federal Non-Federal Federal Non-Federal Total

    Gasoline and Diesel Fuel Update (EIA)

    Award Number: Federal Non-Federal Federal Non-Federal Total (a) (b) (c ) (d) (e) (f) (g) 1. - 2. - 3. - 4. - 5. Totals - - - - - (1) (2) (3) (4) - - - - - - - - - - - - - - - - - - - 7. - SF-424A (Rev. 4-92) Applicant Name: Budget Information - Non Construction Programs OMB Approval No. 0348-0044 New or Revised Budget Section A - Budget Summary i. Total Direct Charges (sum of 6a-6h) Grant Program, Function or Activity Object Class Categories Authorized for Local Reproduction h. Other a.

  6. California Fuel Cell Partnership: Alternative Fuels Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Partnership - Alternative Fuels Research TNS Automotive Chris White Communications Director cwhite@cafcp.org 2 TNS Automotive for California Fuel Cell Partnership Background CaFCP conducted annual public opinion surveys Administered by phone as part of an "omnibus" survey Asked only about H2 and FCVs Gauged knowledge 2008 survey to gauge opinions, attitudes and identify trends Important elements included: Larger, more diverse panel with defined demographics "With

  7. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  8. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  9. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-11

    This Manual provides detailed requirements to supplement DOE O 360.1B, FEDERAL EMPLOYEE TRAINING. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Cancels DOE M 360.1A-1. Canceled by DOE O 360.1C.

  10. Federal Employee Training Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-09-21

    This Manual provides detailed requirements to supplement DOE O 360.1A, Federal Employee Training, dated 9-21-99. The information in this Manual is intended to assist in improving Federal workforce performance under Department of Energy (DOE) managed Federal employee training. Canceled by DOE M 360.1-1B.

  11. Heating subsurface formations by oxidizing fuel on a fuel carrier

    DOE Patents [OSTI]

    Costello, Michael; Vinegar, Harold J.

    2012-10-02

    A method of heating a portion of a subsurface formation includes drawing fuel on a fuel carrier through an opening formed in the formation. Oxidant is supplied to the fuel at one or more locations in the opening. The fuel is combusted with the oxidant to provide heat to the formation.

  12. Spent nuclear fuel discharges from US reactors 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  13. DOE Issues Request for Information on Automotive Fuel Cells and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Also, an open topic is included to solicit innovative research that may be outside of ... Fuel Cell Technologies Incubator: Innovations in Fuel Cell and Hydrogen Fuels ...

  14. 2007 Fuel Cell Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline...

  15. Energy Department Announces Advanced Fuel-Efficient Vehicle Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces Advanced Fuel-Efficient Vehicle Technologies Funding Opportunity, Includes Alternative Fuels Workplace Safety Programs Energy Department Announces Advanced Fuel-Efficient ...

  16. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  17. Water reactive hydrogen fuel cell power system

    DOE Patents [OSTI]

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  18. Direct Conversion of Biomass into Transportation Fuels - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Direct Conversion of Biomass into Transportation Fuels Los Alamos National Laboratory Contact LANL About This Technology Technology Marketing SummaryLos Alamos National Laboratory is developing a portfolio of technologies related to catalytic processes for converting oligosaccharides into hydrocarbons under mild conditions.DescriptionWe are seeking a co-development partner interested in teaming to further develop the technology, including pursuit of Federal-funding opportunities, and

  19. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  20. Federal Government's Energy Consumption Lowest in Almost 40 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Government's Energy Consumption Lowest in Almost 40 Years Federal Government's Energy Consumption Lowest in Almost 40 Years February 11, 2015 - 3:49am Addthis Energy consumption by the federal government has been steadily declining for nearly four decades. Much of the decline in recent years can be attributed to a decrease in the use of jet fuel at agencies like the Air Force. | Air Force photo Energy consumption by the federal government has been steadily declining for

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Conversion Rebate The Nebraska Energy Office (NEO) offers rebates for qualified AFV conversions completed after January 4, 2016. The rebate amount for vehicle conversions is 50% of the cost of the equipment and installation, up to $4,500 per vehicle. Qualified vehicle conversions include new equipment that is installed in Nebraska by a certified installer to convert a conventional fuel vehicle to operate using a qualified clean-burning motor fuel. These fuels include hydrogen, compressed natural

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Tax Credit An income tax credit is available for 50% of the cost of alternative fueling infrastructure, up to $5,000. Qualifying infrastructure includes electric vehicle supply equipment and equipment to dispense fuel that is 85% or more natural gas, propane, or hydrogen. Unused credits may be carried over into future tax years. The credit expires December 31, 2017. For additional information, including information on how to claim the credit, please see the New York State

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated feedstock production, fueling infrastructure, and fleet vehicles. Loan recipients must complete a loan application and pay a loan application fee. For more information, including application forms and interest rate and fee information, see the SELP website. (Reference Oregon

  4. Environmentally and Economically Beneficial Practices on Federal Landscaped

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grounds | Department of Energy Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds This Environmental Protection Agency report contains recommendations for a series of environmental actions, including those to increase environmental and economically beneficial landscaping practices at Federal facilities and federally funded projects. PDF icon Environmentally and Economically

  5. Revoked - Environmentally and Economically Beneficial Practices on Federal

    Energy Savers [EERE]

    Landscaped Grounds | Department of Energy Revoked - Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds Revoked - Environmentally and Economically Beneficial Practices on Federal Landscaped Grounds This Memorandum and EPA guidance contains recommendations for a series of environmental actions, including those to increase environmental and economically beneficial landscaping practices at Federal facilities and federally funded projects. This Memorandum was

  6. Federal, Contractor, or Subcontractor | Department of Energy

    Office of Environmental Management (EM)

    Federal, Contractor, or Subcontractor Federal, Contractor, or Subcontractor 8/14/2014 Listing of Suspect/Counterfeit Coordinators by Site/Program Secretarial Office (PSO) and title (Federal, Contractor, or Subcontractor). This listing includes email and telephone contacts for each coordinator. PDF icon Suspect Counterfeit Coordinators August 2014 More Documents & Publications Suspect Counterfeit Coordinators DOE Hoisting and Rigging Technical Advisory Committee - Membership Roster VPP POINTS

  7. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 12,927 11,677 12,492 10,557 9,618 8,588 9,860 10,185 9,784 11,290 11,926 13,523 2002 12,414 11,258 11,090 10,310 10,076 11,260 10,510 9,907 9,717 10,827 10,291 11,621 2003 9,731 8,407 9,561 9,112 8,639 8,518 8,461 8,717 8,895 10,027 9,481 10,141 2004 12,414 10,221 10,996 9,967 9,462 9,831 9,829 8,537 9,512 9,377 9,374 11,436 2005 11,592 10,185 10,627 9,847 9,809 9,712 10,596 10,360 10,325 10,740 11,792 11,516 2006

  8. Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,804 23,088 21,742 19,153 21,113 17,703 18,312 16,919 14,352 14,127 12,164 19,204 2002 19,840 19,954 18,340 14,544 14,463 17,262 23,546 22,088 20,988 19,112 17,712 21,662 2003 20,639 18,895 21,753 16,848 14,559 16,858 28,981 30,940 25,278 24,409 16,317 18,043 2004 25,379 30,143 26,925 23,982 26,878 29,819 35,860 33,244 27,591 23,349 23,090 26,140 2005 24,400 22,209 17,591 20,779 22,660 23,609 35,036 34,587

  9. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,139 20,654 21,940 16,528 13,819 12,558 14,779 16,061 15,014 18,239 19,675 22,233 2002 24,431 24,940 22,284 19,166 15,635 16,964 18,741 17,700 16,789 16,932 17,770 21,567 2003 27,116 27,256 22,904 18,625 17,603 17,849 18,208 18,467 15,282 16,402 16,960 20,603 2004 24,746 25,909 21,663 16,382 15,991 14,085 14,456 14,551 11,956 14,094 13,138 18,337 2005 22,386 19,719 19,170 15,597 14,643 15,315 16,703 17,392

  10. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 256,236 225,525 210,711 198,804 182,600 174,840 186,844 204,883 185,162 184,119 174,839 213,717 2002 223,346 185,421 206,416 162,875 156,501 163,505 194,816 189,345 177,933 177,028 170,370 208,568 2003 206,909 199,691 190,785 169,036 156,895 155,289 190,664 186,767 182,143 179,341 181,360 216,415 2004 225,305 217,935 193,344 178,944 167,463 166,916 190,886 192,642 188,814 186,336 205,784 235,615 2005 228,279

  11. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,014 4,742 5,389 3,439 2,924 3,276 3,324 4,609 4,923 5,078 3,908 3,419 2002 5,258 4,880 4,847 3,830 2,810 2,738 6,396 3,816 4,170 3,843 3,936 5,597 2003 6,397 5,499 5,102 3,399 2,081 2,433 3,570 3,550 2,728 2,949 3,547 4,833 2004 6,827 5,602 4,600 3,387 3,731 2,595 2,620 2,437 2,880 2,484 4,033 6,759 2005 6,870 5,543 5,427 2,696 2,517 2,866 3,287 3,735 2,652 2,870 3,515 4,876 2006 5,025 4,699 4,451 2,549 2,659

  12. Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,086 30,338 35,463 39,708 42,466 46,947 53,430 53,352 55,306 52,955 42,205 47,598 2002 50,177 41,302 50,453 55,845 56,767 62,343 67,197 70,144 65,136 64,259 47,600 45,144 2003 53,384 43,538 54,761 51,487 62,575 58,312 64,041 61,764 62,150 59,558 56,488 50,525 2004 50,877 49,866 51,687 53,442 62,663 69,628 72,443 70,540 70,259 66,961 50,122 53,169 2005 59,417 49,956 60,238 55,269 64,436 69,719 90,376 84,114

  13. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,414 34,292 35,867 25,368 20,633 20,544 24,229 26,863 21,857 25,679 23,983 34,450 2002 44,041 37,992 33,260 23,775 22,612 24,924 30,113 29,701 24,899 23,785 32,829 47,106 2003 56,470 43,704 31,355 30,232 21,920 20,512 23,789 26,828 21,628 22,981 26,920 45,508 2004 52,486 48,806 31,529 28,718 26,610 24,562 26,132 26,093 22,927 22,025 29,012 49,125 2005 47,756 39,503 39,085 25,191 23,198 26,957 31,619 33,089

  14. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 253 237 247 243 237 244 242 227 226 220 217 225 2002 236 226 225 234 226 224 239 222 224 215 227 236 2003 251 236 234 229 226 218 224 218 223 218 216 239 2004 243 230 239 240 221 235 229 222 226 221 230 236 2005 242 225 240 240 245 238 224 225 226 218 229 240 2006 241 226 242 237 239 235 229 222 233 223 223 231 2007 259 226 229 232 234 244 241 218 223 244 256 244 2008 245 237 235 238 225 233 238 211 211 206 204

  15. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 9,061 8,656 6,890 5,799 4,539 3,728 4,106 4,145 4,609 5,611 7,528 8,984 2002 8,747 8,547 7,861 5,699 4,667 3,654 3,038 2,812 3,303 4,162 5,950 7,000 2003 7,519 7,632 7,150 5,498 4,487 3,443 4,268 3,399 3,902 3,977 6,312 7,657 2004 10,168 9,168 7,032 4,556 4,391 3,602 3,672 3,601 3,844 4,668 6,536 8,238 2005 9,355 8,465 6,757 6,168 3,946 3,381 3,511 3,614 3,733 4,635 6,142 9,403 2006 8,375 8,140 7,439 5,455 3,877

  16. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 77,275 61,840 57,608 37,045 27,762 26,685 25,473 29,184 25,697 34,650 39,146 51,997 2002 65,893 58,962 58,569 44,882 32,659 27,696 30,899 30,668 28,357 37,204 49,556 68,056 2003 80,534 70,155 52,368 35,903 31,266 25,652 24,580 26,666 27,072 34,914 46,556 64,253 2004 80,680 70,341 53,056 37,842 30,840 25,006 25,592 27,498 26,658 33,102 43,630 65,054 2005 72,775 58,428 61,390 39,473 30,697 28,897 28,628 29,602

  17. Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 35,585 27,368 26,284 16,906 10,552 11,171 18,862 17,962 13,422 11,375 14,263 20,610 2002 28,513 25,068 25,566 17,348 13,424 13,947 18,253 20,062 15,937 13,007 21,946 26,371 2003 31,180 29,594 25,952 16,337 13,386 11,371 15,614 15,421 13,725 13,096 15,980 25,771 2004 30,087 29,036 21,955 15,496 13,148 12,282 11,912 13,013 13,177 13,809 15,207 23,992 2005 29,876 25,291 20,604 15,459 12,953 11,687 13,164 13,264

  18. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122

  19. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 90,750 82,773 86,038 87,577 81,223 77,877 93,937 105,743 93,365 92,353 85,277 92,797 2002 102,807 96,945 102,315 94,281 91,511 97,058 107,870 109,348 97,986 94,054 96,857 102,289 2003 106,504 91,821 89,554 89,376 88,426 78,863 91,469 95,243 85,824 84,198 83,677 94,139 2004 101,114 98,005 96,851 86,763 89,143 89,075 96,344 98,583 93,156 94,397 89,577 99,046 2005 102,652 87,403 100,620 97,398 104,027 102,860 104,234

  20. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090

  1. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28,398 21,618 21,408 13,900 9,252 8,342 9,046 11,007 9,109 12,662 13,558 17,125 2002 24,221 22,802 20,670 12,534 8,846 8,846 10,514 12,842 10,157 12,911 20,408 28,827 2003 31,739 28,530 21,240 15,685 9,809 8,723 8,128 7,986 7,131 11,863 16,167 27,049 2004 33,576 27,062 20,558 14,623 9,867 8,560 7,704 8,271 7,535 11,725 16,222 26,279 2005 29,469 25,497 24,272 13,414 10,273 10,104 9,641 11,634 8,302 12,060 16,807

  2. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 133,140 112,047 111,301 76,191 48,707 41,686 43,845 44,577 40,142 59,283 71,352 92,053 2002 119,902 108,891 104,208 87,138 63,810 52,457 51,899 47,094 40,938 53,419 82,015 114,268 2003 140,545 133,702 114,085 80,651 53,258 37,279 35,261 42,115 32,744 49,901 69,659 99,067 2004 137,906 127,671 102,442 76,978 54,610 41,310 38,001 37,565 37,285 48,239 71,870 107,025 2005 133,079 112,812 108,608 72,884 50,886 47,768

  3. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,278 47,192 40,209 25,541 15,943 13,524 13,674 14,855 14,705 22,582 25,778 38,517 2002 45,190 38,565 44,505 28,680 21,749 14,684 15,388 15,077 14,862 27,484 37,214 45,054 2003 53,794 50,612 39,189 26,415 18,135 12,708 14,981 15,594 14,570 22,649 35,945 46,332 2004 58,327 45,894 36,866 24,741 17,416 14,831 14,126 13,324 14,266 21,849 31,497 46,174 2005 56,027 41,821 38,832 22,877 17,882 17,797 17,093 17,307

  4. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,479 16,635 19,646 21,739 20,948 20,348 30,696 31,715 28,537 28,525 24,653 28,356 2002 29,331 28,518 28,650 25,702 23,117 27,335 33,509 29,104 24,492 19,663 18,433 24,444 2003 29,743 24,826 20,395 19,195 18,492 16,946 17,613 19,394 16,780 14,228 16,133 21,577 2004 23,187 23,828 21,311 19,087 24,565 21,821 24,034 23,064 18,228 18,641 15,628 21,305 2005 23,881 20,984 23,827 18,047 21,247 24,690 29,577 32,966

  5. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 51,986 40,694 34,239 22,717 13,209 12,679 16,175 16,218 12,056 13,682 18,230 29,876 2002 39,936 35,157 34,198 24,362 15,624 13,116 15,351 13,593 11,804 14,038 22,945 32,834 2003 42,257 42,379 33,569 21,083 13,307 10,498 12,889 15,215 9,788 10,817 17,229 30,354 2004 41,477 43,268 30,344 20,642 15,737 12,404 12,556 11,676 12,399 11,977 16,704 31,367 2005 42,227 35,965 31,014 19,890 15,686 13,519 13,855 14,649 12,548

  6. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,993 8,301 5,782 5,036 3,055 2,439 2,359 2,152 2,135 3,446 5,081 6,696 2002 7,738 6,859 7,247 5,853 4,084 2,965 2,265 2,298 2,711 4,300 5,929 6,147 2003 7,471 6,977 6,706 4,682 3,515 2,729 2,042 2,006 2,468 3,629 6,282 7,503 2004 8,787 6,926 5,508 3,906 3,279 2,725 2,154 2,098 2,533 3,912 5,268 6,895 2005 8,717 6,227 5,828 4,563 3,517 2,678 2,135 2,426 2,551 4,121 4,933 7,501 2006 7,064 7,060 7,344 4,972 3,562

  7. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,481 15,747 13,983 11,129 7,094 5,429 8,556 6,368 5,506 5,854 10,730 11,012 2002 16,123 14,049 12,938 10,424 6,676 4,984 8,748 7,414 6,786 6,218 9,753 13,269 2003 15,675 15,319 13,354 8,644 6,232 4,472 7,653 7,469 5,904 6,758 8,775 13,011 2004 16,104 16,445 12,058 7,983 6,255 5,830 6,952 6,641 4,338 5,935 8,995 13,129 2005 17,242 14,641 11,440 8,360 6,579 5,853 7,874 8,028 6,345 6,081 8,200 13,733 2006 15,551

  8. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,952 19,433 17,795 12,312 12,723 11,650 12,329 14,023 12,067 12,854 12,525 17,842 2002 18,621 16,951 15,943 11,123 11,789 13,044 14,033 14,618 13,988 13,798 14,840 16,521 2003 17,053 15,548 15,238 12,410 12,410 13,355 17,113 17,666 15,088 14,301 14,598 18,798 2004 19,886 20,030 14,760 11,514 13,220 16,819 20,333 19,864 17,480 16,556 18,897 22,720 2005 23,220 21,494 17,907 16,239 13,790 15,823 20,156 20,490

  9. Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 41,541 34,864 34,025 32,667 33,129 48,517 59,935 87,118 2002 106,011 98,576 94,429 70,082 51,854 40,885 40,538 38,774 34,999 51,972 76,275 108,800 2003 140,436 123,688 99,629 65,861 43,326 32,959 33,810 37,562 32,918 52,253 65,617 103,846 2004 137,568 117,976 93,845 67,347 46,827 33,561 34,567 34,689 34,129 47,268 64,279 99,290 2005 122,404 107,459 105,183 63,669 47,239 37,221 35,833

  10. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,337 36,026 35,468 29,023 26,153 28,194 41,056 38,697 30,910 29,194 26,719 33,193 2002 42,957 42,546 40,981 36,989 28,784 31,741 39,440 43,092 34,007 26,058 27,197 34,574 2003 44,633 43,363 39,395 32,941 30,147 32,417 46,076 47,914 30,139 28,937 26,588 39,627 2004 44,286 47,720 40,198 35,528 36,608 33,843 39,855 38,791 36,056 30,069 25,036 35,444 2005 42,941 41,516 38,987 36,599 35,972 45,327 48,696 49,698

  11. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 21,689 25,019 21,080 18,224 15,822 14,891 14,036 15,541 15,102 16,822 18,239 22,097 2002 25,687 22,100 21,179 14,501 12,612 11,363 9,336 12,198 12,978 14,195 16,780 20,005 2003 23,496 19,260 18,102 13,784 12,066 11,146 16,560 16,275 17,015 16,463 19,222 21,940 2004 26,773 24,112 19,699 16,486 14,346 12,752 16,235 16,733 16,179 17,146 21,137 23,569 2005 25,874 23,392 21,951 20,274 11,452 11,481 14,502 16,348 15,706

  12. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 96,012 79,547 77,363 52,992 33,092 26,098 25,208 27,662 29,499 38,457 46,614 63,083 2002 80,458 74,651 70,773 53,368 38,209 33,401 32,700 34,743 30,425 40,462 58,542 83,877 2003 101,975 96,176 79,246 53,759 36,015 29,095 30,298 32,640 26,799 39,895 47,467 78,054 2004 100,298 95,715 73,189 54,937 42,873 33,367 36,047 33,735 32,060 34,578 50,908 74,224 2005 90,958 84,388 85,058 50,137 38,196 34,547 36,133 37,648

  13. Natural Gas Delivered to Consumers in Tennessee (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 43,045 30,197 26,202 21,053 13,399 12,059 12,967 13,230 11,569 16,135 19,011 23,239 2002 37,019 31,272 27,242 19,932 14,058 12,918 12,293 12,439 11,103 13,432 20,337 31,833 2003 37,778 37,692 27,915 18,989 14,580 13,392 11,615 12,627 12,016 13,775 16,202 27,807 2004 34,375 33,788 24,928 18,001 14,262 11,211 10,988 11,553 11,041 11,874 13,718 24,756 2005 30,997 29,214 25,561 19,122 13,849 11,579 11,055 13,522

  14. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 20,043 17,426 13,012 11,173 7,791 7,056 6,214 6,023 6,572 9,189 11,646 18,505 2002 19,727 17,659 15,165 8,453 7,113 5,260 5,915 6,481 7,591 11,589 13,814 16,447 2003 16,474 16,494 12,825 10,664 6,942 5,612 6,174 6,166 6,229 7,898 13,299 16,533 2004 21,414 17,627 10,247 9,033 6,775 5,344 6,398 5,617 6,456 8,714 13,097 17,058 2005 18,357 16,430 13,763 12,951 9,253 7,461 7,380 6,187 6,053 6,449 9,027 16,786 2006

  15. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,164 1,003 1,084 834 544 381 304 307 361 438 658 827 2002 1,127 1,149 960 808 575 428 330 336 348 485 803 1,003 2003 1,153 1,191 1,062 906 539 367 293 312 325 502 708 1,029 2004 1,154 1,381 1,072 829 517 421 331 342 365 479 769 1,011 2005 1,211 1,280 1,199 776 558 404 310 298 295 418 666 943 2006 1,112 1,063 1,190 745 501 415 318 318 347 481 658 893 2007 1,104 1,375 1,250 915 536 382 340 331 342 423 696 1,158

  16. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,325 27,001 23,081 15,728 11,714 10,937 14,866 15,873 15,145 14,257 21,748 23,733 2002 30,728 25,956 22,525 16,988 14,493 13,877 18,202 18,373 14,992 16,512 22,349 32,089 2003 39,589 32,153 25,608 18,114 15,312 12,832 14,519 15,084 11,238 15,259 21,050 32,921 2004 40,135 33,982 24,192 18,779 18,241 16,500 15,667 17,654 16,341 13,924 21,649 31,243 2005 37,448 31,508 31,147 18,853 12,905 18,009 23,552 25,949

  17. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,231 31,904 29,422 27,137 23,855 18,345 18,349 16,283 15,107 23,527 30,172 37,445 2002 29,531 27,361 27,117 20,531 15,439 11,596 10,256 11,367 12,459 15,045 20,551 25,818 2003 27,912 26,079 26,003 19,269 14,939 11,471 15,334 15,006 15,698 18,116 25,119 27,774 2004 33,107 29,246 23,696 18,926 15,242 11,848 16,510 17,954 16,165 18,170 24,172 28,231 2005 32,764 27,001 24,695 21,951 14,060 13,150 16,232 18,247

  18. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 52,126 51,020 52,466 24,969 17,238 15,421 16,478 16,540 16,716 25,355 26,981 41,400 2002 49,850 43,815 48,646 31,946 24,278 16,100 16,531 15,795 16,659 28,429 39,330 49,912 2003 62,523 55,695 44,756 32,270 20,752 15,502 15,630 18,099 16,485 24,636 36,907 47,677 2004 65,038 48,498 41,599 27,544 21,106 15,420 15,949 14,951 16,063 23,268 33,602 56,693 2005 59,667 45,463 47,647 29,885 23,265 22,788 21,959 22,549

  19. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,475 6,484 5,643 5,505 4,182 3,864 3,515 3,541 3,688 4,790 5,518 6,170 2002 6,844 5,846 6,319 5,737 5,034 4,070 4,980 4,124 4,599 6,126 7,421 8,523 2003 7,672 7,313 7,026 5,737 4,976 4,408 4,112 4,164 4,356 5,062 5,554 7,236 2004 7,555 7,180 6,077 5,400 4,775 4,216 4,064 4,187 4,024 5,032 6,153 6,963 2005 7,585 6,443 6,231 5,612 5,092 4,247 4,081 3,903 4,080 4,829 5,360 7,262 2006 7,304 6,824 6,957 5,389 4,762

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Alabama (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,434 3,514 3,395 2,369 1,720 1,215 1,673 1,117 1,189 1,382 1,955 3,507 1990 4,550 3,040 2,645 2,167 1,626 984 1,157 1,164 1,195 1,353 1,921 2,487 1991 3,334 3,576 2,761 1,886 1,332 1,149 1,128 1,052 1,093 1,311 2,120 2,968 1992 3,739 3,833 2,671 2,287 1,513 1,225 1,108 1,078 1,136 1,320 1,983 3,338 1993 3,532 3,599 3,655 2,569 1,551 1,179 1,084 1,070 1,111 1,259 2,073 3,041 1994 4,325

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Alaska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,500 2,691 2,258 1,949 1,569 1,287 1,042 1,091 1,202 1,577 2,144 2,429 1990 2,447 2,584 2,429 1,809 1,456 1,134 1,061 1,077 1,148 1,554 2,106 2,818 1991 2,579 2,388 2,149 1,896 1,576 1,171 1,069 1,073 1,198 1,561 1,930 2,308 1992 2,414 2,372 2,319 1,935 1,597 1,206 1,084 1,013 1,252 1,790 1,928 2,390 1993 2,487 2,471 2,051 1,863 1,441 1,055 917 957 1,112 1,563 1,785 2,301 1994 2,367 2,156

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Arizona (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,945 3,572 2,845 2,275 1,994 1,951 1,805 1,579 1,597 1,634 2,296 3,108 1990 3,706 3,577 3,165 2,338 2,174 1,854 1,686 1,580 1,610 1,555 2,018 3,139 1991 3,716 3,091 2,935 2,785 2,039 1,637 1,669 1,722 1,375 1,609 1,941 3,077 1992 3,647 3,011 2,898 2,352 1,620 1,754 1,690 1,505 1,601 1,580 1,858 3,573 1993 3,422 2,954 3,056 2,408 1,851 2,035 1,654 1,601 1,521 1,551 2,100 3,416 1994 3,689

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Arkansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in California (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 28,465 29,564 21,880 18,656 19,249 21,469 15,319 17,351 19,452 19,856 21,665 26,192 1990 30,798 34,767 27,425 23,423 18,540 17,392 21,030 17,705 23,233 17,384 22,637 30,759 1991 31,793 23,911 26,128 28,375 21,468 20,003 22,080 16,547 23,307 26,510 20,109 27,379 1992 38,234 23,834 24,413 18,379 27,118 22,150 21,150 21,633 19,247 19,112 20,999 28,738 1993 27,151 31,334 21,654 18,276

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Colorado (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,522 10,845 9,208 6,135 4,160 3,082 2,328 2,119 2,303 3,232 5,441 8,102 1990 10,718 9,546 8,633 6,902 5,116 3,122 2,167 2,127 2,069 2,918 5,301 7,682 1991 12,120 9,991 7,910 6,328 4,849 2,826 2,180 2,040 2,087 3,017 6,096 9,494 1992 10,794 9,450 7,609 5,965 3,631 3,055 2,430 2,183 2,312 3,078 5,594 10,319 1993 11,775 10,132 9,435 6,499 4,292 3,119 2,445 2,357 3,012 3,108 6,080 9,396

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Connecticut (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,909 3,749 3,937 2,897 2,106 1,625 1,528 1,579 1,551 1,685 2,324 3,891 1990 4,318 3,869 3,369 3,009 1,743 1,483 1,358 1,315 1,352 1,603 2,456 3,534 1991 4,341 3,973 3,566 2,352 1,462 1,030 995 1,020 884 1,423 2,396 3,396 1992 4,417 4,374 3,940 2,941 1,779 1,149 1,046 1,061 1,075 1,562 2,623 3,871 1993 4,666 4,995 4,461 3,038 1,583 1,161 1,122 1,070 1,121 1,789 2,896 3,525 1994 5,882

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Delaware (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 632 605 624 398 249 166 128 133 144 182 294 630 1990 784 530 530 419 239 174 139 138 136 163 309 480 1991 677 653 579 414 237 161 146 142 145 203 354 541 1992 744 755 686 537 308 198 166 152 162 240 395 622 1993 739 818 858 574 284 140 165 155 155 229 412 666 1994 945 1,076 856 510 259 209 157 156 172 221 345 554 1995 829 935 854 527 341 223 182 168 205 209 417 851 1996 1,099 1,181 885

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Florida (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Georgia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,127 7,499 5,163 3,921 2,982 2,340 2,411 2,360 2,589 3,475 4,834 8,389 1990 8,162 5,935 5,172 3,960 2,844 2,498 2,359 2,535 2,416 3,098 4,228 6,280 1991 7,680 6,782 5,905 3,348 2,820 2,387 2,381 2,482 2,346 3,082 5,153 6,670 1992 8,066 6,952 5,778 4,381 3,103 2,596 2,536 2,503 2,462 3,201 4,640 7,642 1993 7,627 7,915 7,796 4,837 3,069 2,544 2,570 2,481 2,440 3,312 5,214 7,719 1994 9,543

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Hawaii (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 187 178 174 175 181 175 182 173 175 179 172 177 1990 190 188 188 180 181 188 195 180 180 183 184 185 1991 192 177 169 187 173 173 187 172 179 177 178 185 1992 190 180 174 183 177 184 174 173 178 168 178 184 1993 185 190 179 177 168 183 174 170 168 173 183 172 1994 195 176 190 185 181 184 177 178 184 177 189 185 1995 200 180 185 183 185 188 186 178 179 179 178 177 1996 200 192 184 190 172

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Idaho (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Illinois (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 27,838 29,591 25,963 15,899 9,308 5,975 5,445 4,862 6,177 11,093 20,173 33,847 1990 30,713 25,802 22,068 17,635 10,676 6,785 7,008 7,341 7,970 15,118 19,910 29,245 1991 35,376 26,327 22,768 13,059 8,214 5,162 6,031 5,693 7,979 11,574 23,098 28,563 1992 30,506 26,501 23,400 17,598 8,872 4,907 5,811 6,025 6,618 12,394 22,757 31,575 1993 33,166 29,686 27,677 17,598 7,744 5,101 5,879 5,644

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Indiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 11,170 11,376 9,613 5,768 3,297 1,904 1,579 1,659 2,217 3,850 7,577 13,614 1990 11,991 9,374 7,958 6,087 3,191 1,963 1,658 1,860 1,991 4,087 6,640 10,462 1991 13,081 10,656 8,567 4,535 2,546 1,648 1,613 1,710 2,358 3,614 7,821 10,233 1992 12,060 10,265 8,437 6,172 3,400 2,004 1,811 1,955 2,131 4,253 8,135 12,097 1993 12,941 12,125 10,972 6,557 2,866 2,100 1,819 1,838 2,442 4,559 8,381

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Iowa (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,372 7,466 6,928 4,133 2,216 1,380 1,190 1,234 1,247 179 3,738 7,110 1990 8,087 6,374 5,719 4,261 2,409 1,602 1,226 1,204 1,302 2,087 3,726 5,955 1991 9,237 6,828 5,412 3,305 1,993 1,308 1,090 1,198 1,308 2,482 5,287 7,167 1992 7,145 6,709 4,949 3,883 1,877 1,427 1,100 1,257 1,433 2,645 5,843 7,827 1993 8,688 7,779 6,773 4,316 2,029 1,481 1,214 1,214 1,637 2,869 5,694 6,642 1994 9,353 8,260

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Kansas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,155 7,697 6,870 5,433 3,660 2,547 3,366 4,812 3,081 2,785 4,386 6,763 1990 8,061 6,230 5,114 4,800 3,112 2,848 4,906 4,462 3,836 2,893 3,877 5,907 1991 10,250 7,397 5,694 4,278 3,082 2,657 4,321 3,994 2,629 2,656 6,075 5,538 1992 6,844 5,862 4,372 4,571 3,736 2,814 3,609 3,462 3,132 3,162 4,867 7,543 1993 8,768 7,385 7,019 4,938 2,840 2,559 3,348 3,324 2,395 2,469 4,413 6,565 1994 8,139

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Kentucky (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,139 5,507 4,546 2,840 1,766 1,167 1,099 991 1,147 954 3,327 6,648 1990 5,355 4,280 3,496 2,702 1,576 1,129 1,037 1,077 1,025 2,050 3,194 4,884 1991 6,313 5,098 3,647 1,925 1,198 1,029 941 991 1,338 1,862 4,197 5,161 1992 6,191 4,758 3,874 2,612 1,600 1,132 1,066 1,158 1,209 2,237 4,064 5,519 1993 5,878 5,863 5,207 2,934 1,330 1,449 1,029 1,060 1,220 2,417 3,997 5,433 1994 8,181 6,018

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Louisiana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,399 3,365 3,462 2,362 1,790 1,479 1,399 1,340 1,433 1,568 2,035 3,524 1990 4,528 2,757 2,490 2,135 1,628 1,499 1,361 1,238 1,275 1,487 2,082 2,491 1991 3,639 3,555 2,713 1,974 1,539 1,418 1,504 1,253 1,229 1,440 2,347 2,842 1992 4,060 4,003 2,743 2,367 1,769 1,564 1,556 1,431 1,508 1,577 2,295 3,574 1993 3,260 3,207 3,075 2,376 1,742 1,454 1,267 1,277 1,290 1,346 2,091 2,771 1994 3,925

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Maine (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 229 226 221 160 106 63 51 50 60 96 128 269 1990 268 227 211 175 108 70 52 47 62 83 157 219 1991 282 265 236 180 101 73 65 65 59 103 152 278 1992 322 318 315 229 157 80 79 52 67 116 188 285 1993 356 364 291 192 107 80 71 67 77 166 224 316 1994 458 364 302 181 128 79 63 71 84 135 207 309 1995 350 373 288 211 128 77 70 71 86 129 254 389 1996 413 386 356 208 132 82 74 75 78 172 280 310 1997 433

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Maryland (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,976 3,700 4,247 2,586 1,701 1,154 968 941 978 1,220 1,801 3,647 1990 4,168 3,115 3,057 2,477 1,557 1,131 1,049 961 1,016 1,095 1,686 2,738 1991 5,709 5,334 4,545 3,320 2,108 1,602 1,545 1,465 1,486 2,289 3,582 5,132 1992 6,323 6,382 5,073 3,807 2,391 1,784 1,553 1,586 1,615 2,491 3,895 5,565 1993 6,273 6,568 6,232 3,772 2,110 1,861 1,507 1,567 1,700 2,231 3,898 5,915 1994 8,122 6,354

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Massachusetts (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 7,394 6,984 7,234 5,392 3,703 2,150 1,726 1,894 1,799 2,720 3,647 6,864 1990 8,247 6,548 6,367 5,235 3,381 2,491 2,009 2,040 1,906 2,416 4,275 5,704 1991 7,617 7,579 6,948 5,504 3,772 2,466 2,435 2,188 1,939 2,666 4,048 6,027 1992 8,184 8,736 8,217 7,049 4,450 2,768 3,072 2,884 2,753 3,776 5,530 6,933 1993 8,556 9,118 9,026 6,491 4,195 3,184 2,692 2,802 2,766 3,878 5,622 7,098 1994

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Michigan (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Minnesota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 13,112 13,607 11,411 6,916 3,980 2,416 2,112 2,011 2,475 4,718 8,764 13,661 1990 12,696 11,412 9,846 6,734 4,032 2,369 2,100 2,060 2,342 4,865 7,491 12,066 1991 15,649 11,426 10,026 6,092 4,220 2,541 2,315 2,304 2,930 5,399 10,392 12,580 1992 13,000 11,075 10,134 7,517 3,602 2,467 2,244 2,296 2,631 5,092 9,526 12,795 1993 14,685 12,874 11,396 7,267 3,588 2,549 2,190 2,207 2,952 5,614

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Mississippi (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,372 2,502 2,411 1,407 947 739 718 701 754 939 1,350 2,727 1990 3,199 2,007 1,675 1,541 1,070 884 819 818 841 1,137 1,508 2,050 1991 2,704 2,572 1,977 1,291 901 875 806 834 865 989 1,721 2,208 1992 2,817 2,595 1,758 1,473 994 888 885 867 847 942 1,489 2,387 1993 2,663 2,583 2,559 1,756 1,108 925 904 864 843 985 1,710 2,298 1994 3,417 2,993 2,136 1,456 1,012 942 992 973 1,000 1,050

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Missouri (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,118 10,280 9,192 5,246 2,799 2,359 1,829 1,780 2,021 2,798 4,716 9,903 1990 11,634 7,979 6,849 5,622 3,309 2,310 2,034 1,971 2,083 2,863 4,811 7,921 1991 12,748 9,932 7,479 4,261 2,760 2,181 1,853 1,896 2,056 2,689 6,471 8,864 1992 10,201 9,060 6,835 5,601 3,144 2,547 1,849 1,993 2,024 2,728 5,335 9,646 1993 12,062 10,467 10,336 6,750 3,580 2,266 2,066 1,959 2,222 2,864 5,974 9,124

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Montana (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,029 1,923 1,841 1,208 687 478 330 381 442 806 1,235 1,781 1990 1,912 1,705 1,402 998 766 487 323 348 347 782 1,206 1,889 1991 2,425 1,435 1,450 1,053 843 431 357 341 438 724 1,559 1,790 1992 1,726 1,464 1,099 930 568 377 365 331 523 810 1,271 2,095 1993 2,465 1,705 1,741 1,137 682 434 437 416 535 819 1,508 1,999 1994 1,844 1,936 1,465 1,100 699 452 362 348 423 860 1,447 2,043 1995 2,085

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Nebraska (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,202 4,825 4,252 2,505 1,648 1,757 3,381 4,240 1,634 2,109 2,602 4,196 1990 4,765 4,019 3,355 2,799 1,480 1,325 4,837 2,596 2,333 2,334 2,552 4,094 1991 5,452 4,111 3,382 2,193 1,771 1,779 5,675 4,406 1,961 2,056 3,468 4,037 1992 4,332 3,760 2,970 2,411 1,781 1,330 2,366 2,393 1,710 2,508 3,988 4,941 1993 5,784 3,806 4,611 3,119 1,629 1,388 1,324 1,828 1,333 2,164 3,495 4,263 1994 5,469

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Nevada (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in New Hampshire (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 842 753 771 551 339 188 154 140 176 248 393 817 1990 899 803 618 518 307 221 153 153 170 265 380 585 1991 795 798 672 484 291 186 155 156 173 256 420 643 1992 911 931 762 629 376 208 179 169 174 295 515 715 1993 993 973 911 611 294 204 177 171 186 332 522 770 1994 1,261 1,097 863 581 347 229 173 166 206 305 442 743 1995 978 999 864 632 369 227 188 166 197 285 620 989 1996 1,163 1,129

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in New Jersey (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 16,826 15,506 15,624 10,928 7,587 5,087 4,881 4,520 4,638 6,297 9,150 16,342 1990 17,876 14,489 14,442 11,796 7,342 5,460 4,941 4,929 5,323 5,758 9,225 14,011 1991 17,874 16,614 14,732 11,900 6,767 5,198 5,844 3,856 5,261 7,210 9,914 16,069 1992 17,638 18,398 16,759 14,066 8,392 5,294 5,240 4,981 5,462 7,164 11,027 16,470 1993 17,585 19,550 18,731 13,012 7,025 5,134 5,844 3,819 5,149

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in North Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in North Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,789 1,669 1,514 1,027 508 335 269 238 340 464 951 1,506 1990 1,666 1,457 1,243 1,048 616 383 315 298 370 561 916 1,363 1991 1,917 1,394 1,253 847 629 320 302 314 348 633 1,241 1,535 1992 1,489 1,380 1,082 937 529 298 279 262 363 576 1,015 1,549 1993 1,911 1,477 1,339 925 477 347 317 294 381 629 1,068 1,478 1994 2,016 1,812 1,339 932 526 302 284 288 315 530 1,241 1,198 1995 1,807

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Ohio (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Oklahoma (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Oregon (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,884 3,283 2,761 1,724 1,140 989 823 804 882 972 1,624 2,363 1990 2,984 3,031 2,562 1,550 1,268 1,157 821 769 823 1,050 1,697 2,737 1991 4,074 2,764 2,407 2,048 1,610 1,274 902 812 855 927 1,898 2,758 1992 3,231 2,465 1,925 1,542 1,171 884 784 782 863 1,105 1,652 3,166 1993 4,148 3,370 2,880 1,927 1,448 1,010 915 840 934 1,099 1,918 3,557 1994 3,388 3,166 2,480 1,836 1,234 1,078 865 801

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Pennsylvania (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 19,310 18,682 16,972 11,988 8,259 4,646 4,270 4,158 4,375 7,181 11,582 20,997 1990 20,743 16,421 15,166 12,483 6,828 5,134 4,387 4,567 5,054 6,676 11,644 16,571 1991 21,026 18,276 16,026 10,882 5,835 4,162 3,760 3,859 4,580 7,438 12,251 17,451 1992 21,204 19,482 17,679 12,210 6,793 4,520 4,046 4,132 4,579 8,439 12,784 18,385 1993 19,394 21,239 19,875 11,914 5,793 4,510 3,547 3,718

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Rhode Island (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in South Carolina (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in South Dakota (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,339 1,454 1,253 776 413 276 203 197 255 434 851 1,374 1990 1,398 1,234 1,064 769 537 306 230 223 239 459 825 1,269 1991 1,723 1,243 1,076 713 543 303 263 251 309 588 1,176 1,286 1992 1,314 1,174 1,007 828 460 303 291 284 324 558 1,104 1,476 1993 1,847 1,496 1,344 995 531 342 315 291 392 632 1,083 1,429 1994 1,738 1,695 1,285 846 524 347 239 322 329 531 946 1,472 1995 1,619 1,491

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Tennessee (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,960 6,840 6,382 4,054 2,529 1,916 1,802 1,659 1,843 2,355 3,769 7,404 1990 8,672 5,800 4,578 3,811 2,474 1,988 1,652 1,791 1,597 2,276 3,426 5,490 1991 7,499 7,400 5,761 3,131 2,231 1,829 1,640 1,708 1,837 2,454 4,304 6,158 1992 7,343 6,834 5,069 4,205 2,436 2,016 1,838 1,681 1,933 2,368 3,963 6,846 1993 7,296 7,526 7,354 4,605 2,613 1,992 1,884 1,811 1,992 2,565 4,648 6,470 1994 9,690

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Texas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 21,163 22,930 20,215 15,779 11,310 10,731 12,786 11,350 9,367 10,345 12,823 23,871 1990 21,376 16,323 17,118 14,054 12,299 14,204 14,184 11,592 9,448 9,571 12,192 19,981 1991 26,377 18,723 16,796 15,181 11,439 10,763 12,769 11,125 8,843 11,156 17,192 20,608 1992 22,907 19,049 15,866 14,174 12,557 10,879 13,768 12,966 11,356 11,672 17,386 22,093 1993 21,489 18,444 16,162 14,455 12,175 12,943

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Utah (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Vermont (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 315 300 283 199 105 66 57 57 73 130 189 307 1990 338 288 269 196 116 68 46 62 84 127 195 261 1991 335 311 259 187 105 61 55 58 82 133 188 284 1992 366 354 320 231 118 75 79 75 77 144 211 269 1993 347 368 350 199 124 80 62 67 83 143 235 324 1994 476 455 341 269 150 90 65 69 88 144 187 334 1995 388 406 352 277 140 89 70 72 95 130 242 410 1996 458 445 381 279 153 97 67 69 90 162 276 348 1997

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Virginia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,164 6,056 5,721 4,051 2,446 2,129 1,866 1,485 1,985 2,192 3,612 6,474 1990 6,162 5,181 5,100 4,541 2,412 1,831 1,802 1,772 1,671 2,233 3,251 5,081 1991 6,667 5,956 5,270 3,581 2,481 2,159 1,867 2,057 1,860 2,625 3,855 5,701 1992 7,072 6,690 5,985 4,523 3,289 2,271 2,085 2,055 1,903 3,275 4,714 6,895 1993 7,432 7,800 7,347 4,850 2,842 2,177 1,987 2,033 2,106 3,073 4,355 6,877 1994 8,677

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Washington (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 5,343 5,561 5,424 3,672 2,194 1,851 1,671 1,548 1,357 2,083 3,366 4,433 1990 5,136 5,666 4,496 3,289 2,728 1,951 1,639 1,476 1,575 2,249 3,444 5,071 1991 6,279 5,277 4,597 4,047 3,025 2,400 1,831 1,635 1,689 2,099 3,802 5,057 1992 5,564 4,840 3,855 3,179 2,343 1,830 1,575 1,514 1,734 2,240 3,418 5,709 1993 7,058 5,670 5,157 3,785 2,774 1,905 1,801 1,750 1,829 2,236 3,639 6,016 1994

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Wisconsin (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 10,596 10,988 10,169 6,662 3,882 2,012 1,562 1,499 1,718 3,437 6,386 11,183 1990 11,878 9,411 8,746 5,436 3,701 2,130 1,686 1,617 1,786 3,865 6,030 10,074 1991 13,062 10,137 8,785 5,471 3,084 1,643 1,853 1,415 2,229 4,335 8,565 10,938 1992 11,235 10,037 9,113 6,870 3,632 1,986 1,759 1,615 1,954 4,108 7,918 11,087 1993 12,658 11,647 10,442 7,011 3,438 2,418 1,843 1,719 2,326 4,637 7,976

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in Wyoming (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 1,639 1,249 996 830 680 362 272 248 269 449 873 1,233 1992 1,404 1,078 821 668 438 309 264 269 287 439 760 1,271 1993 1,631 1,376 1,262 882 639 400 362 389 378 667 874 1,407 1994 1,351 1,412 1,065 869 544 369 291 270 308 550 915 1,287 1995 1,671 1,247 1,217 987 873 594

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in the District of Columbia (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in the U.S. (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1930's 80,707 86,491 87,367 85,577 91,261 100,187 111,623 117,390 114,296 118,334 1940's 134,644 144,844 183,603 204,793 220,747 230,099 241,802 285,213 323,054 347,818 1950's 387,838 464,309 515,669 530,650 584,957 629,219 716,871 775,916 871,774 975,107 1960's 1,020,222 1,076,849 1,206,668 1,267,783 1,374,717 1,443,648 1,622,740 1,958,970 2,075,736 2,253,206 1970's

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    Gasoline and Diesel Fuel Update (EIA)

    through 1996) in the U.S. (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1973 392,315 394,281 310,799 231,943 174,258 135,165 107,728 105,681 103,831 126,540 216,762 297,734 1974 406,440 335,562 301,588 243,041 165,233 128,032 109,694 107,828 106,510 143,295 199,514 308,879 1975 346,998 345,520 312,362 289,341 164,629 119,960 107,077 104,332 106,655 133,055 179,518 298,845 1976 405,483 364,339 285,912 221,383 169,209 129,058 112,070 113,174 113,284 145,824 252,710

  10. Natural Gas Delivered to Consumers in Alabama (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 293,981 299,146 299,872 2000's 315,202 299,631 343,913 316,665 350,734 323,143 358,141 385,209 369,750 418,677 2010's 496,051 558,116 622,359 573,981 599,473 640,707

  11. Natural Gas Delivered to Consumers in Alaska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 149,171 147,435 150,062 2000's 150,745 132,441 129,292 109,707 120,974 127,140 113,933 99,281 87,677 81,335 2010's 80,794 88,178 87,404 75,926 70,960 70,027

  12. Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 116,058 138,724 146,471 2000's 184,542 218,613 230,493 254,720 333,746 304,004 337,429 372,536 376,961 348,877 2010's 315,448 275,627 319,685 319,450 294,459 336,19

  13. Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 241,664 247,908 241,648 2000's 240,672 217,765 233,046 237,428 205,480 202,946 221,378 214,298 221,983 230,488 2010's 256,102 266,194 278,304 263,281 249,549 270,209

  14. Natural Gas Delivered to Consumers in California (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,049,536 2,228,414 2,264,158 2000's 2,434,770 2,400,993 2,218,923 2,218,715 2,353,823 2,196,741 2,248,988 2,327,205 2,330,514 2,256,380 2010's 2,196,086 2,096,279 2,337,017 2,352,421 2,265,431 2,257,216

  15. Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 272,530 289,945 288,147 2000's 321,784 412,773 404,873 377,794 378,894 405,509 383,452 435,360 426,034 420,500 2010's 396,083 345,663 327,108 361,779 367,021 NA

  16. Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,499 40,794 55,968 2000's 48,325 50,090 52,167 46,143 48,019 46,863 43,172 48,139 48,144 50,126 2010's 54,685 79,251 100,630 95,008 99,736 99,543

  17. Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 514,038 497,685 550,157 2000's 532,297 534,331 676,854 679,179 722,326 767,566 877,977 905,828 932,172 1,044,872 2010's 1,131,142 1,199,247 1,306,024 1,207,573 1,221,666 NA

  18. Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 363,402 360,973 328,730 2000's 408,209 343,698 375,567 372,492 388,751 406,852 414,377 435,919 419,057 456,082 2010's 521,557 512,466 605,262 617,310 645,253 683,796

  19. Natural Gas Delivered to Consumers in Hawaii (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 2,894 2,654 3,115 2000's 2,841 2,818 2,734 2,732 2,772 2,793 2,782 2,848 2,700 2,605 2010's 2,625 2,616 2,687 2,853 2,927 2,929

  20. Natural Gas Delivered to Consumers in Idaho (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 63,483 63,781 66,160 2000's 66,758 73,723 65,510 65,329 69,572 69,202 69,202 74,395 81,646 78,166 2010's 75,647 77,343 83,274 98,843 87,647 NA

  1. Natural Gas Delivered to Consumers in Illinois (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,062,536 944,170 992,865 2000's 1,017,283 940,691 1,036,615 987,964 941,964 958,727 883,080 954,100 987,137 931,329 2010's 942,205 960,018 910,611 1,024,851 1,062,377 NA

  2. Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 545,839 514,407 549,639 2000's 564,919 494,706 533,754 520,352 519,785 524,415 489,881 528,655 544,202 500,135 2010's 564,904 619,977 642,209 664,817 703,637 712,946

  3. Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 243,181 223,287 222,943 2000's 224,299 215,348 215,482 220,263 216,625 229,717 225,929 280,954 311,672 301,340 2010's 300,033 296,098 285,038 314,742 317,784 NA

  4. Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 202,620 187,054 199,511 2000's 208,848 191,608 211,950 206,134 212,666 222,249 200,361 214,546 207,837 189,023 2010's 211,993 204,380 210,584 216,451 241,151 249,968

  5. Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 1,361,995 1,313,827 1,267,668 2000's 1,286,353 1,069,808 1,193,418 1,079,213 1,132,186 1,121,178 1,074,563 1,124,310 1,089,351 1,044,149 2010's 1,207,599 1,244,752 1,336,521 1,267,795 1,325,708 1,361,733

  6. Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 6,290 5,716 6,572 2000's 43,971 94,569 100,659 69,973 85,478 61,088 63,541 62,430 69,202 69,497 2010's 75,821 69,291 67,504 63,247 59,362

  7. Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 208,890 185,583 193,142 2000's 208,894 175,611 193,766 194,280 192,242 200,336 179,949 198,715 193,613 193,988 2010's 205,688 187,921 201,550 193,232 201,199 205,407

  8. Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 958,506 846,478 919,922 2000's 926,633 874,578 926,299 888,584 881,257 875,492 767,509 762,502 748,655 703,346 2010's 713,533 745,769 761,544 787,603 824,527 NA

  9. Natural Gas Delivered to Consumers in Minnesota (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 334,583 310,419 322,572 2000's 340,988 321,867 348,523 351,009 339,407 345,573 332,257 368,428 407,767 381,577 2010's 407,503 405,547 409,421 456,247 460,653

  10. Natural Gas Delivered to Consumers in Mississippi (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 206,845 201,303 271,218 2000's 266,008 298,296 312,317 235,345 254,727 274,431 278,563 328,487 316,214 325,132 2010's 399,073 401,561 440,741 393,161 390,396 NA

  11. Natural Gas Delivered to Consumers in Missouri (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 275,838 253,157 259,054 2000's 277,206 281,875 273,073 259,526 260,708 265,485 250,290 269,825 288,847 260,976 2010's 274,361 265,534 250,902 271,341 290,421 271,116

  12. Natural Gas Delivered to Consumers in Montana (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 54,138 54,093 55,129 2000's 57,725 54,529 58,451 56,074 54,066 55,200 60,602 60,869 64,240 66,613 2010's 60,517 68,113 61,963 68,410 71,435 NA

  13. Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 128,092 127,840 118,536 2000's 123,791 118,933 117,427 113,320 110,725 114,402 125,202 145,253 160,685 156,161 2010's 161,284 162,219 150,961 166,233 165,620 149,107

  14. Natural Gas Delivered to Consumers in Nevada (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 131,463 147,747 153,880 2000's 188,288 175,966 175,739 184,152 212,723 224,919 246,865 251,425 261,579 272,543 2010's 256,256 245,807 267,242 268,008 247,182 NA

  15. Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 877,039 792,617 823,448 2000's 871,444 787,719 813,735 832,563 812,084 811,759 729,264 791,733 780,187 723,471 2010's 767,704 808,509 832,437 901,087 982,855 949,86

  16. Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 459,508 490,070 456,573 2000's 450,596 400,740 429,152 443,139 444,514 487,723 528,236 563,474 590,997 566,176 2010's 582,389 559,215 587,287 539,056 508,363 544,200

  17. Natural Gas Delivered to Consumers in Oregon (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 172,588 216,058 224,767 2000's 213,063 218,632 193,006 205,415 225,263 225,277 214,346 242,371 261,105 240,765 2010's 232,900 194,336 211,232 236,276 216,365 233,52

  18. Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 664,782 609,779 648,194 2000's 659,042 596,041 632,035 651,938 662,513 656,097 625,944 711,945 705,284 755,938 2010's 811,209 866,775 918,490 959,041 1,042,647 1,078,193

  19. Natural Gas Delivered to Consumers in Texas (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3,732,807 3,809,430 3,658,039 2000's 4,073,007 3,917,933 3,966,512 3,747,467 3,595,474 3,154,632 3,068,002 3,133,456 3,128,339 2,947,542 2010's 3,185,011 3,305,730 3,377,217 3,350,645 3,415,789 3,589,91

  20. Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 137,700 139,522 133,518 2000's 137,213 135,123 135,699 125,899 128,441 130,286 152,283 183,237 192,281 182,187 2010's 185,228 184,581 178,941 199,684 198,278 187,45

  1. Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 8,052 7,726 8,025 2000's 10,411 7,906 8,353 8,386 8,672 8,358 8,041 8,851 8,609 8,621 2010's 8,428 8,558 8,077 9,512 10,554 NA

  2. Natural Gas Delivered to Consumers in Virginia (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 240,244 252,233 267,269 2000's 258,975 228,670 247,351 254,008 268,674 292,043 264,954 309,866 286,497 304,266 2010's 359,208 352,281 392,255 401,623 404,939 NA

  3. Natural Gas Delivered to Consumers in Washington (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 247,530 281,143 279,656 2000's 280,617 303,060 227,360 243,072 253,663 256,580 256,842 265,211 291,535 302,930 2010's 278,139 257,945 255,356 308,148 298,088

  4. Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 396,107 363,738 376,409 2000's 389,543 356,915 381,498 391,185 380,014 406,550 369,353 395,519 406,723 385,418 2010's 369,924 391,128 400,876 439,741 458,999 454,450

  5. Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 70,792 77,652 60,593 2000's 63,384 60,385 69,633 67,627 65,639 64,753 65,487 67,693 66,472 61,774 2010's 67,736 70,862 73,690 74,597 73,096 72,765

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alabama (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,401 34,749 37,275 1970's 36,254 36,657 37,389 33,126 35,349 33,439 34,450 34,303 29,649 36,717 1980's 28,525 26,860 25,876 26,665 27,567 25,836 25,128 22,384 25,562 26,469 1990's 24,287 23,711 25,232 25,723 25,526 26,228 29,000 32,360 25,705 27,581 2000's 25,580 26,391 25,011 25,356 26,456 25,046 24,396 23,420 25,217 24,293 2010's 27,071 25,144 21,551 25,324

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Alaska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 2,722 4,713 11,018 1970's 12,519 14,256 16,011 12,277 13,106 14,415 14,191 14,564 15,208 15,862 1980's 16,513 16,149 24,232 24,693 24,654 20,344 20,874 20,224 20,842 21,738 1990's 21,622 20,897 21,299 20,003 20,698 24,979 27,315 26,908 27,079 27,667 2000's 26,485 15,849 15,691 17,270 18,373 16,903 18,544 18,756 17,025 16,620 2010's 15,920 19,399 19,898 18,694

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arizona (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 23,335 23,389 24,501 1970's 22,705 25,604 26,905 31,812 32,742 32,638 36,763 34,076 29,581 26,971 1980's 27,487 26,742 26,085 24,612 25,309 25,360 24,081 27,669 28,299 28,600 1990's 28,401 27,597 27,089 27,568 29,187 28,210 28,987 30,132 31,788 31,301 2000's 32,138 31,121 31,705 32,292 33,159 31,888 32,792 32,694 32,516 32,196 2010's 31,945 32,633 31,530 32,890

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Arkansas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 35,295 37,886 39,962 1970's 39,169 30,832 32,457 33,789 31,040 33,291 34,011 33,913 34,612 33,442 1980's 30,690 28,282 29,438 27,739 28,995 26,731 24,949 24,603 27,457 27,271 1990's 25,129 25,986 25,314 28,998 27,407 27,409 31,006 29,441 28,062 27,898 2000's 33,180 32,031 32,928 31,746 29,821 31,521 31,286 32,187 36,924 36,373 2010's 40,232 39,986 41,435 47,636

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in California (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 184,630 189,903 206,861 1970's 209,945 239,685 231,536 232,774 228,988 240,239 219,840 227,543 221,441 258,490 1980's 258,151 236,910 236,202 215,918 191,838 205,044 182,794 212,904 248,397 259,118 1990's 285,090 287,608 285,008 250,283 261,989 278,761 235,068 253,923 282,153 244,701 2000's 246,439 245,795 238,308 232,912 231,597 233,082 244,432 251,024 251,045

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 39,942 47,287 52,256 1970's 59,081 62,805 63,154 69,844 68,322 76,288 75,959 72,597 71,422 74,831 1980's 66,952 58,913 66,991 64,615 71,890 68,975 61,620 64,355 68,515 67,477 1990's 66,290 68,938 66,420 71,647 65,870 66,639 68,914 69,074 63,132 59,346 2000's 60,874 65,011 66,939 62,616 61,956 62,099 59,851 63,231 65,806 62,441 2010's 57,658 55,843 51,795 58,787

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Delaware (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,968 2,084 2,526 1970's 2,804 3,010 3,205 3,093 3,169 2,964 3,078 2,815 3,005 2,842 1980's 3,246 3,783 3,577 3,428 3,827 3,412 3,514 3,741 4,041 4,184 1990's 4,042 4,253 4,965 5,195 5,459 5,743 6,694 6,608 5,590 6,119 2000's 5,125 5,680 7,477 8,437 8,465 8,383 8,134 8,628 8,868 11,684 2010's 12,193 10,478 10,034 11,170 11,882 11,189

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Florida (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,501 21,890 24,721 1970's 26,914 25,478 23,243 24,315 22,527 31,745 39,681 41,236 35,386 36,638 1980's 30,182 33,702 29,788 29,228 30,481 30,674 35,829 37,492 37,834 35,105 1990's 36,306 39,264 41,727 41,151 39,935 40,383 41,810 36,700 37,659 36,269 2000's 47,904 49,286 55,803 54,283 56,321 57,690 50,625 51,097 50,901 50,371 2010's 54,065 53,532 54,659 59,971

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Georgia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 30,202 36,034 39,020 1970's 38,726 41,881 44,992 47,253 44,317 49,438 46,351 55,268 60,266 62,437 1980's 58,763 57,139 54,718 56,280 55,909 51,519 50,405 54,592 55,963 53,089 1990's 49,486 51,036 53,861 57,525 54,051 56,536 61,377 57,220 55,419 43,581 2000's 58,793 50,645 48,631 50,273 55,047 52,902 48,137 48,591 51,518 53,627 2010's 60,153 56,602 51,918 57,195

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Idaho (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 4,972 6,374 6,613 1970's 5,851 8,232 10,712 9,387 8,040 12,177 8,742 8,405 5,503 6,923 1980's 5,756 5,422 5,729 5,758 8,493 8,999 8,543 7,618 8,252 9,024 1990's 8,535 9,582 8,932 10,675 10,088 10,360 11,506 11,433 11,676 12,618 2000's 13,414 13,623 13,592 12,019 12,995 13,231 13,573 14,274 16,333 15,740 2010's 15,033 16,855 15,838 18,485 16,963 16,171

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Illinois (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 175,281 174,565 189,006 1970's 193,434 210,424 224,488 218,530 216,114 215,718 246,659 243,686 251,895 237,199 1980's 228,178 223,427 218,751 204,834 232,170 213,528 204,979 191,047 215,257 196,171 1990's 200,267 193,844 196,964 203,157 197,558 203,802 218,054 202,850 174,687 188,520 2000's 201,768 189,160 204,570 211,710 204,039 201,882 196,361 203,368 222,382

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Indiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 58,273 60,661 72,414 1970's 77,550 77,984 85,302 76,835 75,887 70,501 67,481 63,224 70,083 74,231 1980's 70,048 71,178 71,900 65,409 71,819 69,641 64,821 64,903 71,709 73,625 1990's 67,223 68,383 72,720 78,047 75,819 82,726 87,456 81,753 73,117 73,643 2000's 90,378 78,479 82,427 87,225 84,883 76,217 71,081 75,562 84,858 78,764 2010's 75,883 75,995 66,663 82,596

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Iowa (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 45,118 48,034 52,700 1970's 57,266 59,138 61,623 63,350 64,052 66,915 64,734 60,519 49,200 58,308 1980's 50,588 46,804 51,536 46,854 48,104 47,643 43,709 38,057 44,955 46,142 1990's 43,953 46,615 46,095 50,337 47,922 50,325 54,571 50,191 43,027 44,895 2000's 45,609 45,892 46,423 48,081 46,068 45,152 43,424 46,367 56,099 56,698 2010's 51,674 51,875 43,767 56,592

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Kentucky (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 32,313 36,089 41,934 1970's 42,461 42,352 42,843 45,797 42,320 38,497 57,203 50,170 46,647 40,509 1980's 39,359 36,379 35,260 34,111 36,138 33,758 32,666 33,298 35,718 36,148 1990's 31,806 33,700 35,419 37,817 36,744 38,610 40,972 38,627 32,464 35,798 2000's 38,669 35,255 35,942 38,212 36,989 36,894 32,590 34,386 37,167 35,438 2010's 36,818 34,592 30,771 37,422

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Louisiana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 51,062 56,937 54,010 1970's 70,321 67,515 66,331 59,518 58,097 50,662 43,567 44,563 65,300 115,743 1980's 39,996 39,507 33,729 34,906 33,088 30,228 27,985 27,845 27,475 27,156 1990's 24,937 25,452 28,445 25,157 24,184 23,833 25,746 25,613 24,042 24,559 2000's 25,687 24,604 25,540 25,161 24,700 25,085 22,240 23,863 22,869 23,672 2010's 27,009 25,925 26,294 28,875

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maine (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,961 1,672 2,338 1970's 3,220 3,604 3,678 3,323 3,441 3,894 3,814 3,846 4,467 5,023 1980's 864 1,043 1,192 1,124 1,124 1,139 1,214 1,250 1,461 1,660 1990's 1,678 1,860 2,209 2,311 2,381 2,426 2,566 2,713 2,456 2,547 2000's 2,770 2,642 5,167 4,781 4,811 4,792 4,701 5,749 5,878 5,541 2010's 5,830 6,593 7,313 8,146 9,030 9,795

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Maryland (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,154 30,419 34,674 1970's 37,529 40,988 43,950 42,953 43,080 37,466 42,422 40,532 39,821 47,326 1980's 28,576 32,055 30,871 30,758 25,299 24,134 23,816 25,544 25,879 26,920 1990's 24,051 38,117 42,464 43,635 44,136 46,874 45,842 49,802 57,370 58,103 2000's 55,669 59,802 63,999 70,557 70,195 69,718 62,868 70,852 70,411 69,119 2010's 67,555 67,505 64,146 71,145

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Massachusetts (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 24,737 25,396 29,821 1970's 35,356 36,994 36,778 39,288 37,384 37,812 37,763 40,598 45,657 46,701 1980's 53,462 50,131 61,286 39,640 41,271 41,382 43,661 46,522 48,915 51,508 1990's 50,618 53,188 64,352 65,429 84,534 82,270 96,187 105,813 90,092 65,136 2000's 63,793 61,677 64,763 62,590 56,879 56,665 52,283 61,504 72,303 71,546 2010's 72,053 81,068 73,040

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Michigan (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 107,796 117,124 130,062 1970's 132,708 146,217 159,970 180,274 189,192 181,949 178,220 131,266 142,935 182,316 1980's 190,268 174,722 170,269 159,916 160,952 157,758 135,592 185,956 167,900 176,182 1990's 159,429 165,558 173,802 180,230 183,068 194,078 201,390 192,258 163,368 179,351 2000's 186,800 173,734 176,010 186,129 175,190 174,625 153,896 163,740 172,108

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Minnesota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 63,740 65,536 70,232 1970's 76,585 76,441 79,987 80,219 90,412 89,651 76,981 67,839 81,121 60,509 1980's 63,780 66,755 74,309 70,713 75,175 77,020 74,478 65,923 79,989 85,183 1990's 78,015 85,875 82,381 86,629 83,933 90,658 98,537 92,232 82,345 88,061 2000's 95,358 93,844 104,387 101,446 96,541 95,916 87,170 91,275 99,526 96,218 2010's 89,963 94,360 83,174

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Mississippi (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 16,547 18,297 17,667 1970's 23,846 25,853 24,604 23,701 25,504 23,922 20,214 19,304 21,312 27,224 1980's 20,886 19,267 17,213 17,158 17,860 16,591 16,891 17,922 18,108 17,568 1990's 17,548 17,743 17,942 19,199 19,232 19,904 22,225 22,070 21,358 20,208 2000's 21,673 21,585 21,221 22,933 22,130 20,882 19,425 20,774 20,181 19,095 2010's 21,179 20,247 17,834

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Missouri (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,524 79,821 79,019 1970's 87,644 89,534 97,506 91,038 90,291 90,719 98,435 93,323 98,680 94,629 1980's 76,054 68,455 69,913 66,106 67,218 60,345 61,890 58,205 63,839 63,039 1990's 59,387 63,191 60,963 69,670 66,196 65,086 72,802 69,829 61,995 63,100 2000's 62,673 64,924 61,897 61,516 61,755 60,369 56,722 59,224 64,993 61,433 2010's 61,194 62,304 54,736 64,522

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Montana (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,516 13,651 16,593 1970's 18,564 18,109 19,151 19,143 16,602 18,654 17,831 16,706 17,766 17,396 1980's 14,265 13,725 15,987 13,534 14,256 14,820 12,536 10,989 12,041 13,141 1990's 12,164 12,846 11,557 13,880 12,981 13,489 14,823 13,911 12,952 12,088 2000's 13,533 13,245 14,704 15,119 13,407 13,136 13,181 13,223 14,340 23,575 2010's 20,459 22,336 19,205 20,971

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nebraska (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 41,443 41,765 46,041 1970's 46,824 47,261 45,518 38,690 42,298 43,117 48,713 46,989 40,736 43,507 1980's 43,356 40,612 43,022 39,055 41,900 39,404 36,357 34,205 39,388 37,351 1990's 36,489 40,291 34,490 34,745 38,946 40,044 40,833 33,853 28,911 27,586 2000's 28,907 27,792 28,185 28,368 29,858 27,401 28,087 30,067 34,813 31,790 2010's 31,993 32,115 26,503 32,214

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Nevada (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,164 6,997 8,204 1970's 9,633 11,014 12,755 13,144 14,078 14,965 18,389 17,436 19,940 19,638 1980's 10,207 8,294 8,449 11,758 12,012 12,232 11,451 13,747 14,879 15,116 1990's 15,073 16,960 16,101 17,549 18,694 18,703 20,421 21,958 23,314 22,710 2000's 25,586 22,912 22,685 24,099 26,862 26,552 28,046 28,224 28,920 29,531 2010's 29,475 30,763 28,991 31,211 29,105

  11. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Hampshire (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 4,116 4,376 4,414 4,437 4,100 4,955 4,438 4,601 5,034 5,371 1990's 5,073 5,028 5,862 6,142 6,412 6,514 7,099 7,489 6,808 7,214 2000's 8,323 7,349 8,768 9,673 8,943 9,844 8,494 9,360 10,043 9,935 2010's 8,406 8,890 8,130 9,204 9,412 9,32

  12. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Jersey (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 28,656 32,546 34,510 1970's 55,953 60,230 62,917 61,846 58,210 53,346 90,463 53,896 48,005 52,314 1980's 60,481 74,627 78,750 79,624 83,906 83,467 85,775 94,459 101,325 117,385 1990's 115,591 121,240 130,891 128,942 132,008 138,965 150,432 168,760 146,653 163,759 2000's 158,543 131,417 146,176 159,647 168,768 169,857 152,501 168,778 168,574 180,404 2010's

  13. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in New Mexico (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 27,447 30,713 28,680 1970's 33,035 33,760 32,354 25,569 25,221 22,800 33,708 25,476 25,706 26,371 1980's 24,505 20,446 21,715 22,413 22,947 16,733 20,642 19,939 31,032 28,459 1990's 23,694 24,993 27,884 27,898 24,964 23,934 26,466 27,403 27,206 27,103 2000's 27,009 27,133 25,476 23,745 25,458 24,186 23,404 24,876 25,183 24,701 2010's 25,155 25,035 24,898 26,790

  14. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in North Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,059 7,072 7,444 1970's 8,315 9,059 9,874 9,875 11,528 12,425 12,202 11,234 11,845 12,044 1980's 11,026 9,419 11,361 9,828 9,961 10,118 9,084 7,908 9,827 10,609 1990's 10,236 10,732 9,759 10,642 10,783 11,644 12,150 10,870 10,082 10,023 2000's 11,060 10,456 11,675 10,952 10,473 9,903 9,355 10,296 11,101 10,987 2010's 10,302 10,973 10,364 13,236 13,999 12,334

  15. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Ohio (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 153,376 165,414 175,372 1970's 183,412 189,791 208,068 196,663 192,497 169,357 179,392 149,011 172,429 158,117 1980's 166,210 161,110 157,664 143,568 155,350 143,311 139,119 146,983 158,790 161,516 1990's 143,503 150,339 160,645 164,044 166,798 175,160 189,966 183,838 156,630 167,573 2000's 177,917 172,555 163,274 179,611 170,240 166,693 146,930 160,580 167,070

  16. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Oregon (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,961 7,874 9,965 1970's 11,360 13,563 14,530 13,722 13,401 15,896 13,995 10,861 12,124 13,820 1980's 15,171 14,922 16,330 15,143 17,012 19,043 16,843 16,718 18,406 20,249 1990's 20,449 22,328 19,570 24,047 22,960 22,419 25,597 25,465 25,986 28,510 2000's 28,589 27,884 27,714 26,110 26,214 27,631 27,844 29,007 30,444 29,744 2010's 27,246 30,359 28,805 30,566 28,377

  17. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Pennsylvania (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 82,702 87,620 95,720 1970's 99,339 110,014 122,518 116,265 102,495 98,991 124,517 111,885 110,620 111,498 1980's 118,462 128,561 125,557 115,222 126,211 115,329 114,442 114,800 127,382 132,421 1990's 125,673 125,546 134,254 131,776 138,473 143,735 154,642 144,084 130,996 143,256 2000's 145,319 136,468 136,202 149,458 142,608 144,971 130,328 145,852 144,603

  18. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Rhode Island (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 3,142 3,416 3,850 1970's 5,064 4,530 4,734 4,648 4,397 4,233 2,895 3,019 4,783 6,169 1980's 6,751 6,867 7,156 6,976 7,466 7,590 6,718 9,395 8,352 8,767 1990's 8,071 8,269 9,080 9,205 12,049 12,064 12,298 12,303 11,477 11,804 2000's 12,974 12,808 11,468 11,391 11,289 11,043 9,950 11,247 10,843 10,725 2010's 10,458 10,843 10,090 11,633 13,178 11,734

  19. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Carolina (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 8,840 10,544 12,938 1970's 13,850 14,371 14,137 16,053 14,820 17,202 35,062 32,117 24,681 17,943 1980's 22,885 19,436 15,560 16,548 16,635 15,270 15,894 17,195 17,472 16,525 1990's 15,394 15,796 16,644 17,014 17,870 18,868 20,328 19,560 19,828 20,566 2000's 22,105 20,743 21,029 22,365 22,255 22,048 20,691 20,927 22,283 21,953 2010's 24,119 22,113 21,416

  20. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in South Dakota (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,444 10,723 11,201 1970's 11,361 10,592 11,204 10,568 11,671 11,488 15,344 14,786 13,547 9,951 1980's 8,507 8,188 9,384 8,651 9,128 9,987 9,166 8,199 8,396 8,826 1990's 8,555 9,473 9,122 10,696 10,274 10,685 11,598 10,422 9,264 9,564 2000's 10,119 9,711 10,258 10,375 9,958 9,819 9,525 10,337 11,362 11,563 2010's 11,025 11,101 9,330 12,151 12,310 10,497

  1. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Tennessee (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 34,380 38,325 41,069 1970's 42,720 44,062 45,704 45,974 44,651 42,488 38,244 35,127 30,917 42,714 1980's 44,048 42,686 38,697 42,903 46,544 43,399 42,589 44,144 45,852 47,513 1990's 43,552 45,953 46,532 50,754 50,760 51,235 58,497 55,117 52,394 52,572 2000's 53,365 53,010 53,710 56,576 54,201 54,264 51,537 51,056 54,094 51,879 2010's 56,194 52,156 44,928 53,888

  2. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 139,727 139,442 140,854 1970's 146,090 142,423 141,128 155,070 134,418 116,749 135,452 158,683 168,946 233,758 1980's 168,513 157,199 189,447 157,481 165,700 151,774 146,972 156,509 175,368 182,670 1990's 172,333 180,973 184,673 175,988 180,232 209,584 178,549 216,333 169,610 171,714 2000's 190,453 171,847 226,274 218,565 192,901 159,972 147,366 161,255 167,129

  3. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Utah (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,905 8,114 9,443 1970's 10,180 8,504 7,933 8,997 5,806 6,055 14,681 9,661 8,430 6 1980's 330 343 21,831 7,986 8,569 8,505 4,636 14,811 17,911 16,522 1990's 16,220 19,276 16,584 22,588 26,501 26,825 29,543 31,129 30,955 30,361 2000's 31,282 30,917 33,501 30,994 31,156 34,447 34,051 34,447 37,612 37,024 2010's 38,461 40,444 35,363 41,398 38,156 35,552

  4. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Vermont (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 828 831 853 856 1,467 1,575 1,688 1,833 1,941 2,081 1990's 2,049 2,058 2,319 2,382 2,669 2,672 2,825 3,051 2,979 2,309 2000's 2,595 2,473 2,470 2,757 2,724 2,610 2,374 2,631 2,495 2,483 2010's 2,384 2,479 2,314 4,748 4,830 NA

  5. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 22,756 24,594 27,155 1970's 30,090 34,672 34,176 37,632 35,281 32,358 34,887 34,685 43,064 33,946 1980's 38,467 35,255 38,157 38,457 34,825 33,975 35,453 39,401 42,013 44,181 1990's 41,038 44,077 50,757 52,880 52,944 56,948 59,262 61,895 58,283 61,516 2000's 66,098 59,809 62,699 64,004 64,518 65,838 62,352 66,444 67,006 67,709 2010's 68,911 64,282 60,217 68,126

  6. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Washington (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 15,133 16,244 17,166 1970's 18,490 20,612 23,254 32,333 33,221 31,988 31,652 29,946 25,330 33,369 1980's 30,754 28,629 30,559 28,728 32,371 35,459 32,022 32,366 36,674 38,502 1990's 38,671 41,738 37,800 43,620 42,982 42,568 48,139 46,686 45,561 50,735 2000's 50,462 57,160 46,455 47,845 48,455 49,745 51,292 53,689 56,205 55,697 2010's 51,335 56,487 53,420 55,805

  7. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in West Virginia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 18,511 20,402 21,534 1970's 21,678 23,106 26,654 25,854 24,586 24,776 20,462 19,556 22,501 22,337 1980's 21,980 22,191 20,548 18,771 18,780 17,224 15,995 16,792 22,416 23,258 1990's 21,391 21,043 24,419 24,381 24,979 25,872 28,025 25,913 24,986 27,301 2000's 26,167 27,737 24,729 26,681 25,177 25,084 23,477 22,633 25,299 23,761 2010's 24,907 24,094 22,634

  8. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wisconsin (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 33,610 36,067 52,315 1970's 54,555 47,662 43,753 55,012 65,705 67,485 57,702 61,280 77,890 80,756 1980's 77,107 68,075 69,694 68,020 70,230 72,803 55,275 57,750 66,939 70,090 1990's 66,339 71,516 71,314 77,079 78,609 84,888 93,816 88,729 81,316 81,689 2000's 81,139 76,095 85,811 87,131 82,187 86,086 86,342 89,016 97,137 91,459 2010's 82,204 87,040 76,949 99,434

  9. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in Wyoming (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 10,865 11,637 14,069 1970's 14,026 14,072 17,287 13,206 13,241 10,253 9,152 8,767 8,100 8,211 1980's 4,980 4,511 10,098 9,182 9,431 9,139 8,045 8,443 8,700 8,551 1990's 8,440 9,101 8,009 10,268 9,231 9,833 9,721 10,754 10,414 9,838 2000's 9,752 9,535 10,414 9,986 9,916 9,184 9,500 9,442 10,180 10,372 2010's 11,153 11,680 10,482 12,013 12,188 12,498

  10. Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    through 1996) in the District of Columbia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,752 14,993 15,881 15,945 11,680 11,921 11,934 13,999 15,012 15,741 1990's 13,473 15,550 16,103 16,229 14,742 17,035 16,347 18,012 16,862 17,837 2000's 17,728 16,546 18,332 17,098 17,384 17,683 17,107 19,297 18,411 18,705 2010's 18,547 16,892 15,363 17,234 17,498 15,793

  11. Injector having multiple fuel pegs

    DOE Patents [OSTI]

    Hadley, Mark Allan; Felling, David Kenton

    2013-04-30

    A fuel injector is provided, including a fuel injector body, a plurality of fuel vanes, and a plurality of fuel pegs. The injector body includes a manifold and an inlet. The manifold is configured for receiving fuel, and the inlet is configured for receiving air. The fuel vanes are located within the injector body and are positioned in a direction that is generally parallel with a longitudinal axis of the injector body to orient the air flowing from the inlet. The plurality of fuel pegs are fluidly connected to the manifold and are arranged within the plurality of fuel vanes. The plurality of fuel pegs are each spaced at a distance that is about equal between each of the plurality of fuel pegs.

  12. Apparatus and method for grounding compressed fuel fueling operator

    DOE Patents [OSTI]

    Cohen, Joseph Perry; Farese, David John; Xu, Jianguo

    2002-06-11

    A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

  13. EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing

    Energy Savers [EERE]

    U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany | Department of Energy 77: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Spent Nuclear Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany SUMMARY This EA will evaluate the potential environmental impacts of a DOE proposal to accept spent nuclear fuel from the

  14. Fuels Technologies | Department of Energy

    Energy Savers [EERE]

    Fuels Technologies Fuels Technologies Overview of DOE Fuels Technologies R&D activities, including fuels for advanced combustion engines, advanced petroleum-based and non-petroleum based fuels, and biofuels. PDF icon deer08_stork.pdf More Documents & Publications Mid-Level Ethanol Blends Mid-Level Ethanol Blends Test Program Effects of Intermediate Ethanol Blends on Legacy Vehicles and Small Non-Road Engines, Report 1 … Updated Feb 2009

  15. Federal Employee Health Services

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-10-18

    The order establishes requirements and responsibilities for occupational medical, employee assistance, and workers' compensation programs for Federal employees. Supersedes DOE O 341.1.

  16. Federated Testbed Circuits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testbed Circuits Network R&D Overview Experimental Network Testbeds 100G SDN Testbed Dark Fiber Testbed Federated Testbed Circuits Test Circuit Service Performance (perfSONAR)...

  17. EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing...

    Energy Savers [EERE]

    Fuel Containing U.S.-Origin Highly Enriched Uranium from the Federal Republic of Germany EA-1977: Acceptance and Disposition of Used Nuclear Fuel Containing U.S.-Origin...

  18. Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18 miles per gallon or less for brand new vehicles with improved fuel economy. ...

  19. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration This document...

  20. Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Administration; Appendix Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration; Appendix...