Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

2

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

Science Conference Proceedings (OSTI)

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

3

Greenfield Alternative Study LEU-Mo Fuel Fabrication Facility  

Science Conference Proceedings (OSTI)

This report provides the initial “first look” of the design of the Greenfield Alternative of the Fuel Fabrication Capability (FFC); a facility to be built at a Greenfield DOE National Laboratory site. The FFC is designed to fabricate LEU-Mo monolithic fuel for the 5 US High Performance Research Reactors (HPRRs). This report provides a pre-conceptual design of the site, facility, process and equipment systems of the FFC; along with a preliminary hazards evaluation, risk assessment as well as the ROM cost and schedule estimate.

Washington Division of URS

2008-07-01T23:59:59.000Z

4

Radiological environs study at a fuel fabrication facility. [General Electric Fuel Fabrication Plant at Wilmington, NC  

SciTech Connect

Field studies were conducted to detect environmental contamination from fuel fabrication plant effluents. The plant chosen for study was operated by the General Electric Company, Nuclear Fuel Division, at Wilmington, NC. The facility operates continuously using the ammonium diuranate (ADU) process to convert 2.0 to 2.2% enriched UF/sub 6/ to UO/sub 2/ fuel. Continuous air samplers at five sites measured the concentrations of /sup 234/U and /sup 238/U in air for 36 one-week intervals. River water was sampled at nine locations above and below the plant discharge point during each of three field surveys. The atmospheric concentrations of /sup 234/U and /sup 238/U appeared to vary according to a log-normal distribution. The annual facility release of approximately 2 to 3 mCi uranium to the atmosphere would add from 0.01 to 0.2 fCi/m/sup 3/ uranium in the atmospheric environs. An individual residing continuously at the nearest residence is predicted to receive a 50-year dose commitment of 0.9 mrem to the lung. The approximately 1 Ci/y of uranium liquid effluent released would increase the uranium concentration in Northeast Cape Fear estuary about 3 kilometers downstream by 0.3 pCi/liter. Although this water is not potable and is not used for any potable water supply, ingestion of water containing uranium at this concentration for a year would deliver a 3-mrem dose commitment to the bone.

Lyon, R.J.; Shearin, R.L.; Broadway, J.A.

1978-10-01T23:59:59.000Z

5

Information Handling Plan For The Mixed Oxide Fuel Fabrication Facility  

E-Print Network (OSTI)

responses to the NRC's Request for Additional Information (RAI), and a revision to the Classified Matter Protection Plan (CMPP) for the Mixed Oxide Fuel Fabrication Facility (MFFF). Enclosure (1) provides the detailed responses to the Reference (A) RAIs, and indicates corresponding changes to the CMPP. Enclosure (2) provides a List of Effective Pages for the revised CMPP. Enclosure (3) is the revised CMPP itself; it is a page revision with respect to the previous revision of Reference (C). Enclosure (4) lists substantive changes in addition to those resulting from the RAIs. Changes resulting from the RAI responses, as well as other changes, are denoted by vertical lines in the right margin and revised pages have a current revision date. The enclosures herein concern protection of classified matter in accordance with 10 CFR 2.390(d), and should be withheld from public disclosure.

Shaw Areva; Mox Services

2008-01-01T23:59:59.000Z

6

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

7

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

8

PRELIMINARY DATA CALL REPORT ADVANCED BURNER REACTOR START UP FUEL FABRICATION FACILITY  

SciTech Connect

The purpose of this report is to provide data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives is to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept has been proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR is proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu will be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) is being considered for fabrication of WG Pu fuel for the ABR. This report is provided in response to ‘Data Call’ for the construction of startup fuel fabrication facility. It is anticipated that the facility will provide the startup fuel for 10-15 years and will take to 3 to 5 years to construct.

S. T. Khericha

2007-04-01T23:59:59.000Z

9

A Blueprint for GNEP Advanced Burner Reactor Startup Fuel Fabrication Facility  

SciTech Connect

The purpose of this article is to identify the requirements and issues associated with design of GNEP Advanced Burner Reactor Fuel Facility. The report was prepared in support of providing data for preparation of a NEPA Environmental Impact Statement in support the U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP). One of the GNEP objectives was to reduce the inventory of long lived actinide from the light water reactor (LWR) spent fuel. The LWR spent fuel contains Plutonium (Pu) -239 and other transuranics (TRU) such as Americium-241. One of the options is to transmute or burn these actinides in fast neutron spectra as well as generate the electricity. A sodium-cooled Advanced Recycling Reactor (ARR) concept was proposed to achieve this goal. However, fuel with relatively high TRU content has not been used in the fast reactor. To demonstrate the utilization of TRU fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype of ARR was proposed, which would necessarily be started up using weapons grade (WG) Pu fuel. The WG Pu is distinguished by relatively highest proportions of Pu-239 and lesser amount of other actinides. The WG Pu was assumed to be used as the startup fuel along with TRU fuel in lead test assemblies. Because such fuel is not currently being produced in the US, a new facility (or new capability in an existing facility) was being considered for fabrication of WG Pu fuel for the ABR. It was estimated that the facility will provide the startup fuel for 10-15 years and would take 3 to 5 years to construct.

S. Khericha

2010-12-01T23:59:59.000Z

10

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

11

The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility, IG-0887  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Use of Staff Augmentation The Use of Staff Augmentation Subcontracts at National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility DOE/IG-0887 May 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 15, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility" BACKGROUND Shaw AREVA MOX Services, LLC (MOX Services) is responsible for the design and construction of the National Nuclear Security Administration's (NNSA) nearly $5 billion Mixed

12

Options for converting excess plutonium to feed for the MOX fuel fabrication facility  

SciTech Connect

The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

Watts, Joe A [Los Alamos National Laboratory; Smith, Paul H [Los Alamos National Laboratory; Psaras, John D [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Costa, David A [Los Alamos National Laboratory; Joyce, Jr., Edward L [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

13

Supplemental information for a notice of construction for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

Science Conference Proceedings (OSTI)

This ''Notice of Construction'' has been submitted by the US Department of Energy-Richland Operations Office (P.O. Box 550, Richland, Washington 99352), pursuant to WAC 402-80-070, for three new sources of radionuclide emissions at the Hanford Site in Washington State (Figure 1). The three new sources, the Fueled Clad Fabrication System (FCFS) the Radioisotope Power Systems Facility (RPSF) and the Fuel Assembly Area (FAA) will be located in one facility, the Fuels and materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post- irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies to be used in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, to the extent possible, these systems will be dealt with separately. The FAA is a comparatively independent operation though it will share the FMEF complex.

Not Available

1989-08-01T23:59:59.000Z

14

Prevention of significant deterioration permit application for the Fueled Clad Fabrication System, the Radioisotope Power Systems Facility, and the Fuel Assembly Area  

SciTech Connect

This New Source Review'' has been submitted by the US Department of Energy-Richland Operations Office (PO Box 550, Richland, Washington 99352), pursuant to WAC 173-403-050 and in compliance with the Department of Ecology Guide to Processing A Prevention Of Significant Deterioration (PSD) Permit'' for three new sources of radionuclide emissions at the Hanford Site in Washington State. The three new sources, the Fueled Clad Fabrication System (FCFS), the Radioisotope Power Systems Facility (RPSF), and the Fuel Assembly Area (FAA), will be located in one facility, the Fuels and Materials Examination Facility (FMEF) of the 400 Area. The FMEF was originally designed to provide for post-irradiation examination and fabrication of breeder reactor fuels. These FMEF missions were cancelled before the introduction of any fuel materials or any irradiated material. The current plans are to use the facility to fabricate power supplies for use in space applications and to produce Fast Flux Test Facility (FFTF) fuel and target assemblies. The FCFS and the RPSF will produce materials and assemblies for application in space. The FAA project will produce FFTF fuel and target assemblies. The FCFS and the RPSF will share the same building, stack, and, in certain cases, the same floor space. Given this relationship, these systems will be dealt with separately to the extent possible. The FAA is a comparatively independent operation though it will share the FMEF complex.

Not Available

1989-08-01T23:59:59.000Z

15

Test Operation of Oxygen-Enriched Incinerator for Wastes From Nuclear Fuel Fabrication Facility  

SciTech Connect

The oxygen-enriched combustion concept, which can minimize off-gas production, has been applied to the incineration of combustible uranium-containing wastes from a nuclear fuel fabrication facility. A simulation for oxygen combustion shows the off-gas production can be reduced by a factor of 6.7 theoretically, compared with conventional air combustion. The laboratory-scale oxygen enriched incineration (OEI) process with a thermal capacity of 350 MJ/h is composed of an oxygen feeding and control system, a combustion chamber, a quencher, a ceramic filter, an induced draft fan, a condenser, a stack, an off-gas recycle path, and a measurement and control system. Test burning with cleaning paper and office paper in this OEI process shows that the thermal capacity is about 320 MJ/h, 90 % of design value and the off-gas reduces by a factor of 3.5, compared with air combustion. The CO concentration for oxygen combustion is lower than that of air combustion, while the O2 concentration in off-gas is kept above 25 vol % for a simple incineration process without any grate. The NOx concentration in an off-gas stream does not reduce significantly due to air incoming by leakage, and the volume and weight reduction factors are not changed significantly, which suggests a need for an improvement in sealing.

Kim, J.-G.; Yang, H.cC.; Park, G.-I.; Kim, I.-T.; Kim, J.-K.

2002-02-26T23:59:59.000Z

16

Mixed Oxide (MOX) Fuel Fabrication Facility Construction Authorization Request Change Pages and Revised Response to AP-03 References:  

E-Print Network (OSTI)

Enclosed are change pages for Duke Cogema Stone & Webster's (DCS) request for authorization of construction of the Mixed Oxide (MOX) Fuel Fabrication Facility. The enclosed change pages replace pages in the Construction Authorization Request as updated through Reference 1. The enclosed change pages do not contain information which is considered to be proprietary to DCS. Enclosure 1 provides twenty-five copies of the change pages, which may be disclosed to the public. Enclosure 2 provides the page replacement instructions. The changed pages are the result of additional clarifications to Draft Safety Evaluation Report (DSER) Open Items. Also included as Enclosure 3 is the revised response for open item AP-3. IUmsso(1

Duke Cogema; Stone Webster; Duke Cogema Stone; Duke Cogema Stone; Andrew Persinko Usnrc/hq

2003-01-01T23:59:59.000Z

17

Facilities, Central Fabrication Services, Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Fabrication Services Division's capabilities range from a large Electron Beam Welding facility, to a state of the art cleaning facility, to a large fabricating facility...

18

Improvements in fabrication of metallic fuels  

Science Conference Proceedings (OSTI)

Argonne National Laboratory is currently developing a new liquid- metal cooled breeder reactor known as the Integral Fast Reactor (IFR). IFR fuels represent the state-of-the-art in metal-fueled reactor technology. Improvements in the fabrication of metal fuel, to be discussed below, will support the fully remote fuel cycle facility that as an integral part of the IFR concept will be demonstrated at the EBR-II site. 3 refs.

Tracy, D.B.; Henslee, S.P.; Dodds, N.E.; Longua, K.J.

1989-12-01T23:59:59.000Z

19

Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site  

SciTech Connect

This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation.

Not Available

1991-10-01T23:59:59.000Z

20

Report of an investigation into deterioration of the Plutonium Fuel Form Fabrication Facility (PuFF) at the DOE Savannah River Site  

SciTech Connect

This investigations of the Savannah River Site's Plutonium Fuel Form fabrication facility located in Building 235-F was initiated in April 1991. The purpose of the investigation was to determine whether, as has been alleged, operation of the facility's argon inert gas system was terminated with the knowledge that continued inoperability of the argon system would cause accelerated corrosion damage to the equipment in the plutonium 238 processing cells. The investigation quickly established that the decision to discontinue operation of the argon system, by not repairing it, was merely one of the measures, and not the most important one, which led to the current deteriorated state of the facility. As a result, the scope of the investigation was broadened to more identify and assess those factors which contributed to the facility's current condition. This document discusses the backgrounds, results, and recommendations of this investigation.

1991-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Radioisotope Heat Source Fuel Processing and Fabrication, 4: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of Pu-238 fueled heat sources at an existing facility at U.S. Department of Energy's Los Alamos National Laboratory. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD July 19, 1991 EA-0534: Finding of No Significant Impact Radioisotope Heat Source Fuel Processing and Fabrication July 19, 1991 EA-0534: Final Environmental Assessment Radioisotope Heat Source Fuel Processing and Fabrication

22

HEU Measurements of Holdup and Recovered Residue in the Deactivation and Decommissioning Activities of the 321-M Reactor Fuel Fabrication Facility at the Savannah River Site  

SciTech Connect

This paper contains a summary of the holdup and material control and accountability (MC&A) assays conducted for the determination of highly enriched uranium (HEU) in the deactivation and decommissioning (D&D) of Building 321-M at the Savannah River Site (SRS). The 321-M facility was the Reactor Fuel Fabrication Facility at SRS and was used to fabricate HEU fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the SRS production reactors. The facility operated for more than 35 years. During this time thousands of uranium-aluminum-alloy (U-Al) production reactor fuel tubes were produced. After the facility ceased operations in 1995, all of the easily accessible U-Al was removed from the building, and only residual amounts remained. The bulk of this residue was located in the equipment that generated and handled small U-Al particles and in the exhaust systems for this equipment (e.g., Chip compactor, casting furnaces, log saw, lathes A & B, cyclone separator, Freon{trademark} cart, riser crusher, ...etc). The D&D project is likely to represent an important example for D&D activities across SRS and across the Department of Energy weapons complex. The Savannah River National Laboratory was tasked to conduct holdup assays to quantify the amount of HEU on all components removed from the facility prior to placing in solid waste containers. The U-235 holdup in any single component of process equipment must not exceed 50 g in order to meet the container limit. This limit was imposed to meet criticality requirements of the low level solid waste storage vaults. Thus the holdup measurements were used as guidance to determine if further decontamination of equipment was needed to ensure that the quantity of U-235 did not exceed the 50 g limit and to ensure that the waste met the Waste Acceptance Criteria (WAC) of the solid waste storage vaults. Since HEU is an accountable nuclear material, the holdup assays and assays of recovered residue were also important for material control and accountability purposes. In summary, the results of the holdup assays were essential for determining compliance with the Waste Acceptance Criteria, Material Control & Accountability, and to ensure that administrative criticality safety controls were not exceeded. This paper discusses the {gamma}-ray assay measurements conducted and the modeling of the acquired data to obtain measured holdup in process equipment, exhaust components, and fixed geometry scrap cans. It also presents development work required to model new acquisition configurations and to adapt available instrumentation to perform the assays.

DEWBERRY, RAYMOND; SALAYMEH, SALEEM R.; CASELLA, VITO R.; MOORE, FRANK S.

2005-03-11T23:59:59.000Z

23

Neutronic fuel element fabrication  

SciTech Connect

This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

Korton, George (Cincinnati, OH)

2004-02-24T23:59:59.000Z

24

Hawaii Fuel Cell Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Test Facility presented to DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop Renaissance Hollywood Hotel by Rick Rocheleau...

25

Nuclear fuel fabrication and refabrication cost estimation methodology  

SciTech Connect

The costs for construction and operation of nuclear fuel fabrication facilities for several reactor types and fuels were estimated, and the unit costs (prices) of the fuels were determined from these estimates. The techniques used in estimating the costs of building and operating these nuclear fuel fabrication facilities are described in this report. Basically, the estimation techniques involve detailed comparisons of alternative and reference fuel fabrication plants. Increases or decreases in requirements for fabricating the alternative fuels are identified and assessed for their impact on the capital and operating costs. The impact on costs due to facility size or capacity was also assessed, and scaling factors for the various captial and operating cost categories are presented. The method and rationale by which these scaling factors were obtained are also discussed. By use of the techniques described herein, consistent cost information for a wide variety of fuel types can be obtained in a relatively short period of time. In this study, estimates for 52 fuel fabrication plants were obtained in approximately two months. These cost estimates were extensively reviewed by experts in the fabrication of the various fuels, and, in the opinion of the reviewers, the estimates were very consistent and sufficiently accurate for use in overall cycle assessments.

Judkins, R.R.; Olsen, A.R.

1979-11-01T23:59:59.000Z

26

Alternative Fuels Data Center: Renewable Fuel Production Facility Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Production Facility Tax Credit

27

Fuel Fabrication Capability Research and Development Plan  

SciTech Connect

The purpose of this document is to provide a comprehensive review of the mission of the Fuel Fabrication Capability (FFC) within the Global Threat Reduction Initiative (GTRI) Convert Program, along with research and development (R&D) needs that have been identified as necessary to ensuring mission success. The design and fabrication of successful nuclear fuels must be closely linked endeavors.

Senor, David J.; Burkes, Douglas

2013-06-28T23:59:59.000Z

28

Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility  

Science Conference Proceedings (OSTI)

Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

Tingey, Joel M.; Jones, Susan A.

2005-07-01T23:59:59.000Z

29

Chemical and Radiochemical Composition of Thermally Stabilized Plutonium Oxide from the Plutonium Finishing Plant Considered as Alternate Feedstock for the Mixed Oxide Fuel Fabrication Facility  

SciTech Connect

Eighteen plutonium oxide samples originating from the Plutonium Finishing Plant (PFP) on the Hanford Site were analyzed to provide additional data on the suitability of PFP thermally stabilized plutonium oxides and Rocky Flats oxides as alternate feedstock to the Mixed Oxide Fuel Fabrication Facility (MFFF). Radiochemical and chemical analyses were performed on fusions, acid leaches, and water leaches of these 18 samples. The results from these destructive analyses were compared with nondestructive analyses (NDA) performed at PFP and the acceptance criteria for the alternate feedstock. The plutonium oxide materials considered as alternate feedstock at Hanford originated from several different sources including Rocky Flats oxide, scrap from the Remote Mechanical C-Line (RMC) and the Plutonium Reclamation Facility (PRF), and materials from other plutonium conversion processes at Hanford. These materials were received at PFP as metals, oxides, and solutions. All of the material considered as alternate feedstock was converted to PuO2 and thermally stabilized by heating the PuO2 powder at 950 C in an oxidizing environment. The two samples from solutions were converted to PuO2 by precipitation with Mg(OH)2. The 18 plutonium oxide samples were grouped into four categories based on their origin. The Rocky Flats oxide was divided into two categories, low- and high-chloride Rocky Flats oxides. The other two categories were PRF/RMC scrap oxides, which included scrap from both process lines and oxides produced from solutions. The two solution samples came from samples that were being tested at Pacific Northwest National Laboratory because all of the plutonium oxide from solutions at PFP had already been processed and placed in 3013 containers. These samples originated at the PFP and are from plutonium nitrate product and double-pass filtrate solutions after they had been thermally stabilized. The other 16 samples originated from thermal stabilization batches before canning at PFP. Samples varied in appearance depending on the original source of material. Rocky Flats items were mostly dark olive green with clumps that crushed easily with a mortar and pestle. PRF/RMC items showed more variability. These items were mostly rust colored. One sample contained white particles that were difficult to crush, and another sample was a dark grey with a mixture of fines and large, hard fragments. The appearance and feel of the fragments indicated they might be an alloy. The color of the solution samples was indicative of the impurities in the sample. The double-pass filtrate solution was a brown color indicative of the iron impurities in the sample. The other solution sample was light gray in color. Radiochemical analyses, including thermal ionization mass spectrometry (TIMS), alpha and gamma energy analysis (AEA and GEA), and kinetic phosphorescence analysis (KPA), indicate that these materials are all weapons-grade plutonium with consistent plutonium isotopics. A small amount of uranium (<0.14 wt%) is also present in these samples. The isotopic composition of the uranium varied widely but was consistent among each category of material. The primary water-soluble anions in these samples were Cl-, NO3-, SO42-, and PO43-. The only major anion observed in the Rocky Flats materials was Cl-, but the PRF/RMC samples had significant quantities of all of the primary anions observed. Prompt gamma measurements provide a representative analysis of the Cl- concentration in the bulk material. The primary anions observed in the solution samples were NO3-, and PO43-. The concentration of these anions did not exceed the mixed oxide (MOX) specification limits. Cations that exceeded the MOX specification limits included Cr, Fe, Ni, Al, Cu, and Si. All of the samples exceeded at least the 75% specification limit in one element.

Tingey, Joel M.; Jones, Susan A.

2005-07-01T23:59:59.000Z

30

Fuel fabrication acceptance report FSV: initial core  

SciTech Connect

The fabrication of the Fort St. Vrain initial core is described. Detailed summaries of the final fuel element metal loadings and other properties are given. Problems that occurred during fabrication and their resolutions have been given special attention, including the results of analyses made prior to their adoption. A final substantiation for the Fort St. Vrain initial core was provided by a full-core, three-dimensional analysis considering control rod insertion and fuel depletion and with explicit representation of the as-built fuel elements. The calculated power distributions from the three dimensional analysis are well within the limits specified for the reference design. During fabrication of the initial core fuel elements, some difficulties with assayed quantities of uranium and thorium were encountered. These difficulties resulted from changes in the fuel rod standards used in assay equipment calibration and in the techniques employed for assaying fuel particles and fuel rods. As a result the apparent values for the average metal loadings for some fuel rods and fuel elements changed. For certain blends some already-assembled fuel elements were outside the tolerances given in the fuel specification. A study was undertaken to make recommendations on the disposition of already-fabricated fuel and adjustments for the remainder of fuel fabrication. This study focused on utilizing, as much as possible, already-fabricated fuel without compromising the performance of the core. A variety of adjustments were considered and used in some instances, but the most successful method was the imposition of a layer location on fuel elements. By use of this additional core assembly requirement, a distribution of high metal load and low metal load fuel elements was obtained that assured that power perturbations would be small and localized and that temperature perturbations would be small and confined to axial layers where temperatures are nominally low. (auth)

Kapernick, R.J.; Nirschl, R.J.

1973-12-01T23:59:59.000Z

31

Alternative Fuel Production Facility Incentives (Kentucky) |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or biomass as a feedstock. Beginning Aug. 1, 2010, tax incentives are also available for energy-efficient alternative fuel production facilities and up to five alternative fuel...

32

Fuel conditioning facility material accountancy  

SciTech Connect

The operation of the Fuel conditioning Facility (FCF) is based on the electrometallurgical processing of spent metallic reactor fuel. It differs significantly, therefore, from traditional PUREX process facilities in both processing technology and safeguards implications. For example, the fissile material is processed in FCF only in batches and is transferred within the facility only as solid, well-characterized items; there are no liquid steams containing fissile material within the facility, nor entering or leaving the facility. The analysis of a single batch lends itself also to an analytical relationship between the safeguards criteria, such as alarm limit, detection probability, and maximum significant amount of fissile material, and the accounting system`s performance, as it is reflected in the variance associated with the estimate of the inventory difference. This relation, together with the sensitivity of the inventory difference to the uncertainties in the measurements, allows a thorough evaluation of the power of the accounting system. The system for the accountancy of the fissile material in the FCF has two main components: a system to gather and store information during the operation of the facility, and a system to interpret this information with regard to meeting safeguards criteria. These are described and the precision of the inventory closure over one batch evaluated.

Yacout, A.M.; Bucher, R.G.; Orechwa, Y.

1995-08-01T23:59:59.000Z

33

Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII  

Science Conference Proceedings (OSTI)

Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

Not Available

1980-01-01T23:59:59.000Z

34

PLUTONIUM FUEL PROCESSING AND FABRICATION FOR FAST CERAMIC REACTORS  

SciTech Connect

>A study was made of the processes available for fabrication of plutonium-containing fuel from a fast ceramic reacter, and for chemical reprocessing of irradiated fuel. Radiations from recycled plutonium are evaluated. Adaptation of conventional glove-box handling procedures to the fabrication of recycle plutonium appears practical. It is concluded that acceptable costs are obtainable using moderate extensions of conventional glove- box fabrication methods and wet processing techniques, provided a significant volume of production is available. The minimum economic scale for the preferred chemical reprocessing method, anion exchange, is about 500 Mw(e) of reactor capacity. The minimum scale of economic operation for the fuel refabrication facility corresponds to three 500 Mw(e) reactors, if only steady-state refueling provides the fabrication load. The minimum volume required falls to one 500 Mw(e) reactor, if the continued growth of capacity provides fabrication volume equal to that for refueling. The chemical reprocessing costs obtained range from 0.27 mills/kwh for 1500 Mw(e) of reactor capacity, to 0.10 mills/kwh for 3000 Mw(e) of capacity. The estimated fuel fabrication cost is l/kg of uranium and plutonium in the core region (excluding axial and radial blankets) or .06/ g of plutonium content, When axial blankets, fabricated in the same rods, are included; the combined average is 34/kg of uranium and plutonium. Radial blanket fabrication cost is /kg of uranium. The overall average of all fuel and blankets is /kg of uranium and plutonium. The fabrication cost is 0.29 mills/kwh for a production rate corresponding to 3000 Mw(e) of capacity (or 1500 Mw(e) of capacity plus growth equivalent to one additional reactor core per year). For one 525 Mw(e) reactor, (plus equivalent growth volume) the fabrication cost becomes 0.42 mills/ kwh. (All fuel throughputs are based on fuel life of 100,000 MWD/T.) Using the estimates developed, the total fuel cycle cost for a typical fast reactor design using PuO/sub 2/UO/sub 2/ fuel is estimated to be about 0.9 mills/kwh. (auth)

Zebroski, E.L.; Alter, H.W.; Collins, G.D.

1962-02-01T23:59:59.000Z

35

APS X-ray Optics Fabrication and Characterization Facility  

SciTech Connect

The APS is in the process of assembling an X-ray Optics Fabrication and characterization Facility. This report will describe its current (as of February 1993) design.

Davey, S.

1993-02-01T23:59:59.000Z

36

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell ...  

Science Conference Proceedings (OSTI)

Fabrication of Solid Electrolyte Dendrites for Solid Oxide Fuel Cell Miniaturizations · Fabrication of TiN Nanoparticle Dispersed Si3N4 Ceramics by Wet Jet ...

37

Fabrication of Uranium Oxycarbide Kernels for HTR Fuel  

Science Conference Proceedings (OSTI)

Babcock and Wilcox (B&W) has been producing high quality uranium oxycarbide (UCO) kernels for Advanced Gas Reactor (AGR) fuel tests at the Idaho National Laboratory. In 2005, 350-µm, 19.7% 235U-enriched UCO kernels were produced for the AGR-1 test fuel. Following coating of these kernels and forming the coated-particles into compacts, this fuel was irradiated in the Advanced Test Reactor (ATR) from December 2006 until November 2009. B&W produced 425-µm, 14% enriched UCO kernels in 2008, and these kernels were used to produce fuel for the AGR-2 experiment that was inserted in ATR in 2010. B&W also produced 500-µm, 9.6% enriched UO2 kernels for the AGR-2 experiments. Kernels of the same size and enrichment as AGR-1 were also produced for the AGR-3/4 experiment. In addition to fabricating enriched UCO and UO2 kernels, B&W has produced more than 100 kg of natural uranium UCO kernels which are being used in coating development tests. Successive lots of kernels have demonstrated consistent high quality and also allowed for fabrication process improvements. Improvements in kernel forming were made subsequent to AGR-1 kernel production. Following fabrication of AGR-2 kernels, incremental increases in sintering furnace charge size have been demonstrated. Recently small scale sintering tests using a small development furnace equipped with a residual gas analyzer (RGA) has increased understanding of how kernel sintering parameters affect sintered kernel properties. The steps taken to increase throughput and process knowledge have reduced kernel production costs. Studies have been performed of additional modifications toward the goal of increasing capacity of the current fabrication line to use for production of first core fuel for the Next Generation Nuclear Plant (NGNP) and providing a basis for the design of a full scale fuel fabrication facility.

Charles Barnes; CLay Richardson; Scott Nagley; John Hunn; Eric Shaber

2010-10-01T23:59:59.000Z

38

Residential Fuel Cell Performance Test Facility  

Science Conference Proceedings (OSTI)

... Currently, the test facility is setup to deliver natural gas as the fuel, but ... A turbine and magnetic flow meter measure the flow of water for the domestic ...

2011-11-15T23:59:59.000Z

39

Fabrication of thorium bearing carbide fuels  

DOE Patents (OSTI)

Thorium-uranium carbide and thorium-plutonium carbide fuel pellets have been fabricated by the carbothermic reduction process. Temperatures of 1750.degree. C. and 2000.degree. C. were used during the reduction cycle. Sintering temperatures of 1800.degree. C. and 2000.degree. C. were used to prepare fuel pellet densities of 87% and >94% of theoretical, respectively. The process allows the fabrication of kilogram quantities of fuel with good reproducibility of chemicals and phase composition. Methods employing liquid techniques that form carbide microspheres or alloying-techniques which form alloys of thorium-uranium or thorium-plutonium suffer from limitation on the quantities processed of because of criticality concerns and lack of precise control of process conditions, respectively.

Gutierrez, Rueben L. (Los Alamos, NM); Herbst, Richard J. (Los Alamos, NM); Johnson, Karl W. R. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

40

FUEL & TARGET FABRICATION Aiken County, South Carolina  

NLE Websites -- All DOE Office Websites (Extended Search)

& TARGET FABRICATION & TARGET FABRICATION Aiken County, South Carolina 300/M AREA 300/M AREA SAVANNAH RIVER SITE COLD WAR HISTORIC PROPERTY DOCUMENTATION ii ABSTRACT This documentation was prepared in accordance with a Memorandum of Agreement (MOA) signed by the Department of Energy-Savannah River (DOE-SR) and the South Carolina Historic Preservation Office (SHPO) dated February 27, 2003, as well as the Consolidated MOA of August 2004. The MOA stipulated that a thematic study and photographic documentation be produced that told the story of 300/M Area's genesis, its operational history, and its closure. New South Associates prepared the narrative and Westinghouse Savannah River Company (WSRC) completed the photographic documentation. M Area is the site of Savannah River Plant's fuel and target fabrication facilities operated from 1955

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Update on US High Density Fuel Fabrication Development  

SciTech Connect

Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompasses—fuel powder to monolithic foil and binary fuel systems to multiple element additions—significant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

2007-03-01T23:59:59.000Z

42

Licensed fuel facility status report: Inventory difference data, January 1986-June 1986  

SciTech Connect

NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

1987-02-01T23:59:59.000Z

43

Licensed fuel facility status report: Inventory difference data, July 1986-December 1986  

SciTech Connect

NRC is committed to the periodic publication of licensed fuel facilities' inventory difference data, following agency review of the information and completion of any related investigations. Information in this report includes inventory difference data for active fuel fabrication facilities possessing more than one effective kilogram of high enriched uranium, low enriched uranium, plutonium, or uranium-233.

1987-08-01T23:59:59.000Z

44

ICPP Special Fuels Canning and Characterization Facility  

SciTech Connect

This report examines the functional mission of a Special Fuels Canning and Characterization Facility (SFCCF) for the Idaho Chemical Processing Plant (ICPP) and presents justification for its implementation as part of Westinghouse Idaho Nuclear Co., Inc. (WINCO) long-range plans. The SFCCF would be built as the first phase of an overall facility for dispositioning special fuels. Issues related to feasibility, cost, and preconceptual design criteria are also discussed in this report. A preconceptual facility layout based on existing information was developed to enhance the preconceptual design criteria and support a rough order-of-magnitude cost estimate for the construction of the SFCCF. The US Department of Energy (DOE) is the landlord of a large quantity of spent nuclear fuel and related materials. A significant quantity of this inventory, approximately 730,000 kg total fuel mass, is labeled as ``special fuel`` because no specific processing technique and/or facility to disposition this material is available in the NMP complex. The dispositioning of this fuel is especially complex because of the variety of fuel types. Of these special fuels, approximately 90 %wt are stored at the INEL. Timely dispositioning of the fuels would avoid expenditures of funds for a second generation of storage facilities at the INEL and other DOE facilities and would demonstrate to the public that solutions to nuclear fuel dispositioning exist and that a plan is being executed. The SFCCF is required to characterize, verify the storage can contents, and, if necessary, recan the special fuels to help assure safe, interim storage (i.e. fission product containment and criticality control) until the special fuels processing facility is operating.

Sire, D.L.; Bendixsen, C.L.; Armstrong, E.F.; Henry, R.N.; Frandsen, G.B.

1992-04-01T23:59:59.000Z

45

NREL: Hydrogen and Fuel Cells Research - Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities Scientists, engineers, and analysts develop hydrogen and fuel cell technologies at NREL's extensive research facilities in Golden, Colorado. Fuel Cell...

46

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

47

Alternative Fuels Data Center: Biofuels Production Facility Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Facility Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Facility Grants on Facebook Tweet about Alternative Fuels Data Center:...

48

DOE Permitting Hydrogen Facilities: Hydrogen Fueling Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

Stations Stations Public-use hydrogen fueling stations are very much like gasoline ones. In fact, sometimes, hydrogen and gasoline cars can be fueled at the same station. These stations offer self-service pumps, convenience stores, and other services in high-traffic locations. Photo of a Shell fueling station showing the site convenience store and hydrogen and gasoline fuel pumps. This fueling station in Washington, D.C., provides drivers with both hydrogen and gasoline fuels Many future hydrogen fueling stations will be expansions of existing fueling stations. These facilities will offer hydrogen pumps in addition to gasoline or natural gas pumps. Other hydrogen fueling stations will be "standalone" operations. These stations will be designed and constructed to

49

Alternative Fuels Data Center: Biofuels Production Facility Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Facility Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Facility Grants on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Facility Grants on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Facility Grants on Google Bookmark Alternative Fuels Data Center: Biofuels Production Facility Grants on Delicious Rank Alternative Fuels Data Center: Biofuels Production Facility Grants on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Facility Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Facility Grants The Renewable Fuels Development Program provides grants for the

50

Characterization of candidate DOE sites for fabricating MOX fuel for lead assemblies  

Science Conference Proceedings (OSTI)

The Office of Fissile Materials Disposition (MD) of the Department of Energy (DOE) is directing the program to disposition US surplus weapons-usable plutonium. For the reactor option for disposition of this surplus plutonium, MD is seeking to contract with a consortium, which would include a mixed-oxide (MOX) fuel fabricator and a commercial US reactor operator, to fabricate and burn MOX fuel in existing commercial nuclear reactors. This option would entail establishing a MOX fuel fabrication facility under the direction of the consortium on an existing DOE site. Because of the lead time required to establish a MOX fuel fabrication facility and the need to qualify the MOX fuel for use in a commercial reactor, MD is considering the early fabrication of lead assemblies (LAs) in existing DOE facilities under the technical direction of the consortium. The LA facility would be expected to produce a minimum of 1 metric ton heavy metal per year and must be operational by June 2003. DOE operations offices were asked to identify candidate sites and facilities to be evaluated for suitability to fabricate MOX fuel LAs. Savannah River Site, Argonne National Laboratory-West, Hanford, Lawrence Livermore National Laboratory, and Los Alamos National Laboratory were identified as final candidates to host the LA project. A Site Evaluation Team (SET) worked with each site to develop viable plans for the LA project. SET then characterized the suitability of each of the five plans for fabricating MOX LAs using 28 attributes and documented the characterization to aid DOE and the consortium in selecting the site for the LA project. SET concluded that each option has relative advantages and disadvantages in comparison with other options; however, each could meet the requirements of the LA project as outlined by MD and SET.

Holdaway, R.F.; Miller, J.W.; Sease, J.D.; Moses, R.J.; O`Connor, D.G. [Oak Ridge National Lab., TN (United States); Carrell, R.D. [Technical Resources International, Inc., Richland, WA (United States); Jaeger, C.D. [Sandia National Labs., Albuquerque, NM (United States); Thompson, M.L.; Strasser, A.A. [Delta-21 Resources, Inc., Oak Ridge, TN (United States)

1998-03-01T23:59:59.000Z

51

Energy Systems Fabrication Laboratory (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Laboratory The Energy Systems Fabrication Laboratory at NREL's Energy Systems Integration Facility (ESIF) manufactures components for fuel cells and...

52

HTGR fuels reprocessing facilities. Environmental statement  

SciTech Connect

The environmental effects of the construction and operation of the HTGR Fuels Reprocessing Facilities at the NRTS, Idaho are examined. The descriptions include: the environment in the area including the history, geology, geography, hydrology, ecology, and land and water use; the facility and its effluents; impacts from construction and operation of the facility; alternatives to the proposed action; irreversible and irretrievable commitments of resources; and the benefits-cost analysis of the proposed plant operation. (LCL)

1974-01-01T23:59:59.000Z

53

The Fuel Fabrication Capability and Uranium-molybdenum Alloy  

Science Conference Proceedings (OSTI)

Abstract Scope, The Fuel Fabrication Capability (FFC) is part of the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA) Global ...

54

EA-0534: Radioisotope Heat Source Fuel Processing and Fabrication...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY This EA evaluates the environmental impacts of a proposal to operate existing Pu-238 processing facilities at Savannah River Site, and fabricate a limited quantity of...

55

Alternative Fuels Data Center: Ethanol Production Facility Environmental  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Environmental Assessment Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on AddThis.com...

56

Report of the AD HOC Study Group on integrated versus dispersed fuel cycle facilities  

SciTech Connect

To provide isolation of strategic materials and confinement of nuclear wastes, the basic facilities considered in assessing the DFCF and IFCF were mixed plutonium and uranium oxide and HTGR fuel fabrication, fuel reprocessing, high- enrichment isotopic separation and interim waste storage. Reactors, low- enrichment isotopic separation, and low-enrichment uranium facilities were excluded. It is expected that the IFCF would attract uranium fuel fabrication and possibly reactors. An assumption was made for the study that the choice of either IFCF or DFCF would not alter the nuclear power generation pattern postulated to exist up to the year 2000. The advantages of IFCF are seen to outweigh disadvantages. (auth)

Kreiter, M.R.; Platt, A.M.

1975-04-01T23:59:59.000Z

57

Safety issues in fabricating mixed oxide fuel using surplus weapons plutonium  

SciTech Connect

This paper presents an assessment of the safety issues and implications of fabricating mixed oxide (MOX) fuel using surplus weapons plutonium. The basis for this assessment is the research done at Los Alamos National Laboratory (LANL) in identifying and resolving the technical issues surrounding the production of PuO{sub 2} feed, removal of gallium from the PuO{sub 2} feed, the fabrication of test fuel, and the work done at the LANL plutonium processing facility. The use of plutonium in MOX fuel has been successfully demonstrated in Europe, where the experience has been almost exclusively with plutonium separated from commercial spent nuclear fuel. This experience in safely operating MOX fuel fabrication facilities directly applies to the fabrication and irradiation of MOX fuel made from surplus weapons plutonium. Consequently, this paper focuses on the technical difference between plutonium from surplus weapons, and light-water reactor recycled plutonium. Preliminary assessments and research lead to the conclusion that no new process or product safety concerns will arise from using surplus weapons plutonium in MOX fuel.

Buksa, J.; Badwan, F.; Barr, M.; Motley, F.

1998-07-01T23:59:59.000Z

58

Hot Fuel Examination Facility/South  

SciTech Connect

This document describes the potential environmental impacts associated with proposed modifications to the Hot Fuel Examination Facility/South (HFEF/S). The proposed action, to modify the existing HFEF/S at the Argonne National Laboratory-West (ANL-W) on the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, would allow important aspects of the Integral Fast Reactor (IFR) concept, offering potential advantages in nuclear safety and economics, to be demonstrated. It would support fuel cycle experiments and would supply fresh fuel to the Experimental Breeder Reactor-II (EBR-II) at the INEL. 35 refs., 12 figs., 13 tabs.

Not Available

1990-05-01T23:59:59.000Z

59

Fuel Conditioning Facility Electrorefiner Process Model  

SciTech Connect

The Fuel Conditioning Facility at the Idaho National Laboratory processes spent nuclear fuel from the Experimental Breeder Reactor II using electro-metallurgical treatment. To process fuel without waiting for periodic sample analyses to assess process conditions, an electrorefiner process model predicts the composition of the electrorefiner inventory and effluent streams. For the chemical equilibrium portion of the model, the two common methods for solving chemical equilibrium problems, stoichiometric and non stoichiometric, were investigated. In conclusion, the stoichiometric method produced equilibrium compositions close to the measured results whereas the non stoichiometric method did not.

DeeEarl Vaden

2005-10-01T23:59:59.000Z

60

Nano Fab Lab, Stockholm Sweden The Albanova Nano Fabrication Facility  

E-Print Network (OSTI)

Nano Fab Lab, Stockholm Sweden The Albanova Nano Fabrication Facility Nano technology for basic research and small commercial enterprises Director: Prof. David Haviland #12;Nano Fab Lab, Stockholm Sweden Nano-Lab Philosophy · Nanometer scale patterning and metrology · Broad spectrum of user research

Haviland, David

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Concept for a small, colocated fuel cycle facility for oxide breeder fuels  

SciTech Connect

As part of a United States Department of Energy (USDOE) program to examine innovative liquid-metal reactor (LMR) system designs over the past three years, the Oak Ridge National Laboratory (ORNL) and the Westinghouse Hanford Company (WHC) collaborated on studies of mixed oxide fuel cycle options. A principal effort was an advanced concept for a small integrated fuel cycle colocated with a 1300-MW(e) reactor station. The study provided a scoping design and a basis on which to proceed with implementation of such a facility if future plans so dictate. The facility integrated reprocessing, waste management, and refabrication functions in a single facility of nominal 35-t/year capacity utilizing the latest technology developed in fabrication programs at WHC and in reprocessing at ORNL. The concept was based on many years of work at both sites and extensive design studies of prior years.

Burch, W.D.; Stradley, J.G.; Lerch, R.E.

1987-01-01T23:59:59.000Z

62

President Reagan Calls for a National Spent Fuel Storage Facility...  

National Nuclear Security Administration (NNSA)

for a National Spent Fuel Storage Facility The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

63

Albanova Nano Fabrication Facility: Activity Report D. B. Haviland Activity Report  

E-Print Network (OSTI)

Albanova Nano Fabrication Facility: Activity Report D. B. Haviland Activity Report Albanova contains a report of the activity carried out in the Albanova Nano- Fabrication Facility, located...................................................................................................... 5 Appendix 1: Nano-Lab projects

Haviland, David

64

Alternative Fuels Data Center: Biofuel Production Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Production Biofuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Production Facility Tax Credit Companies that invest in the development of a biofuel production facility

65

Alternative Fuels Data Center: Biofuels Production Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Facility Tax Credit A taxpayer that constructs and places into service a commercial facility

66

Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Facility Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Google Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Delicious Rank Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Biofuel Production Facility Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Production Facility Tax Exemption Any newly constructed or expanded biomass-to-energy facility is exempt from

67

Financing Strategies for Nuclear Fuel Cycle Facility  

SciTech Connect

To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

David Shropshire; Sharon Chandler

2005-12-01T23:59:59.000Z

68

Alternative Fuel Production Facility Incentives (Kentucky) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuel Production Facility Incentives (Kentucky) Alternative Fuel Production Facility Incentives (Kentucky) Alternative Fuel Production Facility Incentives (Kentucky) < Back Eligibility Commercial Developer Utility Program Info State Kentucky Program Type Corporate Tax Incentive The Kentucky Economic Development and Finance Authority (KEDFA) provides tax incentives to construct, retrofit, or upgrade an alternative fuel production or gasification facility that uses coal or biomass as a feedstock. Beginning Aug. 1, 2010, tax incentives are also available for energy-efficient alternative fuel production facilities and up to five alternative fuel production facilities that use natural gas or natural gas liquids as a feedstock. Energy-efficient alternative fuels are defined as homogeneous fuels that are produced from processes designed to densify

69

Alternative Fuels Data Center: Biofuel Production Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Production Biofuel Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Production Facility Tax Credit A taxpayer who processes biodiesel, ethanol, or gasoline blends consisting

70

Alternative Fuels Data Center: Ethanol Production Facility Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Fee to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Fee on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Fee on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Fee on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Facility Fee The cost to submit an air quality permit application for an ethanol production plant is $1,000. An annual renewal fee is also required for the

71

Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Production Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Production Facility Tax Credit Businesses and individuals are eligible for a tax credit of up to 15% of

72

Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blending Biodiesel Blending Facility Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Google Bookmark Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Delicious Rank Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blending Facility Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blending Facility Tax Credit A tax credit is available for up to 30% of the cost of purchasing or

73

Redundancy of Supply in the International Nuclear Fuel Fabrication Market: Are Fabrication Services Assured?  

SciTech Connect

For several years, Pacific Northwest National Laboratory (PNNL) has been assessing the reliability of nuclear fuel supply in support of the U.S. Department of Energy/National Nuclear Security Administration. Three international low enriched uranium reserves, which are intended back up the existing and well-functioning nuclear fuel market, are currently moving toward implementation. These backup reserves are intended to provide countries credible assurance that of the uninterrupted supply of nuclear fuel to operate their nuclear power reactors in the event that their primary fuel supply is disrupted, whether for political or other reasons. The efficacy of these backup reserves, however, may be constrained without redundant fabrication services. This report presents the findings of a recent PNNL study that simulated outages of varying durations at specific nuclear fuel fabrication plants. The modeling specifically enabled prediction and visualization of the reactors affected and the degree of fuel delivery delay. The results thus provide insight on the extent of vulnerability to nuclear fuel supply disruption at the level of individual fabrication plants, reactors, and countries. The simulation studies demonstrate that, when a reasonable set of qualification criteria are applied, existing fabrication plants are technically qualified to provide backup fabrication services to the majority of the world's power reactors. The report concludes with an assessment of the redundancy of fuel supply in the nuclear fuel market, and a description of potential extra-market mechanisms to enhance the security of fuel supply in cases where it may be warranted. This report is an assessment of the ability of the existing market to respond to supply disruptions that occur for technical reasons. A forthcoming report will address political disruption scenarios.

Seward, Amy M.; Toomey, Christopher; Ford, Benjamin E.; Wood, Thomas W.; Perkins, Casey J.

2011-11-14T23:59:59.000Z

74

Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Hydrogen Ethanol and Hydrogen Production Facility Permits to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Google Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Delicious Rank Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

75

Alternative Fuels Data Center: Ethanol Production Facility Property Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Property Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

76

Fabrication and Preliminary Evaluation of Metal Matrix Microencapsulated Fuels  

SciTech Connect

The metal matrix microencapsulated (M3) fuel concept for light water reactors (LWRs), consisting of coated fuel particles dispersed in a zirconium metal matrix, is introduced. Fabrication of M3 fuels by hot pressing, hot isostatic pressing, or extrusion methodologies has been demonstrated over the temperature range 800-1050 C. Various types of coated fuel particles with outermost layers of pyrocarbon, SiC, ZrC, and TiN have been incorporated into the zirconium metal matrix. Mechanical particle-particle and chemical particle-matrix interactions have been observed during the preliminary characterization of as-fabricated M3 specimens. Irradiation of three M3 rodlets with surrogate coated fuel particles was carried out at mean rod temperature of 400 C to 4.6 dpa in the zirconium metal matrix. Due to absence of texture in the metal matrix no irradiation growth strain (<0.09%) was detected during the post-irradiation examination.

Terrani, Kurt A [ORNL; Kiggans, Jim [ORNL; Snead, Lance Lewis [ORNL

2012-01-01T23:59:59.000Z

77

Gel-sphere-pac reactor fuel fabrication and its application to a variety of fuels  

SciTech Connect

The gel-sphere-pac fuel fabrication option was evaluated for its possible application to commercial scale fuel fabrication for 19 fuel element designs that use oxide fuel in metal clad rods. The dry gel spheres are prepared at the reprocessing plant and are then calcined, sintered, inspected, and loaded into fuel rods and packed by low-energy vibration. A fuel smear density of 83 to 88% theoretical can be obtained. All fuel fabrication process steps were defined and evaluated from fuel receiving to finished fuel element shipping. The evaluation also covers the feasibility of the process, the current status of technology, estimates of the required time and cost to develop the technology to commercial status, and the safety and licensability of commercial scale plants. The primary evaluation was for a Light-Water Reactor fuel element containing (U,Pu)O/sub 2/ fuel. The other 18 fuel element types - 3 for Light-Water Reactors, 1 for a Heavy-Water Reactor, 1 for a Gas-Cooled Fast Reactor, 7 for Liquid-Metal-Cooled Fast Breeder Reactors, and 3 pairs for Light-Water Prebreeder and Breeder Reactors - were compared with the Light-Water Reactor. The gel-sphere-pac option was found applicable to 17 of the 19 element types; the characteristics of a commercial scale plant were defined for these for making cost estimates for such plants. The evaluation clearly shows the gel-sphere-pac process to be a viable fuel fabrication option. Estimates indicate a significant potential fabrication cost advantage for the gel-sphere-pac process if a remotely operated and remotely maintained fuel fabrication plant is required.

Olsen, A.R.; Judkins, R.R. (comps.)

1979-12-01T23:59:59.000Z

78

FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS  

SciTech Connect

The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the ''Q-list'' (BSC 2003, p. A-6). Therefore, this design calculation is subject to the requirements of the ''Quality Assurance Requirements and Description'' (DOE 2004), even though the FHF itself has not yet been classified in the Q-list. Performance of the work scope as described and development of the associated technical product conform to the procedure AP-3.124, ''Design Calculations and Analyses''.

C.E. Sanders

2005-06-30T23:59:59.000Z

79

FABRICATION OF TUBE TYPE FUEL ELEMENT FOR NUCLEAR REACTORS  

DOE Patents (OSTI)

A method of fabricating a nuclear reactor fuel element is given. It consists essentially of fixing two tubes in concentric relationship with respect to one another to provide an annulus therebetween, filling the annulus with a fissionablematerial-containing powder, compacting the powder material within the annulus and closing the ends thereof. The powder material is further compacted by swaging the inner surface of the inner tube to increase its diameter while maintaining the original size of the outer tube. This process results in reduced fabrication costs of powdered fissionable material type fuel elements and a substantial reduction in the peak core temperatures while materially enhancing the heat removal characteristics.

Loeb, E.; Nicklas, J.H.

1959-02-01T23:59:59.000Z

80

SPECIFICATIONS AND FABRICATION PROCEDURES FOR TYPE 3 FUEL ELEMENTS  

SciTech Connect

Process and product requirements to be met in the fabrication of Type 3 fuel elements are presented. The fuel elements specified consist of thin plates of a dispersion of highly enriched UO/sub 2/ and ZrB/sub 2/ in a stainless steel matrix which is clad with stainless steel on all surfaces. Quality assurance provisions are discussed. Process and material specifications and packaging and packing for shipment are described. Sample calculations and drawings are included. (M.C.G.)

Edgar, E.C.; Clayton, H.R.

1962-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Process development and fabrication for sphere-pac fuel rods. [PWR; BWR  

Science Conference Proceedings (OSTI)

Uranium fuel rods containing sphere-pac fuel have been fabricated for in-reactor tests and demonstrations. A process for the development, qualification, and fabrication of acceptable sphere-pac fuel rods is described. Special equipment to control fuel contamination with moisture or air and the equipment layout needed for rod fabrication is described and tests for assuring the uniformity of the fuel column are discussed. Fuel retainers required for sphere-pac fuel column stability and instrumentation to measure fuel column smear density are described. Results of sphere-pac fuel rod fabrication campaigns are reviewed and recommended improvements for high throughput production are noted.

Welty, R.K.; Campbell, M.H.

1981-06-01T23:59:59.000Z

82

Nuclear fuel cycle facility accident analysis handbook  

Science Conference Proceedings (OSTI)

The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

NONE

1998-03-01T23:59:59.000Z

83

Final safety analysis report for the irradiated fuels storage facility  

SciTech Connect

A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1$sup 1$/$sub 2$ cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100$sup 0$F is reached. (LK)

Bingham, G.E.; Evans, T.K.

1976-01-01T23:59:59.000Z

84

Fabrication of high exposure nuclear fuel pellets  

DOE Patents (OSTI)

A method is disclosed for making a fuel pellet for a nuclear reactor. A mixture is prepared of PuO.sub.2 and UO.sub.2 powders, where the mixture contains at least about 30% PuO.sub.2, and where at least about 12% of the Pu is the Pu.sup.240 isotope. To this mixture is added about 0.3 to about 5% of a binder having a melting point of at least about 250.degree. F. The mixture is pressed to form a slug and the slug is granulated. Up to about 4.7% of a lubricant having a melting point of at least about 330.degree. F. is added to the granulated slug. Both the binder and the lubricant are selected from a group consisting of polyvinyl carboxylate, polyvinyl alcohol, naturally occurring high molecular weight cellulosic polymers, chemically modified high molecular weight cellulosic polymers, and mixtures thereof. The mixture is pressed to form a pellet and the pellet is sintered.

Frederickson, James R. (Richland, WA)

1987-01-01T23:59:59.000Z

85

NREL: Hydrogen and Fuel Cells Research - Other Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Other Research Facilities Other Research Facilities In addition to the laboratories dedicated to hydrogen and fuel cell research, other facilities at NREL provide space for scientists developing hydrogen and fuel cell technologies along with other renewable energy technologies. Distributed Energy Resources Test Facility NREL's Distributed Energy Resources (DER) Test Facility is a working laboratory to test and improve interconnections among renewable energy generation technologies, energy storage systems, and electrical conversion equipment. Research being conducted includes improving the system efficiency of hydrogen production by electrolysis using wind or other renewable energy. This research highlights a promising option for encouraging higher penetrations of renewable energy generation as well as

86

FEASIBILITY REPORT FOR FABRICATION OF SNAP FUEL ELEMENTS  

SciTech Connect

The general requirements for the SNAP Reactor Cores include the fabrication of fuel elements. These elements consist nominally of 90 wt% zirconium-10 wt% highly enriched uranium (93% U/sup 235/) rods hydrided to an NH of 6.0-6.5 and machined. Alloying will be accomplished by triple arc melting. Forming will be done by extrusion, massive hydriding by techniques developed at Atomics International, and cladding by conventional means. (auth)

Kirsch, T.S.

1963-12-11T23:59:59.000Z

87

Method to fabricate high performance tubular solid oxide fuel cells  

DOE Patents (OSTI)

In accordance with the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes forming an asymmetric porous ceramic tube by using a phase inversion process. The method further includes forming an asymmetric porous ceramic layer on a surface of the asymmetric porous ceramic tube by using a phase inversion process. The tube is co-sintered to form a structure having a first porous layer, a second porous layer, and a dense layer positioned therebetween.

Chen, Fanglin; Yang, Chenghao; Jin, Chao

2013-06-18T23:59:59.000Z

88

Fabrication of small-orifice fuel injectors for diesel engines.  

DOE Green Energy (OSTI)

Diesel fuel injector nozzles with spray hole diameters of 50-75 {micro}m have been fabricated via electroless nickel plating of conventionally made nozzles. Thick layers of nickel are deposited onto the orifice interior surfaces, reducing the diameter from {approx}200 {micro}m to the target diameter. The nickel plate is hard, smooth, and adherent, and covers the orifice interior surfaces uniformly.

Woodford, J. B.; Fenske, G. R.

2005-04-08T23:59:59.000Z

89

Overview of Idaho National Laboratory's Hot Fuels Examination Facility  

SciTech Connect

The Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) of the Idaho National Laboratory was constructed in the 1960’s and opened for operation in the 1975 in support of the liquid metal fast breeder reactor research. Specifically the facility was designed to handle spent fuel and irradiated experiments from the Experimental Breeder Reactor EBRII, the Fast Flux Test Facility (FFTF), and the Transient Reactor Test Facility (TREAT). HFEF is a large alpha-gamma facility designed to remotely characterize highly radioactive materials. In the late 1980’s the facility also began support of the US DOE waste characterization including characterizing contact-handled transuranic (CH-TRU) waste. A description of the hot cell as well as some of its primary capabilities are discussed herein.

Adam B. Robinson; R. Paul Lind; Daniel M. Wachs

2007-09-01T23:59:59.000Z

90

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14  

Science Conference Proceedings (OSTI)

The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

Schneider, K.J.

1982-09-01T23:59:59.000Z

91

Summary of Off-Normal Events in US Fuel Cycle Facilities for AFCI Applications  

SciTech Connect

This report is a collection and review of system operation and failure experiences for facilities comprising the fission reactor fuel cycle, with the exception of reactor operations. This report includes mines, mills, conversion plants, enrichment plants, fuel fabrication plants, transportation of fuel materials between these centers, and waste storage facilities. Some of the facilities discussed are no longer operating; others continue to produce fuel for the commercial fission power plant industry. Some of the facilities discussed have been part of the military’s nuclear effort; these are included when the processes used are similar to those used for commercial nuclear power. When reading compilations of incidents and accidents, after repeated entries it is natural to form an opinion that there exists nothing but accidents. For this reason, production or throughput values are described when available. These adverse operating experiences are compiled to support the design and decisions needed for the Advanced Fuel Cycle Initiative (AFCI). The AFCI is to weigh options for a new fission reactor fuel cycle that is efficient, safe, and productive for US energy security.

L. C. Cadwallader; S. J. Piet; S. O. Sheetz; D. H. McGuire; W. B. Boore

2005-09-01T23:59:59.000Z

92

Development of a Safeguards Approach for a Small Graphite Moderated Reactor and Associated Fuel Cycle Facilities  

E-Print Network (OSTI)

Small graphite-moderated and gas-cooled reactors have been around since the beginning of the atomic age. Though their existence in the past has been associated with nuclear weapons programs, they are capable of being used in civilian power programs. The simpler design constraints associated with this type of reactor would make them ideal for developing nations to bolster their electricity generation and help promote a greater standard of living in those nations. However, the same benefits that make this type of reactor desirable also make it suspicious to the international community as a possible means to shorten that state?s nuclear latency. If a safeguards approach could be developed for a fuel cycle featuring one of these reactors, it would ease the tension surrounding their existence and possibly lead to an increased latency through engineered barriers. The development of this safeguards approach follows a six step procedure. First, the fuel cycle was analyzed for the types of facilities found in it and how nuclear material flows between facilities. The goals of the safeguards system were established next, using the normal IAEA standards for the non-detection and false alarm probabilities. The 5 MWe Reactor was modeled for both plutonium production and maximum power capacity. Each facility was analyzed for material throughput and the processes that occur in each facility were researched. Through those processes, diversion pathways were developed to test the proposed safeguards system. Finally, each facility was divided into material balance areas and a traditional nuclear material accountancy system was set up to meet the established safeguards goals for the facility. The DPRK weapons program is a great example of the type of fuel cycle that is the problem. The three major facilities in the fuel cycle, the Fuel Fabrication Facility, the 5 MWe Reactor, and the Radiochemical Laboratory, can achieve the two goals of safeguards using traditional methods. Each facility can be adequately safeguarded using methods and practices that are relatively inexpensive and can obtain material balance periods close to the timeliness limits set forth by the IAEA. The Fuel Fabrication Facility can be safeguarded at both its current needed capacity and its full design capacity using inexpensive measurements. The material balance period needed for both capacities are reasonable. For the 5 MWe reactor, plutonium production is simulated to be 6.7 kg per year and is on the high side of estimates. The Radiochemical Laboratory can also be safeguarded at its current capacity. In fact, the timeliness goal for the facility dictates what the material balance period must be for the chosen set of detectors which make it very reasonable.

Rauch, Eric B.

2009-05-01T23:59:59.000Z

93

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

94

Hanford Site existing irradiated fuel storage facilities description  

SciTech Connect

This document describes facilities at the Hanford Site which are currently storing spent nuclear fuels. The descriptions provide a basis for the no-action alternatives of ongoing and planned National Environmental Protection Act reviews.

Willis, W.L.

1995-01-11T23:59:59.000Z

95

Regulatory cross-cutting topics for fuel cycle facilities.  

Science Conference Proceedings (OSTI)

This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

2013-10-01T23:59:59.000Z

96

Petroleum fuel facilities. design manual 22. Final design criteria  

SciTech Connect

Design criteria are presented for use by qualified engineers in designing liquid fueling and dispensing facilities. Included are basic requirements for the design of piping systems, pumps, heaters, and controls; the design of receiving, dispensing, and storage facilities; ballast treatment and sludge removal; corrosion and fire protection; and environmental requirements.

1982-08-01T23:59:59.000Z

97

Hot Fuel Examination Facility's neutron radiography reactor  

SciTech Connect

Argonne National Laboratory-West is located near Idaho Falls, Idaho, and is operated by the University of Chicago for the United States Department of Energy in support of the Liquid Metal Fast Breeder Reactor Program, LMFBR. The Hot Fuel Examination Facility, HFEF, is one of several facilities located at the Argonne Site. HFEF comprises a large hot cell where both nondestructive and destructive examination of highly-irradiated reactor fuels are conducted in support of the LMFBR program. One of the nondestructive examination techniques utilized at HFEF is neutron radiography, which is provided by the NRAD reactor facility (a TRIGA type reactor) below the HFEF hot cell.

Pruett, D.P.; Richards, W.J.; Heidel, C.C.

1983-01-01T23:59:59.000Z

98

FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT  

Science Conference Proceedings (OSTI)

Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

2010-03-01T23:59:59.000Z

99

Reducing Proliferation Rick Through Multinational Fuel Cycle Facilities  

SciTech Connect

With the prospect of rapid expansion of the nuclear energy industry and the ongoing concern over weapons proliferation, there is a growing need for a viable alternative to traditional nation-based fuel production facilities. While some in the international community remain apprehensive, the advantages of multinational fuel cycle facilities are becoming increasingly apparent, with states on both sides of the supply chain able to garner the security and financial benefits of such facilities. Proliferation risk is minimized by eliminating the need of states to establish indigenous fuel production capabilities and the concept's structure provides an additional internationally monitored barrier against the misuse or diversion of nuclear materials. This article gives a brief description of the arguments for and against the implementation of a complete multinational fuel cycle.

Amanda Rynes

2010-11-01T23:59:59.000Z

100

West Valley facility spent fuel handling, storage, and shipping experience  

Science Conference Proceedings (OSTI)

The result of a study on handling and shipping experience with spent fuel are described in this report. The study was performed by Pacific Northwest Laboratory (PNL) and was jointly sponsored by the US Department of Energy (DOE) and the Electric Power Research Institute (EPRI). The purpose of the study was to document the experience with handling and shipping of relatively old light-water reactor (LWR) fuel that has been in pool storage at the West Valley facility, which is at the Western New York Nuclear Service Center at West Valley, New York and operated by DOE. A subject of particular interest in the study was the behavior of corrosion product deposits (i.e., crud) deposits on spent LWR fuel after long-term pool storage; some evidence of crud loosening has been observed with fuel that was stored for extended periods at the West Valley facility and at other sites. Conclusions associated with the experience to date with old spent fuel that has been stored at the West Valley facility are presented. The conclusions are drawn from these subject areas: a general overview of the West Valley experience, handling of spent fuel, storing of spent fuel, rod consolidation, shipping of spent fuel, crud loosening, and visual inspection. A list of recommendations is provided. 61 refs., 4 figs., 5 tabs.

Bailey, W.J.

1990-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

An Investigation of Different Methods of Fabricating Membrane Electrode Assemblies for Methanol Fuel Cells  

E-Print Network (OSTI)

Methanol fuel cells are electrochemical conversion devices that produce electricity from methanol fuel. The current process of fabricating membrane electrode assemblies (MEAs) is tedious and if it is not sufficiently ...

Hall, Kwame (Kwame J.)

2009-01-01T23:59:59.000Z

102

Safety analysis of IFR fuel processing in the Argonne National Laboratory Fuel Cycle Facility  

SciTech Connect

The Integral Fast Reactor (IFR) concept developed by Argonne National Laboratory (ANL) includes on-site processing and recycling of discharged core and blanket fuel materials. The process is being demonstrated in the Fuel Cycle Facility (FCF) at ANL`s Idaho site. This paper describes the safety analyses that were performed in support of the FCF program; the resulting safety analysis report was the vehicle used to secure authorization to operate the facility and carry out the program, which is now under way. This work also provided some insights into safety-related issues of a commercial IFR fuel processing facility. These are also discussed.

Charak, I; Pedersen, D.R. [Argonne National Lab., IL (United States); Forrester, R.J.; Phipps, R.D. [Argonne National Lab., Idaho Falls, ID (United States)

1993-09-01T23:59:59.000Z

103

Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities  

Science Conference Proceedings (OSTI)

The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

Lee, S.Y.

1999-01-13T23:59:59.000Z

104

President Reagan Calls for a National Spent Fuel Storage Facility |  

National Nuclear Security Administration (NNSA)

Reagan Calls for a National Spent Fuel Storage Facility | Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Reagan Calls for a National Spent ... President Reagan Calls for a National Spent Fuel Storage Facility October 08, 1981

105

Pacific Northwest Laboratory (PNL) spent fuel transportation and handling facility models  

SciTech Connect

A spent fuel logistics study was conducted in support of the US DOE program to develop facilities for preparing spent unreprocessed fuel from commercial LWRs for geological storage. Two computerized logistics models were developed. The first one was the site evaluation model. Two studies of spent fuel handling facility and spent fuel disposal facility siting were completed; the first postulates a single spent fuel handling facility located at any of six DOE laboratory sites, while the second study examined siting strategies with the spent fuel repository relative to the spent fuel handling facility. A second model to conduct storage/handling facility simulations was developed. (DLC)

Andrews, W.B.; Bower, J.C.; Burnett, R.A.; Engel, R.L.; Rolland, C.W.

1979-09-01T23:59:59.000Z

106

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01T23:59:59.000Z

107

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOE Patents (OSTI)

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26T23:59:59.000Z

108

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

1995-06-30T23:59:59.000Z

109

Air quality impacts due to construction of LWR waste management facilities  

SciTech Connect

Air quality impacts of construction activities and induced housing growth as a result of construction activities were evaluated for four possible facilities in the LWR fuel cycle: a fuel reprocessing facility, fuel storage facility, fuel fabrication plant, and a nuclear power plant. Since the fuel reprocessing facility would require the largest labor force, the impacts of construction of that facility were evaluated in detail.

1977-06-01T23:59:59.000Z

110

Regulatory cross-cutting topics for fuel cycle facilities.  

SciTech Connect

This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

2013-10-01T23:59:59.000Z

111

Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel  

SciTech Connect

This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

1994-10-01T23:59:59.000Z

112

The OSU Hydro-Mechanical Fuel Test Facility: Standard Fuel Element Testing  

Science Conference Proceedings (OSTI)

Oregon State University (OSU) and the Idaho National Laboratory (INL) are currently collaborating on a test program which entails hydro-mechanical testing of a generic plate type fuel element, or standard fuel element (SFE), for the purpose of qualitatively demonstrating mechanical integrity of uranium-molybdenum monolithic plates as compared to that of uranium aluminum dispersion, and aluminum fuel plates due to hydraulic forces. This test program supports ongoing work conducted for/by the fuel development program and will take place at OSU in the Hydro-Mechanical Fuel Test Facility (HMFTF). Discussion of a preliminary test matrix, SFE design, measurement and instrumentation techniques, and facility description are detailed in this paper.

Wade R. Marcum; Brian G. Woods; Ann Marie Phillips; Richard G. Ambrosek; James D. Wiest; Daniel M. Wachs

2001-10-01T23:59:59.000Z

113

IN-PILE GAS-COOLED FUEL ELEMENT TEST FACILITY  

SciTech Connect

Paper presented at American Nuclear Society Meeting, June I8-21, 1962, Boston, Mass. Design and operating problems of unclad and ceramic gas-cooled reactor fuels in high temperature circulating gas systems will be studied using a test facility now nearing completion at the Oak Ridge Research Reactor. A shielded air-tight cell houses a closed circuit gas system equipped for dealing with fission products circulating in the gas. Experiments can be conducted on fuel element performance and stability, fission product deposition, gas clean up, activity levels, component and system performance and shielding, and decontamination and maintenance of system hardware. (auth)

Zasler, J.; Huntley, W.R.; Gnadt, P.A.; Kress, T.S.

1962-07-10T23:59:59.000Z

114

Fabrication and Irradiation of LWR Hydride Mini-Fuel Rods  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium , Materials for the Nuclear Renaissance II. Presentation Title, Fabrication and ...

115

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

116

Mission Need Statement: Idaho Spent Fuel Facility Project  

SciTech Connect

Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

Barbara Beller

2007-09-01T23:59:59.000Z

117

Fabrication of carbon-aerogel electrodes for use in phosphoric acid fuel cells  

E-Print Network (OSTI)

An experiment was done to determine the ability to fabricate carbon aerogel electrodes for use in a phosphoric acid fuel cell (PAFC). It was found that the use of a 25% solution of the surfactant Cetyltrimethylammonium ...

Tharp, Ronald S

2005-01-01T23:59:59.000Z

118

Assessment of a hot hydrogen nuclear propulsion fuel test facility  

DOE Green Energy (OSTI)

Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

1991-01-01T23:59:59.000Z

119

FUEL HANDLING FACILITY BACKUP CENTRAL COMMUNICATIONS ROOM SPACE REQUIREMENTS CALCULATION  

SciTech Connect

The purpose of the Fuel Handling Facility Backup Central Communications Room Space Requirements Calculation is to determine a preliminary estimate of the space required to house the backup central communications room in the Fuel Handling Facility (FHF). This room provides backup communications capability to the primary communication systems located in the Central Control Center Facility. This calculation will help guide FHF designers in allocating adequate space for communications system equipment in the FHF. This is a preliminary calculation determining preliminary estimates based on the assumptions listed in Section 4. As such, there are currently no limitations on the use of this preliminary calculation. The calculations contained in this document were developed by Design and Engineering and are intended solely for the use of Design and Engineering in its work regarding the FHF Backup Central Communications Room Space Requirements. Yucca Mountain Project personnel from Design and Engineering should be consulted before the use of the calculations for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

B. SZALEWSKI

2005-03-22T23:59:59.000Z

120

Fabrication of silicon nanopillar arrays and application on direct methanol fuel cell  

Science Conference Proceedings (OSTI)

We present a simple method that combines self-assembled nanosphere lithography (SANL) and photo-assisted electrochemical etching (PAECE) to fabricate near-perfect and orderly arranged nanopillar arrays for the direct methanol fuel cells electrode (DMFCs) ... Keywords: Direct methanol fuel cell, Nanopillar, Photo-assisted electrochemical etching, Self-assembled nanosphere lithography

Yu-Hsiang Tang; Mao-Jung Huang; Ming-Hua Shiao; Chii-Rong Yang

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport DOE to Build Hydrogen Fuel Test Facility at West Virginia Airport March 25, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) today announced plans to construct and operate a hydrogen fuel production plant and vehicle fueling station at the Yeager Airport in Charleston, W.Va. The facility will use grid electricity to split water to produce pure hydrogen fuel. The fuel will be used by the airport's operations and the 130th Air Wing of the West Virginia Air National Guard. NETL will begin operations at the Yeager Airport facility in August 2009 and plans to conduct two years of testing and evaluation. The facility will be designed using "open architecture," allowing the capability to add

122

USCG Energy Program Resource Management, Fuel Logistics, and Facility Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Program Energy Program Resource Management, Fuel Logistics, and Facility Energy Presented by Daniel Gore USCG Energy Program Manager Office of Resource Management 1 1 2 Presentation Contents * Overview CG Energy Program * Highlights * Interesting Projects for Utilities * Alternatively Financed Projects Discussion 2 3 Overview 3 USCG Energy Program Growth * CG represents 80% of DHS energy consumption * Obligations up 210% from FY 2000 * Energy = 25% of O&M budget 4 4 Energy Program Dynamics Increasing Expenditures Increasing Politics & Mandates Increasing Scrutiny & Reporting Procurement & Credit Card Transformations Accounting System Improvements Organizational Strategic Transformations 5 5 What is CG Energy Management? * Policies impacting $306M annual obligations

123

Financing Strategies For A Nuclear Fuel Cycle Facility  

SciTech Connect

To help meet the nation’s energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the government case. The uncertainty in operations, leading to lower than optimal processing rates (or annual plant throughput), is the most detrimental issue to achieving low unit costs. Conversely, lowering debt interest rates and the required return on investments can reduce costs for private industry.

David Shropshire; Sharon Chandler

2006-07-01T23:59:59.000Z

124

Cryogenic thermonuclear fuel implosions on the National Ignition Facility  

Science Conference Proceedings (OSTI)

The first inertial confinement fusion implosion experiments with equimolar deuterium-tritium thermonuclear fuel have been performed on the National Ignition Facility. These experiments use 0.17 mg of fuel with the potential for ignition and significant fusion yield conditions. The thermonuclear fuel has been fielded as a cryogenic layer on the inside of a spherical plastic capsule that is mounted in the center of a cylindrical gold hohlraum. Heating the hohlraum with 192 laser beams for a total laser energy of 1.6 MJ produces a soft x-ray field with 300 eV temperature. The ablation pressure produced by the radiation field compresses the initially 2.2-mm diameter capsule by a factor of 30 to a spherical dense fuel shell that surrounds a central hot-spot plasma of 50 {mu}m diameter. While an extensive set of x-ray and neutron diagnostics has been applied to characterize hot spot formation from the x-ray emission and 14.1 MeV deuterium-tritium primary fusion neutrons, thermonuclear fuel assembly is studied by measuring the down-scattered neutrons with energies in the range of 10 to 12 MeV. X-ray and neutron imaging of the compressed core and fuel indicate a fuel thickness of (14 {+-} 3) {mu}m, which combined with magnetic recoil spectrometer measurements of the fuel areal density of (1 {+-} 0.09) g cm{sup -2} result in fuel densities approaching 600 g cm{sup -3}. The fuel surrounds a hot-spot plasma with average ion temperatures of (3.5 {+-} 0.1) keV that is measured with neutron time of flight spectra. The hot-spot plasma produces a total fusion neutron yield of 10{sup 15} that is measured with the magnetic recoil spectrometer and nuclear activation diagnostics that indicate a 14.1 MeV yield of (7.5{+-}0.1) Multiplication-Sign 10{sup 14} which is 70% to 75% of the total fusion yield due to the high areal density. Gamma ray measurements provide the duration of nuclear activity of (170 {+-} 30) ps. These indirect-drive implosions result in the highest areal densities and neutron yields achieved on laser facilities to date. This achievement is the result of the first hohlraum and capsule tuning experiments where the stagnation pressures have been systematically increased by more than a factor of 10 by fielding low-entropy implosions through the control of radiation symmetry, small hot electron production, and proper shock timing. The stagnation pressure is above 100 Gbars resulting in high Lawson-type confinement parameters of P{tau} Asymptotically-Equal-To 10 atm s. Comparisons with radiation-hydrodynamic simulations indicate that the pressure is within a factor of three required for reaching ignition and high yield. This will be the focus of future higher-velocity implosions that will employ additional optimizations of hohlraum, capsule and laser pulse shape conditions.

Glenzer, S. H.; Callahan, D. A.; MacKinnon, A. J.; Alger, E. T.; Berger, R. L.; Bernstein, L. A.; Bleuel, D. L.; Bradley, D. K.; Burkhart, S. C.; Burr, R.; Caggiano, J. A.; Castro, C.; Choate, C.; Clark, D. S.; Celliers, P.; Cerjan, C. J.; Collins, G. W.; Dewald, E. L.; DiNicola, P.; DiNicola, J. M. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-05-15T23:59:59.000Z

125

Microstructural Examination to Aid in Understanding Friction Bonding Fabrication Technique for Monolithic Nuclear Fuel  

Science Conference Proceedings (OSTI)

Monolithic nuclear fuel is currently being developed for use in research reactors, and friction bonding (FB) is a technique being developed to help in this fuel’s fabrication. Since both FB and monolithic fuel are new concepts, research is needed to understand the impact of varying FB fabrication parameters on fuel plate characteristics. This thesis research provides insight into the FB process and its application to the monolithic fuel design by recognizing and understanding the microstructural effects of varying fabrication parameters (a) FB tool load, and (b) FB tool face alloy. These two fabrication parameters help drive material temperature during fabrication, and thus the material properties, bond strength, and possible formation of interface reaction layers. This study analyzed temperatures and tool loads measured during those FB processes and examined microstructural characteristics of materials and bonds in samples taken from the resulting fuel plates. This study shows that higher tool load increases aluminum plasticization and forging during FB, and that the tool face alloy helps determine the tool’s heat extraction efficacy. The study concludes that successful aluminum bonds can be attained in fuel plates using a wide range of FB tool loads. The range of tool loads yielding successful uranium-aluminum bonding was not established, but it was demonstrated that such bonding can be attained with FB tool load of 48,900 N (11,000 lbf) when using a FB tool faced with a tungsten alloy. This tool successfully performed FB, and with better results than tools faced with other materials. Results of this study correlate well with results reported for similar aluminum bonding techniques. This study’s results also provide support and validation for other nuclear fuel development studies and conclusions. Recommendations are offered for further research.

Karen L. Shropshire

2008-04-01T23:59:59.000Z

126

NETL: News Release - NETL Opens Fuel Cell/Turbine Hybrid Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

May 20, 2004 May 20, 2004 NETL Opens Fuel Cell/Turbine Hybrid Research Facility MORGANTOWN, WV - The Hybrid Performance Facility - called the Hyper facility - is now fully operational at the Department of Energy's National Energy Technology Laboratory (NETL). This one-of-a-kind facility, developed by NETL's Office of Science and Technology, will be used to develop control strategies for the reliable operation of fuel cell/turbine hybrids. - NETL's Fuel Cell/Turbine Hybrid Facility - The Hyper facility allows assessment of dynamic control and performance issues in fuel cell/turbine hybrid systems. Combined systems of turbines and fuel cells are expected to meet power efficiency targets that will help eliminate, at competitive costs, environmental concerns associated with the use of fossil fuels for

127

Assured Fuel Supply: Potential Conversion and Fabrication Bottlenecks  

E-Print Network (OSTI)

challenges and generate nonproliferation and other benefits? · If such services were to be offered, how would Bush proposed assuring nuclear fuel supply for countries meeting certain nonproliferation criteria

128

Design, fabrication, and characterization of a micro fuel processor  

E-Print Network (OSTI)

The development of portable-power systems employing hydrogen-driven solid oxide fuel cells continues to garner significant interest among applied science researchers. The technology can be applied in fields ranging from ...

Blackwell, Brandon S. (Brandon Shaw)

2008-01-01T23:59:59.000Z

129

Guidelines for Fabrication, Examination, Testing and Oversight of Spent Nuclear Fuel Dry Storage Systems  

Science Conference Proceedings (OSTI)

The Nuclear Waste Policy Act (NWPA) of 1982 and subsequent amendments require the U. S. Department of Energy (DOE) to receive and be responsible for disposal of spent commercial nuclear power plant fuel from U.S. utilities. However, because of delays in the siting of a permanent federal repository, and with no federal interim storage facilities designated, U.S. utilities have been forced to provide additional spent nuclear fuel (SNF) storage capability to accommodate spent fuel discharge requirements. At...

1999-12-10T23:59:59.000Z

130

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

131

Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant  

SciTech Connect

Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

Kluth, T.; Quade, U.; Lederbrink, F. W.

2003-02-26T23:59:59.000Z

132

Liquefied Gaseous Fuels Spill Test Facility: Overview of STF capabilities  

SciTech Connect

The Liquefied Gaseous Fuels Spill Test Facility (STF) constructed at the Department of Energy`s Nevada Test Site is a basic research tool for studying the dynamics of accidental releases of various hazardous liquids. This Facility is designed to (1) discharge, at a controlled rate, a measured volume of hazardous test liquid on a prepared surface of a dry lake bed (Frenchman Lake); (2) monitor and record process operating data, close-in and downwind meteorological data, and downwind gaseous concentration levels; and (3) provide a means to control and monitor these functions from a remote location. The STF will accommodate large and small-scale testing of hazardous test fluid release rates up to 28,000 gallons per minute. Spill volumes up to 52,800 gallons are achievable. Generic categories of fluids that can be tested are cryogenics, isothermals, aerosol-forming materials, and chemically reactive. The phenomena that can be studied include source definition, dispersion, and pool fire/vapor burning. Other capabilities available at the STF include large-scale wind tunnel testing, a small test cell for exposing personnel protective clothing, and an area for developing mitigation techniques.

Gray, H.E.

1993-09-01T23:59:59.000Z

133

Summary report on fuel development and miniplate fabrication for the RERTR Program, 1978 to 1990  

Science Conference Proceedings (OSTI)

This report summarizes the efforts of the Fabrication Technology Section at Argonne National Laboratory in the program of Reduced Enrichment Research and Test Reactors (RERTR). The main objective of this program was to reduce the amount of high enriched ({approx}93% {sup 235}U) uranium (HEU) used in nonpower reactors. Conversion from low-density (0.8--1.6 g U/cm{sup 3}) HEU fuel elements to highly loaded (up to 7 g U/cm{sup 3}) low-enrichment (<20% {sup 235}U) uranium (LEU) fuel elements allows the same reactor power levels, core designs and sizes to be retained while greatly reducing the possibility of illicit diversion of HEU nuclear fuel. This document is intended as an overview of the period 1978--1990, during which the Section supported this project by fabricating mainly powder metallurgy uranium-silicide dispersion fuel plates. Most of the subjects covered in detail are fabrication-related studies of uranium silicide fuels and fuel plate properties. Some data are included for out-of-pile experiments such as corrosion and compatibility tests. Also briefly covered are most other aspects of the RERTR program such as irradiation tests, full-core demonstrations, and technology transfer. References included are for further information on most aspects of the entire program. A significant portion of the report is devoted to data that were never published in their entirety. The appendices contain a list of previous RERTR reports, ANL fabrication procedures, calculations for phases present in two-phase fuels, chemical analysis of fuels, miniplate characteristics, and a summary of bonding runs made by hot isostatic pressing.

Wiencek, T.C. [Argonne National Lab., IL (United States). Energy Technology Div.

1995-08-01T23:59:59.000Z

134

Actual Scale MOX Powder Mixing Test for MOX Fuel Fabrication Plant in Japan  

Science Conference Proceedings (OSTI)

Japan Nuclear Fuel Ltd. (hereafter, JNFL) promotes a program of constructing a MOX fuel fabrication plant (hereafter, J-MOX) to fabricate MOX fuels to be loaded in domestic light water reactors. Since Japanese fiscal year (hereafter, JFY) 1999, JNFL, to establish the technology for a smooth start-up and the stable operation of J-MOX, has executed an evaluation test for technology to be adopted at J-MOX. JNFL, based on a consideration that J-MOX fuel fabrication comes commercial scale production, decided an introduction of MIMAS technology into J-MOX main process, from powder mixing through pellet sintering, well recognized as mostly important to achieve good quality product of MOX fuel, since it achieves good results in both fuel production and actual reactor irradiation in Europe, but there is one difference that JNFL is going to use Japanese typical plutonium and uranium mixed oxide powder converted with the micro-wave heating direct de-nitration technology (hereafter, MH-MOX) but normal PuO{sub 2} of European MOX fuel fabricators. Therefore, in order to evaluate the suitability of the MH-MOX powder for the MIMAS process, JNFL manufactured small scale test equipment, and implemented a powder mixing evaluation test up until JFY 2003. As a result, the suitability of the MH-MOX powder for the MIMAS process was positively evaluated and confirmed It was followed by a five-years test named an 'actual test' from JFY 2003 to JFY 2007, which aims at demonstrating good operation and maintenance of process equipment as well as obtaining good quality of MOX fuel pellets. (authors)

Osaka, Shuichi; Kurita, Ichiro; Deguchi, Morimoto [Japan Nuclear Fuel Ltd., 4-108, Aza okitsuke, oaza obuchi rokkasyo-mura, kamikita-gun, Aomori 039-3212 (Japan); Ito, Masanori [Japan Atomic Energy Agency, 4-33 Muramatu, Tokai-mura, Ibaraki 319-1194 (Japan); Goto, Masakazu [Nuclear Fuel Industries, Ltd., 14-10, Mita 3-chome, Minato-ku, Tokyo 108-0073 (Japan)

2007-07-01T23:59:59.000Z

135

Method of fabricating a monolithic solid oxide fuel cell  

SciTech Connect

In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array.

Minh, Nguyen Q. (Fountain Valley, CA); Horne, Craig R. (Redondo Beach, CA)

1994-01-01T23:59:59.000Z

136

Method of fabricating a monolithic solid oxide fuel cell  

DOE Patents (OSTI)

In a two-step densifying process of making a monolithic solid oxide fuel cell, a limited number of anode-electrolyte-cathode cells separated by an interconnect layer are formed and partially densified. Subsequently, the partially densified cells are stacked and further densified to form a monolithic array. 10 figures.

Minh, N.Q.; Horne, C.R.

1994-03-01T23:59:59.000Z

137

Fabrication of advanced oxide fuels containing minor actinide for use in fast reactors  

Science Conference Proceedings (OSTI)

R and D of advanced fuel containing minor actinide for use in fast reactors is described related to the composite fuel with MgO matrix. Fabrication tests of MgO composite fuels containing Am were done by a practical process that could be adapted to the presently used commercial manufacturing technology. Am-containing MgO composite fuels having good characteristics, i.e., having no defects, a high density, a homogeneous dispersion of host phase, were obtained. As related technology, burn-up characteristics of a fast reactor core loaded with the present MgO composite fuel were also analyzed, mainly in terms of core criticality. Furthermore, phase relations of MA oxide which was assumed to be contained in MgO matrix fuel were experimentally investigated. (authors)

Miwa, Shuhei; Osaka, Masahiko; Tanaka, Kosuke; Ishi, Yohei; Yoshimochi, Hiroshi; Tanaka, Kenya [Oarai Research and Development Center, Japan Atomic Energy Agency, 4002 Oarai-machi, Higashi-ibaraki-gun, Ibaraki, 311-1393 (Japan)

2007-07-01T23:59:59.000Z

138

Independent Oversight Review of the Idaho National Laboratory Fuel Conditioning Facility Safety Basis  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

INDEPENDENT OVERSIGHT INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS April 2010 U.S. Department of Energy Office of Health, Safety and Security Office of Independent Oversight i INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS Table of Contents Acronyms ............................................................................................................................ ii Executive Summary ........................................................................................................... iii 1.0 Introduction ..................................................................................................................1

139

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Executive Summary This paper addresses why the use of an Integrated Safety Analysis ("ISA") is appropriate for fuel recycling facilities 1 which would be licensed under new regulations currently being considered by NRC. The use of the ISA for fuel facilities under Part 70 is described and compared to the use of a Probabilistic Risk Assessment ("PRA") for reactor facilities. A basis is provided for concluding that future recycling facilities - which will possess characteristics similar to today's fuel cycle facilities and distinct from reactors - can best be assessed using established qualitative or semi-quantitative ISA techniques to achieve and demonstrate safety in an effective and efficient manner.

140

Physical inventory verification exercise for a highly enriched uranium fabrication facility  

SciTech Connect

The International Atomic Energy Agency, in collaboration with the US Support Program (POTAS), has developed and conducted a training exercise simulating a physical inventory verification (PIV) at a highly enriched uranium (HEU) fabrication facility. This exercise is part of a series sponsored by the POTAS program, including PIVs at light-water reactors and plutonium fabrication facilities. The first HEU exercise took place in September 1985 at Los Alamos National Laboratory and a second is scheduled for Spring, 1987 at JRC, ISPRA. The main objectives of these exercises are: to provide the opportunity for inspectors to test and evaluate the use of nondestructive assay (NDA) equipment and computer software under conditions similar to those found during actual inspections; to use the data generated to evaluate different inspection procedures and strategies; and to exchange ideas on PIV procedures between the three operations divisions. Because the exercises are conducted in a neutral environment, free of the time pressure often found in actual inspections, it is possible for the inspectors to achieve the course objectives.

Abedin-Zadeh, R.; Augustson, R.H.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Conductivity fuel cell collector plate and method of fabrication  

DOE Patents (OSTI)

An improved method of manufacturing a PEM fuel cell collector plate is disclosed. During molding a highly conductive polymer composite is formed having a relatively high polymer concentration along its external surfaces. After molding the polymer rich layer is removed from the land areas by machining, grinding or similar process. This layer removal results in increased overall conductivity of the molded collector plate. The polymer rich surface remains in the collector plate channels, providing increased mechanical strength and other benefits to the channels. The improved method also permits greater mold cavity thickness providing a number of advantages during the molding process.

Braun, James C. (Juno Beach, FL)

2002-01-01T23:59:59.000Z

142

Fabrication of catalytic electrodes for molten carbonate fuel cells  

DOE Patents (OSTI)

A porous layer of catalyst material suitable for use as an electrode in a molten carbonate fuel cell includes elongated pores substantially extending across the layer thickness. The catalyst layer is prepared by depositing particulate catalyst material into polymeric flocking on a substrate surface by a procedure such as tape casting. The loaded substrate is heated in a series of steps with rising temperatures to set the tape, thermally decompose the substrate with flocking and sinter bond the catalyst particles into a porous catalytic layer with elongated pores across its thickness. Employed as an electrode, the elongated pores provide distribution of reactant gas into contact with catalyst particles wetted by molten electrolyte.

Smith, James L. (Lemont, IL)

1988-01-01T23:59:59.000Z

143

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities  

E-Print Network (OSTI)

Instructions for CEC-1250E-4 Biomass and Fossil Fuel Usage Report for Biomass Facilities Biomass energy input basis in the upcoming calendar year? - Please check "yes" or "no." 12. Types of Biomass Fuel Used - Please report the quantity and supplier of the following types of biomass fuel used

144

DOE Hydrogen and Fuel Cells Program: Permitting Hydrogen Facilities Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy Hydrogen Fueling Stations Telecommunication Fuel Cell Use Hazard and Risk Analysis U.S. Department of Energy The objective of this U.S. Department of Energy Hydrogen Permitting Web site is to help local permitting officials deal with proposed hydrogen fueling stations, fuel cell installations for telecommunications backup power, and other hydrogen projects. Resources for local permitting officials who are looking to address project proposals include current citations for hydrogen fueling stations and a listing of setback requirements on the Alternative Fuels & Advanced Vehicle Data Center Web site. In addition, this overview of telecommunications fuel cell use and an animation that demonstrates telecommunications site layout using hydrogen fuel cells for backup power should provide helpful

145

American Ref-Fuel of SE CT Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

American Ref-Fuel of SE CT Biomass Facility American Ref-Fuel of SE CT Biomass Facility Jump to: navigation, search Name American Ref-Fuel of SE CT Biomass Facility Facility American Ref-Fuel of SE CT Sector Biomass Facility Type Municipal Solid Waste Location New London County, Connecticut Coordinates 41.5185189°, -72.0468164° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.5185189,"lon":-72.0468164,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

146

LOW COST MULTI-LAYER FABRICATION METHOD FOR SOLID OXIDE FUEL CELLS (SOFC)  

SciTech Connect

Under this program, Technology Management, Inc, is evaluating the economic advantages of a multi-pass printing process on the costs of fabricating planar solid oxide fuel cell stacks. The technique, still unproven technically, uses a ''green-field'' or build-up approach. Other more mature processes were considered to obtain some baseline assumptions. Based on this analysis, TMI has shown that multi-pass printing can offer substantial economic advantages over many existing fabrication processes and can reduce costs. By impacting overall production costs, the time is compressed to penetrate early low volume niche markets and more mature high-volume market applications.

Dr. Christopher E. Milliken; Dr. Robert C. Ruhl

2001-05-16T23:59:59.000Z

147

THE DESIGN AND CONSTRUCTION OF THE EBR-II INITIAL FUEL LOADING FACILITY  

SciTech Connect

The need for the first core for EBR-11 resulted in the design and construction of the Initial Fuel Loading Facility for this reactor. The plant was built to provide the required initial loading, to train personnel, and to test prototype equipment for the remote reprocessing of fuel materials in the EBR- II Fuel Cycle Facility. The facilities include: remotely manipulated melting, casting, and pin processing equipment, a degreaser, hoods and their atmospheric control system, a gas-purification system, fuelelement-assembly equipment, mold- preparation and balance room, bonding furnaces, a maintenance shop, and a change area. (auth)

Ayer, J.E.; Shuck, A.B.

1961-06-01T23:59:59.000Z

148

Actinide partitioning-transmutation program final report. IV. Miscellaneous aspects. [Transport; fuel fabrication; decay; policy; economics  

Science Conference Proceedings (OSTI)

This report discusses seven aspects of actinide partitioning-transmutation (P-T) which are important in any complete evaluation of this waste treatment option but which do not fall within other major topical areas concerning P-T. The so-called miscellaneous aspects considered are (1) the conceptual design of a shipping cask for highly neutron-active fresh and spent P-T fuels, (2) the possible impacts of P-T on mixed-oxide fuel fabrication, (3) alternatives for handling the existing and to-be-produced spent fuel and/or wastes until implementation of P-T, (4) the decay and dose characteristics of P-T and standard reactor fuels, (5) the implications of P-T on currently existing nuclear policy in the United States, (6) the summary costs of P-T, and (7) methods for comparing the risks, costs, and benefits of P-T.

Alexander, C.W.; Croff, A.G.

1980-09-01T23:59:59.000Z

149

Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities  

Science Conference Proceedings (OSTI)

This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

MITCHELL, R.M.

2000-09-28T23:59:59.000Z

150

Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary  

Science Conference Proceedings (OSTI)

The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

Shedrow, C.B.

1999-11-29T23:59:59.000Z

151

Evaluation of methods for seismic analysis of mixed-oxide fuel fabrication plants  

SciTech Connect

Guidelines are needed for selecting appropriate methods of structural analyses to evaluate the seismic hazard of mixed-oxide fuel fabrication plants. This study examines the different available methods and their applicability to fabrication plants. These results should provide a basis for establishing guidelines recommending methods of analysis to ensure safe design against seismic hazards. Using the Westinghouse Recycle Fuels Plant as representative of future mixed-oxide fuel fabrication plants, critical structures and equipment (systems, components, and piping/ducting) were identified. These included the manufacturing building and 11 different pieces of equipment. After examination of the dynamic response characteristics of the building and the different methods available to analyze equipment, appropriate methods of analyses were recommended. Because critical equipment analysis and test methods generally use floor-response spectra as their seismic input loading, several methods used to generate floor spectra were also examined. These include the time-history approach and the Kapur and Biggs approximate methods. The examination included the effect of site characteristics and both horizontal and vertical structural response. (auth)

Tokarz, F.J.; Arthur, D.F.; Murray, R.C.

1975-10-01T23:59:59.000Z

152

Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategy Lessons Learned Report Feb 2011.pdf More Documents & Publications Highly Enriched Uranium Materials Facility, Major Design Changes Late...Lessons Learned Report, NNSA,...

153

Interim safety basis for fuel supply shutdown facility  

SciTech Connect

This ISB in conjunction with the new TSRs, will provide the required basis for interim operation or restrictions on interim operations and administrative controls for the Facility until a SAR is prepared in accordance with the new requirements. It is concluded that the risk associated with the current operational mode of the Facility, uranium closure, clean up, and transition activities required for permanent closure, are within Risk Acceptance Guidelines. The Facility is classified as a Moderate Hazard Facility because of the potential for an unmitigated fire associated with the uranium storage buildings.

Brehm, J.R.; Deobald, T.L.; Benecke, M.W.; Remaize, J.A.

1995-05-23T23:59:59.000Z

154

DOE Permitting Hydrogen Facilities: Using Fuel Cells for Backup...  

NLE Websites -- All DOE Office Websites (Extended Search)

cells provide highly effective backup to power these facilities in event of electrical grid power outages. The telecommunications industry has expanded rapidly as mobile...

155

Noise impact evaluation of a power generating station and a refuse?derived fuel facility  

Science Conference Proceedings (OSTI)

Community noiseimpact assessment of a planned addition of refuse?derived fuel (RDF) facility adjacent to a fossil?fueled power plant was conducted using a computerized atmospheric sound propagation model. Close?in measurements of power plant operation and coal handling system were used for station input

V. M. Lee; W. L. Knoll

1979-01-01T23:59:59.000Z

156

Existing and proposed fuel conversion facilities. Summary. [Colorado, Montana, S. Dakota, N. Dakota, Utah, Wyoming  

SciTech Connect

This report provides a summary of existing and proposed coal conversion facilities in addition to hydroelectric plants on a state-by-state basis for the six states (Colorado, Montana, North Dakota, South Dakota, Utah and Wyoming) of EPA Region VIII. It identifies the location, facility name, number of units, operating company and other participants, plant capacity, and the fuel type for the various conversion facilities. (GRA)

1976-07-01T23:59:59.000Z

157

Effects of fabrication and irradiation on the dissolution of (U,Pu)O$sub 2$ reactor fuels  

SciTech Connect

From American Ceramics Society nuclear division meeting; San Francisco, California, USA (29 Oct 1973). LMFBR-type reactors will be fueled with stainless- steel-clad MFBR fuel cycle are the recovery of uranium and plutonium and the refabrication of the fuel elements in the minimum practicable time at lowest cost. Effect of fabrication method and irradiation conditions on recovery of the fuel is discussed. The Purex process is used to prepare the feed solutions. Test specimens contained fuels derived from sol-gel, coprecipitated, and mechanically blended oxides. Irradiation levels varied from unirradiated to 100,000 MWd/ton. Solubility of the fuels in terms of the fabrication method is coprecipitated> sol- gel > mechanically blended. Irradiation tends to increase the fuel solubility. (LK)

Goode, J.H.; Fitzgerald, C.L.; Vaughen, V.C.A.

1973-01-01T23:59:59.000Z

158

American Ref-Fuel of Hempstead Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

American Ref-Fuel of Hempstead Biomass Facility American Ref-Fuel of Hempstead Biomass Facility Facility American Ref-Fuel of Hempstead Sector Biomass Facility Type Municipal Solid Waste Location Nassau County, New York Coordinates 40.6546145°, -73.5594128° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.6546145,"lon":-73.5594128,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

(1) Facility Name: (7) (2) Brand of Fuel: (8)  

E-Print Network (OSTI)

Tank Capacity (Gallons) Midgrade Gasoline (89 Octane) Product (13) Annual Sales Volume (Gallons) (14 (Explain): Bio-Diesel (B-20) Compressed Natural Gas (CNG) Commercial Jet Fuel (18) Propane Finished

160

Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)  

DOE Green Energy (OSTI)

Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

Not Available

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Spent nuclear fuel project cold vacuum drying facility operations manual  

SciTech Connect

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1999-05-12T23:59:59.000Z

162

American Ref-Fuel of Essex Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Essex Biomass Facility Essex Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Essex Biomass Facility Facility American Ref-Fuel of Essex Sector Biomass Facility Type Municipal Solid Waste Location Essex County, New Jersey Coordinates 40.7947466°, -74.2648829° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7947466,"lon":-74.2648829,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

American Ref-Fuel of Niagara Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Niagara Biomass Facility Niagara Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Niagara Biomass Facility Facility American Ref-Fuel of Niagara Sector Biomass Facility Type Municipal Solid Waste Location Niagara County, New York Coordinates 43.3119496°, -78.7476208° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.3119496,"lon":-78.7476208,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

American Ref-Fuel of Delaware Valley Biomass Facility | Open Energy  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley Sector Biomass Facility Type Municipal Solid Waste Location Delaware County, Pennsylvania Coordinates 39.907793°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.907793,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

165

Facilities Condition and Hazards Assessment for Materials and Fuel Complex Facilities MFC-799, 799A, and 770C  

Science Conference Proceedings (OSTI)

The Materials & Fuel Complex (MFC) facilities 799 Sodium Processing Facility (a single building consisting of two areas: the Sodium Process Area (SPA) and the Carbonate Process Area (CPA), 799A Caustic Storage Area, and 770C Nuclear Calibration Laboratory have been declared excess to future Department of Energy mission requirements. Transfer of these facilities from Nuclear Energy to Environmental Management, and an associated schedule for doing so, have been agreed upon by the two offices. The prerequisites for this transfer to occur are the removal of nonexcess materials and chemical inventory, deinventory of the calibration source in MFC-770C, and the rerouting and/or isolation of utility and service systems. This report provides a description of the current physical condition and any hazards (material, chemical, nuclear or occupational) that may be associated with past operations of these facilities. This information will document conditions at time of transfer of the facilities from Nuclear Energy to Environmental Management and serve as the basis for disposition planning. The process used in obtaining this information included document searches, interviews and facility walk-downs. A copy of the facility walk-down checklist is included in this report as Appendix A. MFC-799/799A/770C are all structurally sound and associated hazardous or potentially hazardous conditions are well defined and well understood. All installed equipment items (tanks, filters, etc.) used to process hazardous materials remain in place and appear to have maintained their integrity. There is no evidence of leakage and all openings are properly sealed or closed off and connections are sound. The pits appear clean with no evidence of cracking or deterioration that could lead to migration of contamination. Based upon the available information/documentation reviewed and the overall conditions observed during the facilities walk-down, it is concluded that these facilities may be disposed of at minimal risk to human health, safety or the environment.

Gary Mecham; Don Konoyer

2009-11-01T23:59:59.000Z

166

Criticality safety training at the Hot Fuel Examination Facility  

SciTech Connect

HFEF comprises four hot cells and out-of-cell support facilities for the US breeder program. The HFEF criticality safety program includes training in the basic theory of criticality and in specific criticality hazard control rules that apply to HFEF. A professional staff-member oversees the implementation of the criticality prevention program. (DLC)

Garcia, A.S.; Courtney, J.C.; Thelen, V.N.

1983-01-01T23:59:59.000Z

167

Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany  

SciTech Connect

In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basis of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)

Koenig, Werner [TUEV NORD EnSys Hannover GmbH and Co. KG (Germany); Baumann, Roland [Siemens AG, Power Generation (Germany)

2007-07-01T23:59:59.000Z

168

Design, Fabrication, and Operation of Innovative Microalgae Culture Experiments for the Purpose of Producing Fuels: Final Report, Phase I  

DOE Green Energy (OSTI)

A conceptual design was developed for a 1000-acre (water surface) algae culture facility for the production of fuels. The system is modeled after the shallow raceway system with mixing foils that is now being operated at the University of Hawaii. A computer economic model was created to calculate the discounted breakeven price of algae or fuels produced by the culture facility. A sensitivity analysis was done to estimate the impact of changes in important biological, engineering, and financial parameters on product price.

Not Available

1985-01-01T23:59:59.000Z

169

Nerva fuel nondestructive evaluation and characterization equipment and facilities  

Science Conference Proceedings (OSTI)

Nuclear Thermal Propulsion (NTP) is one of the technologies that the Space Exploration Initiative (SEI) has identified as essential for a manned mission to Mars. A base or prior work is available upon which to build in the development of nuclear rockets. From 1955 to 1973, the U.S Atomic Energy Commission (AEC) sponsored development and testing of a nuclear rocket engine under Project Rover. The rocket engine, called the Nuclear Engine for Rocket Vehicle Application (NERVA), used a graphite fuel element incorporating coated particle fuel. Much of the NERVA development and manufacturing work was performed at the Oak Ridge Y[minus]12 Plant. This paper gives a general review of that work in the area of nondestructive evaluation and characterization. Emphasis is placed on two key characteristics: uranium content and distribution and thickness profile of metal carbide coatings deposited in the gas passage holes.

Caputo, A.J. (Martin Marietta Energy Systems, Inc., Oak Ridge, Y-12 Plant Oak Ridge, TN 37831 (United States))

1993-01-20T23:59:59.000Z

170

Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report  

DOE Green Energy (OSTI)

A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. The fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. This volume of the report contains the appendices: (A) abbreviations and definitions, glossary; (B) 4.5 MWe utility demonstrator power plant study information; (C) rejected heat utilization; (D) availability; (E) conceptual design specifications; (F) details of the economic analysis; (G) detailed description of the selected configuration; and (H) fuel cell power plant penetration analysis. (WHK)

Not Available

1980-02-01T23:59:59.000Z

171

Alternatives for the disposition of fuel stored in the PUREX facility  

SciTech Connect

This document provides an evaluation of five alternatives for the disposition of 3.4 metric tons of irradiated fuel from PUREX to support facility turnover following deactivation. The alternatives for disposition of the fuel include transfer to the K Basins, transfer to T Plant, passivation and dry vault storage, and dissolution and underground tank storage. The five alternatives were compared and it was determined that the fuel should be transferred from PUREX to the K Basins where it would be placed into pool storage.

Enghusen, M.B.; Gore, D.B.

1995-01-01T23:59:59.000Z

172

MELCOR simulation of the PBF (Power Burst Facility) severe fuel damage test 1-1  

DOE Green Energy (OSTI)

This paper describes a MELCOR version 1.7.1 simulation of the Power Burst Facility (PBF) Severe Fuel Damage (SFD) 1-1 test. The input data for the simulation was obtained from the SFD 1-1 Test Results Report and from SCDAP input. Results are presented for the transient two-phase interface level in the core, fuel and clad temperatures at various elevations in the fuel bundle, clad oxidation, hydrogen generation, fission product release, and heat transfer to the surrounding structures. Comparisons are made with experimental data and predictions from STCP and the NRC's mechanistic code SCDAP (version 18). 6 refs., 12 figs.

Madni, I.K.

1989-01-01T23:59:59.000Z

173

Decarbonized Fuel Production Facility, A Technical Strategy for  

E-Print Network (OSTI)

The U.S. electricity market is undergoing a transformation driven by changes such as deregulation of power generation, more stringent environmental regulations, climate change concerns, and other market forces. With these changes come new players such as merchant power plants. The industry is also counting on new gas-fired generation to meet demand. Environmental initiatives concerning PM 2.5, air toxics, mercury control, and CO2 reduction could adversely impact the economic viability of coal. The future use of coal to produce electricity is uncertain and possibly in peril unless we recognize that in the coming decades, the traditional means of how energy (both electricity and fuel) is generated, transported, and utilized will likely be very different from what it is today. In this paper, we describe a technical strategy for the coal industry that can help assure coal’s competitiveness during the next century as electricity markets evolve and are reshaped by these changes. Recently, the U.S. Department of Energy unveiled a new concept, “Vision 21 ” – a futuristic way of combining high-efficiency power technologies with advanced coal processing technologies and environmental controls to create a near-zero discharge, multi-product energy complex. This paper presents a Page 1conceptualization of a Vision 21 plant that focuses on production of hydrogen from coal. It will show how the concept can help assure that coal can remain competitive with natural gas as a fuel for baseload electricity generation for existing and new power plants. It can also provide a feedstock for chemical and liquid fuels production, even if emissions of carbon dioxide must be controlled. This paper presents hydrogen delivery scenarios for the power sector that provide the basis for the projected economic and technical performance objectives.

Joseph S. Badin; Michael R. Delallo; Michael G. Klett; Michael D. Rutkowski; Jerome R. Temchin

1998-01-01T23:59:59.000Z

174

Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility  

Science Conference Proceedings (OSTI)

A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

Dippre, M. A.

2003-02-25T23:59:59.000Z

175

Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers  

DOE Green Energy (OSTI)

Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making fuel cell projects easier to put into service. In this environment, federal decision makers can focus on being smart buyers of fuel cell energy instead of attempting to become experts in fuel cell technology. For agencies that want to pursue a fuel cell CHP this guide presents a four step process for a successful project. 1. Perform a preliminary screening of the energy needs energy costs and incentives. 2. Compare a detailed project plan. 3. Make a financing and contracting decision. 4. Execute the project plan including financing, installation, and operation. The simplest procurement method is designated funding for the outright purchase of the fuel cell CHP system, although this is usually not the most cost-effective option. This guide describes the following financing options: Power purchase agreement Energy savings performance contract Utility energy services contract Enhanced use lease Fuel cell CHP technology can help federal facility managers comply with agency objectives for reducing energy consumption and air pollution emissions. Fuel cells do not generate particulate pollutants, unburned hydrocarbons or the gases that produce acid rain. Fuel cells emit less carbon dioxide (CO2) than other, less efficient technologies and use of renewable fuels can make them carbon neutral. Fuel cell CHP technology can deliver reliable electricity and heat with high efficiency (70% to 85%) in a small physical footprint with little noise, making it a cost-effective option for federal facilities.

Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

2011-11-01T23:59:59.000Z

176

PRELIMINARY SAFEGUARDS REPORT BASED ON URANIUM-MOLYBDENUM FUEL FOR THE HALLAM NUCLEAR POWER FACILITY  

SciTech Connect

The Hallam Power Reactor is described relative to site, buildings, reactor and associated heat-transfer system, instrumentation and control, auxiliary systems, and fuel and component handling facilities. The potential hazards of radioactivity and safeguards for confinement are discussed. Radiation levels and accidental effluent release are considered. Transients with and without protective system action are discussed. (B.O.G.)

Gershun, T.L. ed.

1961-10-31T23:59:59.000Z

177

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production Facilities  

E-Print Network (OSTI)

Alternative and Renewable fuels and Vehicle Technology Program Subject Area: Biofuels production: Commercial Facilities · Applicant's Legal Name: Yokayo Biofuels, Inc. · Name of project: A Catalyst for Success · Project Description: Yokayo Biofuels, an industry veteran with over 10 years experience

178

Feasibility study: fuel cell cogeneration in a water pollution control facility. Final report  

DOE Green Energy (OSTI)

A conceptual design study was conducted to investigate the technical and economic feasibility of a cogeneration fuel cell power plant operating in a large water pollution control facility. In this particular application, the fuel cell power plant would use methane-rich digester gas from the water pollution control facility as a fuel feedstock to provide electrical and thermal energy. Several design configurations were evaluated. These configurations were comprised of combinations of options for locating the fuel cell power plant at the site, electrically connecting it with the water pollution control facility, using the rejected power plant heat, supplying fuel to the power plant, and for ownership and operation. A configuration was selected which met institutional/regulatory constraints and provided a net cost savings to the industry and the electric utility. The displacement of oil and coal resulting from the Bergen County Utilities Authority application was determined. A demonstration program based on the selected configuration was prepared to describe the scope of work, organization, schedules, and costs from preliminary design through actual tests and operation. The potential market for nationwide application of the concept was projected, along with the equivalent oil displacement resulting from estimated commercial application.

Not Available

1980-02-01T23:59:59.000Z

179

MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY  

NLE Websites -- All DOE Office Websites (Extended Search)

MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS MORTALITY AMONG WORKERS AT THE SAVANNAH RIVER NUCLEAR FUELS PRODUCTION FACILITY Donna L. Cragle and Janice P. Watkins, Center for Epidemiologic Research; Kathryn Robertson-DeMers, Bechtel Hanford, Inc. Donna Cragle, Oak Ridge Associated Universities, P.O. Box 117, Oak Ridge, TN 37831-0117 Key Words: mortality study, radiation exposure, leukemia, occupational cohort, trend test INTRODUCTION Since 1952 the Savannah River Site (SRS), located in Aiken, South Carolina, has operated as a Department of Energy (DOE) production facility for nuclear fuels and other materials. A previous study 1 through 1980 of 9,860 white males employed at least 90 consecutive days at the SRS between 1952 and 1974 found an increased number of leukemia deaths among

180

Research and Development of a PEM Fuel Cell, Hydrogen Reformer, and Vehicle Refueling Facility  

DOE Green Energy (OSTI)

Air Products and Chemicals, Inc. has teamed with Plug Power, Inc. of Latham, NY, and the City of Las Vegas, NV, to develop, design, procure, install and operate an on-site hydrogen generation system, an alternative vehicle refueling system, and a stationary hydrogen fuel cell power plant, located in Las Vegas. The facility will become the benchmark for validating new natural gas-based hydrogen systems, PEM fuel cell power generation systems, and numerous new technologies for the safe and reliable delivery of hydrogen as a fuel to vehicles. Most important, this facility will serve as a demonstration of hydrogen as a safe and clean energy alternative. Las Vegas provides an excellent real-world performance and durability testing environment.

Edward F. Kiczek

2007-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual  

SciTech Connect

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1999-07-02T23:59:59.000Z

182

Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual  

Science Conference Proceedings (OSTI)

This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

2000-02-03T23:59:59.000Z

183

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video About Operational Excellence Facilities Facilities...

184

A multi-criteria approach for scheduling semiconductor wafer fabrication facilities  

Science Conference Proceedings (OSTI)

In this research, we model a semiconductor wafer fabrication process as a complex job shop, and adapt a Modified Shifting Bottleneck Heuristic (MSBH) to facilitate the multi-criteria optimization of makespan, cycle time, and total weighted tardiness ... Keywords: Complex job shop, Multicriteria, Shifting bottleneck

Michele E. Pfund; Hari Balasubramanian; John W. Fowler; Scott J. Mason; Oliver Rose

2008-02-01T23:59:59.000Z

185

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

186

Microstructural Characterization of U-7Mo/Al-Si Alloy Matrix Dispersion Fuel Plates Fabricated at 500°C  

Science Conference Proceedings (OSTI)

The starting microstructure of a dispersion fuel plate will impact the overall performance of the plate during irradiation. To improve the understanding of the as-fabricated microstructures of U–Mo dispersion fuel plates, particularly the interaction layers that can form between the fuel particles and the matrix, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses have been performed on samples from depleted U–7Mo (U–7Mo) dispersion fuel plates with either Al–2 wt.% Si(Al–2Si) or AA4043 alloy matrix. It was observed that in the thick interaction layers, U(Al, Si)3 and U6Mo4Al43 were present, and in the thin interaction layers, (U, Mo) (Al, Si)3, U(Al, Si)4, U3Si3Al2, U3Si5, and possibly USi-type phases were observed. The U3Si3Al2 phase contained some Mo. Based on the results of this investigation, the time that a dispersion fuel plate is exposed to a relatively high temperature during fabrication will impact the nature of the interaction layers around the fuel particles. Uniformly thin, Si-rich layers will develop around the U–7Mo particles for shorter exposure times, and thicker, Si-depleted layers will develop for the longer exposure times.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Bo Yao; Emmanuel Perez; Yongho Sohn; Curtis R. Clark

2011-05-01T23:59:59.000Z

187

Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers  

NLE Websites -- All DOE Office Websites (Extended Search)

Procuring Fuel Cells for Stationary Power: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers OCTOBER 2011 Fuel Cell Technologies Program Oak Ridge National Laboratory 2 October 2011 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

188

ORNL/TM-2007/44 Leadership Computing Facility  

E-Print Network (OSTI)

........................................................................... 97 E.10. Single fuel assembly of a sodium-cooled, fast-spectrum nuclear reactor reactors, separations reprocessing facilities, and fuel fabrication/storage facilities. Nuclear physics CTEM collisionless trapped electron mode CY calendar year DFT density functional theory DNA

189

REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)  

SciTech Connect

Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

CHASTAIN, S.A.

2005-10-24T23:59:59.000Z

190

Evaluation of the advanced mixed oxide fuel test FO-2 irradiated in Fast Flux Test Facility  

SciTech Connect

The advanced mixed-oxide (UO/sub 2/-PuO/sub 2/) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF), is undergoing postirradiation examination (PIE). This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) (Leggett and Omberg 1987) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of twelve different types. The test was irradiated for 312 equivalent full power days (EFPD) in FFTF. It had a peak pin power of 13.7 kW/ft and reached a peak burnup of 65.2 MWd/kgM with a peak fast fluence of 9.9 /times/ 10/sup 22/ n/cm/sup 2/ (E > 0.1 MeV). This document discusses the test and its results. 6 refs., 19 figs., 4 tabs.

Gilpin, L.L.; Baker, R.B.; Chastain, S.A.

1989-05-01T23:59:59.000Z

191

Framatome-ANP France UO{sub 2} fuel fabrication - criticality safety analysis in the light of the 1999' Tokay Mura accident  

SciTech Connect

In France the 1999' Tokai Mura criticality accident in Japan had a big impact on the nuclear fuel manufacturing facility community. Moreover this accident led to a large public discussion about all the nuclear facilities. The French Safety Authorities made strong requirements to the industrials to revisit completely their safety analysis files mainly those concerning nuclear fuels treatments. The Framatome-ANP production of its French low enriched (5 w/o) UO{sub 2} fuel fabrication plant (FBFC/Romans) exceeds 1000 metric tons a year. Special attention was given to the emergency evacuation plan that should be followed in case of a criticality accident. If a criticality accident happens, site internal and external radioprotection requirements need to have an emergency evacuation plan showing the different routes where the absorbed doses will be as low as possible for people. The French Safety Authorities require also an update of the old based neutron source term accounting for state of the art methodology. UO{sub 2} blenders units contain a large amount of dry powder strictly controlled by moderation; a hypothetical water leakage inside one of these apparatus is simulated by increasing the water content of the powder. The resulted reactivity insertion is performed by several static calculations. The French IRSN/CEA CRISTAL codes are used to perform these static calculations. The kinetic criticality code POWDER simulates the power excursion versus time and determines the consequent total energy source term. MNCP4B performs the source term propagation (including neutrons and gamma) used to determine the isodose curves needed to define the emergency evacuation plant. This paper deals with the approach Framatome-ANP has taken to assess Safety Authorities demands using the more up to date calculation tools and methodology. (authors)

Doucet, M.; Zheng, S. [Framatome-ANP Fuel Technology Service (France); Mouton, J.; Porte, R. [Framatome-ANP Fuel Fabrication Plant - FBFC (France)

2004-07-01T23:59:59.000Z

192

Power Burst Facility (PBF) severe fuel damage test 1-4 test results report  

DOE Green Energy (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1-4 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1-4 was the fourth and final test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel and control rod behavior, aerosol and hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (36,000 MWd/MtU) pressurized water-reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 silver-indium-cadmium control rods, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1.3-h transient at a coolant pressure of 6.95 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy and control rod absorber alloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 2100-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of on-line instrumentation, analysis of fission product and aerosol data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 40 refs., 160 figs., 31 tabs.

Petti, D.A.; Martinson, Z.R.; Hobbins, R.R.; Allison, C.M.; Carlson, E.R.; Hagrman, D.L.; Cheng, T.C.; Hartwell, J.K.; Vinjamuri, K.; Seifken, L.J.

1989-04-01T23:59:59.000Z

193

PBF (Power Burst Facility) severe fuel damage test 1--3 test results report  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of the Severe Fuel Damage (SFD) Test 1--3 performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory is presented. Test SFD 1--3 was the third test in an internationally sponsored light water reactor severe accident research program, initiated by the US Nuclear Regulatory Commission. The overall technical objective of the test was to contribute to the understanding of fuel rod behavior, hydrogen generation, and fission product release and transport during a high-temperature, severe fuel damage transient. A test bundle, comprised of 26 previously irradiated (38,000 MWd/tU) pressurized water reactor-type fuel rods, 2 fresh instrumented fuel rods, and 4 empty zircaloy guide tubes, was surrounded by an insulating shroud and contained in a pressurized in-pile tube. The experiment consisted of a 1-h transient at a nominal coolant pressure of 6.85 MPa in which the inlet coolant flow to the bundle was reduced to 0.6 g/s while the bundle fission power was gradually increased until dryout, heatup, cladding rupture, and oxidation occurred. With sustained fission power and heat from oxidation, temperatures continued to rise rapidly, resulting in zircaloy melting, fuel liquefaction, material relocation, and the release of hydrogen, aerosols, and fission products. The transient was terminated over a 1340-s time span by slowly reducing the reactor power and cooling the damaged bundle with argon gas. A description and evaluation of the major phenomena, based upon the response of online instrumentation, analysis of fission product data, postirradiation examination of the fuel bundle, and calculations using the SCDAP/RELAP5 computer code, are presented. 34 refs., 241 figs., 51 tabs.

Martinson, Z.R.; Gasparini, M.; Hobbins, R.R.; Petti, D.A.; Allison, C.M.; Hohorst, J.K.; Hagrman, D.L.; Vinjamuri, K. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

1989-10-01T23:59:59.000Z

194

Criticality considerations for /sup 233/U fuels in an HTGR fuel refabrication facility  

DOE Green Energy (OSTI)

Eleven /sup 233/U solution critical assemblies spanning an H//sup 233/U ratio range of 40 to 2000 and a bare metal /sup 233/U assembly have been calculated with the ENDF/B-IV and Hansen-Roach cross sections. The results from these calculations are compared with the experimental results and with each other. An increasing disagreement between calculations with ENDF/B and Hansen-Roach data with decreasing H//sup 233/U ratio was observed, indicative of large differences in their intermediate energy cross sections. The Hansen-Roach cross sections appeared to give reasonably good agreement with experiments over the whole range; whereas the ENDF/B calculations yielded high values for k/sub eff/ on assemblies of low moderation. It is concluded that serious problems exist in the ENDF/B-IV representation of the /sup 233/U cross sections in the intermediate energy range and that further evaluation of this nuclide is warranted. In addition, it is recommended that an experimental program be undertaken to obtain /sup 233/U criticality data at low H//sup 233/U ratios for verification of generalized criticality safety guidelines. Part II of this report presents the results of criticality calculations on specific pieces of equipment required for HTGR fuel refabrication. In particular, fuel particle storage hoppers and resin carbonization furnaces are criticality safe up to 22.9 cm (9.0 in.) in diameter providing water or other hydrogenous moderators are excluded. In addition, no criticality problems arise due to accumulation of particles in the off-gas scrubber reservoirs provided reasonable administrative controls are exercised.

McNeany, S. R.; Jenkins, J. D.

1978-01-01T23:59:59.000Z

195

RELAP5 Model of a Two-phase ThermoSyphon Experimental Facility for Fuels and Materials Irradiation  

Science Conference Proceedings (OSTI)

The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) does not have a separate materials-irradiation flow loop and requires most materials and all fuel experiments to be placed inside a containment. This is necessary to ensure that internal contaminants such as fission products cannot be released into the primary coolant. As part of the safety basis justification, HFIR also requires that all experiments be able to withstand various accident conditions (e.g., loss of coolant) without generating vapor bubbles on the surface of the experiment in the primary coolant. As with any parallel flow system, HFIR is vulnerable to flow excursion events when vapor is generated in one of those flow paths. The effects of these requirements are to artificially increase experiment temperatures by introducing a barrier between the experimental materials and the HFIR coolant and to reduce experiment heat loads to ensure boiling doesn t occur. A new experimental facility for materials irradiation and testing in the HFIR is currently being developed to overcome these limitations. The new facility is unique in that it will have its own internal cooling flow totally independent of the reactor primary coolant and boiling is permitted. The reactor primary coolant will cool the outside of this facility without contacting the materials inside. The ThermoSyphon Test Loop (TSTL), a full scale prototype of the proposed irradiation facility to be tested outside the reactor, is being designed and fabricated (Ref. 1). The TSTL is a closed system working as a two-phase thermosyphon. A schematic is shown in Fig. 1. The bottom central part is the boiler/evaporator and contains three electric heaters. The vapor generated by the heaters will rise and be condensed in the upper condenser, the condensate will drain down the side walls and be circulated via a downcomer back into the bottom of the boiler. An external flow system provides coolant that simulates the HFIR primary coolant. The two-phase flow code RELAP5-3D (Ref. 2) is the main tool employed in this design. The model has multiple challenges: boiling, condensation and natural convection flows need to be modeled accurately.

Carbajo, Juan J [ORNL; McDuffee, Joel Lee [ORNL

2013-01-01T23:59:59.000Z

196

Criticality safety strategy for the Fuel Cycle Facility electrorefiner at Argonne National Laboratory, West  

Science Conference Proceedings (OSTI)

The Integral Fast Reactor being developed by Argonne National Laboratory (ANL) combines the advantages of metal-fueled, liquid-metal-cooled reactors and a closed fuel cycle. Presently, the Fuel Cycle Facility (FCF) at ANL-West in Idaho Falls, Idaho is being modified to recycle spent metallic fuel from Experimental Breeder Reactor II as part of a demonstration project sponsored by the Department of Energy. A key component of the FCF is the electrorefiner (ER) in which the actinides are separated from the fission products. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt and refined uranium or uranium/plutonium products are deposited at cathodes. In this report, the criticality safety strategy for the FCF ER is summarized. FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. In order to show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOES) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOES, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that wig verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.

Mariani, R.D.; Benedict, R.W. [Argonne National Lab., Idaho Falls, ID (United States); Lell, R.M.; Turski, R.B.; Fujita, E.K. [Argonne National Lab., IL (United States)

1993-09-01T23:59:59.000Z

197

Characterization of thorium and uranium contaminated soil from a nuclear fuel facility  

Science Conference Proceedings (OSTI)

This paper describes the utility of soil characterization using electron microscopy to support decontamination efforts of contaminated soil. Soil contaminated with thorium and uranium from the grounds of a nuclear fuel manufacturing facility was subjected to remediation efforts. A light acid leach was able to remove only 30% of the thorium suggesting that the thorium was present in two or more forms. Analytical electron microscopy determined that all of the thorium was present as ThO{sub 2}, but in a bimodal size distribution and occasionally closely associated with other minerals. Electron microscopy was useful in understanding the remediation data and demonstrates the need for characterization of contaminated soils.

Brown, N.R.; Buck, E.C.; Dietz, N.L.; Bates, J.K. [Argonne National Lab., IL (United States); Carlson, B. [Ecotek, Inc., Erwin, TN (United States)

1994-02-01T23:59:59.000Z

198

MELCOR modeling of the PBF (Power Burst Facility) Severe Fuel Damage Test 1-4  

DOE Green Energy (OSTI)

This paper describes a MELCOR Version 1.8 simulation of the Power Burst Facility (PBF) Severe Fuel Damage (SFD) Test 1--4. The input data for the analysis were obtained from the Test Results Report and from SCDAP/RELAP5 input. Results are presented for the transient liquid level in the test bundle, clad temperatures, shroud temperatures, clad oxidation and hydrogen generation, bundle geometry changes, fission product release, and heat transfer to the bypass flow. Comparisons are made with experimental data and with SCDAP/RELAP5 calculations. 10 refs., 7 figs.

Madni, I.K.

1990-01-01T23:59:59.000Z

199

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

SciTech Connect

The project uses an exothermic combustion synthesis reaction, termed self-propagating high-temperature synthesis (SHS), to produce high quality, reproducible nitride fuels and other ceramic type nuclear fuels (cercers and cermets, etc.) in conjunction with the fabrication of transmutation fuels. The major research objective of the project is determining the fundamental SHS processing parameters by first using manganese as a surrogate for americium to produce dense Zr-Mn-N ceramic compounds. These fundamental principles will then be transferred to the production of dense Zr-Am-N ceramic materials. A further research objective in the research program is generating fundamental SHS processing data to the synthesis of (i) Pu-Am-Zr-N and (ii) U-Pu-Am-N ceramic fuels. In this case, Ce will be used as the surrogate for Pu, Mn as the surrogate for Am, and depleted uranium as the surrogate for U. Once sufficient fundamental data has been determined for these surrogate systems, the information will be transferred to Idaho National Laboratory (INL) for synthesis of Zr-Am-N, Pu-Am-Zr-N and U-Pu-Am-N ceramic fuels. The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Marissa M. Reigel, Collin D. Donohoue

2009-04-30T23:59:59.000Z

200

Fabrication of Yttria stabilized zirconia thin films on porous substrates for fuel cell applications  

E-Print Network (OSTI)

on Solid Oxide Fuel Cells (SOFC-V). Stimming, U. , Singhal,on Solid Oxide Fuel Cells (SOFC-IV), Pennington, NJ, USA:M. Characterization of Composite SOFC Cathodes by Impedance

Leming, Andres

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

MOX Lead Assembly Fabrication at the Savannah River Site  

SciTech Connect

The U. S. Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) under the National Environmental Policy Act (NEPA) on the disposition of the nations weapon-usable surplus plutonium.This EIS is tiered from the Storage and Disposition of Weapons-Usable Fissile Material Programmatic Environmental Impact Statement issued in December 1996,and the associated Record of Decision issued on January, 1997. The EIS will examine reasonable alternatives and potential environmental impacts for the proposed siting, construction, and operation of three types of facilities for plutonium disposition. The three types of facilities are: a pit disassembly and conversion facility, a facility to immobilize surplus plutonium in a glass or ceramic form for disposition, and a facility to fabricate plutonium oxide into mixed oxide (MOX) fuel.As an integral part of the surplus plutonium program, Oak Ridge National Laboratory (ORNL) was tasked by the DOE Office of Fissile Material Disposition(MD) as the technical lead to organize and evaluate existing facilities in the DOE complex which may meet MD`s need for a domestic MOX fuel fabrication demonstration facility. The Lead Assembly (LA) facility is to produce 1 MT of usable test fuel per year for three years. The Savannah River Site (SRS) as the only operating plutonium processing site in the DOE complex, proposes two options to carry out the fabrication of MOX fuel lead test assemblies: an all Category I facility option and a combined Category I and non-Category I facilities option.

Geddes, R.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Spiker, D.L.; Poon, A.P.

1997-12-01T23:59:59.000Z

202

Application of Self-Propagating High Temperature Synthesis to the Fabrication of Actinide Bearing Nitride and Other Ceramic Nuclear Fuels  

Science Conference Proceedings (OSTI)

The high vapor pressures of americium (Am) and americium nitride (AmN) are cause for concern in producing nitride ceramic nuclear fuel that contains Am. Along with the problem of Am retention during the sintering phases of current processing methods, are additional concerns of producing a consistent product of desirable homogeneity, density and porosity. Similar difficulties have been experienced during the laboratory scale process development stage of producing metal alloys containing Am wherein compact powder sintering methods had to be abandoned. Therefore, there is an urgent need to develop a low-temperature or low–heat fuel fabrication process for the synthesis of Am-containing ceramic fuels. Self-propagating high temperature synthesis (SHS), also called combustion synthesis, offers such an alternative process for the synthesis of Am nitride fuels. Although SHS takes thermodynamic advantage of the high combustion temperatures of these exothermic SHS reactions to synthesize the required compounds, the very fast heating, reaction and cooling rates can kinetically generate extremely fast reaction rates and facilitate the retention of volatile species within the rapidly propagating SHS reaction front. The initial objective of the research program is to use Mn as the surrogate for Am to synthesize a reproducible, dense, high quality Zr-Mn-N ceramic compound. Having determined the fundamental SHS reaction parameters and optimized SHS processing steps using Mn as the surrogate for Am, the technology will be transferred to Idaho National Laboratory to successfully synthesize a high quality Zr-Am-N ceramic fuel.

John J. Moore, Douglas E. Burkes, Collin D. Donohoue, Marissa M. Reigel, J. Rory Kennedy

2009-05-18T23:59:59.000Z

203

Sampling and analysis plan for the preoperational environmental survey of the spent nuclear fuel project facilities  

Science Conference Proceedings (OSTI)

This sampling and analysis plan will support the preoperational environmental monitoring for construction, development, and operation of the Spent Nuclear Fuel (SNF) Project facilities, which have been designed for the conditioning and storage of spent nuclear fuels; particularly the fuel elements associated with the operation of N-Reactor. The SNF consists principally of irradiated metallic uranium, and therefore includes plutonium and mixed fission products. The primary effort will consist of removing the SNF from the storage basins in K East and K West Areas, placing in multicanister overpacks, vacuum drying, conditioning, and subsequent dry vault storage in the 200 East Area. The primary purpose and need for this action is to reduce the risks to public health and safety and to the environment. Specifically these include prevention of the release of radioactive materials into the air or to the soil surrounding the K Basins, prevention of the potential migration of radionuclides through the soil column to the nearby Columbia River, reduction of occupational radiation exposure, and elimination of the risks to the public and to workers from the deterioration of SNF in the K Basins.

MITCHELL, R.M.

1999-04-01T23:59:59.000Z

204

The Fuel Processing Research Facility - A Platform for the Conduct of Synthesis Gas Technology R&D  

DOE Green Energy (OSTI)

Vision 21 is the U. S. Department of Energy's initiative to deploy high efficiency, ultraclean co-production coal conversion power plants in the twenty-first century. These plants will consist of power and co-production modules, which are integrated to meet specific power and chemical markets. A variety of fuel gas processing technology issues involving gas separations, cleanup, gas-to-liquid fuels production and chemical synthesis, to mention a few, will be addressed by the program. The overall goal is to effectively eliminate, at competitive costs, environmental concerns associated with the use of fossil fuels for producing electricity and transportation fuels. The Fuel Processing Research Facility (FPRF) was developed as a fuel-flexible platform to address many of these technology needs. The facility utilizes a simplified syngas generator that is capable of producing 2,000 standard cubic feet per hour of 900 degree Celsius and 30 atmosphere synthesis gas that can be tailored to the gas composition of interest. It was built on a ''mid-scale'' level in an attempt to successfully branch the traditionally difficult scale-up from laboratory to pilot scale. When completed, the facility will provide a multi-faceted R&D area for the testing of fuel cells, gas separation technologies, and other gas processing unit operations.

Monahan, Michael J.; Berry, David A.; Gardner, Todd H.; Lyons, K. David

2001-11-06T23:59:59.000Z

205

Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

206

Materials and Fuels Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Materials and Fuels Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-09-01T23:59:59.000Z

207

Construction of a Post-Irradiated Fuel Examination Shielded Enclosure Facility  

SciTech Connect

The U.S. Department of Energy (DOE) has committed to provide funding to the Idaho National Laboratory (INL) for new post-irradiation examination (PIE) equipment in support of advanced fuels development. This equipment will allow researchers at the INL to accurately characterize the behavior of experimental test fuels after they are removed from an experimental reactor also located at the INL. The accurate and detailed characterization of the fuel from the reactor, when used in conjunction with computer modeling, will allow DOE to more quickly understand the behavior of the fuel and to guide further development activities consistent with the missions of the INL and DOE. Due to the highly radioactive nature of the specimen samples that will be prepared and analyzed by the PIE equipment, shielded enclosures are required. The shielded cells will be located in the existing Analytical Laboratory (AL) basement (Rooms B-50 and B-51) at the INL Material and Fuels Complex (MFC). AL Rooms B-50 and B-51 will be modified to establish an area where sample containment and shielding will be provided for the analysis of radioactive fuels and materials while providing adequate protection for personnel and the environment. The area is comprised of three separate shielded cells for PIE instrumentation. Each cell contains an atmosphere interface enclosure (AIE) for contamination containment. The shielding will provide a work area consistent with the as-low-as-reasonably-achievable (ALARA) concept, assuming a source term of 10 samples in each of the three shielded areas. Source strength is assumed to be a maximum of 3 Ci at 0.75 MeV gamma for each sample. Each instrument listed below will be installed in an individual shielded enclosure: Shielded electron probe micro-analyzer (EPMA) Focused ion beam instrument (FIB) Micro-scale x-ray diffractometer (MXRD). The project is designed and expected to be built incrementally as funds are allocated. The initial phase will be to fund the construction activities, which will include facility modifications and construction of one shielded enclosure. Follow-up activities will be to construct two additional shielded enclosures to complete the suite of three separate but connected remote operated examination areas. Equipment purchases are to be capital procurement spread out over several years on a funded schedule. This paper discusses safety and operational considerations given during the conceptual design phase of the project. The paper considers such things as project material at risk (MAR), new processes and equipment, potential hazards, and the major modification evaluation process to determine if a preliminary Documented Safety Analysis (PDSA) is required. As part of that process, an evaluation was made of the potential hazards with the new project compared to the existing and historical work and associated hazards in the affected facility.

Michael A. Lehto, Ph.D.; Boyd D. Christensen

2008-05-01T23:59:59.000Z

208

Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities  

Science Conference Proceedings (OSTI)

In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.

Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

1996-05-01T23:59:59.000Z

209

SPECIFICATIONS AND FABRICATION PROCEDURES FOR APPR-1 CORE II STATIONARY FUEL ELEMENTS  

SciTech Connect

Stainless steel-base fuel components of thin plate-typs construction and containing a dispersion of enriched UO/sub 2/ have been successfully employed in powering the Army package Power Reactor. The stationary fuel compcnent proposed for operation in the second core loading of the reactor is discussed. The component is designed for radioactive service in pressurized water at 4504DEF and consists of eighteen composite fuel plates joined into an Integral unit or assembly by brazing. Design specifications covering the material and dimensional requirements as well as the operating conditions are discussed. Step-by-step procedures developed and utilized in manufacturing the component are presented in detail. (auth)

Cunningham, J.E.; Beaver, R.J.

1958-07-15T23:59:59.000Z

210

Fabrication of Yttria stabilized zirconia thin films on porous substrates for fuel cell applications  

E-Print Network (OSTI)

by the cell (to drive a steam turbine for instance). For50%. Unlike gas and steam turbines, fuel cells do not suffercan be used to run steam turbines. SOFC’s are made from

Leming, Andres

2003-01-01T23:59:59.000Z

211

Monodispersed biocompatible Ag2S nanoparticles: Facile extracellular bio-fabrication using the gamma-proteobacterium, S. oneidensis  

Science Conference Proceedings (OSTI)

Interest in engineered metal and semiconductor nanocrystallites continues to grow due to their unique size and or shape dependent optoelectronic, physicochemical and biological properties. Therefore identifying novel non-hazardous nanoparticle synthesis routes that address hydrophilicity, size and shape control and production costs have become a priority. In the present illustration we report for the first time the efficient generation of extracellular Ag2S nanoparticles by the metal reducing bacterium, Shewanella oneidensis. The particles are nearly monodispersed with homogeneous shape distributions and are produced under ambient temperatures and pressures at high yield, 85 % theoretical maximum. UV-vis and Fourier transform infrared spectroscopy, dynamic light scattering, X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy measurements confirmed the formation, optical properties, purity, and crystallinity of the as-synthesized particles. Further characterization revealed that the particles consist of spheres in the size range of 1-22 nm, with an average size of 9 3 nm and are capped by a detachable protein/peptide surface coat. Toxicity assessments of these silver sulfide nanoparticles on Gram-negative Escherichia coli and Shewanella oneidensis and Gram-positive Bacillus subtilis bacterial systems as well as eukaryotic; mouse lung epithelial (C 10) and macrophage (RAW-264.7) cells showed that the particles were non-inhibitory or non-cytotoxic to both these systems. Our results provide a facile, eco-friendly and economical route for the fabrication of technologically important semiconducting Ag2S nanoparticles which are dispersible and biocompatible; thus providing excellent potential for their uses in optical imaging and electronic devices, and solar cell applications.

Suresh, Anil K [ORNL; Doktycz, Mitchel John [ORNL; Wang, Wei [ORNL; Moon, Ji Won [ORNL; Gu, Baohua [ORNL; Meyer III, Harry M [ORNL; Hensley, Dale K [ORNL; Retterer, Scott T [ORNL; Allison, David P [ORNL; Phelps, Tommy Joe [ORNL; Pelletier, Dale A [ORNL

2011-01-01T23:59:59.000Z

212

Evaluation of the advanced mixed-oxide fuel test FO-2 irradiated in the FFTF (Fast Flux Test Facility)  

SciTech Connect

The advanced mixed-oxide (UO{sub 2}-PuO{sub 2}) test assembly, FO-2, irradiated in the Fast Flux Test Facility (FFTF) is undergoing postirradiation examination. This is one of the first FFTF tests examined that used the advanced ferrite-martensite alloy, HT9, which is highly resistant to irradiation swelling. The FO-2 includes the first annular fueled pins irradiated in FFTF to undergo destructive examination. The FO-2 is a lead assembly for the ongoing FFTF Core Demonstration Experiment (CDE) and was designed to evaluate the effects of fuel design variables, such as pellet density, smeared density, and fuel form (annular or solid fuel), on advanced pin performance. The assembly contains a total of 169 fuel pins of 12 different types. Two L (annular) fuel pins, GF02L04 (FFTF and transient tested) and GF02L09 (FFTF only), were destructively examined. Evaluation of the FO-2 fuel pins and assembly shows the excellent and predictable performance of the mixed-oxide fuels with HT9 structural material. This, combined with the robust behavior of the pins in transient tests, and the continued excellent performance of the CDE indicate this is a superior fuel system for liquid-metal reactors. It offers greatly reduced deformation during irradiation, while maintaining good operating characteristics.

Burley Gilpin, L.L.; Chastain, S.A.; Baker, R.B.

1989-01-01T23:59:59.000Z

213

Review of K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operatioons, August 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

214

Review of K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operatioons, August 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations May 2011 August 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Table of Contents 1.0 Purpose ................................................................................................................................................... 1 2.0 Background ............................................................................................................................................ 1 3.0 Scope ...................................................................................................................................................... 2

215

Quantum Electrical Metrology Division Facilities  

Science Conference Proceedings (OSTI)

Microfabrication Facility Our facilities for fabrication of integrated circuits are essential to nearly all of the work in the Group. ...

2011-10-03T23:59:59.000Z

216

Coated Particle Fuel Development Lab (CPFDL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Coated Particle Fuel Development Lab Coated Particle Fuel Development Lab May 30, 2013 Computer controlled fluidized bed CVD particle coating system The Coated Particle Fuel Development Laboratory is a modern, integrated facility for laboratory scale fabrication and characterization of uranium-bearing coated particle fuel (CPF). Within this facility, tri-isotropic (TRISO) coatings are deposited on various fuel kernels by chemical vapor deposition (CVD), particles are pressed into fuel compacts for irradiation, and state-of-the-art materials property characterization is performed, all under an NQA-1 compliant Quality Assurance program. Current work includes fabrication and characterization of coated particle fuels to support the Next Generation Nuclear Plant, Advanced Small Modular Reactors, Nuclear Thermal Propulsion, and Advanced Light Water Reactor

217

Renovation of CPF (Chemical Processing Facility) for Development of Advanced Fast Reactor Fuel Cycle System  

Science Conference Proceedings (OSTI)

CPF (Chemical Processing Facility) was constructed at Nuclear Fuel Cycle Engineering Laboratories of JAEA (Japan Atomic Energy Agency) in 1980 as a basic research field where spent fuel pins from fast reactor (FR) and high level liquid waste can be dealt with. The renovation consists of remodeling of the CA-3 cell and the laboratory A, installation of globe boxes, hoods and analytical equipments to the laboratory C and the analytical laboratory. Also maintenance equipments in the CA-5 cell which had been out of order were repaired. The CA-3 cell is the main cell in which important equipments such as a dissolver, a clarifier and extractors are installed for carrying out the hot test using the irradiated FR fuel. Since the CPF had specialized originally in the research function for the Purex process, it was desired to execute the research and development of such new, various reprocessing processes. Formerly, equipments were arranged in wide space and connected with not only each other but also with utility supply system mainly by fixed stainless steel pipes. It caused shortage of operation space in flexibility for basic experimental study. Old equipments in the CA-3 cell including vessels and pipes were removed after successful decontamination, and new equipments were installed conformably to the new design. For the purpose of easy installation and rearranging the experimental equipments, equipments are basically connected by flexible pipes. Since dissolver is able to be easily replaced, various dissolution experiments is conducted. Insoluble residue generated by dissolution of spent fuel is clarified by centrifugal. This small apparatus is effective to space-saving. Mini mixer settlers or centrifugal contactors are put on to the prescribed limited space in front of the backside wall. Fresh reagents such as solvent, scrubbing and stripping solution are continuously fed from the laboratory A to the extractor by the reagent supply system with semi-automatic observation system. The in-cell crane in CA-5 was renovated to increase driving efficiency. At the renovation for the in-cell crane, full scale mockup test and 3D simulation test had been executed in advance. After the renovation, hot tests in the CPF had been resumed from JFY 2002. New equipments such as dissolver, extractor, electrolytic device, etc. were installed in CA-3 conformably to the new design laid out in order to ensure the function and space. Glove boxes in the analysis laboratory were renewed in order to let it have flexibility from the viewpoint of conducting basic experiments (ex. U crystallization). Glove boxes and hoods were newly installed in the laboratory A for basic research and analysis, especially on MA chemistries. One laboratory (the laboratory C) was established to research about dry reprocessing. The renovation of the CPF has been executed in order to contribute to the development on the advanced fast reactor fuel cycle system, which will give us many sort of technical subject and experimental theme to be solved in the 2. Generation of the CPF.

Shinichi Aose; Takafumi Kitajima; Kouji Ogasawara; Kazunori Nomura; Shigehiko Miyachi; Yoshiaki Ichige; Tadahiro Shinozaki; Shinichi Ohuchi [Japan Atomic Energy Agency:4-33, Tokai-mura, Naka-gun, Ibaraki pref, 319-1194 (Japan)

2008-01-15T23:59:59.000Z

218

Safety classification of systems 300 area N reactor fuel supply facilities  

Science Conference Proceedings (OSTI)

Classification of the Fuel Supply Shutdown (FSS) safety systems, equipment, and components is presented.

Benecke, M.W., Westinghouse Hanford, Richland, WA

1997-10-10T23:59:59.000Z

219

CONVERSION OF RUSSIAN WEAPON-GRADE PLUTONIUM INTO OXIDE FOR MIXED OXIDE (MOX) FUEL FABRICATION.  

SciTech Connect

Progress has been made in the Russian Federation towards the conversion of weapons-grade plutonium (w-Pu) into plutonium oxide (PuO{sub 2}) suitable for further manufacture into mixed oxide (MOX) fuels. This program is funded both by French Commissariat x 1'Energie Atomique (CEA) and the US National Nuclear Security Administration (NNSA). The French program was started as a way to make available their expertise gained from manufacturing MOX fuel. The US program was started in 1998 in response to US proliferation concerns and the acknowledged international need to decrease available w-Pu. Russia has selected both the conversion process and the manufacturing site. This paper discusses the present state of development towards fulfilling this mission: the demonstration plant designed to process small amounts of Pu and validate all process stages and the industrial plant that will process up to 5 metric tons of Pu per year.

Glagovski, E.; Kolotilov, Y.; Glagolenko, Y.; Zygmunt, Stanley J.; Mason, C. F. V. (Caroline F. V.); Hahn, W. K. (Wendy K.); Durrer, R. E. (Russell E.); Thomas, S.; Sicard, B.; Herlet, N.; Fraize, G.; Villa, A.

2001-01-01T23:59:59.000Z

220

Fabrication of Yttria stabilized zirconia thin films on poroussubstrates for fuel cell applications  

DOE Green Energy (OSTI)

A process for the deposition of yttria stabilized zirconia (YSZ) films, on porous substrates, has been developed. These films have possible applications as electrolyte membranes in fuel cells. The films were deposited from colloidal suspensions through the vacuum infiltration technique. Films were deposited on both fully sintered and partially sintered substrates. A critical cracking thickness for the films was identified and strategies are presented to overcome this barrier. Green film density was also examined, and a method for improving green density by changing suspension pH and surfactant was developed. A dependence of film density on film thickness was observed, and materials interactions are suggested as a possible cause. Non-shorted YSZ films were obtained on co-fired substrates, and a cathode supported solid oxide fuel cell was constructed and characterized.

Leming, Andres

2003-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CERAMIC FUEL ELEMENT MATERIAL FOR A NEUTRONIC REACTOR AND METHOD OF FABRICATING SAME  

DOE Patents (OSTI)

This patent relates to ceramic composition, and to neutronic reactor fuel elements formed therefrom. These ceramic elements have high density and excellent strength characteristics and are formed by conventional ceramic casting and sintering at a temperature of about 2700 deg F in a nitrogen atmosphere. The composition consists of silicon carbide, silicon, uranium oxide and a very small percentage of molybdenum. Compositions containing molybdenum are markedly stronger than those lacking this ingredient.

Duckworth, W.H.

1957-12-01T23:59:59.000Z

222

50 kW PEM Fuel Cell System Design, Fabrication, and Test: System Design -- Final Report  

Science Conference Proceedings (OSTI)

This final report describes the results of a development program funded jointly by the U.S. Department of Energy, Arthur D. Little, and EPRIsolutions. The effort was aimed at the conceptual design and optimization of a 50 kW commercial power system, using advanced proton exchange (or polymer electrolyte) membrane fuel cell (PEMFC) technology and the verification of key design parameters. (Note: This design effort addresses some of the key technical issues faced by the developers of commercial-scale PEMFC...

2000-12-11T23:59:59.000Z

223

Energy Systems Fabrication Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems Fabrication Laboratory at the Energy Systems Integration Facility. The Energy Systems Fabrication Laboratory at NREL's Energy Systems Integration Facility (ESIF) manufactures components for fuel cells and electrochemical cells using a variety of manufacturing techniques. Fabricated components include catalysts, thin-film and gas diffusion electrodes, and membrane electrode assemblies (MEAs). The laboratory supports NREL's fuel cell and electrochemical cell related research. The main focus of the laboratory is to provide support for fuel cell research that is performed in adjacent laboratories. The laboratory enables NREL to manufacture fuel cells in-house using, for example, experimental catalyst developed at NREL. It further enables the creation of MEAs containing artificial defects required for the systematic study of performance and lifetime effects and the evaluation of in-house and externally developed quality control diagnostics for high volume production of fuel cell. Experiments performed in the laboratory focus mainly on the development of alternative fuel cell manufacturing methods.

Not Available

2011-10-01T23:59:59.000Z

224

Letter from Nuclear Energy Institute regarding Integrated Safety Analysis: Why it is Appropropriate for Fuel Recycling Facilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

082 l F: 202.533.0166 l rxm@nei.org l www.nei.org 082 l F: 202.533.0166 l rxm@nei.org l www.nei.org Rod McCullum DIRECTOR FUEL CYCLE PROJECTS NUCLEAR GENERATION DIVISION September 10, 2010 Ms. Catherine Haney Director Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001 Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689 Dear Ms. Haney: Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is intended as an information source for the NRC and should serve as a foundation for discussion with industry representatives on the issue.

225

Hot Isostatic Press Manufacturing Process Development for Fabrication of RERTR Monolithic Fuel Plates  

SciTech Connect

We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bonding interface.

Crapps, Justin M. [Los Alamos National Laboratory; Clarke, Kester D. [Los Alamos National Laboratory; Katz, Joel D. [Los Alamos National Laboratory; Alexander, David J. [Los Alamos National Laboratory; Aikin, Beverly [Los Alamos National Laboratory; Vargas, Victor D. [Los Alamos National Laboratory; Montalvo, Joel D. [Los Alamos National Laboratory; Dombrowski, David E. [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory

2012-06-06T23:59:59.000Z

226

Method of fabricating a monolithic core for a solid oxide fuel cell  

DOE Patents (OSTI)

A method is disclosed for forming a core for use in a solid oxide fuel cell that electrochemically combines fuel and oxidant for generating galvanic output. The core has an array of electrolyte and interconnect walls that are substantially devoid of any composite inert materials for support consisting instead only of the active anode, cathode, electrolyte and interconnect materials. Each electrolyte wall consists of cathode and anode materials sandwiching electrolyte material therebetween, and each interconnect wall consists of the cathode and anode materials sandwiching interconnect material therebetween. The electrolyte and interconnect walls define a plurality of substantially parallel core passageways alternately having respectively the inside faces thereof with only the anode material or with only the cathode material exposed. In the wall structure, the electrolyte and interconnect materials are only 0.002-0.01 cm thick; and the cathode and anode materials are only 0.002-0.05 cm thick. The method consists of building up the electrolyte and interconnect walls by depositing each material on individually and endwise of the wall itself, where each material deposit is sequentially applied for one cycle; and where the depositing cycle is repeated many times until the material buildup is sufficient to formulate the core. The core is heat cured to become dimensionally and structurally stable.

Zwick, Stanley A. (Woodridge, IL); Ackerman, John P. (Downers Grove, IL)

1985-01-01T23:59:59.000Z

227

Method of Fabrication of High Power Density Solid Oxide Fuel Cells  

DOE Patents (OSTI)

A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

2008-09-09T23:59:59.000Z

228

Integral gas seal for fuel cell gas distribution assemblies and method of fabrication  

DOE Patents (OSTI)

A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

Dettling, Charles J. (E. Hanover, NJ); Terry, Peter L. (Chatham Township, Morris County, NJ)

1985-03-19T23:59:59.000Z

229

Method of fabricating an integral gas seal for fuel cell gas distribution assemblies  

DOE Patents (OSTI)

A porous gas distribution plate assembly for a fuel cell, such as a bipolar assembly, includes an inner impervious region wherein the bipolar assembly has good surface porosity but no through-plane porosity and wherein electrical conductivity through the impervious region is maintained. A hot-pressing process for forming the bipolar assembly includes placing a layer of thermoplastic sealant material between a pair of porous, electrically conductive plates, applying pressure to the assembly at elevated temperature, and allowing the assembly to cool before removing the pressure whereby the layer of sealant material is melted and diffused into the porous plates to form an impervious bond along a common interface between the plates holding the porous plates together. The distribution of sealant within the pores along the surface of the plates provides an effective barrier at their common interface against through-plane transmission of gas.

Dettling, Charles J. (E. Hanover, NJ); Terry, Peter L. (Chathum, NJ)

1988-03-22T23:59:59.000Z

230

SPS Fabrication of Tungsten-Rhenium Alloys in Support of NTR Fuels Development  

SciTech Connect

Abstract. Tungsten metal slugs were fabricated via Spark Plasma Sintering (SPS) of powdered metals at temperatures ranging from 1575 K to 1975 K and hold times of 5 minutes to 30 minutes, using powders with an average diameter of 7.8 ?m. Sintered tungsten specimens were found to have relative densities ranging from 83 % to 94 % of the theoretical density for tungsten. Consolidated specimens were also tested for their Vickers Hardness Number (VHN), which was fitted as a function of relative density; the fully consolidated VHN was extrapolated to be 381.45 kg/mm2. Concurrently, tungsten and rhenium powders with average respective diameters of 0.5 ?m and 13.3 ?m were pre-processed either by High-Energy-Ball-Milling (HEBM) or by homogeneous mixing to yield W-25at.%Re mixtures. The powder batches were sintered at temperatures of 1975 K and 2175 K for hold times ranging from 0 minutes to 60 minutes yielding relative densities ranging from 94% to 97%. The combination of HEBM and sintering showed a significant decrease in the inter-metallic phases compared to that of the homogenous mixing and sintering.

Jonathan A. Webb; Indrajit Charit; Cory Sparks; Darryl P. Butt; Megan Frary; Mark Carroll

2011-02-01T23:59:59.000Z

231

AFIP-6 Fabrication Summary Report  

SciTech Connect

The AFIP-6 (ATR Full-size plate In center flux trap Position) experiment was designed to evaluate the performance of monolithic fuels at a scale prototypic of research reactor fuel plates. Two qualified fueled plates were fabricated for the AFIP-6 experiment; to be irradiated in the INL Advanced Test Reactor (ATR). This report provides details of the fuel fabrication efforts, including material selection, fabrication processes, and fuel plate qualification.

Glenn A. Moore; M. Craig Marshall

2011-09-01T23:59:59.000Z

232

Facile fabrication of sodium Titanate nanostructures using metatitanic acid (TiO2 ? H2O) and its adsorption property  

Science Conference Proceedings (OSTI)

Fluffy sodium titanate nanostructures have been fabricated by a simple hydrothermal method with metatitanic acid as precursor. The obtained nanostructures exhibit as the aggregation of nanosheets, and the surface area of the nanostructure is about 110.59m2/g. ...

Gang Li; Lide Zhang; Ming Fang

2012-01-01T23:59:59.000Z

233

Development and transfer of fuel fabrication and utilization technology for research reactors  

SciTech Connect

Approximately 300 research reactors supplied with US-enriched uranium are currently in operation in about 40 countries, with a variety of types, sizes, experiment capabilities and applications. Despite the usefulness and popularity of research reactors, relatively few innovations in their core design have been made in the last fifteen years. The main reason can be better understood by reviewing briefly the history of research reactor fuel technology and enrichment levels. Stringent requirements on the enrichment of the uranium to be used in research reactors were considered and a program was launched to assist research reactors in continuing their operation with the new requirements and with minimum penalties. The goal of the new program, the Reduced Enrichment Research and Test Reactor (RERTR) Program, is to develop the technical means to utilize LEU instead of HEU in research reactors without significant penalties in experiment performance, operating costs, reactor modifications, and safety characteristics. This paper reviews briefly the RERTR Program activities with special emphasis on the technology transfer aspects of interest to this conference.

Travelli, A.; Domagala, R.F.; Matos, J.E.; Snelgrove, J.L.

1982-01-01T23:59:59.000Z

234

Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria  

SciTech Connect

The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

K. J. Allen; T. G. Apostolov; I. S. Dimitrov

2009-03-01T23:59:59.000Z

235

Reliability Engineering Approach to Probabilistic Proliferation Resistance Analysis of the Example Sodium Fast Reactor Fuel Cycle Facility  

E-Print Network (OSTI)

International Atomic Energy Agency (IAEA) safeguards are one method of proliferation resistance which is applied at most nuclear facilities worldwide. IAEA safeguards act to prevent the diversion of nuclear materials from a facility through the deterrence of detection. However, even with IAEA safeguards present at a facility, the country where the facility is located may still attempt to proliferate nuclear material by exploiting weaknesses in the safeguards system. The IAEA's mission is to detect the diversion of nuclear materials as soon as possible and ideally before it can be weaponized. Modern IAEA safeguards utilize unattended monitoring systems (UMS) to perform nuclear material accountancy and maintain the continuity of knowledge with regards to the position of nuclear material at a facility. This research focuses on evaluating the reliability of unattended monitoring systems and integrating the probabilistic failure of these systems into the comprehensive probabilistic proliferation resistance model of a facility. To accomplish this, this research applies reliability engineering analysis methods to probabilistic proliferation resistance modeling. This approach is demonstrated through the analysis of a safeguards design for the Example Sodium Fast Reactor Fuel Cycle Facility (ESFR FCF). The ESFR FCF UMS were analyzed to demonstrate the analysis and design processes that an analyst or designer would go through when evaluating/designing the proliferation resistance component of a safeguards system. When comparing the mean time to failure (MTTF) for the system without redundancies versus one with redundancies, it is apparent that redundancies are necessary to achieve a design without routine failures. A reliability engineering approach to probabilistic safeguards system analysis and design can be used to reach meaningful conclusions regarding the proliferation resistance of a UMS. The methods developed in this research provide analysts and designers alike a process to follow to evaluate the reliability of a UMS.

Cronholm, Lillian Marie

2011-08-01T23:59:59.000Z

236

Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume III. Resources and fuel cycle facilities  

SciTech Connect

Volume III explores resources and fuel cycle facilities. Chapters are devoted to: estimates of US uranium resources and supply; comparison of US uranium demands with US production capability forecasts; estimates of foreign uranium resources and supply; comparison of foreign uranium demands with foreign production capability forecasts; and world supply and demand for other resources and fuel cycle services. An appendix gives uranium, fissile material, and separative work requirements for selected reactors and fuel cycles.

1979-12-01T23:59:59.000Z

237

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production  

E-Print Network (OSTI)

Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio Committee Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported

Victoria, University of

238

Alternative Fuels Data Center: Agriculturally-Derived Fuel Production  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Derived Derived Fuel Production Facility Loan Guarantees to someone by E-mail Share Alternative Fuels Data Center: Agriculturally-Derived Fuel Production Facility Loan Guarantees on Facebook Tweet about Alternative Fuels Data Center: Agriculturally-Derived Fuel Production Facility Loan Guarantees on Twitter Bookmark Alternative Fuels Data Center: Agriculturally-Derived Fuel Production Facility Loan Guarantees on Google Bookmark Alternative Fuels Data Center: Agriculturally-Derived Fuel Production Facility Loan Guarantees on Delicious Rank Alternative Fuels Data Center: Agriculturally-Derived Fuel Production Facility Loan Guarantees on Digg Find More places to share Alternative Fuels Data Center: Agriculturally-Derived Fuel Production Facility Loan Guarantees on AddThis.com...

239

Advanced Safeguards Approaches for New Reprocessing Facilities  

Science Conference Proceedings (OSTI)

U.S. efforts to promote the international expansion of nuclear energy through the Global Nuclear Energy Partnership (GNEP) will result in a dramatic expansion of nuclear fuel cycle facilities in the United States. New demonstration facilities, such as the Advanced Fuel Cycle Facility (AFCF), the Advanced Burner Reactor (ABR), and the Consolidated Fuel Treatment Center (CFTC) will use advanced nuclear and chemical process technologies that must incorporate increased proliferation resistance to enhance nuclear safeguards. The ASA-100 Project, “Advanced Safeguards Approaches for New Nuclear Fuel Cycle Facilities,” commissioned by the NA-243 Office of NNSA, has been tasked with reviewing and developing advanced safeguards approaches for these demonstration facilities. Because one goal of GNEP is developing and sharing proliferation-resistant nuclear technology and services with partner nations, the safeguards approaches considered are consistent with international safeguards as currently implemented by the International Atomic Energy Agency (IAEA). This first report reviews possible safeguards approaches for the new fuel reprocessing processes to be deployed at the AFCF and CFTC facilities. Similar analyses addressing the ABR and transuranic (TRU) fuel fabrication lines at AFCF and CFTC will be presented in subsequent reports.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Richard; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-06-24T23:59:59.000Z

240

Preparations for the Integral Fast Reactor fuel cycle demonstration  

Science Conference Proceedings (OSTI)

Modifications to the Hot Fuel Examination Facility-South (HFEF/S) have been in progress since mid-1988 to ready the facility for demonstration of the unique Integral Fast Reactor (IFR) pyroprocess fuel cycle. This paper updates the last report on this subject to the American Nuclear Society and describes the progress made in the modifications to the facility and in fabrication of the new process equipment. The IFR is a breeder reactor, which is central to the capability of any reactor concept to contribute to mitigation of environmental impacts of fossil fuel combustion. As a fast breeder, fuel of course must be recycled in order to have any chance of an economical fuel cycle. The pyroprocess fuel cycle, relying on a metal alloy reactor fuel rather than oxide, has the potential to be economical even at small-scale deployment. Establishing this quantitatively is one important goal of the IFR fuel cycle demonstration.

Lineberry, M.J.; Phipps, R.D.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

(1) Facility Name: (7) Business Name: (2) Brand of Fuel: (8) Mailing Address  

E-Print Network (OSTI)

Tank Capacity (Gallons) Midgrade Gasoline (89 Octane) Product (13) Annual Sales Volume (Gallons) (14 (Explain): Bio-Diesel (B-20) Compressed Natural Gas (CNG) Commercial Jet Fuel (18) Propane Finished

242

Ignition Capsules with Aerogel-Supported Liquid DT Fuel For The National Ignition Facility  

SciTech Connect

For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to {beta}-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65-75% at peak velocity. A scan (in ablator and fuel thickness parameter space) is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

Ho, D D; Salmonson, J D; Clark, D S; Lindl, J D; Haan, S W; Amendt, P; Wu, K J

2011-10-25T23:59:59.000Z

243

On selection and operation of an international interim storage facility for spent nuclear fuel  

E-Print Network (OSTI)

Disposal of post-irradiation fuel from nuclear reactors has been an issue for the nuclear industry for many years. Most countries currently have no long-term disposal strategy in place. Therefore, the concept of an ...

Burns, Joe, 1966-

2004-01-01T23:59:59.000Z

244

Spent nuclear fuel project cold vacuum drying facility supporting data and calculation database  

Science Conference Proceedings (OSTI)

This document provides a database of supporting calculations for the Cold Vacuum Drying Facility (CVDF). The database was developed in conjunction with HNF-SD-SNF-SAR-002, ''Safety Analysis Report for the Cold Vacuum Drying Facility'', Phase 2, ''Supporting Installation of Processing Systems'' (Garvin 1998). The HNF-SD-SNF-DRD-002, 1997, ''Cold Vacuum Drying Facility Design Requirements'', Rev. 2, and the CVDF Summary Design Report. The database contains calculation report entries for all process, safety and facility systems in the CVDF, a general CVD operations sequence and the CVDF System Design Descriptions (SDDs). This database has been developed for the SNFP CVDF Engineering Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

IRWIN, J.J.

1999-02-26T23:59:59.000Z

245

NREL: Biomass Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities At NREL's state-of-the-art biomass research facilities, researchers design and optimize processes to convert renewable biomass feedstocks into transportation fuels and...

246

Post-Irradiation Examination of AREVA M5 Guide Tubes and Fuel Rods Irradiated in North Anna 1 and 2  

Science Conference Proceedings (OSTI)

This report describes the hot cell examination of guide tubes and fuel rods fabricated with the advanced M5 alloy and irradiated in North Anna Units 1 and 2 to exposures beyond current fuel licensing limits. Collecting the relevant data required detailed poolside and hot cell examinations, which entailed outage coordination and shipment of irradiated fuel and components to multiple facilities.

2009-03-31T23:59:59.000Z

247

Spent Fuel Background Report Volume II  

Science Conference Proceedings (OSTI)

This Volume II contains tables that describe DOE fuel storage facilities and the fuel contained in those facilities.

Abbott, D.

1994-03-01T23:59:59.000Z

248

Design, fabrication and operation of a biomass fermentation facility. Technical progress report No. 2, January 1-March 31, 1979  

DOE Green Energy (OSTI)

The conceptual design for a three oven-dry ton per day biomass fermentation facility is presented. Based on a detailed evaluation of emerging technologies and improved modifications of current technology, a mainstream process and optional unit operation and sub-systems have been selected which offer the greatest probability of success for an economic and technically feasible process for production of ethanol from lignocellulosic biomass (hardwoods, wheat straw, corn stover, etc.). The design is intentionally flexible as stipulated in the contractual objectives. Recommendations of equipment is premised on its versatility for multi-functional application, thus enabling investigation to assess a number of process configurations while adhering to a cost-effective capital investment in the process development unit. A specific criterion in selection has been to facilitate the generation of engineering data based on the application of the results of research contractors of the US Department of Energy. The design for a total system includes the facility for evaluation of three pretreatment options, for isolation of by-product streams, for evaluation of acid and enzymatic hydrolysis, sugar concentration, alternative fermentation technologies and alcohol recovery for production of absolute ethanol. In order to maintain capital costs for the PDU within reasonable limits monitoring of by-product streams will be undertaken and, for unit operation with high potential (such as membrane concentration of ethanol) but which are in early stages of development smaller-scale equipment and/or plumbing taps for late addition of full-scale (i.e., PDU-scale) equipment is recommended. The rationale, and process economics, upon which the recommendations are based is detailed, as is a study of biomass feedstock availability.

O'Neil, D.J.; Colcord, A.R.; Bery, M.K.

1979-04-01T23:59:59.000Z

249

Author's personal copy Cost analysis of the US spent nuclear fuel reprocessing facility  

E-Print Network (OSTI)

Types of Nuclear Facilities, from 2001 to 2050 62 Figure 13. Decommissioning Schedule of Power PlantsThe Potential for a Nuclear Renaissance: The Development of Nuclear Power Under Climate Change to the Engineering Systems Division and the Department of Nuclear Science and Engineering in Partial Fulfillment

Deinert, Mark

250

Monitoring, Controlling and Safeguarding Radiochemical Streams at Spent Fuel Reprocessing Facilities with Optical and Gamma-Ray Spectroscopic Methods  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-useable nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resourceintensive destructive assay (DA). Leveraging new on-line non-destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies based upon gamma-ray and optical spectroscopic measurements to potentially reduce the time and resource burden associated with current techniques. The Multi-Isotope Process (MIP) Monitor uses gamma spectroscopy and multivariate analysis to identify offnormal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major stable flowsheet reagents using UV-Vis, Near IR and Raman spectroscopy. Multi-variate analysis is also applied to the optical measurements in order to quantify concentrations of analytes of interest within a complex array of radiochemical streams. This paper will provide an overview of these methods and reports on-going efforts to develop and demonstrate the technologies.

Schwantes, Jon M.; Bryan, Samuel A.; Orton, Christopher R.; Levitskaia, Tatiana G.; Fraga, Carlos G.

2012-11-06T23:59:59.000Z

251

High-temperature Chemical Compatibility of As-fabricated TRIGA Fuel and Type 304 Stainless Steel Cladding  

SciTech Connect

Chemical interaction between TRIGA fuel and Type-304 stainless steel cladding at relatively high temperatures is of interest from the point of view of understanding fuel behavior during different TRIGA reactor transient scenarios. Since TRIGA fuel comes into close contact with the cladding during irradiation, there is an opportunity for interdiffusion between the U in the fuel and the Fe in the cladding to form an interaction zone that contains U-Fe phases. Based on the equilibrium U-Fe phase diagram, a eutectic can develop at a composition between the U6Fe and UFe2 phases. This eutectic composition can become a liquid at around 725°C. From the standpoint of safe operation of TRIGA fuel, it is of interest to develop better understanding of how a phase with this composition may develop in irradiated TRIGA fuel at relatively high temperatures. One technique for investigating the development of a eutectic phase at the fuel/cladding interface is to perform out-of-pile diffusion-couple experiments at relatively high temperatures. This information is most relevant for lightly irradiated fuel that just starts to touch the cladding due to fuel swelling. Similar testing using fuel irradiated to different fission densities should be tested in a similar fashion to generate data more relevant to more heavily irradiated fuel. This report describes the results for TRIGA fuel/Type-304 stainless steel diffusion couples that were annealed for one hour at 730 and 800°C. Scanning electron microscopy with energy- and wavelength-dispersive spectroscopy was employed to characterize the fuel/cladding interface for each diffusion couple to look for evidence of any chemical interaction. Overall, negligible fuel/cladding interaction was observed for each diffusion couple.

Dennis D. Keiser, Jr.; Jan-Fong Jue; Eric Woolstenhulme; Kurt Terrani; Glenn A. Moore

2012-09-01T23:59:59.000Z

252

System Design Description and Requirements for Modeling the Off-Gas Systems for Fuel Recycling Facilities  

Science Conference Proceedings (OSTI)

This document provides descriptions of the off-gases evolved during spent nuclear fuel processing and the systems used to capture the gases of concern. Two reprocessing techniques are discussed, namely aqueous separations and electrochemical (pyrochemical) processing. The unit operations associated with each process are described in enough detail so that computer models to mimic their behavior can be developed. The document also lists the general requirements for the desired computer models.

Daryl R. Haefner; Jack D. Law; Troy J. Tranter

2010-08-01T23:59:59.000Z

253

The D9-4 experiment: Improving on the fast flux test facility driver pin  

SciTech Connect

The driver fuel system for the fast Flux Test Facility (FFTF) has proven to be a very robust and reliable spectrum liquid-metal reactor. A series of fuel assembly tests, has now been completed that incorporate unique improvements to extend the lifetime of the driver fuel design to increase the ease of fabrication, and to increase the breeding potential. The D9-4 test was a high-exposure fuel assembly in this series, and detailed examinations of this test have been completed. Commonalities with the standard FFTF driver fuel included dimensions and the use of uranium/plutonium mixed-oxide pellet fuel.

Chastain, S.A. (Westinghouse Hanford Company, Richland, WA (United States))

1993-01-01T23:59:59.000Z

254

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Emory S. De Castro BASF Fuel Cell, Inc. 39 Veronica Avenue Somerset, NJ 08873 Phone: (732) 545-5100 ext 4114 Email: Emory.DeCastro@BASF.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0000384 Subcontractor: Dr. Vladimir Gurau Case Western Reserve University, Cleveland, Ohio Project Start Date: July 1, 2009 Project End Date: June 30, 2013 Fiscal Year (FY) 2012 Objectives Reduce cost in fabricating gas diffusion electrodes * through the introduction of high speed coating technology, with a focus on materials used for the high- temperature membrane electrode assemblies (MEAs)

255

New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities  

Science Conference Proceedings (OSTI)

An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

Brim, Cornelia P.

2013-03-04T23:59:59.000Z

256

Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels  

SciTech Connect

The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C. [Joint Inst. for Power and Nuclear Research-Sosny, 99 Academician A.K.Krasin Str, Minsk 220109 (Belarus)

2012-07-01T23:59:59.000Z

257

Report on emergency electrical power supply systems for nuclear fuel cycle and reactor facilities security systems  

SciTech Connect

The report includes information that will be useful to those responsible for the planning, design and implementation of emergency electric power systems for physical security and special nuclear materials accountability systems. Basic considerations for establishing the system requirements for emergency electric power for security and accountability operations are presented. Methods of supplying emergency power that are available at present and methods predicted to be available in the future are discussed. The characteristics of capacity, cost, safety, reliability and environmental and physical facility considerations of emergency electric power techniques are presented. The report includes basic considerations for the development of a system concept and the preparation of a detailed system design.

1977-01-01T23:59:59.000Z

258

Plutonium production story at the Hanford site: processes and facilities history  

SciTech Connect

This document tells the history of the actual plutonium production process at the Hanford Site. It contains five major sections: Fuel Fabrication Processes, Irradiation of Nuclear Fuel, Spent Fuel Handling, Radiochemical Reprocessing of Irradiated Fuel, and Plutonium Finishing Operations. Within each section the story of the earliest operations is told, along with changes over time until the end of operations. Chemical and physical processes are described, along with the facilities where these processes were carried out. This document is a processes and facilities history. It does not deal with the waste products of plutonium production.

Gerber, M.S., Westinghouse Hanford

1996-06-20T23:59:59.000Z

259

Review of monitoring instruments for transuranics in fuel fabrication and reprocessing plants. A progress report to the physical and technological programs, Division of Biomedical and Environmental Research, U. S. Energy Research and Development Administration  

SciTech Connect

A comprehensive review of the monitoring instruments for transuranic elements released from nuclear fuel fabrication and reprocessing plants has been compiled. The extent of routine operational releases has been reviewed for the light water reactor (LWR) fuel cycle (including plutonium recycle), the breeder reactor fuel cycle, and the high-temperature gas cooled reactor (HTGR) fuel cycle. The stack monitoring instrumentation presently in use at the various fabrication and reprocessing plants around the country is discussed. Sampling difficulties and the effectiveness of the entire sampling system are reviewed, as are the measurement problems for alpha-emitting, long-lived, transuranic aerosols, /sup 129/I, /sup 106/Ru, and tritium oxide. The potential problems in the HTGR fuel cycle such as the measurement of releases of alpha-emitting aerosols and of gaseous releases of /sup 220/Rn and /sup 14/C are also considered.

Kordas, J.F.; Phelps, P.L.

1976-11-16T23:59:59.000Z

260

Environmentally based siting assessment for synthetic-liquid-fuels facilities. Final report  

DOE Green Energy (OSTI)

A detailed assessment of the major environmental constraints to siting a synthetic fuels industry and the results of that assessment are used to determine on a regional basis the potential for development of such an industry with minimal environmental conflicts. Secondly, the ability to mitigate some of the constraining impacts through alternative institutional arrangements, especially in areas that are judged to have a low development potential is also assessed. Limitations of the study are delineated, but specifically, the study is limited geographically to well-defined boundaries that include the prime coal and oil shale resource areas. The critical factors used in developing the framework are air quality, water availability, socioeconomic capacity, ecological sensitivity, environmental health, and the management of Federally owned lands. (MCW)

None

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DESIGN OF MTR FUEL-ELEMENT-SOURCE SHIPPING CASK FOR RAILWAY MOBILE IRRADIATION FACILITY. Progress Report  

SciTech Connect

The gamma -radiation field from a battery of 10 MTR spent fuel elements was calculated and a special shipping cask designed to contain the 10 elements. An internal watercooled tank in the cask holds the 10 elements in the vertical position. Two external air-cooled, finned-tube heat exchangers control the water temperature. The sides of the cask open to convert the cask to a radiation source without changing the position of the elements. A unique feature of the design is a device for closing the sides of the cask by gravity in the event of accident or power failure. This provides a ''fail-safe'' safety feature. (auth)

Brownell, L.E.; Patterson, J.; Purohit, S.N.

1957-09-01T23:59:59.000Z

262

A rational minor actinide (MA) recycling concept based on innovative oxide fuel with high AM content  

Science Conference Proceedings (OSTI)

A rational MA recycle concept based on high Am content fuel has been proposed. A design study of an Am- MOX fabrication plant, which is a key facility for the MA recycle concept, has been done and the facility concept was clarified from the viewpoint of basic process viability. Preliminary cost estimation suggested that the total construction cost of the MA recycle facilities including Am-MOX, Np-MOX and MA recovery could be comparable with that of the large scale LWR-MOX fabrication plant required for plutonium in LWR fuel cycle. (authors)

Tanaka, Kenya; Sato, Isamu; Ishii, Tetsuya; Yoshimochi, Hiroshi; Asaga, Takeo [Japan Atomic Energy Agency, 4002 Narita-cho, O-arai-machi, Higasiibaraki-gun, Ibaraki-ken, 311-1393 (Japan); Kurosaki, Ken [Osaka University, 2-1 Yamadaoka, Suita-shi, Osaka 565-0871 (Japan)

2007-07-01T23:59:59.000Z

263

U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen - Facility Locations and Hydrogen Storage/Delivery Logistics  

NLE Websites -- All DOE Office Websites (Extended Search)

US Army Corps US Army Corps of Engineers ® Engineer Research and Development Center U.S. Army Energy and Environmental Requirements and Goals: Opportunities for Fuel Cells and Hydrogen Facility Locations and Hydrogen Storage/Delivery Logistics Nicholas M. Josefik 217-373-4436 N-josefik@cecer.army.mil www.dodfuelcell.com Franklin H. Holcomb Project Leader, Fuel Cell Team 27 OCT 08 Distributed Generation H 2 Generation & Storage Material Handling H2 Vehicles 2 US Army Corps of Engineers ® Engineer Research and Development Center Presentation Outline * DoD Energy Use * Federal Facilities Goals and Requirements * Federal Vehicles and Fuel Goals * Opportunities & Conclusions 3 US Army Corps of Engineers ® Engineer Research and Development Center Where Does the Energy Go? * Tactical and Combat Vehicles (Jets,

264

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologie...  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption of Fuel Cell Technologies Federal Facilities Guide Read Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers for step-by-step guidance...

265

Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties  

Science Conference Proceedings (OSTI)

This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank.

Dayem, H.A.; Ostenak, C.A.; Gutmacher, R.G.; Kern, E.A.; Markin, J.T.; Martinez, D.P.; Thomas, C.C. Jr.

1982-07-01T23:59:59.000Z

266

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

267

Conceptual design for a receiving station for the nondestructive assay of PuO/sub 2/ at the fuels and materials examination facility  

Science Conference Proceedings (OSTI)

We propose a conceptual design for a receiving station for input accountability measurements on PuO/sub 2/ received at the Fuels and Materials Examination Facility at the Hanford Engineering Development Laboratory. Nondestructive assay techniques are proposed, including neutron coincidence counting, calorimetry, and isotopic determination by gamma-ray spectroscopy, in a versatile data acquisition system to perform input accountability measurements with precisions better than 1% at throughputs of up to 2 M.T./yr of PuO/sub 2/.

Sampson, T.E.; Speir, L.G.; Ensslin, N.; Hsue, S.T.; Johnson, S.S.; Bourret, S.; Parker, J.L.

1981-11-01T23:59:59.000Z

268

Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)  

SciTech Connect

The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

Jon Carmack (062056); Kemal O. Pasamehmetoglu (103171); David Alberstein

2008-02-01T23:59:59.000Z

269

U.S. Environmental Protection Agency Clear Air Act notice of construction for the spent nuclear fuel project - Cold Vaccum Drying Facility, project W-441  

Science Conference Proceedings (OSTI)

This document provides information regarding the source and the estimated quantity of potential airborne radionuclide emissions resulting from the operation of the Cold Vacuum Drying (CVD) Facility. The construction of the CVD Facility is scheduled to commence on or about December 1996, and will be completed when the process begins operation. This document serves as a Notice of Construction (NOC) pursuant to the requirements of 40 Code of Federal Regulations (CFR) 61 for the CVD Facility. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters, while the SNF in the K East Basin is in open canisters, which allow release of corrosion products to the K East Basin water. Storage of the current inventory in the K Basins was originally intended to be on an as-needed basis to sustain operation of the N Reactor while the Plutonium-Uranium Extraction (PUREX) Plant was refurbished and restarted. The decision in December 1992 to deactivate the PURF-X Plant left approximately 2,100 MT (2,300 tons) of uranium as part of the N Reactor SNF in the K Basins with no means for near-term removal and processing. The CVD Facility will be constructed in the 100 Area northwest of the 190 K West Building, which is in close proximity to the K East and K West Basins (Figures 1 and 08572). The CVD Facility will consist of five processing bays, with four of the bays fully equipped with processing equipment and the fifth bay configured as an open spare bay. The CVD Facility will have a support area consisting of a control room, change rooms, and other functions required to support operations.

Turnbaugh, J.E.

1996-11-25T23:59:59.000Z

270

Argonne Chemical Sciences & Engineering - Facilities - Electrochemical...  

NLE Websites -- All DOE Office Websites (Extended Search)

facility." After fabrication, the prototype cells are then evaluated for performance, battery life and safety in Argonne's state-of-the-art battery testing facilities....

271

Evaluation of environmental-control technologies for commercial nuclear fuel-conversion (UF/sub 6/) facilities  

Science Conference Proceedings (OSTI)

At present in the United States, there are two commercial conversion facilities. These facilities process uranium concentrate into UF/sub 6/ for shipment to the enrichment facilities. One conversion facility uses a dry hydrofluor process, whereas the other facility uses a process known as the wet solvent extraction-fluorination process. Because of the different processes used in the two plants, waste characteristics, quantities, and treatment practices differ at each facility. Wastes and effluent streams contain impurities found in the concentrate (such as uranium daughters, vanadium, molybdenum, selenium, arsenic, and ammonia) and process chemicals used in the circuit (including fluorine, nitrogen, and hydrogen), as well as small quantities of uranium. Studies of suitable disposal options for the solid wastes and sludges generated at the facilities and the long-term effects of emissions to the ambient environment are needed. 30 figures, 34 tables.

Perkins, B.L.

1982-10-01T23:59:59.000Z

272

Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19  

SciTech Connect

Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

Schneider, K.J.

1982-09-01T23:59:59.000Z

273

Fabrication and Characterization of Uranium-based High Temperature...  

NLE Websites -- All DOE Office Websites (Extended Search)

carbideuranium oxide (UCO) fuel compacts fabricated by ORNL for the DOE-NE Advanced Gas Reactor Fuel Development and Qualification Program have exceeding historical burnup levels...

274

NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

8 * November 2010 8 * November 2010 The NREL hydrogen safety sensor test facility (Robert Burgess/NREL) PIX 18240 NREL Develops Test Facility and Test Protocols for Hydrogen Sensor Performance Team: Safety Codes & Standards Group, Hydrogen Technologies & Systems Center Accomplishment: The NREL Hydrogen Sensor Test Facility was recently commissioned for the quantitative assessment of hydrogen safety sensors (first reported in April 2010). Testing of sensors has started and is ongoing. Test Apparatus: The Test Facility was designed to test hydrogen sensors under precisely controlled conditions. The apparatus can simultaneously test multiple sensors and can handle all common electronic interfaces, including voltage, current, resistance,

275

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

276

Fabrication of gas impervious edge seal for a bipolar gas distribution assembly for use in a fuel cell  

DOE Patents (OSTI)

A bipolar gas reactant distribution assembly for use in a fuel cell is disclosed, the assembly having a solid edge seal to prevent leakage of gaseous reactants wherein a pair of porous plates are provided with peripheral slits generally parallel to, and spaced apart from two edges of the plate, the slit being filled with a solid, fusible, gas impervious edge sealing compound. The plates are assembled with opposite faces adjacent one another with a layer of a fusible sealant material therebetween the slits in the individual plates being approximately perpendicular to one another. The plates are bonded to each other by the simultaneous application of heat and pressure to cause a redistribution of the sealant into the pores of the adjacent plate surfaces and to cause the edge sealing compound to flow and impregnate the region of the plates adjacent the slits and comingle with the sealant layer material to form a continuous layer of sealant along the edges of the assembled plates.

Kaufman, Arthur (West Orange, NJ); Werth, John (Princeton, NJ)

1986-01-01T23:59:59.000Z

277

MPA-11 Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Cleanroom Facility is available for use by LANL researchers MPA-11 Facilities Fuel cell testing, acoustics laboratories, and a wide spectrum of characterization equipment are essential to the research conducted in our group. Fuel Cell Testing. ........Acoustics. ........Characterization . ........ Many other multi-disciplinary staff and experimental/computational capabilities throughout Los Alamos National Laboratory are available to support our research. Access to enabling capabilities for the Fuel Cell Program is facilitated by the Laboratory's Institute for Hydrogen and Fuel Cell Research. Fuel Cell Testing Experimental equipment that is essential to our fuel cell efforts is housed in 24 laboratories at the Los Alamos National Laboratory. A partial list of

278

Integrating Safeguards into the Pit Disassembly and Conversion Facility  

SciTech Connect

In September 2000, the United States and the Russian Federation entered into an agreement which stipulates each country will irreversibly transform 34 metric tons of weapons-grade plutonium into material which could not be used for weapon purposes. Supporting the Department of Energy's (DOE) program to dispose of excess nuclear materials, the Pit Disassembly and Conversion Facility (PDCF) is being designed and constructed to disassemble the weapon ''pits'' and convert the nuclear material to an oxide form for fabrication into reactor fuel at the separate Mixed Oxide Fuel Fabrication Facility. The PDCF design incorporates automation to the maximum extent possible to facilitate material safeguards, reduce worker dose, and improve processing efficiency. This includes provisions for automated guided vehicle movements for shipping containers, material transport via automated conveyor between processes, remote process control monitoring, and automated Nondestructive Assay product systems.

Clark, T.G.

2002-05-28T23:59:59.000Z

279

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF |...

280

NISCO Cogeneration Facility  

E-Print Network (OSTI)

The NISCO Cogeneration facility utilizes two fluidized bed boilers to generate 200 MW of electricity and up to 80,000 LBS/HR of steam for process use. The partnership, of three industrial electricity users, Citgo, Conoco, and Vista Chemical, and the local utility, Gulf States utilities, was formed in the late 1980's. In August and September 1992 two fluidized bed boilers were brought into operation to repower existing turbine generating equipment. The fluidized bed units were designed to utilize 100 percent petroleum coke, a locally produced fuel. Petroleum coke is a high heating value, low volatile, high sulfur fuel which is difficult to utilize in conventional boilers. It is readily available in most areas throughout the world, including North and South America. Because of superior environmental performance, lower capital cost, and fuel versatility, circulating fluidized bed boilers were selected to repower the existing turbines. Fluidized bed boilers were ideally suited for a repowering application. Existing equipment matched or was modified for utilization in the project optimizing capital cost. The fluidized bed boilers, designed and fabricated by Foster Wheeler, are each capable of producing 825,000 LBS/HR of steam. This paper describes the results attained at NISCO during the first full year of operation. The design attributes of the project which enabled a successful and efficient unit startup are explained. Descriptions of design enhancements and modifications installed during the first year to improve the operability of the repowered facility are included. This paper describes technology and experiences of value to those considering steam generating unit repowering or construction.

Zierold, D. M.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Criticality Safety Evaluation Report CSER-96-019 for Spent Nuclear Fuel (SNF) Processing and Storage Facilities Multi Canister Overpack (MCO)  

Science Conference Proceedings (OSTI)

This criticality evaluation is for Spent N Reactor fuel unloaded from the existing canisters in both KE and KW Basins, and loaded into multiple canister overpack (MCO) containers with specially built baskets containing a maximum of either 54 Mark IV or 48 Mark IA fuel assemblies. The criticality evaluations include loading baskets into the cask-MCO, operation at the Cold Vacuum Drying Facility,a nd storage in the Canister Storage Building. Many conservatisms have been built into this analysis, the primary one being the selection of the K{sub eff} = 0.95 criticality safety limit. This revision incorporates the analyses for the sampling/weld station in the Canister Storage Building and additional analysis of the MCO during the draining at CVDF. Additional discussion of the scrap basket model was added to show why the addition of copper divider plates was not included in the models.

KESSLER, S.F.

1999-10-20T23:59:59.000Z

282

Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR  

Science Conference Proceedings (OSTI)

An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

1980-01-01T23:59:59.000Z

283

SAFEGUARDS EXPERIENCE ON THE DUPIC FUEL CYCLE PROCESS  

SciTech Connect

Safeguards have been applied to the R and D process for directly fabricating CANDU fuel with PWR spent fuel material. Safeguards issues to be resolved were identified in the areas such as international cooperation on handling foreign origin nuclear material, technology development of operator's measurement system of the bulk handling process of spent fuel material, and a built-in C/S system for independent verification of material flow. The fuel cycle concept (Direct Use of PWR spent fuel in CANDU, DUPIC) was developed in consideration of reutilization of over-flowing spent fuel resources at PWR sites and a reduction of generated high level wastes. All those safeguards issues have been finally resolved, and the first batch of PWR spent fuel material was successfully introduced in the DUPIC lab facility and has been in use for routine process development.

J. HONG; H. KIM; ET AL

2001-02-01T23:59:59.000Z

284

Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report  

SciTech Connect

This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided.

Not Available

1980-06-01T23:59:59.000Z

285

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

286

Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

Not Available

1992-07-01T23:59:59.000Z

287

Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of ...

2009-05-20T23:59:59.000Z

288

Status of the Integral Fast Reactor fuel cycle demonstration and waste management practices  

SciTech Connect

Over the past few years, Argonne National Laboratory has been preparing for the demonstration of the fuel cycle for the Integral Fast Reactor (IFR), an advanced reactor concept that takes advantage of the properties of metallic fuel and liquid metal cooling to offer significant improvements in reactor safety and operations, fuel-cycle economics, environmental protection, and safeguards. The IFR fuel cycle, which will be demonstrated at Argonne-West in Idaho, employs a pyrometallurgical process using molten salts and liquid metals to recover actinides from spent fuel. The required facility modifications and process equipment for the demonstration are nearing completion. Their status and the results from initial fuel fabrication work, including the waste management aspects, are presented. Additionally, estimated compositions of the various process waste streams have been made, and characterization and treatment methods are being developed. The status of advanced waste processing equipment being designed and fabricated is described.

Benedict, R.W.; Goff, K.M.; McFarlane, H.F.

1994-07-01T23:59:59.000Z

289

Solar Energy Research Center Instrumentation Facility  

Science Conference Proceedings (OSTI)

SOLAR ENERGY RESEARCH CENTER INSTRUMENTATION FACILITY The mission of the Solar Energy Research Center (UNC SERC) at the University of North Carolina at Chapel Hill (UNC-CH) is to establish a world leading effort in solar fuels research and to develop the materials and methods needed to fabricate the next generation of solar energy devices. We are addressing the fundamental issues that will drive new strategies for solar energy conversion and the engineering challenges that must be met in order to convert discoveries made in the laboratory into commercially available devices. The development of a photoelectrosynthesis cell (PEC) for solar fuels production faces daunting requirements: (1) Absorb a large fraction of sunlight; (2) Carry out artificial photosynthesis which involves multiple complex reaction steps; (3) Avoid competitive and deleterious side and reverse reactions; (4) Perform 13 million catalytic cycles per year with minimal degradation; (5) Use non-toxic materials; (6) Cost-effectiveness. PEC efficiency is directly determined by the kinetics of each reaction step. The UNC SERC is addressing this challenge by taking a broad interdisciplinary approach in a highly collaborative setting, drawing on expertise across a broad range of disciplines in chemistry, physics and materials science. By taking a systematic approach toward a fundamental understanding of the mechanism of each step, we will be able to gain unique insight and optimize PEC design. Access to cutting-edge spectroscopic tools is critical to this research effort. We have built professionally-staffed facilities equipped with the state-of the-art instrumentation funded by this award. The combination of staff, facilities, and instrumentation specifically tailored for solar fuels research establishes the UNC Solar Energy Research Center Instrumentation Facility as a unique, world-class capability. This congressionally directed project funded the development of two user facilities: TASK 1: SOLAR DEVICE FABRICATION LABORATORY DEVELOPMENT The space allocated for this laboratory was �¢����shell space�¢��� that required an upfit in order to accommodate nano-fabrication equipment in a quasi-clean room environment. This construction project (cost $279,736) met the non-federal cost share requirement of $250,000 for this award. The central element of the fabrication laboratory is a new $400,000+ stand-alone system, funded by other sources, for fabricating and characterizing photovoltaic devices, in a state-of-the-art nanofabrication environment. This congressionally directed project also included the purchase of an energy dispersive x-ray analysis (EDX) detector for a pre-existing transmission electron microscope (TEM). This detector allows elemental analysis and elemental mapping of materials used to fabricate solar energy devices which is a key priority for our research center. TASK 2: SOLAR ENERGY SPECTROSCOPY LABORATORY DEVELOPMENT (INSTRUMENTATION) This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11T23:59:59.000Z

290

Transient analysis for the tajoura critical facility with IRT-2M HEU fuel and IRT-4M leu fuel : ANL independent verification results.  

SciTech Connect

Calculations have been performed for postulated transients in the Critical Facility at the Tajoura Nuclear Research Center (TNRC) in Libya. These calculations have been performed at the request of staff of the Renewable Energy and Water Desalinization Research Center (REWDRC) who are performing similar calculations. The transients considered were established during a working meeting between ANL and REWDRC staff on October 1-2, 2005 and subsequent email correspondence. Calculations were performed for the current high-enriched uranium (HEU) core and the proposed low-enriched uranium (LEU) core. These calculations have been performed independently from those being performed by REWDRC and serve as one step in the verification process.

Garner, P. L.; Hanan, N. A.

2005-12-02T23:59:59.000Z

291

Thin film battery/fuel cell power generating system. Second quarterly report, July 1, 1978-September 30, 1978  

DOE Green Energy (OSTI)

Progress is reported on the development of the high-temperature solid-oxide electrolyte fuel cell. Oxygen loss behavior in the lanthanum chromite interconnection material was investigated by the microweighing technique. RF sputtered interconnection bands have been produced that display suitable density to permit the technique to be used in the construction of cell stacks. Electrochemical vapor deposition equipment has been modified to enable preparation of 20 cell fuel cell stack fabrication to proceed. The fuel electrode process and equipment have been improved to permit fabrication of long (0.3 m) tube segments, showing good mechanical and electrical properties. Long tube sections have been used to fabricate air electrodes, having desired porosity without loss of conductivity. Porous support tube work (involving equipment and fabrication techniques) is being extended to the fabrication of 0.3 m long tubes, needed for the fabrication of the 20 cell stacks. Work continues on the construction of the 5 station fuel cell stack life test facility. Theoretical interpretations of fuel cell stack polarization losses have been compared with actual measured losses in the 5 cell fuel cell stack previously tested in the program. Analyses of the intercell leakage current in the five cell fuel cell stack that was life tested for 700 hours were conducted. (WHK)

Feduska, W.

1978-10-25T23:59:59.000Z

292

Type A Accident Investigation Board report on the January 17, 1996, electrical accident with injury in Technical Area 21 Tritium Science and Fabrication Facility Los Alamos National Laboratory. Final report  

SciTech Connect

An electrical accident was investigated in which a crafts person received serious injuries as a result of coming into contact with a 13.2 kilovolt (kV) electrical cable in the basement of Building 209 in Technical Area 21 (TA-21-209) in the Tritium Science and Fabrication Facility (TSFF) at Los Alamos National Laboratory (LANL). In conducting its investigation, the Accident Investigation Board used various analytical techniques, including events and causal factor analysis, barrier analysis, change analysis, fault tree analysis, materials analysis, and root cause analysis. The board inspected the accident site, reviewed events surrounding the accident, conducted extensive interviews and document reviews, and performed causation analyses to determine the factors that contributed to the accident, including any management system deficiencies. Relevant management systems and factors that could have contributed to the accident were evaluated in accordance with the guiding principles of safety management identified by the Secretary of Energy in an October 1994 letter to the Defense Nuclear Facilities Safety Board and subsequently to Congress.

NONE

1996-04-01T23:59:59.000Z

293

LANL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. LANL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within both Category 1 and 2 areas. Technical Area (TA) 55/Plutonium Facility 4 will be used to store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, assemble rods, and store fuel bundles. Bundles will be assembled at a separate facility, several of which have been identified as suitable for that activity. The Chemistry and Metallurgy Research Building (at TA-3) will be used for analytical chemistry support. Waste operations will be conducted in TA-50 and TA-54. Only very minor modifications will be needed to accommodate the LA program. These modifications consist mostly of minor equipment upgrades. A commercial reactor operator has not been identified for the LA irradiation. Postirradiation examination (PIE) of the irradiated fuel will take place at either Oak Ridge National Laboratory or ANL-W. The only modifications required at either PIE site would be to accommodate full-length irradiated fuel rods. Results from this program are critical to the overall plutonium distribution schedule.

Fisher, S.E.; Holdaway, R.; Ludwig, S.B. [and others

1998-08-01T23:59:59.000Z

294

State of Washington Department of Health Radioactive air emissions notice of construction phase 1 for spent nuclear fuel project - cold vacuum drying facility, project W-441  

SciTech Connect

This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from operation of the Cold Vacuum Drying Facility (CVDF). Additional details on emissions generated by the operation of the CVDF will be discussed again in the Phase 11 NOC. This document serves as a NOC pursuant to the requirements of WAC 246-247-060 for the completion of Phase I NOC, defined as the pouring of concrete for the foundation flooring, construction of external walls, and construction of the building excluding the installation of CVDF process equipment. A Phase 11 NOC will be submitted for approval prior to installing and is defined as the completion of the CVDF, which consisted installation of process equipment, air emissions control, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters while the SNF in the K East Basin is in open canisters, which allow free release of corrosion products to the K East Basin water.

Turnbaugh, J.E.

1996-08-15T23:59:59.000Z

295

H-Coal pilot plant. Topical report: evaluation of a commercial laundry process for cleaning work clothing from a synthetic-fuels facility, E and H-12  

SciTech Connect

A scientific study was undertaken by Ashland Synthetic Fuels, Inc., to evaluate the cleaning efficiency of work clothing from the H-Coal Pilot Plant by a commercial laundry facility. Laundry process conditions for cleaning clothes were determined, and procedures were developed for laboratory analysis to detect coal liquefaction heavy distillate in work clothing and laundry wastewater. Laboratory testing and longwave ultraviolet light were used to monitor for skin contamination from recycled work clothing. Laboratory studies with spiked, unwashed cloth swatches showed a heavy distillate recovery efficiency of 86%. The laundry process was found to remove 98% of heavy distillate from spiked, washed cloth swatches. Low levels of heavy distillate and three polynuclear aromatic hydrocarbons were found in laundry wastewater, recycled work shirts and uncleaned T-shirts worn in process areas. Hydrocarbon material content in wastewater can be satisfactorily treated by process wastewater treatment units at synfuels facilities. There were data to suggest that process material accumulates in recycled work shirts (outer clothing) to about three times the level in new control shirts, but this accumulation was not noted in T-shirts (underclothing). Although residual process material was found in work shirts and gloves after cleaning, skin fluorescence monitoring with ultraviolet light indicates that skin contamination from contact with recycled gloves and work shirts is not occurring.

Hill, R.H.; Tussey, L.B.

1983-01-01T23:59:59.000Z

296

Site Selection for Surplus Plutonium Disposition Facilities at the Savannah River Site  

Science Conference Proceedings (OSTI)

A site selection study was conducted to evaluate locations for the proposed Surplus Plutonium Disposition Facilities. Facilities to be located include the Mixed Oxide (MOX) Fuel Fabrication Facility, the Pit Disassembly and Conversion Facility (PDCF), and the Plutonium Immobilization Project (PIP) facility. Objectives of the study include: (1) Confirm that the Department of Energy (DOE) selected locations for the MOX and PDCF were suitable based on selected siting criteria, (2) Recommend a site in the vicinity of F Area that is suitable for the PIP, and (3) Identify alternative suitable sites for one or more of these facilities in the event that further geotechnical characterization or other considerations result in disqualification of a currently proposed site.

Wike, L.D.

2000-08-17T23:59:59.000Z

297

The development and fabrication of miniaturized direct methanol fuel cells and thin-film lithium ion battery hybrid system for portable applications .  

E-Print Network (OSTI)

??In this work, a hybrid power module comprising of a direct methanol fuel cell (DMFC) and a Li-ion battery has been proposed for low power… (more)

Prakash, Shruti

2009-01-01T23:59:59.000Z

298

Fabrication and Pre-irradiation Characterization of a Minor Actinide and Rare Earth Containing Fast Reactor Fuel Experiment for Irradiation in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy, seeks to develop and demonstrate the technologies needed to transmute the long-lived transuranic actinide isotopes contained in spent nuclear fuel into shorter lived fission products, thereby decreasing the volume of material requiring disposal and reducing the long-term radiotoxicity and heat load of high-level waste sent to a geologic repository. This transmutation of the long lived actinides plutonium, neptunium, americium and curium can be accomplished by first separating them from spent Light Water Reactor fuel using a pyro-metalurgical process, then reprocessing them into new fuel with fresh uranium additions, and then transmuted to short lived nuclides in a liquid metal cooled fast reactor. An important component of the technology is developing actinide-bearing fuel forms containing plutonium, neptunium, americium and curium isotopes that meet the stringent requirements of reactor fuels and materials.

Timothy A. Hyde

2012-06-01T23:59:59.000Z

299

Enforcement Letter, Parsons Technology Development & Fabrication Complex- April 13, 2010  

Energy.gov (U.S. Department of Energy (DOE))

Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site,

300

A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source  

SciTech Connect

This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at present, no others are planned.

Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

1982-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CONCEPTUAL PROCESS DESCRIPTION FOR THE MANUFACTURE OF LOW-ENRICHED URANIUM-MOLYBDENUM FUEL  

Science Conference Proceedings (OSTI)

The National Nuclear Security Agency Global Threat Reduction Initiative (GTRI) is tasked with minimizing the use of high-enriched uranium (HEU) worldwide. A key component of that effort is the conversion of research reactors from HEU to low-enriched uranium (LEU) fuels. The GTRI Convert Fuel Development program, previously known as the Reduced Enrichment for Research and Test Reactors program was initiated in 1978 by the United States Department of Energy to develop the nuclear fuels necessary to enable these conversions. The program cooperates with the research reactors’ operators to achieve this goal of HEU to LEU conversion without reduction in reactor performance. The programmatic mandate is to complete the conversion of all civilian domestic research reactors by 2014. These reactors include the five domestic high-performance research reactors (HPRR), namely: the High Flux Isotope Reactor at the Oak Ridge National Laboratory, the Advanced Test Reactor at the Idaho National Laboratory, the National Bureau of Standards Reactor at the National Institute of Standards and Technology, the Missouri University Research Reactor at the University of Missouri–Columbia, and the MIT Reactor-II at the Massachusetts Institute of Technology. Characteristics for each of the HPRRs are given in Appendix A. The GTRI Convert Fuel Development program is currently engaged in the development of a novel nuclear fuel that will enable these conversions. The fuel design is based on a monolithic fuel meat (made from a uranium-molybdenum alloy) clad in Al-6061 that has shown excellent performance in irradiation testing. The unique aspects of the fuel design, however, necessitate the development and implementation of new fabrication techniques and, thus, establishment of the infrastructure to ensure adequate fuel fabrication capability. A conceptual fabrication process description and rough estimates of the total facility throughput are described in this document as a basis for establishing preconceptual fabrication facility designs.

Daniel M. Wachs; Curtis R. Clark; Randall J. Dunavant

2008-02-01T23:59:59.000Z

302

Risk analysis of shipping plutonium pits and mixed oxide fuel  

E-Print Network (OSTI)

With the end of the cold war, there no longer seems to be a credible threat of war between nuclear superpowers, with its possible consequence of billions of fatalities. However, the residue of the cold war, most notably the now excess weapons plutonium, has been identified as the source of a number of potential catastrophes. For example, just a single crude nuclear weapon in the hands of a terrorist organization or rogue state and detonated in even a medium-sized city could lead to hundreds of thousands of deaths. For this reason, the ultimate disposition of this excess plutonium has been identified as a national priority. The process of carrying out this disposition itself carries some risks, and even though any conceivable consequences clearly will be much smaller in magnitude than those cited above, U.S. federal law (the National Environmental Protection Act) mandates that such risks must be analyzed. The ability to carry out one type of such an analysis is demonstrated in this thesis. Specifically, one possible option that has been identified for disposition of excess U.S. weapons plutonium is the transformation into mixed oxide (MOX) fuel, that then would be used as fuel in a commercial nuclear power plant. Any such process will involve the transportation of the MOX fuel from the MOX fuel fabrication facility to the nuclear power plant, and possibly transportation of the plutonium from a storage site to the fuel fabrication facility. This thesis is intended to demonstrate the capability to analyze the risks associated with such transportation campaigns. The primary tool used for these analyses was RADTRAN, a code developed by Sandia National Laboratories for evaluating risk associated with the transportation of radioactive materials. Two sample scenarios were explored relative to the transformation of plutonium pits to MOX fuel. First, the pits would be converted to MOX fuel at a fuel fabrication facility located either at the Pantex Plant or the Savannah River Site (SRS), and then the MOX fuel would be ultimately shipped to a final destination of a commercial power plant, the Palo Verde Generating Station in Arizona. For the scenario of placing the MOX fuel fabrication facility at SRS, pits would need to be shipped from Pantex to SRS and then the MOX fuel would be shipped to Palo Verde. The total number of expected fatalities over a 25 year campaign duration for this scenario would be 1.06, with 0. 1 73 fatalities resulting from latent cancer fatalities due to radiation exposure and 0.89 resulting from traffic accidents. For the placement of the MOX fuel fabrication facility at Pantex, only the MOX fuel would need to be transported from one facility to another, in this case from Pantex to Palo Verde. The total fatalities for this scenario over 25 years would be 0.413, resulting from 5.29 x 10-2 latent cancer fatalities and 0.36 traffic accident fatalities. The maximum exposed individual along any of the three routes would receive 1.0 X 10-5 rem per year or 0.25 mrem over 25 years.

Caldwell, Amy Baker

1997-01-01T23:59:59.000Z

303

Enforcement Letter, Parsons Technology Development & Fabrication Complex -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Parsons Technology Development & Fabrication Parsons Technology Development & Fabrication Complex - April 13, 2010 Enforcement Letter, Parsons Technology Development & Fabrication Complex - April 13, 2010 April 13, 2010 Enforcement Letter issued to Parsons Technology Development & Fabrication Complex related to Deficiencies in the Fabrication of Safety Significant Embed Plates at the Salt Waste Processing Facility at the Savannah River Site This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in the fabrication of safety significant embed plates. These embed plates were fabricated by Parsons Technology Development and Fabrication Complex (PTDFC) a supplier to

304

Central Fabrication Services | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Central Fabrication Services Central Fabrication Services Home Management Staff Facilities Heavy Machine Shop Welding Shop Sheet Metal Shop Central Cleaning Facility CR X-Ray Facility Inspection Area Services Fabrication Services Group is committed to providing exceptional service to all of its customers. Safety is an integral part of our program and is in the foundation of everything we do. Fabrication Services is a full service proto type shop with production capabilities. Our facilities include machining, wire EDM, water jet cutting, orbital welding, welding, sheet metal, precision measurement, 3D printing, maintenance metal working, cleaning for UHV applications, and our newest addition Computed Radiography. Our capabilities include working on ultra-miniature parts to 20 ton assemblies. Our capability and range of services we provide is largely due

305

Assessment of the Idaho National Laboratory Hot Fuel Examination Facility Stack Monitoring Site for Compliance with ANSI/HPS N13.1 1999  

SciTech Connect

This document reports on a series of tests to determine whether the location of the air sampling probe in the Hot Fuels Examination Facility (HFEF) heating, ventilation and air conditioning (HVAC) exhaust duct meets the applicable regulatory criteria regarding the placement of an air sampling probe. Federal regulations require that a sampling probe be located in the exhaust stack according to the criteria of the ANSI/HPS N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. These criteria address the capability of the sampling probe to extract a sample that is representative of the effluent stream. The tests conducted by PNNL during July 2010 on the HFEF system are described in this report. The sampling probe location is approximately 20 feet from the base of the stack. The stack base is in the second floor of the HFEF, and has a building ventilation stream (limited potential radioactive effluent) as well as a process stream (potential radioactive effluent, but HEPA-filtered) that feeds into it. The tests conducted on the duct indicate that the process stream is insufficiently mixed with the building ventilation stream. As a result, the air sampling probe location does not meet the criteria of the N13.1-1999 standard. The series of tests consists of various measurements taken over a grid of points in the duct cross section at the proposed sampling-probe location. The results of the test series on the HFEF exhaust duct as it relates to the criteria from ANSI/HPS N13.1-1999 are desribed in this report. Based on these tests, the location of the air sampling probe does not meet the requirements of the ANSI/HPS N13.1-1999 standard, and modifications must be made to either the HVAC system or the air sampling probe for compliance. The recommended approaches are discussed and vary from sampling probe modifications to modifying the junction of the two air exhaust streams.

Glissmeyer, John A.; Flaherty, Julia E.

2010-08-27T23:59:59.000Z

306

Future of Hydrogen Fuel Flows Through New NIST Test ...  

Science Conference Proceedings (OSTI)

Future of Hydrogen Fuel Flows Through New NIST Test Facility. For Immediate Release: February 16, 2010. ...

2012-10-15T23:59:59.000Z

307

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Boyer, B. D. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K., NNL

2010-11-24T23:59:59.000Z

308

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K. NNL

2011-01-13T23:59:59.000Z

309

LLNL MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of Fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. LLNL has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. This includes receipt and storage of PuO{sub 2} powder, fabrication of MOX fuel pellets, assembly of fuel rods and bundles, and shipping of the packaged fuel to a commercial reactor site. Support activities will take place within a Category 1 area. Building 332 will be used to receive and store the bulk PuO{sub 2} powder, fabricate MOX fuel pellets, and assemble fuel rods. Building 334 will be used to assemble, store, and ship fuel bundles. Only minor modifications would be required of Building 332. Uncontaminated glove boxes would need to be removed, petition walls would need to be removed, and minor modifications to the ventilation system would be required.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

310

METC Combustion Research Facility  

SciTech Connect

The objective of the Morgantown Energy Technology Center (METC) high pressure combustion facility is to provide a mid-scale facility for combustion and cleanup research to support DOE`s advanced gas turbine, pressurized, fluidized-bed combustion, and hot gas cleanup programs. The facility is intended to fill a gap between lab scale facilities typical of universities and large scale combustion/turbine test facilities typical of turbine manufacturers. The facility is now available to industry and university partners through cooperative programs with METC. High pressure combustion research is also important to other DOE programs. Integrated gasification combined cycle (IGCC) systems and second-generation, pressurized, fluidized-bed combustion (PFBC) systems use gas turbines/electric generators as primary power generators. The turbine combustors play an important role in achieving high efficiency and low emissions in these novel systems. These systems use a coal-derived fuel gas as fuel for the turbine combustor. The METC facility is designed to support coal fuel gas-fired combustors as well as the natural gas fired combustor used in the advanced turbine program.

Halow, J.S.; Maloney, D.J.; Richards, G.A.

1993-11-01T23:59:59.000Z

311

Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Zhili Feng (Primary Contact), Wei Zhang, John Wang and Fei Ren Oak Ridge National Laboratory (ORNL) 1 Bethel Valley Rd, PO Box 2008, MS 6095 Oak Ridge, TN 37831 Phone: (865) 576-3797 Email: fengz@ornl.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: * Global Engineering and Technology LLC, Camas, WA * Ben C. Gerwick Inc., Oakland, CA * MegaStir Technologies LLC, Provo, UT * University of Michigan, Ann Arbor, MI Project Start Date: October 1, 2010 Project End Date: Project continuation and direction

312

Fabrication Technology  

SciTech Connect

The mission of the Fabrication Technology thrust area is to have an adequate base of manufacturing technology, not necessarily resident at Lawrence Livermore National Laboratory (LLNL), to conduct the future business of LLNL. The specific goals continue to be to (1) develop an understanding of fundamental fabrication processes; (2) construct general purpose process models that will have wide applicability; (3) document findings and models in journals; (4) transfer technology to LLNL programs, industry, and colleagues; and (5) develop continuing relationships with the industrial and academic communities to advance the collective understanding of fabrication processes. The strategy to ensure success is changing. For technologies in which they are expert and which will continue to be of future importance to LLNL, they can often attract outside resources both to maintain their expertise by applying it to a specific problem and to help fund further development. A popular vehicle to fund such work is the Cooperative Research and Development Agreement with industry. For technologies needing development because of their future critical importance and in which they are not expert, they use internal funding sources. These latter are the topics of the thrust area. Three FY-92 funded projects are discussed in this section. Each project clearly moves the Fabrication Technology thrust area towards the goals outlined above. They have also continued their membership in the North Carolina State University Precision Engineering Center, a multidisciplinary research and graduate program established to provide the new technologies needed by high-technology institutions in the US. As members, they have access to and use of the results of their research projects, many of which parallel the precision engineering efforts at LLNL.

Blaedel, K.L.

1993-03-01T23:59:59.000Z

313

Nuclear Facilities Production Facilities  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for...

314

High-pressure coal fuel processor development  

DOE Green Energy (OSTI)

The objective of Subtask 1.1 Engine Feasibility was to conduct research needed to establish the technical feasibility of ignition and stable combustion of directly injected, 3,000 psi, low-Btu gas with glow plug ignition assist at diesel engine compression ratios. This objective was accomplished by designing, fabricating, testing and analyzing the combustion performance of synthesized low-Btu coal gas in a single-cylinder test engine combustion rig located at the Caterpillar Technical Center engine lab in Mossville, Illinois. The objective of Subtask 1.2 Fuel Processor Feasibility was to conduct research needed to establish the technical feasibility of air-blown, fixed-bed, high-pressure coal fuel processing at up to 3,000 psi operating pressure, incorporating in-bed sulfur and particulate capture. This objective was accomplished by designing, fabricating, testing and analyzing the performance of bench-scale processors located at Coal Technology Corporation (subcontractor) facilities in Bristol, Virginia. These two subtasks were carried out at widely separated locations and will be discussed in separate sections of this report. They were, however, independent in that the composition of the synthetic coal gas used to fuel the combustion rig was adjusted to reflect the range of exit gas compositions being produced on the fuel processor rig. Two major conclusions resulted from this task. First, direct injected, ignition assisted Diesel cycle engine combustion systems can be suitably modified to efficiently utilize these low-Btu gas fuels. Second, high pressure gasification of selected run-of-the-mine coals in batch-loaded fuel processors is feasible. These two findings, taken together, significantly reduce the perceived technical risks associated with the further development of the proposed coal gas fueled Diesel cycle power plant concept.

Greenhalgh, M.L.

1992-11-01T23:59:59.000Z

315

Solar Energy Research Center Instrumentation Facility  

DOE Green Energy (OSTI)

This laboratory provides access to modern spectroscopy and photolysis instrumentation for characterizing devices, materials and components on time scales ranging from femtoseconds to seconds and for elucidating mechanisms. The goals of this congressionally directed project included the purchase and installation of spectroscopy and photolysis instrumentation that would substantially and meaningfully enhance the capabilities of this laboratory. Some changes were made to the list of equipment proposed in the original budget. These changes did not represent a change in scope, approach or aims of this project. All of the capabilities and experiments represented in the original budget were maintained. The outcome of this Congressionally Directed Project has been the development of world-class fabrication and spectroscopy user facilities for solar fuels research at UNC-CH. This award has provided a significant augmentation of our pre-existing instrumentation capabilities which were funded by earlier UNC SERC projects, including the Energy Frontier

Meyer, Thomas, J.; Papanikolas, John, P.

2011-11-11T23:59:59.000Z

316

Fast Reactor Fuel Type and Reactor Safety Performance  

Science Conference Proceedings (OSTI)

Fast Reactor Fuel Type and Reactor Safety Performance R. Wigeland , Idaho National Laboratory J. Cahalan, Argonne National Laboratory The sodium-cooled fast neutron reactor is currently being evaluated for the efficient transmutation of the highly-hazardous, long-lived, transuranic elements that are present in spent nuclear fuel. One of the fundamental choices that will be made is the selection of the fuel type for the fast reactor, whether oxide, metal, carbide, nitride, etc. It is likely that a decision on the fuel type will need to be made before many of the related technologies and facilities can be selected, from fuel fabrication to spent fuel reprocessing. A decision on fuel type should consider all impacts on the fast reactor system, including safety. Past work has demonstrated that the choice of fuel type may have a significant impact on the severity of consequences arising from accidents, especially for severe accidents of low probability. In this paper, the response of sodium-cooled fast reactors is discussed for both oxide and metal fuel types, highlighting the similarities and differences in reactor response and accident consequences. Any fast reactor facility must be designed to be able to successfully prevent, mitigate, or accommodate all consequences of potential events, including accidents. This is typically accomplished by using multiple barriers to the release of radiation, including the cladding on the fuel, the intact primary cooling system, and most visibly the reactor containment building. More recently, this has also included the use of ‘inherent safety’ concepts to reduce or eliminate the potential for serious damage in some cases. Past experience with oxide and metal fuel has demonstrated that both fuel types are suitable for use as fuel in a sodium-cooled fast reactor. However, safety analyses for these two fuel types have also shown that there can be substantial differences in accident consequences due to the neutronic and thermophysical properties of the fuel and their compatibility with the reactor coolant, with corresponding differences in the challenges presented to the reactor developers. Accident phenomena are discussed for the sodium-cooled fast reactor based on the mechanistic progression of conditions from accident initiation to accident termination, whether a benign state is achieved or more severe consequences are expected. General principles connecting accident phenomena and fuel properties are developed from the oxide and metal fuel safety analyses, providing guidelines that can be used as part of the evaluation for selection of fuel type for the sodium-cooled fast reactor.

R. Wigeland; J. Cahalan

2009-09-01T23:59:59.000Z

317

Diversion scenarios in an aqueous reprocessing facility  

E-Print Network (OSTI)

The International Atomic Energy Agency requires nuclear facilities around the world to abide by heavily enforced safeguards to prevent proliferation. Nuclear fuel reprocessing facilities are designed to be proliferation-resistant ...

Calderón, Lindsay Lorraine

2009-01-01T23:59:59.000Z

318

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

This report contains data on the number of onroad alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities and data on the use of alternative fueled vehicles and the amount of fuel they consume.

Information Center

2013-04-08T23:59:59.000Z

319

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

DOE Green Energy (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

320

Cold vacuum drying facility design requirements  

SciTech Connect

This document provides the detailed design requirements for the Spent Nuclear Fuel Project Cold Vacuum Drying Facility. Process, safety, and quality assurance requirements and interfaces are specified.

IRWIN, J.J.

1999-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Renewables and Efficiency in State Facilities & Operations  

Energy.gov (U.S. Department of Energy (DOE))

In May 2006, Hawaii’s governor signed HB 2175 addressing renewable energy, energy efficiency, and alternative fuels in state facilities and operations. This legislation also detailed requirements...

322

Fabrication of CeO2 by sol-gel process based on microfluidic technology as an analog preparation of ceramic nuclear fuel microspheres  

E-Print Network (OSTI)

Microfluidics integrated with sol-gel processes is introduced in preparing monodispersed MOX nuclear fuel microspheres using nonactive cerium as a surrogate for uranium or plutonium. The detailed information about microfluidic devices and sol-gel processes are provided. The effects of viscosity and flow rate of continuous and dispersed phase on size and size distribution of CeO2 microspheres have been investigated. A comprehensive characterization of the CeO2 microspheres has been conducted, including XRD pattern, SEM, density, size and size distribution. The size of prepared monodisperse particles can be controlled precisely in range of 10{\\mu}m to 1000{\\mu}m and the particle CV is below 3%.

Bin Ye; Jilang Miao; Jiaolong Li; Zichen Zhao; Zhenqi Chang; Christophe A. Serra

2012-12-15T23:59:59.000Z

323

Fabrication of CeO2 by sol-gel process based on microfluidic technology as an analog preparation of ceramic nuclear fuel microspheres  

E-Print Network (OSTI)

Microfluidics integrated with sol-gel processes is introduced in preparing monodispersed MOX nuclear fuel microspheres using nonactive cerium as a surrogate for uranium or plutonium. The detailed information about microfluidic devices and sol-gel processes are provided. The effects of viscosity and flow rate of continuous and dispersed phase on size and size distribution of CeO2 microspheres have been investigated. A comprehensive characterization of the CeO2 microspheres has been conducted, including XRD pattern, SEM, density, size and size distribution. The size of prepared monodisperse particles can be controlled precisely in range of 10{\\mu}m to 1000{\\mu}m and the particle CV is below 3%.

Ye, Bin; Li, Jiaolong; Zhao, Zichen; Chang, Zhenqi; Serra, Christophe A

2012-01-01T23:59:59.000Z

324

Technology and fabrication of plutonium-238 radionuclide heat sources  

Science Conference Proceedings (OSTI)

This paper outlines a brief technical description of the facility for production of plutonium-238 and fabrication of Radionuclide Heat Sources (RHS) containing Pu-238. Technical capabilities of the RHS fabrication facility are presented. The results of development of the RHS design for sea application are discussed. RHS fuel pellet comprises the tantalum shell with an annular slot intended for release of radiogenic helium and the Pu-238 dioxide core with reinforcing elements inside which contact with the shell. RHS is a double encapsulation consisting of the inner {open_quote}{open_quote}power{close_quote}{close_quote} capsule and the outer corrosion-resistant capsule. The chromium-nickel-molybdenum XH65MB alloy which is equivalent to Hastelloy-C alloy has been selected as a material for both capsules. Upon expiration of working life, RHS design is capable of withstanding the internal pressure of radiogenic helium at 1073 K within 30 minutes and the external hydrostatic pressure of 100 MPa at normal temperature. {copyright} {ital 1996 American Institute of Physics.}

Malikh, Y.A.; Aldoshin, A.I. [Production Association Mayak, 31 Lenin Street, Ozyorsk, 456780 (Russia); Danilkin, E.A. [The State Scientific Center of Russia, 5 Rogov Street, Moscow (Russia)

1996-03-01T23:59:59.000Z

325

Fuel cycles for the 80's  

SciTech Connect

Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

Not Available

1980-01-01T23:59:59.000Z

326

Services | Central Fabrication Services | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Services & Capabilities Services & Capabilities The Central Fabrication Services Division's capabilities range from an Electric Discharge Machining (EDM) capability, to a state of the art cleaning facility, to a large fabricating facility which includes CNC Machining, Automatic Tube Welding, CNC Punch Press capability, and 3-D printing. CNC Auto Feed Saw High Bay Area 3-D Printer Main Shop, Building 479 Maintenance Sheet Metal Area Water Jet Machine X-ray Generating Tube CR X-ray Processor with High Resolution Monitor Low Bay Area in Machine Shop Wire EDM Machine Wire EDM Machine Oil Recycling Facility, Building 495 UHV Cleaning Facility, Building 498 Material Storage and Stock Central Fabrication Services is proud of it's highly proficient technical staff all of which are available, at no cost to the customer, for

327

An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion  

DOE Green Energy (OSTI)

Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

James Werner; Sam Bhattacharyya; Mike Houts

2011-02-01T23:59:59.000Z

328

Hanford MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement. This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. Six initial site combinations were proposed: (1) Argonne National Laboratory-West (ANL-W) with support from Idaho National Engineering and Environmental Laboratory (INEEL), (2) Hanford, (3) Los Alamos National Laboratory (LANL) with support from Pantex, (4) Lawrence Livermore National Laboratory (LLNL), (5) Oak Ridge Reservation (ORR), and (6) Savannah River Site (SRS). After further analysis by the sites and DOE-MD, five site combinations were established as possible candidates for producing MOX LAs: (1) ANL-W with support from INEEL, (2) Hanford, (3) LANL, (4) LLNL, and (5) SRS. Hanford has proposed an LA MOX fuel fabrication approach that would be done entirely inside an S and S Category 1 area. An alternate approach would allow fabrication of fuel pellets and assembly of fuel rods in an S and S Category 1 facility. In all, a total of three LA MOX fuel fabrication options were identified by Hanford that could accommodate the program. In every case, only minor modification would be required to ready any of the facilities to accept the equipment necessary to accomplish the LA program.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1998-08-01T23:59:59.000Z

329

Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Procuring Fuel Cells Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Google Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Delicious Rank Fuel Cell Technologies Office: Procuring Fuel Cells for

330

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

331

DOE Hydrogen and Fuel Cells Program: Fueling the Next Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

California, is currently posted on the Energy Department's blog. The facility uses biogas from the Orange County Sanitation District's wastewater treatment plant and a fuel...

332

NEUTRONIC REACTOR FUEL ELEMENT  

DOE Patents (OSTI)

A fuel slug for a reactor which acts as a safety device is described. The fuel slug is an aluminum tube with a foil lining the inside surface of the tube, the foil being fabricated of uranium in a lead matrix.

Horning, W.A.; Lanning, D.D.; Donahue, D.J.

1959-10-01T23:59:59.000Z

333

Integrated fuel processor development.  

DOE Green Energy (OSTI)

The Department of Energy's Office of Advanced Automotive Technologies has been supporting the development of fuel-flexible fuel processors at Argonne National Laboratory. These fuel processors will enable fuel cell vehicles to operate on fuels available through the existing infrastructure. The constraints of on-board space and weight require that these fuel processors be designed to be compact and lightweight, while meeting the performance targets for efficiency and gas quality needed for the fuel cell. This paper discusses the performance of a prototype fuel processor that has been designed and fabricated to operate with liquid fuels, such as gasoline, ethanol, methanol, etc. Rated for a capacity of 10 kWe (one-fifth of that needed for a car), the prototype fuel processor integrates the unit operations (vaporization, heat exchange, etc.) and processes (reforming, water-gas shift, preferential oxidation reactions, etc.) necessary to produce the hydrogen-rich gas (reformate) that will fuel the polymer electrolyte fuel cell stacks. The fuel processor work is being complemented by analytical and fundamental research. With the ultimate objective of meeting on-board fuel processor goals, these studies include: modeling fuel cell systems to identify design and operating features; evaluating alternative fuel processing options; and developing appropriate catalysts and materials. Issues and outstanding challenges that need to be overcome in order to develop practical, on-board devices are discussed.

Ahmed, S.; Pereira, C.; Lee, S. H. D.; Krumpelt, M.

2001-12-04T23:59:59.000Z

334

Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

FLEX lab image, windows testing lab, scientist inside a lab, Research Facilities EETD maintains advanced research and test facilities for buildings, energy technologies, air...

335

Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

Ott, Larry J [ORNL; Ellis, Ronald James [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL; Bevard, Bruce Balkcom [ORNL

2009-01-01T23:59:59.000Z

336

A probabilistic risk assessment of the LLNL Plutonium facility`s evaluation basis fire operational accident  

Science Conference Proceedings (OSTI)

The Lawrence Livermore National Laboratory (LLNL) Plutonium Facility conducts numerous involving plutonium to include device fabrication, development of fabrication techniques, metallurgy research, and laser isotope separation. A Safety Analysis Report (SAR) for the building 332 Plutonium Facility was completed rational safety and acceptable risk to employees, the public, government property, and the environment. This paper outlines the PRA analysis of the Evaluation Basis Fire (EDF) operational accident. The EBF postulates the worst-case programmatic impact event for the Plutonium Facility.

Brumburgh, G.

1994-08-31T23:59:59.000Z

337

Facility repowering study  

Science Conference Proceedings (OSTI)

The economic, fuel, and environmental implications of repowering existing nonreheat, oil-fired electrical generating facilities in California with distillate fuels, and was extended by CEC staff to include coal-derived synthetic fuels are evaluated. California's older oil-fired power plants are very inefficient and repowering would significantly reduce the amount of oil burned to produce a unit of electrical energy at these facilities. Repowering would also add new generating capacity without requiring new sites. Specific power plants were categorized according to their potential for repowering. Between the initiation of the contract and the termination date, federal legislation was enacted (Power Plant and Industrial Fuel Use Act (PIFUA)), which effectively prohibits oil-based repowering. In order to make best use of the repowering work, CEC staff supplemented the study with analysis based upon replacing the distillate fuel for combustion turbine utilization with relatively clean-burning fuels derived from coal (i.e., methanol, SNG). This work concluded that 42 units statewide have good potential for repowering and would add greater than 5200 MW of new capacity at approximately $250/kW ($ 1977). For both distillate and synfuels repowering, emissions would decrease over the nonrepowered levels.

Not Available

1980-11-01T23:59:59.000Z

338

Process modeling of plutonium conversion and MOX fabrication for plutonium disposition  

SciTech Connect

Two processes are currently under consideration for the disposition of 35 MT of surplus plutonium through its conversion into fuel for power production. These processes are the ARIES process, by which plutonium metal is converted into a powdered oxide form, and MOX fuel fabrication, where the oxide powder is combined with uranium oxide powder to form ceramic fuel. This study was undertaken to determine the optimal size for both facilities, whereby the 35 MT of plutonium metal will be converted into fuel and burned for power. The bounding conditions used were a plutonium concentration of 3--7%, a burnup of 20,000--40,000 MWd/MTHM, a core fraction of 0.1 to 0.4, and the number of reactors ranging from 2--6. Using these boundary conditions, the optimal cost was found with a plutonium concentration of 7%. This resulted in an optimal throughput ranging from 2,000 to 5,000 kg Pu/year. The data showed minimal costs, resulting from throughputs in this range, at 3,840, 2,779, and 3,497 kg Pu/year, which results in a facility lifetime of 9.1, 12.6, and 10.0 years, respectively.

Schwartz, K.L. [Univ. of Texas, Austin, TX (United States). Dept. of Nuclear Engineering

1998-10-01T23:59:59.000Z

339

Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

Measurements of several radionuclides within environmental samples taken from the Fukushima Daiichi nuclear facility and reported on the Tokyo Electric Power Company website following the recent tsunami-initiated catastrophe were evaluated for the purpose of identifying the source term, reconstructing the release mechanisms, and estimating the extent of the release. 136Cs/137Cs and 134Cs/137Cs ratios identified Units 1-3 as the major source of radioactive contamination to the surface soil close to the facility. A trend was observed between the fraction of the total core inventory released for a number of fission product isotopes and their corresponding Gibbs Free Energy of formation for the primary oxide form of the isotope, suggesting that release was dictated primarily by chemical volatility driven by temperature and reduction potential within the primary containment vessels of the vented reactors. The absence of any major fractionation beyond volatilization suggested all coolant had evaporated by the time of venting. High estimates for the fraction of the total inventory released of more volatile species (Te, Cs, I) indicated the damage to fuel bundles was likely extensive, minimizing any potential containment due to physical migration of these species through the fuel matrix and across the cladding wall. 238Pu/239,240Pu ratios close-in and at 30 km from the facility indicated that the damaged reactors were the major contributor of Pu to surface soil at the source but that this contribution likely decreased rapidly with distance from the facility. The fraction of the total Pu inventory released to the environment from venting units 1 and 3 was estimated to be ~0.003% based upon Pu/Cs isotope ratios relative to the within-reactor modeled inventory prior to venting and was consistent with an independent model evaluation that considered chemical volatility based upon measured fission product release trends. Significant volatile radionuclides within the spent fuel at the time of venting but not as yet observed and reported within environmental samples are suggested as potential analytes of concern for future environmental surveys around the site.

Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

2012-09-10T23:59:59.000Z

340

Facility Microgrids  

Science Conference Proceedings (OSTI)

Microgrids are receiving a considerable interest from the power industry, partly because their business and technical structure shows promise as a means of taking full advantage of distributed generation. This report investigates three issues associated with facility microgrids: (1) Multiple-distributed generation facility microgrids' unintentional islanding protection, (2) Facility microgrids' response to bulk grid disturbances, and (3) Facility microgrids' intentional islanding.

Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.

2005-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

22.351 Systems Analysis of the Nuclear Fuel Cycle, Spring 2003  

E-Print Network (OSTI)

In-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, thorium and other fuel types, ...

Kazimi, Mujid S.

342

GUIDE TO NUCLEAR POWER COST EVALUATION. VOLUME 4. FUEL CYCLE COSTS  

SciTech Connect

Information on fuel cycle cost is presented. Topics covered include: nuclear fuel, fuel management, fuel cost, fissionable material cost, use charge, conversion and fabrication costs, processing cost, and shipping cost. (M.C.G.)

1962-03-15T23:59:59.000Z

343

Underground Facilities Information (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

344

Universal desktop fabrication  

Science Conference Proceedings (OSTI)

Advances in digital design and fabrication technologies are leading toward single fabrication systems capable of producing almost any complete functional object. We are proposing a new paradigm for manufacturing, which we call Universal Desktop Fabrication ...

T. Vilbrandt; E. Malone; H. Lipson; A. Pasko

2008-01-01T23:59:59.000Z

345

ARM - Facility News Article  

NLE Websites -- All DOE Office Websites (Extended Search)

December 3, 2004 [Facility News] December 3, 2004 [Facility News] First Deployment of ARM Mobile Facility to Occur on California Coast Bookmark and Share Image - Point Reyes Beach Image - Point Reyes Beach Point Reyes National Seashore, on the California coast north of San Francisco, has been identified as the official location for the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). As part of a 6-month field campaign beginning in March 2005 to study the microphysical characteristics of marine stratus and, in particular, marine stratus drizzle processes, the AMF will provide a mature instrument system to help fill information gaps in the existing limited surveys of marine stratus microphysical structure. Marine stratus clouds are known to be susceptible to the byproducts of fossil fuel consumption, a

346

Fuel Cell Development and Test Laboratory (Fact Sheet), NREL...  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development...

347

BATT Fabrication Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientist working in battery lab BATT Fabrication Laboratory The BATT Fab Lab (Batteries for Advanced Transportation Technologies Fabrication Laboratory) conducts battery cell...

348

Fabrication and Characterization of Uranium-based High Temperature Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication and Characterization of Uranium-based High Temperature Reactor Fabrication and Characterization of Uranium-based High Temperature Reactor Fuel June 01, 2013 The Uranium Fuel Development Laboratory is a modern R&D scale lab for the fabrication and characterization of uranium-based high temperature reactor fuel. A laboratory-scale coater manufactures tri-isotropic (TRISO) coated fuel particles (CFPs), state-of-the-art materials property characterization is performed, and the CFPs are then pressed into fuel compacts for irradiation testing, all under a NQA-1 compliant Quality Assurance Program. After fuel kernel size and shape are measured by optical shadow imaging, the TRISO coatings are deposited via fluidized bed chemical vapor deposition in a 50-mm diameter conical chamber within the coating furnace. Computer control of temperature and gas composition ensures reproducibility

349

Argonne Transportation Technology R&D Center - Research Facilities - APRF,  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Research Facilities Transportation Research Facilities Argonne provides a wide range of facilities and laboratories for conducting cutting-edge transportation research and testing. The facilities offer state-of-the-art equipment and capabilities. APRF Advanced Powertrain Research Facility Battery Post-Test Facility Battery Post-Test Facility Battery testing at the EADL Electrochemical Analysis and Diagnostics Laboratory Engine Research Facility Engine Research Facility Fuel cell research Fuel Cell Test Facility Materials Engineering Research Facility Materials Engineering Research Facility Transportation APS Beamline Transportation Beamline at Argonne's Advanced Photon Source tribology lab Tribology Laboratory TRACC Transportation Research and Analysis Computing Center

350

Facility effluent monitoring plan for the 327 Facility  

Science Conference Proceedings (OSTI)

The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

351

A disposition strategy for highly enriched, aluminum-based fuel from research and test reactors  

SciTech Connect

The strategy proposed in this paper offers the Department of Energy an approach for disposing of aluminum-based, highly enriched uranium (HEU) spent fuels from foreign and domestic research reactors. The proposal is technically, socially, and economically sound. If implemented, it would advance US non-proliferation goals while also disposing of the spent fuel`s waste by timely and proven methods using existing technologies and facilities at SRS without prolonged and controversial storage of the spent fuel. The fuel would be processed through 221-H. The radioactive fission products (waste) would be treated along with existing SRS high level waste by vitrifying it as borosilicate glass in the Defense Waste Processing Facility (DWPF) for disposal in the national geological repository. The HEU would be isotopically diluted, during processing, to low-enriched uranium (LEU) which can not be used to make weapons, thus eliminating proliferation concerns. The LEU can be sold to fabricators of either research reactor fuel or commercial power fuel. This proposed processing-LEU recycle approach has several important advantages over other alternatives, including: Lowest capital investment; lowest net total cost; quickest route to acceptable waste form and final geologic disposal; and likely lowest safety, health, and environmental impacts.

McKibben, J.M.; Gould, T.H.; McDonell, W.R.; Bickford, W.E.

1994-11-01T23:59:59.000Z

352

Effects of Fuel and Air Impurities on PEM Fuel Cell Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

Approach * Fabricate and operate fuel cells under controlled impurity gases - Multi-gas mixing manifolds and FC test stations - Pre-blend impurity gases - Measure performance...

353

Application: Facilities  

Science Conference Proceedings (OSTI)

... Option.. Papavergos, PG; 1991. Halon 1301 Use in Oil and Gas Production Facilities: Alaska's North Slope.. Ulmer, PE; 1991. ...

2011-12-22T23:59:59.000Z

354

Fabrication of LSGMC-Based IT-SOFC Cells Using Aerosol Deposition  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Presentation Title, Fabrication of LSGMC-Based ...

355

Nuclear fuels technologies fiscal year 1998 research and development test plan  

Science Conference Proceedings (OSTI)

A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO{sub 2} and UO{sub 2} feed materials. Fuel fabrication development efforts include studies with a new UO{sub 2} feed material, alternate sources of PuO{sub 2}, and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities.

Alberstein, D.; Blair, H.T.; Buksa, J.J. [and others

1998-06-01T23:59:59.000Z

356

Energy Conversion and Transmission Facilities (South Dakota) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Public Utilities Commission This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain transmission facilities, and

357

NEPA REVIE\ry LASO-10-001 CATEGORICAL EXCLUSION FUELS RESEARCH LAB AT TA-35.455  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

REVIE\ry REVIE\ry LASO-10-001 CATEGORICAL EXCLUSION FUELS RESEARCH LAB AT TA-35.455 I. DESCRIPTION OF PROPOSED ACTION: Los Alamos National Laboratory proposes to modify an existing laboratory for a Fuels Research Lab (455-FRL). The laboratory would be used to fabricate and characterize fuel pellets. The proposed activities would take place at the former location of the Polymers & Coating Lab (PCL) located at TA-35, Building 455, in room 104. Authorization would need to be obtained for the processing of radioactive materials in this location. The current laboratory configuration of chilled water supply and return, gas, compressed air, and vacuum supply, electrical supply, HEPA filtration, and ventilation would be assessed and modified to suit 455- TPCL facility needs. Analytical and process equipment would be required for this facility. Glovebox

358

LLNL Contribution to Sandia Used Fuel Disposition - Security March 2011 Deliverable  

SciTech Connect

Cleary [2007] divides the proliferation pathway into stages: diversion, facility misuse, transportation, transformation, and weapons fabrication. King [2010], using Cleary's methodology, compares a deepburn fusion-driven blanket containing weapons-grade plutonium with a PWR burning MOX fuel enrichments of 5-9%. King considers the stages of theft, transportation, transformation, and nuclear explosive fabrication. In the current study of used fuel storage security, a similar approach is appropriate. First, one must consider the adversary's objective, which can be categorized as on-site radionuclide dispersion, theft of material for later radionuclide dispersion, and theft of material for later processing and fabrication into a nuclear explosive. For on-site radionuclide dispersion, only a single proliferation pathway stage is appropriate: dispersion. That situation will be addressed in future reports. For later radionuclide dispersion, the stages are theft, transportation, and transformation (from oxide spent fuel containing both fission products and actinides to a material size and shape suitable for dispersion). For later processing and fabrication into a nuclear explosive, the stages are theft (by an outsider or by facility misuse by an insider), transportation, transformation (from oxide spent fuel containing both fission products and actinides to a metal alloy), and fabrication (of the alloy into a weapon). It should be noted that the theft and transportation stages are similar, and possibly identical, for later radionuclide dispersion and later processing and fabrication into a nuclear explosive. Each stage can be evaluated separately, and the methodology can vary for each stage. For example, King starts with the methodology of Cleary for the theft, transportation, transformation, and fabrication stages. Then, for each stage, King assembles and modifies the attributes and inputs suggested by Cleary. In the theft (also known as diversion) stage, Cleary has five high-level categories (material handling during diversion, difficulty of evading detection by the accounting system, difficulty of evading detection by the material control system, difficulty of conducting undeclared facility modifications for the purpose of diverting nuclear material, and difficulty of evading detection of the facility modifications for the purposes of diverting nuclear material). Each category has one or more subcategories. For example, the first category includes mass per significant quantity (SQ) of nuclear material, volume/SQ of nuclear material, number of items/SQ, material form (solid, liquid, powder, gas), radiation level in terms of dose, chemical reactivity, heat load, and process temperature. King adds the following two subcategories to that list: SQs available for theft, and interruptions/changes (normal and unexpected) in material stocks and flows. For the situation of an orphaned surface storage facility, this approach is applicable, with some of the categories and subcategories being modified to reflect the static situation (no additions or removals of fuel or containers). In addition, theft would require opening a large overpack and either removing a full container or opening that sealed container and then removing one or more spent nuclear fuel assemblies. These activities would require time without observation (detection), heavy-duty equipment, and some degree of protection of the thieves from radiological dose. In the transportation stage, Cleary has two high-level categories (difficulty of handling material during transportation, and difficulty of evading detection during transport). Each category has a number of subcategories. For the situation of an orphaned surface storage facility, these categories are applicable. The transformation stage of Cleary has three high-level categories (facilities and equipment needed to process diverted materials; knowledge, skills, and workforce needed to process diverted materials; and difficulty of evading detection of transformation activities). Again, there are subcategories. King [2007

Blink, J A

2011-03-23T23:59:59.000Z

359

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

360

MDF | Manufacturing Demonstration Facility | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

HTR Fuel Development in Europe  

SciTech Connect

In the frame of the European Network HTR-TN and in the 5. EURATOM RTD Framework Programme (FP5) European programmes have been launched to consolidate advanced modular HTR technology in Europe. This paper gives an overall description and first results of this programme. The major tasks covered concern a complete recovery of the past experience on fuel irradiation behaviour in Europe, qualification of HTR fuel by irradiating of fuel elements in the HFR reactor, understanding of fuel behaviour with the development of a fuel particle code and finally a recover of the fuel fabrication capability. (authors)

Languille, Alain [CEA Cadarache, 13108 Saint-Paul-lez-Durance BP1 (France); Conrad, R. [CEC/JRC/IE Petten (Netherlands); Guillermier, P. [Framatome-ANP/ Lyon (France); Nabielek, H. [FZJ/Juelich (Germany); Bakker, K. [NRG/Petten (Netherlands); Abram, T. [BNFL UK (United Kingdom); Haas, D. [JRC/ITU/Karlsruhe (Germany)

2002-07-01T23:59:59.000Z

362

The Results From the First High-Pressure Melt Ejection Test Completed in the Molten Fuel Moderator Interaction Facility at Chalk River Laboratories  

SciTech Connect

A high-pressure melt ejection test using prototypical corium was conducted at Atomic Energy of Canada Limited Chalk River Laboratories. This test was planned by the CANDU Owners Group to study the potential for an energetic interaction between molten fuel and water under postulated single-channel flow-blockage events. The experiments were designed to address regulator concerns surrounding this very low probability postulated accident events in CANDU Pressurized Heavy Water Reactors. The objective of the experimental program is to determine whether a highly energetic 'steam explosion' and associated high-pressure pulse, is possible when molten material is finely fragmented as it is ejected from a fuel channel into the heavy-water moderator. The finely fragmented melt particles would transfer energy to the moderator as it is dispersed, creating a modest pressure pulse in the calandria vessel. The high-pressure melt ejection test consisted of heating up a {approx} 5 kg thermite mixture of U, U{sub 3}O{sub 8}, Zr, and CrO{sub 3} inside a 1.14-m length of insulated pressure tube. When the molten material reached the desired temperature of {approx} 2400 deg C, the pressure inside the tube was raised to 11.6 MPa, failing the pressure tube at a pre-machined flaw, and releasing the molten material into the surrounding tank of 68 deg C water. The experiment investigated the dynamic pressure history, debris size, and the effects of the material interacting with tubes representing neighbouring fuel channels. The measured mean particle size was 0.686 mm and the peak dynamic pressures were between 2.54 and 4.36 MPa, indicating that an energetic interaction between the melt and the water did not occur in the test. (authors)

Nitheanandan, T.; Kyle, G.; O'Connor, R.; Sanderson, DB. [Chalk River Laboratories, Atomic Energy of Canada Limited, Chalk River, Ontario, Canada, K0J 1J0 (Canada)

2006-07-01T23:59:59.000Z

363

Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007  

SciTech Connect

Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management

Karen A Moore

2007-04-01T23:59:59.000Z

364

PROGRESS REPORT ON FUEL ELEMENT DEVELOPMENT AND ASSOCIATED PROJECTS  

SciTech Connect

; 9 < 4 6 9 7 ; 6 8 7 6 sting Deactor (MTR) has sought to develop improved, economical, long-life fuel assemblies through a comprehensive study of various fuel compositions, enrichments, claddings, burnable poisons, fuel and poison distributions, and fuelelement geometry optimization. The core materials, including uranium -- aluminum alloys, uranium oxide -aluminum cermets, thorium, thorium oxide, boron, gadolinium, dysprosium, and iridium, are tested in pilot-plant scale by irradiating them as sandwich type sample fuel plates. In the procurement of these sample plates, fabrication techniques were developed and evaluated for incorporation of all the fuels and poisons (except Ir/sub 2/O/sub 3/) into cores of aluminum or aluminum alloys. Methods were developed to minimize "dog-boning" and to produce graded fuels. Some of the sample plate compcsitions have been irradiated to high burn-up, i.e., over 50% of the U/sup 235/ content, and have operated successfully in the MTR for seven or more cycles. The irradiated uranium-- aluminum alloy and uranium oxide-- aluminum cermet fuel plates have shown excellent dimensional stability and good corrosion resistance to long-term irradiation. However, some of the thorium oxide fuel plates failed during one cycle of irradiation because of blistering, rupturing, or forming of pinholes in the cladding. The isostatic bonding procedure used to bond aluminum plates to the ThO/sub 2/ cores is apparently not adequate for reactor use. The sample fuel plate work has demonstrated the suitability of high wt.% uranium oxide--aluminum fuels for testing reactors, indicated the potential of systematically varying the fuel loading within a single plate, and experimentally verified the applicability of burnable poisons for reducing reactivity changes resulting from fuel burnup. The Deactivity Measurement Facility has proved to be an excellent nondestructive analytical tool for determination of fuel and poison burn-up. This program has stimulated several new developments and revealed many interesting facts in the fabrication and testing of reactor fuel materials. For example: (1) ultrasonic inspection has proved to be an excellent nondestructive method for determination of small voids in the core and unbonded cladding not otherwise detected by radiographing, (2) the ultrasonic inspection of irradiated fuel plates in the MTR canal is feasible, and (3) analytical procedures were developed for the determination of the small quantities of gadolinium added to the cores. The prototype studies consisted of theoretical and experimental evaluations of the hydraulic and heat- transfer characteristics, the structural properties, the economics and the reactor operating characteristics of various full-sized fuel assemblies and shim rods. The results of the sample fuel plate studies were incorporated in these prototypes to obtain optimum practical designs for testing reactors. The fuel element geometries investigated include plates, tube bundles, hexagonal honeycomb, and concentric cylinders. A MTR shim rod with renewable fuel and poison sections was designed, tested hydraulically, and is now considered ready for final in-pile testing. This rod outlasts the existing shim rods, is cheaper, and allows more operational flexibility. A theoretical analysis, hydraulic tests, and a mechanical evaluation have shown that an improvement can be made in plate type fuel elements by using an increased number of thinner high-strength fuel plates in the fuel element. An in-pile prototype test of such an element is now planned. An analysis of roughened surfaces indicates that economy or increases in reactor power may be gained through the use of roughened heat- transfer surfaces in nonboiling watercooled reactors. Preliminary hydraulic tests were performed and indicate that practical roughened surfaces may be formed. Out-of-pile heat-transfer tests are now planned. The theoretical analysis of geometries indicates that tube bundles, honeycomb, and concentric cylinder de

Francis, W.C.; Craig, S.E. ed.

1960-08-16T23:59:59.000Z

365

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

1997-01-01T23:59:59.000Z

366

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

1997-06-10T23:59:59.000Z

367

Studies and research concerning BNFP design and construction of a spent-fuel disassembly/encapsulation system  

SciTech Connect

Commercial light water power reactor operation in the United States is developing a cumbersome inventory of spent fuel. Systems for interim storage and handling of this fuel are being developed by the Federal Government and industry. Disassembly and canning of the spent fuel elements is one of these systems. It has the potential to double the storage capacity of a prereprocessing storage facility or to triple the capacity of conventional shipping casks. Prototype equipment and controls required to perform this operation in a dry environment have been primarily designed and fabricated at the Barnwell Nuclear Fuel Plant (BNFP). Ridihalgh, Eggers, and Associates have provided design support and fabrication of the control system. This system is capable of extracting and canning the fuel pins and compacting the nonfuel-bearing components of spent fuel assemblies at processing rates of 10 to 12 assemblies per day. The process also provides the potential for enhanced inspection and assay of spent fuel by reducing the interference encountered from the high gamma fields of the nonfuel bearing hardware.

Dabolt, R.J.

1981-04-01T23:59:59.000Z

368

NREL: Electricity Integration Research - Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities Facilities NREL's electricity integration research is conducted in state-of-the-art facilities. These facilities assist industry in the development of power systems and address the operational challenges of full system integration. The Energy Systems Integration Facility can be used to design, test, and analyze components and systems to enable economic, reliable integration of renewable electricity, fuel production, storage, and building efficiency technologies with the U.S. electricity delivery infrastructure. New grid integration capabilities at the National Wind Technology Center will allow testing of many grid integration aspects of multi-megawatt, utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize,

369

Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition  

Science Conference Proceedings (OSTI)

Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W. [and others

1995-08-01T23:59:59.000Z

370

ElectronicFabrication  

NLE Websites -- All DOE Office Websites (Extended Search)

Fabrication Fabrication Manufacturing Technologies Electronic Fabrication provides our cus- tomers solutions for the packaging design, production acceptable prototype fabrica- tion, or deliverable production fabrication. Capabilities * Final electronic product packaging from sketches and verbal instructions * Provide CAD drawing package after project completion if no formal prints are available * Complete system development and fab- rication through concurrent engineering * Concurrent engineering in prototype and production fabrication * Integrate commercial equipment into prototype system design * Implementation and modification of commercial equipment * Packaging of prototype into finalized product assembly Resources * Customer assistance from fabrication, to testing, to complete system installation

371

Independent Oversight Review, Hanford K Basin and Cold Vacuum Drying Facility- August 2012  

Energy.gov (U.S. Department of Energy (DOE))

Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations

372

User Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Lawrence Berkeley National Laboratory's National User Facilities are available for cooperative research with institutions and the private sector worldwide. The Environmental...

373

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

of Plutonium in Spent Nuclear Fuel by Self-Induced X-ray,”Requirements for Spent Nuclear Fuel Recycling Facility –Content in PWR Spent Nuclear Fuel,” European Safeguards R&D

Tobin, S. J.

2010-01-01T23:59:59.000Z

374

Diesel fuel filtration system  

SciTech Connect

The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel`s hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system.

Schneider, D. [Wisconsin Fuel and Light, Wausau, WI (United States)

1996-03-01T23:59:59.000Z

375

DESIGN [fabrication] BUILD  

E-Print Network (OSTI)

DESIGN [fabrication] BUILD proposes a new relationship among the architect, homeowner, and fabricator/assembler through the use of parametric software in order to create a truly customizable prefabricated home. This ...

Rader, Nicolas Glen

2006-01-01T23:59:59.000Z

376

MIXED-OXIDE FUEL USE IN COMMERCIAL LIGHT WATER REACTORS  

E-Print Network (OSTI)

In a Commission briefing on high-bumup fuel on March 25, 1997, the staff said that they would prepare a white paper on mixed-oxide (MOX) fuel in anticipation of a DOE program to bum excess weapons plutonium in commercial reactors. This memorandum and its attachment comprise that paper and are provided to inform the Commissioners of technical issues associated with such a program. More recently, on February 5, 1999, I was contacted by the Nuclear Control Institute regarding a paper they have written on this subject. They presented that paper to the staff in a public meeting on April 7, 1999. The Nuclear Control Institute's written paper had been provided to the staff earlier, and we have taken the paper into consideration in preparing this memorandum. Back-ground In January 1997, the U.S. Department of Energy released a record of decision for the storage and disposition of weapons-usable fissile materials. In this record, DOE recommended that excess weapons-grade plutonium be disposed of by two methods: (1) reconstituting the plutonium into mixed-oxide (MOX) fuel rods and burning it in current light water reactors, and (2) immobilizing the plutonium in glass logs with appropriate radioactive isotopes to deter theft prior to geologic disposal. Based on current information, it now appears that, if the MOX fuel method is utilized, fuel fabrication will take place at the Savannah River site in South Carolina with burning in nearby Westinghouse-type PWRs. Although DOE will probably not receive funding in FY 2000 for developing a license application, Congress has already given its approval for NRC licensing authority over a MOX fuel fabrication facility operated under

United States; William D. Travers

1999-01-01T23:59:59.000Z

377

Air Shipment of Spent Nuclear Fuel from Romania to Russia  

SciTech Connect

Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

2010-10-01T23:59:59.000Z

378

Oak Ridge Leadership Computing Facility User Update: SmartTruck...  

NLE Websites -- All DOE Office Websites (Extended Search)

Leadership Computing Facility User Update: SmartTruck Systems Startup zooms to success improving fuel efficiency of long-haul trucks by more than 10 percent Supercomputing...

379

Neutron Science Facilities Operating Status | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Science Facilities Operating Status High Flux Isotope Reactor The reactor is currently operating at 100% power for fuel cycle 449. Spallation Neutron Source SNS is shutdown...

380

NIST's New Advanced Imaging Facility Peers Inside Hydrogen ...  

Science Conference Proceedings (OSTI)

NIST's New Advanced Imaging Facility Peers Inside Hydrogen Fuel Cells. ... In a sense, the electrically neutral particles only have eyes for hydrogen. ...

2013-08-08T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mobile Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

382

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network (OSTI)

prevent serious damage to the nuclear fuel, since it is thetransportation: for nuclear plants, fuel handling is carriedSpecific Fossil Fuel Geothermal Nuclear Solid Waste Disposal

Nero, A.V.

2010-01-01T23:59:59.000Z

383

2008 FUEL CELL TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

electricity and hot water from a 400 kW fuel cell. Gills Onions' processing facility captures waste biogas2008 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 #12;2008 FUEL CELL TECHNOLOGIES MARKET REPORT i and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff

384

Patriot BioFuels | Open Energy Information  

Open Energy Info (EERE)

Place Little Rock, Arkansas Zip 72201 Product Arkansas-based biodiesel company with production facilities at Stuttgart, Arkansas. References Patriot BioFuels1 LinkedIn...

385

Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA  

Science Conference Proceedings (OSTI)

This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose reduction activities, with a focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and aocelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts. An author index and a subject index are provided to facilitate use. Both indices contain the abstract numbers from previous volumes, as well as the current volume. Information that the reader feels might be included in the next volume of this bibliography should be submitted to the BNL ALARA Center.

Dionne, B.J.; Sullivan, S.G.; Baum, J.W.

1993-12-01T23:59:59.000Z

386

National Cemetery Administration (NCA) Facilities Design ...  

Science Conference Proceedings (OSTI)

... For relatively larger facilities, evaluate the use of a hot water heating system (with natural gas and/or No. 2 oil as the fuel) and a chilled water ...

2011-02-11T23:59:59.000Z

387

Metal hydride fuel storage and method thereof  

DOE Patents (OSTI)

Disclosed herein is a metal hydride fuel storage cartridge having integrated resistive heaters that can be used in conjunction with fuel cells such as MEMS-based fuel cells. The cartridge is fabricated using micromachining methods and thin/thick film materials synthesis techniques.

Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan F. (Livermore, CA); Yu, Conrad (Antioch, CA)

2006-10-17T23:59:59.000Z

388

Remote Facilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Remote Facilities Remote Facilities Remote Facilities October 16, 2013 - 4:55pm Addthis Renewable Energy Options for Renovations in Remote Areas Photovoltaics (PV) Small Wind Daylighting Solar Water Heating Passive Solar Design Biomass Heating When a Federal building or facility is located away from existing power lines, many renewable energy technologies including photovoltaics and wind become cost-effective options when compared to extending utilities or transporting fuel for onsite generators. Photovoltaics Photovoltaics (PV) are often cost-effective in remote power applications. In these circumstances, the system is coupled with batteries and can provide complete facility power. Proper system design is critical and must account for the building electrical loads and be sized to meet that load

389

22.251 / 22.351 Systems Analysis of the Nuclear Fuel Cycle, Fall 2005  

E-Print Network (OSTI)

This course provides an in-depth technical and policy analysis of various options for the nuclear fuel cycle. Topics include uranium supply, enrichment fuel fabrication, in-core physics and fuel management of uranium, ...

Kazimi, Mujid S.

390

Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ryder Opens Natural Ryder Opens Natural Gas Vehicle Maintenance Facility to someone by E-mail Share Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Facebook Tweet about Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Twitter Bookmark Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Google Bookmark Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Delicious Rank Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on Digg Find More places to share Alternative Fuels Data Center: Ryder Opens Natural Gas Vehicle Maintenance Facility on AddThis.com... June 28, 2011 Ryder Opens Natural Gas Vehicle Maintenance Facility

391

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

392

ANL-W MOX fuel lead assemblies data report for the surplus plutonium disposition environmental impact statement  

SciTech Connect

The purpose of this document is to support the US Department of Energy (DOE) Fissile Materials Disposition Program`s preparation of the draft surplus plutonium disposition environmental impact statement (EIS). This is one of several responses to data call requests for background information on activities associated with the operation of the lead assembly (LA) mixed-oxide (MOX) fuel fabrication facility. The DOE Office of fissile Materials Disposition (DOE-MD) has developed a dual-path strategy for disposition of surplus weapons-grade plutonium. One of the paths is to disposition surplus plutonium through irradiation of MOX fuel in commercial nuclear reactors. MOX fuel consists of plutonium and uranium oxides (PuO{sub 2} and UO{sub 2}), typically containing 95% or more UO{sub 2}. DOE-MD requested that the DOE Site Operations Offices nominate DOE sites that meet established minimum requirements that could produce MOX LAs. The paper describes the following: Site map and the LA facility; process descriptions; resource needs; employment requirements; wastes, emissions, and exposures; accident analysis; transportation; qualitative decontamination and decommissioning; post-irradiation examination; LA fuel bundle fabrication; LA EIS data report assumptions; and LA EIS data report supplement.

O`Connor, D.G.; Fisher, S.E.; Holdaway, R. [and others

1997-08-01T23:59:59.000Z

393

Advanced Powertrain Research Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

95F 95F Vehicle Setup Information Vehicle architecture PHEV Test cell location Front Advanced Powertrain Research Facility Document date 10/18/2013 Vehicle dynamometer Input Revision Number 1 Test weight [lb] 3518 Notes: Target A [lb] 21.47 Target B [lb/mph] 0.21588 Target C [lb/mph^2] 0.012508 Test Fuel Information Revision Number 1 Test weight [lb] 3518 Test Fuel Information Fuel type EPA Tier II EEE HF0437 Fuel density [g/ml] 0.742 Fuel Net HV [BTU/lbm] 18475 Fuel type EPA Tier II EEE HF0437 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S o l a r L a m p s [ W / m 2 ] V e i c l e C l i m a t e C o n t r o l s e t t i n g s H o o d P o s i t i o n [ U p ] o r [ C l o s e d ] W i n d o w P o s i t i o n [ C l o s e d ] o r [ D o w n ] C y

394

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

395

High Purity Germanium Gamma-PHA Assay of Uranium Storage Pigs for 321-M Facility  

Science Conference Proceedings (OSTI)

The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The facility also includes the 324-M storage building and the passageway connecting it to 321-M. The results of the holdup assays are essential for determining compliance with the Solid Waste's Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. This report describes and documents the use of a portable HPGe detector and EG and G Dart system that contains a high voltage power supply, signal processing electronics, a personal computer with Gamma-Vision software, and space to store and manipulate multiple 4096-channel g-ray spectra to assay for 235U content in 268 uranium shipping and storage pigs. This report includes a description of three efficiency calibration configurations and also the results of the assay. A description of the quality control checks is included as well.

Dewberry, R.A.

2001-09-18T23:59:59.000Z

396

The Impact of Microbially Influenced Corrosion on Spent Nuclear Fuel and Storage Life  

SciTech Connect

A study was performed to evaluate if microbial activity could be considered a threat to spent nuclear fuel integrity. The existing data regarding the impact of microbial influenced corrosion (MIC) on spent nuclear fuel storage does not allow a clear assessment to be made. In order to identify what further data are needed, a literature survey on MIC was accomplished with emphasis on materials used in nuclear fuel fabrication, e.g., A1, 304 SS, and zirconium. In addition, a survey was done at Savannah River, Oak Ridge, Hanford, and the INEL on the condition of their wet storage facilities. The topics discussed were the SNF path forward, the types of fuel, ramifications of damaged fuel, involvement of microbial processes, dry storage scenarios, ability to identify microbial activity, definitions of water quality, and the use of biocides. Information was also obtained at international meetings in the area of biological mediated problems in spent fuel and high level wastes. Topics dis cussed included receiving foreign reactor research fuels into existing pools, synergism between different microbes and other forms of corrosion, and cross contamination.

J. H. Wolfram; R. E. Mizia; R. Jex; L. Nelson; K. M. Garcia

1996-10-01T23:59:59.000Z

397

Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel  

SciTech Connect

The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

Cowell, B.S.; Fisher, S.E.

1999-02-01T23:59:59.000Z

398

Facility repowering study. Final consultant report  

Science Conference Proceedings (OSTI)

This study evaluates the economic, fuel, and environmental implications of repowering existing nonreheat, oil-fired electrical generating facilities in California with distillate fuels, and was extended by CEC staff to include coal-derived synthetic fuels. California's older oil-fired power plants are very inefficient and repowering would significantly reduce the amount of oil burned to produce a unit of electrical energy at these facilities. Repowering would also add new generating capacity without requiring new sites. Specific power plants were categorized according to their potential for repowering. Between the initiation of the contract and the termination date, federal legislation was enacted (Power Plant and Industrial Fuel Use Act (PIFUA)), which effectively prohibits oil-based repowering. In order to make best use of the repowering work, CEC staff supplemented the study with analysis based upon replacing the distillate fuel for combustion turbine utilization with relatively clean-burning fuels derived from coal (i.e., methanol, SNG).

Not Available

1980-11-01T23:59:59.000Z

399

Use of Savannah River Site facilities for blend down of highly enriched uranium  

SciTech Connect

Westinghouse Savannah River Company was asked to assess the use of existing Savannah River Site (SRS) facilities for the conversion of highly enriched uranium (HEU) to low enriched uranium (LEU). The purpose was to eliminate the weapons potential for such material. Blending HEU with existing supplies of depleted uranium (DU) would produce material with less than 5% U-235 content for use in commercial nuclear reactors. The request indicated that as much as 500 to 1,000 MT of HEU would be available for conversion over a 20-year period. Existing facilities at the SRS are capable of producing LEU in the form of uranium trioxide (UO{sub 3}) powder, uranyl nitrate [UO{sub 2}(NO{sub 3}){sub 2}] solution, or metal. Additional processing, and additional facilities, would be required to convert the LEU to uranium dioxide (UO{sub 2}) or uranium hexafluoride (UF{sub 3}), the normal inputs for commercial fuel fabrication. This study`s scope does not include the cost for new conversion facilities. However, the low estimated cost per kilogram of blending HEU to LEU in SRS facilities indicates that even with fees for any additional conversion to UO{sub 2} or UF{sub 6}, blend-down would still provide a product significantly below the spot market price for LEU from traditional enrichment services. The body of the report develops a number of possible facility/process combinations for SRS. The primary conclusion of this study is that SRS has facilities available that are capable of satisfying the goals of a national program to blend HEU to below 5% U-235. This preliminary assessment concludes that several facility/process options appear cost-effective. Finally, SRS is a secure DOE site with all requisite security and safeguard programs, personnel skills, nuclear criticality safety controls, accountability programs, and supporting infrastructure to handle large quantities of special nuclear materials (SNM).

Bickford, W.E.; McKibben, J.M.

1994-02-01T23:59:59.000Z

400

Power Systems Development Facility progress report  

Science Conference Proceedings (OSTI)

This is a report on the progress in design and construction of the Power Systems Development Facility. The topics of the report include background information, descriptions of the advanced gasifier, advanced PFBC, particulate control devices, and fuel cell. The major activities during the past year have been the final stages of design, procurement of major equipment and bulk items, construction of the facility, and the preparation for the operation of the Facility in late 1995.

Rush, R.E.; Hendrix, H.L.; Moore, D.L.; Pinkston, T.E.; Vimalchand, P.; Wheeldon, J.M.

1995-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel fabrication facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Computational Fuel Cell Research and SOFC Modeling at Penn State  

E-Print Network (OSTI)

Computational Fuel Cell Research and SOFC Modeling at Penn State Chao-Yang Wang Professor of PEM Fuel Cells SOFC Modeling & Simulation Fuel Cell Controls Summary #12;ECEC Overview Vision: provide, DMFC, and SOFC #12;ECEC Facilities (>5,000 sq ft) Fuel Cell/Battery Experimental Labs Fuel Cell

402

Occupational dose reduction at Department of Energy contractor facilities: Bibliography of selected readings in radiation protection and ALARA; Volume 5  

Science Conference Proceedings (OSTI)

Promoting the exchange of information related to implementation of the As Low as Reasonably Achievable (ALARA) philosophy is a continuing objective for the Department of Energy (DOE). This report was prepared by the Brookhaven National Laboratory (BNL) ALARA Center for the DOE Office of Health. It contains the fifth in a series of bibliographies on dose reduction at DOE facilities. The BNL ALARA Center was originally established in 1983 under the sponsorship of the Nuclear Regulatory Commission to monitor dose-reduction research and ALARA activities at nuclear power plants. This effort was expanded in 1988 by the DOE`s Office of Environment, Safety and Health, to include DOE nuclear facilities. This bibliography contains abstracts relating to various aspects of ALARA program implementation and dose-reduction activities, with a specific focus on DOE facilities. Abstracts included in this bibliography were selected from proceedings of technical meetings, journals, research reports, searches of the DOE Energy, Science and Technology Database (in general, the citation and abstract information is presented as obtained from this database), and reprints of published articles provided by the authors. Facility types and activities covered in the scope of this report include: radioactive waste, uranium enrichment, fuel fabrication, spent fuel storage and reprocessing, facility decommissioning, hot laboratories, tritium production, research, test and production reactors, weapons fabrication and testing, fusion, uranium and plutonium processing, radiography, and accelerators. Information on improved shielding design, decontamination, containments, robotics, source prevention and control, job planning, improved operational and design techniques, as well as on other topics, has been included. In addition, DOE/EH reports not included in previous volumes of the bibliography are in this volume (abstracts 611 to 684). This volume (Volume 5 of the series) contains 217 abstracts.

Dionne, B.J.; Sullivan, S.G.; Baum, J.W. [Brookhaven National Lab., Upton, NY (United States)

1994-01-01T23:59:59.000Z

403

Fabrication and Testing  

Science Conference Proceedings (OSTI)

Aug 6, 2010 ... Fabrication of Artificial Bone by the Combination of Electrospinning, Extrusion and Slurry Processes: Hiep Nguyen1; Byong-Taek Lee1; ...

404

Fuel Type Fuel Treated as of  

E-Print Network (OSTI)

This report was prepared by the Department of Energy (DOE) in response to Congressional direction included in the Energy and Water Development Appropriations Act for FY 2006. The Congressional language states “The Committee directs the Department to undertake a study to evaluate and propose a disposal solution for the entire 62 tons of sodium-bonded spent nuclear fuel (SNF) and to consider what minimal amount of fuel is needed for future experiments under the Advanced Fuel Cycle Initiative (AFCI).” The inventory of sodium-bonded spent fuel is stored in Idaho or planned for shipment to Idaho. Because DOE is committed to meeting its agreement with the State (Settlement and Consent order issued on October 17, 1995, in the actions of Public Service Co. of Colorado v. Batt, No. CV 91-0035-S-EJL [D. Id.] and United States v. Batt, No. CV 91-0054-EJL [D. Id]), all spent fuel, including sodium-bonded spent fuel, must leave Idaho by 2035. Sodium-bonded fuel was principally used in three different reactors: Experimental Breeder Reactor (EBR-II), Enrico Fermi Atomic Power Plant (Fermi-1), and Fast Flux Test Facility (FFTF). The quantity of fuel from each reactor, along with a small quantity that is at Sandia National Laboratory, is shown in the table below.

Fftf Driver

2005-01-01T23:59:59.000Z

405

Welding austenitic steel clads for fast reactor fuel pins  

SciTech Connect

ABS>From symposium on fuel and elements for fast reactors; Brussels. Belgium (2 Jul 1973). Developmental programs aimed at fabrication of stainless steelclad PuO/sub 2/ fuel pins are described. Information and data are included on welding fast reactor fuel cans, methods of reducing the incidence of weld cracking, effects of weld stresses, and fuel plug design. (JRD)

Papeleux, P.; Flipot, A.J.; Lafontaine, I.

1973-01-01T23:59:59.000Z

406

SAVANNAH RIVER SITE'S H-CANYON FACILITY: RECOVERY AND DOWN BLEND URANIUM FOR BENEFICIAL USE  

SciTech Connect

For over fifty years, the H Canyon facility at the Savannah River Site (SRS) has performed remotely operated radiochemical separations of irradiated targets to produce materials for national defense. Although the materials production mission has ended, the facility continues to play an important role in the stabilization and safe disposition of proliferable nuclear materials. As part of the US HEU Disposition Program, SRS has been down blending off-specification (off-spec) HEU to produce LEU since 2003. Off-spec HEU contains fission products not amenable to meeting the American Society for Testing and Material (ASTM) commercial fuel standards prior to purification. This down blended HEU material produced 301 MT of ~5% enriched LEU which has been fabricated into light water reactor fuel being utilized in Tennessee Valley Authority (TVA) reactors in Tennessee and Alabama producing economic power. There is still in excess of ~10 MT of off-spec HEU throughout the DOE complex or future foreign and domestic research reactor returns that could be recovered and down blended for beneficial use as either ~5% enriched LEU, or for use in subsequent LEU reactors requiring ~19.75% enriched LEU fuel.

Magoulas, V.

2013-05-27T23:59:59.000Z

407

MEMS-based fuel cells with integrated catalytic fuel processor and method thereof  

Science Conference Proceedings (OSTI)

Described herein is a means to incorporate catalytic materials into the fuel flow field structures of MEMS-based fuel cells, which enable catalytic reforming of a hydrocarbon based fuel, such as methane, methanol, or butane. Methods of fabrication are also disclosed.

Jankowski, Alan F. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Havstad, Mark A. (Davis, CA)

2011-08-09T23:59:59.000Z

408

Status of IFR fuel cycle demonstration  

SciTech Connect

The next major step in Argonne`s Integral Fast Reactor (IFR) Program is demonstration of the pyroprocess fuel cycle, in conjunction with continued operation of EBR-II. The Fuel Cycle Facility (FCF) is being readied for this mission. This paper will address the status of facility systems and process equipment, the initial startup experience, and plans for the demonstration program.

Lineberry, M.J.; Phipps, R.D.; McFarlane, H.F.

1993-09-01T23:59:59.000Z

409

Improved nuclear fuel assembly grid spacer  

DOE Patents (OSTI)

An improved fuel assembly grid spacer and method of retaining the basic fuel rod support elements in position within the fuel assembly containment channel. The improvement involves attachment of the grids to the hexagonal channel and of forming the basic fuel rod support element into a grid structure, which provides a design which is insensitive to potential channel distortion (ballooning) at high fluence levels. In addition the improved method eliminates problems associated with component fabrication and assembly.

Marshall, John (San Jose, CA); Kaplan, Samuel (Los Gatos, CA)

1977-01-01T23:59:59.000Z

410

Renewable Energy Co-Location of Distribution Facilities (Virginia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Co-Location of Distribution Facilities (Virginia) Co-Location of Distribution Facilities (Virginia) Renewable Energy Co-Location of Distribution Facilities (Virginia) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity generated at its

411

FABRICATE AND TEST AN ADVANCED NON-POLLUTING TURBINE DRIVE GAS GENERATOR  

SciTech Connect

In September 2000 the Department of Energy's National Energy Technology Laboratory (DOE/NETL) contracted with Clean Energy Systems, Inc. (CES) of Sacramento, California to design, fabricate, and test a 20 MW{sub t} (10 MW{sub e}) gas generator. Program goals were to demonstrate a non-polluting gas generator at temperatures up to 3000 F at 1500 psi, and to demonstrate resulting drive gas composition, comprising steam and carbon dioxide substantially free of pollutants. Following hardware design and fabrication, testing, originally planned to begin in the summer of 2001, was delayed by unavailability of the contracted test facility. CES designed, fabricated, and tested the proposed gas generator as originally agreed. The CES process for producing near-zero-emissions power from fossil fuels is based on the near-stoichiometric combustion of a clean gaseous fuel with oxygen in the presence of recycled water, to produce a high-temperature, high-pressure turbine drive fluid comprising steam and carbon dioxide. Tests demonstrated igniter operation over the prescribed ranges of pressure and mixture ratios. Ignition was repeatable and reliable through more than 100 ignitions. Injector design ''A'' was operated successfully at both low power ({approx}20% of rated power) and at rated power ({approx}20 MW{sub t}) in more than 95 tests. The uncooled gas generator configuration (no diluent injectors or cooldown chambers installed) produced drive gases at temperatures approaching 3000 F and at pressures greater than 1550 psia. The fully cooled gas generator configuration, with cooldown chambers and injector ''A'', operated consistently at pressures from 1100 to 1540 psia and produced high pressure, steam-rich turbine drive gases at temperatures ranging from {approx}3000 to as low as 600 F. This report includes description of the intended next steps in the gas generator technology demonstration and traces the anticipated pathway to commercialization for the gas generator technology developed in this program.

Eugene Baxter; Roger E. Anderson; Stephen E. Doyle

2003-06-01T23:59:59.000Z

412

NETL: Research Capabilities and Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities and Facilities Research Capabilities and Facilities Onsite Research Research Capabilities and Facilities Lab