National Library of Energy BETA

Sample records for fuel expenditure analysis

  1. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  2. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  3. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  4. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  5. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  6. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  7. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Fuel Oil Consumption and Expenditures for Non-Mall Buildings, 2003" ,"All Buildings* Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  8. Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings...

  9. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  10. Nonresidential buildings energy consumption survey: 1979 consumption and expenditures. Part 2. Steam, fuel oil, LPG, and all fuels

    SciTech Connect (OSTI)

    Patinkin, L.

    1983-12-01

    This report presents data on square footage and on total energy consumption and expenditures for commercial buildings in the contiguous United States. Also included are detailed consumption and expenditures tables for fuel oil or kerosene, liquid petroleum gas (LPG), and purchased steam. Commercial buildings include all nonresidential buildings with the exception of those where industrial activities occupy more of the total square footage than any other type of activity. 7 figures, 23 tables.

  11. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  12. Effects of the R and D tax credit on energy R and D expenditures: an econometric analysis

    SciTech Connect (OSTI)

    Moe, R.J.; Kee, J.R.; Lackey, K.C.; Cronin, F.J.

    1985-02-01

    Objective of the study was to estimate the effects on industrial energy research and development (R and D) expenditures of the R and D Tax Credit component of the Economic Recovery Tax Act of 1981. Two tasks were performed. The first task was to collect data on industrial R and D expenditures, sales, oil prices, and price deflators. The R and D expenditure data were obtained from the National Science Foundation; other data were collected from Commerce Department and Department of Energy publications. The second task was to perform an econometric analysis of the effects of the tax credit on industrial R and D expenditures. Equations relating: (1) total; and (2) energy-related R and D expenditures to sales, oil prices, and a variable representing the availability of the tax credit were estimated, using data for each of seven manufacturing industries and eleven years. The analysis showed that the tax credit caused real total industrial R and D expenditures to be 9.1% greater than they would have been without the credit, but caused real energy industrial R and D expenditures to be 13.8% less than they would have been without the tax credit.

  13. Accident tolerant fuel analysis

    SciTech Connect (OSTI)

    Smith, Curtis; Chichester, Heather; Johns, Jesse; Teague, Melissa; Tonks, Michael Idaho National Laboratory; Youngblood, Robert

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced ''RISMC toolkit'' that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional ''accident-tolerant'' (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  14. Accident Tolerant Fuel Analysis

    SciTech Connect (OSTI)

    Curtis Smith; Heather Chichester; Jesse Johns; Melissa Teague; Michael Tonks; Robert Youngblood

    2014-09-01

    Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for risk-informed margins management by improving economics and reliability, and sustaining safety, of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced RISMC toolkit that enables more accurate representation of NPP safety margin. In order to carry out the R&D needed for the Pathway, the Idaho National Laboratory is performing a series of case studies that will explore methods- and tools-development issues, in addition to being of current interest in their own right. One such study is a comparative analysis of safety margins of plants using different fuel cladding types: specifically, a comparison between current-technology Zircaloy cladding and a notional accident-tolerant (e.g., SiC-based) cladding. The present report begins the process of applying capabilities that are still under development to the problem of assessing new fuel designs. The approach and lessons learned from this case study will be included in future Technical Basis Guides produced by the RISMC Pathway. These guides will be the mechanism for developing the specifications for RISMC tools and for defining how plant decision makers should propose and evaluate margin recovery strategies.

  15. Minority Transportation Expenditure Allocation Model

    Energy Science and Technology Software Center (OSTI)

    1993-04-12

    MITRAM (Minority TRansportation expenditure Allocation Model) can project various transportation related attributes of minority (Black and Hispanic) and majority (white) populations. The model projects vehicle ownership, vehicle miles of travel, workers, new car and on-road fleet fuel economy, amount and share of household income spent on gasoline, and household expenditures on public transportation and taxis. MITRAM predicts reactions to sustained fuel price changes for up to 10 years after the change.

  16. Commercial Buildings Energy Consumption and Expenditures 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  17. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  18. State energy price and expenditure report 1994

    SciTech Connect (OSTI)

    1997-06-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1994. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1994, Consumption Estimates (SEDR), published in October 1996. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources. Documentation is included describing the development of price estimates, data sources, and calculation methods. 316 tabs.

  19. State energy price and expenditure report, 1995

    SciTech Connect (OSTI)

    1998-08-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the US. The estimates developed in the State Energy Price and Expenditure Data System (SEPEDS) are provided by energy source and economic sector and are published for the years 1970 through 1995. Data for all years are available on a CD-ROM and via Internet. Consumption estimates used to calculate expenditures and the documentation for those estimates are taken from the State Energy Data Report 1995, Consumption Estimates (SEDR), published in December 1997. Expenditures are calculated by multiplying the price estimates by the consumption estimates, which are adjusted to remove process fuel; intermediate petroleum products; and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar, and photovoltaic energy sources.

  20. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Fuel Cell Comparison of Distributed Power Generation Technologies Fuel-Cycle Energy and Emissions Analysis with the GREET Model Full Fuel-Cycle ...

  1. Thermal Analysis of a TREAT Fuel Assembly

    SciTech Connect (OSTI)

    Papadias, Dionissios; Wright, Arthur E.

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  2. Fuel Spray Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Spray Analysis Researchers inspect X-ray focusing optics at the Vehicle Technologies beamline at Argonne's Advenced Photon Source. The beamline uses one of the world's brightest sources of X-rays to study fuel injection and sprays. Researchers inspect X-ray focusing optics at the Vehicle Technologies beamline at Argonne's Advenced Photon Source. The beamline uses one of the world's brightest sources of X-rays to study fuel injection and sprays. Detailed information about combustion is

  3. NREL: Energy Analysis - Hydrogen and Fuel Cells Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cells Technology Analysis NREL's hydrogen systems analysis activities provide direction, insight, and support for the development, demonstration, and deployment of a broad range of hydrogen technologies. Analysis focuses on hydrogen production, storage, and delivery systems for fuel cell electric vehicles (FCEVs) as well as stationary fuel cells and emerging-market applications such as material handling and backup power. NREL's hydrogen systems analysts evaluate R&D goals

  4. Economic Analysis of Alternative Fuel School Buses

    SciTech Connect (OSTI)

    Laughlin, M.

    2004-04-01

    This Clean Cities final report provides a general idea of the potential economic impacts of choosing alternative fuels for school bus fleets. It provides information on different school bus types, as well as analysis of the three main types of alternative fuel used in school bus fleets today (natural gas, propane, and biodiesel).

  5. NREL: Energy Analysis - Vehicles and Fuels Research Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis and Integration Evaluates advanced vehicle technologies to determine their impact on fuel economy, vehicle performance, exhaust emissions, and more. Transportation...

  6. State energy price and expenditure report 1989

    SciTech Connect (OSTI)

    Not Available

    1991-09-30

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates for the 50 States, the District of Columbia, and the United States. The estimates are provided by energy source (e.g., petroleum, natural gas, coal, and electricity) and by major consuming or economic sector. This report is an update of the State Energy Price and Expenditure Report 1988 published in September 1990. Changes from the last report are summarized in a section of the documentation. Energy price and expenditure estimates are published for the years 1970, 1975, 1980, and 1985 through 1989. Documentation follows the tables and describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. Consumption estimates used to calculate expenditures, and the documentation for those estimates, are from the State Energy Data Report, Consumption Estimates, 1960--1989 (SEDR), published in May 1991. Expenditures are calculated by multiplying the price estimates by the consumption estimates, adjusted to remove process fuel and intermediate product consumption. All expenditures are consumer expenditures, that is, they represent estimates of money directly spent by consumers to purchase energy, generally including taxes. 11 figs., 43 tabs.

  7. Fuel Cycle System Analysis Handbook

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty diagrams, which show at a glance combined uncertainty information, section 9.2 has a new set of simpler graphs that show the impact on fuel cycle costs for once through, 1-tier, and 2-tier scenarios as a function of key input parameters.

  8. Renewable Fuels Legislation Impact Analysis

    Reports and Publications (EIA)

    2005-01-01

    An analysis based on an extension of the ethanol supply curve in our model to allow for enough ethanol production to meet the requirements of S. 650. This analysis provides an update of the May 23, 2005 analysis, with revised ethanol production and cost assumptions.

  9. Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...

    Open Energy Info (EERE)

    Fuel CO2 Emissions Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany...

  10. NREL: Hydrogen and Fuel Cells Research - Webinar August 11: Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak Building Energy August 5, 2015 The Energy Department's Fuel Cell Technologies Office will present a live webinar...

  11. Thermal Hydraulic Analysis of Spent Fuel Casks

    Energy Science and Technology Software Center (OSTI)

    1997-10-08

    COBRA-SFS (Spent Fuel Storage) is a code for thermal-hydraulic analysis of multi-assembly spent fuel storage and transportation systems. It uses a lumped parameter finite difference approach to predict flow and temperature distributions in spent fuel storage systems and fuel assemblies, under forced and natural convection heat transfer conditions. Derived from the COBRA family of codes, which have been extensively evaluated against in-pile and out-of-pile data, COBRA-SFS retains all the important features of the COBRA codesmore » for single phase fluid analysis, and extends the range application to include problems with two-dimensional radiative and three-dimensional conductive heat transfer. COBRA-SFS has been used to analyze various single- and multi-assembly spent fuel storage systems containing unconsolidated and consolidated fuel rods, with a variety of fill media, including air, helium and vacuum. Cycle 0 of COBRA-SFS was released in 1986. Subsequent applications of the code led to development of additional capabilities, which resulted in the release of Cycle 1 in February 1989. Since then, the code has undergone an independent technical review as part of a submittal to the Nuclear Regulatory Commission for a generic license to apply the code to spent fuel storage system analysis. Modifications and improvements to the code have been combined to form Cycle 2. Cycle 3., the newest version of COBRA-SFS, has been validated and verified for transient applications, such as a storage cask thermal response to a pool fire.« less

  12. Palmetto Fuel Cell Analysis and Design | Open Energy Information

    Open Energy Info (EERE)

    Analysis and Design Jump to: navigation, search Name: Palmetto Fuel Cell Analysis and Design Place: Columbia, South Carolina Product: Analysis and design spinout of the University...

  13. State energy price and expenditure report 1993

    SciTech Connect (OSTI)

    1995-12-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 states and the District of Columbia and in aggregate for the US. The five economic sectors used in SEPER correspond to those used in SEDR and are residential, commercial, industrial, transportation, and electric utility. Documentation in appendices describe how the price estimates are developed, provide conversion factors for measures used in the energy analysis, and include a glossary. 65 tabs.

  14. Webinar: Analysis Using Fuel Cell Material Handling Equipment for Shaving

    Broader source: Energy.gov (indexed) [DOE]

    Peak Building Energy | Department of Energy Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Analysis Using Fuel Cell Material Handling Equipment (MHE) for Shaving Peak Building Energy" held on August 11, 2015. PDF icon Analysis Using Fuel Cell MHE for Shaving Peak Building Energy Webinar Slides More Documents & Publications DOE Analysis Related to H2USA Early-Stage Market Change and Effects of the Recovery Act Fuel Cell

  15. Techno-Economic Analysis of Liquid Fuel Production from Woody...

    Office of Scientific and Technical Information (OSTI)

    ...Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Citation Details In-Document Search Title: Techno-Economic Analysis ...

  16. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and economic feasibility of ...

  17. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  18. 2009 Energy Expenditure Per Person | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Expenditure Per Person 2009 Energy Expenditure Per Person 2009 Energy Expenditure Per Person...

  19. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  20. Fuel Cell Technology Status Analysis Project: Partnership Opportunities

    SciTech Connect (OSTI)

    2015-09-01

    Fact sheet describing the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  1. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  2. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions and Fuel Economy Analysis Photo of a man hooking up test instruments to an engine mounted on an engine dynamometer. An NREL engineer maintains an engine fuel economy and...

  3. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Broader source: Energy.gov [DOE]

    This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems.

  4. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel Cells The Fuel Cell Technologies Office's systems analysis program uses a consistent set of models and data for transparent analytical evaluations. The following fact sheets provide an overview and individual summaries of the models and tools used for systems analysis of hydrogen and fuel cells. View the Overview Fact Sheet and

  5. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet describes opportunities for leading fuel cell industry partners from the United States and abroad to participate in an objective and credible fuel cell technology performance and durability analysis by sharing their raw fuel cell test data related to operations, maintenance, safety, and cost with the National Renewable Energy Laboratory via the Hydrogen Secure Data Center.

  6. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fueling Station in Honolulu, Hawaii Feasibility Analysis Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis This feasibility report assesses the technical and economic feasibility of developing a vacant, undeveloped General Services Administration-owned property into an income-producing site equipped with a hydrogen fueling station and a covered 175-stall parking structure with roof-top solar panels. According to the analysis, the proposed station will

  7. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  8. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity (1) Natural Gas Fuel Oil Coal Purchased Steam LPG/Propane Other Average Total Note(s): Source(s): 17.05 6028.63 Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of the total Federal energy bill. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-4, p. 93 for prices and

  9. Feasibility Study of MOX Fuel Online Burnup Analysis

    SciTech Connect (OSTI)

    Dennis, M.L.; Usman, S.

    2006-07-01

    This research is an extension of well established Non-Destructive Analysis of UO fuel using gamma spectroscopy of Cs-137 and other related isotopes. Given the performance similarities between UO fuel and MOX fuel, investigations are underway to develop similar correlation for MOX. MOX fuel burnup and decay simulations are being performed using ORIGEN-ARP (Oak Ridge Isotope Generation and Depletion Code - Automatic Rapid Processing). Simulation results are being analyzed and will be used to determine performance specifications of a detection system for field applications. Analysis of isotopic activity from irradiated fuel will be used to develop correlations to determine burn-up and Plutonium content of MOX fuel. These results will be particularly useful in view of the recent interest in MOX fuel. (authors)

  10. Image analysis for remote examination of fuel pins

    SciTech Connect (OSTI)

    Cook, J.H.; Nayak, U.P.

    1982-01-01

    An image analysis system operating in the Wing 9 Hot Cell Facility at Los Alamos National Laboratory provides quantitative microstructural analyses of irradiated fuels and materials. With this system, fewer photomicrographs are required during postirradiation microstructural examination and data are available for analysis much faster. The system has been used successfully to examine Westinghouse Advanced Reactors Division experimental fuel pins.

  11. NREL: Hydrogen and Fuel Cells Research - Energy Analysis and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis and Tools NREL offers energy analysis tools, models, and other resources for researchers, developers, investors, and others interested in the viability, analysis, and development of hydrogen and fuel cell technologies and systems. Learn about NREL's hydrogen and fuel cell system analysis projects. ADOPT: Automotive Deployment Options Projection Tool Modeling tool that predicts consumer demand for different vehicle types based on income distribution and other demographic

  12. NREL: Hydrogen and Fuel Cells Research - Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Analysis Graphic showing a map and chart. Hydrogen infrastructure simulation models focus on the spatial and temporal deployment of vehicles and fueling infrastructure to provide insights into investment decisions and policy support options. Image of a generic bar graph. H2FAST: Hydrogen Financial Analysis Scenario Tool Delivers in-depth financial analysis for hydrogen fueling stations. NREL's hydrogen systems analysis activities provide direction, insight, and support for the

  13. Well-to-wheels analysis of fuel-cell vehicle/fuel systems.

    SciTech Connect (OSTI)

    Wang, M.

    2002-01-22

    Major automobile companies worldwide are undertaking vigorous research and development efforts aimed at developing fuel-cell vehicles (FCVs). Proton membrane exchange (PEM)-based FCVs require hydrogen (H{sub 2}) as the fuel-cell (FC) fuel. Because production and distribution infrastructure for H{sub 2} off board FCVs as a transportation fuel does not exist yet, researchers are developing FCVs that can use hydrocarbon fuels, such as methanol (MeOH) and gasoline, for onboard production of H{sub 2} via fuel processors. Direct H{sub 2} FCVs have no vehicular emissions, while FCVs powered by hydrocarbon fuels have near-zero emissions of criteria pollutants and some carbon dioxide (CO{sub 2}) emissions. However, production of H{sub 2} can generate a large amount of emissions and suffer significant energy losses. A complete evaluation of the energy and emission impacts of FCVs requires an analysis of energy use and emissions during all stages, from energy feedstock wells to vehicle wheels--a so-called ''well-to-wheels'' (WTW) analysis. This paper focuses on FCVs powered by several transportation fuels. Gasoline vehicles (GVs) equipped with internal combustion engines (ICEs) are the baseline technology to which FCVs are compared. Table 1 lists the 13 fuel pathways included in this study. Petroleum-to-gasoline (with 30-ppm sulfur [S] content) is the baseline fuel pathway for GVs.

  14. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

  15. Automotive and MHE Fuel Cell System Cost Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Analysis of Fuel Cells for Material Handling Applications 2 Presentation Outline * Background * Approach * System Design * Fuel Cell Stack Design * Stack, BOP and System Cost Models * System Cost Summary * Results Summary 3 * 10 and 25 kW PEM Fuel Cells for Material Handling Equipment (MHE) applications Background 5-year program to provide feedback to DOE on

  16. VHTR Prismatic Super Lattice Model for Equilibrium Fuel Cycle Analysis

    SciTech Connect (OSTI)

    G. S. Chang

    2006-09-01

    The advanced Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on innovative features and passive systems. One of the VHTRs innovative features is the reliance on ceramic-coated fuel particles to retain the fission products under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel prismatic block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, if the fuel kernels are not perfect black absorbers, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced Kernel-by-Kernel (K-b-K) hexagonal super lattice model can be used to address and update the burnup dependent Dancoff effect during the EqFC analysis. The developed Prismatic Super Homogeneous Lattice Model (PSHLM) is verified by comparing the calculated burnup characteristics of the double-heterogeneous Prismatic Super Kernel-by-Kernel Lattice Model (PSK-b-KLM). This paper summarizes and compares the PSHLM and PSK-b-KLM burnup analysis study and results. This paper also discusses the coupling of a Monte-Carlo code with fuel depletion and buildup code, which provides the fuel burnup analysis tool used to produce the results of the VHTR EqFC burnup analysis.

  17. Comparison of energy expenditures by elderly and non-elderly households: 1975 and 1985

    SciTech Connect (OSTI)

    Siler, A.

    1980-05-01

    The relative position of the elderly in the population is examined and their characteristic use of energy in relation to the total population and their non-elderly counterparts is observed. The 1985 projections are based on demographic, economic, and socio-economic, and energy data assumptions contained in the 1978 Annual Report to Congress. The model used for estimating household energy expenditure is MATH/CHRDS - Micro-Analysis of Transfers to Households/Comprehensive Human Resources Data System. Characteristics used include households disposable income, poverty status, location by DOE region and Standard Metropolitan Statistical Area (SMSA), and race and sex of the household head as well as age. Energy use by fuel type will be identified for total home fuels, including electricity, natural gas, bottled gas and fuel oil, and for all fuels, where gasoline use is also included. Throughout the analysis, both income and expenditure-dollar amounts for 1975 and 1985 are expressed in constant 1978 dollars. Two appendices contain statistical information.

  18. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure...

  19. Job Creation Analysis in the Hydrogen and Fuel Cell Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Industry Job Creation Analysis in the Hydrogen and Fuel Cell Industry Presented by Paul Aresta at the Connecticut Center for Advanced Technology, Inc. on March 30, 2009 PDF...

  20. Data Analysis of Early Fuel Cell Market Demonstrations (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

    2009-11-17

    Presentation about early fuel cell markets, the National Renewable Energy Laboratory's Hydrogen Secure Data Center and its role in data analysis and demonstrations, and composite data products, and results reported to multiple stakeholders.

  1. Impact analysis of spent fuel jacket assemblies

    SciTech Connect (OSTI)

    Aramayo, G.A.

    1994-06-01

    As part of the analyses performed in support of the reracking of the High Flux Isotope Reactor pool, it became necessary to prove the structural integrity of the spent fuel jacket assemblies subjected to gravity drop that result from postulated accidents associated with the handling of these assemblies while submerged in the pool. The spent fuel jacket assemblies are an integral part of the reracking project, and serve to house fuel assemblies. The structure integrity of the jacket assemblies from loads that result from impact from a height of 10 feet onto specified targets has been performed analytically using the computer program LS-DYNA3D. Nine attitudes of the assembly at the time of impact have been considered. Results of the analyses show that there is no failure of the assemblies as a result of the impact scenarios considered.

  2. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  3. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

  4. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    SciTech Connect (OSTI)

    Charles W. Solbrig; Chad Pope; Jason Andrus

    2014-09-01

    This paper estimates the temperature of high Pu content ZPPR fuel while in storage to determine the probablilty of fuel damage during storage. The Zero Power Physics Reactor (ZPPR) is an experimental reactor which has been decomissioned. It ran only at extremely low power, for testing nuclear reactor designs and was operated as a criticality facility from April 18, 1969 until decommissioned in 1990. Its fuel was manufactured in 1967 and has been in storage since the reactor was decomissioned. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible fuel damage. Any damage to the cladding would be expected to lead to the fuel hydriding and oxidizing over a long period of storage as was described in the analysis of the damage to the ZPPR uranium fuel resulting in the fuel becoming unuseable and a large potential source of contamination. (Ref. Solbrig, 1994). A series of computer runs were made to scope out the range of temperatures that can occur in the ZPPR fuel in storage. The maximum calculated conservative fuel temperature is high (292 degrees C [558 degrees F]) in spite of the fact that the fuel element heat generation rates seem quite low, between 35 and 10 W for containers (called clamshells) full of fuel. However, the ZPPR storage bins, built for safeguards, are very effective insulators. The calculated clamshells and the cavity doors temperatures are also high. No record exists of people receiving skin burns by touching the cavity doors or clamshells, which indicates the computed temperatures may be higher than actual. (Note, gloves are worn when handling hotter clamshells.) Given the high calculated temperatures, a cursory measurement program was conducted to calibrate the calculated results. The measurement of bin doors, cavity doors, and clamshell temperatures would be easy to make if it were not for regulations resulting from security and potential contamination. Due to conservative assumptions in the model like high heat transfer contact resistance between contact surfaces (such as between the fuel and the clamshell), the calculated temperatures are intended to be overestimated. The temperatures of the stored fuel in a particular clamshell are dependent, among other parameters, on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel in the clamshell (parallel or perpendicular to the door). The distribution of fuel in this analysis was selected to give higher temperatures than actual distributions might give. Due to possible contamination and security concerns, fuel temperatures could not be measured but the bin doors, storage sleeve doors, and clamshell temperatures could be and were measured. The comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are higher than the actual temperatures. This implies that the calculated fuel temperatures are higher than actual also. The maximum calculated fuel temperature with the most conservative assumptions (292 degrees C, (558 degrees F)) is significantly below the no fuel failure criterion of 600 degrees C (1,112 degrees F). Some fuel failures have occurred but these results indicate that the failures are not due to high temperatures encountered in fuel storage.

  5. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore »be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  6. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  7. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  8. Automotive and MHE Fuel Cell System Cost Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive and MHE Fuel Cell System Cost Analysis Automotive and MHE Fuel Cell System Cost Analysis Presentation slides from the Fuel Cell Technologies Office webinar, "Automotive and MHE Fuel Cell System Cost Analysis," held April 16, 2013. Slides include presentations by Battelle and Strategic Analysis. PDF icon Automotive and MHE Fuel Cell System Cost Analysis Webinar Slides More Documents & Publications Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer

  9. Fuel Cell Power Model for CHP and CHHP Economics and Performance Analysis (Presentation)

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.

    2010-03-30

    This presentation describes the fuel cell power model for CHP and CHHP economics and performance analysis.

  10. Spent fuel pool analysis using TRACE code

    SciTech Connect (OSTI)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S.

    2012-07-01

    The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

  11. ANALYSIS AND EXAMINATION OF MOX FUEL FROM NONPROLIFERATION PROGRAMS

    SciTech Connect (OSTI)

    McCoy, Kevin; Machut, Dr McLean; Morris, Robert Noel; Blanpain, Patrick; Hemrick, James Gordon

    2013-01-01

    The U.S. Department of Energy has decided to dispose of a portion of the nation s surplus plutonium by reconstituting it into mixed oxide (MOX) fuel and irradiating it in commercial power reactors. Four lead assemblies were manufactured and irradiated to a maximum fuel rod burnup of 47.3 MWd/kg heavy metal. This was the first commercial irradiation of MOX fuel with a 240Pu/239Pu ratio of less than 0.10. Five fuel rods with varying burnups and plutonium contents were selected from one of the assemblies and shipped to Oak Ridge National Laboratory for hot cell examination. The performance of the rods was analyzed with AREVA s next-generation GALILEO code. The results of the analysis confirmed that the fuel rods had performed safely and predictably, and that GALILEO is applicable to MOX fuel with a low 240Pu/239Pu ratio as well as to standard MOX. The results are presented and compared to the GALILEO database. In addition, the fuel cladding was tested to confirm that traces of gallium in the fuel pellets had not affected the mechanical properties of the cladding. The irradiated cladding was found to remain ductile at both room temperature and 350 C for both the axial and circumferential directions.

  12. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  13. SNF fuel retrieval sub project safety analysis document

    SciTech Connect (OSTI)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  14. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    3.3 Commercial Sector Expenditures March 2012 3.3.3 Commercial Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Natural Gas Petroleum (2) Total 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 148.6 37.0 17.0 202.6 148.9 37.2 17.1 203.2 145.9 36.2

  15. Enhanced Accident Tolerant Fuels for LWRS - A Preliminary Systems Analysis

    SciTech Connect (OSTI)

    Gilles Youinou; R. Sonat Sen

    2013-09-01

    The severe accident at Fukushima Daiichi nuclear plants illustrates the need for continuous improvements through developing and implementing technologies that contribute to safe, reliable and cost-effective operation of the nuclear fleet. Development of enhanced accident tolerant fuel contributes to this effort. These fuels, in comparison with the standard zircaloy UO2 system currently used by the LWR industry, should be designed such that they tolerate loss of active cooling in the core for a longer time period (depending on the LWR system and accident scenario) while maintaining or improving the fuel performance during normal operations, operational transients, and design-basis events. This report presents a preliminary systems analysis related to most of these concepts. The potential impacts of these innovative LWR fuels on the front-end of the fuel cycle, on the reactor operation and on the back-end of the fuel cycle are succinctly described without having the pretension of being exhaustive. Since the design of these various concepts is still a work in progress, this analysis can only be preliminary and could be updated as the designs converge on their respective final version.

  16. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  17. SEDS CSV File Documentation: Price and Expenditure

    Gasoline and Diesel Fuel Update (EIA)

    Price and Expenditure Estimates The State Energy Data System (SEDS) comma-separated value (CSV) files contain the price and expenditure estimates shown in the tables located on the SEDS website. There are three files that contain estimates for all states and years. Prices contains the price estimates for all states and Expenditures contains the expenditure estimates for all states. The third file, Adjusted Consumption for Expenditure Calculations contains adjusted consumption estimates used in

  18. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  19. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect (OSTI)

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  20. Thermal analysis for fuel handling system for sodium cooled reactor considering minor actinide-bearing metal fuel.

    SciTech Connect (OSTI)

    Chikazawa, Y.; Grandy, C.; Nuclear Engineering Division

    2009-03-01

    The Advanced Burner Reactor (ABR) is one of the components of the Global Nuclear Energy Partnership (GNEP) used to close the fuel cycle. ABR is a sodium-cooled fast reactor that is used to consume transuranic elements resulting from the reprocessing of light water reactor spent nuclear fuel. ABR-1000 [1000 MW(thermal)] is a fast reactor concept created at Argonne National Laboratory to be used as a reference concept for various future trade-offs. ABR-1000 meets the GNEP goals although it uses what is considered base sodium fast reactor technology for its systems and components. One of the considerations of any fast reactor plant concept is the ability to perform fuel-handling operations with new and spent fast reactor fuel. The transmutation fuel proposed as the ABR fuel has a very little experience base, and thus, this paper investigates a fuel-handling concept and potential issues of handling fast reactor fuel containing minor actinides. In this study, two thermal analyses supporting a conceptual design study on the ABR-1000 fuel-handling system were carried out. One analysis investigated passive dry spent fuel storage, and the other analysis investigated a fresh fuel shipping cask. Passive dry storage can be made suitable for the ABR-1000 spent fuel storage with sodium-bonded metal fuel. The thermal analysis shows that spent fast reactor fuel with a decay heat of 2 kW or less can be stored passively in a helium atmosphere. The 2-kW value seems to be a reasonable and practical level, and a combination of reasonably-sized in-sodium storage followed by passive dry storage could be a candidate for spent fuel storage for the next-generation sodium-cooled reactor with sodium-bonded metal fuel. Requirements for the shipping casks for minor actinide-bearing fuel with a high decay heat level are also discussed in this paper. The shipping cask for fresh sodium-cooled-reactor fuel should be a dry type to reduce the reaction between residual moisture on fresh fuel and the sodium coolant. The cladding temperature requirement is maintained below the creep temperature limit to avoid any damage before core installation. The thermal analysis shows that a helium gas-filled cask can accommodate ABR-1000 fresh minor actinide-bearing fuel with 700-W decay heat. The above analysis results revealed the overall requirement for minor actinide-bearing metal fuel handling. The information is thought to be helpful in the design of the ABR-1000 and future sodium-cooled-reactor fuel-handling system.

  1. SUPPLEMENT ANALYSIS PROPOSED SHIPMENT OF COMMERCIAL SPENT NUCLEAR FUEL

    Energy Savers [EERE]

    SUPPLEMENT ANALYSIS PROPOSED SHIPMENT OF COMMERCIAL SPENT NUCLEAR FUEL TO DOE NATIONAL LABORATORIES FOR RESEARCH AND DEVELOPMENT PURPOSES Office of Nuclear Energy U.S. DEPARTMENT OF ENERGY DECEMBER 2015 DOE/EIS-0203-SA-07 DOE/EIS-0250F-S-1-SA-02 Commercial Fuel Shipment SA DOE/EIS-0203-SA-07 December 2015 CONVERSION FACTORS Metric to English English to Metric Multiply by To get Multiply by To get Area Square kilometers 247.1 Acres Square kilometers 0.3861 Square miles Square meters 10.764 Square

  2. Table C12. Electricity Expenditures by Census Region, 1999

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Expenditures by Census Region, 1999" ,"Total Electricity Expenditures (million dollars)",,,,"Electricity Expenditures (dollars)" ,,,,,"per kWh",,,,"per Square Foot"...

  3. Advanced Multiphysics Coupling for LWR Fuel Performance Analysis

    SciTech Connect (OSTI)

    J. D. Hales; M. R. Tonks; F. N. Gleicher; B. W. Spencer; S. R. Novascone; R. L. Williamson; G. Pastore; D. M. Perez

    2015-10-01

    Even the most basic nuclear fuel analysis is a multiphysics undertaking, as a credible simulation must consider at a minimum coupled heat conduction and mechanical deformation. The need for more realistic fuel modeling under a variety of conditions invariably leads to a desire to include coupling between a more complete set of the physical phenomena influencing fuel behavior, including neutronics, thermal hydraulics, and mechanisms occurring at lower length scales. This paper covers current efforts toward coupled multiphysics LWR fuel modeling in three main areas. The first area covered in this paper concerns thermomechanical coupling. The interaction of these two physics, particularly related to the feedback effect associated with heat transfer and mechanical contact at the fuel/clad gap, provides numerous computational challenges. An outline is provided of an effective approach used to manage the nonlinearities associated with an evolving gap in BISON, a nuclear fuel performance application. A second type of multiphysics coupling described here is that of coupling neutronics with thermomechanical LWR fuel performance. DeCART, a high-fidelity core analysis program based on the method of characteristics, has been coupled to BISON. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during a depletion or a fast transient simulation. Two-way coupling between these codes was achieved by mapping fission rate density and fast neutron flux fields from DeCART to BISON and the temperature field from BISON to DeCART while employing a Picard iterative algorithm. Finally, the need for multiscale coupling is considered. Fission gas production and evolution significantly impact fuel performance by causing swelling, a reduction in the thermal conductivity, and fission gas release. The mechanisms involved occur at the atomistic and grain scale and are therefore not the domain of a fuel performance code. However, it is possible to use lower length scale models such as those used in the mesoscale MARMOT code to compute average properties, e.g. swelling or thermal conductivity. These may then be used by an engineering-scale model. Examples of this type of multiscale, multiphysics modeling are shown.

  4. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million

  5. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell...

  6. Gap Analysis to Support Extended Storage of Used Nuclear Fuel | Department

    Office of Environmental Management (EM)

    of Energy Gap Analysis to Support Extended Storage of Used Nuclear Fuel Gap Analysis to Support Extended Storage of Used Nuclear Fuel The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives

  7. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    1 FY 2007 Federal Buildings Energy Prices and Expenditures, by Fuel Type ($2010) Fuel Type Electricity 23.68 (1) 4,009 Natural Gas 9.37 1,138 Fuel Oil 15.25 419 Coal 3.62 63 Purchased Steam 24.30 318 LPG/Propane 17.06 44 Other 16.19 37 Average 17.05 Total 6,029 Note(s): Source(s): Average Fuel Prices Total Expenditures ($/million BTU) ($ million) (2) Prices and expenditures are for Goal-Subject buildings. 1) $0.0776/kWh. 2) Energy used in Goal-Subject buildings in FY 2007 accounted for 33.8% of

  8. Analysis Models and Tools: Systems Analysis of Hydrogen and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (FCPower) Model PDF icon Global Pathways Analysis Tool (GPAT) PDF icon Greenhouse Gases, Regulated Emissions, and Energy use in Transportation (GREET) Model PDF icon ...

  9. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis...

  10. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis...

  11. Table 7.9 Expenditures for Purchased Energy Sources, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Million U.S. Dollars. NAICS Residual Distillate LPG and Coke Code(a) Subsector and Industry Total Electricity Fuel Oil Fuel Oil(b) Natural Gas(c) NGL(d) Coal and Breeze Other(e) Total United States 311 Food 10,111 5,328 130 431 3,391 150 442 29 210 3112 Grain and Oilseed Milling 2,130 932 2 12 673 Q 294 0 158 311221 Wet Corn Milling 1,002 352 1 5 296 1 239 0 107

  12. NMR apparatus for in situ analysis of fuel cells

    DOE Patents [OSTI]

    Gerald, II, Rex E; Rathke, Jerome W

    2012-11-13

    The subject apparatus is a fuel cell toroid cavity detector for in situ analysis of samples through the use of nuclear magnetic resonance. The toroid cavity detector comprises a gas-tight housing forming a toroid cavity where the housing is exposed to an externally applied magnetic field B.sub.0 and contains fuel cell component samples to be analyzed. An NMR spectrometer is electrically coupled and applies a radiofrequency excitation signal pulse to the detector to produce a radiofrequency magnetic field B.sub.1 in the samples and in the toroid cavity. Embedded coils modulate the static external magnetic field to provide a means for spatial selection of the recorded NMR signals.

  13. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    SciTech Connect (OSTI)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  14. N-Reactor (U-metal) Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect (OSTI)

    Taylor, Larry Lorin

    2000-05-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into nine characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments, and total fuel and fissile mass govern the selection of the representative or candidate fuel within that group. Additionally, the criticality analysis will also require data to support design of the canister internals, thermal, and radiation shielding. The purpose of this report is to consolidate and provide in a concise format, material and information/data needed to perform supporting analyses to qualify N-Reactor fuels for acceptance into the designated repository. The N Reactor fuels incorporate zirconium cladding and uranium metal with unique fabrication details in terms of physical size, and method of construction. The fuel construction and post-irradiation handling have created attendant issues relative to cladding failure in the underwater storage environment. These fuels were comprised of low-enriched metal (0.947 to 1.25 wt% 235U) that were originally intended to generate weapons-grade plutonium for national defense. Modifications in subsequent fuel design and changes in the mode of reactor operation in later years were focused more toward power production.

  15. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-06-01

    This fact sheet describes opportunities for interested stationary fuel cell developers and end users to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the current state of the technology and support industry growth.

  16. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reversible Fuel Cells Workshop Summary Report Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling ...

  17. Webinar: Analysis Using Fuel Cell MHE for Shaving Peak Building Energy

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Analysis Using Fuel Cell MHE for Shaving Peak Building Energy" on Tuesday, August 11, from 12 to 1 p.m. EDT.

  18. USED FUEL RAIL SHOCK AND VIBRATION TESTING OPTIONS ANALYSIS

    SciTech Connect (OSTI)

    Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.; Jensen, Philip J.; Maheras, Steven J.

    2014-09-29

    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a casks internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges) on the surrogate fuel assemblies, cask and cradle structures, and the railcar so that forces and deflections that would result in the greatest potential for damage to high burnup and long-cooled UNF can be determined. For purposes of this report we consider testing on controlled track when we have control of the track and speed to facilitate modeling.

  19. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Final List of Attendees | Department of Energy Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees PDF icon scenario_analysis_attendees.pdf More Documents & Publications Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31,

  20. DOE and FreedomCAR and Fuel Partnership Analysis Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Action items and discussion comments from the DOE and FreedomCAR and Fuel Partnership Analysis Workshop on January 25, 2006. PDF icon wkshp_storage_discussion.pdf More Documents & Publications DOE and FreedomCAR and Fuel Partnership Analysis Workshop Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop DOE and FreedomCAR and Fuels Partnership: Analysis Workshop

  1. DOE and FreedomCAR and Fuel Partnership Analysis Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Attendees list for the DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop on January 26, 2006. PDF icon wkshp_storage_attendees.pdf More Documents & Publications DOE and FreedomCAR and Fuel Partnership Analysis Workshop DOE Hydrogen Transition Analysis Workshop 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Final List of Attendees

  2. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  3. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  4. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  5. Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    ,4628,16.42,12.75,16.62,20.42,1.38,1.06,1.35,1.48 "Three ...",2390,3012,2457,1285,15.31,12.75,15.02,20.2,1.15,1.17,1.27,1.43 "Four to Nine...

  6. GCtool for fuel cell systems design and analysis : user documentation.

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  7. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    1 Section 7. Consumption Adjustments for Calculating Expenditures C O N S U M P T I O N A D J U S T M E N T S Expenditures developed in the EIA State Energy Data System (SEDS) are calculated by multiplying the price estimates by the SEDS consumption estimates. The consumption estimates are adjusted to remove process fuel, intermediate petroleum products, electricity exports, and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar thermal and photovoltaic

  8. U.S. Energy Information Administration | State Energy Data 2014: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    1 Section 7. Consumption Adjustments for Calculating Expenditures C O N S U M P T I O N A D J U S T M E N T S Expenditures developed in the EIA State Energy Data System (SEDS) are calculated by multiplying the price estimates by the SEDS consumption estimates. The consumption estimates are adjusted to remove process fuel, intermediate petroleum products, electricity exports, and other consumption that has no direct fuel costs, i.e., hydroelectric, geothermal, wind, solar thermal and photovoltaic

  9. State energy price and expenditure report 1992

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1980, and 1985 through 1992. Data for all years, 1970 through 1992, are available on personal computer diskettes.

  10. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  11. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  12. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  13. State energy price and expenditure report 1991

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The State Energy Price and Expenditure Report (SEPER) presents energy price and expenditure estimates individually for the 50 States and the District of Columbia and in aggregate for the United States. The price and expenditure estimates are provided by energy source and economic sector and are published for the years 1970, 1975, 1980, and 1985 through 1991. Data for all years, 1970 through 1991, are available on personal computer diskettes. Documentation in Appendix A describes how the price estimates are developed, including sources of data, methods of estimation, and conversion factors applied. This report is an update of the State Energy Price and Expenditure Report 1990, published in September 1992.

  14. Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak Building Energy

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar entitled "Analysis Using Fuel Cell MHE for Shaving Peak Building Energy" on Tuesday, August 11, from 12 to 1 p.m. EDT. This webinar will explore the synergy between a facility's use of hydrogen fuel cell forklifts and its reduction of electric grid time of use energy charges.

  15. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions | Department of Energy Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions A complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW)

  16. Fuel-Cycle Energy and Emissions Analysis with the GREET Model | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel-Cycle Energy and Emissions Analysis with the GREET Model Fuel-Cycle Energy and Emissions Analysis with the GREET Model 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. PDF icon ftp_02_wang.pdf More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American

  17. Analysis of the Impact of Fuel Cell Vehicles on Energy Systems...

    Open Energy Info (EERE)

    Sector in Japan AgencyCompany Organization: Tohoku University Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Policy Impacts, Policy Impacts Website:...

  18. Agenda for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting

    Broader source: Energy.gov [DOE]

    This agenda provides information about the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  19. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect (OSTI)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  20. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  1. Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints

    SciTech Connect (OSTI)

    Das, Sujit; Peterson, Bruce E; Chin, Shih-Miao

    2010-01-01

    This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

  2. Fort Saint Vrain HTGR (Th/U carbide) Fuel Characteristics for Disposal Criticality Analysis

    SciTech Connect (OSTI)

    Taylor, Larry Lorin

    2001-01-01

    DOE-owned spent nuclear fuels encompass many fuel types. In an effort to facilitate criticality analysis for these various fuel types, they were categorized into eight characteristic fuel groups with emphasis on fuel matrix composition. Out of each fuel group, a representative fuel type was chosen for analysis as a bounding case within that fuel group. Generally, burnup data, fissile enrichments and total fuel mass govern the selection of the representative or candidate fuel within that group. For the HTGR group, the Fort Saint Vrain (FSV) reactor fuel has been chosen for the evaluation of viability for waste co-disposal. The FSV reactor was operated by Public Service of Colorado as a licensed power reactor. The FSV fuel employs a U/Th carbide matrix in individually pyrolytic carbon-coated particles. These individual particles are in turn coated with silicon carbide (SiC) and contained within fuel compacts, that are in turn embedded in graphite blocks that comprised the structural core of the reactor.

  3. Mechanical Analysis of the Fuel Assembly Box of a HPLWR Fuel Assembly

    SciTech Connect (OSTI)

    Himmel, Steffen; Starflinger, Joerg; Schulenberg, Thomas; Hofmeister, Jan

    2006-07-01

    The aim of the work presented in this paper is to demonstrate that the assembly box of the fuel assembly for a HPLWR proposed by Hofmeister et al. will remain mechanically within the design limits. The commercial finite element code ANSYS has been used to investigate the deformation behaviour caused by thermal convective and pressure boundary conditions provided by the results from Waata et al. for the fuel assembly. The results of these ANSYS analyses show a bending of the assembly box caused by the applied temperature and pressure distribution which, however, is still within the geometrical allowances. The maximum bending of the 4.35 m long assembly box appears close to the mid section, i.e. at 2.45 m axial height, and amounts to about 2 mm, only. The maximum indentation is mainly caused by the pressure difference across the box wall and occurs near the top of the assembly. The indentation at this point can be evaluated to be around 0.2 mm. Both bending and indentation will influence the coolant mass flux and the moderator distribution, and thus needs to be considered for predictions of the power profile and of the coolant heat-up. They are not considered to be critical as long as these deformations are small compared with the nominal gap width of 1 mm between box wall and claddings and 10 mm between adjacent assembly boxes. A second analysis has been performed to study the effect on non-symmetric coolant temperature profiles. A coolant temperature increase by 30 deg. C on one side of the box increased the thermal bending to 4 mm, indicating the sensitivity of this design with respect to temperature non-uniformities. (authors)

  4. Thermal Analysis of ZPPR High Pu Content Stored Fuel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solbrig, Charles W.; Pope, Chad L.; Andrus, Jason P.

    2014-01-01

    The Zero Power Physics Reactor (ZPPR) operated from April 18, 1969, until 1990. ZPPR operated at low power for testing nuclear reactor designs. This paper examines the temperature of Pu content ZPPR fuel while it is in storage. Heat is generated in the fuel due to Pu and Am decay and is a concern for possible cladding damage. Damage to the cladding could lead to fuel hydriding and oxidizing. A series of computer simulations were made to determine the range of temperatures potentially occuring in the ZPPR fuel. The maximum calculated fuel temperature is 292°C (558°F). Conservative assumptions in themore » model intentionally overestimate temperatures. The stored fuel temperatures are dependent on the distribution of fuel in the surrounding storage compartments, the heat generation rate of the fuel, and the orientation of fuel. Direct fuel temperatures could not be measured but storage bin doors, storage sleeve doors, and storage canister temperatures were measured. Comparison of these three temperatures to the calculations indicates that the temperatures calculated with conservative assumptions are, as expected, higher than the actual temperatures. The maximum calculated fuel temperature with the most conservative assumptions is significantly below the fuel failure criterion of 600°C (1,112°F).« less

  5. Company Template (Expenditure-Based) | Department of Energy

    Energy Savers [EERE]

    Company Template (Expenditure-Based) Company Template (Expenditure-Based) Microsoft Office document icon Company Exp-based template.doc More Documents & Publications Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support)

  6. Company Template (Expenditure-Based) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Company Template (Expenditure-Based) Company Template (Expenditure-Based) Microsoft Office document icon Company Exp-based template.doc More Documents & Publications Consortium Template (Expenditure-Based) Company Template (Fixed Support) Consortium Support (Fixed Support

  7. Consortium Template (Expenditure-Based) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium Template (Expenditure-Based) Consortium Template (Expenditure-Based) Microsoft Office document icon Consortium Exp-based template.doc More Documents & Publications Consortium Support (Fixed Support) Company Template (Fixed Support) Company Template (Expenditure-Based

  8. DOE and FreedomCAR and Fuels Partnership: Analysis Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuels Partnership: Analysis Workshop DOE and FreedomCAR and Fuels Partnership: Analysis Workshop Presentation by Mark Paster for Hydrogen Delivery and On-Board Storage Analysis Workshop. PDF icon wkshp_storage_paster.pdf More Documents & Publications Agenda for the Hydrogen Delivery and Onboard Storage Analysis Workshop Joint Meeting on Hydrogen Delivery Modeling and Analysis Meeting Agenda Hydrogen Delivery Options and Issues

  9. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect (OSTI)

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  10. Performance limit analysis of a metallic fuel for Kalimer

    SciTech Connect (OSTI)

    Lee, Byoung Oon; Cheon, J.S.; Lee, C.B.

    2007-07-01

    A metallic fuel is being considered as the fuel for SFR in Korea. The metal fuel development for SFR in Korea started in 2007 in the areas of metal fuel fabrication, cladding materials and fuel performance evaluation. The MACSIS code for a metallic fuel has been developed as a steady-state performance computer code. Present study represents the preliminary parametric results for evaluating the design limits of the metal fuel for SFR in Korea. The operating limits were analyzed by the MACSIS code. The modules of the creep rupture strength for the Mod.HT9 and the barrier cladding were inserted. The strain limits and the CDF limit were analyzed for the HT9, and the Mod.HT9. To apply the concept of a barrier cladding, the burnup limit of the barrier cladding was analyzed. (authors)

  11. Table C10. Electricity Consumption and Expenditure Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...

  12. Fact #748: October 8, 2012 Components of Household Expenditures...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Household Expenditures on Transportation, 1984-2010 Fact 748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 The overall share of annual household ...

  13. Consortium Template (Expenditure-Based) | Department of Energy

    Office of Environmental Management (EM)

    Template (Expenditure-Based) Consortium Template (Expenditure-Based) Microsoft Office document icon Consortium Exp-based template.doc More Documents & Publications Consortium Support (Fixed Support

  14. Microscopic analysis of irradiated AGR-1 coated particle fuel compacts

    SciTech Connect (OSTI)

    Scott Ploger; Paul Demkowicz; John Hunn; Robert Morris

    2012-10-01

    The AGR-1 experiment involved irradiation of 72 TRISO-coated particle fuel compacts to a peak burnup of 19.5% FIMA with no in-pile failures observed out of 3105 total particles. Irradiated AGR-1 fuel compacts have been cross-sectioned and analyzed with optical microscopy to characterize kernel, buffer, and coating behavior. Five compacts have been examined so far, spanning a range of irradiation conditions (burnup, fast fluence, and irradiation temperature) and including all four TRISO coating variations irradiated in the AGR-1 experiment. The cylindrical specimens were sectioned both transversely and longitudinally, then polished to expose between approximately 40-80 individual particles on each mount. The analysis focused primarily on kernel swelling and porosity, buffer densification and fracturing, buffer-IPyC debonding, and fractures in the IPyC and SiC layers. Characteristic morphologies have been identified, over 800 particles have been classified, and spatial distributions of particle types have been mapped. No significant spatial patterns were discovered in these cross sections. However, some trends were found between morphological types and certain behavioral aspects. Buffer fractures were found in approximately 23% of the particles, and these fractures often resulted in unconstrained kernel swelling into the open cavities. Fractured buffers and buffers that stayed bonded to IPyC layers appear related to larger pore size in kernels. Buffer-IPyC interface integrity evidently factored into initiation of rare IPyC fractures. Fractures through part of the SiC layer were found in only three particles, all in conjunction with IPyC-SiC debonding. Compiled results suggest that the deliberate coating fabrication variations influenced the frequencies of IPyC fractures, IPyC-SiC debonds, and SiC fractures.

  15. A NMR-Based Carbon-Type Analysis of Diesel Fuel Blends From Various Sources

    SciTech Connect (OSTI)

    Bays, J. Timothy; King, David L.

    2013-05-10

    In collaboration with participants of the Coordinating Research Council (CRC) Advanced Vehicle/Fuels/Lubricants (AVFL) Committee, and project AVFL-19, the characteristics of fuels from advanced and renewable sources were compared to commercial diesel fuels. The main objective of this study was to highlight similarities and differences among the fuel types, i.e. ULSD, renewables, and alternative fuels, and among fuels within the different fuel types. This report summarizes the carbon-type analysis from 1H and 13C{1H} nuclear magnetic resonance spectroscopy (NMR) of 14 diesel fuel samples. The diesel fuel samples come from diverse sources and include four commercial ultra-low sulfur diesel fuels (ULSD), one gas-to-liquid diesel fuel (GTL), six renewable diesel fuels (RD), two shale oil-derived diesel fuels, and one oil sands-derived diesel fuel. Overall, the fuels examined fall into two groups. The two shale oil-derived samples and the oil-sand-derived sample closely resemble the four commercial ultra-low sulfur diesels, with SO1 and SO2 most closely matched with ULSD1, ULSD2, and ULSD4, and OS1 most closely matched with ULSD3. As might be expected, the renewable diesel fuels, with the exception of RD3, do not resemble the ULSD fuels because of their very low aromatic content, but more closely resemble the gas-to-liquid sample (GTL) in this respect. RD3 is significantly different from the other renewable diesel fuels in that the aromatic content more closely resembles the ULSD fuels. Fused-ring aromatics are readily observable in the ULSD, SO, and OS samples, as well as RD3, and are noticeably absent in the remaining RD and GTL fuels. Finally, ULSD3 differs from the other ULSD fuels by having a significantly lower aromatic carbon content and higher cycloparaffinic carbon content. In addition to providing important comparative compositional information regarding the various diesel fuels, this report also provides important information about the capabilities of NMR spectroscopy for the detailed characterization and comparison of fuels and fuel blends.

  16. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    propane Go Propane_li_by_state Propane Incentives and Laws, by State Propane_li_by_state View Map Graph Propane-stations Propane Fueling Station Locations by State Propane-stations View Map Graph 10561_expenditures_by_sector_20130906 Per Capita Energy Expenditures by Sector 10561_expenditures_by_sector_20130906 Trend of transportation and residential energy expenditures from 1970-2010 Last update September 2013 View Graph Graph Download Data Generated_thumb20140826-27944-1rznsji Alternative Fuel

  17. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Advanced FuelVehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Well-to-Wheels Analysis ...

  18. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  19. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect (OSTI)

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  20. Job Creation Analysis in the Hydrogen and Fuel Cell Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will be required by all global consumers as traditional fuel prices increase, ... compared to potential applications of a mature market. * In 2007, Connecticut's hydrogen ...

  1. Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS)Fuel Duration Analysis Brief

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Duration Analysis Brief Mr. Ross Roley PACOM Energy Innovation Office Lead SPIDERS Operational Manager August 2015 UNCLASSIFIED/Distribution A Fuel Duration Assumptions - Load data collected by Sandia National Laboratories at 15 min intervals Jan 2011 - Jan 2012 (worst case data used) - Critical load data collected by Sandia every 5 min for 2 weeks in Aug 2012 (worst case data used) - Standardized fuel consumption rates for various size generators provided by Sandia - Inventory of Camp

  2. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Meeting Discussion Group 1 Summary Presentation | Department of Energy 1 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1 Summary Presentation 2010-2025 Scenario Analysis Meeting Discussion Group 1 Summary Presentation PDF icon group_1_summary.pdf More Documents & Publications 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2

  3. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Meeting Discussion Group 2 Summary Presentation | Department of Energy 2 Summary Presentation 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 2 Summary Presentation 2010-2025 Senario Analysis Meeting Discussion Group 2 Summary Presentation PDF icon group_2_summary.pdf More Documents & Publications 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting Discussion Group 1

  4. 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure | Department of Energy Systems Analysis » 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Introducing hydrogen as an energy carrier would involve major changes in the country's energy and vehicle fleet infrastructure. Technical challenges, costs, and risk will be highest in the near-term, when markets are very small and the technology and infrastructure are immature.

  5. Hazard analysis of compressed natural gas fueling systems and fueling procedures used at retail gasoline service stations. Final report

    SciTech Connect (OSTI)

    1995-04-28

    An evaluation of the hazards associated with operations of a typical compressed natural gas (CNG) fueling station is presented. The evaluation includes identification of a typical CNG fueling system; a comparison of the typical system with ANSI/NFPA (American National Standards Institute/National Fire Protection Association) Standard 52, Compressed Natural Gas (CNG) Vehicular Fuel System, requirements; a review of CNG industry safety experience as identified in current literature; hazard identification of potential internal (CNG system-specific causes) and external (interface of co-located causes) events leading to potential accidents; and an analysis of potential accident scenarios as determined from the hazard evaluation. The study considers CNG dispensing equipment and associated equipment, including the compressor station, storate vessels, and fill pressure sensing system.

  6. Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis

    SciTech Connect (OSTI)

    Porter Hill; Michael Penev

    2014-08-01

    The Department of Energy Hydrogen & Fuel Cells Program Plan (September 2011) identifies the use of hydrogen for government and fleet electric vehicles as a key step for achieving “reduced greenhouse gas emissions; reduced oil consumption; expanded use of renewable power …; highly efficient energy conversion; fuel flexibility …; reduced air pollution; and highly reliable grid-support.” This report synthesizes several pieces of existing information that can inform a decision regarding the viability of deploying a hydrogen (H2) fueling station at the Fort Armstrong site in Honolulu, Hawaii.

  7. INITIAL ANALYSIS OF TRANSIENT POWER TIME LAG DUE TO HETEROGENEITY WITHIN THE TREAT FUEL MATRIX.

    SciTech Connect (OSTI)

    D.M. Wachs; A.X. Zabriskie, W.R. Marcum

    2014-06-01

    The topic Nuclear Safety encompasses a broad spectrum of focal areas within the nuclear industry; one specific aspect centers on the performance and integrity of nuclear fuel during a reactivity insertion accident (RIA). This specific accident has proven to be fundamentally difficult to theoretically characterize due to the numerous empirically driven characteristics that quantify the fuel and reactor performance. The Transient Reactor Test (TREAT) facility was designed and operated to better understand fuel behavior under extreme (i.e. accident) conditions; it was shutdown in 1994. Recently, efforts have been underway to commission the TREAT facility to continue testing of advanced accident tolerant fuels (i.e. recently developed fuel concepts). To aid in the restart effort, new simulation tools are being used to investigate the behavior of nuclear fuels during facilitys transient events. This study focuses specifically on the characterizing modeled effects of fuel particles within the fuel matrix of the TREAT. The objective of this study was to (1) identify the impact of modeled heterogeneity within the fuel matrix during a transient event, and (2) demonstrate acceptable modeling processes for the purpose of TREAT safety analyses, specific to fuel matrix and particle size. Hypothetically, a fuel that is dominantly heterogeneous will demonstrate a clearly different temporal heating response to that of a modeled homogeneous fuel. This time difference is a result of the uniqueness of the thermal diffusivity within the fuel particle and fuel matrix. Using MOOSE/BISON to simulate the temperature time-lag effect of fuel particle diameter during a transient event, a comparison of the average graphite moderator temperature surrounding a spherical particle of fuel was made for both types of fuel simulations. This comparison showed that at a given time and with a specific fuel particle diameter, the fuel particle (heterogeneous) simulation and the homogeneous simulation were related by a multiplier relative to the average moderator temperature. As time increases the multiplier is comparable to the factor found in a previous analytical study from literature. The implementation of this multiplier and the method of analysis may be employed to remove assumptions and increase fidelity for future research on the effect of fuel particles during transient events.

  8. Temperature measuring analysis of the nuclear reactor fuel assembly

    SciTech Connect (OSTI)

    Urban, F. E-mail: zdenko.zavodny@stuba.sk; Ku?k, L. E-mail: zdenko.zavodny@stuba.sk; Bereznai, J. E-mail: zdenko.zavodny@stuba.sk; Zvodn, Z. E-mail: zdenko.zavodny@stuba.sk; Mukt, P. E-mail: zdenko.zavodny@stuba.sk

    2014-08-06

    Study was based on rapid changes of measured temperature values from the thermocouple in the VVER 440 nuclear reactor fuel assembly. Task was to determine origin of fluctuations of the temperature values by experiments on physical model of the fuel assembly. During an experiment, heated water was circulating in the system and cold water inlet through central tube to record sensitivity of the temperature sensor. Two positions of the sensor was used. First, just above the central tube in the physical model fuel assembly axis and second at the position of the thermocouple in the VVER 440 nuclear reactor fuel assembly. Dependency of the temperature values on time are presented in the diagram form in the paper.

  9. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Relative to the baseline school bus, the PHEV fuel savings in charge-depleting (CD) mode ... PHEV school bus would initially operate in CD mode for some distance, then in a ...

  10. CRACK GROWTH ANALYSIS OF SOLID OXIDE FUEL CELL ELECTROLYTES

    SciTech Connect (OSTI)

    S. Bandopadhyay; N. Nagabhushana

    2003-10-01

    Defects and Flaws control the structural and functional property of ceramics. In determining the reliability and lifetime of ceramics structures it is very important to quantify the crack growth behavior of the ceramics. In addition, because of the high variability of the strength and the relatively low toughness of ceramics, a statistical design approach is necessary. The statistical nature of the strength of ceramics is currently well recognized, and is usually accounted for by utilizing Weibull or similar statistical distributions. Design tools such as CARES using a combination of strength measurements, stress analysis, and statistics are available and reasonably well developed. These design codes also incorporate material data such as elastic constants as well as flaw distributions and time-dependent properties. The fast fracture reliability for ceramics is often different from their time-dependent reliability. Further confounding the design complexity, the time-dependent reliability varies with the environment/temperature/stress combination. Therefore, it becomes important to be able to accurately determine the behavior of ceramics under simulated application conditions to provide a better prediction of the lifetime and reliability for a given component. In the present study, Yttria stabilized Zirconia (YSZ) of 9.6 mol% Yttria composition was procured in the form of tubes of length 100 mm. The composition is of interest as tubular electrolytes for Solid Oxide Fuel Cells. Rings cut from the tubes were characterized for microstructure, phase stability, mechanical strength (Weibull modulus) and fracture mechanisms. The strength at operating condition of SOFCs (1000 C) decreased to 95 MPa as compared to room temperature strength of 230 MPa. However, the Weibull modulus remains relatively unchanged. Slow crack growth (SCG) parameter, n = 17 evaluated at room temperature in air was representative of well studied brittle materials. Based on the results, further work was planned to evaluate the strength degradation, modulus and failure in more representative environment of the SOFCs.

  11. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  12. Sensitivity analysis of a dry-processed Candu fuel pellet's design parameters

    SciTech Connect (OSTI)

    Choi, Hangbok; Ryu, Ho Jin

    2007-07-01

    Sensitivity analysis was carried out in order to investigate the effect of a fuel pellet's design parameters on the performance of a dry-processed Canada deuterium uranium (CANDU) fuel and to suggest the optimum design modifications. Under a normal operating condition, a dry-processed fuel has a higher internal pressure and plastic strain due to a higher fuel centerline temperature when compared with a standard natural uranium CANDU fuel. Under a condition that the fuel bundle dimensions do not change, sensitivity calculations were performed on a fuel's design parameters such as the axial gap, dish depth, gap clearance and plenum volume. The results showed that the internal pressure and plastic strain of the cladding were most effectively reduced if a fuel's element plenum volume was increased. More specifically, the internal pressure and plastic strain of the dry-processed fuel satisfied the design limits of a standard CANDU fuel when the plenum volume was increased by one half a pellet, 0.5 mm{sup 3}/K. (authors)

  13. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO? fuel and APMT-Steel Clad/UN-U?Si? fuel concepts

    SciTech Connect (OSTI)

    Unal, Cetin; Galloway, Jack D.

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermal swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO? ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U?Si? fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.

  14. Analysis of the ATR fuel element swaging process

    SciTech Connect (OSTI)

    Richins, W.D.; Miller, G.K.

    1995-12-01

    This report documents a detailed evaluation of the swaging process used to connect fuel plates to side plates in Advanced Test Reactor (ATR) fuel elements. The swaging is a mechanical process that begins with fitting a fuel plate into grooves in the side plates. Once a fuel plate is positioned, a lip on each of two side plate grooves is pressed into the fuel plate using swaging wheels to form the joints. Each connection must have a specified strength (measured in terms, of a pullout force capacity) to assure that these joints do not fail during reactor operation. The purpose of this study is to analyze the swaging process and associated procedural controls, and to provide recommendations to assure that the manufacturing process produces swaged connections that meet the minimum strength requirement. The current fuel element manufacturer, Babcock and Wilcox (B&W) of Lynchburg, Virginia, follows established procedures that include quality inspections and process controls in swaging these connections. The procedures have been approved by Lockheed Martin Idaho Technologies and are designed to assure repeatability of the process and structural integrity of each joint. Prior to July 1994, ATR fuel elements were placed in the Hydraulic Test Facility (HTF) at the Idaho National Engineering Laboratory (AGNAIL), Test Reactor Area (TRA) for application of Boehmite (an aluminum oxide) film and for checking structural integrity before placement of the elements into the ATR. The results presented in this report demonstrate that the pullout strength of the swaged connections is assured by the current manufacturing process (with several recommended enhancements) without the need for- testing each element in the HTF.

  15. Analysis of liquid natural gas as a truck fuel: a system dynamics approach

    SciTech Connect (OSTI)

    Bray, M.A.; Sebo, D.E.; Mason, T.L.; Mills, J.I.; Rice, R.E.

    1996-10-01

    The purpose of this analysis is to evaluate the potential for growth in use of liquid natural gas (LNG) fueled trucks. . A system dynamics model was constructed for the analysis and a variety of scenarios were investigated. The analysis considers the economics of LNG fuel in the context of the trucking industry to identify barriers to the increased use of LNG trucks and potential interventions or leverage points which may overcome these barriers. The study showed that today, LNG use in trucks is not yet economically viable. A large change in the savings from fuel cost or capital cost is needed for the technology to take off. Fleet owners have no way now to benefit from the environmental benefits of LNG fuel nor do they benefit from the clean burning nature of the fuel. Changes in the fuel cost differential between diesel and LNG are not a research issue. However, quantifying the improvements in reliability and wear from the use of clean fuel could support increased maintenance and warranty periods. Many people involved in the use of LNG for trucks believe that LNG has the potential to occupy a niche within the larger diesel truck business. But if LNG in trucks can become economic, the spread of fuel stations and technology improvements could lead to LNG trucks becoming the dominant technology. An assumption in our simulation work is that LNG trucks will be purchased when economically attractive. None of the simulation results show LNG becoming economic but then only to the level of a niche market.

  16. Effect of separation efficiency on repository loading values in fuel cycle scenario analysis codes

    SciTech Connect (OSTI)

    Radel, T.E.; Wilson, P.P.H.; Grady, R.M.; Bauer, T.H.

    2007-07-01

    Fuel cycle scenario analysis codes are valuable tools for investigating the effects of various decisions on the performance of the nuclear fuel cycle as a whole. Until recently, repository metrics in such codes were based on mass and were independent of the isotopic composition of the waste. A methodology has been developed for determining peak repository loading for an arbitrary set of isotopics based on the heat load restrictions and current geometry specifications for the Yucca Mountain repository. This model was implemented in the VISION fuel cycle scenario analysis code and is used here to study the effects of separation efficiencies on repository loading for various AFCI fuel cycle scenarios. Improved separations efficiencies are shown to have continuing technical benefit in fuel cycles that recycle Am and Cm, but a substantial benefit can be achieved with modest separation efficiencies. (authors)

  17. U N I T E D S T A T E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    Prices and Expenditures 25 Table ET1. Primary Energy, Electricity, and Total Energy Price and Expenditure Estimates, Selected Years, 1970-2013, United States Year Primary Energy Electric Power Sector h,j Retail Electricity Total Energy g,h,i Coal Coal Coke Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i,j Coking Coal Steam Coal Total Exports Imports Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f,g Prices in Dollars per Million Btu

  18. Micro-Pocket Fission Detectors (MPFD) For Fuel Assembly Analysis

    SciTech Connect (OSTI)

    Troy Unruh; Michael Reichenberger; Phillip Ugorowski

    2013-09-01

    Neutron sensors capable of real-time measurement of thermal flux, fast flux, and temperature in a single miniaturized probe are needed in irradiation tests required to demonstrate the performance of candidate new fuels, and cladding materials. In-core ceramic-based miniature neutron detectors or Micro-Pocket Fission Detectors (MPFDs) have been studied at Kansas State University (KSU). The first MPFD prototypes were tested in various neutron fields at the KSU TRIGA research reactor with successful results. Currently, a United States Department of Energy-sponsored joint KSU/Idaho National Laboratory (INL) effort is underway to develop a high-temperature, high-pressure version of the MPFD using radiation-resistant, high temperature materials, which would be capable of withstanding irradiation test conditions in high performance material and test reactors (MTRs). Ultimately, this more compact, more accurate, and longer lifetime flux sensor for critical mock-ups, existing and advanced reactor designs, high performance MTRs, and transient test reactors has the potential to lead to higher accuracy and resolution data from irradiation testing, more detailed core flux measurements and enhanced fuel assembly processing. Prior evaluations by KSU indicate that these sensors could also be used to monitor burn-up of nuclear fuel. If integrated into nuclear fuel assemblies, MPFDs offer several advantages to current spent fuel management systems.

  19. Fuel Cell Power Model for CHHP System Economics and Performance Analysis |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Model for CHHP System Economics and Performance Analysis Fuel Cell Power Model for CHHP System Economics and Performance Analysis Presented at the Renewable Hydrogen Workshop, Nov. 16, 2009, in Palm Springs, CA PDF icon renewable_hydrogen_workshop_nov16_steward.pdf More Documents & Publications Biogas Opportunities Roadmap Progress Report Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model CX-007434: Categorical Exclusion Determina

  20. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via

    Office of Scientific and Technical Information (OSTI)

    Hydrothermal Liquefaction (HTL) and Upgrading (Journal Article) | SciTech Connect Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Citation Details In-Document Search Title: Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading Authors: Zhu, Y. ; Biddy, M. J. ; Jones, S. B. ; Elliott, D. C. ; Schmidt, A. J. Publication Date: 2014-09-15 OSTI Identifier:

  1. Supplement Analysis … Spent Nuclear Fuel and SRS H-Canyon Operations

    Energy Savers [EERE]

    DOE/EIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation U.S. Department of Energy Washington, DC November 2015 DOE/EIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation 1.0 INTRODUCTION The Department of Energy (DOE) has a continuing responsibility for safeguarding

  2. Fuel cycle analysis of once-through nuclear systems.

    SciTech Connect (OSTI)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium (LEU) fuels. Examples of systems in this class include the small modular reactors being considered internationally; e.g. 4S [Tsuboi 2009], Hyperion Power Module [Deal 2010], ARC-100 [Wade 2010], and SSTAR [Smith 2008]. (2) Systems for Resource Utilization - In recent years, interest has developed in the use of advanced nuclear designs for the effective utilization of fuel resources. Systems under this class have generally utilized the breed and burn concept in which fissile material is bred and used in situ in the reactor core. Due to the favorable breeding that is possible with fast neutrons, these systems have tended to be fast spectrum systems. In the once-through concepts (as opposed to the traditional multirecycle approach typically considered for fast reactors), an ignition (or starter) zone contains driver fuel which is fissile material. This zone is designed to last a long time period to allow the breeding of sufficient fissile material in the adjoining blanket zone. The blanket zone is initially made of fertile depleted uranium fuel. This zone could also be made of fertile thorium fuel or recovered uranium from fuel reprocessing or natural uranium. However, given the bulk of depleted uranium and the potentially large inventory of recovered uranium, it is unlikely that the use of thorium is required in the near term in the U.S. Following the breeding of plutonium or fissile U-233 in the blanket, this zone or assembly then carries a larger fraction of the power generation in the reactor. These systems tend to also have a long cycle length (or core life) and they could be with or without fuel shuffling. When fuel is shuffled, the incoming fuel is generally depleted uranium (or thorium) fuel. In any case, fuel is burned once and then discharged. Examples of systems in this class include the CANDLE concept [Sekimoto 2001], the traveling wave reactor (TWR) concept of TerraPower [Ellis 2010], the ultra-long life fast reactor (ULFR) by ANL [Kim 2010], and the BNL fast mixed spectrum reactor (FMSR) concept [Fisher 1979]. (3) Thermal systems for resource extensio

  3. Sustainable Harvest for Food and Fuel Preliminary Food & Fuel Gap Analysis Report

    SciTech Connect (OSTI)

    Ray Grosshans; Kevin M. Kostelnik; Jake Jacobson

    2007-04-01

    To promote economic growth and energy security, and to protect the environment, the U.S. is pursuing a national strategy of energy independence and climatic protection in which domestic renewable carbon-neutral biofuels displace 30 percent of U.S. oil consumption by the mid-21st century. Such fuels, including ethanol and biodiesel, will be produced from biological feed stocks (biomass). The availability of this billion-ton biomass will hinge on the application of modern scientific and engineering tools to create a highly-integrated biofuel production system. Efforts are underway to identify and develop energy crops, ranging from agricultural residues to genetically engineered perennials; to develop biology-based processing methods; and, to develop large-scale biorefineries to economically convert biomass into fuels. In addition to advancing the biomass-to-biofuel research and development agenda, policy makers are concurrently defining the correct mix of governmental supports and regulations. Given the volumes of biomass and fuels that must flow to successfully enact a national biomass strategy, policies must encourage large-scale markets to form and expand around a tightly integrated system of farmers, fuel producers and transporters, and markets over the course of decades. In formulating such policies, policy makers must address the complex interactions of social, technical, economic, and environmental factors that bound energy production and use. The Idaho National Laboratory (INL) is a science-based, applied engineering national laboratory dedicated to supporting the U.S. Department of Energy (DOE). The INL Bioenergy Program supports the DOE and the U.S. Department of Agriculture. Key multidisciplinary INL capabilities are being leveraged to address major science and technology needs associated with the cost-effective utilization of biomass. INLs whole crop utilization (WCU) vision is focused on the use of the entire crop, including both the grain and traditionally discarded plant biomass to produce food, feed, fiber, energy, and value-added products.

  4. Analysis of In-Use Fuel Economy Shortfall Based on Voluntarily Reported MPG Estimates

    SciTech Connect (OSTI)

    Greene, David L; Goeltz, Rick; Hopson, Dr Janet L; Tworek, Elzbieta

    2007-01-01

    The usefulness of the Environmental Protection Agency's (EPA) passenger car and light truck fuel economy estimates has been the subject of debate for the past three decades. For the labels on new vehicles and the fuel economy information given to the public, the EPA adjusts dynamometer test results downward by 10% for the city cycle and 22% for the highway cycle to better reflect real world driving conditions. These adjustment factors were developed in 1984 and their continued validity has repeatedly been questioned. In March of 2005 the U.S. Department of Energy (DOE) and EPA's fuel economy information website, www.fueleconomy.gov, began allowing users to voluntarily share fuel economy estimates. This paper presents an initial statistical analysis of more than 3,000 estimates submitted by website users. The analysis suggests two potentially important results: (1) adjusted, combined EPA fuel economy estimates appear to be approximately unbiased estimators of the average fuel economy consumers will experience in actual driving, and (2) the EPA estimates are highly imprecise predictors of any given individual's in-use fuel economy, an approximate 95% confidence interval being +/-7 MPG. These results imply that what is needed is not less biased adjustment factors for the EPA estimates but rather more precise methods of predicting the fuel economy individual consumers will achieve in their own driving.

  5. An Analysis of Dual Zone Loading for Shipping Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Allen, William Christopher; Yim, Man-Sung

    2007-07-01

    The bumps current fuel assembly designs can achieve exceeds the fuel assembly burnups the current fleet of shipping casks can ship. One method of handling this situation which has been proposed is regionalized loading. This concept involves administratively separating the fuel basket of a shipping cask into two or more regions and loading fuel with different burnup, cooling times and enrichments into these regions. To evaluate how regionalized loading patterns might affect shipping spent nuclear fuel in comparison to uniform loading, a test case study was performed using fuel assemblies discharged from an actual nuclear plant and a shipping cask licensed by the NRC. Using the same fuel assemblies and shipping cask, results were obtained assuming a uniform loading pattern and compared to the results obtained assuming a dual zone loading pattern. Source terms for the analysis were generated using SAS2 and the dose levels were calculated using MCNPS. The analysis showed that the dual zone loading reduced the amount of time required to ship the given quantity of fuel by roughly thirty percent compared to the uniform loading. The average dose rate to the transportation workers and the public due to the implementation of dual zone loading increased. Implications of these increases are discussed. (authors)

  6. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 Buildings Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Residential Buildings Commercial Buildings Total Building Electricity Natural Gas Petroleum (2) Total Electricity Natural Gas Petroleum (3) Total Expenditures 1980 89.1 40.5 28.9 158.5 70.9 20.5 17.2 108.6 267.2 1981 94.9 41.3 27.8 164.0 79.4 21.4 16.5 117.3 281.3 1982 99.9 47.9 24.5 172.3 83.4 25.1 13.7 122.2 294.5 1983 103.6 51.0 21.4 176.1 83.6 26.1 14.6 124.3 300.4 1984 103.3 51.6 23.6 178.5 87.6 25.9

  7. Analysis on fuel breeding capability of FBR core region based on minor actinide recycling doping

    SciTech Connect (OSTI)

    Permana, Sidik; Novitrian,; Waris, Abdul; Ismail; Suzuki, Mitsutoshi; Saito, Masaki

    2014-09-30

    Nuclear fuel breeding based on the capability of fuel conversion capability can be achieved by conversion ratio of some fertile materials into fissile materials during nuclear reaction processes such as main fissile materials of U-233, U-235, Pu-239 and Pu-241 and for fertile materials of Th-232, U-238, and Pu-240 as well as Pu-238. Minor actinide (MA) loading option which consists of neptunium, americium and curium will gives some additional contribution from converted MA into plutonium such as conversion Np-237 into Pu-238 and it's produced Pu-238 converts to Pu-239 via neutron capture. Increasing composition of Pu-238 can be used to produce fissile material of Pu-239 as additional contribution. Trans-uranium (TRU) fuel (Mixed fuel loading of MOX (U-Pu) and MA composition) and mixed oxide (MOX) fuel compositions are analyzed for comparative analysis in order to show the effect of MA to the plutonium productions in core in term of reactor criticality condition and fuel breeding capability. In the present study, neptunium (Np) nuclide is used as a representative of MAin trans-uranium (TRU) fuel composition as Np-MOX fuel type. It was loaded into the core region gives significant contribution to reduce the excess reactivity in comparing to mixed oxide (MOX) fuel and in the same time it contributes to increase nuclear fuel breeding capability of the reactor. Neptunium fuel loading scheme in FBR core region gives significant production of Pu-238 as fertile material to absorp neutrons for reducing excess reactivity and additional contribution for fuel breeding.

  8. Analysis of LOCA Scenarios in the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect (OSTI)

    Baek, J. S.; Cheng, L. Y.; Diamond, D.

    2015-08-30

    An analysis has been done of hypothetical loss-of-coolant-accidents (LOCAs) in the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The purpose of the analysis is to determine if the peak clad temperature remains below the Safety Limit, which is the blister temperature for the fuel. The configuration of the NBSR considered in the analysis is that projected for the future when changes will be made so that shutdown pumps do not operate when a LOCA signal is detected. The analysis was done for the present core with high-enriched uranium (HEU) fuel and with the proposed low-enriched uranium (LEU) fuel that would be used when the NBSR is converted from one to the other. The analysis consists of two parts. The first examines how the water would drain from the primary system following a break and the possibility for the loss of coolant from within the fuel element flow channels. This work is performed using the TRACE system thermal-hydraulic code. The second looks at the fuel clad temperature as a function of time given that the water may have drained from many of the flow channels and the water in the vessel is in a quasi-equilibrium state. The temperature behavior is investigated using the three-dimensional heat conduction code HEATING7.3. The results in all scenarios considered for both HEU and LEU fuel show that the peak clad temperature remains below the blister temperature.

  9. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  10. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 Residential Aggregate Energy Expenditures, by Year and Major Fuel Type ($2010 Billion) (1) Electricity Total 1980 158.5 1981 164.0 1982 172.3 1983 176.1 1984 178.5 1985 176.8 1986 169.2 1987 167.1 1988 170.1 1989 172.8 1990 168.2 1991 169.9 1992 166.7 1993 175.6 1994 174.9 1995 172.7 1996 181.8 1997 180.0 1998 173.5 1999 174.0 2000 192.8 2001 203.3 2002 192.1 2003 208.8 2004 215.1 2005 236.7 2006 240.0 2007 246.1 2008 259.6 2009 241.6 2010 251.8 2011 251.3 2012 247.1 2013 240.3 2014 239.4 2015

  11. Issues in International Energy Consumption Analysis: Chinese Transportation Fuel Demand

    Reports and Publications (EIA)

    2014-01-01

    Since the 1990s, China has experienced tremendous growth in its transportation sector. By the end of 2010, China's road infrastructure had emerged as the second-largest transportation system in the world after the United States. Passenger vehicle sales are dramatically increasing from a little more than half a million in 2000, to 3.7 million in 2005, to 13.8 million in 2010. This represents a twenty-fold increase from 2000 to 2010. The unprecedented motorization development in China led to a significant increase in oil demand, which requires China to import progressively more petroleum from other countries, with its share of petroleum imports exceeding 50% of total petroleum demand since 2009. In response to growing oil import dependency, the Chinese government is adopting a broad range of policies, including promotion of fuel-efficient vehicles, fuel conservation, increasing investments in oil resources around the world, and many others.

  12. A mono-dimensional nuclear fuel performance analysis code, PUMA, development from a coupled approach

    SciTech Connect (OSTI)

    Cheon, J. S.; Lee, B. O.; Lee, C. B.; Yacout, A. M.

    2013-07-01

    Multidimensional-multi-physical phenomena in nuclear fuels are treated as a set of mono-dimensional-coupled problems which encompass heat, displacement, fuel constituent redistribution, and fission gas release. Rather than uncoupling these coupled equations as in conventional fuel performance analysis codes, efforts are put into to obtain fully coupled solutions by relying on the recent advances of numerical analysis. Through this approach, a new SFR metal fuel performance analysis code, called PUMA (Performance of Uranium Metal fuel rod Analysis code) is under development. Although coupling between temperature and fuel constituent was made easily, the coupling between the mechanical equilibrium equation and a set of stiff kinetics equations for fission gas release is accomplished by introducing one-level Newton scheme through backward differentiation formula. Displacement equations from 1D finite element formulation of the mechanical equilibrium equation are solved simultaneously with stress equation, creep equation, swelling equation, and FGR equations. Calculations was made successfully such that the swelling and the hydrostatic pressure are interrelated each other. (authors)

  13. Stress Analysis of Coated Particle Fuel in the Deep-Burn Pebble Bed Reactor Design

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-05-01

    High fuel temperatures and resulting fuel particle coating stresses can be expected in a Pu and minor actinide fueled Pebble Bed Modular Reactor (400 MWth) design as compared to the standard UO2 fueled core. The high discharge burnup aimed for in this Deep-Burn design results in increased power and temperature peaking in the pebble bed near the inner and outer reflector. Furthermore, the pebble power in a multi-pass in-core pebble recycling scheme is relatively high for pebbles that make their first core pass. This might result in an increase of the mechanical failure of the coatings, which serve as the containment of radioactive fission products in the PBMR design. To investigate the integrity of the particle fuel coatings as a function of the irradiation time (i.e. burnup), core position and during a Loss Of Forced Cooling (LOFC) incident the PArticle STress Analysis code (PASTA) has been coupled to the PEBBED code for neutronics, thermal-hydraulics and depletion analysis of the core. Two deep burn fuel types (Pu with or without initial MA fuel content) have been investigated with the new code system for normal and transient conditions including the effect of the statistical variation of thickness of the coating layers.

  14. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  15. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    Section 1. Documentation Guide D O C U M E N T A T I O N G U I D E This section describes the data identification codes in the State Energy Data System (SEDS). Sections 2 through 6 provide information for each of the major energy sources: coal, natural gas, petroleum, renewable energy, and electricity. Section 7 describes adjustments for consumption of industrial process fuel and intermediate products and other uncosted energy sources that are removed in the calculation of expenditures.

  16. Sampling and analysis plan for canister liquid and gas sampling at 105 KW fuel storage basin

    SciTech Connect (OSTI)

    Trimble, D.J.

    1996-08-09

    This Sampling and Analysis Plan describes the equipment,procedures and techniques for obtaining gas and liquid samples from sealed K West fuel canisters. The analytical procedures and quality assurance requirements for the subsequent laboratory analysis of the samples are also discussed.

  17. Fact #565: April 6, 2009 Household Gasoline Expenditures by Income |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 5: April 6, 2009 Household Gasoline Expenditures by Income Fact #565: April 6, 2009 Household Gasoline Expenditures by Income In the annual Consumer Expenditure Survey, household incomes are grouped into five equal parts called quintiles (each quintile is 20%). Households in the second and third quintiles consistently have a higher share of spending on gasoline each year than households in the other quintiles. Household Gasoline Expenditures by Income Quintile Bar graph

  18. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    3 2005 Average Household Expenditures, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Other expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other categories are calculated from the

  19. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2005 Average Household Expenditures as Percent of Annual Income, by Census Region ($2010) Item Energy (1) Shelter (2) Food Telephone, water and other public services Household supplies, furnishings and equipment (3) Transportation (4) Healthcare Education Personal taxes (5) Average Annual Expenditures Average Annual Income Note(s): Source(s): 1) Average household energy expenditures are calculated from the Residential Energy Consumption Survey (RECS), while average expenditures for other

  20. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  1. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect (OSTI)

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  2. A comparative analysis of alternative fuels for the INEL vehicle fleet

    SciTech Connect (OSTI)

    Priebe, S.; Boyer, W.; Church, K.

    1992-11-01

    This report summarizes the results of a comparative systems analysis of various alternative fuels for use in the buses, mid-size vehicles, and automobiles that make up the vehicle fleet at the Idaho National Engineering Laboratory (INEL). The study was performed as part of the Laboratory Directed Research and Development (LDRD) Program for EG G Idaho, Inc. Regulations will require the INEL to reduce total gasoline and diesel fuel use 10% by 1995 compared with 1991 levels, and will require that 50% of all new vehicles be fueled by some type of alternative fuel by 1998. A model was developed to analyze how these goals could be achieved, and what the cost would be to implement the goals.

  3. Sampling and Analysis Plan for canister liquid and gas sampling at 105-KW fuel storage basin

    SciTech Connect (OSTI)

    Harris, R.A.; Green, M.A.; Makenas, B.J.; Trimble, D.J.

    1995-03-01

    This Sampling and Analysis Plan (SAP) details the sampling and analyses to be performed on fuel canisters transferred to the Weasel Pit of the 105-KW fuel storage basin. The radionuclide content of the liquid and gas in the canisters must be evaluated to support the shipment of fuel elements to the 300 Area in support of the fuel characterization studies (Abrefah, et al. 1994, Trimble 1995). The following sections provide background information and a description of the facility under investigation, discuss the existing site conditions, present the constituents of concern, outline the purpose and scope of the investigation, outline the data quality objectives (DQO), provide analytical detection limit, precision, and accuracy requirements, and address other quality assurance (QA) issues.

  4. Sensitivity Analysis of FEAST-Metal Fuel Performance Code: Initial Results

    SciTech Connect (OSTI)

    Edelmann, Paul Guy; Williams, Brian J.; Unal, Cetin; Yacout, Abdellatif

    2012-06-27

    This memo documents the completion of the LANL milestone, M3FT-12LA0202041, describing methodologies and initial results using FEAST-Metal. The FEAST-Metal code calculations for this work are being conducted at LANL in support of on-going activities related to sensitivity analysis of fuel performance codes. The objective is to identify important macroscopic parameters of interest to modeling and simulation of metallic fuel performance. This report summarizes our preliminary results for the sensitivity analysis using 6 calibration datasets for metallic fuel developed at ANL for EBR-II experiments. Sensitivity ranking methodology was deployed to narrow down the selected parameters for the current study. There are approximately 84 calibration parameters in the FEAST-Metal code, of which 32 were ultimately used in Phase II of this study. Preliminary results of this sensitivity analysis led to the following ranking of FEAST models for future calibration and improvements: fuel conductivity, fission gas transport/release, fuel creep, and precipitation kinetics. More validation data is needed to validate calibrated parameter distributions for future uncertainty quantification studies with FEAST-Metal. Results of this study also served to point out some code deficiencies and possible errors, and these are being investigated in order to determine root causes and to improve upon the existing code models.

  5. A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA Technique

    SciTech Connect (OSTI)

    James W .Sterbentz; David L. Chichester

    2011-07-01

    Many different nondestructive analysis techniques are currently being investigated as a part of the United States Department of Energy's Next Generation Safeguards Initiative (NGSI) seeking methods to quantify plutonium in spent fuel. Neutron Resonance Transmission Analysis (NRTA) is one of these techniques. Having first been explored in the mid-1970s for the analysis of individual spent-fuel pins a second look, using advanced simulation and modeling methods, is now underway to investigate the suitability of the NRTA technique for assaying complete spent nuclear fuel assemblies. The technique is similar to neutron time-of-flight methods used for cross-section determinations but operates over only the narrow 0.1-20 eV range where strong, distinguishable resonances exist for both the plutonium (239, 240, 241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Initial modeling shows excellent agreement with previously published experimental data for measurements of individual spent-fuel pins where plutonium assays were demonstrated to have a precision of 2-4%. Within the simulation and modeling analyses of this project scoping studies have explored fourteen different aspects of the technique including the neutron source, drift tube configurations, and gross neutron transmission as well as the impacts of fuel burn up, cooling time, and fission-product interferences. These results show that NRTA may be a very capable experimental technique for spent-fuel assay measurements. The results suggest sufficient transmission strength and signal differentiability is possible for assays through up to 8 pins. For an 8-pin assay (looking at an assembly diagonally), 64% of the pins in a typical 17 ? 17 array of a pressurized water reactor fuel assembly can be part of a complete transmission assay measurement with high precision. Analysis of rows with up to 12 pins may also be feasible but with diminished precision. Preliminary data analysis of an NRTA simulation has demonstrated the simplicity of the technique.

  6. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.; Casella, Andrew M.; Gesh, Christopher J.; Warren, Glen A.

    2011-09-30

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the pure empirical approach. In addition, total Pu with much better accuracy with the hybrid approach than the pure analytical approach. In FY2012, PNNL will continue efforts to optimize its empirical model and minimize its reliance on calibration data. In addition, PNNL will continue to develop an analytical model, considering effects such as neutron-scattering in the fuel and cladding, as well as neutrons streaming through gaps between fuel pins in the fuel assembly.

  7. Hazard analysis for 300 Area N Reactor Fuel Fabrication and Storage Facilty

    SciTech Connect (OSTI)

    Johnson, D.J.; Brehm, J.R.

    1994-01-25

    This hazard analysis (HA) has been prepared for the 300 Area N Reactor Fuel Fabrication and Storage Facility (Facility), in compliance with the requirements of Westinghouse Hanford Company (Westinghouse Hanford) controlled manual WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual, and to the direction of WHC-IP-0690, Safety Analysis and Regulation Desk Instructions, (WHC 1992). An HA identifies potentially hazardous conditions in a facility and the associated potential accident scenarios. Unlike the Facility hazard classification documented in WHC-SD-NR-HC-004, Hazard Classification for 300 Area N Reactor Fuel Fabrication and Storage Facility, (Huang 1993), which is based on unmitigated consequences, credit is taken in an HA for administrative controls or engineered safety features planned or in place. The HA is the foundation for the accident analysis. The significant event scenarios identified by this HA will be further evaluated in a subsequent accident analysis.

  8. Short-Term Energy and Winter Fuels Outlook October 2013

    Gasoline and Diesel Fuel Update (EIA)

    3 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights  EIA projects average U.S. household expenditures for natural gas and propane will increase by 13% and 9%, respectively, this winter heating season (October 1 through March 31) compared with last winter. Projected U.S. household expenditures are 2% higher for electricity and 2% lower for heating oil this winter. Although EIA expects average expenditures for households that heat with natural gas will be significantly

  9. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY12 Status Report

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Casella, Andrew M.; Siciliano, Edward R.; Warren, Glen A.

    2012-09-28

    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of todays confirmatory methods. This document is a progress report for FY2012 PNNL analysis and algorithm development. Progress made by PNNL in FY2012 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel assemblies. PNNL further refined the semi-empirical model developed in FY2011 based on singular value decomposition (SVD) to numerically account for the effects of self-shielding. The average uncertainty in the Pu mass across the NGSI-64 fuel assemblies was shown to be less than 3% using only six calibration assemblies with a 2% uncertainty in the isotopic masses. When calibrated against the six NGSI-64 fuel assemblies, the algorithm was able to determine the total Pu mass within <2% uncertainty for the 27 diversion cases also developed under NGSI. Two purely empirical algorithms were developed that do not require the use of Pu isotopic fission chambers. The semi-empirical and purely empirical algorithms were successfully tested using MCNPX simulations as well applied to experimental data measured by RPI using their LSDS. The algorithms were able to describe the 235U masses of the RPI measurements with an average uncertainty of 2.3%. Analyses were conducted that provided valuable insight with regard to design requirements (e.g. Pb stack size, neutron source location) of an LSDS for the purpose of assaying used fuel assemblies. Sensitivity studies were conducted that provide insight as to how the LSDS instrument can be improved by making it more sensitive to the center of the fuel assemblies. In FY2013, PNNL will continue efforts to develop and refine design requirements of an LSDS for the ultimate purpose of assaying used fuel assemblies. Future efforts will be directed toward more extensive experimental benchmarking of currently implemented time-spectra analysis algorithms.

  10. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  11. Fuel Tables.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0: Residual Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures Commercial Industrial Transportation Electric Power Total Commercial Industrial Transportation Electric Power Total Dollars per Million Btu Million Dollars Alabama - 15.65 11.37 - 12.59 - 34.4 62.9 - 97.2 Alaska - - - 18.87 18.87 - - - 14.1 14.1 Arizona - - - - - - - - - - Arkansas - 16.03 - 19.89 16.12 - 1.0 - (s) 1.1 California 15.94 15.94 21.60 - 21.60 0.1 0.5 1,825.7 - 1,826.3 Colorado - - - - - - - - - -

  12. An advanced deterministic method for spent fuel criticality safety analysis

    SciTech Connect (OSTI)

    DeHart, M.D.

    1998-01-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, non-orthogonal configurations or fissile materials, typical of real world problems. Over the last few years, however, interest in determinist transport methods has been revived, due shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constraints in finite differencing schemes have made discrete ordinates methods impractical for non-orthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitations of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built upon the ESC formalism, is being developed as part of the SCALE code system. This paper will demonstrate the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  13. CONTAINMENT ANALYSIS METHODOLOGY FOR TRANSPORT OF BREACHED CLAD ALUMINUM SPENT FUEL

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    Aluminum-clad, aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to the Savannah River Site and placed in interim storage in a water basin. To enter the United States, a cask with loaded fuel must be certified to comply with the requirements in the Title 10 of the U.S. Code of Federal Regulations, Part 71. The requirements include demonstration of containment of the cask with its contents under normal and accident conditions. Many Al-SNF assemblies have suffered corrosion degradation in storage in poor quality water, and many of the fuel assemblies are 'failed' or have through-clad damage. A methodology was developed to evaluate containment of Al-SNF even with severe cladding breaches for transport in standard casks. The containment analysis methodology for Al-SNF is in accordance with the methodology provided in ANSI N14.5 and adopted by the U. S. Nuclear Regulatory Commission in NUREG/CR-6487 to meet the requirements of 10CFR71. The technical bases for the inputs and assumptions are specific to the attributes and characteristics of Al-SNF received from basin and dry storage systems and its subsequent performance under normal and postulated accident shipping conditions. The results of the calculations for a specific case of a cask loaded with breached fuel show that the fuel can be transported in standard shipping casks and maintained within the allowable release rates under normal and accident conditions. A sensitivity analysis has been conducted to evaluate the effects of modifying assumptions and to assess options for fuel at conditions that are not bounded by the present analysis. These options would include one or more of the following: reduce the fuel loading; increase fuel cooling time; reduce the degree of conservatism in the bounding assumptions; or measure the actual leak rate of the cask system. That is, containment analysis for alternative inputs at fuel-specific conditions and at cask-loading-specific conditions could be performed to demonstrate that release is within the allowable leak rates of the cask.

  14. Analysis of Corporate Average Fuel Economy (CAFE) Standards for Light Trucks and Increased Alternative Fuel Use

    Reports and Publications (EIA)

    2002-01-01

    Sen. Frank Murkowski, the Ranking Minority Member of the Senate Committee on Energy and Natural Resources requested an analysis of selected portions of Senate Bill 1766 (S. 1766, the Energy Policy Act of 2002), House Resolution 4 (the Securing America's Future Energy Act of 2001) and Senate Bill 517 (S. 517, the Energy Policy Act of 2002). In response, the Energy Information Administration (EIA) has prepared a series of analyses showing the impacts of each of the selected provisions of the bills on energy supply, demand, and prices, macroeconomic variables where feasible, import dependence, and emissions.

  15. Radiolysis Model Sensitivity Analysis for a Used Fuel Storage Canister

    SciTech Connect (OSTI)

    Wittman, Richard S.

    2013-09-20

    This report fulfills the M3 milestone (M3FT-13PN0810027) to report on a radiolysis computer model analysis that estimates the generation of radiolytic products for a storage canister. The analysis considers radiolysis outside storage canister walls and within the canister fill gas over a possible 300-year lifetime. Previous work relied on estimates based directly on a water radiolysis G-value. This work also includes that effect with the addition of coupled kinetics for 111 reactions for 40 gas species to account for radiolytic-induced chemistry, which includes water recombination and reactions with air.

  16. Coupling the core analysis program DeCART to the fuel performance application BISON

    SciTech Connect (OSTI)

    Gleicher, F. N.; Spencer, B.; Novascone, S.; Williamson, R.; Martineau, R. C. [Idaho National Laboratory, 2525 N. Fremont Avenue, Idaho Falls, ID 83415 (United States); Rose, M.; Downar, T. J.; Collins, B. [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Blvd., Ann Arbor, MI 48105 (United States)

    2013-07-01

    The 3D neutron transport and core analysis program DeCART was coupled to the fuels performance application BISON to provide a higher fidelity tool for fuel performance simulation. This project is motivated by the desire to couple a high fidelity core analysis program (based on the method of characteristics) to a high fidelity fuel performance program, both of which can simulate 3D problems. DeCART provides sub-pin level resolution of the multigroup neutron flux, with resonance treatment, during burnup or a fast transient. BISON implicitly solves coupled thermomechanical equations for the fuel on a sub-millimeter level finite element mesh. A method was developed for mapping the fission rate density and fast neutron flux from DeCART to BISON. Multiple depletion cases were run with one-way data transfer from DeCART to BISON. The one-way data transfer of fission rate density is shown to agree with the fission rate density obtained from an internal Lassman-style model in BISON. One-way data transfer was also demonstrated in a 3D case in which azimuthal asymmetry was induced in the fission rate density profile of a fuel rod modeled in DeCART. Two-way data transfer was established by mapping the temperature distribution from BISON to DeCART. A Picard iterative algorithm was developed for the loose coupling with two-way data transfer. (authors)

  17. Analysis of fission gas release in LWR fuel using the BISON code

    SciTech Connect (OSTI)

    G. Pastore; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; R.L. Williamson

    2013-09-01

    Recent advances in the development of the finite-element based, multidimensional fuel performance code BISON of Idaho National Laboratory are presented. Specifically, the development, implementation and testing of a new model for the analysis of fission gas behavior in LWR-UO2 fuel during irradiation are summarized. While retaining a physics-based description of the relevant mechanisms, the model is characterized by a level of complexity suitable for application to engineering-scale nuclear fuel analysis and consistent with the uncertainties pertaining to some parameters. The treatment includes the fundamental features of fission gas behavior, among which are gas diffusion and precipitation in fuel grains, growth and coalescence of gas bubbles at grain faces, grain growth and grain boundary sweeping effects, thermal, athermal, and transient gas release. The BISON code incorporating the new model is applied to the simulation of irradiation experiments from the OECD/NEA International Fuel Performance Experiments database, also included in the IAEA coordinated research projects FUMEX-II and FUMEX-III. The comparison of the results with the available experimental data at moderate burn-up is presented, pointing out an encouraging predictive accuracy, without any fitting applied to the model parameters.

  18. Characterization of Used Nuclear Fuel with Multivariate Analysis for Process Monitoring

    SciTech Connect (OSTI)

    Dayman, Kenneth J.; Coble, Jamie B.; Orton, Christopher R.; Schwantes, Jon M.

    2014-01-01

    The Multi-Isotope Process (MIP) Monitor combines gamma spectroscopy and multivariate analysis to detect anomalies in various process streams in a nuclear fuel reprocessing system. Measured spectra are compared to models of nominal behavior at each measurement location to detect unexpected changes in system behavior. In order to improve the accuracy and specificity of process monitoring, fuel characterization may be used to more accurately train subsequent models in a full analysis scheme. This paper presents initial development of a reactor-type classifier that is used to select a reactor-specific partial least squares model to predict fuel burnup. Nuclide activities for prototypic used fuel samples were generated in ORIGEN-ARP and used to investigate techniques to characterize used nuclear fuel in terms of reactor type (pressurized or boiling water reactor) and burnup. A variety of reactor type classification algorithms, including k-nearest neighbors, linear and quadratic discriminant analyses, and support vector machines, were evaluated to differentiate used fuel from pressurized and boiling water reactors. Then, reactor type-specific partial least squares models were developed to predict the burnup of the fuel. Using these reactor type-specific models instead of a model trained for all light water reactors improved the accuracy of burnup predictions. The developed classification and prediction models were combined and applied to a large dataset that included eight fuel assembly designs, two of which were not used in training the models, and spanned the range of the initial 235U enrichment, cooling time, and burnup values expected of future commercial used fuel for reprocessing. Error rates were consistent across the range of considered enrichment, cooling time, and burnup values. Average absolute relative errors in burnup predictions for validation data both within and outside the training space were 0.0574% and 0.0597%, respectively. The errors seen in this work are artificially low, because the models were trained, optimized, and tested on simulated, noise-free data. However, these results indicate that the developed models may generalize well to new data and that the proposed approach constitutes a viable first step in developing a fuel characterization algorithm based on gamma spectra.

  19. DOE/EIS-0218-SA-3: Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program (November 2004)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM NOVEMBER 2004 DOE/EIS-0218-SA-3 U.S. Department of Energy National Nuclear Security Administration Washington, DC Final Supplement Analysis for the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program Final i TABLE OF CONTENTS Page 1. Introduction.............................................................................................................................................. 1 2.

  20. Table 3.5 Consumer Expenditure Estimates for Energy by Source, 1970-2010 (Million Dollars )

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumer Expenditure Estimates for Energy by Source, 1970-2010 (Million Dollars 1) Year Primary Energy 2 Electric Power Sector 11,12 Retail Electricity 13 Total Energy 10,14 Coal Coal Coke Net Imports 3 Natural Gas 4 Petroleum Nuclear Fuel Biomass 9 Total 10 Distillate Fuel Oil Jet Fuel 5 LPG 6 Motor Gasoline 7 Residual Fuel Oil Other 8 Total 1970 4,630 -75 10,891 6,253 1,441 2,395 31,596 2,046 4,172 47,904 44 438 63,872 -4,357 23,345 82,860 1971 4,902 -40 12,065 6,890 1,582 2,483 33,478 2,933

  1. U.S. Gap Analysis to Support Extended Storage of Used Nuclear Fuel

    SciTech Connect (OSTI)

    Hanson, Brady D.; Alsaed, Abdelhalim -.; Stockman, Christine T.; Sorenson, Ken B.

    2012-06-27

    Dry storage of used nuclear fuel in the United States will continue until a disposition pathway is chosen and implemented. As such, the duration of dry storage will be much longer than originally anticipated. This paper reviews the methodology used in and the results of an analysis to determine the technical data gaps that need to be addressed to assure the continued safe and secure storage of used nuclear fuel for extended periods. Six high priority and eleven medium priority mechanisms were identified that may degrade the safety functions of the dry storage structures, systems, and components.

  2. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    SciTech Connect (OSTI)

    Not Available

    1991-10-18

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

  3. State Energy Data System 2013 Price and Expenditure Technical Notes

    Gasoline and Diesel Fuel Update (EIA)

    Price and Expenditure Technical Notes U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures 3 Purpose The State Energy Data System (SEDS) was developed and is maintained and operated by the U.S. Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy production, consumption, prices, and expenditures by state that are defined as consistently as possible over time and across sectors. SEDS exists for two

  4. Coupled Hybrid Monte Carlo: Deterministic Analysis of VHTR Configurations with Advanced Actinide Fuels

    SciTech Connect (OSTI)

    Tsvetkov, Pavel V.; Ames II, David E.; Alajo, Ayodeji B.; Pritchard, Megan L.

    2006-07-01

    Partitioning and transmutation of minor actinides are expected to have a positive impact on the future of nuclear technology. Their deployment would lead to incineration of hazardous nuclides and could potentially provide additional fuel supply. The U.S. DOE NERI Project assesses the possibility, advantages and limitations of involving minor actinides as a fuel component. The analysis takes into consideration and compares capabilities of actinide-fueled VHTRs with pebble-bed and prismatic cores to approach a reactor lifetime long operation without intermediate refueling. A hybrid Monte Carlo-deterministic methodology has been adopted for coupled neutronics-thermal hydraulics design studies of VHTRs. Within the computational scheme, the key technical issues are being addressed and resolved by implementing efficient automated modeling procedures and sequences, combining Monte Carlo and deterministic approaches, developing and applying realistic 3D coupled neutronics-thermal-hydraulics models with multi-heterogeneity treatments, developing and performing experimental/computational benchmarks for model verification and validation, analyzing uncertainty effects and error propagation. This paper introduces the suggested modeling approach, discusses benchmark results and the preliminary analysis of actinide-fueled VHTRs. The presented up-to-date results are in agreement with the available experimental data. Studies of VHTRs with minor actinides suggest promising performance. (authors)

  5. wf01 - Energy_Expenditures.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Short-Term Energy Outlook - March 2016 08-09 09-10 10-11 11-12 12-13 13-14 14-15 15-16 % Change Natural Gas Northeast Consumption (Mcf**) 80.3 75.7 80.7 66.4 76.1 84.0 84.7 69.9 -17.5 Price ($/mcf) 15.83 13.31 12.66 12.21 11.71 11.53 10.85 10.65 -1.8 Expenditures ($) 1,272 1,007 1,022 812 891 969 919 745 -19.0 Midwest Consumption (Mcf) 80.7 78.6 80.2 65.4 77.6 88.1 83.1 70.0 -15.8 Price ($/mcf) 11.47 9.44 9.23 8.99 8.36 8.69 8.55 7.37 -13.9 Expenditures ($) 926 742 740 587 648 766 711 516

  6. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 4.0 Systems Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANALYSIS SECTION Multi-Year Research, Development, and Demonstration Plan Page 4.0 - 1 4.0 Systems Analysis The Fuel Cell Technologies Office (The Office) conducts a coordinated, comprehensive effort in modeling and analysis to clarify where hydrogen and fuel cells can be most effective from an economic, environmental, and energy security standpoint, as well as to guide RD&D priorities and set program goals. These activities support the Office's decision-making process by evaluating

  7. Direct Methanol Fuel Cells - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Methanol Fuel Cells Los Alamos National Laboratory Contact LANL About This Technology Direct methanol fuel cells provide an alternative power source for mobile devices. Direct methanol fuel cells provide an alternative power source for mobile devices. Technology Marketing SummaryLANL has developed an intellectual property portfolio in Direct Methanol Fuel Cells that may permit companies to participate in the emerging DMFC market while minimizing R&D risks and expenditures. Our

  8. Full-length high-temperature severe fuel damage test No. 2. Final safety analysis

    SciTech Connect (OSTI)

    Hesson, G.M.; Lombardo, N.J.; Pilger, J.P.; Rausch, W.N.; King, L.L.; Hurley, D.E.; Parchen, L.J.; Panisko, F.E.

    1993-09-01

    Hazardous conditions associated with performing the Full-Length High- Temperature (FLHT). Severe Fuel Damage Test No. 2 experiment have been analyzed. Major hazards that could cause harm or damage are (1) radioactive fission products, (2) radiation fields, (3) reactivity changes, (4) hydrogen generation, (5) materials at high temperature, (6) steam explosion, and (7) steam pressure pulse. As a result of this analysis, it is concluded that with proper precautions the FLHT- 2 test can be safely conducted.

  9. Fuel-Cycle Energy and Emissions Analysis with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy and Emissions Analysis with the GREET Model Michael Wang Argonne National Laboratory May 19, 2009 Project ID: ftp_02_wang This presentation does not contain any proprietary, confidential, or otherwise restricted information Overview of GREET Model Development * Start - 1995 * Finish - continuous * % complete - not applicable * Develop a comprehensive tool to examine full energy and emission effects of vehicle/fuel systems * Conduct thorough WTW analyses with the developed tool * Total

  10. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems Michael Wang, Amgad Elgowainy, Jeongwoo Han, Hao Cai Argonne National Laboratory The 2013 DOE Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting Arlington, VA May 16, 2013 Project ID: van002 This presentation does not contain any proprietary, confidential, or otherwise restricted information Project Overview  Start: Oct. 1993  End: not applicable (ongoing annual allocation  % complete:

  11. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 53.7 14.2 0.9 8.0 0.6 23.7 0.1 23.2 100.8 23.4% Space Cooling 0.4 61.3 61.7 14.3% Lighting 59.3 59.3 13.8% Water Heating 18.3 2.6 2.0 4.6 17.8 40.7 9.4% Refrigeration (4) 26.9 26.9 6.2% Electronics (5) 26.1 26.1 6.1% Ventilation (6) 15.9 15.9 3.7% Cooking 4.0 0.8 0.8 8.8 13.6 3.2% Computers 12.1 12.1 2.8% Wet

  12. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Gas Distil. Resid. LPG Oth(2) Total Coal Total Percent Space Heating (3) 49.5 15.9 1.3 8.1 0.7 25.9 0.2 18.7 94.3 22.7% Space Cooling 0.3 48.0 48.3 11.6% Lighting 45.9 45.9 11.0% Water Heating 17.6 2.6 1.5 4.1 18.3 40.0 9.6% Refrigeration (4) 24.9 24.9 6.0% Electronics (5) 19.8 19.8 4.7% Ventilation (6) 15.1 15.1 3.6% Computers 11.6 11.6 2.8% Wet Cleaning (7) 0.6 10.8 11.4 2.7% Cooking 3.9 0.9 0.9 4.4

  13. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 56.7 14.3 1.5 7.8 0.7 24.3 0.2 19.5 100.7 22.0% Space Cooling 0.3 50.5 50.9 11.1% Lighting 45.2 45.2 9.9% Water Heating 21.3 2.3 1.3 3.6 19.6 44.4 9.7% Refrigeration (4) 24.9 24.9 5.4% Electronics (5) 23.2 23.2 5.1% Computers 13.2 13.2 2.9% Wet Clean (6) 0.8 9.8 10.5 2.3% Cooking 4.8 0.8 0.8 4.9 10.5 2.3%

  14. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Buildings Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal Electricity Total Percent Space Heating (3) 63.4 13.0 1.6 7.7 0.8 23.1 0.2 20.6 107.2 20.9% Water Heating 23.8 2.2 1.2 3.4 35.8 63.0 12.3% Space Cooling 0.4 55.7 56.1 10.9% Lighting 47.8 47.8 9.3% Electronics (4) 27.2 27.2 5.3% Refrigeration (5) 27.0 27.0 5.3% Computers 14.8 14.8 2.9% Cooking 5.8 0.8 0.8 5.4 12.1 2.3% Wet Clean (6) 0.9 10.4 11.3 2.2%

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2010 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 38.7 11.2 8.0 19.8 0.0 14.3 72.9 28.9% Space Cooling (3) 0.0 35.4 35.4 14.0% Water Heating (4) 14.3 2.1 2.0 4.0 14.2 32.6 12.9% Lighting 22.6 22.6 9.0% Refrigeration (5) 14.9 14.9 5.9% Electronics (6) 17.8 17.8 7.1% Cooking 2.4 0.8 0.8 6.0 9.2 3.7% Wet Cleaning (7) 0.6 10.7 11.3 4.5% Computers 5.6 5.6 2.2% Other

  16. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2015 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 35.0 13.0 8.1 21.6 0.0 14.0 70.6 29.2% Space Cooling (3) 0.0 33.8 33.8 14.0% Water Heating 13.5 1.9 1.5 3.4 15.8 32.7 13.5% Lighting 17.6 17.6 7.3% Refrigeration (4) 15.0 15.0 6.2% Electronics (5) 10.9 10.9 4.5% Wet Cleaning (6) 0.6 10.8 11.4 4.7% Cooking 2.2 0.9 0.9 3.8 6.8 2.8% Computers 6.3 6.3 2.6% Other (7)

  17. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2025 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 39.7 11.5 7.8 19.9 0.0 15.0 74.5 28.6% Space Cooling (3) 0.0 36.2 36.2 13.9% Water Heating 16.0 1.4 1.3 2.7 17.1 35.9 13.8% Lighting 15.2 15.2 5.8% Refrigeration (4) 15.5 15.5 6.0% Electronics (5) 12.0 12.0 4.6% Wet Cleaning (6) 0.8 9.8 10.5 4.1% Cooking 2.7 0.8 0.8 4.3 7.8 3.0% Computers 7.7 7.7 2.9% Other (7)

  18. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 2035 Residential Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. LPG Kerosene Total Coal Electricity Total Percent Space Heating (2) 44.3 10.3 7.7 18.6 0.0 16.0 79.0 27.4% Space Cooling (3) 0.0 40.6 40.6 14.1% Water Heating 17.6 1.2 1.2 2.3 17.7 37.6 13.0% Lighting 15.5 15.5 5.4% Refrigeration (4) 17.0 17.0 5.9% Electronics (5) 14.2 14.2 4.9% Wet Cleaning (6) 0.9 10.4 11.3 3.9% Cooking 3.2 0.8 0.8 4.8 8.9 3.1% Computers 8.7 8.7 3.0% Other (7)

  19. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    4 2010 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 35.4 35.4 19.7% Space Heating 15.0 2.9 0.9 0.1 3.9 0.1 8.5 27.5 15.3% Space Cooling 0.4 25.0 25.3 14.1% Ventilation 15.9 15.9 8.9% Refrigeration 11.6 11.6 6.5% Water Heating 4.0 0.6 0.6 2.7 7.3 4.1% Electronics 7.8 7.8 4.3% Computers 6.3 6.3 3.5% Cooking 1.6 0.7 2.3 1.3% Other (4) 2.7 0.3 3.3 1.2 4.8 20.4 28.0

  20. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2015 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 28.4 28.4 16.3% Space Heating 14.6 2.9 1.3 0.1 4.3 0.1 4.7 23.7 13.6% Ventilation 15.1 15.1 8.6% Space Cooling 0.3 14.2 14.5 8.3% Refrigeration 9.9 9.9 5.7% Electronics 8.8 8.8 5.1% Water Heating 4.1 0.7 0.7 2.5 7.3 4.2% Computers 5.3 5.3 3.0% Cooking 1.7 0.6 2.3 1.3% Other (4) 2.9 0.3 3.7 1.4 5.4 22.8 31.1 17.8%

  1. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    6 2025 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 30.1 30.1 15.2% Space Heating 17.1 2.8 1.5 0.1 4.4 0.2 4.5 26.1 13.3% Electronics 11.2 11.2 5.7% Space Cooling 0.3 14.3 14.6 7.4% Water Heating 5.2 0.8 0.8 2.5 8.5 4.3% Computers 5.5 5.5 2.8% Refrigeration 9.4 9.4 4.8% Ventilation 16.6 16.6 8.4% Cooking 2.1 0.6 2.7 1.4% Other (4) 4.8 0.3 4.3 1.7 6.3 31.2 42.3 21.5%

  2. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    7 2035 Commercial Energy End-Use Expenditure Splits, by Fuel Type ($2010 Billion) (1) Natural Petroleum Gas Distil. Resid. LPG Oth(2) Total Coal (3) Electricity Total Percent Lighting 32.3 32.3 14.4% Space Heating 19.0 2.7 1.6 0.2 4.5 0.2 4.6 28.2 12.5% Water Heating 6.3 1.0 1.0 18.1 25.4 11.3% Space Cooling 0.4 15.1 15.5 6.9% Electronics 13.0 13.0 5.8% Refrigeration 10.0 10.0 4.4% Computers 6.0 6.0 2.7% Cooking 2.6 0.6 3.2 1.4% Ventilation 2.4 2.4 1.1% Other (4) 9.3 0.4 4.9 2.0 7.2 40.9 57.5

  3. Short-Term Energy and Winter Fuels Outlook October 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    3 1 October 2013 Short-Term Energy and Winter Fuels Outlook (STEO) Highlights EIA projects average U.S. household expenditures for natural gas and propane will increase by 13%...

  4. Synthetic fuels and the environment: an environmental and regulatory impacts analysis

    SciTech Connect (OSTI)

    1980-06-01

    Since July 1979 when DOE/EV-0044 report Environmental Analysis of Synthetic Liquid fuels was published the synthetic fuels program proposals of the Administration have undergone significant modifications. The program year for which the development goal of 1.5 million barrels per day is to be reached has been changed from 1990 to 1995. The program plan is now proposed to have two stages to ensure, among other things, better environmental protection: an initial stage emphasizing applied research and development (R and D), including environmental research, followed by a second stage that would accelerate deployment of those synthetic fuel technologies then judged most ready for rapid deployment and economic operation within the environmental protection requirements. These program changes have significantly expanded the scope of technologies to be considered in this environmental analysis and have increased the likelihood that accelerated environmental R and D efforts will be successful in solving principal environmental and worker safety concerns for most technologies prior to the initiation of the second stage of the accelerated deployment plan. Information is presented under the following section headings: summary; study description; the technologies and their environmental concerns (including, coal liquefaction and gasification, oil shale production, biomass and urban waste conversion); regulatory and institutional analyses; and environmental impacts analysis (including air and water quaility analyses, impacts of carbon dioxide and acid rain, water availability, solid and hazardous wastes, coal mining environmental impacts, transportation issues, community growth and change, and regional impacts). Additional information is presented in seventeen appendixes. (JGB)

  5. Validation of the Physics Analysis used to Characterize the AGR-1 TRISO Fuel Irradiation Test

    SciTech Connect (OSTI)

    Sterbentz, James W.; Harp, Jason M.; Demkowicz, Paul A.; Hawkes, Grant L.; Chang, Gray S.

    2015-05-01

    The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

  6. Analysis on burnup step effect for evaluating reactor criticality and fuel breeding ratio

    SciTech Connect (OSTI)

    Saputra, Geby; Purnama, Aditya Rizki; Permana, Sidik; Suzuki, Mitsutoshi

    2014-09-30

    Criticality condition of the reactors is one of the important factors for evaluating reactor operation and nuclear fuel breeding ratio is another factor to show nuclear fuel sustainability. This study analyzes the effect of burnup steps and cycle operation step for evaluating the criticality condition of the reactor as well as the performance of nuclear fuel breeding or breeding ratio (BR). Burnup step is performed based on a day step analysis which is varied from 10 days up to 800 days and for cycle operation from 1 cycle up to 8 cycles reactor operations. In addition, calculation efficiency based on the variation of computer processors to run the analysis in term of time (time efficiency in the calculation) have been also investigated. Optimization method for reactor design analysis which is used a large fast breeder reactor type as a reference case was performed by adopting an established reactor design code of JOINT-FR. The results show a criticality condition becomes higher for smaller burnup step (day) and for breeding ratio becomes less for smaller burnup step (day). Some nuclides contribute to make better criticality when smaller burnup step due to individul nuclide half-live. Calculation time for different burnup step shows a correlation with the time consuming requirement for more details step calculation, although the consuming time is not directly equivalent with the how many time the burnup time step is divided.

  7. CBECS 1992 - Consumption & Expenditures, Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    consumption by major fuel, 1992 Divider Line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  8. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Auxiliary Power Applications | Department of Energy kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Under a cooperative agreement with the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office, Battelle Memorial Institute is providing an independent assessment of fuel cell manufacturing costs at varied volumes and alternative system designs.

  9. North Portal Fuel Storage System Fire Hazard Analysis-ESF Surface Design Package ID

    SciTech Connect (OSTI)

    N.M. Ruonavaara

    1995-01-18

    The purpose of the fire hazard analysis is to comprehensively assess the risk from fire within the individual fire areas. This document will only assess the fire hazard analysis within the Exploratory Studies Facility (ESF) Design Package ID, which includes the fuel storage system area of the North Portal facility, and evaluate whether the following objectives are met: 1.1.1--This analysis, performed in accordance with the requirements of this document, will satisfy the requirements for a fire hazard analysis in accordance with U.S. Department of Energy (DOE) Order 5480.7A. 1.1.2--Ensure that property damage from fire and related perils does not exceed an acceptable level. 1.1.3--Provide input to the ESF Basis For Design (BFD) Document. 1.1.4 Provide input to the facility Safety Analysis Report (SAR) (Paragraph 3.8).

  10. Fuel Tables.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Jet fuel consumption, price, and expenditure estimates, 2014 State Jet fuel a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million dollars Alabama 2,506 14.2 19.92 283.1 Alaska 16,932 96.0 20.97 2,013.3 Arizona 3,792 21.5 21.30 458.0 Arkansas 1,373 7.8 20.17 157.1 California 104,987 595.3 20.37 12,126.1 Colorado 9,285 52.6 20.94 1,102.4 Connecticut 1,874 10.6 21.02 223.4 Delaware 111 0.6 20.61 12.9 Dist. of Col. 0 0.0 - - Florida 32,807 186.0 21.08

  11. DOE and FreedomCAR and Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop

    Broader source: Energy.gov [DOE]

    On January 25, 2006, the U.S. Department of Energy, together with the FreedomCAR & Fuel Partnership, held a workshop to review and discuss ongoing hydrogen storage and delivery analysis efforts...

  12. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect (OSTI)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  13. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect (OSTI)

    G. Pastore; L.P. Swiler; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; L. Luzzi; P. Van Uffelen; R.L. Williamson

    2014-10-01

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  14. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pastore, Giovanni; Swiler, L. P.; Hales, Jason D.; Novascone, Stephen R.; Perez, Danielle M.; Spencer, Benjamin W.; Luzzi, Lelio; Uffelen, Paul Van; Williamson, Richard L.

    2014-10-12

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertaintymore » in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.« less

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Advanced Vehicle Technology Research and Demonstration Bonds Qualified state, tribal, and local governments may issue Qualified Energy Conservation Bonds subsidized by the U.S. Department of Treasury at competitive rates to fund capital expenditures on qualified energy conservation projects. Eligible activities include research and demonstration projects related to cellulosic ethanol and other non-fossil fuels, as well as advanced battery manufacturing technologies. Government entities may

  16. Passive Tomography for Spent Fuel Verification: Analysis Framework and Instrument Design Study

    SciTech Connect (OSTI)

    White, Timothy A.; Svard, Staffan J.; Smith, Leon E.; Mozin, Vladimir V.; Jansson, Peter; Davour, Anna; Grape, Sophie; Trellue, H.; Deshmukh, Nikhil S.; Wittman, Richard S.; Honkamaa, Tapani; Vaccaro, Stefano; Ely, James

    2015-05-18

    The potential for gamma emission tomography (GET) to detect partial defects within a spent nuclear fuel assembly is being assessed through a collaboration of Support Programs to the International Atomic Energy Agency (IAEA). In the first phase of this study, two safeguards verification objectives have been identified. The first is the independent determination of the number of active pins that are present in the assembly, in the absence of a priori information. The second objective is to provide quantitative measures of pin-by-pin properties, e.g. activity of key isotopes or pin attributes such as cooling time and relative burnup, for the detection of anomalies and/or verification of operator-declared data. The efficacy of GET to meet these two verification objectives will be evaluated across a range of fuel types, burnups, and cooling times, and with a target interrogation time of less than 60 minutes. The evaluation of GET viability for safeguards applications is founded on a modelling and analysis framework applied to existing and emerging GET instrument designs. Monte Carlo models of different fuel types are used to produce simulated tomographer responses to large populations of virtual fuel assemblies. Instrument response data are processed by a variety of tomographic-reconstruction and image-processing methods, and scoring metrics specific to each of the verification objectives are defined and used to evaluate the performance of the methods. This paper will provide a description of the analysis framework and evaluation metrics, example performance-prediction results, and describe the design of a universal GET instrument intended to support the full range of verification scenarios envisioned by the IAEA.

  17. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    SciTech Connect (OSTI)

    Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  18. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    Prices and Expenditures 10 Table E8. Primary Energy, Electricity, and Total Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Electric Power Sector g,h Retail Electricity Total Energy g,i Coal Natural Gas a Petroleum Nuclear Fuel Biomass Total g,h,i Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 1,731.6 3,091.3 4,003.6 294.8 251.9 8,443.0 90.5 682.0 13,765.8 352.0 438.7 19,379.5 -3,125.3 7,901.4 24,155.6

  19. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs.

  20. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells. Overview and Gap Analysis

    SciTech Connect (OSTI)

    Remick, Robert; Wheeler, Douglas

    2010-09-01

    This report details technical and cost gap analyses of molten carbonate fuel cell and phosphoric acid fuel cell stationary fuel cell power plants and identifies pathways for reducing costs.

  1. Techno-Economic Analysis of Biomass Fast Pyrolysis to Transportation Fuels

    SciTech Connect (OSTI)

    Wright, M. M.; Satrio, J. A.; Brown, R. C.; Daugaard, D. E.; Hsu, D. D.

    2010-11-01

    This study develops techno-economic models for assessment of the conversion of biomass to valuable fuel products via fast pyrolysis and bio-oil upgrading. The upgrading process produces a mixture of naphtha-range (gasoline blend stock) and diesel-range (diesel blend stock) products. This study analyzes the economics of two scenarios: onsite hydrogen production by reforming bio-oil, and hydrogen purchase from an outside source. The study results for an nth plant indicate that petroleum fractions in the naphtha distillation range and in the diesel distillation range are produced from corn stover at a product value of $3.09/gal ($0.82/liter) with onsite hydrogen production or $2.11/gal ($0.56/liter) with hydrogen purchase. These values correspond to a $0.83/gal ($0.21/liter) cost to produce the bio-oil. Based on these nth plant numbers, product value for a pioneer hydrogen-producing plant is about $6.55/gal ($1.73/liter) and for a pioneer hydrogen-purchasing plant is about $3.41/gal ($0.92/liter). Sensitivity analysis identifies fuel yield as a key variable for the hydrogen-production scenario. Biomass cost is important for both scenarios. Changing feedstock cost from $50-$100 per short ton changes the price of fuel in the hydrogen production scenario from $2.57-$3.62/gal ($0.68-$0.96/liter).

  2. DYNAMIC ANALYSIS OF HANFORD UNIRRADIATED FUEL PACKAGE SUBJECTED TO SEQUENTIAL LATERAL LOADS IN HYPOTHETICAL ACCIDENT CONDITIONS

    SciTech Connect (OSTI)

    Wu, T

    2008-04-30

    Large fuel casks present challenges when evaluating their performance in the Hypothetical Accident Conditions (HAC) specified in the Code of Federal Regulations Title 10 part 71 (10CFR71). Testing is often limited by cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing by using simplified analytical methods. This paper presents a numerical technique for evaluating the dynamic responses of large fuel casks subjected to sequential HAC loading. A nonlinear dynamic analysis was performed for a Hanford Unirradiated Fuel Package (HUFP) [1] to evaluate the cumulative damage after the hypothetical accident Conditions of a 30-foot lateral drop followed by a 40-inch lateral puncture as specified in 10CFR71. The structural integrity of the containment vessel is justified based on the analytical results in comparison with the stress criteria, specified in the ASME Code, Section III, Appendix F [2], for Level D service loads. The analyzed cumulative damages caused by the sequential loading of a 30-foot lateral drop and a 40-inch lateral puncture are compared with the package test data. The analytical results are in good agreement with the test results.

  3. Analysis of Flood Hazards for the Materials and Fuels Complex at the Idaho National Laboratory Site

    SciTech Connect (OSTI)

    Skaggs, Richard; Breithaupt, Stephen A.; Waichler, Scott R.; Kim, Taeyun; Ward, Duane L.

    2010-11-01

    Researchers at Pacific Northwest National Laboratory conducted a flood hazard analysis for the Materials and Fuels Complex (MFC) site located at the Idaho National Laboratory (INL) site in southeastern Idaho. The general approach for the analysis was to determine the maximum water elevation levels associated with the design-basis flood (DBFL) and compare them to the floor elevations at critical building locations. Two DBFLs for the MFC site were developed using different precipitation inputs: probable maximum precipitation (PMP) and 10,000 year recurrence interval precipitation. Both precipitation inputs were used to drive a watershed runoff model for the surrounding upland basins and the MFC site. Outflows modeled with the Hydrologic Engineering Centers Hydrologic Modeling System were input to the Hydrologic Engineering Centers River Analysis System hydrodynamic flood routing model.

  4. Fact #748: October 8, 2012 Components of Household Expenditures on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, 1984-2010 | Department of Energy 8: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 Fact #748: October 8, 2012 Components of Household Expenditures on Transportation, 1984-2010 The overall share of annual household expenditures for transportation was lower in 2010 than it was in 1984, reaching its lowest point in 2009 at 15.5%. In the early to mid-1980s when oil prices were high, gasoline and motor oil made up a larger share of transportation

  5. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2003 Energy Expenditures per Square Foot of Commercial Floorspace, by Vintage ($2010) Vintage $/SF Prior to 1960 1.44 1960 to 1969 1.70 1970 to 1979 1.88 1980 to 1989 2.09 1990 to 1999 1.88 2000 to 2003 1.72 Average 1.77 Source(s): EIA, 2003 Commercial Buildings Energy Consumption and Expenditures: Consumption and Expenditures Tables, Table C4; and EIA, Annual Energy Review 2010, Aug. 2011, Appendix D, p. 353 for price deflators

  6. Overview of An Analysis Project for Renewable Biogas / Fuel Cell Technologies (Presentation)

    SciTech Connect (OSTI)

    Jalalzadeh-Azar, A.

    2009-11-19

    Presentation on renewable biogas: as an opportunity for commercialization of fuel cells presented as part of a panel discussion at the 2009 Fuel Cell Seminar, Palm Springs, CA.

  7. Webinar August 11: Analysis Using Fuel Cell MHE for Shaving Peak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on Material Handling Fuel Cells for Building Electric Peak Shaving Applications DOE Announces Webinars on Geography of Alternative Fuels, Wind Siting Considerations, and More...

  8. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    SciTech Connect (OSTI)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

  9. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus Preprint Robb Barnitt and Jeff Gonder To be presented at the SAE 2011 World Congress Detroit, Michigan April 12-14, 2011 Conference Paper NREL/CP-5400-50251 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain

  10. Webinar: Automotive and MHE Fuel Cell System Cost Analysis | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Automotive and MHE Fuel Cell System Cost Analysis," originally presented on April 16, 2013. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: Thanks for joining today's call. Just a few housekeeping items before we get started. Today's webinar is being recorded, so the recording along with slides will be posted to our website in about ten days. You'll get an email from myself, Alli Aman, once those are posted. I also encourage you

  11. Evaulation of power-reactor fuel-rod-analysis capabilities. Phase 1 topical report. Volume 2. Code evaluation. [PWR; BWR

    SciTech Connect (OSTI)

    Coleman, D.R.

    1983-09-01

    FRAPCON-2 (V1M4) was applied to generate fuel performance predictions for 60 rods of a recently evaluated power reactor data sample. Rod design, operational, and performance data was obtained from the RPRI Fuel Performance Data Base. The data was systematically processed to generate code input parameters. FRAPCON was initially applied for scoping studies to identify the best estimate mechanical response and fission gas release modeling options. Based on final scoping results, the balance of rods were analyzed with FRACAS-2 mechanics and FASTGRASS gas release models. Comparisons between measured and calculated fuel and cladding deformation, fission gas release, internal pressure, and gas composition are presented and interpreted relative to code error magnitudes, distributions, and trends versus rod design and operating parameters. The results indicate the FRAPCON-2 has best estimate capability for analysis of moderate duty fuel rod performance, provided that rod fabrication parameters are well characterized, and the fuel is dimensionally stable.

  12. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    SciTech Connect (OSTI)

    Brent Dixon

    2012-09-01

    Thirteen countries participated in the Collaborative Project GAINS Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle, which was the primary activity within the IAEA/INPRO Program Area B: Global Vision on Sustainable Nuclear Energy for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

  13. Criticality Safety Analysis Of As-loaded Spent Nuclear Fuel Casks

    SciTech Connect (OSTI)

    Banerjee, Kaushik; Scaglione, John M

    2015-01-01

    The final safety analysis report (FSAR) or the safety analysis report (SAR) for a particular spent nuclear fuel (SNF) cask system documents models and calculations used to demonstrate that a system meets the regulatory requirements under all normal, off-normal, and accident conditions of spent fuel storage, and normal and accident conditions of transportation. FSAR/SAR calculations and approved content specifications are intended to be bounding in nature to certify cask systems for a variety of fuel characteristics with simplified SNF loading requirements. Therefore, in general, loaded cask systems possess excess and uncredited criticality margins (i.e., the difference between the licensing basis and the as-loaded calculations). This uncredited margin could be quantified by employing more detailed cask-specific evaluations that credit the actual as-loaded cask inventory, and taking into account full (actinide and fission product) burnup credit. This uncredited criticality margin could be potentially used to offset (1) uncertainties in the safety basis that needs to account for the effects of system aging during extended dry storage prior to transportation, and (2) increases in SNF system reactivity over a repository performance period (e.g., 10,000 years or more) as the system undergoes degradation and internal geometry changes. This paper summarizes an assessment of cask-specific, as-loaded criticality margins for SNF stored at eight reactor sites (215 loaded casks were analyzed) under fully flooded conditions to assess the margins available during transportation after extended storage. It is observed that the calculated keff margin varies from 0.05 to almost 0.3 keff for the eight selected reactor sites, demonstrating that significant uncredited safety margins are present. In addition, this paper evaluates the sufficiency of this excess margin in applications involving direct disposal of currently loaded SNF casks.

  14. COBRA-SFS: A thermal-hydraulic analysis code for spent fuel storage and transportation casks

    SciTech Connect (OSTI)

    Michener, T.E.; Rector, D.R.; Cuta, J.M.; Dodge, R.E.; Enderlin, C.W.

    1995-09-01

    COBRA-SFS is a general thermal-hydraulic analysis computer code for prediction of material temperatures and fluid conditions in a wide variety of systems. The code has been validated for analysis of spent fuel storage systems, as part of the Commercial Spent Fuel Management Program of the US Department of Energy. The code solves finite volume equations representing the conservation equations for mass, moment, and energy for an incompressible single-phase heat transfer fluid. The fluid solution is coupled to a finite volume solution of the conduction equation in the solid structure of the system. This document presents a complete description of Cycle 2 of COBRA-SFS, and consists of three main parts. Part 1 describes the conservation equations, constitutive models, and solution methods used in the code. Part 2 presents the User Manual, with guidance on code applications, and complete input instructions. This part also includes a detailed description of the auxiliary code RADGEN, used to generate grey body view factors required as input for radiative heat transfer modeling in the code. Part 3 describes the code structure, platform dependent coding, and program hierarchy. Installation instructions are also given for the various platform versions of the code that are available.

  15. Spent nuclear fuel project, Cold Vacuum Drying Facility human factors engineering (HFE) analysis: Results and findings

    SciTech Connect (OSTI)

    Garvin, L.J.

    1998-07-17

    This report presents the background, methodology, and findings of a human factors engineering (HFE) analysis performed in May, 1998, of the Spent Nuclear Fuels (SNF) Project Cold Vacuum Drying Facility (CVDF), to support its Preliminary Safety Analysis Report (PSAR), in responding to the requirements of Department of Energy (DOE) Order 5480.23 (DOE 1992a) and drafted to DOE-STD-3009-94 format. This HFE analysis focused on general environment, physical and computer workstations, and handling devices involved in or directly supporting the technical operations of the facility. This report makes no attempt to interpret or evaluate the safety significance of the HFE analysis findings. The HFE findings presented in this report, along with the results of the CVDF PSAR Chapter 3, Hazards and Accident Analyses, provide the technical basis for preparing the CVDF PSAR Chapter 13, Human Factors Engineering, including interpretation and disposition of findings. The findings presented in this report allow the PSAR Chapter 13 to fully respond to HFE requirements established in DOE Order 5480.23. DOE 5480.23, Nuclear Safety Analysis Reports, Section 8b(3)(n) and Attachment 1, Section-M, require that HFE be analyzed in the PSAR for the adequacy of the current design and planned construction for internal and external communications, operational aids, instrumentation and controls, environmental factors such as heat, light, and noise and that an assessment of human performance under abnormal and emergency conditions be performed (DOE 1992a).

  16. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect (OSTI)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (Ω pilot ∼ 0.2-0.6 and Ω overall ∼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant Ω pilot (> 0.5), increasing Ω overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing Ω overall (at constant Ω pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  17. Exergy & Economic Analysis of Catalytic Coal Gasifiers Coupled with Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Siefert, Nicholas; Litster, Shawn

    2012-01-01

    The National Energy Technology Laboratory (NETL) has undertaken a review of coal gasification technologies that integrate with solid oxide fuel cells (SOFC) to achieve system efficiencies near 60% while capturing and sequestering >90% of the carbon dioxide. One way to achieve an overall system efficiency of greater than 60% is in a power plant in which a catalytic coal gasifier produces a syngas with a methane composition of roughly 25% on a dry volume basis and this is sent to a SOFC, with CO{sub 2} capture occurring either before or after the SOFC. Integration of a catalytic gasifier with a SOFC, as opposed to a conventional entrained flow gasifier, is improved due to (a) decreased exergy destruction inside a catalytic, steam-coal gasifier producing a high-methane content syngas, and (b) decreased exergy destruction in the SOFC due to the ability to operate at lower air stoichiometric flow ratios. For example, thermal management of the SOFC is greatly improved due to the steam-methane reforming in the anode of the fuel cell. This paper has two main goals. First, we converted the levelized cost of electricity (LCOE) estimates of various research groups into an average internal rate of return on investment (IRR) in order to make comparisons between their results, and to underscore the increased rate of return on investment for advanced integrated gasification fuel cell systems with carbon capture & sequestration (IGFC-CCS) compared with conventional integrated gasification combined cycle (IGCC-CCS) systems and pulverized coal combustion (PCC-CCS) systems. Using capital, labor, and fuel costs from previous researchers and using an average price of baseload electricity generation of $61.50 / MW-hr, we calculated inflation-adjusted IRR values of up to 13%/yr for catalytic gasification with pressurized fuel cell and carbon dioxide capture and storage (CCS), whereas we calculate an IRR of ?4%/yr and ?2%/yr for new, conventional IGCC-CCS and PCC-CCS, respectively. If the carbon dioxide is used for enhanced oil recovery rather than for saline aquifer storage, then the IRR values improve to 16%/yr, 10%/yr, and 8%/yr, respectively. For comparison, the IRR of a new conventional IGCC or PCC power plant without CO{sub 2} capture are estimated to be 11%/yr and 15.0%/yr, respectively. Second, we conducted an exergy analysis of two different configurations in which syngas from a catalytic gasifier fuels a SOFC. In the first case, the CO{sub 2} is captured before the SOFC, and the anode tail gas is sent back to the catalytic gasifier. In the second case, the anode tail gas is oxy-combusted using oxygen ion ceramic membranes and then CO{sub 2} is captured for sequestration. In both cases, we find that the system efficiency is greater than 60%. These values compare well with previous system analysis. In future work, we plan to calculate the IRR of these two cases and compare with previous economic analyses conducted at NETL.

  18. Participant List for the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on January 31, 2007

    Broader source: Energy.gov [DOE]

    This list describes the participants at the 2010-2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure meeting on January 31, 2007.

  19. Fuel Tables.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    F8: Distillate Fuel Oil Price and Expenditure Estimates, 2014 State Prices Expenditures Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial Transportation Electric Power Total Dollars per Million Btu Million Dollars Alabama 24.81 21.48 22.59 26.62 20.94 25.88 2.5 83.9 449.3 3,161.2 21.4 3,718.3 Alaska 26.84 26.40 28.75 29.67 22.98 28.53 178.9 192.8 666.2 983.0 67.3 2,088.2 Arizona 28.33 23.47 23.91 27.94 22.60 26.89 0.3 139.0 717.9 2,976.8 14.1

  20. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    3: Nuclear Energy Consumption, Price, and Expenditure Estimates, 2014 State Nuclear Electric Power Nuclear Fuel Consumption Prices Expenditures Million Kilowatthours Trillion Btu Dollars per Million Btu Million Dollars Alabama 41,244 431.4 0.80 344.2 Alaska 0 0.0 - - Arizona 32,321 338.0 0.82 276.7 Arkansas 14,478 151.4 0.83 126.1 California 16,986 177.7 0.65 115.2 Colorado 0 0.0 - - Connecticut 15,841 165.7 0.72 120.0 Delaware 0 0.0 - - Dist. of Col. 0 0.0 - - Florida 27,868 291.5 0.74 215.7

  1. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  2. Hydrogen Fuel Cell Analysis: Lessons Learned from Stationary Power Generation Final Report

    SciTech Connect (OSTI)

    Scott E. Grasman; John W. Sheffield; Fatih Dogan; Sunggyu Lee; Umit O. Koylu; Angie Rolufs

    2010-04-30

    This study considered opportunities for hydrogen in stationary applications in order to make recommendations related to RD&D strategies that incorporate lessons learned and best practices from relevant national and international stationary power efforts, as well as cost and environmental modeling of pathways. The study analyzed the different strategies utilized in power generation systems and identified the different challenges and opportunities for producing and using hydrogen as an energy carrier. Specific objectives included both a synopsis/critical analysis of lessons learned from previous stationary power programs and recommendations for a strategy for hydrogen infrastructure deployment. This strategy incorporates all hydrogen pathways and a combination of distributed power generating stations, and provides an overview of stationary power markets, benefits of hydrogen-based stationary power systems, and competitive and technological challenges. The motivation for this project was to identify the lessons learned from prior stationary power programs, including the most significant obstacles, how these obstacles have been approached, outcomes of the programs, and how this information can be used by the Hydrogen, Fuel Cells & Infrastructure Technologies Program to meet program objectives primarily related to hydrogen pathway technologies (production, storage, and delivery) and implementation of fuel cell technologies for distributed stationary power. In addition, the lessons learned address environmental and safety concerns, including codes and standards, and education of key stakeholders.

  3. Safety of natural gas dual-fueled vehicles: Addendum to safety analysis of natural gas vehicles transiting highway tunnels

    SciTech Connect (OSTI)

    Shaaban, S.H.; Zalak, V.M. )

    1991-01-01

    A safety analysis was performed to assess the relative hazard of vehicles containing both compressed natural gas (CNG) and gasoline, referred to as dual-fueled vehicles, compared to the hazard of a dedicated CNG vehicle. This study expands upon previous work that examined the safety of CNG vehicles transiting highway tunnels. The approach was to examine operational data, test results and to perform thermal analyses to determine if there are any synergistic effects where the total consequences of fuel release might be greater than the sum of the two fuels released separately. This study concluded that a dual-fueled vehicle poses a slightly greater risk than a dedicated CNG vehicle; however, this marginal increase in risk is small and is within the bounds of risk posed by gasoline-powered vehicles. 4 refs.

  4. NREL: Transportation Research - Fuel Combustion and Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test & Evaluation Fuels Performance Combustion & Engines Fuel Chemistry Emissions & Fuel Economy Power Electronics & Electric Machines Sustainable Mobility Systems Analysis &...

  5. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel

    SciTech Connect (OSTI)

    Sonat Sen; Gilles Youinou

    2013-02-01

    Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

  7. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Information AdministrationHousehold Vehicles Energy Consumption 1994 43 Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994...

  8. Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel...

    U.S. Energy Information Administration (EIA) Indexed Site

    Table 5.1. U.S. Number of Vehicles, Vehicle-Miles, Motor Fuel Consumption and Expenditures, 1994 (Continued) 1993 Household and 1994 Vehicle Characteristics RSE Column Factor:...

  9. An Analysis of Nuclear Fuel Burnup in the AGR 1 TRISO Fuel Experiment Using Gamma Spectrometry, Mass Spectrometry, and Computational Simulation Techniques

    SciTech Connect (OSTI)

    Jason M. Harp; Paul A. Demkowicz; Phillip L. Winston; James W. Sterbentz

    2014-10-01

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1 %FIMA for the direct method and 20.0 %FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3 % FIMA to 10.7 % FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. The results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry for TRISO fuel compacts across a burnup range of approximately 10 to 20 % FIMA and also validate the approach used in the physics simulation of the AGR 1 experiment.

  10. A RAM (Reliability, Availability and Maintainability) analysis of the proposed Tinker AFB Jet Fuel Storage Tank Facility. [Reliability, Availability, and Maintainability

    SciTech Connect (OSTI)

    Wright, R.E.; Sattison, M.B.

    1987-08-01

    The purpose of this study is to determine the Reliability, Availability and Maintainability (RAM) at the 30% design phase of a Jet Fuel Storage Tank Facility that is to be installed at the Tinker Air Force Base, Tulsa, Oklahoma. The Jet Fuel Storage Tank Facility was divided into four subsystems: Fuel Storage and Pipeline Transfer Pumps; Truck Unloading and Loading; Fire Protection (foam and water supply systems); and Electric Power. The RAM analysis was performed on four functions of these subsystems: transferring fuel from the two new 55K barrel storage tanks to the existing fuel pipeline system; transferring fuel from the two 55K barrel storage tanks to the aircraft refueler trucks; transferring fuel from the road transport trucks to the aircraft refueler trucks; and fire protection. A fault tree analysis was performed on each functional system. The quantification was performed for several mission times.

  11. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/02

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions. (DMC)

  12. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

  13. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/01

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985 and 2025. Residential, commercial, and industrial energy demands are forecast as well as the impacts of energy technology implementation and market penetration using a set of energy technology assumptions. (DMC)

  14. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements

    SciTech Connect (OSTI)

    Hayes, S.L.

    1993-12-01

    SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user`s manual. A sample calculation made with SAFE is included to highlight some of the code`s features. Complete input and output files for the sample problem are provided.

  15. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 2005 Energy Expenditures per Household, by Housing Type and Square Footage ($2010) Per Household Single-Family 1.16 Detached 1.16 Attached 1.20 Multi-Family 1.66 2 to 4 units 1.90 5 or more units 1.53 Mobile Home 1.76 All Homes 1.12 Note(s): Source(s): 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was

  16. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 2005 Household Energy Expenditures, by Vintage ($2010) | Year | Prior to 1950 887 | 22% 1950 to 1969 771 | 22% 1970 to 1979 736 | 16% 1980 to 1989 741 | 16% 1990 to 1999 752 | 16% 2000 to 2005 777 | 9% | Average 780 | Total 100% Note(s): Source(s): 1.24 2,003 1) Energy expenditures per square foot were calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the

  17. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Technology Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective and credible information about new fuel cell technologies with a focus on performance, durability, and price. As demand for fuel cells grows, U.S. manufacturers are developing these technologies for a

  18. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  19. Techno-Economic Analysis of Scalable Coal-Based Fuel Cells

    SciTech Connect (OSTI)

    Chuang, Steven S. C.

    2014-08-31

    Researchers at The University of Akron (UA) have demonstrated the technical feasibility of a laboratory coal fuel cell that can economically convert high sulfur coal into electricity with near zero negative environmental impact. Scaling up this coal fuel cell technology to the megawatt scale for the nation’s electric power supply requires two key elements: (i) developing the manufacturing technology for the components of the coal-based fuel cell, and (ii) long term testing of a kW scale fuel cell pilot plant. This project was expected to develop a scalable coal fuel cell manufacturing process through testing, demonstrating the feasibility of building a large-scale coal fuel cell power plant. We have developed a reproducible tape casting technique for the mass production of the planner fuel cells. Low cost interconnect and cathode current collector material was identified and current collection was improved. In addition, this study has demonstrated that electrochemical oxidation of carbon can take place on the Ni anode surface and the CO and CO2 product produced can further react with carbon to initiate the secondary reactions. One important secondary reaction is the reaction of carbon with CO2 to produce CO. We found CO and carbon can be electrochemically oxidized simultaneously inside of the anode porous structure and on the surface of anode for producing electricity. Since CH4 produced from coal during high temperature injection of coal into the anode chamber can cause severe deactivation of Ni-anode, we have studied how CH4 can interact with CO2 to produce in the anode chamber. CO produced was found able to inhibit coking and allow the rate of anode deactivation to be decreased. An injection system was developed to inject the solid carbon and coal fuels without bringing air into the anode chamber. Five planner fuel cells connected in a series configuration and tested. Extensive studies on the planner fuels and stack revealed that the planner fuel cell stack is not suitable for operation with carbon and coal fuels due to lack of mechanical strength and difficulty in sealing. We have developed scalable processes for manufacturing of process for planner and tubular cells. Our studies suggested that tubular cell stack could be the only option for scaling up the coal-based fuel cell. Although the direct feeding of coal into fuel cell can significantly simplify the fuel cell system, the durability of the fuel cell needs to be further improved before scaling up. We are developing a tubular fuel cell stack with a coal injection and a CO2 recycling unit.

  20. Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System

    SciTech Connect (OSTI)

    Brooks, Kriston P.; Makhmalbaf, Atefe

    2014-10-31

    Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered “micro”-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51⁰C to 43 ⁰C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturer’s rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

  1. Overview of Vehicle Test and Analysis Results from NREL's A/C Fuel Use Reduction Research

    SciTech Connect (OSTI)

    Bharathan, D.; Chaney, L.; Farrington, R. B.; Lustbader, J.; Keyser, M.; Rugh, J. P.

    2007-06-01

    This paper summarizes results of air-conditioning fuel use reduction technologies and techniques for light-duty vehicles evaluated over the last 10 years.

  2. Modeling and Analysis of FCM UN TRISO Fuel Using the PARFUME Code

    SciTech Connect (OSTI)

    Blaise Collin

    2013-09-01

    The PARFUME (PARticle Fuel ModEl) modeling code was used to assess the overall fuel performance of uranium nitride (UN) tri-structural isotropic (TRISO) ceramic fuel in the frame of the design and development of Fully Ceramic Matrix (FCM) fuel. A specific modeling of a TRISO particle with UN kernel was developed with PARFUME, and its behavior was assessed in irradiation conditions typical of a Light Water Reactor (LWR). The calculations were used to access the dimensional changes of the fuel particle layers and kernel, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn-up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the pyrolytic carbon (PyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn-up. These material properties are unknown at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, more effort is needed to determine them and positively conclude on the applicability of FCM fuel to LWRs.

  3. Fuel Cell Power Model for CHHP System Economics and Performance Analysis (Presentation)

    SciTech Connect (OSTI)

    Steward, D.

    2009-11-16

    Presentation about Fuel Cell Power (FCPower) Model used to analyze the economics and performance of combined heat, hydrogen, and power (CHHP) systems.

  4. A full fuel-cycle analysis of energy and emissions impacts of...

    Office of Scientific and Technical Information (OSTI)

    use in five types of motor vehicles--spark-ignition vehicles, compression-ignition vehicles, hybrid electric vehicles, battery-powered electric vehicles, and fuel-cell vehicles. ...

  5. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  6. Analysis of Selected Transportation Fuel Issues Associated with Proposed Energy Legislation -Summary

    Reports and Publications (EIA)

    2002-01-01

    Summary of a series of 8 papers discussing the market impacts the Senate-passed fuels provisions of H.R.4, the Energy Policy Act of 2002.

  7. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect (OSTI)

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  8. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    SciTech Connect (OSTI)

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  9. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect (OSTI)

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  10. Audit of controls over Superconducting Super Collider Laboratory subcontractor expenditures

    SciTech Connect (OSTI)

    Not Available

    1993-10-22

    In January 1989 the Department of Energy contracted with Universities Research Association, Inc. to design, construct, manage, operate, and maintain the Superconducting Super Collider Laboratory. Through Fiscal Year 1992, costs for subcontractor goods and services accounted for about 75 percent of the Superconducting Super Collider Laboratory expenditures. The Office of Inspector General evaluated the adequacy of controls in place to ensure that subcontractor costs were reasonable, as required by the contract. The following conclusions were drawn from the audit. The Superconducting Super Collider Laboratory did not consistently exercise prudent business judgment in making subcontractor expenditures. As a result, $60 million in expenditures already made and $128 million planned with commercial subcontractors were, in the authors opinion, unnecessary, excessive, or represented uncontrolled growth. The audit also found inadequate justifications, accountability, and cost controls over $143 million in expenditures made and $47 million planned with other Department of Energy laboratories. Improvements were needed in subcontract administration and internal controls, including appropriate audit coverage of the subcontracts. In addition, Department of Energy guidance concerning procurement actions between the laboratories needed to be established.

  11. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect (OSTI)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the UREX+3c fuel cycle and the Alternative Fuel Cycle (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount of the resulting MOX. The study considered two sub-cases within each of the two fuel cycles in which the uranium and plutonium from the first generation of MOX spent fuel (i) would not be recycled to produce a second generation of MOX for use in LWRs or (ii) would be recycled to produce a second generation of MOX fuel for use in LWRs. The study also investigated the effects of recycling MOX spent fuel multiple times in LWRs. The study assumed that both fuel cycles would store and then reprocess spent MOX fuel that is not recycled to produce a next generation of LWR MOX fuel and would use the recovered products to produce FR fuel. The study further assumed that FRs would begin to be brought on-line in 2043, eleven years after recycle begins in LWRs, when products from 5-year cooled spent MOX fuel would be available. Fuel for the FRs would be made using the uranium, plutonium, and minor actinides recovered from MOX. For the cases where LWR fuel was assumed to be recycled one time, the 1st generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. For the cases where the LWR fuel was assumed to be recycled two times, the 2nd generation of MOX spent fuel was used to provide nuclear materials for production of FR fuel. The number of FRs in operation was assumed to increase in successive years until the rate that actinides were recovered from permanently discharged spent MOX fuel equaled the rate the actinides were consumed by the operating fleet of FRs. To compare the two fuel cycles, the study analyzed recycle of nuclear fuel in LWRs and FRs and determined the radiological characteristics of irradiated nuclear fuel, nuclear waste products, and recycle nuclear fuels. It also developed a model to simulate the flows of nuclear materials that could occur in the two advanced nuclear fuel cycles over 81 years beginning in 2020 and ending in 2100. Simulations projected the flows of uranium, plutonium, and minor actinides as these nuclear fuel materials were produced and consumed in a fleet of 100 1,000 MWe LWRs and in FRs. The model als

  12. Modeling and Analysis of UN TRISO Fuel for LWR Application Using the PARFUME Code

    SciTech Connect (OSTI)

    Blaise Collin

    2014-08-01

    The Idaho National Laboraroty (INL) PARFUME (particle fuel model) code was used to assess the overall fuel performance of uranium nitride (UN) tristructural isotropic (TRISO) ceramic fuel under irradiation conditions typical of a Light Water Reactor (LWR). The dimensional changes of the fuel particle layers and kernel were calculated, including the formation of an internal gap. The survivability of the UN TRISO particle was estimated depending on the strain behavior of the constituent materials at high fast fluence and burn up. For nominal cases, internal gas pressure and representative thermal profiles across the kernel and layers were determined along with stress levels in the inner and outer pyrolytic carbon (IPyC/OPyC) and silicon carbide (SiC) layers. These parameters were then used to evaluate fuel particle failure probabilities. Results of the study show that the survivability of UN TRISO fuel under LWR irradiation conditions might only be guaranteed if the kernel and PyC swelling rates are limited at high fast fluence and burn up. These material properties have large uncertainties at the irradiation levels expected to be reached by UN TRISO fuel in LWRs. Therefore, a large experimental effort would be needed to establish material properties, including kernel and PyC swelling rates, under these conditions before definitive conclusions can be drawn on the behavior of UN TRISO fuel in LWRs.

  13. An Analysis of the Impact of Selected Fuel Thermochemical Properties on Internal Combustion Engine Efficiency

    SciTech Connect (OSTI)

    Szybist, James P; Chakravathy, Kalyana; Daw, C Stuart

    2012-01-01

    In this study we model the effects of 23 different fuels on First and Second Law thermodynamic efficiency of an adiabatic internal combustion engine. First Law efficiency is calculated using lower heating value (LHV) while Second Law efficiency is calculated with exergy, which represents the inherent chemical energy available to produce propulsion. We find that First Law efficiency can deviate by as much as nine percentage points between fuels while Second Law efficiency exhibits a much smaller degree of variability. We also find that First and Second Law efficiency can be nearly the same for some fuels (methane and ethane) but differ substantially for other fuels (hydrogen and ethanol). The differences in First and Second Law efficiency are due to differences in LHV and exergy for a given fuel. In order to explain First Law efficiency differences between fuels as well as the differences between LHV and exergy, we introduce a new term: the molar expansion ratio (MER), defined as the ratio of product moles to reactant moles for complete stoichiometric combustion. We find that the MER is a useful expression for providing a physical explanation for fuel-specific efficiency differences as well as differences between First and Second Law efficiency. First and Second Law efficiency are affected by a number of other fuel-specific thermochemical properties, such as the ratio of specific heat and dissociation of combustion products.

  14. Combined Theoretical and Experimental Analysis of Processes Determining Cathode Performance in Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Kukla, Maija M.; Kotomin, Eugene Alexej; Merkle, R.; Mastrikov, Yuri; Maier, J.

    2013-02-11

    Solid oxide fuel cells (SOFC) are under intensive investigation since the 1980s as these devices open the way for ecologically clean direct conversion of the chemical energy into electricity, avoiding the efficiency limitation by Carnots cycle for thermochemical conversion. However, the practical development of SOFC faces a number of unresolved fundamental problems, in particular concerning the kinetics of the electrode reactions, especially oxygen reduction reaction. We review recent experimental and theoretical achievements in the current understanding of the cathode performance by exploring and comparing mostly three materials: (La,Sr)MnO3 (LSM), (La,Sr)(Co,Fe)O3 (LSCF) and (Ba,Sr)(Co,Fe)O3 (BSCF). Special attention is paid to a critical evaluation of advantages and disadvantages of BSCF, which shows the best cathode kinetics known so far for oxides. We demonstrate that it is the combined experimental and theoretical analysis of all major elementary steps of the oxygen reduction reaction which allows us to predict the rate determining steps for a given material under specific operational conditions and thus control and improve SOFC performance.

  15. Structural analysis of fuel assembly clads for the Upgraded Transient Reactor Test Facility (TREAT Upgrade)

    SciTech Connect (OSTI)

    Ewing, T.F.; Wu, T.S.

    1986-01-01

    The Upgraded Transient Reactor Test Facility (TREAT Upgrade) is designed to test full-length, pre-irradiated fuel pins of the type used in large LMFBRs under accident conditions, such as severe transient overpower and loss-of-coolant accidents. In TREAT Upgrade, the central core region is to contain new fuel assemblies of higher fissile loadings to maximize the energy deposition to the test fuel. These fuel assemblies must withstand normal peak clad temperatures of 850/sup 0/C for hundreds of test transients. Due to high temperatures and gradients predicted in the clad, creep and plastic strain effects are significant, and the clad structural behavior cannot be analyzed by conventional linear techniques. Instead, the detailed elastic-plastic-creep behavior must be followed along the time-dependent load history. This paper presents details of the structural evaluations of the conceptual TREAT Upgrade fuel assembly clads.

  16. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F3: Motor gasoline consumption, price, and expenditure estimates, 2014 State Consumption Prices a Expenditures Commercial Industrial Transportation Total Commercial Industrial...

  17. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our ... - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop ...

  18. DOE/EIS-0251; Supplemental Analysis For a Container System for the Management of DOE Spent Nuclear Fuel Located at the INEEL

    Office of Environmental Management (EM)

    ID-10636 SUPPLEMENT ANALYSIS FOR A CONTAINER SYSTEM FOR THE MANAGEMENT OF DOE SPENT NUCLEAR FUEL LOCATED AT THE INEEL March 1999 U.S. Department of Energy Idaho Operations Office Idaho Falls, Idaho DOE/ID-10636 SUPPLEMENT ANALYSIS FOR A CONTAINER SYSTEM FOR THE MANAGEMENT OF DOE SPENT NUCLEAR FUEL LOCATED AT THE INEEL March 1999 Department of Energy Idaho Operations Office Idaho Falls, Idaho SNF Supplement Analysis ii March 1999 CONTENTS Acronyms and Abbreviations

  19. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect (OSTI)

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  20. Analysis of Advanced Fuel Assemblies and Core Designs for the Current and Next Generations of LWRs

    SciTech Connect (OSTI)

    Ragusa, Jean; Vierow, Karen

    2011-09-01

    The objective of the project is to design and analyze advanced fuel assemblies for use in current and future light water reactors and to assess their ability to reduce the inventory of transuranic elements, while preserving operational safety. The reprocessing of spent nuclear fuel can delay or avoid the need for a second geological repository in the US. Current light water reactor fuel assembly designs under investigation could reduce the plutonium inventory of reprocessed fuel. Nevertheless, these designs are not effective in stabilizing or reducing the inventory of minor actinides. In the course of this project, we developed and analyzed advanced fuel assembly designs with improved thermal transmutation capability regarding transuranic elements and especially minor actinides. These designs will be intended for use in thermal spectrum (e.g., current and future fleet of light water reactors in the US). We investigated various fuel types, namely high burn-up advanced mixed oxides and inert matrix fuels, in various geometrical designs that are compliant with the core internals of current and future light water reactors. Neutronic/thermal hydraulic effects were included. Transmutation efficiency and safety parameters were used to rank and down-select the various designs.

  1. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  2. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  3. Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel

    SciTech Connect (OSTI)

    Michael A. Pope

    2014-10-01

    These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU. Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.

  4. Analysis of Fuel Flexibility Opportunities and Constraints in the U.S. Industrial Sector

    SciTech Connect (OSTI)

    none,

    2007-03-07

    The purpose of this assessment was to determine if flexible, alternative fuel use in industry, beyond switching from natural gas to petroleum derivatives, presents a sizeable opportunity for the reduction in use of natural gas. Furthermore, the assessment was to determine what programmatic activities the DOE could undertake to accelerate a fuel flexibility program for industry. To this end, a six-part framework (see Figure ES-1) was used to identify the most promising fuel flexibility options, and what level of accomplishment could be achieved, based on DOE leadership.

  5. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect (OSTI)

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  6. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  7. Desludging of N Reactor fuel canisters: Analysis, Test, and data requirements

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.

    1996-01-01

    The N Reactor fuel is currently stored in canisters in the K East (KE) and K West (KW) Basins. In KE, the canisters have open tops; in KW, the cans have sealed lids, but are vented to release gases. Corrosion products have formed on exposed uranium metal fuel, on carbon steel basin component surfaces, and on aluminum alloy canister surfaces. Much of the corrosion product is retained on the corroding surfaces; however, large inventories of particulates have been released. Some of the corrosion product particulates form sludge on the basin floors; some particulates are retained within the canisters. The floor sludge inventories are much greater in the KE Basin than in the KW Basin because KE Basin operated longer and its water chemistry was less controlled. Another important factor is the absence of lids on the KE canisters, allowing uranium corrosion products to escape and water-borne species, principally iron oxides, to settle in the canisters. The inventories of corrosion products, including those released as particulates inside the canisters, are only beginning to be characterized for the closed canisters in KW Basin. The dominant species in the KE floor sludge are oxides of aluminum, iron, and uranium. A large fraction of the aluminum and uranium floor sludge particulates may have been released during a major fuel segregation campaign in the 1980s, when fuel was emptied from 4990 canisters. Handling and jarring of the fuel and aluminum canisters seems likely to have released particulates from the heavily corroded surfaces. Four candidate methods are discussed for dealing with canister sludge emerged in the N Reactor fuel path forward: place fuel in multi-canister overpacks (MCOs) without desludging; drill holes in canisters and drain; drill holes in canisters and flush with water; and remove sludge and repackage the fuel.

  8. Coal-fueled high-speed diesel engine development: Task 2, Market assessment and economic analysis

    SciTech Connect (OSTI)

    Kakwani, R. M.; Wilson, Jr., R. P.; Winsor, R. E.

    1991-12-01

    Based on the preliminary coal engine design developed, this task was conducted to identify the best opportunity(s) to enter the market with the future coal-fueled, high-speed diesel engine. The results of this market and economic feasibility assessment will be used to determine what specific heavy duty engine application(s) are most attractive for coal fuel, and also define basic economic targets for the engine to be competitive.

  9. Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies

    SciTech Connect (OSTI)

    D. L. Chichester; J. W. Sterbentz

    2012-07-01

    Neutron resonance transmission analysis (NRTA) is an active-interrogation nondestructive assay (NDA) technique capable of assaying spent nuclear fuel to determine plutonium content. Prior experimental work has definitively shown the technique capable of assaying plutonium isotope composition in spent-fuel pins to a precision of approximately 3%, with a spatial resolution of a few millimeters. As a Grand Challenge to investigate NDA options for assaying spent fuel assemblies (SFAs) in the commercial fuel cycle, Idaho National Laboratory has explored the feasibility of using NRTA to assay plutonium in a whole SFA. The goal is to achieve a Pu assay precision of 1%. The NRTA technique uses low-energy neutrons from 0.1-40 eV, at the bottom end of the actinide-resonance range, in a time-of-flight arrangement. Isotopic composition is determined by relating absorption of the incident neutrons to the macroscopic cross-section of the actinides of interest in the material, and then using this information to determine the areal density of the isotopes in the SFA. The neutrons used for NRTA are produced using a pulsed, accelerator-based neutron source. Distinguishable resonances exist for both the plutonium (239,240,241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Based on extensive modeling of the problem using Monte Carlo-based simulation codes, our preliminary results suggest that by rotating an SFA to acquire four symmetric views, sufficient neutron transmission can be achieved to assay a SFA. In this approach multiple scan information for the same pins may also be unfolded to potentially allow the determination of plutonium for sub-regions of the assembly. For a 17 ? 17 pressurized water reactor SFA, a simplistic preliminary analysis indicates the mass of 239Pu may be determined with a precision on the order of 5%, without the need for operator-supplied fuel information or operational histories. This paper will present our work to date on this topic, indicate our preliminary findings for a conceptual assay approach, discuss resilience against spoofing, and outline our future plans for evaluating the NRTA technique for SFA plutonium determination.

  10. Analysis of Underground Storage Tanks System Materials to Increased Leak Potential Associated with E15 Fuel

    SciTech Connect (OSTI)

    Kass, Michael D; Theiss, Timothy J; Janke, Christopher James; Pawel, Steven J

    2012-07-01

    The Energy Independence and Security Act (EISA) of 2007 was enacted by Congress to move the nation toward increased energy independence by increasing the production of renewable fuels to meet its transportation energy needs. The law establishes a new renewable fuel standard (RFS) that requires the nation to use 36 billion gallons annually (2.3 million barrels per day) of renewable fuel in its vehicles by 2022. Ethanol is the most widely used renewable fuel in the US, and its production has grown dramatically over the past decade. According to EISA and RFS, ethanol (produced from corn as well as cellulosic feedstocks) will make up the vast majority of the new renewable fuel requirements. However, ethanol use limited to E10 and E85 (in the case of flex fuel vehicles or FFVs) will not meet this target. Even if all of the E0 gasoline dispensers in the country were converted to E10, such sales would represent only about 15 billion gallons per year. If 15% ethanol, rather than 10% were used, the potential would be up to 22 billion gallons. The vast majority of ethanol used in the United States is blended with gasoline to create E10, that is, gasoline with up to 10% ethanol. The remaining ethanol is sold in the form of E85, a gasoline blend with as much as 85% ethanol that can only be used in FFVs. Although DOE remains committed to expanding the E85 infrastructure, that market will not be able to absorb projected volumes of ethanol in the near term. Given this reality, DOE and others have begun assessing the viability of using intermediate ethanol blends as one way to transition to higher volumes of ethanol. In October of 2010, the EPA granted a partial waiver to the Clean Air Act allowing the use of fuel that contains up to 15% ethanol for the model year 2007 and newer light-duty motor vehicles. This waiver represents the first of a number of actions that are needed to move toward the commercialization of E15 gasoline blends. On January 2011, this waiver was expanded to include model year 2001 light-duty vehicles, but specifically prohibited use in motorcycles and off-road vehicles and equipment. UST stakeholders generally consider fueling infrastructure materials designed for use with E0 to be adequate for use with E10, and there are no known instances of major leaks or failures directly attributable to ethanol use. It is conceivable that many compatibility issues, including accelerated corrosion, do arise and are corrected onsite and, therefore do not lead to a release. However, there is some concern that higher ethanol concentrations, such as E15 or E20, may be incompatible with current materials used in standard gasoline fueling hardware. In the summer of 2008, DOE recognized the need to assess the impact of intermediate blends of ethanol on the fueling infrastructure, specifically located at the fueling station. This includes the dispenser and hanging hardware, the underground storage tank, and associated piping. The DOE program has been co-led and funded by the Office of the Biomass Program and Vehicle Technologies Program with technical expertise from the Oak Ridge National Laboratory (ORNL) and the National Renewable Energy Laboratory (NREL). The infrastructure material compatibility work has been supported through strong collaborations and testing at Underwriters Laboratories (UL). ORNL performed a compatibility study investigating the compatibility of fuel infrastructure materials to gasoline containing intermediate levels of ethanol. These results can be found in the ORNL report entitled Intermediate Ethanol Blends Infrastructure Materials Compatibility Study: Elastomers, Metals and Sealants (hereafter referred to as the ORNL intermediate blends material compatibility study). These materials included elastomers, plastics, metals and sealants typically found in fuel dispenser infrastructure. The test fuels evaluated in the ORNL study were SAE standard test fuel formulations used to assess material-fuel compatibility within a relatively short timeframe. Initially, these material studies included test fuels of Fuel C, CE10a, CE17a, and CE25a. The CE17a test fuel was selected to represent E15 since surveys have shown that the actual ethanol upper limit can be as high as 17%. Later, CE50a and CE85a test fuels were added to the investigation and these results are being compiled for a follow-on report to be published in 2012. Fuel C was used as the baseline reference and is a 50:50 blend of isooctane and toluene. This particular composition was used to represent premium-grade gasoline and was also used as the base fuel for the ethanol blends, where it is denoted by 'C' in the fuel name. The level of ethanol is represented by the number following the letter E. Therefore a 10% blend of ethanol in Fuel C is written as CE10a, where 'a' represents an aggressive formulation of the ethanol that contains water, NaCl, acetic and sulfuric acids per the SAE J1681 protocol.

  11. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    5 2005 Households and Energy Expenditures, by Income Level ($2010) Energy Expenditures by Household Income Households (millions) Household Less than $10,000 9.9 9% $10,000 to $14,999 8.5 8% $15,000 to $19,999 8.4 8% $20,000 to $29,999 15.1 14% $30,000 to $39,999 13.6 12% $40,000 to $49,999 11.0 10% $50,000 to $74,999 19.8 18% $75,000 to $99,999 10.6 10% $100,000 or more 14.2 13% Total 111.1 100% Note(s): Source(s): 7% 1) See Table 2.3.15 for more on energy burdens. 2) A household is defined as a

  12. Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines: Task 2 Final Report

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines Task 2 Final Report T.L. Alleman and R.L. McCormick Milestone Report NREL/MP-540-38643 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Analysis of Coconut-

  13. Distribution piping expenditures of $2. 66 billion seen for 1983

    SciTech Connect (OSTI)

    Watts, J.

    1982-12-01

    Figures for the 1982 results and 1983 projections of expenditures and pipe mileage compiled in a survey of 500 gas distribution utilities in 50 states, including the 300 largest utilities are presented. Maintenance as a percentage of total construction budget has been steady over the past 3 yrs. If housing construction picks up again by mid-year, 1983 could be a good year for gas utilities because of the convenience and cleanliness of gas heating.

  14. Table A39. Total Expenditures for Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  15. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T.

    2013-07-01

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  16. Monte Carlo analysis of neutron slowing-down-time spectrometer for fast reactor spent fuel assay

    SciTech Connect (OSTI)

    Chen, Jianwei; Lineberry, Michael

    2007-07-01

    Using the neutron slowing-down-time method as a nondestructive assay tool to improve input material accountancy for fast reactor spent fuel reprocessing is under investigation at Idaho State University. Monte Carlo analyses were performed to simulate the neutron slowing down process in different slowing down spectrometers, namely, lead and graphite, and determine their main parameters. {sup 238}U threshold fission chamber response was simulated in the Monte Carlo model to represent the spent fuel assay signals, the signature (fission/time) signals of {sup 235}U, {sup 239}Pu, and {sup 241}Pu were simulated as a convolution of fission cross sections and neutron flux inside the spent fuel. {sup 238}U detector signals were analyzed using linear regression model based on the signatures of fissile materials in the spent fuel to determine weight fractions of fissile materials in the Advanced Burner Test Reactor spent fuel. The preliminary results show even though lead spectrometer showed a better assay performance than graphite, graphite spectrometer could accurately determine weight fractions of {sup 239}Pu and {sup 241}Pu given proper assay energy range were chosen. (authors)

  17. Analysis of Actual Operating Conditions of an Off-grid Solid Oxide Fuel Cell

    SciTech Connect (OSTI)

    Dennis Witmer; Thomas Johnson; Jack Schmid

    2008-12-31

    Fuel cells have been proposed as ideal replacements for other technologies in remote locations such as Rural Alaska. A number of suppliers have developed systems that might be applicable in these locations, but there are several requirements that must be met before they can be deployed: they must be able to operate on portable fuels, and be able to operate with little operator assistance for long periods of time. This project was intended to demonstrate the operation of a 5 kW fuel cell on propane at a remote site (defined as one without access to grid power, internet, or cell phone, but on the road system). A fuel cell was purchased by the National Park Service for installation in their newly constructed visitor center at Exit Glacier in the Kenai Fjords National Park. The DOE participation in this project as initially scoped was for independent verification of the operation of this demonstration. This project met with mixed success. The fuel cell has operated over 6 seasons at the facility with varying degrees of success, with one very good run of about 1049 hours late in the summer of 2006, but in general the operation has been below expectations. There have been numerous stack failures, the efficiency of electrical generation has been lower than expected, and the field support effort required has been far higher than expected. Based on the results to date, it appears that this technology has not developed to the point where demonstrations in off road sites are justified.

  18. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions May 2005 Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions Norman Brinkman, General Motors Corporation Michael Wang, Argonne National Laboratory Trudy Weber, General Motors Corporation Thomas Darlington, Air Improvement Resource, Inc. May

  19. Methodology for modeling the devolatilization of refuse-derived fuel from thermogravimetric analysis of municipal solid waste components

    SciTech Connect (OSTI)

    Fritsky, K.J.; Miller, D.L.; Cernansky, N.P.

    1994-09-01

    A methodology was introduced for modeling the devolatilization characteristics of refuse-derived fuel (RFD) in terms of temperature-dependent weight loss. The basic premise of the methodology is that RDF is modeled as a combination of select municipal solid waste (MSW) components. Kinetic parameters are derived for each component from thermogravimetric analyzer (TGA) data measured at a specific set of conditions. These experimentally derived parameters, along with user-derived parameters, are inputted to model equations for the purpose of calculating thermograms for the components. The component thermograms are summed to create a composite thermogram that is an estimate of the devolatilization for the as-modeled RFD. The methodology has several attractive features as a thermal analysis tool for waste fuels. 7 refs., 10 figs., 3 tabs.

  20. Impact Analysis of a Dipper-Type and Multi Spring-Type Fuel Rod Support Grid Assemblies in PWR

    SciTech Connect (OSTI)

    Song, K.N.; Yoon, K.H.; Park, K.J.; Park, G.J.; Kang, B.S.

    2002-07-01

    A spacer grid is one of the main structural components in a fuel assembly of a Pressurized light Water Reactor (PWR). It supports fuel rods, guides cooling water, and maintains geometry from external impact loads. A simulation is performed for the strength of a spacer grid under impact load. The critical impact load that leads to plastic deformation is identified by a free-fall test. A finite element model is established for the nonlinear simulation of the test. The simulation model is tuned based on the free-fall test. The model considers the aspects of welding and the contacts between components. Nonlinear finite element analysis is carried out by a software system called LS/DYNA3D. The results are discussed from a design viewpoint. (authors)

  1. Steam gasification of tyre waste, poplar, and refuse-derived fuel: A comparative analysis

    SciTech Connect (OSTI)

    Galvagno, S. Casciaro, G.; Casu, S.; Martino, M.; Mingazzini, C.; Russo, A.; Portofino, S.

    2009-02-15

    In the field of waste management, thermal disposal is a treatment option able to recover resources from 'end of life' products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  2. Spent fuel performance data: An analysis of data relevant to the NNWSI Project

    SciTech Connect (OSTI)

    Oversby, V.M.; Shaw, H.F.

    1987-08-01

    This paper summarizes the physical and chemical properties of spent light water reactor fuel that might influence its performance as a waste form under geologic disposal conditions at Yucca Mountain, Nevada. Results obtained on the dissolution testing of spent fuel conducted by the NNWSI Project are presented and discussed. Work published by other programs, in particular those of Canada and Sweden, are reviewed and compared with the NNWSI testing results. An attempt is made to relate all of the results to a common basis of presentation and to rationalize apparent conflicts between sets of results obtained under different experimental conditions.

  3. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    SciTech Connect (OSTI)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  4. Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns

    SciTech Connect (OSTI)

    Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

    2003-02-27

    Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

  5. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  6. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect (OSTI)

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  7. Analysis of molten fuel-coolant interaction during a reactivity-initiated accident experiment. [BWR; PWR

    SciTech Connect (OSTI)

    El-Genk, M.S.; Hobbins, R.R.

    1981-01-01

    The results of a reactivity-initiated accident experiment, designated RIA-ST-4, are discussed and analyzed with regard to molten fuel-coolant interaction (MFCI). In this experiment, extensive amounts of molten UO/sub 2/ fuel and zircaloy cladding were produced and fragmented upon mixing with the coolant. Coolant pressurization up to 35 MPa and coolant overheating in excess of 940 K occurred after fuel rod failure. The initial coolant conditions were similar to those in boiling water reactors during a hot startup (that is, coolant pressure of 6.45 MPa, coolant temperature of 538 K, and coolant flow rate of 85 cm/sup 3//s). It is concluded that the high coolant pressure recorded in the RIA-ST-4 experiment was caused by an energetic MFCI and was not due to gas release from the test rod at failure, Zr/water reaction, or to UO/sub 2/ fuel vapor pressure. The high coolant temperature indicated the presence of superheated steam, which may have formed during the expansion of the working fluid back to the initial coolant pressure; yet, the thermal-to-mechanical energy conversion ratio is estimated to be only 0.3%.

  8. Gas-bubble growth mechanisms in the analysis of metal fuel swelling

    SciTech Connect (OSTI)

    Gruber, E.E.; Kramer, J.M.

    1986-06-01

    During steady-state irradiation, swelling rates associated with growth of fission-gas bubbles in metallic fast reactor fuels may be expected to remain small. As a consequence, bubble-growth mechanisms are not a major consideration in modeling the steady-state fuel behavior, and it is usually adequate to consider the gas pressure to be in equilibrium with the external pressure and surface tension restraint. On transient time scales, however, various bubble-growth mechanisms become important components of the swelling rate. These mechanisms include growth by diffusion, for bubbles within grains and on grain boundaries; dislocation nucleation at the bubble surface, or ''punchout''; and bubble growth by creep. Analyses of these mechanisms are presented and applied to provide information on the conditions and the relative time scales for which the various processes should dominate fuel swelling. The results are compared to a series of experiments in which the swelling of irradiated metal fuel was determined after annealing at various temperatures and pressures. The diffusive growth of bubbles on grain boundaries is concluded to be dominant in these experiments.

  9. Analysis of Pu-Only Partitioning Strategies in LMFBR Fuel Cycles

    SciTech Connect (OSTI)

    Samuel Bays; Gilles Youinou

    2013-02-01

    Sodium cooled Fast Reactors (SFR) have been under consideration for production of electricity, fissile material production, and for destruction of transuranics for decades. The neutron economy of a SFR can be operated in one of two ways. One possibility is to operate the reactor in a transuranic burner mode which has been the focus of active R&D in the last 15 years. However, prior to that the focus was on breeding transuranics. This later mode of managing the neutron economy relies on ensuring the maximum fuel utilization possible in such a way as to maximize the amount of plutonium produced per unit of fission energy in the reactor core. The goal of maximizing plutonium production in this study is as fissile feed stock for the production of MOX fuel to be used in Light Water Reactors (LWR). Throughout the l970s, this fuel cycle scenario was the focus of much research by the Atomic Energy Commission in the event that uranium supplies would be scarce. To date, there has been sufficient uranium to supply the once through nuclear fuel cycle. However, interest in a synergistic relationship Liquid Metal Fast Breeder Reactors (LMFBR) and a consumer LWR fleet persists, prompting this study. This study considered LMFBR concepts with varying additions of axial and radial reflectors. Three scenarios were considered in collaboration with a companion study on the LWR-MOX designs based on plutonium nuclide vectors produced by this study. The first scenario is a LMFBR providing fissile material to make MOX fuel where the MOX part of the fuel cycle is operated in a once-through-then-out mode. The second scenario is the same as the first but with the MOX part of the fuel cycle multi-recycling its own plutonium with LMFBR being used for the make-up feed. In these first two scenarios, plutonium partitioning from the minor actinides (MA) was assumed. Also, the plutonium management strategy of the LMFBR ensured that only the high fissile purity plutonium bred from blankets was sold to the MOX LWRs. The third scenario considered a LMFBR fuel cycle in an expansionary mode where excess bred transuranic material is accumulated for spinning off additional LMFBR cores. In this latter scenario, no plutonium partitioning was considered. After every cycle, transuranic from both driver and blankets is sold to the MOX LWRs. The MA production from LMFBR operated in a Pu-only fuel cycle is roughly only 1% that of the transuranic production rate. This is in contrast to LWR fuel cycles where the MA content in TRU is closer to 10% or more. If such a LMFBR were operated to provide fissile material to a fleet of MOX reactors, then 1 GWe of LMFBR could support between approximately 0.11 and 0.43 GWe of LWR-MOX reactors for a LMFBR conversion ratio between 1.1 and 1.5, if the MOX reactors were operated in a once-through-then out mode. If the plutonium is continuously recycled in the MOX reactors then the support ratio is approximately 1 GWe of LMFBR for between 0.13 and 0.65 GWe of LWR-MOX reactors depending on the LMFBR conversion ratio. Also, it was found that if the LMFBR fleet were operated in a purely expansionary mode, the smallest doubling time achievable would be seven years.

  10. New developments and prospects on COSI, the simulation software for fuel cycle analysis

    SciTech Connect (OSTI)

    Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.; Tiphine, M.; Krivtchik, G.; Cany, C.

    2013-07-01

    COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aim in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.

  11. Fuel Performance Experience, Analysis and Modeling: Deformations, Fission Gas Release and Pellet-Clad Interaction

    SciTech Connect (OSTI)

    Zhou, G.; Hallstadius, L.; Helmersson, S.; Massih, A.R.; Schrire, D.; Kaellstroem, R.; Wikmark, G.; Hellwig, C.

    2007-07-01

    Some basic attributes of light water reactor fuel performance, determined by measurements, are evaluated. In particular, data on fuel volume swelling, cladding creep/growth, fission product gas release and cladding deformation due to pellet-clad mechanical interaction of rods irradiated in power reactors to rod burnups up to about 70 MWd/kgU are presented and appraised. A thermal fuel matrix swelling caused by fission products shows a linear increase in the fuel volume fraction with burnup up to 70 MWd/kgU with a mean rate of 0.76% per 10 MWd/kgU at a best-estimate level. Cladding hoop strain data due to in-reactor creep as a function of burnup from 15 to 70 MWd/kgU for pressurized water reactor (PWR) rods and from 5 to 50 MWd/kgU for boiling water reactor (BWR) rods are presented. The maximum measured cladding creep-down hoop strain in the considered BWR rods is {epsilon}{sub {theta}} {approx_equal} -0.5% and in the PWR rods {epsilon}{sub {theta}} {approx_equal} -1.25%. Rod growth data on BWR and PWR rods as a function of burnup are presented and discussed. Rod internal free volume data, measured and calculated as a function of burnup, are presented. Recent high burnup (52-70 MWd/kgU) fission product gas release data obtained by destructive methods are evaluated with the STAV7 computer code. Finally, slow power ramp experiments conducted at the Studsvik R2 reactor are simulated with the STAV7 code and it is observed that by accounting the contribution of fuel thermal gaseous swelling, the code describes the clad diameter increase due to pellet-clad mechanical interaction under the power bump satisfactorily. (authors)

  12. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    SciTech Connect (OSTI)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

  13. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas Fueled Power Plants: August 2012 - December 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants August 2012 - December 2013 S. Venkataraman, G. Jordan, and M. O'Connor GE Energy Schenectady, New York N. Kumar and S. Lefton Intertek AIM Sunnyvale, California D. Lew, G. Brinkman, D. Palchak, and J. Cochran National Renewable Energy Laboratory (NREL) Golden, Colorado NREL Technical Monitors: Debra Lew and Kara Clark Subcontract Report NREL/SR-6A20-60862 December 2013 NREL is a national laboratory of the U.S.

  14. Sampling and analysis plan for sludge located in fuel storage canisters of the 105-K east basin

    SciTech Connect (OSTI)

    Baker, R.B., Westinghouse Hanford

    1996-05-20

    This Sampling and Analysis Plan (SAP) provides direction for the first sampling of sludge from the K East Basin spent fuel canisters. The specially developed sampling equipment used removes representative samples of sludge while maintaining the radioactive sample underwater in the basin pool (equipment is described in WHC-SD-SNF-SDD-004). Included are the basic background logic for sample selection, the overall laboratory analyses required and the laboratory reporting required. These are based on requirements put forth in the data quality objectives (WHC-SD-SNF-DQO-008) established for this sampling and characterization activity.

  15. Sampling and analysis plan for sludge located in fuel storage canisters of the 105-K West basin

    SciTech Connect (OSTI)

    Baker, R.B.

    1997-04-30

    This Sampling and Analysis Plan (SAP) provides direction for the first sampling of sludge from the K West Basin spent fuel canisters. The specially developed sampling equipment removes representative samples of sludge while maintaining the radioactive sample underwater in the basin pool (equipment is described in WHC-SD-SNF-SDD-004). Included are the basic background logic for sample selection, the overall laboratory analyses required and the laboratory reporting required. These are based on requirements put forth in the data quality objectives (WHC-SD-SNF-DQO-012) established for this sampling and characterization activity.

  16. DATA COLLECTION, QUALITY ASSURANCE, AND ANALYSIS PLAN FOR THE 2008/2009 HYDROGEN AND FUEL CELLS KNOWLEDGE AND OPINIONS SURVEYS

    SciTech Connect (OSTI)

    Schmoyer, Richard L; Truett, Lorena Faith; Diegel, Susan W

    2008-09-01

    The 2008/2009 Knowledge and Opinions Survey, conducted for the Department of Energy's Hydrogen Program will measure the levels of awareness and understanding of hydrogen and fuel cell technologies within five target populations: (1) the general public, (2) students, (3) personnel in state and local governments, (4) potential end users of hydrogen fuel and fuel cell technologies in business and industry, and (5) safety and code officials. The ultimate goal of the surveys is a statistically valid, nationally based assessment. Distinct information collections are required for each of the target populations. Each instrument for assessing baseline knowledge is targeted to the corresponding population group. While many questions are identical across all populations, some questions are unique to each respondent group. The biggest data quality limitation of the hydrogen survey data (at least of the general public and student components) will be nonresponse bias. To ensure as high a response rate as possible, various measures will be taken to minimize nonresponse, including automated callbacks, cycling callbacks throughout the weekdays, and availability of Spanish speaking interviewers. Statistical adjustments (i.e., sampling weights) will also be used to account for nonresponse and noncoverage. The primary objective of the data analysis is to estimate the proportions of target population individuals who would respond to the questions in the various possible ways. Data analysis will incorporate necessary adjustments for the sampling design and sampling weights (i.e., probability sampling). Otherwise, however, the analysis will involve standard estimates of proportions of the interviewees responding in various ways to the questions. Sample-weight-adjusted contingency table chi-square tests will also be computed to identify differences between demographic groups The first round of Knowledge and Opinions Surveys was conducted in 2004. Analysis of these surveys produced a baseline assessment of technical knowledge about hydrogen and fuel cells and a statistically valid description of opinions about safety and potential usage in the United States. The current surveys will repeat the process used in 2004. In addition the 2008/2009 survey results will be compared with the 2004 baseline results to assess changes in knowledge levels and opinions. In 2011/2012, the surveys will be repeated, and changes in knowledge and opinions will again be assessed. The information gained from these surveys will be used to enhance and update the DOE Hydrogen Program's education efforts.

  17. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

  18. Thermal analysis for a spent reactor fuel storage test in granite

    SciTech Connect (OSTI)

    Montan, D.N.

    1980-09-01

    A test is conducted in which spent fuel assemblies from an operating commercial nuclear power reactor are emplaced in the Climax granite at the US Department of Energy`s Nevada Test Site. In this generic test, 11 canisters of spent PWR fuel are emplaced vertically along with 6 electrical simulator canisters on 3 m centers, 4 m below the floor of a storage drift which is 420 m below the surface. Two adjacent parallel drifts contain electrical heaters, operated to simulate (in the vicinity of the storage drift) the temperature fields of a large repository. This test, planned for up to five years duration, uses fairly young fuel (2.5 years out of core) so that the thermal peak will occur during the time frame of the test and will not exceed the peak that would not occur until about 40 years of storage had older fuel (5 to 15 years out of core) been used. This paper describes the calculational techniques and summarizes the results of a large number of thermal calculations used in the concept, basic design and final design of the spent fuel test. The results of the preliminary calculations show the effects of spacing and spent fuel age. Either radiation or convection is sufficient to make the drifts much better thermal conductors than the rock that was removed to create them. The combination of radiation and convection causes the drift surfaces to be nearly isothermal even though the heat source is below the floor. With a nominal ventilation rate of 2 m{sup 3}/s and an ambient rock temperature of 23{sup 0}C, the maximum calculated rock temperature (near the center of the heat source) is about 100{sup 0}C while the maximum air temperature in the drift is around 40{sup 0}C. This ventilation (1 m{sup 3}/s through the main drift and 1/2 m{sup 3}/s through each of the side drifts) will remove about 1/3 of the heat generated during the first five years of storage.

  19. Taxation of expenditures required by the Surface Mining Control and Reclamation Act of 1977 (SMCRA)

    SciTech Connect (OSTI)

    McNally, K.J.

    1987-01-01

    There has been disagreement over whether the expenditures made by the mine operator to comply with the Surface Mining Control and Reclamation Act of 1977 are characterized as capital or deductible expenses. An examination of expenditures made by mine operators during the life of a mine illustrates the dichotomy between deductible and capital expenditures in which special rules may override general capitalization rules to allow the mine operator to deduct a capital expenditure. This makes some expenditures difficult to categorize. Citing case law, the author treats expenditures for exploration and mining permits, performance bonds, and liability insurance. A new provision, section 468, allowing the current deduction for future reclamation and closing costs removed the uncertainty created by prior case law.

  20. Table 7.9 Expenditures for Purchased Energy Sources, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Expenditures for Purchased Energy Sources, 2002;" " Level: National and Regional Data;" " Row: NAICS Codes; Column: Energy Sources;" " Unit: Million U.S. Dollars." " "," "," ",," "," "," "," "," "," "," "," ",," " " "," ",,,,,,,,,,"RSE" "NAICS"," ","

  1. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    0 2005 Energy End-Use Expenditures for an Average Household, by Region ($2010) Northeast Midwest South West National Space Heating 1,050 721 371 352 575 Air-Conditioning 199 175 456 262 311 Water Heating 373 294 313 318 320 Refrigerators 194 145 146 154 157 Other Appliances and Lighting 827 665 715 716 725 Total (1) 2,554 1,975 1,970 1,655 2,003 Note(s): 1) Due to rounding, end-uses do not sum to totals. Source(s): EIA, 2005 Residential Energy Consumption Survey, Oct. 2008, Table US-15; EIA,

  2. Analysis of H2 storage needs for early market non-motive fuel cell applications.

    SciTech Connect (OSTI)

    Johnson, Terry Alan; Moreno, Marcina; Arienti, Marco; Pratt, Joseph William; Shaw, Leo; Klebanoff, Leonard E.

    2012-03-01

    Hydrogen fuel cells can potentially reduce greenhouse gas emissions and the United States dependence on foreign oil, but issues with hydrogen storage are impeding their widespread use. To help overcome these challenges, this study analyzes opportunities for their near-term deployment in five categories of non-motive equipment: portable power, construction equipment, airport ground support equipment, telecom backup power, and man-portable power and personal electronics. To this end, researchers engaged end users, equipment manufacturers, and technical experts via workshops, interviews, and electronic means, and then compiled these data into meaningful and realistic requirements for hydrogen storage in specific target applications. In addition to developing these requirements, end-user benefits (e.g., low noise and emissions, high efficiency, potentially lower maintenance costs) and concerns (e.g., capital cost, hydrogen availability) of hydrogen fuel cells in these applications were identified. Market data show potential deployments vary with application from hundreds to hundreds of thousands of units.

  3. Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks.

    SciTech Connect (OSTI)

    Durbin, Samuel G.; Morrow, Charles W.

    2013-01-01

    The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level - 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

  4. Experimental control analysis of a fuel gas saturator. Final report. [Multivariable

    SciTech Connect (OSTI)

    Terwilliger, G.E.; Brower, A.S.; Baheti, R.S.; Smith, R.E.; Brown, D.H.

    1985-01-01

    The multivariable control of the clean fuel gas saturator of a coal gasification process has been demonstrated. First principle process models described the process dynamics from which linear models were generated and used for the actual control designs. The multivariable control was designed, its response to transients simulated and the controls were implemented in a computer controller for a fuel gas saturator. The test results obtained for the gas flow transients showed good correlation with the computer simulations, giving confidence in the ability of the simulation to predict the plant performance for other transients. In this study, both time and frequency domain multivariable design techniques were applied to provide the best possible design and to determine their relative effectiveness. No clear guidelines resulted; it appears that the selection may be made on the basis of personal preference, experience or the availability of computer-aided design tools, rather than inherent technical differences. This EPRI/GE fuel gas saturator control demonstration has shown that multivariable design techniques can be applied to a real process and that practical controls are developed. With suitable process models, presently available computer-aided control design software allows the control design, evaluation and implementation to be completed in a reasonable time period. The application of these techniques to power generation processes is recommended.

  5. NREL: Hydrogen and Fuel Cells Research - Hydrogen Fueling Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fueling Infrastructure Analysis As the market grows for hydrogen fuel cell electric vehicles, so does the need for a comprehensive hydrogen fueling infrastructure. NREL's technology validation team is analyzing the availability and performance of existing hydrogen fueling stations, benchmarking the current status, and providing feedback related to capacity, utilization, station build time, maintenance, fueling, and geographic coverage. Overview Composite Data Products Publications

  6. Polymers for hydrogen infrastructure and vehicle fuel systems : applications, properties, and gap analysis.

    SciTech Connect (OSTI)

    Barth, Rachel Reina; Simmons, Kevin L.; San Marchi, Christopher W.

    2013-10-01

    This document addresses polymer materials for use in hydrogen service. Section 1 summarizes the applications of polymers in hydrogen infrastructure and vehicle fuel systems and identifies polymers used in these applications. Section 2 reviews the properties of polymer materials exposed to hydrogen and/or high-pressure environments, using information obtained from published, peer-reviewed literature. The effect of high pressure on physical and mechanical properties of polymers is emphasized in this section along with a summary of hydrogen transport through polymers. Section 3 identifies areas in which fuller characterization is needed in order to assess material suitability for hydrogen service.

  7. Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M; Peplow, Douglas E.; Bekar, Kursat B; Celik, Cihangir; Scaglione, John M; Ilas, Dan; Wagner, John C

    2013-01-01

    The new hybrid SOURCE ConveRgence accelERator (SOURCERER) sequence in SCALE deterministically computes a fission distribution and uses it as the starting source in a Monte Carlo eigenvalue criticality calculation. In addition to taking the guesswork out of defining an appropriate, problem-dependent starting source, the more accurate starting source provided by the deterministic calculation decreases the probability of producing inaccurate tally estimates associated with undersampling problems caused by inadequate source convergence. Furthermore, SOURCERER can increase the efficiency of the overall simulation by decreasing the number of cycles that has to be skipped before the keff accumulation. SOURCERER was applied to a representative example for a used nuclear fuel cask utilized at the Maine Yankee storage site {Scaglione and Ilas}. Because of the time constraints of the Used Fuel Research, Development, and Demonstration project, it was found that using more than 30,000 neutrons per cycle will lead to inaccurate Monte Carlo calculation of keff due to the inevitable decrease in the number of skipped and active cycles used with this problem. For a fixed uncertainty objective and by using 30,000 neutron per cycle, the use of SOURCERER increased the efficiency of the keff calculation by 60%compared to a Monte Carlo calculation that used a starting source distributed uniformly in fissionable regions, even with the inclusion of the extra computational time required by the deterministic calculation. Additionally, the use of SOURCERER increased the reliability of keff calculation using any number of skipped cycles below 350.

  8. Fission matrix-based Monte Carlo criticality analysis of fuel storage pools

    SciTech Connect (OSTI)

    Farlotti, M.; Larsen, E. W.

    2013-07-01

    Standard Monte Carlo transport procedures experience difficulties in solving criticality problems in fuel storage pools. Because of the strong neutron absorption between fuel assemblies, source convergence can be very slow, leading to incorrect estimates of the eigenvalue and the eigenfunction. This study examines an alternative fission matrix-based Monte Carlo transport method that takes advantage of the geometry of a storage pool to overcome this difficulty. The method uses Monte Carlo transport to build (essentially) a fission matrix, which is then used to calculate the criticality and the critical flux. This method was tested using a test code on a simple problem containing 8 assemblies in a square pool. The standard Monte Carlo method gave the expected eigenfunction in 5 cases out of 10, while the fission matrix method gave the expected eigenfunction in all 10 cases. In addition, the fission matrix method provides an estimate of the error in the eigenvalue and the eigenfunction, and it allows the user to control this error by running an adequate number of cycles. Because of these advantages, the fission matrix method yields a higher confidence in the results than standard Monte Carlo. We also discuss potential improvements of the method, including the potential for variance reduction techniques. (authors)

  9. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    6 Table E14. Electric Power Sector Energy Expenditure Estimates, 2013 (Million Dollars) State Coal Natural Gas a Petroleum Nuclear Fuel Biomass Electricity Imports c Total Energy d Distillate Fuel Oil Petroleum Coke Residual Fuel Oil Total Wood and Waste b Alabama 1,367.8 1,382.3 14.0 - - 14.0 352.0 9.2 - 3,125.3 Alaska 28.8 160.6 76.8 - 12.2 89.0 - - (s) 278.4 Arizona 934.4 1,034.6 11.3 - - 11.3 302.7 5.5 1.3 2,289.9 Arkansas 771.5 404.1 8.3 - 1.0 9.2 75.7 3.1 - 1,263.7 California 12.1 3,732.2

  10. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    5 Table E13. Transportation Sector Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Retail Electricity Total Energy Coal Natural Gas Petroleum Total Aviation Gasoline Distillate Fuel Oil Jet Fuel a LPG b Lubricants Motor Gasoline c Residual Fuel Oil Total Alabama - 3.2 8.4 3,334.8 294.8 14.5 155.2 8,366.7 59.2 12,233.7 12,236.9 - 12,236.9 Alaska - 0.2 23.0 988.7 2,397.2 2.0 30.1 1,090.5 - 4,531.5 4,531.7 - 4,531.7 Arizona - 22.7 23.0 3,042.0 472.9 26.2 110.8 8,790.2 -

  11. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    1 Table E9. Total End-Use Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Retail Electricity Total Energy g Coal Natural Gas a Petroleum Biomass Total g Distillate Fuel Oil Jet Fuel b LPG c Motor Gasoline d Residual Fuel Oil Other e Total Wood and Waste f Alabama 363.9 1,708.9 3,989.6 294.8 251.9 8,443.0 90.5 682.0 13,751.9 429.5 16,254.2 7,901.4 24,155.6 Alaska 43.7 335.0 2,028.1 2,397.2 33.2 1,145.8 - 66.0 5,670.4 20.3 6,069.4 1,005.2 7,074.5 Arizona 12.4 1,002.7

  12. Scanning Electron Microscopy Analysis of Fuel/Matrix Interaction Layers in Highly-Irradiated UMo Dispersion Fuel Plates with Al and AlSi Alloy Matrices

    SciTech Connect (OSTI)

    Dennis D. Keiser, Jr.; Jan-Fong Jue; Brandon D. Miller; Jian Gan; Adam B. Robinson; Pavel Medvedev; James Madden; Dan Wachs; Mitch Meyer

    2014-04-01

    In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U7Mo dispersion fuel elements with pure Al, Al2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission-gas bubbles. Additionally, solid-fission-product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with AlSi matrices.

  13. Microbial Community Analysis of a Single Chamber Microbial Fuel Cell Using Potato Wastewater

    SciTech Connect (OSTI)

    Zhen Li; Rishika Haynes; Eugene Sato; Malcolm Shields; Yoshiko Fujita; Chikashi Sato

    2014-04-01

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopy results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.

  14. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis

    SciTech Connect (OSTI)

    Turinsky, Paul; Hays, Ross

    2011-09-02

    Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of #12;nding reactor deployment pro#12;les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re#12;ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o#11;s that exist between these di#11;erent objectives.

  15. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  16. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 2003 Energy Expenditures per Square Foot of Commercial Floorspace and per Building, by Building Type ($2010) ($2010) Food Service 4.88 27.2 Mercantile 2.23 38.1 Food Sales 4.68 26.0 Education 1.43 36.6 Health Care 2.76 68.0 Service 1.39 9.1 Public Order and Safety 2.07 32.0 Warehouse and Storage 0.80 13.5 Office 2.01 29.8 Religious Worship 0.76 7.8 Public Assembly 1.73 24.6 Vacant 0.34 4.8 Lodging 1.72 61.5 Other 2.99 65.5 Note(s): Source(s): Mall buildings are no longer included in most CBECs

  17. Fact #638: August 30, 2010 Average Expenditure for a New Car Declines in Relation to Family Earnings

    Broader source: Energy.gov [DOE]

    Although the average expenditure for a new car has increased from 1967 to 2009, family earnings have also been on the rise. For this period, new car expenditures went from $3,216 to $23,186, while...

  18. Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines: Task 2 Final Report

    SciTech Connect (OSTI)

    Alleman, T. L.; McCormick, R. L.

    2006-01-01

    NREL tested Philippines coconut biodiesel samples of neat and blended fuels. Results show that the current fuel quality standards were met with very few exceptions. Additional testing is recommended.

  19. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  20. JOBS Models: JOBS FC (Fuel Cells) and JOBS H2 (Hydrogen)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Models JOBS FC (Fuel Cells) & JOBS H2 (Hydrogen) (Argonne National Laboratory) Objectives The JOBS and economic impacts of Fuel Cells (JOBS FC) and JOBS and economic impacts of Hydrogen (JOBS H2) models estimate employment, earnings and economic output from the manufacture, installation and use of select types of fuel cells and hydrogen infrastructure. Key Attributes & Strengths The two JOBS models use input-output methodology to estimate economic impacts associated with expenditures on

  1. Table 5.17. U.S. Number of Households by Vehicle Fuel Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    More ... 8.2 Q 1.7 1.9 1.7 2.6 6.1 2.0 Q Q Q 16.7 Below Poverty Line 100 Percent ... 9.0 2.5 3.6 1.3 1.0 0.6 Q...

  2. Table C4DIV. Expenditures for Sum of Major Fuels by Census Division...

    U.S. Energy Information Administration (EIA) Indexed Site

    ","Q","Q","Q","Q","Q","Q" "Food Service ...","Q","Q","Q","Q","Q","Q","Q" "Health Care ...","Q","Q","Q","Q","Q","Q","Q" "Lodging ...","Q...

  3. An advanced deterministic method for spent-fuel criticality safety analysis

    SciTech Connect (OSTI)

    DeHart, M.D.

    1998-09-01

    Over the past two decades, criticality safety analysts have come to rely to a large extent on Monte Carlo methods for criticality calculations. Monte Carlo has become popular because of its capability to model complex, nonorthogonal configurations or fissile materials, typical of real-world problems. In the last few years, however, interest in determinist transport methods has been revived, due to shortcomings in the stochastic nature of Monte Carlo approaches for certain types of analyses. Specifically, deterministic methods are superior to stochastic methods for calculations requiring accurate neutron density distributions or differential fluxes. Although Monte Carlo methods are well suited for eigenvalue calculations, they lack the localized detail necessary to assess uncertainties and sensitivities important in determining a range of applicability. Monte Carlo methods are also inefficient as a transport solution for multiple-pin depletion methods. Discrete ordinates methods have long been recognized as one of the most rigorous and accurate approximations used to solve the transport equation. However, until recently, geometric constrains in finite differencing schemes have made discrete ordinates methods impractical for nonorthogonal configurations such as reactor fuel assemblies. The development of an extended step characteristic (ESC) technique removes the grid structure limitation of traditional discrete ordinates methods. The NEWT computer code, a discrete ordinates code built on the ESC formalism, is being developed as part of the SCALE code system. This paper demonstrates the power, versatility, and applicability of NEWT as a state-of-the-art solution for current computational needs.

  4. Analysis of Performance of Selected AFC, ATF Fuels, and Lanthanide Transport

    SciTech Connect (OSTI)

    Unal, Cetin; Galloway, Jack D.

    2015-09-29

    We started to look at the performance of ATF concept in LWRs late in FY14 and finish our studies in FY15. The work has been presented in AFC review meetings, ICAPP and TOPFUEL conferences. The final version of the work is accepted for publication in Nuclear Engineering and Science Journal (NES). The copy of ICAPP and NES papers are attached separately to this document as our milestone deliverables. We made an important progress in the modeling of lanthanide transport in FY15. This work produced an ANS Winter Meeting paper and GLOBAL 2015 paper. GLOBAL 2015 paper is also attached as deliverable of FY15. The work on the lanthanide transport is preliminary. We are exploring other potential mechanisms, in addition to liquid-like diffusion mechanisms, proposed by Robert Mariani [1] before we analyze data that will be taken by Ohio State University. This year, we concentrate on developing diffusion kernels and principles of modeling. Next year, this work will continue and analyze the Ohio State data and develop approaches to solve multicomponent diffusion. In addition to three papers we attached to this report, we have done some research on coupling and the development of gas release model for metallic fuels in FY15. They are also preliminary in nature; therefore, we give the summary of what we found rather than an extended report that will be done in FY16.

  5. Temperature modeling for analysis and design of the sintering furnance in HTR fuel type of ball

    SciTech Connect (OSTI)

    Saragi, Elfrida; Setiadji, Moch

    2013-09-09

    One of the factors that determine the safety of the operation of the sintering furnace fuel HTR ball is the temperature distribution in the ceramic tube furnace. The temperature distribution must be determined at design stage. The tube has a temperature of 1600 C at one end and about 40 C at the other end. The outside of the tube was cooled by air through natural convection. The tube is a furnace ceramic tube which its geometry are 0.08, 0.09 and 0.5 m correspondingly for the inner tube diameter, outer tube diameter and tube length. The temperature distribution of the tube is determined by the natural convection coefficient (NCF), which is difficult to be calculated manually. The determination of NCF includes the Grasshoff, Prandtl, and Nusselt numbers which is a function of the temperature difference between the surrounding air with the ceramic tube. If the temperature vary along the tube, the complexity of the calculations increases. Thus the proposed modeling was performed to determine the temperature distribution along the tube and heat transfer coefficient using a self-developed software which permit the design process easier.

  6. Techno-Economic Analysis of Liquid Fuel Production from Woody Biomass via Hydrothermal Liquefaction (HTL) and Upgrading

    SciTech Connect (OSTI)

    Zhu, Yunhua; Biddy, Mary J.; Jones, Susanne B.; Elliott, Douglas C.; Schmidt, Andrew J.

    2014-09-15

    A series of experimental work was conducted to convert woody biomass to gasoline and diesel range products via hydrothermal liquefaction (HTL) and catalytic hydroprocessing. Based on the best available test data, a techno-economic analysis (TEA) was developed for a large scale woody biomass based HTL and upgrading system to evaluate the feasibility of this technology. In this system, 2000 dry metric ton per day woody biomass was assumed to be converted to bio-oil in hot compressed water and the bio-oil was hydrotreated and/or hydrocracked to produce gasoline and diesel range liquid fuel. Two cases were evaluated: a stage-of-technology (SOT) case based on the tests results, and a goal case considering potential improvements based on the SOT case. Process simulation models were developed and cost analysis was implemented based on the performance results. The major performance results included final products and co-products yields, raw materials consumption, carbon efficiency, and energy efficiency. The overall efficiency (higher heating value basis) was 52% for the SOT case and 66% for the goal case. The production cost, with a 10% internal rate of return and 2007 constant dollars, was estimated to be $1.29 /L for the SOT case and $0.74 /L for the goal case. The cost impacts of major improvements for moving from the SOT to the goal case were evaluated and the assumption of reducing the organics loss to the water phase lead to the biggest reduction in the production cost. Sensitivity analysis indicated that the final products yields had the largest impact on the production cost compared to other parameters. Plant size analysis demonstrated that the process was economically attractive if the woody biomass feed rate was over 1,500 dry tonne/day, the production cost was competitive with the then current petroleum-based gasoline price.

  7. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    9 A P P E N D I X A This appendix contains alphabetical listings of the variables used in the price and expenditure module of the State Energy Data System (SEDS). The first list presents the price and expenditure variables, and the second presents the consumption adjustment variables as described in Section 7, "Consumption Adjustments for Calculating Expenditures." Provided for each variable are: a brief description; unit of measure; and the formulas used to create the variable. If a

  8. Performance analysis of cofiring densified refuse derived fuel in a military boiler. Final report Aug 80-Sep 81

    SciTech Connect (OSTI)

    Not Available

    1981-12-01

    This report provides an overview of existing densified refuse-derived fuel (dRDF) receiving, storage, handling and combustion equipment at Wright-Patterson Air Foce Base. DRDF is being burned as part of a long term alternative fuel evaluation program to develop design and procurement criteria for multiple fuel boilers. Recommendations are offered for specific equipment, procedural changes, and studies to improve the efficacy of the present configurations of dRDF as a fuel. A discussion of the fuel use criteria is presented. The options for continuing the present dRDF supply arrangement vs. the feasibility of local production of dRDF are presented. Research needs are summarized. A preemptive, integrated local synthetic solid fuel production facility and boiler performance test is recommended as a continuation of the program.

  9. Spent Nuclear Fuel

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Glossary › FAQS › Overview Data Status of U.S. Nuclear Outages (interactive) Summary Uranium & nuclear fuel Nuclear power plants Spent nuclear fuel International All nuclear data reports Analysis & Projections Major Topics Most popular Nuclear plants and reactors Projections Recurring Uranium All reports Browse by Tag Alphabetical Frequency Tag Cloud Previous releases 2002 1998 Spent Nuclear Fuel Release date: December 7, 2015 Next release date: Late 2018 Spent

  10. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    9 Average Annual Energy Expenditures per Household, by Year ($2010) Year 1980 1,991 1981 1,981 1982 2,058 1983 2,082 1984 2,067 1985 2,012 1986 1,898 1987 1,846 1988 1,849 1989 1,848 1990 1,785 1991 1,784 1992 1,729 1993 1,797 1994 1,772 1995 1,727 1996 1,800 1997 1,761 1998 1,676 1999 1,659 2000 1,824 2001 1,900 2002 1,830 2003 1,978 2004 2,018 2005 2,175 2006 2,184 2007 2,230 2008 2,347 2009 2,173 2010 2,201 2011 2,185 2012 2,123 2013 2,056 2014 2,032 2015 2,030 2016 2,007 2017 1,992 2018

  11. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    8 Average Annual Energy Expenditures per Square Foot of Commercial Floorspace, by Year ($2010) Year $/SF 1980 (1) 2.12 1981 2.22 (2) 1982 2.24 1983 2.21 1984 2.25 1985 2.20 1986 2.06 1987 2.00 1988 1.99 1989 2.01 1990 1.98 1991 1.92 1992 1.86 1993 1.96 1994 2.05 1995 2.12 1996 2.10 1997 2.08 1998 1.97 1999 1.88 2000 2.06 2001 2.20 2002 2.04 2003 2.13 2004 2.16 2005 2.30 2006 2.36 2007 2.35 2008 1.71 2009 2.43 2010 2.44 2011 2.44 2012 2.35 2013 2.28 2014 2.27 2015 2.29 2016 2.29 2017 2.28 2018

  12. Analysis of fuel relocation for the NRC/PNL Halden assemblies IFA-431, IFA-432, and IFA-513. Interim report

    SciTech Connect (OSTI)

    Williford, R.E.; Mohr, C.L.; Lanning, D.D.; Cunningham, M.E.; Rausch, W.N.

    1980-06-01

    The effects of the thermally-induced cracking and subsequent relocation of UO2 fuel pellets on the thermal and mechanical behavior of light-water reactor fuel rods during irradiation are quantified in this report. Data from the Nuclear Regulatory Commission/Pacific Northwest Laboratory Halden experiments on instrumented fuel assemblies (IFA) IFA-431, IFA-432, and IFA-513 are analyzed. Beginning-of-life in-reactor measurements of fuel center temperatures, linear heat ratings, and cladding axial elongations are used in a new model to solve for the effective thermal conductivity and elastic moduli of the cracked fuel column. The primary assumptions of the new model are that (1) the cracked fuel is in a hydrostatic state of stress in the (r,theta) plane, and that (2) there is no axial slipping between fuel and cladding. Three basic parameters are used to describe the cracked fuel: (1) the crack pattern, (2) the crack roughness, and (3) the fuel surface (gap) roughness. Recommendations are made on refining the model.

  13. California Fuel Cell Partnership: Alternative Fuels Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California Fuel Cell Partnership: Alternative Fuels Research California Fuel Cell Partnership: Alternative Fuels Research This presentation by Chris White of the California Fuel ...

  14. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    3 Table E11. Commercial Sector Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Retail Electricity Total Energy f Coal Natural Gas a Petroleum Biomass Total f Distillate Fuel Oil Kerosene LPG b Motor Gasoline c Residual Fuel Oil Total d Wood and Waste e Alabama - 312.8 100.1 0.4 49.0 6.3 - 155.8 4.4 472.9 2,376.6 2,849.5 Alaska 43.7 155.9 184.7 0.9 15.8 15.0 - 216.3 2.7 418.6 440.0 858.6 Arizona - 288.1 146.8 (s) 32.4 17.9 - 197.0 2.7 487.9 2,958.0 3,445.9 Arkansas -

  15. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    4 Table E12. Industrial Sector Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Retail Electricity Total Energy f Coal Natural Gas a Petroleum Biomass Total f Coking Coal Steam Coal Total Distillate Fuel Oil LPG b Motor Gasoline c Residual Fuel Oil Other d Total Wood and Waste e Alabama 208.5 155.3 363.9 850.7 552.4 51.1 70.0 31.4 517.7 1,222.5 387.8 2,824.8 1,992.2 4,817.1 Alaska - 0.1 0.1 8.8 664.5 0.9 40.3 - 11.3 717.1 0.2 726.1 184.0 910.1 Arizona - 12.4 12.4 139.3

  16. New York City- Property Tax Abatement for Photovoltaic (PV) Equipment Expenditures

    Broader source: Energy.gov [DOE]

    In August 2008 the State of New York enacted legislation allowing a property tax abatement for photovoltaic (PV) system expenditures made on buildings located in cities with a population of 1 mil...

  17. Review of Used Nuclear Fuel Storage and Transportation Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis Review of Used Nuclear Fuel Storage and Transportation Technical Gap Analysis While both wet and dry...

  18. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  19. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    Purpose The State Energy Data System (SEDS) was developed and is maintained and operated by the U.S. Energy Information Administration (EIA). The goal in maintaining SEDS is to create historical time series of energy production, consumption, prices, and expenditures by state that are defined as consistently as possible over time and across sectors. SEDS exists for two principal reasons: (1) to provide state energy production, consumption, price, and expenditure estimates to Members of Congress,

  1. Table 2.10 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Commercial Buildings Energy Consumption and Expenditure Indicators, Selected Years, 1979-2003 Energy Source and Year Building Characteristics Energy Consumption Energy Expenditures Number of Buildings Total Square Feet Square Feet per Building Total Per Building Per Square Foot Per Employee Total Per Building Per Square Foot Per Million Btu Thousands Millions Thousands Trillion Btu Million Btu Thousand Btu Million Btu Million Dollars 1 Thousand Dollars 1 Dollars 1 Dollars 1 Major Sources 2

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Energy Advisory Commission The South Carolina Clean Energy Industry Manufacturing Market Development Advisory Commission (Commission) will assist with the development of clean energy technologies, materials, and products, including advanced vehicle, alternative transportation fuel, battery manufacturing, and hydrogen fuel cell industries. The Commission provided a preliminary report in 2014 with a description and analysis of the existing clean energy manufacturing industry, job development

  3. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  4. Analysis of fuel relocation for the NRC/PNL Halden assemblies IFA-431, IFA-432, and IFA-513

    SciTech Connect (OSTI)

    Williford, R.E.; Mohr, C.L.; Lanning, D.D.; Cunningham, M.E.; Rausch, W.N.; Bradley, E.R.

    1980-04-01

    The effects of the thermally-induced cracking and subsequent relocation of UO/sub 2/ fuel pellets on the thermal and mechanical behavior of light-water reactor fuel rods during irradiation are quantified in this report. Data from the Nuclear Regulatory Commission/Pacific Northwest Laboratory Halden experiments on instrumented fuel assemblies (IFA) IFA-431, IFA-432, and IFA-513 are analyzed. Beginning-of-life in-reactor measurements of fuel center temperatures, linear heat ratings, and cladding axial elongations are used in a new model to solve for the effective thermal conductivity and elastic moduli of the cracked fuel column. The effective thermal conductivity and elastic moduli for the cracked fuel were found to be significantly reduced from the values for solid UO/sub 2/ pellets. The calculated fuel-cladding gap remained relatively constant (closed) with respect to power level, indicating that the fuel fragments do not retreat from the cladding when the power/temperature is reduced. Recommendations are made pertaining to the work required to further refine the model. 30 refs., 81 figs., 8 tabs.

  5. Computational analysis of a three-dimensional High-Velocity Oxygen-Fuel (HVOF) Thermal Spray torch

    SciTech Connect (OSTI)

    Hassan, B.; Lopez, A.R.; Oberkampf, W.L.

    1995-07-01

    An analysis of a High-Velocity Oxygen-Fuel Thermal Spray torch is presented using computational fluid dynamics (CFD). Three-dimensional CFD results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire torch, but wire feed is not simulated. To the authors` knowledge, these are the first published 3-D results of a thermal spray device. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Argon is injected through the center of the nozzle. Pre-mixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled assuming instantaneous chemistry. A standard, two-equation, K-{var_epsilon} turbulence model is employed for the turbulent flow field. An implicit, iterative, finite volume numerical technique is used to solve the coupled conservation of mass, momentum, and energy equations for the gas in a sequential manner. Flow fields inside and outside the aircap are presented and discussed.

  6. Hydrogen Scenario Analysis Summary Report: Analysis of the Transition to Hydrogen Fuel Cell Vehicles and the Potential Hydrogen Energy Infrastructure Requirements

    SciTech Connect (OSTI)

    Greene, David L; Leiby, Paul Newsome; James, Brian; Perez, Julie; Melendez, Margo; Milbrandt, Anelia; Unnasch, Stefan; Rutherford, Daniel; Hooks, Matthew

    2008-03-01

    Achieving a successful transition to hydrogen-powered vehicles in the U.S. automotive market will require strong and sustained commitment by hydrogen producers, vehicle manufacturers, transporters and retailers, consumers, and governments. The interaction of these agents in the marketplace will determine the real costs and benefits of early market transformation policies, and ultimately the success of the transition itself. The transition to hydrogen-powered transportation faces imposing economic barriers. The challenges include developing and refining a new and different power-train technology, building a supporting fuel infrastructure, creating a market for new and unfamiliar vehicles, and achieving economies of scale in vehicle production while providing an attractive selection of vehicle makes and models for car-buyers. The upfront costs will be high and could persist for a decade or more, delaying profitability until an adequate number of vehicles can be produced and moved into consumer markets. However, the potential rewards to the economy, environment, and national security are immense. Such a profound market transformation will require careful planning and strong, consistent policy incentives. Section 811 of the Energy Policy Act (EPACT) of 2005, Public Law 109-59 (U.S. House, 2005), calls for a report from the Secretary of Energy on measures to support the transition to a hydrogen economy. The report was to specifically address production and deployment of hydrogen-fueled vehicles and the hydrogen production and delivery infrastructure needed to support those vehicles. In addition, the 2004 report of the National Academy of Sciences (NAS, 2004), The Hydrogen Economy, contained two recommendations for analyses to be conducted by the U.S. Department of Energy (DOE) to strengthen hydrogen energy transition and infrastructure planning for the hydrogen economy. In response to the EPACT requirement and NAS recommendations, DOE's Hydrogen, Fuel Cells and Infrastructure Technologies Program (HFCIT) has supported a series of analyses to evaluate alternative scenarios for deployment of millions of hydrogen fueled vehicles and supporting infrastructure. To ensure that these alternative market penetration scenarios took into consideration the thinking of the automobile manufacturers, energy companies, industrial hydrogen suppliers, and others from the private sector, DOE held several stakeholder meetings to explain the analyses, describe the models, and solicit comments about the methods, assumptions, and preliminary results (U.S. DOE, 2006a). The first stakeholder meeting was held on January 26, 2006, to solicit guidance during the initial phases of the analysis; this was followed by a second meeting on August 9-10, 2006, to review the preliminary results. A third and final meeting was held on January 31, 2007, to discuss the final analysis results. More than 60 hydrogen energy experts from industry, government, national laboratories, and universities attended these meetings and provided their comments to help guide DOE's analysis. The final scenarios attempt to reflect the collective judgment of the participants in these meetings. However, they should not be interpreted as having been explicitly endorsed by DOE or any of the stakeholders participating. The DOE analysis examined three vehicle penetration scenarios: Scenario 1--Production of thousands of vehicles per year by 2015 and hundreds of thousands per year by 2019. This option is expected to lead to a market penetration of 2.0 million fuel cell vehicles (FCV) by 2025. Scenario 2--Production of thousands of FCVs by 2013 and hundreds of thousands by 2018. This option is expected to lead to a market penetration of 5.0 million FCVs by 2025. Scenario 3--Production of thousands of FCVs by 2013, hundreds of thousands by 2018, and millions by 2021 such that market penetration is 10 million by 2025. Scenario 3 was formulated to comply with the NAS recommendation: 'DOE should map out and evaluate a transition plan consistent with developing the infrastructure and hydrogen resources necessary to support the committee's hydrogen vehicle penetration scenario, or another similar demand scenario (NAS, 2004, p. 4).' Each of the scenarios was extensively discussed at the stakeholder meetings and each received support from industry. Although there was no consensus on a particular vehicle penetration rate, it was agreed that this set of scenarios is inclusive of industry expectations and could provide a basis to interpolate or extrapolate the results to other cases. The purpose of the DOE study was not to select any one scenario but to assess the costs and impacts of achieving each.

  7. Assessment of effectiveness of geologic isolation systems. Test case release consequence analysis for a spent fuel repository in bedded salt

    SciTech Connect (OSTI)

    Raymond, J.R.; Bond, F.W.; Cole, C.R.; Nelson, R.W.; Reisenauer, A.E.; Washburn, J.F.; Norman, N.A.; Mote, P.A.; Segol, G.

    1980-01-01

    Geologic and geohydrologic data for the Paradox Basin have been used to simulate movement of ground water and radioacrtive contaminants from a hypothetical nuclear reactor spent fuel repository after an assumed accidental release. The pathlines, travel times and velocity of the ground water from the repository to the discharge locale (river) were determined after the disruptive event by use of a two-dimensional finite difference hydrologic model. The concentration of radioactive contaminants in the ground water was calculated along a series of flow tubes by use of a one-dimensional mass transport model which takes into account convection, dispersion, contaminant/media interactions and radioactive decay. For the hypothetical site location and specific parameters used in this demonstration, it is found that Iodine-129 (I-129) is tthe only isotope reaching the Colorado River in significant concentration. This concentration occurs about 8.0 x 10/sup 5/ years after the repository has been breached. This I-129 ground-water concentration is about 0.3 of the drinking water standard for uncontrolled use. The groundwater concentration would then be diluted by the Colorado River. None of the actinide elements reach more than half the distance from the repository to the Colorado River in the two-million year model run time. This exercise demonstrates that the WISAP model system is applicable for analysis of contaminant transport. The results presented in this report, however, are valid only for one particular set of parameters. A complete sensitivity analysis must be performed to evaluate the range of effects from the release of contaminants from a breached repository.

  8. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Stationary Fuel Cell Systems Analysis NREL's technology validation team analyzes the performance of stationary fuel cell systems operating in real-world conditions and reports on the technology's performance, progress, and challenges. This analysis includes multiple fuel cell types-proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate-with system sizes ranging from 5 kW to 2.8 MW. Overview Composite Data Products Publications Learn More Contacts Photo of

  9. Fuel axial relocation in ballooning fuel rods. [PWR; BWR

    SciTech Connect (OSTI)

    Siefken, L.J.

    1983-01-01

    Fuel movement, in the longitudinal direction in ballooning fuel rods, shifts the position of heat generation and may cause an increase in cladding temperature in the ballooning region. This paper summarizes the axial fuel relocation data obtained in fuel rod tests conducted in the United States and the Federal Republic of Germany, describes a model for calculating fuel axial relocation, and gives a quantitative analysis of the impact of fuel relocation on cladding temperature. The amount of fuel relocation in 18 ballooned fuel rods was determined from neutron radiographs, niobium gamma decay counts, and photomicrographs. The fuel rods had burnups in the range of 0 to 35,000 MWd/t and cladding hoop strains varying from 0 to 72%.

  10. Transportation Fuel Supply | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SheetsTransportation Fuel Supply content top Transportation Fuel Supply

  11. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    SciTech Connect (OSTI)

    Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

    2013-12-01

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  12. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  13. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  14. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling

  15. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  16. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  17. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  18. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  19. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  20. Alternative Motor Fuel Use Model

    Energy Science and Technology Software Center (OSTI)

    1992-11-16

    AMFU is a tool for the analysis and prediction of motor fuel use by highway vehicles. The model advances the art of vehicle stock modeling by including a representation of the choice of motor fuel for flexible and dual fuel vehicles.

  1. Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor

    SciTech Connect (OSTI)

    B. Boer; A. M. Ougouag

    2010-09-01

    The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

  2. Fuel Pathways Integration Tech Team

    Broader source: Energy.gov [DOE]

    Presentation on Fuel Pathways Integration Tech Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  3. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gap Analysis | Department of Energy Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants. PDF icon Molten Carbonate and Phosphoric Acid Stationary Fuel

  4. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  5. Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under the American Recovery and Reinvestment Act | Department of Energy Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery

  6. Fuel Cells and Renewable Gaseous Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Technologies Office | 1 7142015 Fuel Cells and Renewable Gaseous Fuels Bioenergy 2015: Renewable Gaseous Fuels Breakout Session Sarah Studer, PhD ORISE Fellow Fuel Cell...

  7. Independent Analysis of Real-Time, Measured Performance Data From Microcogenerative Fuel Cell Systems Installed in Buildings

    SciTech Connect (OSTI)

    Dillon, Heather E.; Colella, Whitney G.

    2015-06-01

    Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to 15 distinct 5 kW-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a 1 s sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long-term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer's stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer's stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4 degrees C, lower than the manufacturer's stated maximum hot water delivery temperature of 65 degrees C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at rated value for electrical efficiency (PRVeff) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRVeff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at rated value for electrical power (PRVp) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRVp varies between 6.5% and 16.2%. Performance at rated value for electrical efficiency and power (PRVt) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRVt varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRVt greater than 80% has been performed based on the collected data. For example, for FCS Unit 130 to achieve a PRVt of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%. The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a maximum decline in electric power output of approximately 18% was observed over a 500 h period in Jan. 2012.

  8. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  9. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  10. Technology Validation of Fuel Cell Vehicles and Their Hydrogen Infrastructure (Presentation)

    SciTech Connect (OSTI)

    Sprik, S.; Kurtz, J.; Wipke, K.; Saur, G.; Ainscough, C.

    2013-10-22

    This presentation summarizes NREL's analysis and validation of fuel cell electric vehicles and hydrogen fueling infrastructure technologies.

  11. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  12. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  13. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  14. United States Fuel Resiliency: US Fuels Supply Infrastructure

    Broader source: Energy.gov [DOE]

    Report: United States Fuel Resiliency – U.S. Fuels Supply Infrastructure Study: (1) Infrastructure Characterization; (II) Vulnerability to Natural and Physical Threats; and (III) Vulnerability and Resilience This report assesses the U.S. fuels supply transportation, storage, and distribution (TS&D) infrastructure, its vulnerabilities (natural and physical threats), and its resiliency. The analysis employs a region-by-region perspective of U.S. fuels supply infrastructure, mirroring the Petroleum Administration for Defense Districts (PADDs) system that underpins liquid fuels commerce. The report also assesses the TS&D networks for crude oil and condensates, petroleum products (gasoline, diesel, natural gas liquids, biofuels, and natural gas. Key findings include:

  15. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    Commercial Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Average 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 (2) 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 27.39 10.47 27.48 21.15 27.10 10.45 27.73 21.01 27.56 10.32 27.04 21.10 27.52 10.45 27.28 21.18 27.86 10.05 26.41 21.06

  16. Buildings Energy Data Book: 3.3 Commercial Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Commercial Energy Prices, by Year and Fuel Type ($2010) Electricity Natural Gas Distillate Oil Residual Oil ($/gal) ($/gal) 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 9.39 104.50 2.79 3.78 9.35 104.74 2.81 3.81 9.47 101.25 2.73 3.69 9.40 103.22 2.76 3.75 9.54 99.28 2.67 3.60 9.51 100.49 2.70

  17. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  18. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-10-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  20. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  1. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    1993-09-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 250 citations and includes a subject term index and title list.)

  2. Fossil-fuel power plants and power generation: Economic analysis. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1997-02-01

    The bibliography contains citations concerning economic analyses and evaluations of utility and industrial fossil-fuel power generation. Coal-fired, oil-fired, and natural gas-fired electric power generating systems are discussed. Specific technologies, experiences, and locations are also considered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. S U M M A R I E S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    2 Table E10. Residential Sector Energy Expenditure Estimates, 2013 (Million Dollars) State Primary Energy Retail Electricity Total Energy e Coal a Natural Gas b Petroleum Biomass Total e Distillate Fuel Oil Kerosene LPG c Total Wood d Alabama - 542.4 2.3 0.4 137.3 139.9 37.3 719.6 3,532.6 4,252.1 Alaska - 170.1 190.3 0.8 14.4 205.5 17.4 392.9 381.2 774.1 Arizona - 552.5 0.3 (s) 141.1 141.4 23.2 717.2 3,878.0 4,595.1 Arkansas - 366.0 0.6 0.2 151.7 152.5 53.6 572.1 1,746.5 2,318.6 California -

  4. Fuels Performance Group: Center for Transportation Technologies and Systems

    SciTech Connect (OSTI)

    Not Available

    2008-08-01

    Describes R&D and analysis in advanced petroleum-based and non-petroleum-based transportation fuels done by NREL's Fuels Performance Group.

  5. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis results...

  6. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    1 Building Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Residential Buildings Commercial Buildings Building Electricity Natural Gas Petroleum (1) Avg. Electricity Natural Gas Petroleum (2) Avg. Avg. (3) 1980 36.40 8.35 16.77 17.64 37.22 7.70 13.06 18.52 17.99 1981 38.50 8.88 18.35 19.09 39.06 8.29 14.78 20.56 19.68 1982 40.15 10.08 17.28 19.98 40.15 9.40 13.28 21.21 20.48 1983 40.43 11.30 16.08 21.00 39.51 10.43 12.53 21.55 21.23 1984 38.80 11.02 15.61 20.20 38.68 10.00

  7. Buildings Energy Data Book: 1.2 Building Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Building Energy Prices, by Year and Fuel Type ($2010) (cents/therm) (cents/gal) ($/gal) 1980 12.42 83.51 1.53 2.24 12.70 77.01 1.43 2.05 1981 13.14 88.83 1.47 2.51 13.33 82.90 1.63 2.32 1982 13.70 100.83 1.54 2.30 13.70 93.95 1.40 2.11 1983 13.79 113.04 1.51 2.14 13.48 104.33 1.30 1.75 1984 13.24 110.16 1.46 2.10 13.20 100.01 1.37 1.68 1985 13.28 106.80 1.37 1.96 13.06 95.96 1.21 1.56 1986 13.05 99.76 1.25 1.54 12.66 86.86 0.71 1.01 1987 12.72 92.16 1.22 1.42 11.92 79.32 0.79 1.05 1988 12.36

  8. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    Residential Energy Prices, by Year and Major Fuel Type ($2010 per Million Btu) Electricity Natural Gas Petroleum (1) Avg. 1980 36.40 8.35 16.77 17.64 1981 38.50 8.88 18.35 19.09 1982 40.15 10.08 17.28 19.98 1983 40.43 11.30 16.08 21.00 1984 38.80 11.02 15.61 20.20 1985 38.92 10.68 14.61 20.10 1986 38.24 9.98 11.88 19.38 1987 37.29 9.22 11.23 18.73 1988 36.22 8.80 10.83 18.02 1989 35.67 8.71 11.96 17.93 1990 35.19 8.63 13.27 18.64 1991 34.88 8.38 12.49 18.31 1992 34.79 8.28 11.23 17.76 1993

  9. Buildings Energy Data Book: 2.3 Residential Sector Expenditures

    Buildings Energy Data Book [EERE]

    2 Residential Energy Prices, by Year and Fuel Type ($2010) LPG ($/gal) 1980 2.24 1981 2.51 1982 2.30 1983 2.14 1984 2.10 1985 1.96 1986 1.54 1987 1.42 1988 1.39 1989 1.48 1990 1.69 1991 1.56 1992 1.40 1993 1.33 1994 1.27 1995 1.22 1996 1.37 1997 1.34 1998 1.15 1999 1.16 2000 1.70 2001 1.59 2002 1.42 2003 1.67 2004 1.84 2005 2.36 2006 2.64 2007 2.81 2008 3.41 2009 2.52 2010 2.92 2011 3.62 2012 3.65 2013 3.43 2014 3.60 2015 3.74 2016 3.79 2017 3.86 2018 3.89 2019 3.92 2020 3.96 2021 3.99 2022 4.02

  10. 1990 fuel cell seminar: Program and abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

  11. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  12. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team,

  13. Used Fuel Disposition Used Nuclear Fuel Storage and Transportation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage and Transportation Overview Steve Marschman Field Demonstration Lead Idaho National Laboratory NEET ASI Review Meeting September 17, 2014 Used Fuel Disposition Today's Discussion n Our R&D Objectives n What Guides Our Work n FY14 and FY15 Work - Full-Scale High Burn-Up Demo - Experiments - Transportation - Analysis Used Fuel Disposition 3 Overall Objectives * Develop the technical bases to demonstrate the continued safe and secure storage of used nuclear fuel for extended

  14. An In-situ materials analysis particle probe (MAPP) diagnostic to study particle density control and hydrogenic fuel retention in NSTX

    SciTech Connect (OSTI)

    Allain, Jean-Paul

    2014-09-05

    A new materials analysis particle probe (MAPP) was designed, constructed and tested to develop understanding of particle control and hydrogenic fuel retention in lithium-based plasma-facing surfaces in NSTX. The novel feature of MAPP is an in-situ tool to probe the divertor NSTX floor during LLD and lithium-coating shots with subsequent transport to a post-exposure in-vacuo surface analysis chamber to measure D retention. In addition, the implications of a lithiated graphite-dominated plasma-surface environment in NSTX on LLD performance, operation and ultimately hydrogenic pumping and particle control capability are investigated in this proposal. MAPP will be an invaluable tool for erosion/redeposition simulation code validation.

  15. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  16. Fuel Cell Technologies Technical Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Fuel Cell Technologies Technical Publications Fuel Cell Technologies Technical Publications Access technical information about hydrogen; fuel cells; safety, codes, and standards; hydrogen and fuel cell technology market analysis; and jobs and economic impacts resulting from fuel cell deployment. This information is provided in documents such as technical and project reports, conference proceedings and journal articles, technical presentations, and websites. Hydrogen

  17. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    SciTech Connect (OSTI)

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  18. FRAP-T6: a computer code for the transient analysis of oxide fuel rods. [PWR; BWR

    SciTech Connect (OSTI)

    Siefken, L.J.; Shah, V.N.; Berna, G.A.; Hohorst, J.K.

    1983-06-01

    FRAP-T6 is a computer code which is being developed to calculate the transient behavior of a light water reactor fuel rod. This report is an addendum to the FRAP-T6/MODO user's manual which provides the additional user information needed to use FRAP-T6/MOD1. This includes model changes, improvements, and additions, coding changes and improvements, change in input and control language, and example problem solutions to aid the user. This information is designed to supplement the FRAP-T6/MODO user's manual.

  19. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. PDF icon apu2011_6_roychoudhury.pdf More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  20. Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis

    SciTech Connect (OSTI)

    1996-01-01

    In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

  1. Milestones for Selection, Characterization, and Analysis of the Performance of a Repository for Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain.

    SciTech Connect (OSTI)

    Rechard, Robert P.

    2014-02-01

    This report presents a concise history in tabular form of events leading up to site identification in 1978, site selection in 1987, subsequent characterization, and ongoing analysis through 2008 of the performance of a repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain in southern Nevada. The tabulated events generally occurred in five periods: (1) commitment to mined geologic disposal and identification of sites; (2) site selection and analysis, based on regional geologic characterization through literature and analogous data; (3) feasibility analysis demonstrating calculation procedures and importance of system components, based on rough measures of performance using surface exploration, waste process knowledge, and general laboratory experiments; (4) suitability analysis demonstrating viability of disposal system, based on environment-specific laboratory experiments, in-situ experiments, and underground disposal system characterization; and (5) compliance analysis, based on completed site-specific characterization. Because the relationship is important to understanding the evolution of the Yucca Mountain Project, the tabulation also shows the interaction between four broad categories of political bodies and government agencies/institutions: (a) technical milestones of the implementing institutions, (b) development of the regulatory requirements and related federal policy in laws and court decisions, (c) Presidential and agency directives and decisions, and (d) critiques of the Yucca Mountain Project and pertinent national and world events related to nuclear energy and radioactive waste.

  2. Fuel Tables.indd

    Gasoline and Diesel Fuel Update (EIA)

    F18: Coal Price and Expenditure Estimates and Imports and Exports of Coal Coke, 2013 State Coal Coal Coke Prices Expenditures Prices Expenditures Residential Commercial Industrial Electric Power Total Residential Commercial Industrial Electric Power Total Imports Exports Imports Exports Dollars per Million Btu Million Dollars Dollars per Million Btu Million Dollars Alabama - - 4.76 2.80 3.06 - - 363.9 1,367.8 1,731.6 - - - - Alaska - 4.89 4.72 4.91 4.90 - 43.7 0.1 28.8 72.6 - - - - Arizona - -

  3. Analysis of the FeCrAl Accident Tolerant Fuel Concept Benefits during BWR Station Blackout Accidents

    SciTech Connect (OSTI)

    Robb, Kevin R

    2015-01-01

    Iron-chromium-aluminum (FeCrAl) alloys are being considered for fuel concepts with enhanced accident tolerance. FeCrAl alloys have very slow oxidation kinetics and good strength at high temperatures. FeCrAl could be used for fuel cladding in light water reactors and/or as channel box material in boiling water reactors (BWRs). To estimate the potential safety gains afforded by the FeCrAl concept, the MELCOR code was used to analyze a range of postulated station blackout severe accident scenarios in a BWR/4 reactor employing FeCrAl. The simulations utilize the most recently known thermophysical properties and oxidation kinetics for FeCrAl. Overall, when compared to the traditional Zircaloy-based cladding and channel box, the FeCrAl concept provides a few extra hours of time for operators to take mitigating actions and/or for evacuations to take place. A coolable core geometry is retained longer, enhancing the ability to stabilize an accident. Finally, due to the slower oxidation kinetics, substantially less hydrogen is generated, and the generation is delayed in time. This decreases the amount of non-condensable gases in containment and the potential for deflagrations to inhibit the accident response.

  4. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  5. Buildings Energy Data Book: 4.3 Federal Buildings and Facilities Expenditures

    Buildings Energy Data Book [EERE]

    2 Annual Energy Expenditures per Gross Square Foot of Federal Floorspace Stock, by Year ($2010) FY 1985 2.13 FY 2000 1.36 FY 2001 1.58 FY 2002 1.49 FY 2003 1.45 FY 2004 1.54 FY 2005 1.59 FY 2006 2.01 (1) FY 2007 2.01 Note(s): Source(s): Total Federal buildings and facilities energy expenditures in FY 2006 were $5.79 billion (in $2010). 1) Increase due to change in FEMP categorization of Federal buildings. DOE/FEMP, Annual Report to Congress on FEMP FY 2007, Jan. 2010, Table A-9, p. 97 and Table

  6. Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas

    SciTech Connect (OSTI)

    Andrew Martinez; Kirk Gerdes; Randall Gemmen; James Postona

    2010-03-20

    A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning.

  7. U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    97 Prices and expenditures for renewable energy sources are based on consumption estimates from the State Energy Data System (SEDS). Renewable energy sources reported in SEDS include estimates of wood and waste in all sectors, hydroelectric power in the industrial and commercial sectors, and the electric power sector's use of hydropower and geothermal, wind, wood, waste, photovoltaic, and solar thermal energy. SEDS also includes, for 1989 forward, the residential and commercial sectors' use of

  8. "Table A37. Total Expenditures for Purchased Energy Sources by Census Region,"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Total Expenditures for Purchased Energy Sources by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," ","

  9. "Table A48. Total Expenditures for Purchased Electricity, Steam, and Natural"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Total Expenditures for Purchased Electricity, Steam, and Natural" " Gas by Type of Supplier, Census Region, and Economic Characteristics of the" " Establishment, 1991" " (Estimates in Million Dollars)" ," Electricity",," Steam",," Natural Gas" ,"-","-----------","-","-----------","-","------------","-----------","RSE" "

  10. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " "," ",,,"Electricity",,,"Natural

  11. Table 7.10 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Expenditures for Purchased Electricity, Natural Gas, and Steam, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam; Unit: Million U.S. Dollars. Electricity Components Natural Gas Electricity Electricity from Sources Natural Gas NAICS Electricity from Local Other than Natural Gas from Local Code(a) Subsector and Industry Total Utility(b) Local Utility(c) Total Utility(b) Total United States 311 Food 5,328 4,635

  12. Table N11.4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 19

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Expenditures for Purchased Electricity, Natural Gas, and Steam, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes;" " Column: Supplier Sources of Purchased Electricity, Natural Gas, and Steam;" " Unit: Million U.S. Dollars." ,,,"Electricity","Components",,"Natural Gas","Components",,"Steam","Components" " ","

  13. California Fuel Cell Partnership: Alternative Fuels Research

    Broader source: Energy.gov [DOE]

    This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

  14. Biodegradation of biodiesel fuels

    SciTech Connect (OSTI)

    Zhang, X.; Haws, R.; Wright, B.; Reese, D.; Moeller, G.; Peterson, C.

    1995-12-31

    Biodiesel fuel test substances Rape Ethyl Ester (REE), Rape Methyl Ester (RME), Neat Rape Oil (NR), Say Methyl Ester (SME), Soy Ethyl Ester (SEE), Neat Soy Oil (NS), and proportionate combinations of RME/diesel and REE/diesel were studied to test the biodegradability of the test substances in an aerobic aquatic environment using the EPA 560/6-82-003 Shake Flask Test Method. A concurrent analysis of Phillips D-2 Reference Diesel was also performed for comparison with a conventional fuel. The highest rates of percent CO{sub 2} evolution were seen in the esterified fuels, although no significant difference was noted between them. Ranges of percent CO{sub 2} evolution for esterified fuels were from 77% to 91%. The neat rape and neat soy oils exhibited 70% to 78% CO{sub 2} evolution. These rates were all significantly higher than those of the Phillips D-2 reference fuel which evolved from 7% to 26% of the organic carbon to CO{sub 2}. The test substances were examined for BOD{sub 5} and COD values as a relative measure of biodegradability. Water Accommodated Fraction (WAF) was experimentally derived and BOD{sub 5} and COD analyses were carried out with a diluted concentration at or below the WAF. The results of analysis at WAF were then converted to pure substance values. The pure substance BOD{sub 5} and COD values for test substances were then compared to a control substance, Phillips D-2 Reference fuel. No significant difference was noted for COD values between test substances and the control fuel. (p > 0.20). The D-2 control substance was significantly lower than all test substances for BCD, values at p << 0.01. RME was also significantly lower than REE (p < 0.05) and MS (p < 0.01) for BOD{sub 5} value.

  15. Characterization and analysis methods for the examination of the heterogeneous solid oxide fuel cell electrode microstructure: Part 2. Quantitative measurement of the microstructure and contributions to transport losses

    SciTech Connect (OSTI)

    Grew, Kyle N.; Peracchio, Aldo A.; Chiu, W. K. S.

    2010-12-15

    Advanced characterization and analysis of multifunctional materials, such as the materials found in heterogeneous solid oxide fuel cell (SOFC) electrode architectures, can help to provide a qualitative and quantitative understanding of how these structures respond to different manufacturing and operating practices. Dense, opaque materials, which have large X-ray mass absorption coefficients and features on sub-micrometer length scales, can make characterization difficult. Advances in tomographic X-ray imaging can permit this level of detailed characterization, and complement stereographic scanning electron microscope measurements that have also been reported. In this second part of a two-part study, details regarding quantitative characterization methods that have been used to examine the SOFC anode microstructure are reported. The detailed formulation and validation of a phase size distributions for the three constitutive phases, as well as resistive loss microstructure-induced resistive loss distributions in the nickel (Ni) and yttria-stabilized zirconia (YSZ) phases are provided in this section.

  16. Special Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures, OAS-RA-L-12-01

    Energy Savers [EERE]

    Special Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures OAS-RA-L-12-01 November 2011 Department of Energy Washington, DC 20585 November 28, 2011 MEMORANDUM FOR THE DEPUTY SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Special Report on "Inquiry on the Office of the Chief Financial Officer's Information Technology Expenditures" INTRODUCTION The Office of the Chief Financial Officer (OCFO) is responsible for ensuring

  17. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  18. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  19. Alternative Fuels Lessons Learned Workshop

    Broader source: Energy.gov [DOE]

    Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles and Infrastructure Meeting on August 9 - 10, 2006 in Washington, D.C.

  20. Characterization and Analysis Methods for the Examination of the Heterogeneous Solid Oxide Fuel Cell Electrode Microstructure, Part 1: Volumetric Measurements of the Heterogeneous Structure

    SciTech Connect (OSTI)

    Grew, Kyle N.; Peracchio, Aldo A.; Joshi, Abhijit S.; Izzo, Jr., John R.; Chiu, W. K. S.

    2010-12-15

    Advanced imaging and characterization methods have permitted the 3-D and phase-specific reconstruction of dense and opaque samples with features that have a length scale on the order of tens of nanometers and comprised of materials with large X-ray mass absorption coefficients. Engineered materials, like those found in solid oxide fuel cell (SOFC) electrodes, use complex materials that have often limited opportunities to perform 3-D characterization and analysis. Still, characterization and analysis methods are needed to better understand these structures and their functional impact. The development, verification, and validation of methods used by the authors for the characterization and analysis of the heterogeneous SOFC anode are discussed in this work. These methods include the measurement of the volume fractions of the individual phases, contiguity or volumetric connectivity, tortuosity, and interfacial properties. A second and complementary part of this work will examine quantitative methods that provide detailed descriptions of the structure and its relations to the transport processes that it must support. These efforts are intended to describe the formulation of methods developed to provide insight into the SOFC anode nano/microstructure.

  1. Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen-fuel (HVOF) thermal spray torch

    SciTech Connect (OSTI)

    Lopez, A.R.; Hassan, B.; Oberkampf, W.L.; Neiser, R.A.; Roemer, T.J.

    1996-09-01

    The fluid and particle dynamics of a High-Velocity Oxygen-Fuel Thermal Spray torch are analyzed using computational and experimental techniques. Three-dimensional Computational Fluid Dynamics (CFD) results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire (DJRW) torch. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Premixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled using a single-step finite-rate chemistry model with a total of 9 gas species which includes dissociation of combustion products. A continually-fed steel wire passes through the center of the nozzle and melting occurs at a conical tip near the exit of the aircap. Wire melting is simulated computationally by injecting liquid steel particles into the flow field near the tip of the wire. Experimental particle velocity measurements during wire feed were also taken using a Laser Two-Focus (L2F) velocimeter system. Flow fields inside and outside the aircap are presented and particle velocity predictions are compared with experimental measurements outside of the aircap.

  2. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  3. Stationary Fuel Cell Evaluation (Presentation)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

    2012-05-01

    This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

  4. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fry.pdf More Documents & Publications HYDROGEN TO THE HIGHWAYS NREL Alt Fuel Lessons Learned: Hydrogen Infrastructure Safety Analysis of Type 4 Tanks in CNG Vehicles

  5. Webinar: DOE Launches JOBS and Economic Impacts of Fuel Cells...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model Webinar: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model Below is the text ...

  6. Overview of Hydrogen and Fuel Cell Activities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities FUEL CELL TECHNOLOGIES PROGRAM HTAC Meeting Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 17, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Overview - EERE Priorities * FY12 Budget * Examples of Collaboration & Leveraging Activities - Office of Science, DOD, DOT, SBIRs, International - Conferences and Workshops * Analysis Update * Recent HTAC Input & Future Needs Agenda 3 | Fuel Cell

  7. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell...

  8. Fuel Cell Technologies Office: Plans, Implementation, and Results

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Codes & Standards Education Systems Analysis Plans,...

  9. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  10. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  11. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  12. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  13. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  14. "Table A28. Total Expenditures for Purchased Energy Sources by Census Region"

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Expenditures for Purchased Energy Sources by Census Region" " and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Dollars)" " "," "," "," ",," "," "," "," "," ","RSE" " "," "," ","Residual","Distillate","Natural"," "," ","Coke","

  15. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  16. Manufacturing Cost Analysis of 10 kW and 25 kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling Applications

    Broader source: Energy.gov [DOE]

    This report provides cost estimates for the manufacture of 10 kW and 25 kW PEM fuel cells designed for material handling applications.

  17. Energy System and Thermoeconomic Analysis of Combined Heat and Power High Temperature Proton Exchange Membrane Fuel Cell Systems for Light Commercial Buildings

    SciTech Connect (OSTI)

    Colella, Whitney G.; Pilli, Siva Prasad

    2015-06-01

    The United States (U.S.) Department of Energy (DOE)s Pacific Northwest National Laboratory (PNNL) is spearheading a program with industry to deploy and independently monitor five kilowatt-electric (kWe) combined heat and power (CHP) fuel cell systems (FCSs) in light commercial buildings. This publication discusses results from PNNLs research efforts to independently evaluate manufacturer-stated engineering, economic, and environmental performance of these CHP FCSs at installation sites. The analysis was done by developing parameters for economic comparison of CHP installations. Key thermodynamic terms are first defined, followed by an economic analysis using both a standard accounting approach and a management accounting approach. Key economic and environmental performance parameters are evaluated, including (1) the average per unit cost of the CHP FCSs per unit of power, (2) the average per unit cost of the CHP FCSs per unit of energy, (3) the change in greenhouse gas (GHG) and air pollution emissions with a switch from conventional power plants and furnaces to CHP FCSs; (4) the change in GHG mitigation costs from the switch; and (5) the change in human health costs related to air pollution. From the power perspective, the average per unit cost per unit of electrical power is estimated to span a range from $1519,000/ kilowatt-electric (kWe) (depending on site-specific changes in installation, fuel, and other costs), while the average per unit cost of electrical and heat recovery power varies between $7,000 and $9,000/kW. From the energy perspective, the average per unit cost per unit of electrical energy ranges from $0.38 to $0.46/kilowatt-hour-electric (kWhe), while the average per unit cost per unit of electrical and heat recovery energy varies from $0.18 to $0.23/kWh. These values are calculated from engineering and economic performance data provided by the manufacturer (not independently measured data). The GHG emissions were estimated to decrease by one-third by shifting from a conventional energy system to a CHP FCS system. The GHG mitigation costs were also proportional to the changes in the GHG gas emissions. Human health costs were estimated to decrease significantly with a switch from a conventional system to a CHP FCS system.

  18. R A N K I N G S U.S. Energy Information Administration | State Energy Data 2013: Prices and Expenditures

    Gasoline and Diesel Fuel Update (EIA)

    19 Table E15. Energy Price and Expenditure Estimates, Ranked by State, 2013 Rank Prices Expenditures a Energy Expenditures per Person Energy Expenditures as Percent of Current-Dollar GDP b State Dollars per Million Btu State Million Dollars State Dollars State Percent 1 Hawaii 38.90 Texas 162,054 North Dakota 10,540 Louisiana 16.0 2 Vermont 28.72 California 136,936 Alaska 9,596 Mississippi 15.1 3 New Hampshire 27.90 Florida 66,153 Wyoming 9,358 North Dakota 14.9 4 Connecticut 27.89 New York

  19. Design and analysis of microalgal open pond systems for the purpose of producing fuels: A subcontract report

    SciTech Connect (OSTI)

    Weissman, J.C.; Goebel, R.P.

    1987-04-01

    The designs and systems developed include many innovative concepts and experiments, including the design and operation of a low-cost system. Cost-effectiveness is realized by minimizing capital costs of the system and achieving efficient use of inputs. Extensive engineering analysis of carbonation, mixing, and harvesting subsystems has elucidated both the lowest cost, most efficient options and the essential parameters needed to construct, test, and evaluate these subsystems. The use of growth ponds sealed with clay and lined with crushed rock results in construction cost savings of 50% over ponds lined with synthetic membranes. In addition a low-cost but efficient design allows improvements in technology to have maximum impact on final product cost reductions. In addition to the innovations in low-cost construction, the operational efficiency of the design is both higher and more feasible than that attained by any previous system concept of comparable scale. The water analysis has led to operational specifications that minimize water use and virtually eliminate losses of carbon dioxide to the atmosphere. The carbon dioxide injection system is designed for 95% efficiency, but is still low in cost. The construction of a large-scale, covered anaerobic lagoon to recycle carbon, nitrogen, and phosphorus has not been attempted at the scale analyzed here. Yet efficient recycling is essential for achieving economic affordability. 23 refs., 21 figs., 53 tabs.

  20. Supplement analysis for a container system for the management of DOE spent nuclear fuel located at the INEEL

    SciTech Connect (OSTI)

    1999-03-12

    The Council on Environmental Quality (CEQ) regulations for implementing the NEPA, 40 CFR 1502.9 (c), directs federal agencies to prepare a supplement to an environmental impact statement when an agency makes substantial changes in the Proposed Action that are relevant to environmental concerns, or there are significant new circumstances or information relevant to environmental concerns and bearing on the Proposed Action or impacts. When it is unclear whether a supplemental environmental impact statement is required, DOE regulations (10 CFR 1021.314) direct the preparation of a supplement analysis to assist in making that determination. This supplement analysis evaluates the impacts of employing dual-purpose canisters (DPCs) to prepare DOE SNF located at the INEEL for interim onsite storage and transport outside the State of Idaho. Impacts associated with DPC manufacturing, loading and storage of DOE-ID SNF into DPCs, transport of loaded DPCs outside Idaho, and the cumulative impacts are compared with the impacts previously analyzed in the SNF and INEL EIS and the Navy Container System EIS. This SA provides information to determine whether: (1) an existing EIS should be supplemented; (2) a new EIS should be prepared; or (3) no further NEPA documentation is required.

  1. Renewable Fuels and Lubricants Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  2. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiatives systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  3. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect (OSTI)

    Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2008-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber o-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile o-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fuIly synthetic jet fuel in the place of petroleum-derived fueL

  4. Interactions of Jet Fuels with Nitrile O-Rings: Petroleum-Derived versus Synthetic Fuels

    SciTech Connect (OSTI)

    Gormley, R.J.; Link, D.D.; Baltrus, J.P.; Zandhuis, P.H.

    2009-01-01

    A transition from petroleum-derived jet fuels to blends with Fischer-Tropsch (F-T) fuels, and ultimately fully synthetic hydro-isomerized F-T fuels has raised concern about the fate of plasticizers in nitrile-butadiene rubber a-rings that are contacted by the fuels as this transition occurs. The partitioning of plasticizers and fuel molecules between nitrile a-rings and petroleum-derived, synthetic, and additized-synthetic jet fuels has been measured. Thermal desorption of o-rings soaked in the various jet fuels followed by gas chromatographic analysis with a mass spectrometric detector showed many of the plasticizer and stabilizer compounds were removed from the o-rings regardless of the contact fuel. Fuel molecules were observed to migrate into the o-rings for the petroleum-derived fuel as did both the fuel and additive for a synthetic F-T jet fuel additized with benzyl alcohol, but less for the unadditized synthetic fuel. The specific compounds or classes of compounds involved in the partitioning were identified and a semiquantitative comparison of relative partitioning of the compounds of interest was made. The results provide another step forward in improving the confidence level of using additized, fully synthetic jet fuel in the place of petroleum-derived fuel.

  5. Fuel Cell Buses

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar Fuel Cell Buses Development held September 12, 2013.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle (NGV) and Infrastructure Initiative The West Virginia Natural Gas Vehicle Task Force was established to perform a cost-benefit analysis of NGVs; research and analyze the potential for the state to operate pilot public access natural gas fueling stations; communicate with executive agencies in states that are in the process of transitioning their fleets to natural gas and encourage infrastructure development; explore partnerships with the natural gas industry; examine options for

  7. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  8. Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling

  9. Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure

  10. Alternative Fuels Data Center: Propane Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Propane Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Propane Fueling Infrastructure

  11. TESTING AND PERFORMANCE ANALYSIS OF NASA 5 CM BY 5 CM BI-SUPPORTED SOLID OXIDE ELECTROLYSIS CELLS OPERATED IN BOTH FUEL CELL AND STEAM ELECTROLYSIS MODES

    SciTech Connect (OSTI)

    R. C. O'Brien; J. E. O'Brien; C. M. Stoots; X. Zhang; S. C. Farmer; T. L. Cable; J. A. Setlock

    2011-11-01

    A series of 5 cm by 5 cm bi-supported Solid Oxide Electrolysis Cells (SOEC) were produced by NASA for the Idaho National Laboratory (INL) and tested under the INL High Temperature Steam Electrolysis program. The results from the experimental demonstration of cell operation for both hydrogen production and operation as fuel cells is presented. An overview of the cell technology, test apparatus and performance analysis is also provided. The INL High Temperature Steam Electrolysis laboratory has developed significant test infrastructure in support of single cell and stack performance analyses. An overview of the single cell test apparatus is presented. The test data presented in this paper is representative of a first batch of NASA's prototypic 5 cm by 5 cm SOEC single cells. Clearly a significant relationship between the operational current density and cell degradation rate is evident. While the performance of these cells was lower than anticipated, in-house testing at NASA Glenn has yielded significantly higher performance and lower degradation rates with subsequent production batches of cells. Current post-test microstructure analyses of the cells tested at INL will be published in a future paper. Modification to cell compositions and cell reduction techniques will be altered in the next series of cells to be delivered to INL with the aim to decrease the cell degradation rate while allowing for higher operational current densities to be sustained. Results from the testing of new batches of single cells will be presented in a future paper.

  12. Alternative Fuels Data Center: Filling CNG Fuel Tanks

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Filling CNG Fuel Tanks to someone by E-mail Share Alternative Fuels Data Center: Filling CNG Fuel Tanks on Facebook Tweet about Alternative Fuels Data Center: Filling CNG Fuel Tanks on Twitter Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Google Bookmark Alternative Fuels Data Center: Filling CNG Fuel Tanks on Delicious Rank Alternative Fuels Data Center: Filling CNG Fuel Tanks on Digg Find More places to share Alternative Fuels Data Center: Filling CNG Fuel Tanks on

  13. Alternative Fuels Data Center: Natural Gas Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Basics on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Basics on

  14. Alternative Fuels Data Center: Natural Gas Fuel Safety

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Safety to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fuel Safety on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fuel Safety on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Google Bookmark Alternative Fuels Data Center: Natural Gas Fuel Safety on Delicious Rank Alternative Fuels Data Center: Natural Gas Fuel Safety on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fuel Safety on

  15. Analysis Repository

    SciTech Connect (OSTI)

    DOE

    2012-03-16

    The Analysis Repository is a compilation of analyses and analytical models relevant to assessing hydrogen fuel and fuel cell issues. Projects in the repository relate to: hydrogen production, delivery, storage, fuel cells, and hydrogen vehicle technology; hydrogen production feedstock cost and availability; electricity production, central and distributed; energy resource estimation and forecasting.

  16. Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation

    SciTech Connect (OSTI)

    Wenzel, Thomas P.

    2010-03-02

    This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

  17. A Neutronic Analysis of TRU Recycling in PWRs Loaded with MOX-UE Fuel (MOX with U-235 Enriched U Support)

    SciTech Connect (OSTI)

    G. Youinou; S. Bays

    2009-05-01

    This report presents the results of a study dealing with the homogeneous recycling of either Pu or Pu+Np or Pu+Np+Am or Pu+Np+Am+Cm in PWRs using MOX-UE fuel, i.e. standard MOX fuel with a U235 enriched uranium support instead of the standard tail uranium (0.25%) for standard MOX fuel. This approach allows to multirecycle Pu or TRU (Pu+MA) as long as U235 is available, by keeping the Pu or TRU content in the fuel constant and at a value ensuring a negative moderator void coefficient (i.e. the loss of the coolant brings imperatively the reactor to a subcritical state). Once this value is determined, the U235 enrichment of the MOX-UE fuel is adjusted in order to reach the target burnup (51 GWd/t in this study).

  18. Fuel Cell Power (FCPower) Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power (FCPower) Model (National Renewable Energy Laboratory) Objectives Serve as a financial tool for analyzing high-temperature, fuel cell-based tri- generation systems. 1 Key Attributes & Strengths Evaluates integration of building electricity and heat energy flows with hydrogen production. Performs hourly energy analysis and detailed grid time of use cost evaluations, which then feed into a discounted cash flow evaluation. Ability to analyze several fuel cell technologies: molten

  19. Analysis of international efforts in energy research and development

    SciTech Connect (OSTI)

    Rezaiyan, A.J.; Gill, R.T.

    1995-09-01

    Research and experimental development comprise innovative and creative work undertaken systematically to increase the stock of knowledge of science, engineering, and society. This knowledge reserve is used to improve living conditions and standards, including economic growth. Research and development (R&D) expenditures are useful measures of the scale and direction of technological innovation within a country, industry, or scientific field. Administrators concerned with economic growth and performance rely on R&D statistics as one possible type of indicator of technological change. R&D statistics are an essential tool in many government programs and evaluations (OECD 1993). The objective of the analysis was to identify and evaluate R&D funding sources, levels, and trends in the energy sectors of selected industrialized countries (Australia, Belgium, Canada, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Sweden, Switzerland, United Kingdom, United States) and the European Union (EU). Fossil fuel technologies, particularly fuel cells and advanced gas turbines, were the focus of the analysis, whose results are presented in this report.

  20. DOE Announces Notice of Intent to Issue Hydrogen and Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for fuel cell performance and durability and advanced hydrogen storage materials research; and cost and performance analysis for hydrogen production, storage, and fuel cells. ...