Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Dynamics of Evolution in the Global Fuel-Ethanol Industry  

E-Print Network (OSTI)

noticed that their pre-entry backgrounds are very diverse. They come from not only agricultural and fossil fuel chains but also technology companies and de novo firms of new entrepreneurial start-ups as illustrated in Figure 5. We investigate... Dynamics of Evolution in the Global Fuel-Ethanol Industry Jin Hooi Chan and David Reiner March 2011 CWPE 1129 & EPRG 1111 www.eprg.group.cam.ac.uk EP RG W OR KI NG P AP ER Abstract Dynamics...

Chan, Jin Hooi; Reiner, David

2

Alternative Fuels Data Center: Advanced Ethanol Industry Initiative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

yield of at least 600 gallons of ethanol per acre. Requires no more than 50% of the water required to grow corn. Is tolerant to high temperatures and waterlogging. Is resistant...

3

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

4

Ethanol-blended Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

5

Alternative Fuels Data Center: Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ethanol on Google Bookmark Alternative Fuels Data Center: Ethanol on Delicious Rank Alternative Fuels Data Center: Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ethanol on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Prices Find ethanol fuel prices and trends. Ethanol is a renewable fuel made from corn and other plant materials. The use of ethanol is widespread-almost all gasoline in the U.S. contains

6

Chief Ethanol Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

Chief Ethanol Fuels Inc Jump to: navigation, search Name Chief Ethanol Fuels Inc Place Hastings, Nebraska Product Ethanol producer and supplier References Chief Ethanol Fuels...

7

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

8

Chief Ethanol Fuels | Open Energy Information  

Open Energy Info (EERE)

Chief Ethanol Fuels Jump to: navigation, search Name Chief Ethanol Fuels Place Hastings, NE Website http:www.chiefethanolfuels.c References Chief Ethanol Fuels1 Information...

9

Alternative Fuels Data Center: Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

10

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

11

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

12

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

13

Alternative Fuels Data Center: Ethanol Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Related Links to someone by E-mail Share Alternative Fuels Data Center: Ethanol Related Links on Facebook Tweet about Alternative Fuels Data Center: Ethanol Related Links on Twitter Bookmark Alternative Fuels Data Center: Ethanol Related Links on Google Bookmark Alternative Fuels Data Center: Ethanol Related Links on Delicious Rank Alternative Fuels Data Center: Ethanol Related Links on Digg Find More places to share Alternative Fuels Data Center: Ethanol Related Links on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

14

Fuel Ethanol Oxygenate Production  

Gasoline and Diesel Fuel Update (EIA)

Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Product: Fuel Ethanol Methyl Tertiary Butyl Ether Merchant Plants Captive Plants Period-Unit: Monthly-Thousand Barrels Monthly-Thousand Barrels per Day Annual-Thousand Barrels Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 27,197 26,722 26,923 26,320 25,564 27,995 1981-2013 East Coast (PADD 1) 628 784 836 842 527 636 2004-2013 Midwest (PADD 2) 25,209 24,689 24,786 24,186 23,810 26,040 2004-2013 Gulf Coast (PADD 3) 523 404 487 460 431 473 2004-2013 Rocky Mountain (PADD 4) 450 432 430 432 415 429 2004-2013 West Coast (PADD 5)

15

Industrial application of nonlinear model predictive control technology for fuel ethanol fermentation process  

Science Conference Proceedings (OSTI)

There are currently 134 ethanol biorefineries in the United States with a production capacity of nearly 7.2 billion gallons per year, with an additional 6.2 billion gals per year capacity under the construction [1]. Approximately two thirds of these ...

James Bartee; Patrick Noll; Celso Axelrud; Carl Schweiger; Bijan Sayyar-Rodsari

2009-06-01T23:59:59.000Z

16

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Development on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Business Case Equipment Options

17

Platte Valley Fuel Ethanol | Open Energy Information  

Open Energy Info (EERE)

search Name Platte Valley Fuel Ethanol Place Central City, Nebraska Product Bioethanol producer using corn as feedstock References Platte Valley Fuel Ethanol1 LinkedIn...

18

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant ...  

Stripping Ethanol from Ethanol-Blended Diesel Fuels for Reductant Use in N0x Catalytic Reduction Note: The technology described above is an early stage opportunity.

19

Alternative Fuels Data Center: Ethanol Blended Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blended Fuel Ethanol Blended Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blended Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blended Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blended Fuel Definition Ethanol blended fuel, such as gasohol, is defined as any gasoline blended with 10% or more of anhydrous ethanol. (Reference Idaho Statutes 63-240

20

Alternative Fuels Data Center: Ethanol Feedstocks  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Feedstocks to Feedstocks to someone by E-mail Share Alternative Fuels Data Center: Ethanol Feedstocks on Facebook Tweet about Alternative Fuels Data Center: Ethanol Feedstocks on Twitter Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Google Bookmark Alternative Fuels Data Center: Ethanol Feedstocks on Delicious Rank Alternative Fuels Data Center: Ethanol Feedstocks on Digg Find More places to share Alternative Fuels Data Center: Ethanol Feedstocks on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Feedstocks Map of the United States BioFuels Atlas Use this interactive map to compare biomass feedstocks and biofuels by

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Tax Ethanol Fuel Blend Tax Rate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Tax Rate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is $0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced

22

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

23

Alternative Fuels Data Center: Ethanol Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Station Locations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Station Locations Find ethanol (E85) fueling stations near an address or ZIP code or along a

24

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Ethanol Production Incentive provides qualified ethanol producers with quarterly payments based on production volume during times when ethanol

25

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

26

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement All gasoline containing 1% or more ethanol by volume offered for sale must be conspicuously identified as "with ethanol" or "containing ethanol."

27

Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Ethanol Fuel Advanced Ethanol Fuel Blend Research Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Google Bookmark Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Delicious Rank Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Ethanol Fuel Blend Research Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Ethanol Fuel Blend Research Grants

28

Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Use Ethanol Fuel Blend Use Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Use Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Use Requirement State government agencies and universities owning or operating motor

29

Alternative Fuels Data Center: Ethanol Infrastructure Funding  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Funding to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Funding on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Funding on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Funding on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Funding on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Funding The Ethanol Infrastructure Incentive Program provides funding to offset the cost of installing ethanol blender pumps at retail fueling stations

30

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

31

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Motor fuel containing more than 1% ethanol or methanol may not be sold or offered for sale from a motor fuel dispenser unless the individual selling

32

Ethanol Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Fuel Basics Ethanol Fuel Basics Ethanol Fuel Basics July 30, 2013 - 12:00pm Addthis biomass in beekers Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol contains the same chemical compound (C2H5OH) found in alcoholic beverages. Studies have estimated that ethanol and other biofuels could replace 30% or more of U.S. gasoline demand by 2030. Nearly half of U.S. gasoline contains ethanol in a low-level blend to oxygenate the fuel and reduce air pollution. Ethanol is also increasingly available in E85, an alternative fuel that can be used in flexible fuel vehicles. Several steps are required to make ethanol available as a vehicle fuel. Biomass feedstocks are grown and transported to ethanol production

33

Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Retailer Fuel Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Retailer Tax Credit Retailers that sell fuel blends of gasoline containing up to 15% ethanol by

34

Alternative Fuels Data Center: Ethanol Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Tax Exemption Ethanol Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Tax Exemption Sales and use taxes apply to 80% of the proceeds from the sale of fuels containing 10% ethanol (E10) made between July 1, 2003, and December 31, 2018. If at any time these taxes are imposed at a rate of 1.25%, the tax on

35

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Any motor vehicle fuel sold at retail containing more than 1% ethanol or methanol must be labeled according to Connecticut Department of Consumer

36

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station |  

Open Energy Info (EERE)

Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Introduction of Ethanol Buses and Ethanol Fuel Station Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report Ethanol buses were demonstrated within BioEthanol for Sustainable Transport (BEST). This report describes the problems at the sites and how they were solved. The aim of the report is to guide other local transport authorities on how to deal with the questions raised when a bus demonstration begins. How to Use This Tool This tool is most helpful when using these strategies:

37

Alternative Fuels Data Center: Ethanol Blend Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Requirement Suppliers that import gasoline for sale in North Carolina must offer fuel that is not pre-blended with fuel alcohol but that is suitable for future

38

Alternative Fuels Data Center: Ethanol Blending Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blending Ethanol Blending Regulation to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blending Regulation on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blending Regulation on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Google Bookmark Alternative Fuels Data Center: Ethanol Blending Regulation on Delicious Rank Alternative Fuels Data Center: Ethanol Blending Regulation on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blending Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blending Regulation Gasoline suppliers who provide fuel to distributors in the state must offer gasoline that is suitable for blending with fuel alcohol. Suppliers may not

39

Alternative Fuels Data Center: Ethanol License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol License to Ethanol License to someone by E-mail Share Alternative Fuels Data Center: Ethanol License on Facebook Tweet about Alternative Fuels Data Center: Ethanol License on Twitter Bookmark Alternative Fuels Data Center: Ethanol License on Google Bookmark Alternative Fuels Data Center: Ethanol License on Delicious Rank Alternative Fuels Data Center: Ethanol License on Digg Find More places to share Alternative Fuels Data Center: Ethanol License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol License Anyone who imports, exports, or supplies ethanol in the state of Wyoming must obtain an annual license from the Wyoming Department of Transportation. The fee for each license is $25. (Reference Wyoming

40

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Ethanol producers may qualify for an income tax credit equal to 30% of production facility nameplate capacity between 500,000 and 15 million

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Colorado Corn Blender Pump Pilot Program provides funding assistance for each qualified station dispensing mid-level ethanol blends. Projects

42

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive The Missouri Department of Agriculture manages the Missouri Ethanol Producer Incentive Fund (Fund), which provides monthly grants to qualified

43

Alternative Fuels Data Center: Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blends to Blends to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blends on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blends on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blends on Google Bookmark Alternative Fuels Data Center: Ethanol Blends on Delicious Rank Alternative Fuels Data Center: Ethanol Blends on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blends on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Blends Ethanol is blended with gasoline in various amounts for use in vehicles. E10 E10 is a low-level blend composed of 10% ethanol and 90% gasoline. It is

44

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Qualified ethanol producers are eligible for a production incentive payable from the Kansas Qualified Agricultural Ethyl Alcohol Producer Fund. An

45

Alternative Fuels Data Center: Ethanol Production  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production to Production to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production on Google Bookmark Alternative Fuels Data Center: Ethanol Production on Delicious Rank Alternative Fuels Data Center: Ethanol Production on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Production and Distribution Ethanol is a domestically produced alternative fuel that's most commonly made from corn. It can also be made from cellulosic feedstocks, such as

46

Alternative Fuels Data Center: Ethanol Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Infrastructure Grants The Kentucky Corn Growers' Association (KyCGA) offers grants of $5,000 per pump to retailers installing new E85 dispensers in Kentucky. For more

47

Alternative Fuels Data Center: Ethanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Incentive Montana-based ethanol producers are eligible for a tax incentive of $0.20 per gallon of ethanol produced solely from Montana agricultural products or

48

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

49

Alternative Fuels Data Center: Ethanol Production Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Credit County governments are eligible to receive waste reduction credits for using yard clippings, clean wood waste, or paper waste as feedstock for the

50

Alternative Fuels Data Center: Ethanol Blend Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Blend Definition to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Definition on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Definition on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Definition on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Definition on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Definition An ethanol blend is defined as a blended motor fuel containing ethyl alcohol that is at least 99% pure, derived from agricultural products, and

51

Low-Level Ethanol Fuel Blends  

DOE Green Energy (OSTI)

This fact sheet addresses: (a) why Clean Cities promotes ethanol blends; (b) how these blends affect emissions; (c) fuel performance and availability; and (d) cost, incentives, and regulations.

Not Available

2005-04-01T23:59:59.000Z

52

Fueling Infrastructure Polymer Materials Compatibility to Ethanol...  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline These data files contain volume, mass, and hardness changes of elastomers and plastics...

53

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-12-31T23:59:59.000Z

54

Emissions from ethanol and LPG fueled vehicles  

DOE Green Energy (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

55

Alternative Fuels Data Center: Ethanol Benefits and Considerations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits and Benefits and Considerations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Benefits and Considerations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Benefits and Considerations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Google Bookmark Alternative Fuels Data Center: Ethanol Benefits and Considerations on Delicious Rank Alternative Fuels Data Center: Ethanol Benefits and Considerations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Benefits and Considerations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Benefits and Considerations Ethanol is a renewable, domestically produced transportation fuel. Whether

56

Alternative Fuels Data Center: Ethanol Production Investment Tax Credits  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Investment Tax Credits to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Google Bookmark Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Delicious Rank Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Investment Tax Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Investment Tax Credits

57

Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Infrastructure Grant Program to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Infrastructure Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Infrastructure Grant Program

58

Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Equipment Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Equipment Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Equipment Tax Exemption

59

Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Biobutanol Ethanol and Biobutanol Production Incentive to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Google Bookmark Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Delicious Rank Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Biobutanol Production Incentive on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Biobutanol Production Incentive

60

Mixed waste paper to ethanol fuel  

DOE Green Energy (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. ethanol production and the Renewable Fuel Standard ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

62

Food for fuel: The price of ethanol  

E-Print Network (OSTI)

Conversion of corn to ethanol in the US since 2005 has been a major cause of global food price increases during that time and has been shown to be ineffective in achieving US energy independence and reducing environmental impact. We make three key statements to enhance understanding and communication about ethanol production's impact on the food and fuel markets: (1) The amount of corn used to produce the ethanol in a gallon of regular gas would feed a person for a day, (2) The production of ethanol is so energy intensive that it uses only 20% less fossil fuel than gasoline, and (3) The cost of gas made with ethanol is actually higher per mile because ethanol reduces gasoline's energy per gallon.

Albino, Dominic K; Bar-Yam, Yaneer

2012-01-01T23:59:59.000Z

63

Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania's Ethanol Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Google Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Delicious Rank Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on

64

Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel and Ethanol Biodiesel and Ethanol Definitions and Retail Requirements to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Google Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Delicious Rank Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Ethanol Definitions and Retail Requirements on AddThis.com... More in this section...

65

Alternative Fuels Data Center: Cellulosic Ethanol Research and Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Research and Development Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Research and Development Tax Credit on AddThis.com... More in this section... Federal State

66

Alternative Fuels Data Center: Ethanol Production Facility Environmental  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Environmental Assessment Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Environmental Assessment Exemption on AddThis.com...

67

Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Underwriters Underwriters Laboratories Ethanol Dispenser Safety Testing to someone by E-mail Share Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Facebook Tweet about Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Twitter Bookmark Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Google Bookmark Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Delicious Rank Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on Digg Find More places to share Alternative Fuels Data Center: Underwriters Laboratories Ethanol Dispenser Safety Testing on AddThis.com... Underwriters Laboratories Ethanol Dispenser Safety Testing

68

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Tax Ethanol Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit An ethanol producer located in Indiana is entitled to a credit of $0.125 per gallon of ethanol produced, including cellulosic ethanol. The Indiana

69

Alternative Fuels Data Center: Ethanol Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol » Laws & Incentives Ethanol » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Ethanol Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Ethanol Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Ethanol Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Ethanol Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Ethanol Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Ethanol Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Ethanol Laws and Incentives on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Laws and Incentives

70

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement An ethanol retailer selling a blend of 10% ethanol by volume or higher must

71

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Tax Ethanol Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit Qualified ethanol producers are eligible for an income tax credit of $1.00 per gallon of corn- or cellulosic-based ethanol that meets ASTM

72

Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Retailer Ethanol Blend Retailer Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Retailer Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Retailer Tax Credit The Ethanol Promotion Tax Credit is available to any fuel retailer for up

73

Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Biodiesel Ethanol and Biodiesel Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Biodiesel Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Biodiesel Tax Exemption Motor fuels sold to an ethanol or biodiesel production facility and motor

74

Alternative Fuels Data Center: Ethanol Sales Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Sales Tax Ethanol Sales Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Sales Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Sales Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Sales Tax Exemption The portion of ethanol (ethyl alcohol) sold and blended with motor fuel is exempt from sales tax. (Reference Oklahoma Statutes 68-500.10-1 and

75

Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Ethanol Blend Dispenser Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Dispenser Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10%

76

Alternative Fuels Data Center: Ethanol Production Facility Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Fee to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Fee on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Fee on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Fee on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Fee on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Facility Fee The cost to submit an air quality permit application for an ethanol production plant is $1,000. An annual renewal fee is also required for the

77

Alternative Fuels Data Center: Ethanol Blend Labeling Requirements  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Labeling Ethanol Blend Labeling Requirements to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Labeling Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Labeling Requirements Pumps that dispense ethanol-blended gasoline available for purchase must be

78

Alternative Fuels Data Center: Biodiesel and Ethanol Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Ethanol and Ethanol Specifications to someone by E-mail Share Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Facebook Tweet about Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Twitter Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Google Bookmark Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Delicious Rank Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on Digg Find More places to share Alternative Fuels Data Center: Biodiesel and Ethanol Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel and Ethanol Specifications Ethanol-blended gasoline must conform to ASTM D4814, E85 must conform to

79

Alternative Fuels Data Center: Status Update: Clarification of Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clarification of Ethanol Certification Limits for Legacy Equipment Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Twitter Bookmark Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Google Bookmark Alternative Fuels Data Center: Status Update: Clarification of Ethanol Certification Limits for Legacy Equipment (December 2008) on Delicious Rank Alternative Fuels Data Center: Status Update: Clarification of

80

Thermally efficient PEM fuel cell that runs on ethanol  

PEM fuel cell with onboard conversion of ethanol into hydrogen fuel Liquid ethanol feedstock eliminates problems with storage and transportation of gaseous hydrogen Control of temperature maximizes selectivity of reformation process and prevents ...

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Pennsylvania Laws and Incentives for Ethanol The list below contains summaries of all Pennsylvania laws and incentives

82

Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Oklahoma Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oklahoma Laws and Incentives for Ethanol The list below contains summaries of all Oklahoma laws and incentives

83

Alternative Fuels Data Center: Ethanol Production Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Tax Production Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Google Bookmark Alternative Fuels Data Center: Ethanol Production Tax Credit on Delicious Rank Alternative Fuels Data Center: Ethanol Production Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Production Tax Credit An ethanol facility is eligible for a credit of $0.075 per gallon of ethanol, before denaturing, for new production for up to 36 consecutive

84

Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Ethanol The list below contains summaries of all Georgia laws and incentives

85

Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Idaho Laws and Incentives for Ethanol The list below contains summaries of all Idaho laws and incentives related

86

Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Florida Laws and Incentives for Ethanol The list below contains summaries of all Florida laws and incentives

87

Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Mississippi Laws and Incentives for Ethanol The list below contains summaries of all Mississippi laws and incentives

88

Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Colorado Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Colorado Laws and Incentives for Ethanol The list below contains summaries of all Colorado laws and incentives

89

Alternative Fuels Data Center: Cellulosic Ethanol Production Financing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Production Financing to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Production Financing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Production Financing The Kansas Development Finance Authority may issue revenue bonds to cover

90

Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Illinois Laws and Incentives for Ethanol The list below contains summaries of all Illinois laws and incentives

91

Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Michigan Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Michigan Laws and Incentives for Ethanol The list below contains summaries of all Michigan laws and incentives

92

Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Montana Laws and Incentives for Ethanol The list below contains summaries of all Montana laws and incentives

93

Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Nebraska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nebraska Laws and Incentives for Ethanol The list below contains summaries of all Nebraska laws and incentives

94

Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Kansas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kansas Laws and Incentives for Ethanol The list below contains summaries of all Kansas laws and incentives related

95

Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Louisiana Laws and Incentives for Ethanol The list below contains summaries of all Louisiana laws and incentives

96

Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Indiana Laws and Incentives for Ethanol The list below contains summaries of all Indiana laws and incentives

97

Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Missouri Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Missouri Laws and Incentives for Ethanol The list below contains summaries of all Missouri laws and incentives

98

Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Utah Laws and Incentives for Ethanol The list below contains summaries of all Utah laws and incentives related

99

Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Iowa Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Iowa Laws and Incentives for Ethanol The list below contains summaries of all Iowa laws and incentives related

100

Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Ohio Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ohio Laws and Incentives for Ethanol The list below contains summaries of all Ohio laws and incentives related

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Connecticut Laws and Incentives for Ethanol The list below contains summaries of all Connecticut laws and incentives

102

Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vermont Laws and Incentives for Ethanol The list below contains summaries of all Vermont laws and incentives

103

Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maryland Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maryland Laws and Incentives for Ethanol The list below contains summaries of all Maryland laws and incentives

104

Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Washington Laws and Incentives for Ethanol The list below contains summaries of all Washington laws and incentives

105

Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hawaii Laws and Incentives for Ethanol The list below contains summaries of all Hawaii laws and incentives related

106

Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Arizona Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arizona Laws and Incentives for Ethanol The list below contains summaries of all Arizona laws and incentives

107

Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alabama Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alabama Laws and Incentives for Ethanol The list below contains summaries of all Alabama laws and incentives

108

Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Ethanol The list below contains summaries of all Wyoming laws and incentives

109

Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives

110

Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Maine Laws and Incentives for Ethanol The list below contains summaries of all Maine laws and incentives related

111

Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alaska Laws and Incentives for Ethanol The list below contains summaries of all Alaska laws and incentives related

112

Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wisconsin Laws and Incentives for Ethanol The list below contains summaries of all Wisconsin laws and incentives

113

Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Virginia Laws and Incentives for Ethanol The list below contains summaries of all Virginia laws and incentives

114

Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Arkansas Laws and Incentives for Ethanol The list below contains summaries of all Arkansas laws and incentives

115

Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Investment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Investment Tax Credit A qualified investor may receive a tax credit of up to 40% of an

116

Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Oregon Laws and Incentives for Ethanol The list below contains summaries of all Oregon laws and incentives related

117

Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Texas Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Texas Laws and Incentives for Ethanol The list below contains summaries of all Texas laws and incentives related

118

Alternative Fuels Data Center: California Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type California Laws and Incentives for Ethanol The list below contains summaries of all California laws and incentives

119

Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cellulosic Ethanol Cellulosic Ethanol Investment Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Google Bookmark Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Delicious Rank Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Cellulosic Ethanol Investment Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Cellulosic Ethanol Investment Tax Credit A tax credit is available for investments in a qualified small business

120

Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Tennessee Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Tennessee Laws and Incentives for Ethanol The list below contains summaries of all Tennessee laws and incentives

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Minnesota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Minnesota Laws and Incentives for Ethanol The list below contains summaries of all Minnesota laws and incentives

122

Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Kentucky Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Kentucky Laws and Incentives for Ethanol The list below contains summaries of all Kentucky laws and incentives

123

Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Ethanol The list below contains summaries of all Delaware laws and incentives

124

Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Nevada Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Nevada Laws and Incentives for Ethanol The list below contains summaries of all Nevada laws and incentives related

125

Alternative Fuels Data Center: Ethanol and Methanol Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Methanol and Methanol Tax to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Methanol Tax on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Methanol Tax on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Google Bookmark Alternative Fuels Data Center: Ethanol and Methanol Tax on Delicious Rank Alternative Fuels Data Center: Ethanol and Methanol Tax on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Methanol Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol and Methanol Tax Ethyl alcohol and methyl alcohol motor fuels are taxed at a rate of $0.08 per gallon when used as a motor fuel. Ethyl alcohol is defined as a motor

126

Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol and Hydrogen Ethanol and Hydrogen Production Facility Permits to someone by E-mail Share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Facebook Tweet about Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Twitter Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Google Bookmark Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Delicious Rank Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on Digg Find More places to share Alternative Fuels Data Center: Ethanol and Hydrogen Production Facility Permits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

127

Alternative Fuels Data Center: Ethanol Production Facility Property Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Production Ethanol Production Facility Property Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Google Bookmark Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Delicious Rank Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Ethanol Production Facility Property Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

128

Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Infrastructure Ethanol Infrastructure Grants and Loan Guarantees to someone by E-mail Share Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Facebook Tweet about Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Twitter Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Google Bookmark Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Delicious Rank Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on Digg Find More places to share Alternative Fuels Data Center: Ethanol Infrastructure Grants and Loan Guarantees on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

129

Alternative Fuels Data Center: Status Update: Ethanol Blender Pump  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Blender Pump Dispenser Certified (August 2010) to someone by E-mail Share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Facebook Tweet about Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Twitter Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Google Bookmark Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Delicious Rank Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on Digg Find More places to share Alternative Fuels Data Center: Status Update: Ethanol Blender Pump Dispenser Certified (August 2010) on

130

Thermally efficient PEM fuel cell that runs on ethanol  

onboard conversion of ethanol into hydrogen fuel Liquid ethanol feedstock eliminates problems with storage and transportation of gaseous hydrogen Control of temperature maximizes selectivity of reformation process and prevents membrane fouling ...

131

Experiences from Ethanol Buses and Fuel Station Report - Nanyang | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - Nanyang Experiences from Ethanol Buses and Fuel Station Report - Nanyang Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Experiences from Ethanol Buses and Fuel Station Report - Nanyang Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report addresses the experience of introducing ethanol buses and fuel stations in Nanyang (China). Though the demonstration met initial obstacles, significant data and information was collected. The responses from drivers and passengers show that the ethanol buses were well accepted, and the function and performance of the ethanol buses was satisfactory. How to Use This Tool

132

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

133

Ford Taurus Ethanol-Fueled Sedan  

DOE Green Energy (OSTI)

The U.S. Department of Energy (DOE) is encouraging the use of alternative fuels and alternative fuel vehicles (AFVs). To support this activity, DOE has directed the National Renewable Energy Laboratory (NREL) to conduct projects to evaluate the performance and acceptability of light-duty AFVs. In this study, we tested a pair of 1998 Ford Tauruses: one E85 (85% gasoline/15% ethanol) model (which was tested on both E85 and gasoline) and a gasoline model as closely matched as possible. Each vehicle was run through a series of tests to evaluate acceleration, fuel economy, braking, and cold-start capabilities, as well as more subjective performance indicators such as handling, climate control, and noise.

Eudy, L.

1999-06-24T23:59:59.000Z

134

Emissions from ethanol- and LPG-fueled vehicles  

SciTech Connect

This paper addresses the environmental concerns of using neat ethanol and liquefied petroleum gas (LPG) as transportation fuels in the United States. Low-level blends of ethanol (10%) with gasoline have been used as fuels in the United States for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the United States, but its use has been limited primarily to converted fleet vehicles. Increasing U.S. interest in alternative fuels has raised the possibility of introducing neat-ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles, and increased production and consumption of fuel ethanol and LPG, will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat-ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural impacts from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG as compared with other transportation fuels. The environmental concerns are reviewed and summarized, but only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat-ethanol-fueled vehicles or the increase in LPG-fueled vehicles.

Pitstick, M.E.

1995-06-01T23:59:59.000Z

135

Table 10.3 Fuel Ethanol Overview, 1981-2011  

U.S. Energy Information Administration (EIA)

6 A negative value indicates a decrease in stocks and a positive value indicates an increase. 7 Consumption of fuel ethanol minus denaturant.

136

Table 10.3 Fuel Ethanol Overview, 1981-2011  

U.S. Energy Information Administration (EIA)

6 A negative value indicates a decrease in stocks and a positive value indicates an increase. Sources: Feedstock: Calculated as fuel ethanol ...

137

Understanding the Growth of the Cellulosic Ethanol Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

grow from 1.5M in 2006 to 30M in 2017 Fuel Market * Oil price based on "AEO 2006 High Oil Price Projection" * ORNL refinery model analysis used to predict ethanol blending...

138

Ethanol supply chain and industry overview : more harm than good?  

E-Print Network (OSTI)

This thesis is a comprehensive study that aggregates the key aspects of ethanol including its supply chain, government legislation that impacts the use of, and the inherent material characteristics of the fuel as well as ...

Bruce, Sarah L

2013-01-01T23:59:59.000Z

139

Industrial Wastes as a Fuel  

E-Print Network (OSTI)

With the advent of scarce supplies and rising costs for traditional industrial fuels such as natural gas and fuel oil, a large amount of technical data has been collected and published to encourage their efficient use. This same data is readily available for coal since it was at one time a major industrial fuel and is still used extensively for electric power generation. However, combustion data for other fuels such as wood and solid materials typically generated as industrial wastes can only be found in widely scattered and more obscure sources. Therefore, this information is not always easily accessible to operating personnel at plants where these type fuels are being utilized. The resulting lack of proper information many times leads to poor fuel utilization because of less than optimum combustion efficiencies. Operational and maintenance problems may also be caused by a misunderstanding of combustion characteristics.

Richardson, G.; Hendrix, W.

1980-01-01T23:59:59.000Z

140

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, “Annual Survey of Alternative Fueled Vehicles”; ...

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Biofuels Industry Development...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Industry Development Grants to someone by E-mail Share Alternative Fuels Data Center: Biofuels Industry Development Grants on Facebook Tweet about Alternative Fuels Data...

142

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended  

Open Energy Info (EERE)

Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Fueling Infrastructure Polymer Materials Compatibility to Ethanol-blended Gasoline Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline

143

U.S. Fuel Ethanol Plant Production Capacity  

U.S. Energy Information Administration (EIA)

U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District: Number of Plants: 2013 Nameplate Capacity: 2012 Nameplate Capacity

144

Effects of Fuel Ethanol Use on Fuel-Cycle Energy and Greenhouse Gas Emissions  

DOE Green Energy (OSTI)

We estimated the effects on per-vehicle-mile fuel-cycle petroleum use, greenhouse gas (GHG) emissions, and energy use of using ethanol blended with gasoline in a mid-size passenger car, compared with the effects of using gasoline in the same car. Our analysis includes petroleum use, energy use, and emissions associated with chemicals manufacturing, farming of corn and biomass, ethanol production, and ethanol combustion for ethanol; and petroleum use, energy use, and emissions associated with petroleum recovery, petroleum refining, and gasoline combustion for gasoline. For corn-based ethanol, the key factors in determining energy and emissions impacts include energy and chemical usage intensity of corn farming, energy intensity of the ethanol plant, and the method used to estimate energy and emissions credits for co-products of corn ethanol. The key factors in determining the impacts of cellulosic ethanol are energy and chemical usage intensity of biomass farming, ethanol yield per dry ton of biomass, and electricity credits in cellulosic ethanol plants. The results of our fuel-cycle analysis for fuel ethanol are listed below. Note that, in the first half of this summary, the reductions cited are per-vehicle-mile traveled using the specified ethanol/gasoline blend instead of conventional (not reformulated) gasoline. The second half of the summary presents estimated changes per gallon of ethanol used in ethanol blends. GHG emissions are global warming potential (GWP)-weighted, carbon dioxide (CO2)-equivalent emissions of CO2, methane (CH4), and nitrous oxide (N2O).

C. Saricks; D. Santini; M. Wang

1999-02-08T23:59:59.000Z

145

Ethanol fuel modification for highway vehicle use. Final report  

DOE Green Energy (OSTI)

A number of problems that might occur if ethanol were used as a blending stock or replacement for gasoline in present cars are identified and characterized as to the probability of occurrence. The severity of their consequences is contrasted to those found with methanol in a previous contract study. Possibilities for correcting several problems are reported. Some problems are responsive to fuel modifications but others require or are better dealt with by modification of vehicles and the bulk fuel distribution system. In general, problems with ethanol in blends with gasoline were found to be less severe than those with methanol. Phase separation on exposure to water appears to be the major problem with ethanol/gasoline blends. Another potentially serious problem with blends is the illict recovery of ethanol for beverage usage, or bootlegging, which might be discouraged by the use of select denaturants. Ethanol blends have somewhat greater tendency to vapor lock than base gasoline but less than methanol blends. Gasoline engines would require modification to operate on fuels consisting mostly of ethanol. If such modifications were made, cold starting would still be a major problem, more difficult with ethanol than methanol. Startability can be provided by adding gasoline or light hydrocarbons. Addition of gasoline also reduces the explosibility of ethanol vapor and furthermore acts as denaturant.

Not Available

1980-01-01T23:59:59.000Z

146

Greenhouse gases in the corn-to-fuel ethanol pathway.  

DOE Green Energy (OSTI)

Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

Wang, M. Q.

1998-06-18T23:59:59.000Z

147

Industry Spent Fuel Storage Handbook  

Science Conference Proceedings (OSTI)

The Industry Spent Fuel Storage Handbook (8220the Handbook8221) addresses the relevant aspects of at-reactor spent (or used) nuclear fuel (SNF) storage in the United States. With the prospect of SNF being stored at reactor sites for the foreseeable future, it is expected that all U.S. nuclear power plants will have to implement at-reactor dry storage by 2025 or shortly thereafter. The Handbook provides a broad overview of recent developments for storing SNF at U.S. reactor sites, focusing primarily on at...

2010-07-29T23:59:59.000Z

148

Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Corn-to-Ethanol Corn-to-Ethanol Research Pilot Plant to someone by E-mail Share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Facebook Tweet about Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Twitter Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Google Bookmark Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Delicious Rank Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on Digg Find More places to share Alternative Fuels Data Center: Corn-to-Ethanol Research Pilot Plant on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Corn-to-Ethanol Research Pilot Plant The Illinois Ethanol Research Advisory Board manages and operates the

149

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Oxygenate Plant Production of Fuel Ethanol (Thousand Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ... Fuel Ethanol Oxygenate Production;

150

Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR  

DOE Patents (OSTI)

A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

2007-08-21T23:59:59.000Z

151

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Rhode Island Laws and Incentives for Ethanol The list below contains summaries of all Rhode Island laws and incentives

152

Alternative Fuels Data Center: New York Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New York Laws and Incentives for Ethanol The list below contains summaries of all New York laws and incentives

153

Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: North Dakota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type North Dakota Laws and Incentives for Ethanol The list below contains summaries of all North Dakota laws and incentives

154

Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Mexico Laws and Incentives for Ethanol The list below contains summaries of all New Mexico laws and incentives

155

Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: South Dakota Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type South Dakota Laws and Incentives for Ethanol The list below contains summaries of all South Dakota laws and incentives

156

Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type New Jersey Laws and Incentives for Ethanol The list below contains summaries of all New Jersey laws and incentives

157

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

DOE Green Energy (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

158

Ethanol Production for Automotive Fuel Usage  

SciTech Connect

The conceptual design of the 20 million gallon per year anhydrous ethanol facility a t Raft River has been completed. The corresponding geothermal gathering, extraction and reinjection systems to supply the process heating requirement were also completed. The ethanol facility operating on sugar beets, potatoes and wheat will share common fermentation and product recovery equipment. The geothermal fluid requirement will be approximately 6,000 gpm. It is anticipated that this flow will be supplied by 9 supply wells spaced at no closer than 1/4 mile in order to prevent mutual interferences. The geothermal fluid will be flashed in three stages to supply process steam at 250 F, 225 F and 205 F for various process needs. Steam condensate plus liquid remaining after the third flash will all be reinjected through 9 reinjection wells. The capital cost estimated for this ethanol plant employing all three feedstocks is $64 million. If only a single feedstock were used (for the same 20 mm gal/yr plant) the capital costs are estimated at $51.6 million, $43.1 million and $40. 5 million for sugar beets, potatoes and wheat respectively. The estimated capital cost for the geothermal system is $18 million.

Lindemuth, T.E.; Stenzel, R.A.; Yim, Y.J.; Yu, J.

1980-01-31T23:59:59.000Z

159

U.S. Ending Stocks of Fuel Ethanol (Thousand Barrels)  

U.S. Energy Information Administration (EIA)

U.S. Ending Stocks of Fuel Ethanol (Thousand Barrels) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; 1993: 2,059: 1,946: 1,929: 2,152: 2,441: 2,627: 2,706 ...

160

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Feasibility of converting a sugar beet plant to fuel ethanol production  

DOE Green Energy (OSTI)

This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

Hammaker, G.S.; Pfost, H.B.; David, M.L.; Marino, M.L.

1981-04-01T23:59:59.000Z

162

Role of fuel cells in industrial cogeneration  

SciTech Connect

During the early years (1958 to 1963), three types of fuel cells were under development: phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. Between 1963 and 1971, the IGT research and development effort concentrated on the phosphoric acid and molten carbonate technologies; since 1971, emphasis has been on the molten carbonate fuel cell. IGT believes MCFC is best suited to meet the goals of the electric industry and the requirements of industrial cogeneration. Through the years, IGT has conducted system studies to evaluate the role that each one of the three fuel cell types can play in industrial cogeneration. This paper briefly discusses the status of the three technologies, the potential industrial cogeneration market, the application of fuel cells to this market, and the potential fuel savings for several industrial categories.

Camara, E.H.

1985-01-01T23:59:59.000Z

163

Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Prohibition of the Prohibition of the Sale of Ethanol-Blended Gasoline to someone by E-mail Share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Facebook Tweet about Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Twitter Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Google Bookmark Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Delicious Rank Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on Digg Find More places to share Alternative Fuels Data Center: Prohibition of the Sale of Ethanol-Blended Gasoline on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

164

Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Goss' Garage Provides Goss' Garage Provides Tips for Using Ethanol in Classic Cars to someone by E-mail Share Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Facebook Tweet about Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Twitter Bookmark Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Google Bookmark Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Delicious Rank Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on Digg Find More places to share Alternative Fuels Data Center: Goss' Garage Provides Tips for Using Ethanol in Classic Cars on AddThis.com...

165

Corn Ethanol Industry Process Data: September 27, 2007 - January 27, 2008  

DOE Green Energy (OSTI)

This subcontract report supplies timely data on the historical make-up of the corn ethanol industry and a current estimate of where the industry stands. The subcontractor has also reported on the expected future trends of the corn ethanol dry grind industry.

BBI International

2009-02-01T23:59:59.000Z

166

Enhancing dry-grind corn ethanol production with fungal cultivation and ozonation.  

E-Print Network (OSTI)

??Public opinion of the U.S. fuel ethanol industry has suffered in recent years despite record ethanol production. Debates sparked over the environmental impacts of corn… (more)

Rasmussen, Mary

2009-01-01T23:59:59.000Z

167

Microbial fuel cell treatment of ethanol fermentation process water  

DOE Patents (OSTI)

The present invention relates to a method for removing inhibitor compounds from a cellulosic biomass-to-ethanol process which includes a pretreatment step of raw cellulosic biomass material and the production of fermentation process water after production and removal of ethanol from a fermentation step, the method comprising contacting said fermentation process water with an anode of a microbial fuel cell, said anode containing microbes thereon which oxidatively degrade one or more of said inhibitor compounds while producing electrical energy or hydrogen from said oxidative degradation, and wherein said anode is in electrical communication with a cathode, and a porous material (such as a porous or cation-permeable membrane) separates said anode and cathode.

Borole, Abhijeet P. (Knoxville, TN)

2012-06-05T23:59:59.000Z

168

Power Plant and Industrial Fuel Use Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Electricity Advisory Committee Technology Development Electricity Policy Coordination and...

169

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from High Ethanol Content Fuels  

DOE Green Energy (OSTI)

Study determined the flammability of fuel tank headspace vapors as a function of ambient temperature for seven E85 fuel blends, two types of gasoline, and denatured ethanol at a low tank fill level.

Gardiner, D.; Bardon, M.; Pucher, G.

2008-10-01T23:59:59.000Z

170

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

DOE Green Energy (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

171

Alternative Fuels Data Center: Biomass and Biofuels Industry Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biomass and Biofuels Biomass and Biofuels Industry Development to someone by E-mail Share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Facebook Tweet about Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Twitter Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Google Bookmark Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Delicious Rank Alternative Fuels Data Center: Biomass and Biofuels Industry Development on Digg Find More places to share Alternative Fuels Data Center: Biomass and Biofuels Industry Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biomass and Biofuels Industry Development

172

List of Ethanol Incentives | Open Energy Information  

Open Energy Info (EERE)

Ethanol Incentives Ethanol Incentives Jump to: navigation, search The following contains the list of 67 Ethanol Incentives. CSV (rows 1 - 67) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alcohol Fuel Credit (Federal) Corporate Tax Credit United States Commercial Industrial Ethanol

173

Impact of ethanol expansion on the cattle feeding industry.  

E-Print Network (OSTI)

??The U.S. has a history of producing surplus corn, but the current and projected growth in ethanol production combined with strong feed and export demand… (more)

Daley, Erin

2007-01-01T23:59:59.000Z

174

Role of fuel cells in industrial cogeneration  

Science Conference Proceedings (OSTI)

Work at the Institute of Gas Technology on fuel cell technology for commercial application has focused on phosphoric acid (PAFC), molten carbonate (MCFC), and solid oxide (SOFC) fuel cells. The author describes the status of the three technologies, and concludes that the MCFC in particular can efficiently supply energy in industrial cogeneration applications. The four largest industrial markets are primary metals, chemicals, food, and wood products, which collectively represent a potential market of 1000 to 1500 MEe annual additions. At $700 to $900/kW, fuel cells can successfully compete with other advanced systems. An increase in research and development support would be in the best interest of industry and the nation. 1 reference, 5 figures, 5 tables.

Camara, E.H.

1985-08-01T23:59:59.000Z

175

Experiences from Ethanol Buses and Fuel Station Report - La Spezia | Open  

Open Energy Info (EERE)

Experiences from Ethanol Buses and Fuel Station Report - La Spezia Experiences from Ethanol Buses and Fuel Station Report - La Spezia Jump to: navigation, search Tool Summary Name: Experiences from Ethanol Buses and Fuel Station Report - La Spezia Agency/Company /Organization: BioEthanol for Sustainable Transport Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.best-europe.org/upload/BEST_documents/info_documents/Best%20report This report summarizes the introduction and utilization of E95 buses and E95 pumps in the region of La Spezia (Italy) within the framework of the BioEthanol for Sustainable Transport (BEST) project. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies

176

Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) to someone by E-mail Share Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Facebook Tweet about Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Twitter Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing (August 2009) on Google Bookmark Alternative Fuels Data Center: Status Update: New Mid-Level Ethanol Blends Certification Path, UL Meeting, and Mid-Level Blends Testing

177

Mixed waste paper to ethanol fuel. A technology, market, and economic assessment for Washington  

DOE Green Energy (OSTI)

The objectives of this study were to evaluate the use of mixed waste paper for the production of ethanol fuels and to review the available conversion technologies, and assess developmental status, current and future cost of production and economics, and the market potential. This report is based on the results of literature reviews, telephone conversations, and interviews. Mixed waste paper samples from residential and commercial recycling programs and pulp mill sludge provided by Weyerhauser were analyzed to determine the potential ethanol yields. The markets for ethanol fuel and the economics of converting paper into ethanol were investigated.

Not Available

1991-01-01T23:59:59.000Z

178

FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION  

SciTech Connect

PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to alkaline hydrolysis may be beneficial in removing hemicellulose and lignin from the feedstock. In addition, alkaline hydrolysis has been shown to remove a significant portion of the hemicellulose and lignin. The resulting cellulose can be exposed to a finishing step with wet alkaline oxidation to remove the remaining lignin. The final product is a highly pure cellulose fraction containing less than 1% of the native lignin with an overall yield in excess of 85% of the native cellulose. This report summarizes the results from the first year's effort to move the technology to commercialization.

F.D. Guffey; R.C. Wingerson

2002-10-01T23:59:59.000Z

179

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network (OSTI)

the compression stroke. The residues calculated from the proposed model were validated with those generated from to detect the fuel ethanol concentration by placing them in the tank or in the fuel line. However by means of the closed-loop air/fuel ratio correction signal based on the Exhaust Gas Oxygen (EGO) sensor

Stefanopoulou, Anna

180

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

#12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis

Patzek, Tadeusz W.

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Understanding the Growth of the Cellulosic Ethanol Industry  

DOE Green Energy (OSTI)

This report identifies, outlines, and documents a set of plausible scenarios for producing significant quantities of lignocellulosic ethanol in 2017. These scenarios can provide guidance for setting government policy and targeting government investment to the areas with greatest potential impact.

Sandor, D.; Wallace, R.; Peterson, S.

2008-04-01T23:59:59.000Z

182

Opportunities for Utility-Owned CHP at Dry-Mill Fuel Ethanol Plants  

Science Conference Proceedings (OSTI)

This report quantifies opportunities to co-locate natural-gas-fueled combined heat and power (CHP) facilities with corn dry-mill fuel ethanol plants in the upper Midwest. It also evaluates the opportunity to generate renewable power by fueling the CHP plants with biogas produced by anaerobic digestion of the byproducts of the corn wet-milling process.

2008-09-23T23:59:59.000Z

183

The Nuclear Fuel Industry Research Program Overview  

Science Conference Proceedings (OSTI)

This overview introduces the Nuclear Fuel Industry (NFIR) program to member utilities while also serving as a research status update for program participants. It includes detailed descriptions of various projects, relating both the technical backgrounds and the overall scope of work. NFIR program activities are geared toward providing long-term benefits to utilities and vendors by ensuring the safe and reliable use of core materials and components. Specific information can be obtained from published tech...

1994-08-23T23:59:59.000Z

184

Emissions and efficiency of agricultural diesels using low-proof ethanol as supplement fuel. [Tractor engines  

Science Conference Proceedings (OSTI)

Experimental investigations were made to evaluate the potential of using low-proof ethanol to supplement diesel fuel in agricultural engines. Fumigation, mechanical emulsification, and chemical emulsifiers were used to introduce a significant amount of alcohol with diesel fuel for engine operation. A total of five diesel tractor engines were tested using each of the fuel systems. Exhaust products and fuel usage were determined at various engine speed/load conditions. 5 references, 12 figures, 14 tables.

Allsup, J.R.; Clingenpeel, J.M.

1984-01-01T23:59:59.000Z

185

Fuel grade ethanol by solvent extraction: Final subcontract report  

DOE Green Energy (OSTI)

This report summarizes final results for ethanol recovery by solvent extraction and extractive distillation. At conclusion this work can be summarized as ethanol dehydration and recovery dilute fermentates is feasible using liquid/liquid extraction and extractive distillation. Compared to distillation, the economics are more attractive for less than 5 wt % ethanol. However, an economic bias in favor of SEED appears to exist even for 10 wt % feeds. It is of particular interest to consider the group extraction of ethanol and acetic acid followed by conversion to a mixture of ethanol and ethyl acetate. The latter species is a more valuable commodity and group extraction of inhibitory species is one feature of liquid/liquid extraction that is not easily accomodated using distillation. Upflow immobilized reactors offer the possibility of achieving high substrate conversion while also maintaining low metabolite concentrations. However, many questions remain to be answered with such a concept. 135 refs., 42 figs., 61 tabs.

Tedder, D.W.

1987-04-01T23:59:59.000Z

186

Final Environmental Assessment for Construction and Operation of a Proposed Ethanol Cellulosic Ethanol Plant, Range Fuels, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i i n a l E n v i r o n m e n t a l A s s e s s m e n t Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels, Inc. Treutlen County, Georgia DOE/EA 1597 Prepared for U.S. Department of Energy October 2007 Contents Section Page Contents........................................................................................................................................iii Acronyms and Abbreviations .................................................................................................vii 1.0 Introduction......................................................................................................................1 1.1 Background ..........................................................................................................1

187

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend transportation fuel in flexible-fuel vehicles. This report presents the data collection and analysis from this project, with particular focus on vehicle performance, cost of operation and limited emissions testing.

Whalen, P.; Poole, L.; Howard, R.

1998-12-31T23:59:59.000Z

188

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend transportation fuel in flexible-fuel vehicles. This report presents the data collection and analysis from this project, with particular focus on vehicle performance, cost of operation and limited emissions testing.

Whalen, P.; Poole, L.; Howard, R.

1998-12-31T23:59:59.000Z

189

Cold start characteristics of ethanol as an automobile fuel  

DOE Patents (OSTI)

An alcohol fuel burner and decomposer in which one stream of fuel is preheated by passing it through an electrically heated conduit to vaporize the fuel, the fuel vapor is mixed with air, the air-fuel mixture is ignited and combusted, and the combustion gases are passed in heat exchange relationship with a conduit carrying a stream of fuel to decompose the fuel forming a fuel stream containing hydrogen gas for starting internal combustion engines, the mass flow of the combustion gas being increased as it flows in heat exchange relationship with the fuel carrying conduit, is disclosed.

Greiner, Leonard (2750-C Segerstrom, Santa Ana, CA 92704)

1982-01-01T23:59:59.000Z

190

An E85 Ethanol Fuel Impact Study for Wake County, North Carolina Addressing Economical, Operational, Environmental, and Social Issues.  

E-Print Network (OSTI)

??The value of ethanol as an alternative fuel has recently been a highly debated topic. There have been many strong opinions for and against its… (more)

Roy, Bryan Erik

2005-01-01T23:59:59.000Z

191

High Ethanol Fuel Endurance: A Study of the Effects of Running Gasoline with 15% Ethanol Concentration in Current Production Outboard Four-Stroke Engines and Conventional Two-Stroke Outboard Marine Engines  

DOE Green Energy (OSTI)

Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deterioration that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.

Hilbert, D.

2011-10-01T23:59:59.000Z

192

Microsoft Word - 201311_Fuels_Industry_Newsletter_November_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Midwestern Ethanol Producers Challenge California Global-Warming Midwestern Ethanol Producers Challenge California Global-Warming Regulations" By Daniel Fisher, Forbes, October 25, 2013 A federal appeals court in California is mulling whether to reconsider a September ruling that upheld state global-warming regulations on ethanol producers. Critics say the decision gives the Golden State carte blanche to regulate virtually anything it doesn't like, regardless of the impact on interstate commerce. The Ninth Circuit Court of Appeals, in Rocky Mountain Farmers Union v. Corey, upheld California's Low Carbon Fuel Standard Program, which grades ethanol based on the "lifecycle" greenhouse gas emissions associated with its production. Midwestern ethanol producers complain the regs discriminate against them by taking into

193

NMOG Emissions Characterizations and Estimation for Vehicles Using Ethanol-Blended Fuels  

DOE Green Energy (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2011-10-01T23:59:59.000Z

194

NMOG Emissions Characterization and Estimation for Vehicles Using Ethanol-Blended Fuels  

Science Conference Proceedings (OSTI)

Ethanol is a biofuel commonly used in gasoline blends to displace petroleum consumption; its utilization is on the rise in the United States, spurred by the biofuel utilization mandates put in place by the Energy Independence and Security Act of 2007 (EISA). The United States Environmental Protection Agency (EPA) has the statutory responsibility to implement the EISA mandates through the promulgation of the Renewable Fuel Standard. EPA has historically mandated an emissions certification fuel specification that calls for ethanol-free fuel, except for the certification of flex-fuel vehicles. However, since the U.S. gasoline marketplace is now virtually saturated with E10, some organizations have suggested that inclusion of ethanol in emissions certification fuels would be appropriate. The test methodologies and calculations contained in the Code of Federal Regulations for gasoline-fueled vehicles have been developed with the presumption that the certification fuel does not contain ethanol; thus, a number of technical issues would require resolution before such a change could be accomplished. This report makes use of the considerable data gathered during the mid-level blends testing program to investigate one such issue: estimation of non-methane organic gas (NMOG) emissions. The data reported in this paper were gathered from over 600 cold-start Federal Test Procedure (FTP) tests conducted on 68 vehicles representing 21 models from model year 2000 to 2009. Most of the vehicles were certified to the Tier-2 emissions standard, but several older Tier-1 and national low emissions vehicle program (NLEV) vehicles were also included in the study. Exhaust speciation shows that ethanol, acetaldehyde, and formaldehyde dominate the oxygenated species emissions when ethanol is blended into the test fuel. A set of correlations were developed that are derived from the measured non-methane hydrocarbon (NMHC) emissions and the ethanol blend level in the fuel. These correlations were applied to the measured NMHC emissions from the mid-level ethanol blends testing program and the results compared against the measured NMOG emissions. The results show that the composite FTP NMOG emissions estimate has an error of 0.0015 g/mile {+-}0.0074 for 95% of the test results. Estimates for the individual phases of the FTP are also presented with similar error levels. A limited number of tests conducted using the LA92, US06, and highway fuel economy test cycles show that the FTP correlation also holds reasonably well for these cycles, though the error level relative to the measured NMOG value increases for NMOG emissions less than 0.010 g/mile.

Sluder, Scott [ORNL; West, Brian H [ORNL

2012-01-01T23:59:59.000Z

195

Potential impacts on air quality of the use of ethanol as an alternative fuel. Final report  

DOE Green Energy (OSTI)

The use of ethanol/gasoline mixtures in motor vehicles has been proposed as an alternative fuel strategy that might improve air quality while minimizing US dependence on foreign oil. New enzymatic production methodologies are being explored to develop ethanol as a viable, economic fuel. In an attempt to reduce urban carbon monoxide (CO) and ozone levels, a number of cities are currently mandating the use of ethanol/gasoline blends. However, it is not at all clear that these blended fuels will help to abate urban pollution. In fact, the use of these fuels may lead to increased levels of other air pollutants, specifically aldehydes and peroxyacyl nitrates. Although these pollutants are not currently regulated, their potential health and environmental impacts must be considered when assessing the impacts of alternative fuels on air quality. Indeed, formaldehyde has been identified as an important air pollutant that is currently being considered for control strategies by the State of California. This report focuses on measurements taken in Albuquerque, New Mexico during the summer of 1993 and the winter of 1994 as an initial attempt to evaluate the air quality effects of ethanol/gasoline mixtures. The results of this study have direct implications for the use of such fuel mixtures as a means to reduce CO emissions and ozone in a number of major cities and to bring these urban centers into compliance with the Clean Air Act.

Gaffney, J.S.; Marley, N.A. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

196

Susceptibility of Aluminum Alloys to Corrosion in Simulated Fuel Blends Containing Ethanol  

Science Conference Proceedings (OSTI)

The compatibility of aluminum and aluminum alloys with synthetic fuel blends comprised of ethanol and reference fuel C (a 50/50 mix of toluene and iso-octane) was examined as a function of water content and temperature. Commercially pure wrought aluminum and several cast aluminum alloys were observed to be similarly susceptible to substantial corrosion in dry (ethanol. Corrosion rates of all the aluminum materials examined was accelerated by increased temperature and ethanol content in the fuel mixture, but inhibited by increased water content. Pretreatments designed to stabilize passive films on aluminum increased the incubation time for onset of corrosion, suggesting film stability is a significant factor in the mechanism of corrosion.

Thomson, Jeffery K [ORNL; Pawel, Steven J [ORNL; Wilson, Dane F [ORNL

2013-01-01T23:59:59.000Z

197

Energy Basics: Ethanol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Photo of several beakers of gold and orange liquid ethanol. Ethanol is a renewable fuel made from various plant materials, which collectively are called "biomass." Ethanol...

198

Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends  

DOE Green Energy (OSTI)

The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

2012-03-01T23:59:59.000Z

199

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

Battelle

1998-10-01T23:59:59.000Z

200

Ohio's First Ethanol-Fueled Light-Duty Fleet: Final Study Results  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the use of an ethanol blend (E85, which is 85% transportation-grade ethanol and 15% gasoline) as a transportation fuel in flexible-fuel vehicles (FFVs). The study included ten FFVs and three gasoline vehicles (used as control vehicles) operated by five state agencies. The project included 24 months of data collection on vehicle operations. This report presents the data collection and analysis from the study, with a focus on the last year.

Battelle

1998-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Figure 64. Industrial energy consumption by fuel, 2011, 2025, and ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 64. Industrial energy consumption by fuel, 2011, 2025, and 2040 (quadrillion Btu) Natural Gas Petroleum and other liquids

202

Status and Prospects of the Global Automotive Fuel Cell Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNLTM-2013222 Energy and Transportation Science Division Center for Transportation Analysis STATUS AND PROSPECTS OF THE GLOBAL AUTOMOTIVE FUEL CELL INDUSTRY AND PLANS FOR...

203

Air Force Achieves Fuel Efficiency through Industry Best Practices...  

NLE Websites -- All DOE Office Websites (Extended Search)

ideas and implement initiatives with the Air Force Achieves Fuel Efficiency through Industry Best Practices The Air Force Energy Plan is built upon three pillars: reduce...

204

Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

Tyson, K.S.

1993-11-01T23:59:59.000Z

205

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

206

Power Plant and Industrial Fuel Use Act | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended (42 U.S.C. 8301 et seq.), provides that no new baseload electric powerplant may be constructed or operated without the capability to use coal or another alternate fuel as a primary energy source. In order to meet the requirement of coal capability, the owner or operator of such facilities proposing to use natural gas or petroleum as its primary energy source shall certify, pursuant to FUA section 201(d), and Section 501.60(a)(2) of DOE's regulations to the Secretary of Energy prior to construction, or prior to operation as a base load powerplant, that such powerplant has the capability to use coal or another alternate fuel.

207

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn  

E-Print Network (OSTI)

this report was peer reviewed by these contributors and their comments have been incorporated. Among key findings is that, for all cases examined on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol utilized as both E85 and E10 outperforms that of conventional (current) and of reformulated (future) gasoline with respect to energy use and greenhouse gas production. In many cases, the superiority of the energy and GHG result is quite pronounced (i.e., well outside the range of model "noise")

Michael Wang Christopher; Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

208

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower  

Science Conference Proceedings (OSTI)

Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

West, Brian H [ORNL; Lopez Vega, Alberto [ORNL; Theiss, Timothy J [ORNL; Graves, Ronald L [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL

2007-01-01T23:59:59.000Z

209

Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel  

DOE Green Energy (OSTI)

The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

None

1981-04-01T23:59:59.000Z

210

Exhaust emission testing of two ethanol variable fueled 1992 Chevrolet Luminas. Test results - 1993. Technical report  

SciTech Connect

The report describes the exhaust emission testing results for two 1992 low-mileage Chevrolet Lumina ethanol variable fuel vehicles. The vehicles were tested on both Indolene and E85 fuel using the Federal Test Procedure (FTP) for exhaust emissions. In the future, the EPA will retest the Luminas at future mileage accumulations of 20,000, 50,000 and possibly 100,000. At these future mileage accumulations, the vehicles will also be tested using intermediate fuel blends for both exhaust and evaporative emissions.

Samulski, M.

1994-01-01T23:59:59.000Z

211

Current State of the U.S. Ethanol Industry, November 2010, U...  

NLE Websites -- All DOE Office Websites (Extended Search)

more expensive petroleum. Ethanol is a substitute for hydrocarbons, and when crude oil prices increase, more ethanol is used to meet demand for gasoline. Since ethanol is...

212

Analysis of fuel shares in the industrial sector  

SciTech Connect

These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

Roop, J.M.; Belzer, D.B.

1986-06-01T23:59:59.000Z

213

The Development of Methanol Industry and Methanol Fuel in China  

Science Conference Proceedings (OSTI)

In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

Li, W.Y.; Li, Z.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China)

2009-07-01T23:59:59.000Z

214

Feasibility studies of a fuel cell for cogeneration of homogeneously catalyzed acetaldehyde and electricity from ethanol  

Science Conference Proceedings (OSTI)

The development and feasibility of a novel fuel cell for simultaneously generating electricity and homogeneously catalyzed acetaldehyde from ethanol are reported. The fuel cell is based on the supported molten-salt electrocatalysis technique that allows use of homogeneous (liquid-phase) catalysts in fuel cells for the first time. The electrocatalytic reaction combines the chemistry of the Wacker process conventionally used for acetaldehyde production from the partial oxidation of ethylene and that of the Veba-Chemie method. Nafion membranes impregnated with different electrolytic materials were used in the fuel cell as electrolytes to allow operation at reaction temperatures up to 165 C. Results obtained are comparable to those reported in the literature on partial oxidation of ethylene to acetaldehyde in a fuel cell based on conventional heterogeneous electrocatalysts.

Malhotra, S.; Datta, R. [Univ. of Iowa, Iowa City, IA (United States). Dept. of Chemical and Biochemical Engineering

1996-10-01T23:59:59.000Z

215

Ohio's first ethanol-fueled light-duty fleet: Clean cities alternative fuel information series case study  

DOE Green Energy (OSTI)

In 1996, the State of Ohio established a project to demonstrate the effectiveness of ethanol as an alternative to gasoline in its fleet operations. All vehicles in the study were 1996 model year Ford Tauruses: ten were flexible-fuel vehicles (FFVs) and three were standard gasoline models. Overall, the State of Ohio's staff has been pleased with the Taurus FFVs. The vehicles perform well and meet the operators' needs.

Whalen, P.

1999-05-21T23:59:59.000Z

216

Ohio's first ethanol-fueled light-duty fleet: Clean cities alternative fuel information series case study  

SciTech Connect

In 1996, the State of Ohio established a project to demonstrate the effectiveness of ethanol as an alternative to gasoline in its fleet operations. All vehicles in the study were 1996 model year Ford Tauruses: ten were flexible-fuel vehicles (FFVs) and three were standard gasoline models. Overall, the State of Ohio's staff has been pleased with the Taurus FFVs. The vehicles perform well and meet the operators' needs.

Whalen, P.

1999-05-21T23:59:59.000Z

217

Clean air program: Design guidelines for bus transit systems using alcohol fuel (methanol and ethanol) as an alternative fuel. Final report, July 1995-April 1996  

Science Conference Proceedings (OSTI)

This report provides design guidelines for the safe use of alcohol fuel (Methanol or Ethanol). It is part of a series of individual monographs being published by the FTA providing guidelines for the safe use of Compressed Natural Gas (CNG), Liquefied Natural Gas (LNG), Liquefied Petroleum Gas (LPG) and alcohol fuels (Methanol and Ethanol). Each report in this series describes, for the subject fuel, the important fuel properties, guidelines for the design and operation of bus fueling, storage and maintenance facilities, issues on personnel training and emergency preparedness.

Raj, P.K.; DeMarco, V.R.; Hathaway, W.T.; Kangas, R.

1996-08-01T23:59:59.000Z

218

Isotopic Tracing of Particulate Matter from a Compression Ignition Engine Fueled with Ethanol-in-Diesel Blends  

DOE Green Energy (OSTI)

Accelerator Mass Spectrometry (AMS) was used to investigate the relative contribution to diesel engine particulate matter (PM) from the ethanol and diesel fractions of blended fuels. Four test fuels along with a diesel fuel baseline were investigated. The test fuels were comprised of {sup 14}C depleted diesel fuel mixed with contemporary grain ethanol (>400 the {sup 14}C concentration of diesel). An emulsifier (Span 85) or cosolvent (butyl alcohol) was used to facilitate mixing. The experimental test engine was a 1993 Cummins B5.9 diesel rated at 175 hp at 2500 rpm. Test fuels were run at steady-state conditions of 1600 rpm and 210 ft-lbs, and PM samples were collected on quartz filters following dilution of engine exhaust in a mini-dilution tunnel. AMS analysis of the filter samples showed that the ethanol contributed less to PM relative to its fraction in the fuel blend. For the emulsified blends, 6.4% and 10.3% contributions to PM were observed for 11.5% and 23.0% ethanol fuels, respectively. For the cosolvent blends, even lower contributions were observed (3.8% and 6.3% contributions to PM for 12.5% and 25.0% ethanol fuels, respectively).

Cheng, A.S.; Dibble, R.W.; Buchholz, B.

1999-11-22T23:59:59.000Z

219

1 DISTILLERS BY-PRODUCTS AND CORN STOVER AS FUELS FOR ETHANOL PLANTS  

E-Print Network (OSTI)

Abstract. Dry-grind ethanol plants have the potential to reduce their operating costs and improve their net energy balances by using biomass as the source of process heat and electricity. We utilized ASPEN PLUS software to model various technology bundles of equipment, fuels and operating activities that are capable of supplying energy and satisfying emissions requirements for dry-grind ethanol plants of 50 and 100 million gallons per year capacity using corn stover, distillers dried grains and solubles (DDGS), or a mixture of corn stover and “syrup ” (the solubles portion of DDGS). In addition to their own requirements, plants producing 50 and 100 million gallons of ethanol are capable of supplying 5-7 or 10-14 MegaWatts of electricity to the grid, respectively. Economic analysis showed favorable rates of return for biomass alternatives compared to conventional plants using natural gas and purchased electricity over a range of conditions. The mixture of corn stover and syrup provided the highest rates of return in general. Factors favoring biomass included a higher premium for low carbon footprint ethanol, higher natural gas prices, lower DDGS prices, lower ethanol

Douglas G. Tiffany; R. Vance Morey; Matt De Kam; Douglas G. Tiffany; R. Vance Morey; Matt De Kam

2008-01-01T23:59:59.000Z

220

Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet  

E-Print Network (OSTI)

Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

McAulay, Jeffrey L. (Jeffrey Lewis)

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

of nearly 700 U.S. Department of Energy (DOE) fuel cell material handling units has led to almost 5,400 industry installation and on order units with no DOE funding. Data...

222

EERE SBIR Case Study: Improving Hybrid Poplars as a Renewable Source of Ethanol Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GreenWood Resources to advance GreenWood Resources to advance scientific understanding of the ways chemical traits are inherited in hybrid poplars and the extent of variations in characteristics such as lignin content and forms of lignin-enabling the best traits to be developed and significantly advancing the potential of hybrid poplars to provide a substantial, renewable source of ethanol fuel. GreenWood Resources (Portland,

223

Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana DOE/EA 1517  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

517 517 ENVIRONMENTAL ASSESSMENT Design and Construction of a Proposed Fuel Ethanol Plant, Jasper County, Indiana April 2005 U.S. Department of Energy Golden Field Office 1617 Cole Blvd. Golden, CO 80401 1 2 3 4 5 6 7 Environmental Assessment Design and Construction of a Proposed Fuel Ethanol Plant, Jasper County, Indiana TABLE OF CONTENTS ACRONYMS AND ABBREVIATIONS ...................................................................................................IV GLOSSARY ................................................................................................................................................ V UNITS OF MEASUREMENT ................................................................................................................. VII

224

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels, Phase 2: Evaluations of Field Samples and Laboratory Blends  

DOE Green Energy (OSTI)

Study to measure the flammability of gasoline/ethanol fuel vapors at low ambient temperatures and develop a mathematical model to predict temperatures at which flammable vapors were likely to form.

Gardiner, D. P.; Bardon, M. F.; LaViolette, M.

2010-04-01T23:59:59.000Z

225

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Gas) - Commercial and Industrial Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Appliances & Electronics Water Heating Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount Water Heater: $75 - $300 Furnaces: $250 - $400 Boilers: $150 - $400 Setback Thermostat: $25 - $50 Convection Oven: $100 High Efficiency Range/Oven: $500 Conveyor Oven: $500 Fryer: $500 Broiler: $100 Steam Cooker: $500 Vent Dampers for Boilers: $125 Custom: Two year buy down or 50% of project cost, whichever is less

226

A Feasibility Study of Fuel Cell Cogeneration in Industry  

E-Print Network (OSTI)

Up until now, most of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic analysis was performed. The US DOE Industrial Assessment Center (IAC) database was examined to determine what industry considers a good investment for energy saving measures. Finally, the results of the cogeneration analysis and database investigation were used to project the conditions in which the PC25C might be accepted by industry. Analysis of IAC database revealed that energy conservation recommendations with simple paybacks as high as five years have a 40% implementation rate; however, using current prices the simple payback of the PC25C fuel cell exceeds the likely lifetime of the machine. One drawback of the PC25C for industrial cogeneration is that the temperature of heat delivered is not sufficient to produce steam, which severely limits its usefulness in many industrial settings. The cost effectiveness of the system is highly dependent on energy prices. A five year simple payback can be achieved if the cost of electricity is $0.10/kWh or greater, or if the cost of the fuel cell decreases from about $3,500/kW to $950/kW. On the other hand, increasing prices of natural gas make the PC25C less economically attractive.

Phelps, S. B.; Kissock, J. K.

1997-04-01T23:59:59.000Z

227

Fuel ethanol produced from U.S. Midwest corn : help or hindrance to the vision of Kyoto?  

SciTech Connect

In this study, we examined the role of corn-feedstock ethanol in reducing greenhouse gas (GHG) emissions, given present and near-future technology and practice for corn farming and ethanol production. We analyzed the full-fuel-cycle GHG effects of corn-based ethanol using updated information on corn operations in the upper Midwest and existing ethanol production technologies. Information was obtained from representatives of the U.S. Department of Agriculture, faculty of midwestern universities with expertise in corn production and animal feed, and acknowledged authorities in the field of ethanol plant engineering, design, and operations. Cases examined included use of E85 (85% ethanol and 15% gasoline by volume) and E10 (10% ethanol and 90% gasoline). Among key findings is that Midwest-produced ethanol outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG emissions (on a mass emission per travel mile basis). The superiority of the energy and GHG results is well outside the range of model noise. An important facet of this work has been conducting sensitivity analyses. These analyses let us rank the factors in the corn-to-ethanol cycle that are most important for limiting GHG generation. These rankings could help ensure that efforts to reduce that generation are targeted more effectively.

Wang, M.; Saricks, C.; Wu, M.; Energy Systems

1999-07-01T23:59:59.000Z

228

Corrosion in Fossil and Alternative Fuel Industries  

Science Conference Proceedings (OSTI)

...coal-fired steam, industrial gas turbine, and combined-cycle power plants. The most common and widely used is the pulverized-coal-fired steam power plant. Because of the complex and corrosive environments in which power plants operate, corrosion has been a serious problem, with a significant impact on...

229

Supporting R&D of industrial fuel cell developers.  

DOE Green Energy (OSTI)

Argonne National Laboratory is supporting the industrial developers of molten carbonate fuel cells (MCFCs) and tubular solid oxide fuel cells (SOFCs). The results suggest that a lithium concentration level of 65-75 mol% in the LiNa electrolyte will improve cell performance. They have made inroads in understanding the interfacial resistance of bipolar plate materials, and they have reduced the air electrode overpotential in OSFCs by adding dopants.

Krumpelt, M.

1998-09-11T23:59:59.000Z

230

NREL Proves Cellulosic Ethanol Can Be Cost Competitive (Fact Sheet)  

SciTech Connect

Ethanol from non-food sources - known as "cellulosic ethanol" - is a near-perfect transportation fuel: it is clean, domestic, abundant, and renewable, and it can potentially replace 30% of the petroleum consumed in the United States, but its relatively high cost has limited its market. That changed in 2012, when the National Renewable Energy Laboratory (NREL) demonstrated the technical advances needed to produce cellulosic ethanol at a minimum ethanol selling price of $2.15/gallon (in 2007 dollars). Through a multi-year research project involving private industry, NREL has proven that cellulosic ethanol can be cost competitive with other transportation fuels.

Not Available

2013-11-01T23:59:59.000Z

231

Economics and policy implications of industrial fuel usage  

Science Conference Proceedings (OSTI)

The nation's use of wood as fuel is put into perspective, recognizing constraints imposed by governmental initiatives and actions. The forest product industry, and its use of wood for energy, is surveyed. The effect of PURPA on this industry, the nation's leader in cogeneration, is discussed. Proposed energy taxes would reverse recent trends in energy conservation. Low sulphur content frees wood and its residues from environmental legislation. Federal funding is needed to determine the extent of the economically accessible fuel wood. The proposed deregulation of natural gas will affect wood use adversely.

Slinn, D.J.

1983-06-01T23:59:59.000Z

232

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Industry Partnership Projects to Increase 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and eventually lead to a day when our children and grandchildren will call the

233

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $14 Million Industry Partnership Projects to Increase DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and

234

Fuel-Cycle energy and emission impacts of ethanol-diesel blends in urban buses and farming tractors.  

DOE Green Energy (OSTI)

About 2.1 billion gallons of fuel ethanol was used in the United States in 2002, mainly in the form of gasoline blends containing up to 10% ethanol (E10). Ethanol use has the potential to increase in the U.S. blended gasoline market because methyl tertiary butyl ether (MTBE), formerly the most popular oxygenate blendstock, may be phased out owing to concerns about MTBE contamination of the water supply. Ethanol would remain the only viable near-term option as an oxygenate in reformulated gasoline production and to meet a potential federal renewable fuels standard (RFS) for transportation fuels. Ethanol may also be blended with additives (co-solvents) into diesel fuels for applications in which oxygenation may improve diesel engine emission performance. Numerous studies have been conducted to evaluate the fuel-cycle energy and greenhouse gas (GHG) emission effects of ethanol-gasoline blends relative to those of gasoline for applications in spark-ignition engine vehicles (see Wang et al. 1997; Wang et al. 1999; Levelton Engineering et al. 1999; Shapouri et al. 2002; Graboski 2002). Those studies did not address the energy and emission effects of ethanol-diesel (E-diesel or ED) blends relative to those of petroleum diesel fuel in diesel engine vehicles. The energy and emission effects of E-diesel could be very different from those of ethanol-gasoline blends because (1) the energy use and emissions generated during diesel production (so-called ''upstream'' effects) are different from those generated during gasoline production; and (2) the energy and emission performance of E-diesel and petroleum diesel fuel in diesel compression-ignition engines differs from that of ethanol-gasoline blends in spark-ignition (Otto-cycle-type) engine vehicles. The Illinois Department of Commerce and Community Affairs (DCCA) commissioned Argonne National Laboratory to conduct a full fuel-cycle analysis of the energy and emission effects of E-diesel blends relative to those of petroleum diesel when used in the types of diesel engines that will likely be targeted first in the marketplace. This report documents the results of our study. The draft report was delivered to DCCA in January 2003. This final report incorporates revisions by the sponsor and by Argonne.

Wang, M.; Saricks, C.; Lee, H.

2003-09-11T23:59:59.000Z

235

Fermentation guide for potatoes. A step-by-step procedure for small-scale ethanol fuel production  

Science Conference Proceedings (OSTI)

This guide describes the steps involved in the successful batch starch conversion and fermentation of potatoes for the production of fuel grade ethanol. The first part of this manual provides an overview of ethanol production from feedstock to fermentation. The second part of the manual is a recipe section that gives step-by-step procedures necessary for successful fermentation. Chapter titles are: major steps in ethanol production; equipment and chemicals; water testing and treatment; feedstock cleaning and crushing; precooking; hydration and dextrinization; cooking; choosing the best enzymes; fermentation; core and cleaning, step-by-step procedure; refinements; and supplies. (DMC)

Not Available

1981-09-01T23:59:59.000Z

236

Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Federal Test Procedure Emissions Test Results from Federal Test Procedure Emissions Test Results from Ethanol Variable-Fuel Vehicle Chevrolet Luminas Kenneth J. Kelly, Brent K. Bailey, and Timothy C. Coburn National Renewable Energy Laboratory Wendy Clark Automotive Testing Laboratories, Inc. Peter Lissiuk Environmental Research and Development Corp. Presented at Society for Automotive Engineers International Spring Fuels and Lubricants Meeting Dearborn, MI May 6-8, 1996 The work described here was wholly funded by the U.S. Department of Energy, a U.S. government agency. As such, this information is in the public domain, may be copied and otherwise accessed freely, and is not subject to copyright laws. These papers were previously published in hard copy form by the Society of Automotive Engineers, Inc. (Telephone: 412.776.4970; E-mail: publications@sae.org)

237

Feasibility study for fuel grade ethanol complex, Kennewick, Washington. Volume II of V. Market evaluation  

SciTech Connect

Midwestern corn prices are projected to increase continuously over the next five years, while Distillers Dried Grains (DDGS) prices are projected to decline and not recover until 1985. If midwestern shippers are successful in negotiating favorable freight rates for DDGS, local prices could also decline during the period from 1981 to 1985. If they are not successful and freight rates continue to increase over the period, adequate regional and export markets will be available for all the DDGS produced by Omega Fuels, at prices competitive with other regional feed supplements. Large volumes of midwestern corn are currently exported from Seattle-Tacoma. Rail lines serving this port pass near the Omega Fuels' plant site in Kennewick, Washington. Therefore, start-up of the plant using midwestern corn should not be difficult. The corn oil by-product can be easily marketed in the region at prices competitive with soy oil. As production becomes established, the corn oil may be able to command its traditional premium price. Coal ash, mineral sludge, and CO/sub 2/ by-products may find local markets - if they are actively marketed by Omega Fuels. These by-products are not expected to produce significant revenues. However, if markets are not sought, conventional disposal methods will be a net cost to the operation of the plant. The market for ethanol in the region will have to be expanded significantly to absorb Omega Fuels' production. Unleaded regular is gasohol's major competitor. As such, the wholesale price of unleaded regular gasoline will control the selling price of ethanol.

1981-07-01T23:59:59.000Z

238

Microsoft Word - 201305_Fuels_Industry_Newsletter_May_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Holly Jessen, Ethanol Producer Magazine, May 28, 2013 The most recent data from the U.S. Energy Information Administration shows that ethanol production is ramping up, reaching...

239

Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles  

SciTech Connect

The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

2012-03-30T23:59:59.000Z

240

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Compatibility Study for Plastic, Elastomeric, and Metallic Fueling Infrastructure Materials Exposed to Aggressive Formulations of Ethanol-blended Gasoline  

SciTech Connect

In 2008 Oak Ridge National Laboratory began a series of experiments to evaluate the compatibility of fueling infrastructure materials with intermediate levels of ethanol-blended gasoline. Initially, the focus was elastomers, metals, and sealants, and the test fuels were Fuel C, CE10a, CE17a and CE25a. The results of these studies were published in 2010. Follow-on studies were performed with an emphasis on plastic (thermoplastic and thermoset) materials used in underground storage and dispenser systems. These materials were exposed to test fuels of Fuel C and CE25a. Upon completion of this effort, it was felt that additional compatibility data with higher ethanol blends was needed and another round of experimentation was performed on elastomers, metals, and plastics with CE50a and CE85a test fuels. Compatibility of polymers typically relates to the solubility of the solid polymer with a solvent. It can also mean susceptibility to chemical attack, but the polymers and test fuels evaluated in this study are not considered to be chemically reactive with each other. Solubility in polymers is typically assessed by measuring the volume swell of the polymer exposed to the solvent of interest. Elastomers are a class of polymers that are predominantly used as seals, and most o-ring and seal manufacturers provide compatibility tables of their products with various solvents including ethanol, toluene, and isooctane, which are components of aggressive oxygenated gasoline as described by the Society of Automotive Engineers (SAE) J1681. These tables include a ranking based on the level of volume swell in the elastomer associated with exposure to a particular solvent. Swell is usually accompanied by a decrease in hardness (softening) that also affects performance. For seal applications, shrinkage of the elastomer upon drying is also a critical parameter since a contraction of volume can conceivably enable leakage to occur. Shrinkage is also indicative of the removal of one or more components of the elastomers (by the solvent). This extraction of additives can negatively change the properties of the elastomer, leading to reduced performance and durability. For a seal application, some level of volume swell is acceptable, since the expansion will serve to maintain a seal. However, the acceptable level of swell is dependent on the particular application of the elastomer product. It is known that excessive swell can lead to unacceptable extrusion of the elastomer beyond the sealed interface, where it becomes susceptible to damage. Also, since high swell is indicative of high solubility, there is a heightened potential for fluid to seep through the seal and into the environment. Plastics, on the other hand, are used primarily in structural applications, such as solid components, including piping and fluid containment. Volume change, especially in a rigid system, will create internal stresses that may negatively affect performance. In order to better understand and predict the compatibility for a given polymer type and fuel composition, an analysis based on Hansen solubility theory was performed for each plastic and elastomer material. From this study, the solubility distance was calculated for each polymer material and test fuel combination. Using the calculated solubility distance, the ethanol concentration associated with peak swell and overall extent of swell can be predicted for each polymer. The bulk of the material discussion centers on the plastic materials, and their compatibility with Fuel C, CE25a, CE50a, and CE85a. The next section of this paper focuses on the elastomer compatibility with the higher ethanol concentrations with comparison to results obtained previously for the lower ethanol levels. The elastomers were identical to those used in the earlier study. Hansen solubility theory is also applied to the elastomers to provide added interpretation of the results. The final section summarizes the performance of the metal coupons.

Kass, Michael D [ORNL; Pawel, Steven J [ORNL; Theiss, Timothy J [ORNL; Janke, Christopher James [ORNL

2012-07-01T23:59:59.000Z

242

Glass manufacturing is an energy-intensive industry mainly fueled ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium.

243

Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector  

Science Conference Proceedings (OSTI)

This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

2010-09-10T23:59:59.000Z

244

Federal Reserve Bank of of Kansas City Markets, Not Mandates, Shape Ethanol Production  

E-Print Network (OSTI)

The 2012 drought has reignited the food versus fuel debate. After cutting U.S. corn production below recent years ’ consumption, the drought sparked a U.S. grain shortage and sent global food prices soaring. As the grain shortage intensified, pressure to relieve the shortage by easing ethanol mandates mounted. Escalating ethanol mandates under the Renewable Fuel Standard (RFS), which fueled the expansion of the U.S. ethanol industry, will soon exceed the amount of ethanol than can be used in current U.S. gasoline blends. Some industry participants believe that a waiver of the mandate has the potential to reduce ethanol production and relieve high corn prices. However, ethanol production may not decline significantly, even if the mandates are waived temporarily,

Main Street; Nathan Kauffman

2012-01-01T23:59:59.000Z

245

90% of new cars have engines specially designed to run on hydrous ethanol. This avoids the expense of remov-  

E-Print Network (OSTI)

production processes. Most bioethanol is produced from sugar cane (Brazil), molasses and corn (USA production Plants for conversion of bioethanol to other industrial chemical raw materials or end use products sugars. All the ethanol used for fuel and alcoholic drinks, and most industrial ethanol, is made

246

MotorWeek Video Transcript: Ethanol Preferred by Indy Racing  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol Preferred by Indy Racing Ethanol Preferred by Indy Racing John Davis: In an age where drivers switch sponsor allegiances as quickly as they change hats, Team Ethanol Indy Car driver Paul Dana was a rarity: A driver who not only believed in his sponsor's product, he took a personal interest in promoting it. Tragically, a collision during practice killed Paul just hours before the season's first green flag. Although his life was cut short before he ever won a race in the IRL, he leaves behind a champion's legacy no less powerful. We know ethanol is a clean-burning, renewable and American-made alternative to imported petroleum as a fuel for our street cars, but ethanol is also well-suited as a performance fuel. Tim Tom Slunecka: "The ethanol industry has been trying to communicate

247

Intermediate-scale, semicontinuous solid-phase fermentation process for production of fuel ethanol from sweet sorghum. [Saccharomyces cerevisiae  

Science Conference Proceedings (OSTI)

A novel, semicontinuous solid-phase fermentation system was used to produce fuel ethanol from sweet sorghum. The process was at an intermediate scale. In the process, dried and shredded sweet sorghum was rehydrated to 70% moisture, acidified to pH 2.0 to 3.0, and either pasteurized (12 h at 70 to 80/sup 0/C) or not pasteurized before spray inoculation with a broth culture of Saccharomyces cerevisiae. Fermented pulp exited the semicontinuous fermentor after a retention time of 72 h and contained approximately 6% (vol/vol) ethanol. Ethanol yields from dry sweet sorghum were 176 to 179 liters/10/sup 3/kg (85% of theoretical). Production costs for a greatly scaled-up (x1400) conceptual version of this system were projected by calculation to average $0.47/liter for 95% ethanol. The calculated energy balance (energy output/energy input ratio) was estimated to be 1.05 when pasteurization was included and 1.31 when pasteurization was omitted. In calculating the energy balances, the output energy of the protein feed byproduct and the input energy for growing the sweet sorghum were not considered. A design for the scaled-up plant (farm scale) is provided.

Gibbons, W.R.; Westby, C.A.; Dobbs, T.L.

1986-01-01T23:59:59.000Z

248

Cellulosic Ethanol Technology on Track to Being Competitive With Other Transportation Fuels (Fact Sheet)  

DOE Green Energy (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) have been driving down the cost of cellulosic ethanol and overcoming the technical challenges that surround it-major milestones toward the Department of Energy (DOE) goal of making cellulosic ethanol cost-competitive by 2012.

Not Available

2011-02-01T23:59:59.000Z

249

Fuel consumption: Industrial, residential, and general studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning fuel consumption in industrial and residential sectors. General studies of fuel supply, demand, policy, forecasts, and consumption models are presented. Citations examine fuel information and forecasting systems, fuel production, international economic and energy activities, heating oils, and pollution control. Fuel consumption in the transportation sector is covered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-08-01T23:59:59.000Z

250

Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.  

DOE Green Energy (OSTI)

Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

NONE

2004-05-27T23:59:59.000Z

251

Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.  

SciTech Connect

Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

2004-05-27T23:59:59.000Z

252

Challenges of Electric Power Industry Restructuring for Fuel ...  

U.S. Energy Information Administration (EIA)

Restructuring for Fuel Suppliers ... Office of Coal, Nuclear, Electric and Alternate Fuels Office of Oil and Gas ... Risk management will become an ...

253

Feasibility study for a 10 MM GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume II. Geothermal resource, agricultural feedstock, markets and economic viability  

DOE Green Energy (OSTI)

The issues of the geothermal resource at Brady's Hot Springs are dealt with: the prospective supply of feedstocks to the ethanol plant, the markets for the spent grain by-products of the plant, the storage, handling and transshipment requirements for the feedstocks and by-products from a rail siding facility at Fernley, the probable market for fuel ethanol in the region, and an assessment of the economic viability of the entire undertaking.

Not Available

1980-09-01T23:59:59.000Z

254

Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary  

DOE Green Energy (OSTI)

The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

Levi, M. P.; O'Grady, M. J.

1980-02-01T23:59:59.000Z

255

Energy Basics: Vehicles and Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

more about: Alternative Fuels Alternative Vehicles For more information on fuels made from biomass, such as ethanol or biodiesel fuels, see the Biomass section: Biodiesel Ethanol...

256

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel Cell Backup Power (BuP)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Date: 09/05/2013 7 Date: 09/05/2013 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Jim Alkire, Sara Dillich, Dimitrios Papageorgopoulos Approved by: Rick Farmer and Sunita Satyapal Date: 09/09/13 Item: Table 1: Number of fuel cells deployments (current and planned) for applications in backup power. The funding of 903 Department of Energy (DOE) fuel cell backup power systems has led to over 3,500 industry installations and on-order backup power units with no DOE funding. Data/Assumptions/Calculations: The manufacturers providing the fuel cells for the deployments (current and planned) mentioned in Table 1 above are: Altergy Ballard / Ida Tech Hydrogenics ReliOn, Inc. Total DOE American Recovery and Reinvestment Act (ARRA) investment for these fuel cell

257

NIST Finds That Ethanol-Loving Bacteria Accelerate Cracking ...  

Science Conference Proceedings (OSTI)

... US production of ethanol for fuel has been rising quickly, topping 13 ... and reliably transport ethanol fuel in repurposed oil and gas pipelines.". ...

2012-10-15T23:59:59.000Z

258

Fuel from farms: a guide to small-scale ethanol production  

DOE Green Energy (OSTI)

A guide on fermentation processes with emphasis on small-scale production of ethanol using farm crops as a source of raw material is published. The current status of on-farm ethanol production as well as an overview of some of the technical and economic factors is presented. Decision and planning worksheets and a sample business plan for use in decision making are included. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Diagrams of fermentors and distilling apparatus are included. (DC)

None

1980-02-01T23:59:59.000Z

259

Fuel from farms: A guide to small-scale ethanol production: Second edition  

DOE Green Energy (OSTI)

This guide presents the current status of on-farm fermentation ethanol production as well as an overview of some of the technical and economic factors. Tools such as decision and planning worksheets and a sample business plan for use in exploring whether or not to go into ethanol production are given. Specifics in production including information on the raw materials, system components, and operational requirements are also provided. Recommendation of any particular process is deliberately avoided because the choice must be tailored to the needs and resources of each individual producer. The emphasis is on providing the facts necessary to make informed judgments. 98 refs., 14 figs., 9 tabs.

Not Available

1982-05-01T23:59:59.000Z

260

Market penetration of biodiesel and ethanol  

E-Print Network (OSTI)

This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production, but only expand the ethanol industry at low gasoline prices. All of these factors increase agricultural welfare with most expanding producer surplus and mixed effects on consumers.

Szulczyk, Kenneth Ray

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Definition: Ethanol | Open Energy Information  

Open Energy Info (EERE)

Ethanol Ethanol A colorless, flammable liquid produced by fermentation of sugars. While it is also the alcohol found in alcoholic beverages, it can be denatured for fuel use. Fuel ethanol is used principally for blending in low concentrations with motor gasoline as an oxygenate or octane enhancer. In high concentrations, it is used to fuel alternative-fuel vehicles specially designed for its use.[1][2][3] View on Wikipedia Wikipedia Definition Ethanol fuel is ethanol (ethyl alcohol), the same type of alcohol found in alcoholic beverages. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. World ethanol production for transport fuel tripled between 2000 and 2007 from 17 billion to more than 52 billion liters. From 2007 to 2008, the share of ethanol in global gasoline type

262

Challenges of electric power industry restructuring for fuel suppliers  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

NONE

1998-09-01T23:59:59.000Z

263

How much ethanol is in gasoline and how does it affect fuel ...  

U.S. Energy Information Administration (EIA)

How many alternative fuel and hybrid vehicles are there in the U.S.? How much U.S. energy consumption and electricity generation comes from renewable sources?

264

An Analysis of Ethanol Investment Decisions in Thailand1 Nisal Herath Mudiyanselage, C.-Y. Cynthia Lin and Fujin Yi  

E-Print Network (OSTI)

, biofuels, investment, dynamic discrete choice model, structural model JEL codes: Q16, Q42, L10 1 Lin would require a minimum production of 1.9 billion liters of fuel ethanol. The actual production of fuel federal programs that promote a domestic renewable fuel industry, including the EcoEnergy for Biofuels

Lin, C.-Y. Cynthia

265

Workshop on the Increased Use of Ethanol and Alkylates in Automotive Fuels in California  

SciTech Connect

The goals of the Workshop are to: (1) Review the existing state of knowledge on (a) physicochemical properties, multi-media transport and fate, exposure mechanisms and (b) release scenarios associated with the production, distribution, and use of ethanol and alkylates in gasoline; (2) Identify key regulatory, environmental, and resource management issues and knowledge gaps associated with anticipated changes in gasoline formulation in California; and (3) Develop a roadmap for addressing issues/knowledge gaps.

Rice, D W

2001-05-04T23:59:59.000Z

266

Energy Utilization in Fermentation Ethanol Production  

E-Print Network (OSTI)

The fuel ethanol industry has put into practice several techniques for minimizing energy requirements for ethanol manufacture. Thermal energy usage in fermentation grain ethanol plants has been reduced from the prior practice of 80,900 Btu per gallon ethanol to current demonstrated practice of 49,700 Btu per gallon. Future, state-of-the-art improvements are expected to reduce usage further to 37,000 Btu per gallon or less. The total energy input is projected at 52,000 Btu per gallon after adding in the electrical power. Energy savings have been achieved primarily by flash vapor reuse, pressure cascading of distillation units, and use of more efficient byproduct drying methods. These energy saving techniques should also be useful in other commercial processing applications.

Easley, C. E.

1987-09-01T23:59:59.000Z

267

Modeling scaleup effects on a small pilot-scale fluidized-bed reactor for fuel ethanol production  

DOE Green Energy (OSTI)

Domestic ethanol use and production are presently undergoing significant increases along with planning and construction of new production facilities. Significant efforts are ongoing to reduce ethanol production costs by investigating new inexpensive feedstocks (woody biomass) and by reducing capital and energy costs through process improvements. A key element in the development of advanced bioreactor systems capable of very high conversion rates is the retention of high biocatalyst concentrations within the bioreactor and a reaction environment that ensures intimate contact between substrate and biocatalyst. One very effective method is to use an immobilized biocatalyst that can be placed into a reaction environment that provides effective mass transport, such as a fluidized bed. Mathematical descriptions are needed based on fundamental principles and accepted correlations that describe important physical phenomena. We describe refinements and semi-quantitatively extend the predictive model of Petersen and Davison to a multiphase fluidized-bed reactor (FBR) that was scaled-up for ethanol production. Axial concentration profiles were evaluated by solving coupled differential equations for glucose and carbon dioxide. The pilot-scale FBR (2 to 5 m tall, 10.2-cm ID, and 23,000 L month{sup -1} capacity) was scaled up from bench-scale reactors (91 to 224 cm long, 2.54 to 3.81 cm ID, and 400 to 2,300 L month{sup -1} capacity). Significant improvements in volumetric productivites (50 to 200 g EtOH h{sup -1} L{sup -1} compared with 40 to 110 for bench-scale experiments and 2 to 10 for reported industrial benchmarks) and good operability were demonstrated.

Webb, O.F.; Davison, B.H.; Scott, T.C.

1995-09-01T23:59:59.000Z

268

Industrial Fuel Gas Demonstration Plant Program. Annual progress report, January-December 1979  

SciTech Connect

The objective of the Industrial Fuel Gas Demonstration Plant Program is to demonstrate the feasibility of converting agglomerating and high sulfur coal to clean fuel gas and utilizing this gas in a commercial application. Specific objectives are to conduct process analysis, design, construction, testing, operation and evaluation of a plant based on the U-Gas process for converting coal to industrial fuel gas. Phase I of the MLGW Industrial Fuel Gas Demonstration Plant Program started in September, 1977. In the first quarter of 1978, a conceptual design of a commercial plant was started, together with environmental monitoring activities and technical support work at the U-Gas pilot plant. After a series of successful pilot plant runs during the October 1978-March 1979 period, design work on the Demonstration Plant commenced. With the exception of Task I - Design and Evaluation of Commercial Plant, the majority of all other efforts were completed in 1979. These tasks are listed.

None

1980-01-01T23:59:59.000Z

269

List of Other Alternative Fuel Vehicles Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Vehicles Incentives Fuel Vehicles Incentives Jump to: navigation, search The following contains the list of 8 Other Alternative Fuel Vehicles Incentives. CSV (rows 1 - 8) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate Tax Credit Louisiana Commercial Renewable Fuel Vehicles

270

Advanced coal-fueled industrial cogeneration gas turbine system  

DOE Green Energy (OSTI)

The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. This quarter, work was centered on design, fabrication, and testing of the combustor, cleanup, fuel specifications, and hot end simulation rig. 2 refs., 59 figs., 29 tabs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1990-07-01T23:59:59.000Z

271

Preliminary assessment of the gaseous fuels aftermarket conversion industry. Final report  

Science Conference Proceedings (OSTI)

The purpose of the report is to provide information to be used in assessing the potential impacts of EPA's proposed Gaseous Fuels and Clean Fuel Fleet rulemakings on the aftermarket conversion industry. Therefore, the report will focus on issues germane to determining these impacts (such as financial profiles of companies involved, future trends in industry development and sales, and costs of complying with conversion requirements) rather than assessing the viability of current technologies or the emissions benefits of alternative fuels. Moreover, the report focuses on conversions to CNG and LPG as conversions to these fuels are most viable at this time, even though EPA's proposed conversion regulations could potentially apply to any fuel (e.g., liquid natural gas).

Not Available

1992-09-28T23:59:59.000Z

272

Ethanol production for automotive fuel usage. Final technical report, July 1979-August 1980  

DOE Green Energy (OSTI)

Production of ethanol from potatoes, sugar beets, and wheat using geothermal resources in the Raft River area of Idaho was evaluated. The south-central region of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beets, and 27 million cwt potatoes annually. A 20-million-gallon-per-year ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The conceptual plant was designed to operate on each of these three feedstocks for a portion of the year, but could operate year-round on any of them. The processing facility uses conventional alcohol technology and uses geothermal energy for all process heating. There are three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat involve common equipment. The fermentation, distillation, and by-product handling sections are common to all three feedstocks. Maximum geothermal fluid requirements are approximately 6000 gpm. It is anticipated that this flow will be supplied by nine production wells located on private and BLM lands in the Raft River KGRA. The geothermal fluid will be flashed from 280/sup 0/F in three stages to supply process steam at 250/sup 0/F, 225/sup 0/F, and 205/sup 0/F for various process needs. Steam condensate plus liquid remaining after the third flash will be returned to receiving strata through six injection wells.

Stenzel, R.A.; Yu, J.; Lindemuth, T.E.; Soo-Hoo, R.; May, S.C.; Yim, Y.J.; Houle, E.H.

1980-08-01T23:59:59.000Z

273

Iridium?Ruthenium Alloyed Nanoparticles for the Ethanol Oxidation Fuel Cell Reactions  

DOE Green Energy (OSTI)

In this study, carbon supported Ir-Ru nanoparticles with average sizes ranging from 2.9 to 3.7 nm were prepared using a polyol method. The combined characterization techniques, that is, scanning transmission electron microscopy equipped with electron energy loss spectroscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, were used to determine an Ir-Ru alloy nanostructure. Both cyclic voltammetry and chronoamperometry (CA) results demonstrate that Ir{sub 77}Ru{sub 23}/C bears superior catalytic activities for the ethanol oxidation reaction compared to Ir/C and commercial Pt/C catalysts. In particular, the Ir{sub 77}Ru{sub 23}/C catalyst shows more than 21 times higher mass current density than that of Pt/C after 2 h reaction at a potential of 0.2 V vs Ag/AgCl in CA measurement. Density functional theory simulations also demonstrate the superiority of Ir-Ru alloys compared to Ir for the ethanol oxidation reaction.

Su D.; Du, W.; Deskins, N.A.; Teng, X.

2012-06-01T23:59:59.000Z

274

High Speed/ Low Effluent Process for Ethanol  

Science Conference Proceedings (OSTI)

n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

M. Clark Dale

2006-10-30T23:59:59.000Z

275

Ethanol Production, Distribution, and Use: Discussions on Key Issues (Presentation)  

Science Conference Proceedings (OSTI)

From production to the environment, presentation discusses issues surrounding ethanol as a transportation fuel.

Harrow, G.

2008-05-14T23:59:59.000Z

276

8. Biomass-Derived Liquid Fuels  

U.S. Energy Information Administration (EIA)

8. Biomass-Derived Liquid Fuels B. Fuel Ethanol Production and Market Conditions Ethanol is consumed as fuel in the United States primarily as "gasohol"--a blend ...

277

DOE Hydrogen and Fuel Cells Program Record, Record # 11017: Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis, and reporting. DOE Funded 1 (ARRA) as of 122011 DOE Funded 2,3 (Appropriations) as of 102011 DOE Total Industry Funded or on Order (U.S.) 3-6 From 2009 - Record...

278

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

279

Ethanol Tolerant Yeast for Improved Production of Ethanol from ...  

Inventors: Audrey Gasch, Jeffrey Lewis Ethanol production from cellulosic biomass can make a significant contribution toward decreasing our dependence on fossil fuels.

280

Documentation of the Industrial Minor Fuels and Raw Materials model (MFUEL)  

Science Conference Proceedings (OSTI)

Most of the industrial demand for energy is projected by components of the Intermediate Future Forecasting System (IFFS), mainly the PURchased Heat and Power System (PURHAPS) and the oil refineries model (REFPRIDE). Other components of IFFS project a few fuel uses that are sometimes considered industrial. MFUEL projects those portions of industrial demand not covered by other components of IFFS: industrial use of motor gasoline, industrial consumption of lubricants and waxes, petrochemical feedstocks, metallurgical coal, special naphthas, natural gas used as a chemical feedstock, asphalt and road oil, petroleum coke, industrial kerosene, industrial hydropower, net imports of coal coke, other petroleum, and LPG used as a feedstock or by gas utilities. Each fuel is projected by a single equation at the national level, based on historical relationships, and then shared out to Federal Regions. MFUEL accounts for 5.01 quadrillion Btu out of the industrial energy total of 19.66 quadrillion in 1983, including 3.52 quadrillion Btu out of the 7.83 quadrillion of industrial petroleum use.

Werbos, P.J.

1984-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microsoft Word - 201312_Fuels_Industry_Newsletter_December_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

scraps proposed Louisiana GTL complex" scraps proposed Louisiana GTL complex" By Bradley Olson, Hydrocarbon Processing, December 6, 2013 THE HAGUE (Bloomberg) -- Royal Dutch Shell halted plans to build a $20 billion gas-to- liquids plant in Louisiana, citing the potential cost and uncertainty about future crude and natural gas prices. The project would have used natural gas to produce 140,000 bpd of liquid fuels and other products normally made from oil, the company said in a statement. Despite ample United States gas supplies from a boom in shale production, gas-to-liquids isn't "a viable option for Shell in North America," the company said. Shell started the first commercial gas-to-liquids plant in 1993, using a process developed in Germany and used to make fuels during World War II. The company completed the $19 billion

282

Microsoft Word - 201308_Fuels_Industry_Newsletter_August_2013.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Offer Gasoline From Natural Gas or Waste as Low as $75 per Technologies Offer Gasoline From Natural Gas or Waste as Low as $75 per Barrel" Lux Research (Press Release), The Wall Street Journal, Market Watch, July 25, 2013 Technologies Offer Gasoline From Natural Gas or Waste as Low as $75 per Barrel Many Alternative Fuels Technologies Remain Uneconomical Today, With Return on Investment of Over 17 Years, but Emerging Technologies Will Drive Down Costs, Says Lux Research BOSTON, MA, Jul 25, 2013 (Marketwired via COMTEX) -- An unprecedented price disparity between crude oil and other resources -- coupled with the emergence of cheap and abundant shale gas, especially in the United States -- is transforming the alternative fuels landscape, opening up opportunities to produce cheaper gasoline, says Lux Research.

283

Industrial fuel choice analysis model. Volume II. Appendices to model documentation  

SciTech Connect

Descriptions, documentation, and other information are included in these appendices dealing with industrial fuel choices: Energy Consumption Data Base; Major Fuel Burning Installation Survey; American Boiler Manufacturers Association Data File; Midrange Energy Forecasting System; Projection Method; Capacity Utilization Rates; Nonboiler Characteristics; Boiler Capital and O and M Cost Data; Nonboiler Capital and O and M Cost Data; Approach to Estimating Energy Impacts of the Coal Conversion Regulatory Program; Index or Acronyms.

1979-01-08T23:59:59.000Z

284

Vehicle Technologies Office: Intermediate Ethanol Blends  

NLE Websites -- All DOE Office Websites (Extended Search)

Intermediate Ethanol Intermediate Ethanol Blends to someone by E-mail Share Vehicle Technologies Office: Intermediate Ethanol Blends on Facebook Tweet about Vehicle Technologies Office: Intermediate Ethanol Blends on Twitter Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Google Bookmark Vehicle Technologies Office: Intermediate Ethanol Blends on Delicious Rank Vehicle Technologies Office: Intermediate Ethanol Blends on Digg Find More places to share Vehicle Technologies Office: Intermediate Ethanol Blends on AddThis.com... Just the Basics Hybrid & Vehicle Systems Energy Storage Advanced Power Electronics & Electrical Machines Advanced Combustion Engines Fuels & Lubricants Fuel Effects on Combustion Lubricants Natural Gas Research Biofuels End-Use Research

285

Fuel Reliability Program: Fuel Rod Guided-Wave Inspection System for an Industrial Environment  

Science Conference Proceedings (OSTI)

To minimize the leakage of radioactive materials into the primary coolant system during plant operation, all failed fuel rods that contain through-wall defects need to be identified and removed during refueling so they are not reinserted into service, as well as to support causal analyses. There is a need for improved and efficient inspection methods that can detect failed fuel rods in fuel assemblies identified as leaking by sipping techniques. This project is a part of an ongoing effort by the ...

2012-10-15T23:59:59.000Z

286

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

287

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David Frederick

2012-02-01T23:59:59.000Z

288

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Incentives and Laws Louisiana Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Advanced Ethanol Industry Initiative Archived: 09/01/2013 To develop an advanced (non-corn based) ethanol industry in Louisiana, the following "field-to-pump" requirements must be met: Development of an ethanol feedstock other than corn that: Is derived solely from Louisiana harvested crops. Is capable of an annual yield of at least 600 gallons of ethanol per acre. Requires no more than 50% of the water required to grow corn. Is tolerant to high temperatures and waterlogging. Is resistant to drought and saline-alkaline soils.

289

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

Science Conference Proceedings (OSTI)

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

290

Preliminary Compatibility Assessment of Metallic Dispenser Materials for Service in Ethanol Fuel Blends  

SciTech Connect

The compatibility of selected metals representative of those commonly used in dispensing systems was evaluated in an aggressive E20 formulation (CE20a) and in synthetic gasoline (Reference Fuel C) in identical testing to facilitate comparison of results. The testing was performed at modestly elevated temperature (nominally 60 C) and with constant fluid flow in an effort to accelerate potential interactions in the screening test. Based on weight change, the general corrosion of all individual coupons exposed in the vapor phase above Reference Fuel C and CE20a as well as all coupons immersed in Reference Fuel C was essentially nil (<0.3 {micro}m/y), with no evidence of localized corrosion such as pitting/crevice corrosion or selective leaching at any location. Modest discoloration was observed on the copper-based alloys (cartridge brass and phosphor bronze), but the associated corrosion films were quite thin and apparently protective. For coupons immersed in CE20a, four different materials exhibited net weight loss over the entire course of the experiment: cartridge brass, phosphor bronze, galvanized steel, and terne-plated steel. None of these exhibited substantial incompatibility with the test fluid, with the largest general corrosion rate calculated from coupon weight loss to be approximately 4 {micro}m/y for the cartridge brass specimens. Selective leaching of zinc (from brass) and tin (from bronze) was observed, as well as the presence of sulfide surface films rich in these elements, suggesting the importance of the role of sulfuric acid in the CE20a formulation. Analysis of weight loss data for the slightly corroded metals indicated that the corrosivity of the test environment decreased with exposure time for brass and bronze and increased for galvanized and terne-plated steel. Other materials immersed in CE20a - type 1020 mild steel, type 1100 aluminum, type 201 nickel, and type 304 stainless steel - each appeared essentially immune to corrosion at the test conditions.

Pawel, Steven J [ORNL; Kass, Michael D [ORNL; Janke, Christopher James [ORNL

2009-11-01T23:59:59.000Z

291

Alternative Fuels Data Center: Natural Gas Fuel Rate Reduction...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

292

Alternative Fuels Data Center: Natural Gas Fuel Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

293

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

294

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

295

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

France energy policy for the year 1990 foresees the following breakdown between various energy sources : renewable sources (including hydraulic) : 11%, coal + natural gas : 30.5%, nuclear : 26.5%, oil : 32%. The electricity will be produced mainly by nuclear: 66 % and by hydraulic : 14%, coal : 15%, fuel oil : 5%. Electricity and coal will then be the two major energy sources at the disposal of the French Industry. The new tariff structure of electricity proposed by Electricite de France will be given briefly explaining why and how electricity used to replace fossil fuels are seriously considered by the French Chemical Industry and by Rhone-Poulenc. Examples of various new utilisations of electrical equipment in chemical processes (thermal, heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers.

Mongon, A.

1982-01-01T23:59:59.000Z

296

Evaluation of alternative uses of coal and coal-derived fuels: industry, government, and public viewpoints  

DOE Green Energy (OSTI)

This report covers a study by Battelle's Columbus Laboratories to identify viewpoints representative of various interest groups on alternative uses of coal and coal-derived fuels. The study was conducted for the ERDA Fossil Energy Department to provide background inputs to the R and D planning process. A series of nine structured workshops was conducted with selected representatives of the various interest groups. The individual workshops included representation of industrial and utility companies, state and federal governments, and public interest groups. Viewpoints were recorded on (1) the relative importance of five specific evaluation criteria, (2) the evaluation of seven fuel categories against the criteria, (3) a forecast of future fuel utilization by categories, and (4) suggested R and D emphasis for the fuel categories. This report, Volume I, is a summary and appraisal of workshop results. Volume II contains appendices with more detailed records from the workshops.

Locklin, D.W.; Malone, D.W.; Molnar, D.E.; Sander, L.K.; Morrison, D.L.

1975-11-17T23:59:59.000Z

297

Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization  

E-Print Network (OSTI)

This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation for the Missouri Division of Energy, identifies and evaluates technological options and describes the current status of various energy resource conservation technologies applicable industry and the economic, institutional and regulatory factors which could affect the implementation and use of these energy technologies. An industrial energy manual has been prepared, identifying technologies with significant potential for application in a specific company or plant. Six site-specific industrial case studies have been performed for industries considered suitable for cogeneration, waste heat recovery or alternative fuel use. These case studies, selected after a formal screening process, evaluate actual plant conditions and economics for Missouri industrial establishments. It is hoped that these case studies will show, by example, some of the elements that make energy resource conservation technologies economically a technically feasible in the real world.

Hencey, S.; Hinkle, B.; Limaye, D. R.

1980-01-01T23:59:59.000Z

298

Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Corn Ethanol.” Paper presented at the 8 th Bio-Energy Conference  

E-Print Network (OSTI)

This study has been undertaken at the request of the Illinois Department of Commerce and Community Affairs (DCCA) on the twin premises that (1) data and information essential to an informed choice about the corn-to-ethanol cycle are in need of updating, thanks to scientific and technological advances in both corn farming and ethanol production; and (2) generalized national estimates of energy intensities and greenhouse gas (GHG) production are of less relevance than estimates based specifically on activities and practices in the principal domestic corn production and milling region-- the upper Midwest. Argonne National Laboratory (ANL) contracted with DCCA to apply the ANL Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model with updated information appropriate to corn operations in America’s heartland in an effort to examine the role of corn-feedstock ethanol with respect to GHG emissions given present and near future production technology and practice. Information about these technologies and practices has been obtained from a panel of outside experts consisting of representatives of the U.S. Department of Agriculture, midwestern universities with expertise in corn production and soil emissions, and acknowledged authorities in the field of ethanol plant

Michael Wang; Christopher Saricks

1997-01-01T23:59:59.000Z

299

ethanol | OpenEI  

Open Energy Info (EERE)

ethanol ethanol Dataset Summary Description These data files contain volume, mass, and hardness changes of elastomers and plastics representative exposed to gasoline containing various levels of ethanol. These materials are representative of those used in gasoline fuel storage and dispensing hardware. All values are compared to the original untreated condition. The data sets include results from specimens exposed directly to the fuel liquid and also a set of specimens exposed only to the fuel vapors. Source Mike Kass, Oak Ridge National Laboratory Date Released August 16th, 2012 (2 years ago) Date Updated August 16th, 2012 (2 years ago) Keywords compatibility elastomers ethanol gasoline plastics polymers Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon plastics_dma_results_san.xlsx (xlsx, 4.9 MiB)

300

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network (OSTI)

conversion from soybean to corn ethanol production in theproduced in the US: corn ethanol and soybean biodiesel. USDAdifferent fuels such as corn ethanol, cellulosic ethanol,

Sperling, Daniel; Farrell, Alexander

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network (OSTI)

conversion from soybean to corn ethanol production in theproduced in the US: corn ethanol and soybean biodiesel. USDAdifferent fuels such as corn ethanol, cellulosic ethanol,

2007-01-01T23:59:59.000Z

302

Vehicle Technology and Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

more about: Alternative Fuels Alternative Vehicles For more information on fuels made from biomass, such as ethanol or biodiesel fuels, see the Biomass section: Biodiesel Ethanol...

303

Building a Bridge to the Ethanol Industry--Follow-up Project: Period of Performance; February 22, 2001- December 31, 2002  

DOE Green Energy (OSTI)

Subcontract report summarizing results of a trial of a corn fiber pretreatment process. The results of the trial showed that the carbohydrates in the pretreated liquid and solid streams are readily hydrolyzed by enzymes and easily fermentable to ethanol by yeast.

Ladisch, M.; Mosier, N.; Welch, G.; Dien, B.

2003-04-01T23:59:59.000Z

304

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

DOE Green Energy (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

305

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

306

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

DOE Green Energy (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

307

The mine safety and health administration and how it affects the synthetic fuels industry  

SciTech Connect

The synthetic fuels industry is coming of age, with several demonstration plants operating and several commercial size plants in various stages of development. Although some of these facilities will be totally under the Occupational Safety and Health Act's (OSHA's) jurisdiction, others will be or have certain areas under the Mine Safety and Health Administration's (MSHA) regulatory authority. MSHA's jurisdiction and its regulations and guidelines are introduced.

Peason, T.P.

1983-11-01T23:59:59.000Z

308

NREL: News - NREL Teams with Navy, Private Industry to Make Jet Fuel from  

NLE Websites -- All DOE Office Websites (Extended Search)

313 313 NREL Teams with Navy, Private Industry to Make Jet Fuel from Switchgrass Project could spur jobs in rural America, lead to less reliance of foreign oil June 6, 2013 The Energy Department's National Renewable Energy Laboratory (NREL) is partnering with Cobalt Technologies, U.S. Navy, and Show Me Energy Cooperative to demonstrate that jet fuel can be made economically and in large quantities from a renewable biomass feedstock such as switch grass. "This can be an important step in the efforts to continue to displace petroleum by using biomass resources," NREL Manager for Bioprocess Integration R&D Dan Schell said. "We're converting biomass into sugars for subsequent conversion to butanol and then to JP5 jet fuel." It's one of four biorefinery projects funded recently by the Energy

309

Industrial Uses of Vegetable OilsChapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats  

Science Conference Proceedings (OSTI)

Industrial Uses of Vegetable Oils Chapter 4 Biodiesel: An Alternative Diesel Fuel from Vegetable Oils or Animal Fats Processing eChapters Processing Press Downloadable pdf of Chapter 4 Biodiesel: An Alternative Di

310

Stocks of Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Stocks include those ...

311

Imports of Fuel Ethanol  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: RBOB with Ether and RBOB ...

312

Stocks of Fuel Ethanol  

Annual Energy Outlook 2012 (EIA)

Weekly Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 080913 081613 082313 083013...

313

Fuel Ethanol Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

314

Evaluación y selección de microorganismos para la producción de etanol a nivel industrial = Evaluation and selection of microorganisms for ethanol production at industrial level.  

E-Print Network (OSTI)

??Mariscal Moreno, Juan Pablo (2011) Evaluación y selección de microorganismos para la producción de etanol a nivel industrial = Evaluation and selection of microorganisms for… (more)

Mariscal Moreno, Juan Pablo

2011-01-01T23:59:59.000Z

315

DOE/EA-1647: Supplemental Environmental Assessment for the Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (January 2009)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

S S u p p l e m e n t a l E n v i r o n m e n t a l A s s e s s m e n t a n d N o t i c e o f W e t l a n d s I n v o l v e m e n t Construction and Operation of a Proposed Cellulosic Ethanol Plant, Range Fuels Soperton Plant, LLC (formerly Range Fuels Inc.) Treutlen County, Georgia DOE/EA 1647 Prepared for U.S. Department of Energy January 2009 Contents Section Page Acronyms and Abbreviations ................................................................................................... v 1.0 Introduction......................................................................................................................1 1.1 Background ..........................................................................................................1 1.2 Purpose and Need for Proposed Action ..........................................................2

316

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

317

Determining the Cost of Producing Ethanol from Corn Starch and Lignocellulosic Feedstocks  

DOE Green Energy (OSTI)

The mature corn-to-ethanol industry has many similarities to the emerging lignocellulose-to-ethanol industry. It is certainly possible that some of the early practitioners of this new technology will be the current corn ethanol producers. In order to begin to explore synergies between the two industries, a joint project between two agencies responsible for aiding these technologies in the Federal government was established. This joint project of the USDA-ARS and DOE/NREL looked at the two processes on a similar process design and engineering basis, and will eventually explore ways to combine them. This report describes the comparison of the processes, each producing 25 million annual gallons of fuel ethanol. This paper attempts to compare the two processes as mature technologies, which requires assuming that the technology improvements needed to make the lignocellulosic process commercializable are achieved, and enough plants have been built to make the design well-understood. Ass umptions about yield and design improvements possible from continued research were made for the emerging lignocellulose process. In order to compare the lignocellulose-to-ethanol process costs with the commercial corn-to-ethanol costs, it was assumed that the lignocellulose plant was an Nth generation plant, built after the industry had been sufficiently established to eliminate first-of-a-kind costs. This places the lignocellulose plant costs on a similar level with the current, established corn ethanol industry, whose costs are well known. The resulting costs of producing 25 million annual gallons of fuel ethanol from each process were determined. The figure below shows the production cost breakdown for each process. The largest cost contributor in the corn starch process is the feedstock; for the lignocellulosic process it is the capital cost, which is represented by depreciation cost on an annual basis.

McAloon, A.; Taylor, F.; Yee, W.; Ibsen, K.; Wooley, R.

2000-10-25T23:59:59.000Z

318

Feasibility study for a 10-MM-GPY fuel ethanol plant, Brady Hot Springs, Nevada. Volume 1. Process and plant design  

DOE Green Energy (OSTI)

An investigation was performed to determine the technical and economic viability of constructing and operating a geothermally heated, biomass, motor fuel alcohol plant at Brady's Hot Springs. The results of the study are positive, showing that a plant of innovative, yet proven design can be built to adapt current commerical fermentation-distillation technology to the application of geothermal heat energy. The specific method of heat production from the Brady's Hot Spring wells has been successful for some time at an onion drying plant. Further development of the geothermal resource to add the capacity needed for an ethanol plant is found to be feasible for a plant sized to produce 10 million gallons of motor fuel grade ethanol per year. A very adequate supply of feedgrains is found to be available for use in the plant without impact on the local or regional feedgrain market. The effect of diverting supplies from the animal feedlots in Northern Nevada and California will be mitigated by the by-product output of high-protein feed supplements that the plant will produce. The plant will have a favorable impact on the local farming economies of Fallon, Lovelock, Winnemucca and Elko, Nevada. It will make a positive and significant socioeconomic contribution to Churchill County, providing direct employment for an additional 61 persons. Environmental impact will be negligible, involving mostly a moderate increase in local truck traffic and railroad siding activity. The report is presented in two volumes. Volume 1 deals with the technical design aspects of the plant. The second volume addresses the issue of expanded geothermal heat production at Brady's Hot Springs, goes into the details of feedstock supply economics, and looks at the markets for the plant's primary ethanol product, and the markets for its feed supplement by-products. The report concludes with an analysis of the economic viability of the proposed project.

Not Available

1980-09-01T23:59:59.000Z

319

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

320

Industry  

E-Print Network (OSTI)

oxide emission reductions in industry in the EU. Europeanissues: Annual survey of industries. Central StatisticalDesiccated coconut industry of Sri- Lanka’s opportunities

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Clean Cities: Ethanol Basics, Fact Sheet, October 2008  

DOE Green Energy (OSTI)

Document answers frequently asked questions about ethanol as a transportation fuel, including those on production, environmental effects, and vehicles.

Not Available

2008-10-01T23:59:59.000Z

322

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

DOE Green Energy (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

323

Pacific Ethanol, Inc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mascoma Mascoma Corporate HQ: Cambridge, Massachusetts Proposed Facility Location: Vonore, Tennessee Description: The partnership aims to establish an approximately 85 tonnes per day cellulosic ethanol facility in the Niles Ferry Industrial Park, in Monroe County, Tennessee. The facility will produce 2 million gallons of cellulosic ethanol annually and generate process heat through the combustion of byproduct lignin. CEO or Equivalent: Bruce A. Jamerson, CEO Participants: University of Tennessee, Genera Energy LLC Production: * Capacity of 2 million gallons per year of cellulosic ethanol Technology and Feedstocks: * Mascoma proprietary biochemical conversion process * Switchgrass, hardwood chips State of Readiness: * Estimated to be operational in 2009

324

Industry  

E-Print Network (OSTI)

of coal and other fossil fuels in boilers and furnaces.side energy efficiency and fossil fuel switch. Presented atfrom non-energy uses of fossil fuels and from non-fossil

Bernstein, Lenny

2008-01-01T23:59:59.000Z

325

Reduced carbon intensity of corn ethanol may increase its ...  

U.S. Energy Information Administration (EIA)

tags: biofuels California ethanol ILUC (indirect land use change) LCFS (low carbon fuel standard) liquid fuels policy renewable states. Email Updates.

326

A First-Law Thermodynamic Analysis of the Corn-Ethanol Cycle  

Science Conference Proceedings (OSTI)

This paper analyzes energy efficiency of the industrial corn-ethanol cycle. In particular, it critically evaluates earlier publications by DOE, USDA, and UC Berkeley Energy Resources Group. It is demonstrated that most of the current First Law net-energy models of the industrial corn-ethanol cycle are based on nonphysical assumptions and should be viewed with caution. In particular, these models do not (i) define the system boundaries, (ii) conserve mass, and (iii) conserve energy. The energy cost of producing and refining carbon fuels in real time, for example, corn and ethanol, is high relative to that of fossil fuels deposited and concentrated over geological time. Proper mass and energy balances of corn fields and ethanol refineries that account for the photosynthetic energy, part of the environment restoration work, and the coproduct energy have been formulated. These balances show that energetically production of ethanol from corn is 2-4 times less favorable than production of gasoline from petroleum. From thermodynamics it also follows that ecological damage wrought by industrial biofuel production must be severe. With the DDGS coproduct energy credit, 3.9 gallons of ethanol displace on average the energy in 1 gallon of gasoline. Without the DDGS energy credit, this average number is 6.2 gallons of ethanol. Equivalent CO{sub 2} emissions from corn ethanol are some 50% higher than those from gasoline, and become 100% higher if methane emissions from cows fed with DDGS are accounted for. From the mass balance of soil it follows that ethanol coproducts should be returned to the fields.

Patzek, Tad W. [University of California, Department of Civil and Environmental Engineering (United States)], E-mail: patzek@patzek.berkeley.edu

2006-12-15T23:59:59.000Z

327

Alternative Fuels Data Center: Biobutanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biobutanol to someone Biobutanol to someone by E-mail Share Alternative Fuels Data Center: Biobutanol on Facebook Tweet about Alternative Fuels Data Center: Biobutanol on Twitter Bookmark Alternative Fuels Data Center: Biobutanol on Google Bookmark Alternative Fuels Data Center: Biobutanol on Delicious Rank Alternative Fuels Data Center: Biobutanol on Digg Find More places to share Alternative Fuels Data Center: Biobutanol on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Biobutanol Biobutanol is a 4-carbon alcohol (butyl alcohol) produced from the same feedstocks as ethanol including corn, sugar beets, and other biomass feedstocks. Butanol is generally used as an industrial solvent in products such as lacquers and enamels, but it also can be blended with other fuels

328

Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search...

329

Industry  

E-Print Network (OSTI)

the paper, glass or ceramics industry) making it difficulttechnology in the ceramic manufacturing industry. industries: iron and steel, non-ferrous metals, chemicals (including fertilisers), petroleum refining, minerals (cement, lime, glass and ceramics) and

Bernstein, Lenny

2008-01-01T23:59:59.000Z

330

Industry  

E-Print Network (OSTI)

in the iron and steel industry: a global model. Energy, 30,report of the world steel industry 2005. International Irontrends in the iron and steel industry. Energy Policy, 30,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

331

New Energy Corporation of Indiana final study report on construction of a fuel-grade ethanol plant. Attachment VI. Bid tabulations  

DOE Green Energy (OSTI)

The bid tabulations and engineering bid analysis are presented for each system in the ethanol plant.

Not Available

1981-09-30T23:59:59.000Z

332

Ethanol Production and Gasoline Prices: A Spurious Correlation  

E-Print Network (OSTI)

Ethanol made from corn comprises 10 % of US gasoline, up from 3 % in 2003. This dramatic increase was spurred by recent policy initiatives such as the Renewable Fuel Standard and state-level blend mandates, and supported by direct subsidies such as the Volumetric Ethanol Excise Tax Credit. Some proponents of ethanol have argued that ethanol production greatly lowers gasoline prices, with one industry group claiming it reduced gasoline prices by 89 cents in 2010 and $1.09 in 2011. The estimates have been cited in numerous speeches by Secretary of Agriculture Thomas Vilsack. These estimates are based on a series of papers by Xiaodong Du and Dermot Hayes. We show that these results are driven by implausible economic assumptions and spurious statistical correlations. To support this last point, we use the same statistical models and find that ethanol production “decreases ” natural gas prices, but “increases” unemployment in both the US and Europe. We even show that ethanol production “increases ” the ages of our children.

Christopher R. Knittel; Aaron Smith

2012-01-01T23:59:59.000Z

333

Ethanol Facts : BioEnergy Science Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol Facts Ethanol Facts In 2005, the U.S. produced about 4 billion gallons of ethanol from corn grain, equaling approximately 2% of the 140 billion gallons of gasoline consumed. Ethanol is widely used as a fuel additive. The oxygen contained in ethanol improves gasoline combustibility. The Energy Policy Act of 2005 has established a renewable fuels standard which requires using 7.5 billion gallons of ethanol by 2012. E85 (85% ethanol and 15% gasoline blend) can be used as a substitute for gasoline in vehicles that have been modified to use E85. Energy content of E85 is 70% that of gasoline, so about 1.4 gallons of E85 are needed to displace one gallon of gasoline. Starch in corn grain is readily degraded into glucose sugar molecules that are fermented to ethanol. The complex structural

334

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Electrical Workers in Fossil-Fueled Power Plan ts  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fourth EPRI ergonomics handbook; it specifically focuses on tasks performed by electricians who work in fossil-fueled electric power plants. Fossil-fueled power plant electrical work is physically strenuous and can expose workers to musculoskeletal disorders (MSDs), such as carpal tunnel syndrome, low-back pain, or shoulder tendonitis. In an e...

2008-01-11T23:59:59.000Z

335

The cement industry is the most energy intensive of all ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

336

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

DOE Green Energy (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

337

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

338

Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

s more and more AFVs find s more and more AFVs find their places in the transporta- tion industry, the need for qualified technicians to service these vehicles continues to grow. To help meet this need, transportation indus- try and education experts are working together to develop standards for AFV technician training, standards that will serve as a valuable tool for AFV technician training programs now and in the future. Background Section 411 of the Energy Policy Act of 1992 (EPAct) requires that the U.S. Department of Energy (DOE) ensure the availability of training programs for voluntary certification of alternative fuels technicians. To meet this requirement, DOE entered into a 5-year cooperative agreement with the National Automotive Technicians Education Foundation (NATEF) to develop and implement

339

US Ethanol Production and Use Under Alternative  

E-Print Network (OSTI)

gasoline as a motor fuel, use of ethanol-blended gasoline results in lower carbon monoxide emission encourages ethanol production. Two prominent policy instruments are currently employed: a federal excise tax are currently employed: a federal excise tax credit on each gallon produced and a "renewable fuel standard" (RFS

340

Industries Affected  

Science Conference Proceedings (OSTI)

Table 2   Industries affected by microbiologically influenced corrosion...generation: nuclear, hydro, fossil fuel,

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum  

Science Conference Proceedings (OSTI)

Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1-2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Raman, Babu [ORNL; Zhu, Mingjun [South China University of Technology, Guangzhou, PR China; Mielenz, Jonathan R [ORNL; Brown, Steven D [ORNL; Guss, Adam M [ORNL; Lynd, Lee R [Thayer School of Engineering at Dartmouth

2011-01-01T23:59:59.000Z

342

Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum  

Science Conference Proceedings (OSTI)

Clostridium thermocellum is a model microorganism for converting cellulosic biomass into fuels and chemicals via consolidated bioprocessing. One of the challenges for industrial application of this organism is its low ethanol tolerance, typically 1 2% (w/v) in wild-type strains. In this study, we report the development and characterization of mutant C. thermocellum strains that can grow in the presence of high ethanol concentrations. Starting from a single colony, wild-type C. thermocellum ATCC 27405 was sub-cultured and adapted for growth in up to 50 g/L ethanol using either cellobiose or crystalline cellulose as the growth substrate. Both the adapted strains retained their ability to grow on either substrate and displayed a higher growth rate and biomass yield than the wild-type strain in the absence of ethanol. With added ethanol in the media, the mutant strains displayed an inverse correlation between ethanol concentration and growth rate or biomass yield. Genome sequencing revealed six common mutations in the two ethanol-tolerant strains including an alcohol dehydrogenase gene and genes involved in arginine/pyrimidine biosynthetic pathway. The potential role of these mutations in ethanol tolerance phenotype is discussed.

Lynd, Lee R [Thayer School of Engineering at Dartmouth; Shao, Xiongjun [Thayer School of Engineering at Dartmouth; Raman, Babu [Dow Chemical Company, The; Mielenz, Jonathan R [ORNL; Brown, Steven D [ORNL; Guss, Adam M [ORNL; Zhu, Mingjun [South China University of Technology, Guangzhou, PR China

2011-01-01T23:59:59.000Z

343

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,116 1,186 312 Beverage and Tobacco Products 108 104 109 313 Textile Mills 254 205 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 504 375 445 322 Paper 2,744 2,361 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 3,622 3,202 3,396 325 Chemicals 3,704 3,769 3,195 326 Plastics and Rubber Products 327 348 336 327 Nonmetallic Mineral Products 969 1,052 1,105 331 Primary Metals 2,576 2,123 1,744 332 Fabricated Metal Products 441 387 397

344

Industry  

E-Print Network (OSTI)

and power in US industry. Energy Policy, 29, pp. 1243-1254.Paris. IEA, 2004: Energy Policies of IEA Countries: Finlandand steel industry. Energy Policy, 30, pp. 827-838. Kim, Y.

Bernstein, Lenny

2008-01-01T23:59:59.000Z

345

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

treatment emissions from corn/ethanol and wood bio- fuelMulti-modal emissions Corn-ethanol production, energy use:biodiesel fuel cycles, and corn/ ethanol fuel cycles. GHGCH

Delucchi, Mark

2003-01-01T23:59:59.000Z

346

Alternative Fuels Data Center: Low Emission Vehicle Electricity...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel...

347

Alternative Fuels Data Center: Natural Gas Fleet Services  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

& Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices...

348

Alternative Fuels Data Center: Mississippi Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

349

Alternative Fuels Data Center: New Mexico Laws and Incentives...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

350

Alternative Fuels Data Center: Missouri Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

351

Alternative Fuels Data Center: Arkansas Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

352

Alternative Fuels Data Center: Kansas Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane | Propane Vehicles Emerging Fuels Fuel Prices Clean...

353

Green Industrial Policy: Trade and Theory  

E-Print Network (OSTI)

30-50 cents, whereas corn ethanol costs range from 60-80and the US supports corn-based ethanol; Germany emphasizestransport fuel, and corn-based ethanol provided 4% of the US

Karp, Larry; Stevenson, Megan

2012-01-01T23:59:59.000Z

354

Ethanol Plant Production of Fuel Ethanol  

Gasoline and Diesel Fuel Update (EIA)

Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 080913 081613...

355

Industry  

E-Print Network (OSTI)

2003: The history of waste energy recovery in Germany sinceincreasing recovery of waste energy and process gases, andgeneration or non-energy uses, waste-derived fuels,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

356

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network (OSTI)

GREET Pathway for Corn Ethanol. Version 2.1. Stationarygasoline fuel, 6%from corn ethanol, and 17% from diesel. Webased biofuels including corn ethanol, Brazilian sugarcane

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

357

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network (OSTI)

K. , 1993b, Fuel Prices and Economy: Factors Effecting LandCar Test and Actual Fuel Economy: Yet Another Gap? Transportof automobile fuel economy in Europe. Energy Policy 34 14.

Schipper, Lee

2008-01-01T23:59:59.000Z

358

Working towards a future on alternative fuels : the role of the automotive industry  

E-Print Network (OSTI)

Complementarity of vehicles and fuels has posed significant barrier for increasing the use of alternative fuels in place of traditional ones. An initial positive number of either alternative fuel vehicle (AFV) users or ...

Chen, Cuicui

2012-01-01T23:59:59.000Z

359

Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania)...  

Open Energy Info (EERE)

motor fuels and fuel systems are compressed and liquefied natural gas, ethanol (E85), methanol (M85), hydrogen, hythane, electricity, fuels from biological materials or...

360

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Search Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen |...

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

2008-12-01T23:59:59.000Z

362

PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc.  

E-Print Network (OSTI)

represents a carbon cycle, where plants absorb carbon dioxide during growth, "recycling" the carbon released #12;Program ObjectivesProgram Objectives Integrated PEM Fuel Cell System Ethanol based Power Plant 10PEMFC Power System on EthanolPEMFC Power System on Ethanol Caterpillar Inc.Caterpillar Inc. Thomas

363

Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?  

DOE Green Energy (OSTI)

The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers, visits to two production facilities, review of the literature on potential markets in North America and potential federal government procurements, development of a cost model reflecting economies of scale and learning-by-doing, and estimation of the impact of federal PEM fuel cell procurements on fuel cell system costs and the evolution of private market demand. This report presents the findings of that study. Section 2 outlines the status of the industry and describes potential markets based on interviews of manufacturers and the existing literature. Section 3 describes the modeling methodology including key premises and assumptions, and presents estimates of market evolution under four scenarios: (1) Base Case with no federal government procurement program, (2) Scenario 1, an aggressive program beginning with less than 200 units procured in 2008 ramping up to more than 2,000 units in 2012, (3) Scenario 2 which is identical to Scenario 1 except that the private market is assumed to be twice as sensitive to price, and (4) Scenario 3, a delayed, smaller federal procurement program beginning in 2011 increasing to a maximum of just over 1,000 units per year in 2012. The analysis suggests that the aggressive program of Scenario 1 would likely stimulate a sustainable, competitive North American non-automotive PEM fuel cell industry. Given plausible assumptions about learning rates and scale economies, the procurements assumed in Scenario 1 appear to be sufficient to drive down costs to target levels. These findings are conditional on the evolution of acceptable hydrogen supply strategies, which were not explicitly analyzed in this study. Success is less certain under Scenarios 2 and 3, and there appears to be a strong probability that existing OEMs would not survive until 2011. In the Base Case, no program, a viable North American industry does not emerge before 2020.

Greene, David L [ORNL; Duleep, Dr. K. G. [Energy and Environmental Analysis, Inc., an ICF Company

2008-10-01T23:59:59.000Z

364

EIA - Federal Fuels Taxes and Tax Credits  

U.S. Energy Information Administration (EIA)

Ethanol Import Tariff . Currently, two duties are imposed on imported ethanol. ... Defense Energy Support Center, “Compilation of United States Fuel Taxes ...

365

The Role of Cellulosic Ethanol in Transportation  

Science Conference Proceedings (OSTI)

Petroleum provides essentially all of the energy used today in the transportation sector. To reduce this dependence on fossil energy, other fuels are beginning to be used, notably ethanol and biodiesel. Almost all fuel ethanol is produced by the conversion of corn grain to starch with subsequent fermentation to ethanol. In 2006, almost 5 billion gallons of fuel ethanol were produced, which used 17% of domestic corn production. The DOE has a goal to displace 30% of motor gasoline demand or 60 billion gallons per year by 2030. To achieve this goal, production of ethanol from lignocellulosic sources (e.g., agricultural residues, forest residues, and dedicated energy crops) is needed. This paper will describe the production of cellulosic ethanol as well as the issues and benefits associated with its production.

Robert M. Neilson, Jr.

2007-10-01T23:59:59.000Z

366

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

367

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David B. Frederick

2011-02-01T23:59:59.000Z

368

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011  

SciTech Connect

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David Frederick

2012-02-01T23:59:59.000Z

369

Enabling High Efficiency Ethanol Engines  

Science Conference Proceedings (OSTI)

Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

Szybist, J.; Confer, K. (Delphi Automotive Systems)

2011-03-01T23:59:59.000Z

370

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

371

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy.

372

RINs and RVOs are used to implement the Renewable Fuel ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

373

The mix of fuels used for electricity generation in the ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ... ...

374

Solid State Research CenterDOE Fuel Cell Portable Power Workshop End User Perspective Industrial  

E-Print Network (OSTI)

Portable Power Workshop Fuel Cell Cost · Desktop/Travel/Vehicle Charger ­ Current battery chargers: $25) · Fuel Cell System ­ Total cost "comparable" to charger/battery ­ Includes both fuel cell and battery Power Workshop Outline · Energy & Power of Portable Devices · Fuel Cell Applications & Cost · Key

375

Alternative Fuels Data Center: Alternative Fuels and Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

376

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and...

377

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOE Patents (OSTI)

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced. 3 figs.

Kansa, E.J.; Anderson, B.L.; Wijesinghe, A.M.; Viani, B.E.

1999-05-25T23:59:59.000Z

378

Separation of toxic metal ions, hydrophilic hydrocarbons, hydrophobic fuel and halogenated hydrocarbons and recovery of ethanol from a process stream  

DOE Patents (OSTI)

This invention provides a process to tremendously reduce the bulk volume of contaminants obtained from an effluent stream produced subsurface remediation. The chemicals used for the subsurface remediation are reclaimed for recycling to the remediation process. Additional reductions in contaminant bulk volume are achieved by the ultra-violet light destruction of halogenated hydrocarbons, and the complete oxidation of hydrophobic fuel hydrocarbons and hydrophilic hydrocarbons. The contaminated bulk volume will arise primarily from the disposal of the toxic metal ions. The entire process is modular, so if there are any technological breakthroughs in one or more of the component process modules, such modules can be readily replaced.

Kansa, Edward J. (Livermore, CA); Anderson, Brian L. (Lodi, CA); Wijesinghe, Ananda M. (Tracy, CA); Viani, Brian E. (Oakland, CA)

1999-01-01T23:59:59.000Z

379

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

highest potential to save aviation fuel. highest potential to save aviation fuel. All MAF personnel are encouraged to propose fuel savings ideas. These ideas are then processed as initiatives, assigned a primary point of contact, and routed through an analysis process to prepare the initiative for presenta- tion to the Air Force's corporate structure. The corporate structure then evaluates and determines the initiatives with the highest potential fuel savings. Fuel-saving efforts focus on six major areas: policy, planning, execution, maintenance, science and technology, and fuel-efficient aircraft systems. The MAF also established a predetermined set of fuel-savings metrics and required reporting. In fiscal year 2011, implemented fuel initiatives saved the MAF more than 42 million gallons of aviation fuel in both

380

DOE/EA-1517: Environmental Assessment for the Design and Construction of a Fuel Ethanol Plant, Jasper County, Indiana (April 2005)  

DOE Green Energy (OSTI)

Based on action by the U.S. Congress, the U.S. Department of Energy (DOE) has funding available to support a proposal by the Iroquois Bio-energy Company (IBEC), an Indiana limited liability company, to construct a fuel ethanol plant in Jasper County, Indiana (the proposed plant). Congress has acknowledged the merit of this project by providing specific funding through DOE. Consequently, DOE proposes to provide partial funding to IBEC to subsidize the design and construction of the proposed plant (the Proposed Action). In accordance with DOE and National Environmental Policy Act (NEPA) implementing regulations, DOE is required to evaluate the potential environmental impacts of DOE facilities, operations, and related funding decisions. The proposal to use Federal funds to support the project requires DOE to address NEPA requirements and related environmental documentation and permitting requirements. In compliance with NEPA (42 U.S.C. {section} 4321 et seq.) and DOE's NEPA implementing regulations (10 CFR section 1021.330) and procedures, this environmental assessment (EA) examines the potential environmental impacts of DOE's Proposed Action and a No Action Alternative.

N /A

2005-04-29T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress  

Science Conference Proceedings (OSTI)

Clostridium thermocellum is a candidate consolidated bioprocessing biocatalyst, which is a microorganism that expresses enzymes for both cellulose hydrolysis and its fermentation to produce fuels such as lignocellulosic ethanol. However, C. thermocellum is relatively sensitive to ethanol compared to ethanologenic microorganisms such as yeast and Zymomonas mobilis that are used in industrial fermentations but do not possess native enzymes for industrial cellulose hydrolysis. In this study, C. thermocellum was grown to mid-exponential phase and then treated with ethanol to a final concentration of 3.9 g/L to investigate its physiological and regulatory responses to ethanol stress. Samples were taken pre-shock and 2, 12, 30, 60, 120, and 240 min post-shock, and from untreated control fermentations for systems biology analyses. Cell growth was arrested by ethanol supplementation with intracellular accumulation of carbon sources such as cellobiose, and sugar phosphates, including fructose-6-phosphate and glucose-6-phosphate. The largest response of C. thermocellum to ethanol shock treatment was in genes and proteins related to nitrogen uptake and metabolism, which is likely important for redirecting the cells physiology to overcome inhibition and allow growth to resume. This study suggests possible avenues for metabolic engineering and provides comprehensive, integrated systems biology datasets that will be useful for future metabolic modeling and strain development endeavors.

Yang, Shihui [ORNL; Giannone, Richard J [ORNL; Dice, Lezlee T [ORNL; Yang, Zamin Koo [ORNL; Engle, Nancy L [ORNL; Tschaplinski, Timothy J [ORNL; Hettich, Robert {Bob} L [ORNL; Brown, Steven D [ORNL

2012-01-01T23:59:59.000Z

382

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol » Laws & Incentives Ethanol » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Laws & Incentives Federal Laws and Incentives for Ethanol The list below contains summaries of all Federal laws and incentives related to Ethanol. Incentives Alternative Fuel Infrastructure Tax Credit Fueling equipment for natural gas, liquefied petroleum gas (propane),

383

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

384

Industry  

E-Print Network (OSTI)

milling industry: An ENERGY STAR Guide for Energy and Plantcement mak- ing - An ENERGY STAR Guide for Energy and Plantre- fineries - An ENERGY STAR Guide for Energy and Plant

Bernstein, Lenny

2008-01-01T23:59:59.000Z

385

Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production  

SciTech Connect

California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

Coughlin, Katie; Fridley, David

2008-07-17T23:59:59.000Z

386

Physical Energy Accounting in California: A Case Study of Cellulosic Ethanol Production  

SciTech Connect

California's target for greenhouse gas reduction in part relies on the development of viable low-carbon fuel alternatives to gasoline. It is often assumed that cellulosic ethanol--ethanol made from the structural parts of a plant and not from the food parts--will be one of these alternatives. This study examines the physical viability of a switchgrass-based cellulosic ethanol industry in California from the point of view of the physical requirements of land, water, energy and other material use. Starting from a scenario in which existing irrigated pastureland and fiber-crop land is converted to switchgrass production, the analysis determines the total acreage and water supply available and the resulting total biofuel feedstock output under different assumed yields. The number and location of cellulosic ethanol biorefineries that can be supported is also determined, assuming that the distance from field to biorefinery would be minimized. The biorefinery energy input requirement, available energy from the fraction of biomass not converted to ethanol, and energy output is calculated at various levels of ethanol yields, making different assumptions about process efficiencies. The analysis shows that there is insufficient biomass (after cellulose separation and fermentation into ethanol) to provide all the process energy needed to run the biorefinery; hence, the purchase of external energy such as natural gas is required to produce ethanol from switchgrass. The higher the yield of ethanol, the more external energy is needed, so that the net gains due to improved process efficiency may not be positive. On 2.7 million acres of land planted in switchgrass in this scenario, the switchgrass outputproduces enough ethanol to substitute for only 1.2 to 4.0percent of California's gasoline consumption in 2007.

Coughlin, Katie; Fridley, David

2008-07-17T23:59:59.000Z

387

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Design Handbook for Fossil-Fueled Electric Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the fifth EPRI ergonomics handbook; it provides a framework and specific guidelines for decisionmaking that will apply ergonomic principles to the design of electric generating stations. Fossil-fueled power plant operation and maintenance is physically strenuous, and it may contribute to development of musculoskeletal disorders (MSDs) such as carp...

2008-03-11T23:59:59.000Z

388

Commerce study looks at cost of pollution control for fossil-fuel power industry  

SciTech Connect

Environmental controls for fossil-fuel power plants consumed 1.3 percent of the national fuel used in 1974, with the largest demand going for sulfur dioxide emission control. Projections for power plant consumption to meet environmental standards range as high as eight percent in the 1980s. Less-energy-consuming systems include coal blending, tall stacks, and supplementary control systems; while high consumers are using coal washing operations in place of scrubbers, fuel transportation, conversion to acceptable fuels, waste heat disposal, and particulate controls. A summary table presents sulfur dioxide regulations in terms of their goals and their anticipated minimum and maximum fuel consumption. (DCK)

1977-06-01T23:59:59.000Z

389

Industrial Fuel Gas Demonstration Plant Program. Task III, Demonstration plant safety, industrial hygiene, and major disaster plan (Deliverable No. 35)  

SciTech Connect

This Health and Safety Plan has been adopted by the IFG Demonstration Plant managed by Memphis Light, Gas and Water at Memphis, Tennessee. The plan encompasses the following areas of concern: Safety Plan Administration, Industrial Health, Industrial Safety, First Aid, Fire Protection (including fire prevention and control), and Control of Safety Related Losses. The primary objective of this plan is to achieve adequate control of all potentially hazardous activities to assure the health and safety of all employees and eliminate lost work time to both the employees and the company. The second objective is to achieve compliance with all Federal, state and local laws, regulations and codes. Some thirty specific safe practice instruction items are included.

None

1980-03-01T23:59:59.000Z

390

Parametric combustion modeling for ethanol-gasoline fuelled spark ignition engines.  

E-Print Network (OSTI)

?? Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing… (more)

Yeliana

2011-01-01T23:59:59.000Z

391

TransForum v3n2 - Ethanol Additive for Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

ETHANOL FUEL ADDITIVE MAY HELP SOLVE THE DIESEL EMISSIONS PUZZLE The quest to reduce atmospheric emissions associated with diesel-fueled vehicles has faced a longstanding...

392

Dissolution Kinetics of Ethanol Droplets in Passenger Car Motor Oil.  

E-Print Network (OSTI)

??The use of ethanol as an additive to gasoline fuel is becoming a common phenomenon. It helps solve the energy crisis and environmental issues that… (more)

Guan, Bo

2013-01-01T23:59:59.000Z

393

NEW INSIGHTS ON THE USE OF ETHANOL IN AUTOMOTIVE ...  

Science Conference Proceedings (OSTI)

... Atmospheric ethanol has been receiving increased attention due to its use as a biofuel or fuel additive and because of the alcohol's potential impact ...

394

Biomass to ethanol : potential production and environmental impacts.  

E-Print Network (OSTI)

??This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn… (more)

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

395

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

SciTech Connect

The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

2003-06-01T23:59:59.000Z

396

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

397

Corn Ethanol and Wildlife: How are Policy and Market Driven Increases in Corn Plantings Affecting Habitat and Wildlife.  

E-Print Network (OSTI)

??Since 2005, government incentives have driven massive growth in the corn ethanol industry, increasing demand for corn for ethanol by 200%. Corn prices have risen… (more)

Griffin, Elizabeth; Glaser, Aviva; Fogel, Gregory; Johnson, Kristen

2009-01-01T23:59:59.000Z

398

Fuels and Lubricants Subcommittee  

Science Conference Proceedings (OSTI)

... State Fuel Quality Laws for Ethanol Blended Gasoline changes to promote and protect but not impede e10 presented" by Marathon Petroleum Co. ...

2011-08-30T23:59:59.000Z

399

List of Renewable Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 97 Renewable Fuels Incentives. CSV (rows 1 - 97) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls Lighting Lighting Controls/Sensors Steam-system upgrades Water Heaters Windows Biodiesel Biomass CHP/Cogeneration Ethanol Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Photovoltaics Renewable Fuels Solar Water Heat Commercial Refrigeration Equipment Natural Gas Yes Alternative Energy Personal Property Tax Exemption (Michigan) Property Tax Incentive Michigan Commercial

400

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock  

E-Print Network (OSTI)

200 kW of 3-phase electric power at 480 Volts, provides 700,000 Btu/hr of thermal energy, and is able steam and less than the condensate return temperature. Hence, in this plant, the fuel cell's thermal Fuel Cell 4 Heat Exchanger Figure 3. Thermal interface between the PC25C and the plant. Using PC25C

Kissock, Kelly

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Climate policy and the airline industry : emissions trading and renewable jet fuel  

E-Print Network (OSTI)

In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

McConnachie, D. (Dominic Alistair)

2012-01-01T23:59:59.000Z

402

Ethanol production using corn, switchgrass, and wood; Biodiesel production using soybean and sunflower  

E-Print Network (OSTI)

Energy outputs from ethanol produced using corn, switchgrass, and wood biomass were each less than the respective fossil energy inputs. The same was true for producing biodiesel using soybeans and sunflower, however, the energy cost for producing soybean biodiesel was only slightly negative compared with ethanol production. Findings in terms of energy outputs compared with the energy inputs were: • Ethanol production using corn grain required 29% more fossil energy than the ethanol fuel produced. • Ethanol production using switchgrass required 50 % more fossil energy than the ethanol fuel produced. • Ethanol production using wood biomass required 57 % more fossil energy than the ethanol fuel produced. • Biodiesel production using soybean required 27 % more fossil energy than the biodiesel fuel produced (Note, the energy yield from soy oil per hectare is far lower than the ethanol yield from corn). • Biodiesel production using sunflower required 118 % more fossil energy than the biodiesel fuel produced.

David Pimentel; Tad W. Patzek

2005-01-01T23:59:59.000Z

403

Alternative Fuels Data Center: Natural Gas Vehicle (NGV) Safety...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas |...

404

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

405

Fuel Industry Response to Power Industry Environmental Pressures: An Analysis of Risk and Investment in the Coal Supply Chain and Na tural Gas Industry  

Science Conference Proceedings (OSTI)

This report examines the question of how mounting environmental pressures on coal-fired generation will impact investment in fuel supply and transportation. If destined for demise, are coal companies cutting back investments or exiting the business? Alternatively, are natural gas companies gearing up for a financial boom? The study specifically investigates a "clean coal" case of greatly tightened NOx and SO2 limits as well as a "low coal" case of much reduced coal use to meet CO2 control objectives.

1999-07-02T23:59:59.000Z

406

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

407

Fuel Cell Combined Heat and Power Industrial Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Kriston P. Brooks (Primary Contact), Siva P. Pilli, Dale A. King Pacific Northwest National Laboratory P.O. Box 999 Richland, WA 99352 Phone: (509) 372-4343 Email: kriston.brooks@pnnl.gov DOE Manager HQ: Peter Devlin Phone: (202) 586-4905 Email: Peter.Devlin@ee.doe.gov Contract Number: DE-AC05-76RL01830 Subcontractor: ClearEdge Power, Portland, OR Project Start Date: May 2010 Project End Date: September 2012

408

Elastomer Compatibility Testing of Renewable Diesel Fuels  

DOE Green Energy (OSTI)

In this study, the integrity and performance of six elastomers were tested with ethanol-diesel and biodiesel fuel blends.

Frame, E.; McCormick, R. L.

2005-11-01T23:59:59.000Z

409

Waste fuels are a significant energy source for U.S ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

410

Fuel.vp  

Annual Energy Outlook 2012 (EIA)

Table F7: Distillate Fuel Oil Consumption Estimates, 2011 State Residential Commercial Industrial Transportation Electric Power Total Residential Commercial Industrial...

411

Lousiana Green Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Lousiana Green Fuels LLC Jump to: navigation, search Name Lousiana Green Fuels LLC Place Louisiana Sector Biomass Product Developing a cellulosic biomass-to-ethanol plant in...

412

EERE: Alternative Fuels Data Center Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

413

Alternative Fuels Data Center: Vehicle Conversions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

414

Alternative Fuels Data Center: E15  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel Cell Vehicles Natural Gas | Natural Gas Vehicles Propane |...

415

Calgren Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

Renewable Fuels LLC Place Newport Beach, California Zip 92660 Product Developer of bio-ethanol plants in US, particularly California. References Calgren Renewable Fuels LLC1...

416

Ethanol producers respond to market conditions - Today in Energy ...  

U.S. Energy Information Administration (EIA)

Corn oil recovery is one of several strategies that the ethanol industry is developing to improve ... such as wood waste or corn stover (e.g., leaves, stalks, ...

417

CRV industrial Ltda | Open Energy Information  

Open Energy Info (EERE)

CRV industrial Ltda Place Carmo do Rio Verde, Goias, Brazil Sector Biomass Product Ethanol and biomass energy producer References CRV industrial Ltda1 LinkedIn Connections...

418

Oxygenates (excl. Fuel Ethanol) Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

419

Ethanol production by vapor compression distillation  

DOE Green Energy (OSTI)

The goal of this project is to develop and demonstrate a one gallon per hour vapor compression distillation unit for fuel ethanol production that can be profitably manufactured and economically operated by individual family units. Vapor compression distillation is already an industrially accepted process and this project's goal is to demonstrate that it can be done economically on a small scale. Theoretically, the process is independent of absolute pressure. It is only necessary that the condenser be at higher pressure than the evaporator. By reducing the entire process to a pressure of approximately 0.1 atmosphere, the evaporation and condensation can occur at near ambient temperature. Even though this approach requires a vacuum pump, and thus will not represent the final cost effective design, it does not require preheaters, high temperature materials, or as much insulation as if it were to operate a near ambient pressure. Therefore, the operation of the ambient temperature unit constitutes the first phase of this project. Presently, the ambient temperature unit is fully assembled and has begun testing. So far it has successfully separated ethanol from a nine to one diluted input solution. However the production rate has been very low.

Ellis, G.S.

1981-01-01T23:59:59.000Z

420

Advanced coal fueled industrial cogeneration gas turbine system. Final report, June 1986--April 1994  

SciTech Connect

Demonstration of a direct coal-fueled gas turbine system that is environmentally, technically, and economically viable depends on the satisfactory resolution of several key issues. Solar Turbines, Incorporates technical approach to these issues was to advance a complete direct coal-fueled gas turbine system that incorporated near-term technology solutions to both historically demonstrated problem areas such as deposition, erosion, and hot end corrosion, and to the emergent environmental constraints based on NO{sub x}, SO{sub x}, and particulates. Solar`s program approach was keyed to the full commercialization of the coal-fueled cogeneration gas turbine which would occur after extended field verification demonstrations conducted by the private sector. The program was structured in three phases plus an optional fourth phase: Phase 1 -- system description; Phase 2 -- component development; Phase 3 -- prototype system verification; and Phase 4 -- field evaluation.

LeCren, R.T.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1990--June 1991  

SciTech Connect

Advances in coal-fueled gas turbine technology over the past few years, together with recent DOE-METC sponsored studies, have served to provide new optimism that the problems demonstrated in the past can be economically resolved and that the coal-fueled gas turbine can ultimately be the preferred system in appropriate market application sectors. The objective of the Solar/METC program is to prove the technical, economic, and environmental feasibility of a coal-fired gas turbine for cogeneration applications through tests of a Centaur Type H engine system operated on coal fuel throughout the engine design operating range. The five-year program consists of three phases, namely: (1) system description; (2) component development; (3) prototype system verification. A successful conclusion to the program will initiate a continuation of the commercialization plan through extended field demonstration runs.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; Wen, C.S.

1991-07-01T23:59:59.000Z

422

Actual versus predicted impacts of three ethanol plants on aquatic and terrestrial resources  

DOE Green Energy (OSTI)

To help reduce US dependence on imported petroleum, Congress passed the Energy Security Act of 1980 (public Law 96-294). This legislation authorized the US Department of Energy (DOE) to promote expansion of the fuel alcohol industry through, among other measures, its Alcohol Fuels Loan Guarantee Program. Under this program, selected proposals for the conversion of plant biomass into fuel-grade ethanol would be granted loan guarantees. of 57 applications submitted for loan guarantees to build and operate ethanol fuel projects under this program, 11 were considered by DOE to have the greatest potential for satisfying DOE`s requirements and goals. In accordance with the National Environmental Policy Act (NEPA), DOE evaluated the potential impacts of proceeding with the Loan Guarantee Program in a programmatic environmental assessment (DOE 1981) that resulted in a finding of no significant impact (FANCY) (47 Federal Register 34, p. 7483). The following year, DOE conducted site-specific environmental assessments (EAs) for 10 of the proposed projects. These F-As predicted no significant environmental impacts from these projects. Eventually, three ethanol fuel projects received loan guarantees and were actually built: the Tennol Energy Company (Tennol; DOE 1982a) facility near Jasper in southeastern Tennessee; the Agrifuels Refining Corporation (Agrifuels; DOE 1985) facility near New Liberia in southern Louisiana; and the New Energy Company of Indiana (NECI; DOE 1982b) facility in South Bend, Indiana. As part of a larger retrospective examination of a wide range of environmental effects of ethanol fuel plants, we compared the actual effects of the three completed plants on aquatic and terrestrial resources with the effects predicted in the NEPA EAs several years earlier. A secondary purpose was to determine: Why were there differences, if any, between actual effects and predictions? How can assessments be improved and impacts reduced?

Eddlemon, G.K.; Webb, J.W.; Hunsaker, D.B. Jr.; Miller, R.L.

1993-03-15T23:59:59.000Z

423

National Ethanol Vehicle Coalition NEVC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Vehicle Coalition NEVC Ethanol Vehicle Coalition NEVC Jump to: navigation, search Name National Ethanol Vehicle Coalition (NEVC) Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is a non-profit membership organisation serving as a primary advocacy group promoting the use of 85% ethanol in the US as a form of alternative transportation fuel. References National Ethanol Vehicle Coalition (NEVC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Ethanol Vehicle Coalition (NEVC) is a company located in Jefferson City, Missouri . References ↑ "National Ethanol Vehicle Coalition (NEVC)" Retrieved from "http://en.openei.org/w/index.php?title=National_Ethanol_Vehicle_Coalition_NEVC&oldid=349065

424

Ethanol Production Tax Credit (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) Ethanol Production Tax Credit (Kentucky) < Back Eligibility Agricultural Program Info State Kentucky Program Type Corporate Tax Incentive Qualified ethanol producers are eligible for an income tax credit of $1 per gallon of corn- or cellulosic-based ethanol that meets ASTM standard D4806. The total credit amount available for all corn and cellulosic ethanol producers is $5 million for each taxable year. Unused ethanol credits from one ethanol-based cap, such as corn, may be applied to another ethanol-based cap, such as cellulosic, in the same taxable year. Unused credits may not be carried forward. Kentucky statute information regarding alternative fuel producer tax credits can be found within KRS Chapters 141.422-141.430

425

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

426

Renewable Fuels (incl. Fuel Ethanol) Exports  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

427

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

428

Impacts of Electric Industry Restructuring on Electric Generation and Fuel Markets: Analytical and Business Challenges  

Science Conference Proceedings (OSTI)

Restructuring and increasing competition are likely to have a major impact on electric generating companies and the individuals and organizations that buy, transport, market, or supply fuels. Restructuring may also affect the patterns of coal and gas use. This report, the first in a series by EPRI and the Gas Research Institute (GRI), describes the scope of these potential impacts.

1997-03-27T23:59:59.000Z

429

Pacific Ethanol, Inc | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc More Documents & Publications Pacific Ethanol, Inc Pacific Ethanol, Inc Pacific Ethanol, Inc...

430

Bus industry market study. Report -- Task 3.2: Fuel cell/battery powered bus system  

DOE Green Energy (OSTI)

In support of the commercialization of fuel cells for transportation, Georgetown University, as a part of the DOE/DOT Fuel Cell Transit Bus Program, conducted a market study to determine the inventory of passenger buses in service as of December, 1991, the number of buses delivered in 1991 and an estimate of the number of buses to be delivered in 1992. Short term and long term market projections of deliveries were also made. Data was collected according to type of bus and the field was divided into the following categories which are defined in the report: transit buses, school buses, commercial non-transit buses, and intercity buses. The findings of this study presented with various tables of data collected from identified sources as well as narrative analysis based upon interviews conducted during the survey.

Zalbowitz, M.

1992-06-02T23:59:59.000Z

431

Liquid natural gas as a transportation fuel in the heavy trucking industry. Second quarterly progress report, [October 1, 1994-- December 30, 1994  

DOE Green Energy (OSTI)

Emphasis of this project focuses on LNG research issues in use of liquefied natural as a transportation fuel in heavy trucking industry. These issues maybe categorized as: task 1--direct diesel replacement with LNG fuel; and task 2--short and long term storage. Accomplishments for these tasks are discussed. Task 1 consists of atomization, fundamentals of direct replacement, and distribution of emissions. Task 2 includes modified adsorbents, vent gas, and LNG storage at moderate conditions.

Sutton, W.H.

1994-12-01T23:59:59.000Z

432

EPRI Ergonomics Handbook for the Electric Power Industry: Ergonomic Interventions for Plant Operators and Mechanics in Fossil-Fueled Generating Stations  

Science Conference Proceedings (OSTI)

The EPRI Occupational Health and Safety (OHS) Committee Research Program has provided ergonomic information to the electric energy industry workforce since 1999. This is the sixth EPRI ergonomics handbook; it specifically focuses on tasks performed by plant operators and mechanics working in fossil-fueled generating stations and also addresses some tasks performed by steam services technicians. Fossil-fueled generating station operational and mechanical work is physically strenuous and can expose workers...

2008-12-15T23:59:59.000Z

433

Advanced coal-fueled industrial cogeneration gas turbine system: Hot End Simulation Rig  

DOE Green Energy (OSTI)

This Hot End Simulation Rig (HESR) was an integral part of the overall Solar/METC program chartered to prove the technical, economic, an environmental feasibility of a coal-fueled gas turbine, for cogeneration applications. The program was to culminate in a test of a Solar Centaur Type H engine system operated on coal slurry fuel throughput the engine design operating range. This particular activity was designed to verify the performance of the Centaur Type H engine hot section materials in a coal-fired environment varying the amounts of alkali, ash, and sulfur in the coal to assess the material corrosion. Success in the program was dependent upon the satisfactory resolution of several key issues. Included was the control of hot end corrosion and erosion, necessary to ensure adequate operating life. The Hot End Simulation Rig addressed this important issue by exposing currently used hot section turbine alloys, alternate alloys, and commercially available advanced protective coating systems to a representative coal-fueled environment at turbine inlet temperatures typical of Solar`s Centaur Type H. Turbine hot end components which would experience material degradation include the transition duct from the combustor outlet to the turbine inlet, the shroud, nozzles, and blades. A ceramic candle filter vessel was included in the system as the particulate removal device for the HESR. In addition to turbine material testing, the candle material was exposed and evaluated. Long-term testing was intended to sufficiently characterize the performance of these materials for the turbine.

Galica, M.A.

1994-02-01T23:59:59.000Z

434

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

435

Alternative Fuels Data Center: E85: An Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

E85: An Alternative E85: An Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: E85: An Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: E85: An Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Google Bookmark Alternative Fuels Data Center: E85: An Alternative Fuel on Delicious Rank Alternative Fuels Data Center: E85: An Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: E85: An Alternative Fuel on AddThis.com... More in this section... Ethanol Basics Blends E15 E85 Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives E85 Photo of an E85 pump. E85 is a high-level gasoline-ethanol blend containing 51% to 83% ethanol,

436

Knock limits in spark ignited direct injected engines using gasoline/ethanol blends  

E-Print Network (OSTI)

Direct Fuel Injection (DI) extends engine knock limits compared to Port Fuel Injection (PFI) by utilizing the in-cylinder charge cooling effect due to fuel evaporation. The use of gasoline/ethanol blends in DI is therefore ...

Kasseris, Emmanuel P

2011-01-01T23:59:59.000Z

437

Ethanol and Classic Cars  

NLE Websites -- All DOE Office Websites (Extended Search)

have ethanol in them; the typical one is E10 which is 10% ethanol. But there's also E85 which is 85% ethanol. The basic rule is E10 is ok for everything, but E85 can only be...

438

Alternative Fuels Data Center: Alabama City Leads With Biodiesel and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama City Leads Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Google Bookmark Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Delicious Rank Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Digg Find More places to share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on AddThis.com... July 21, 2012 Alabama City Leads With Biodiesel and Ethanol L earn how the City of Hoover uses biodiesel and ethanol to fuel municipal

439

RAW MATERIALS EVALUATION AND PROCESS DEVELOPMENT STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL  

E-Print Network (OSTI)

Symposium on Fuels from Biomass. DOE meeting, Troy, New ~orkSTUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL C.STUDIES FOR CONVERSION OF BIOMASS TO SUGARS AND ETHANOL* by

Wilke, C.R.

2011-01-01T23:59:59.000Z

440

Dairy Industry: Industry Brief  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) Industry Brief provides an overview of the U.S. dairy industry and ways in which electric-powered processes and technologies can be used in milk production and processing. Because of the different processes involved, the characteristics of energy consumption at milk production and processing facilities vary by facility. Most energy used in milk production is in the form of diesel fuel, followed by electricity and then by petroleum products such as gasoline an...

2011-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel ethanol industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The ethanol heavy-duty truck fleet demonstration project  

DOE Green Energy (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

442

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

443

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

444

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

445

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

446

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

447

Running Line-Haul Trucks on Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

I I magine driving a 55,000-pound tractor- trailer that runs on corn! If you find it difficult to imagine, you can ask the truck drivers for Archer Daniels Midland (ADM) what it's like. For the past 4 years, they have been piloting four trucks powered by ethyl alcohol, or "ethanol," derived from corn. Several advantages to operating trucks on ethanol rather than on conventional petro- leum diesel fuel present themselves. Because ethanol can be produced domestically, unlike most of our petroleum supply, the price and supply of ethanol is not subject to the whims of potentially unstable foreign governments. And domestic production translates into domestic jobs. In addition, ethanol has the potential to reduce harmful emissions, such as particulate matter and oxides of nitrogen

448

Alternative Fuels Data Center: Flexible Fuel Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Flexible Fuel Vehicle Flexible Fuel Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicle Availability on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicle Availability Flexible fuel vehicles (FFVs)-which can run on E85 (a gasoline-ethanol

449

Land Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Use and Water Efficiency in Current and Potential Future U.S. Corn and Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems Ethan Warner 1 , Yimin Zhang 1 , Helena Chum 2 , Robin Newmark 1 Biofuels represent an opportunity for improved sustainability of transportation fuels, promotion of rural development, and reduction of GHG emissions. But the potential for unintended consequences, such as competition for land and water, necessitates biofuel expansion that considers the complexities of resource requirements within specific contexts (e.g., technology, feedstock, supply chain, local resource availability). Through technological learning, sugarcane and corn ethanol industries have achieved steady improvements in