Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Proton Exchange Membrane Fuel Cells for Electrical Power Generation...  

Broader source: Energy.gov (indexed) [DOE]

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

2

Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with  

E-Print Network [OSTI]

to the development of low-cost, modular and fuel-flexible solid oxide fuel cell technology. #12;2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

Rollins, Andrew M.

3

Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel Cell  

E-Print Network [OSTI]

and the exoelectrogen Geobacter sulfurreducens generated electricity, and the power generated using soluble celluloseARTICLE Enzymatic Hydrolysis of Cellulose Coupled With Electricity Generation in a Microbial Fuel.interscience.wiley.com). DOI 10.1002/bit.22015 ABSTRACT: Electricity can be directly generated by bacteria in microbial fuel

4

Water Research 39 (2005) 942952 Electricity generation from cysteine in a microbial fuel cell  

E-Print Network [OSTI]

Water Research 39 (2005) 942­952 Electricity generation from cysteine in a microbial fuel cell Abstract In a microbial fuel cell (MFC), power can be generated from the oxidation of organic matter. Keywords: Bacteria; Biofuel cell; Microbial fuel cell; Electricity; Power output; Shewanella; Fuel cell 1

2005-01-01T23:59:59.000Z

5

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel  

E-Print Network [OSTI]

ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell organic matter using elec- trochemically active bacteria as catalysts to generate electrical energy of the most exciting applications of MFCs is their use as benthic unattended generators to power electrical

Sun, Baolin

6

Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells  

SciTech Connect (OSTI)

This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

Whyatt, Greg A.; Chick, Lawrence A.

2012-04-01T23:59:59.000Z

7

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells  

Broader source: Energy.gov [DOE]

This study, completed by Pacific Northwest National Laboratory, examines approaches to providing electrical power on board commercial aircraft using solid oxide fuel (SOFC) technology.

8

Electricity generation from a floating microbial fuel cell Yuelong Huang a  

E-Print Network [OSTI]

Electricity generation from a floating microbial fuel cell Yuelong Huang a , Zhen He b , Jinjun Kan February 2012 Accepted 29 February 2012 Available online 7 March 2012 Keywords: Microbial fuel cell t A floating microbial fuel cell (FMFC) has been designed and its performance has been evaluated for 153 days

9

Proton Exchange Membrane Fuel Cells for Electrical Power Generation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment of Energy 0 DOEProtocol forSite Leads -On-Board

10

Heavy Fuel Oil Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment >7,992000 HighlightsHasSHOPPMapsHeavy

11

Electrical Generation for More-Electric Aircraft using Solid...  

Broader source: Energy.gov (indexed) [DOE]

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

12

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

13

IMPACT OF FUEL CELL BASED HYBRID DISTRIBUTED GENERATION IN AN ELECTRICAL DISTRIBUTION  

E-Print Network [OSTI]

Recent developments in distributed generation technologies have enabled new options for supplying electrical energy in remote and off-grid areas. The importance of fuel cells has increased during the past decade due to the extensive use of fossil fuels for electrical power has resulted in many negative consequences. Fuel cells are now closer to commercialization than past and they have the ability to fulfill all of the global power needs while meeting the economic and environmental expectations..The objective of this paper is to study the economic performance and operation of a fuel cell distributed generation and to provide an assessment of the economic issues associated in electrical network. In this study, with HOMER (Hybrid Optimization Model for Electric Renewables) software, NREL’s micro power optimization model performed a range of equipment options over varying constraints and sensitivities to optimize small power distribution systems. Its flexibility makes it useful in the evaluation of design issues in the planning and early decision-making phase of rural electrification projects. This study concludes that fuel cell systems appear competitive today if is connected with proposed hybrid DG in an AC distribution grid. The overall energy management strategy for coordinating the power flows among the different energy sources is presented with cost-effective approach.

unknown authors

14

Fuel cell generator energy dissipator  

DOE Patents [OSTI]

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

15

Method and apparatus for steam mixing a nuclear fueled electricity generation system  

DOE Patents [OSTI]

A method and apparatus for improving the efficiency and performance of a nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a micro-jet high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs. Another benefit of the instant invention is the extension of plant life and the reduction of downtime due to refueling.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1996-01-01T23:59:59.000Z

16

Fuel cell generator  

DOE Patents [OSTI]

High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

Isenberg, Arnold O. (Forest Hills, PA)

1983-01-01T23:59:59.000Z

17

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summaryand Contact

18

Fuel dissipater for pressurized fuel cell generators  

DOE Patents [OSTI]

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

Basel, Richard A.; King, John E.

2003-11-04T23:59:59.000Z

19

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst  

E-Print Network [OSTI]

Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode propane fueled SOFCs. CoeFe bimetallic phase was formed from Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3Ã?d SOFC anode aromatic hydrocarbons were produced from SOFCs using propane as fuel. a r t i c l e i n f o Article history

Frenkel, Anatoly

20

Proton exchange membrane fuel cells for electrical power generation on-board commercial airplanes.  

SciTech Connect (OSTI)

Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to understand whether on-board fuel cell systems are technically feasible, and, if so, if they offer a performance advantage for the airplane as a whole. Through hardware analysis and thermodynamic and electrical simulation, we found that while adding a fuel cell system using today's technology for the PEM fuel cell and hydrogen storage is technically feasible, it will not likely give the airplane a performance benefit. However, when we re-did the analysis using DOE-target technology for the PEM fuel cell and hydrogen storage, we found that the fuel cell system would provide a performance benefit to the airplane (i.e., it can save the airplane some fuel), depending on the way it is configured.

Curgus, Dita Brigitte; Munoz-Ramos, Karina (Sandia National Laboratories, Albuquerque, NM); Pratt, Joseph William; Akhil, Abbas Ali (Sandia National Laboratories, Albuquerque, NM); Klebanoff, Leonard E.; Schenkman, Benjamin L. (Sandia National Laboratories, Albuquerque, NM)

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Electrical Generation for More-Electric Aircraft using Solid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric...

22

Boston.com / News / Local / New fuel cell uses germs to generate electricity Page 1 THIS STORY HAS BEEN FORMATTED FOR EASY PRINTING  

E-Print Network [OSTI]

Boston.com / News / Local / New fuel cell uses germs to generate electricity Page 1 THIS STORY HAS BEEN FORMATTED FOR EASY PRINTING New fuel cell uses germs to generate electricity By Gareth Cook, Globe://www.boston.com/news/local/articles/2003/09/08/new_fuel_cell_uses_germs_to_generate_electricity?mode=9:15:28 AM 9/8/2003 #12;Boston

Lovley, Derek

23

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

25

CONTROL OF POPULATION DENSITIES SURROUNDING NUCLEAR POWER PLANTS. VOLUME 5 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, jA.V.

2010-01-01T23:59:59.000Z

26

A REVIEW OF LIGHT-WATER REACTOR SAFETY STUDIES. VOLUME 3 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF FOSSIL-FUEL NUCLEAR, GEOTHERMAL, AND ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

27

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Nero, A.V.

2010-01-01T23:59:59.000Z

28

A REVIEW OF AIR QUALITY MODELING TECHNIQUES. VOLUME 8 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA Energy and Environment

Rosen, L.C.

2010-01-01T23:59:59.000Z

29

Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems  

SciTech Connect (OSTI)

This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

2013-06-01T23:59:59.000Z

30

Clean Electric Power Generation (Canada)  

Broader source: Energy.gov [DOE]

Fossil fuels in Canada account for 27 percent of the electricity generated. The combustion of these fuels is a major source of emissions which affect air quality and climate change. The Government...

31

Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect (OSTI)

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

32

Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). 3) The Project will annually produce 365,292 MWh?s of clean energy. 4) By destroying the methane in the landfill gas, the Project will generate CO{sub 2} equivalent reductions of 164,938 tons annually. The completed facility produces 28.3 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2013-06-30T23:59:59.000Z

33

Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report  

SciTech Connect (OSTI)

Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

Nelson, C.

1995-08-01T23:59:59.000Z

34

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

35

Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction  

SciTech Connect (OSTI)

The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

Boyd, Rodney

2007-08-08T23:59:59.000Z

37

Nitrogen oxide removal processes for coal-fueled electric power generation  

SciTech Connect (OSTI)

There is a global trend requiring lower NO{sub x}, emissions from stationary combustion sources. When NO{sub x} is released into the atmosphere it contributes to photochemical smog and acid rain. Elevated ozone concentrations have been implicated in crop and forest damage, and adverse effects on human health. Several alternative technologies have been developed to reduce NO{sub x} emissions resulting from the combustion of coal. The alternatives, which range from combustion modifications, to addition of post-combustion systems, to use of alternate coal combustion technologies, provide different degrees of NO{sub x} reduction efficiency with different associated costs. Only by careful evaluation of site specific factors can the optimum technology for each application be chosen. This chapter will investigate the alternatives for NO{sub x} control for new, large utility steam generators using coal as a fuel.

Van Nieuwenhuizen, Wm.

1993-12-31T23:59:59.000Z

38

Fuel cell electric power production  

DOE Patents [OSTI]

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

39

Fuel cell electric power production  

SciTech Connect (OSTI)

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, H.-S.; Heck, R. M.; Yarrington, R. M.

1985-06-11T23:59:59.000Z

40

Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025. Other potential benefits of the demonstration include developing a passive technology for water treatment for trace metal and nutrient release reductions, using power plant by-products to improve coal mine land reclamation and carbon sequestration, developing wildlife habitat and green-space around production facilities, generating Total Maximum Daily Load (TMDL) credits for the use of process water, and producing wood products for use by the lumber and pulp and paper industry. Project activities conducted during the five year project period include: Assessing tree cultivation and other techniques used to sequester carbon; Project site assessment; Greenhouse studies to determine optimum plant species and by-product application; Designing, constructing, operating, monitoring, and evaluating the CCWESTRS system; and Reporting (ongoing). The ability of the system to sequester carbon will be the primary measure of effectiveness, measured by accessing survival and growth response of plants within the CCWESTRS. In addition, costs associated with design, construction, and monitoring will be evaluated and compared to projected benefits of other carbon sequestration technologies. The test plan involves the application of three levels each of two types of power plant by-products--three levels of FGD gypsum mulch, and three levels of ash pond irrigation water. This design produces nine treatment levels which are being tested with two species of hardwood trees (sweet gum and sycamore). The project is examining the effectiveness of applications of 0, 8-cm, and 15-cm thick gypsum mulch layers and 0, 13 cm, and 25 cm of coal fly ash water for irrigation. Each treatment combination is being replicated three times, resulting in a total of 54 treatment plots (3 FGD gypsum levels X 3 irrigation water levels x 2 tree species x 3 replicates). Survival and growth response of plant species in terms of sequestering carbon in plant material and soil will be the primary measure of effectiveness of each treatment. Additionally, the ability of the site soils and unsaturated zone subsurface m

P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

2005-08-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes  

Broader source: Energy.gov [DOE]

This report is an initial investigation of the use of proton exchange membrane (PEM) fuel cells on-board commercial aircraft.

42

Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide power in remote environments or to convert  

E-Print Network [OSTI]

Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide power in remote environments or to convert waste to electricity. Professor Derek Lovley from at Heriot-Watt University, Edinburgh. The researchers isolated a strain of Geobacter sulfurreducens which

Lovley, Derek

43

Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes  

Fuel Cell Technologies Publication and Product Library (EERE)

Deployed on a commercial airplane, proton exchange membrane fuel cells may offer emissions reductions, thermal efficiency gains, and enable locating the power near the point of use. This work seeks to

44

Electric Power Generation from Municipal, Food, and Animal Wastewaters Using Microbial Fuel Cells  

E-Print Network [OSTI]

) technology can replace activated sludge processes for secondary wastewater treatment. We will discuss sustainable technology is attractive. Keywords: Microbial fuel cells, Wastewater treatment, Economical cell technology to wastewater treatment. Motivations of their work were based on the economic

Angenent, Lars T.

45

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents [OSTI]

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, J.C.; Swift, G.W.; Migliori, A.

1984-11-16T23:59:59.000Z

46

Thermoacoustic magnetohydrodynamic electrical generator  

DOE Patents [OSTI]

A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

1986-01-01T23:59:59.000Z

47

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

and Related Standards for Fossil-Fuel and Geo- thermal Powerposed Nuclear, Geothermal, and Fossil-Fuel Sites and Facili-NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN

Nero, A.V.

2010-01-01T23:59:59.000Z

48

Generating electricity from viruses  

SciTech Connect (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2013-10-31T23:59:59.000Z

49

Generating electricity from viruses  

ScienceCinema (OSTI)

Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

Lee, Seung-Wuk

2014-06-23T23:59:59.000Z

50

Making more efficient fuel cells 08.09.2009 -Bacteria that generate significant amounts of electricity could be used in microbial fuel cells to provide  

E-Print Network [OSTI]

of electricity could be used in microbial fuel cells to provide power in remote environments or to convert waste to electricity. Professor Derek Lovley from the University of Massachusetts, USA isolated bacteria with large. The researchers isolated a strain of Geobacter sulfurreducens which they called KN400 that grew prolifically

Lovley, Derek

51

EIA - Electricity Generating Capacity  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781 2,328 2,683Diesel prices increaseAEO2014 EarlyElectricity

52

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Broader source: Energy.gov (indexed) [DOE]

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Webinar slides from the U.S. Department of Energy...

53

Development of a quiet Stirling cycle multi-fuel engine for electric power generation. Final report Feb-Aug 82  

SciTech Connect (OSTI)

The work described in this report summarizes a six-month study to develop a lightweight, tactical electric power plant with a low level of aural, I. R., and visual detectability, based on a Stirling engine. The conceptual design presented was analyzed and predicted to have power output qualities exceeding those specified by the Army for tactical generators. The unit promises to have maintenance and overhaul requirement characteristics superior to any generator system in current use.

Mercer, J.E.; Emigh, S.G.; Riggle, P.; Tremoulet, O.L.; White, M.A.

1982-08-01T23:59:59.000Z

54

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric...  

Broader source: Energy.gov (indexed) [DOE]

for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs) Download presentation slides from...

55

Methodology and a preliminary data base for examining the health risks of electricity generation from uranium and coal fuels  

SciTech Connect (OSTI)

An analytical model was developed to assess and examine the health effects associated with the production of electricity from uranium and coal fuels. The model is based on a systematic methodology that is both simple and easy to check, and provides details about the various components of health risk. A preliminary set of data that is needed to calculate the health risks was gathered, normalized to the model facilities, and presented in a concise manner. Additional data will become available as a result of other evaluations of both fuel cycles, and they should be included in the data base. An iterative approach involving only a few steps is recommended for validating the model. After each validation step, the model is improved in the areas where new information or increased interest justifies such upgrading. Sensitivity analysis is proposed as the best method of using the model to its full potential. Detailed quantification of the risks associated with the two fuel cycles is not presented in this report. The evaluation of risks from producing electricity by these two methods can be completed only after several steps that address difficult social and technical questions. Preliminary quantitative assessment showed that several factors not considered in detail in previous studies are potentially important. 255 refs., 21 figs., 179 tabs.

El-Bassioni, A.A.

1980-08-01T23:59:59.000Z

56

Alternative Fuels Data Center: Electricity Fuel Basics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someone by E-mail Share

57

Electricity Generation by Rhodopseudomonas palustris  

E-Print Network [OSTI]

,6). Shewanella oneidensis MR-1 and Geobacter sulfurreducens PCA are two DMRB capable of electricity generationElectricity Generation by Rhodopseudomonas palustris DX-1 D E F E N G X I N G , , Y I Z U O manuscript received March 20, 2008. Accepted March 25, 2008. Bacteria able to generate electricity

58

*Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center in 2001 to simultaneously generate electricity, hydrogen, and heat. It was developed into the first prototype in collaboration with FuelCell Energy, Inc., a  

E-Print Network [OSTI]

*Tri-Generation is a novel technology that was conceived by the National Fuel Cell Research Center prototype in collaboration with FuelCell Energy, Inc., and Air Products and Chemicals, Inc. The first and fuel cell electric vehicles), there are still emissions associated with the upstream processes

Mease, Kenneth D.

59

Generator configuration for solid oxide fuel cells  

DOE Patents [OSTI]

Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

60

Alternative Fuels Data Center: Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCase StudiesElectricity Printable

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Email To Friend Steam Electricity Generator  

E-Print Network [OSTI]

. keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshopping can make electricity directly." Logan's process uses a microbial fuel cell to convert organic material - that consume the sugars and other organic material and release electrons. These electrons travel to the anode

62

Registration of Electric Generators (Connecticut)  

Broader source: Energy.gov [DOE]

All electric generating facilities operating in the state, with the exception of hydroelectric and nuclear facilities, must obtain a certificate of registration from the Department of Public...

63

Renewable Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

Not Available

2012-09-01T23:59:59.000Z

64

Solid oxide fuel cell generator  

DOE Patents [OSTI]

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, R.; George, R.A.; Shockling, L.A.

1993-04-06T23:59:59.000Z

65

Effects of anolyte recirculation rates and catholytes on electricity generation in a litre-scale upflow microbial fuel cell  

E-Print Network [OSTI]

compounds can be realized through microbial fuel cells (MFCs).3 MFCs are bio-electrochemical reactors-scale upflow microbial fuel cell Fei Zhang, Kyle S. Jacobson, Paolo Torres and Zhen He* Received 19th January 2010, Accepted 8th July 2010 DOI: 10.1039/c001201g Microbial fuel cells (MFCs) are an attractive

66

Electricity-producing bacterial communities in microbial fuel cells  

E-Print Network [OSTI]

Electricity-producing bacterial communities in microbial fuel cells Bruce E. Logan and John M 16802, USA Microbial fuel cells (MFCs) are not yet commercialized but they show great promise bioenergy technology. Microbial fuel cells make it possible to generate electricity using bacteria It has

67

Method for protecting an electric generator  

DOE Patents [OSTI]

A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

2008-11-18T23:59:59.000Z

68

3/5/2014 TinyMicro Wind Turbines Generate Electricity| New Energyand Fuel http://newenergyandfuel.com/http:/newenergyandfuel/com/2014/01/16/tiny-micro-wind-turbines-generate-electricity/ 1/12  

E-Print Network [OSTI]

Off Topic Plans Politics Power Units Fuel Cells Hybrid Electric Piezoelectrics Solar Artificial Photosynthesis Solar Panels Space Based Solar Thermal Solar Wind Power Storage Batteries Super Capacitors Thermal.W. Styles Energy Outlook Green Biz Green Car Congress Maria Energia Marketing Green MIT's Technology Review

Chiao, Jung-Chih

69

Liquid soap film generates electricity  

E-Print Network [OSTI]

We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the $x-y$ horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the $x-$direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the $y-$direction. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this paper we report a novel technique, in which a similar device can be used as an electric generator, converting the rotating mechanical energy to electrical energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed similarly in very small scales like micro scales with different applications. Although the device is comparable to commercial electric motors or electric generators, there is a significant difference in their working principles. Usually in an electric motor or generator the magnetic field causes the driving force, while in a LFM or LFEG the Coulomb force is the driving force. This fact is also interesting from the Bio-science point of view and brings a similarity to bio motors. Here we have investigated the electrical characteristics of such a generator for the first time experimentally and modelled the phenomenon with electroconvection governing equations. A numerical simulation is performed using the local approximation for the charge-potential relation and results are in qualitative agreement with experiments.

Ahmad Amjadi; Sadegh Feiz; Reza Montazeri Namin

2014-04-24T23:59:59.000Z

70

HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity  

E-Print Network [OSTI]

goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

71

Simultaneous wastewater treatment and biological electricity generation  

E-Print Network [OSTI]

Simultaneous wastewater treatment and biological electricity generation B.E. Logan Department accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize.4 £ 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

72

Effects of draw solutions and membrane conditions on electricity generation and water flux in osmotic microbial fuel cells  

E-Print Network [OSTI]

membrane processes such as microfil- tration, ultrafiltration, nanofiltration, and reverse osmosis con. Such a water movement does not require external energy input like that in reverse osmosis; thus, FO is a low Keywords: Forward osmosis Osmotic microbial fuel cell Wastewater treatment Water flux Draw solution a b

73

International Coal Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation for Selected

74

GENERATING ELECTRICITY USING OCEAN WAVES  

E-Print Network [OSTI]

GENERATING ELECTRICITY USING OCEAN WAVES A RENEWABLE SOURCE OF ENERGY REPORT FOR THE HONG KONG ELECTRIC COMPANY LIMITED Dr L F Yeung Mr Paul Hodgson Dr Robin Bradbeer July 2007 #12;Ocean Waves and construction of equipment that could measure and log wave conditions and tide levels at Hoi Ha Wan. Prototypes

Bradbeer, Robin Sarah

75

The Economics of Steam Electric Generation  

E-Print Network [OSTI]

by manufacturers, data available from past installations and recent installations. 7) Labor costs were based on labor rates in ~he Lansing, Michigan area. 8) Power plant labor and supervision costs were based on manning data supplied by the Board of Water...-service. No other figures, including labor, fuel cost, outside services and other costs have been escalated. 12) Operating costs were established, based on steam generation. Credit has been allotted to any program for the electric power generated during...

Ophaug, R. A.; Birget, C. D.

1980-01-01T23:59:59.000Z

76

Distributed generation - the fuel processing example  

SciTech Connect (OSTI)

The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

Victor, R.A. [Praxair, Inc., Tonawanda, NY (United States); Farris, P.J.; Maston, V. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

77

Overview of Fuel Cell Electric Bus Development | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Electric Bus Development Overview of Fuel Cell Electric Bus Development Presentation slides from the Fuel Cell Technologies Office webinar ""Fuel Cell Buses"" held...

78

Coal based electric generation comparative technologies report  

SciTech Connect (OSTI)

Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

Not Available

1989-10-26T23:59:59.000Z

79

Nuclear power generation and fuel cycle report 1996  

SciTech Connect (OSTI)

This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

NONE

1996-10-01T23:59:59.000Z

80

Electrical contact structures for solid oxide electrolyte fuel cell  

DOE Patents [OSTI]

An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel cycle comparison of distributed power generation technologies.  

SciTech Connect (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

82

Apparatuses and methods for generating electric fields  

DOE Patents [OSTI]

Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

2013-08-06T23:59:59.000Z

83

Combined fuel and air staged power generation system  

SciTech Connect (OSTI)

A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

2014-05-27T23:59:59.000Z

84

Cost of Fuel to General Electricity  

Broader source: Energy.gov [DOE]

Presentation covers the topic of the cost of fuel to general electricity for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

85

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, ``Monthly Power Plant Report.`` These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

86

Cost and quality of fuels for electric utility plants 1991  

SciTech Connect (OSTI)

Data for 1991 and 1990 receipts and costs for fossil fuels discussed in the Executive Summary are displayed in Tables ES1 through ES7. These data are for electric generating plants with a total steam-electric and combined-cycle nameplate capacity of 50 or more megawatts. Data presented in the Executive Summary on generation, consumption, and stocks of fossil fuels at electric utilities are based on data collected on the Energy Information Administration, Form EIA-759, Monthly Power Plant Report.'' These data cover all electric generating plants. The average delivered cost of coal, petroleum, and gas each decreased in 1991 from 1990 levels. Overall, the average annual cost of fossil fuels delivered to electric utilities in 1991 was $1.60 per million Btu, a decrease of $0.09 per million Btu from 1990. This was the lowest average annual cost since 1978 and was the result of the abundant supply of coal, petroleum, and gas available to electric utilities. US net generation of electricity by all electric utilities in 1991 increased by less than I percent--the smallest increase since the decline that occurred in 1982.3 Coal and gas-fired steam net generation, each, decreased by less than I percent and petroleum-fired steam net generation by nearly 5 percent. Nuclear-powered net generation, however, increased by 6 percent. Fossil fuels accounted for 68 percent of all generation; nuclear, 22 percent; and hydroelectric, 10 percent. Sales of electricity to ultimate consumers in 1991 were 2 percent higher than during 1990.

Not Available

1992-08-04T23:59:59.000Z

87

Implementation of optimum solar electricity generating system  

SciTech Connect (OSTI)

Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

Singh, Balbir Singh Mahinder, E-mail: balbir@petronas.com.my; Karim, Samsul Ariffin A., E-mail: samsul-ariffin@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Sivapalan, Subarna, E-mail: subarna-sivapalan@petronas.com.my [Department of Management and Humanities, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia); Najib, Nurul Syafiqah Mohd; Menon, Pradeep [Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, 31750 Bandar Seri Iskandar, Perak (Malaysia)

2014-10-24T23:59:59.000Z

88

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation...

89

Electricity Generation and Emissions Reduction Decisions  

E-Print Network [OSTI]

Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium

90

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

91

EIA model documentation: Electricity market module - electricity fuel dispatch  

SciTech Connect (OSTI)

This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

NONE

1997-01-01T23:59:59.000Z

92

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybrid Electric Vehicles

93

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents [OSTI]

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

1998-04-21T23:59:59.000Z

94

Solid oxide fuel cell generator with removable modular fuel cell stack configurations  

DOE Patents [OSTI]

A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

95

electric generation | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectric Coop

96

Third Generation Flywheels for electric storage  

SciTech Connect (OSTI)

Electricity is critical to our economy, but growth in demand has saturated the power grid causing instability and blackouts. The economic penalty due to lost productivity in the US exceeds $100 billion per year. Opposition to new transmission lines and power plants, environmental restrictions, and an expected $100 billion grid upgrade cost have slowed system improvements. Flywheel electricity storage could provide a more economical, environmentally benign alternative and slash economic losses if units could be scaled up in a cost effective manner to much larger power and capacity than the present maximum of a few hundred kW and a few kWh per flywheel. The goal of this project is to design, construct, and demonstrate a small-scale third generation electricity storage flywheel using a revolutionary architecture scalable to megawatt-hours per unit. First generation flywheels are built from bulk materials such as steel and provide inertia to smooth the motion of mechanical devices such as engines. They can be scaled up to tens of tons or more, but have relatively low energy storage density. Second generation flywheels use similar designs but are fabricated with composite materials such as carbon fiber and epoxy. They are capable of much higher energy storage density but cannot economically be built larger than a few kWh of storage capacity due to structural and stability limitations. LaunchPoint is developing a third generation flywheel — the "Power Ring" — with energy densities as high or higher than second generation flywheels and a totally new architecture scalable to enormous sizes. Electricity storage capacities exceeding 5 megawatt-hours per unit appear both technically feasible and economically attractive. Our design uses a new class of magnetic bearing – a radial gap “shear-force levitator” – that we discovered and patented, and a thin-walled composite hoop rotated at high speed to store kinetic energy. One immediate application is power grid frequency regulation, where Power Rings could cut costs, reduce fuel consumption, eliminate emissions, and reduce the need for new power plants. Other applications include hybrid diesel-electric locomotives, grid power quality, support for renewable energy, spinning reserve, energy management, and facility deferral. Decreased need for new generation and transmission alone could save the nation $2.5 billion per year. Improved grid reliability could cut economic losses due to poor power quality by tens of billions of dollars per year. A large export market for this technology could also develop. Power Ring technology will directly support the EERE mission, and the goals of the Distributed Energy Technologies Subprogram in particular, by helping to reduce blackouts, brownouts, electricity costs, and emissions, by relieving transmission bottlenecks, and by greatly improving grid power quality.

Ricci, Michael, R.; Fiske, O. James

2008-02-29T23:59:59.000Z

97

Production and maintenance planning for electricity generators: modeling and application to Indian power systems  

E-Print Network [OSTI]

Production and maintenance planning for electricity generators: modeling and application to Indian power systems Debabrata Chattopadhyay Department of Management, University of Canterbury, Private Bag describes the development of an optimization model to perform the fuel supply, electricity generation

Dragoti-Ã?ela, Eranda

98

Development and Deployment of Generation 3 Plug-In Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells...

99

Fuel Savings from Hybrid Electric Vehicles  

SciTech Connect (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

100

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.Electric Fuel Battery

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network [OSTI]

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

102

Power Generation in Fed-Batch Microbial Fuel Cells as a Function  

E-Print Network [OSTI]

as capable of making electricity in fuel cells include a wealth of genera of Geobacter (3, 6), Shewanella (2-chamber, air-cathode MFCs. Introduction Electricity generation using microbial fuel cells (MFCs) has drawn much,7), Pseudomonas (4), and others (1, 8-9). Electricity can be generated in MFCs using mixed cultures enriched from

103

SENSING THE ENVIRONMENT Detection and Generation of Electric Signals  

E-Print Network [OSTI]

SENSING THE ENVIRONMENT Detection and Generation of Electric Signals Contents Detection and Generation of Electric Signals in Fishes: An Introduction Morphology of Electroreceptive Sensory Organs Electrolocation Electric Organs Generation of Electric Signals Development of Electroreceptors and Electric

104

Electrical Generation Tax Reform Act (Montana)  

Broader source: Energy.gov [DOE]

This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the Montana electric utility industry that allows...

105

Exemption from Electric Generation Tax (Connecticut)  

Broader source: Energy.gov [DOE]

In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

106

Fuel Cell and Battery Electric Vehicles Compared  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0AgencyLevel PHEVs

107

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation forElectricity

108

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by...

109

Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles Offers Opportunity Nationwide Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles...

110

Hybrid solar-fossil fuel power generation  

E-Print Network [OSTI]

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

111

Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)  

SciTech Connect (OSTI)

This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

Not Available

2011-02-01T23:59:59.000Z

112

Electricity Generation from Geothermal Energy in Australia.  

E-Print Network [OSTI]

?? This thesis aims to investigate the economical and technical prerequisites for electricity generation from geothermal energy in Australia. The Australian government has increased the… (more)

Broliden, Caroline

2013-01-01T23:59:59.000Z

113

Insufficient Incentives for Investment in Electricity Generation  

E-Print Network [OSTI]

In theory, competitive electricity markets can provide incentives for efficient investment in generating capacity. We show that if consumers and investors are risk averse, investment is efficient only if investors in generating capacity can sign...

Neuhoff, Karsten; de Vries, Laurens

2004-06-16T23:59:59.000Z

114

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

Hand, Maureen

2008-01-01T23:59:59.000Z

115

RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fu.e l and Geothermal Power Plants", Lawrencefrom fossil-fuel and geothermal power plants Control offrom fossil-fuel and geothermal power plants Radionuclide

Nero, A.V.

2010-01-01T23:59:59.000Z

116

A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders  

E-Print Network [OSTI]

A Millimeter-Scale Electric Generator Matthew K. Senesky and Seth R. Sanders Department, construction and testing of an electrical generator intended for interface with a MEMS internal combustion (IC fuels through the use of internal combustion (IC) engines paired with electrical generators (see [4

Sanders, Seth

117

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market  

E-Print Network [OSTI]

Supply Chains and Fuel Markets In the U.S., electric power generation accounts for 30% of the natural gas demand (over 50% in the summer), 90% of the coal demand, and over 45% of the residual fuel oil demand, the wholesale electricity price in New England decreased by 38% mainly because the delivered natural gas price

Nagurney, Anna

118

Outline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

.S., electric power generation accounts for significant portions of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand #12;OutlineOutline Introduction Literature Review Electric Power Supply Chains Empirical Examples Conclusions

Nagurney, Anna

119

Electricity Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6, 2012 MEETING OF THEof Energy This paper provides aThe

120

Fact #844: October 27, 2014 Electricity Generated from Coal has...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

Not Available

2011-02-01T23:59:59.000Z

122

ROBUST CONTROL ANALYSIS USING REAL-TIME IMPLEMENTATION OF A HYBRID FUEL CELL POWER GENERATION SYSTEM  

E-Print Network [OSTI]

is performed for a hybrid Fuel Cell/Supercapacitor generation system with power management, realized through converters interfacing the Fuel Cell (FC) and the Supercapacitor (SC) with the system electrical load

Paris-Sud XI, Université de

123

Table 11.6 Installed Nameplate Capacity of Fossil-Fuel Steam-Electric Generators With Environmental Equipment, 1985-2010 (Megawatts)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c : U.S.Welcome to the1,033 15

124

Modelling and control strategy development for fuel cell electric vehicles  

E-Print Network [OSTI]

Modelling and control strategy development for fuel cell electric vehicles Andreas Schell b , Huei applicable to the development of fuel cell electric vehicles (FCEVs) and hybrid electric vehicles (HEVs reserved. Keywords: Fuel cell electric vehicle; Hybrid vehicles; Modelling 1. Introduction Advanced

Peng, Huei

125

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity Generation

126

International Natural Gas Prices for Electricity Generation - EIA  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997EnvironmentElectricity GenerationIndustry for

127

Role of Energy Storage with Renewable Electricity Generation  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-01-01T23:59:59.000Z

128

Renewable Electricity Generation in the United States  

E-Print Network [OSTI]

This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

Schmalensee, Richard

129

Electric Power Generation and Transmission (Iowa)  

Broader source: Energy.gov [DOE]

Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

130

Entanglement Generation by Electric Field Background  

E-Print Network [OSTI]

The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

Zahra Ebadi; Behrouz Mirza

2014-10-12T23:59:59.000Z

131

Entanglement Generation by Electric Field Background  

E-Print Network [OSTI]

The quantum vacuum is unstable under the influence of an external electric field and decays into pairs of charged particles, a process which is known as the Schwinger pair production. We propose and demonstrate that this electric field can generate entanglement. Using the Schwinger pair production for constant and pulsed electric fields, we study entanglement for scalar particles with zero spins and Dirac fermions. One can observe the variation of the entanglement produced for bosonic and fermionic modes with respect to different parameters.

Ebadi, Zahra

2014-01-01T23:59:59.000Z

132

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network [OSTI]

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

133

The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric currents that stimulate  

E-Print Network [OSTI]

2443 The electric organ discharge (EOD) of weakly electric fish generates transcutaneous electric object whose conductivity is different from that of water produces an electric image consisting for the formation of electric images. Rule 1: objects more conductive than water cause a local increase

Grant, Kirsty

134

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

generate steam to drive a steam turbine, giving rise to theValves and Pi~ing STEAM TURBINE COMPONENT OUTAGE CAUSESbasically of a steam-driven turbine, an electric generator

Nero, A.V.

2010-01-01T23:59:59.000Z

135

Fuel and electricity: The shifting paradigm  

SciTech Connect (OSTI)

Competition in electricity markets will fundamentally reshape fuel markets, purchasing strategies and relationships, as well as intensify the need to make gas user-friendly through standardization. Natural gas will compete on prices and be abundant in supply but will fall short on customer services with respect to ease of transactions. The need for an effective communications network in the natural gas industry is discussed.

Vansant, J.

1995-12-31T23:59:59.000Z

136

The generation of oscillations in networks of electrically coupled cells  

E-Print Network [OSTI]

The generation of oscillations in networks of electrically coupled cells Y. Loewenstein* , Y. Yarom systems, the electrical coupling of nonoscil- lating cells generates synchronized membrane potential dynam- ics. We show that strong electrical coupling in this network generates multiple oscillatory

Loewenstein, Yonatan

137

Modeling Generator Power Plant Portfolios and Pollution Taxes Electric Power Supply Chain Networks  

E-Print Network [OSTI]

, natural gas, uranium, and oil), or approximately 40 quadrillion BTU (see Edison Electric Institute (2000Modeling Generator Power Plant Portfolios and Pollution Taxes in Electric Power Supply Chain at the electric power industry with taxes applied according to the type of fuel used by the power generators

Nagurney, Anna

138

Fossil fuel combined cycle power generation method  

DOE Patents [OSTI]

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

139

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...  

Broader source: Energy.gov (indexed) [DOE]

6: Ivanpah Solar Electric Generating System in San Bernardino County, CA EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino County, CA Documents Available for...

140

Chena Hot Springs Resort - Electric Power Generation Using Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Renewable Electricity Generation (Fact Sheet), Office of Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

142

Renewable Power Options for Electricity Generation on Kaua'i...  

Office of Environmental Management (EM)

Renewable Power Options for Electricity Generation on Kaua'i: Economics and Performance Modeling Renewable Power Options for Electricity Generation on Kaua'i: Economics and...

143

Renewable Generation and Interconnection to the Electrical Grid...  

Broader source: Energy.gov (indexed) [DOE]

Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California Presentation...

144

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS  

E-Print Network [OSTI]

) · Solar (Solar thermal, Photovoltaic) · Renewables (Hydropower, Geothermal, Wind, Biomass) Nuclear power power generation ­ Electrolysis · Overall efficiency approximately 25-30% (efficiency of electric power · Splits water at moderate temperatures (~700-900°C vs ~5,000°C for thermolysis) · Plant efficiencies

145

A polymer electrolyte fuel cell stack for stationary power generation from hydrogen fuel  

SciTech Connect (OSTI)

The fuel cell is the most efficient device for the conversion of hydrogen fuel to electric power. As such, the fuel cell represents a key element in efforts to demonstrate and implement hydrogen fuel utilization for electric power generation. A central objective of a LANL/Industry collaborative effort supported by the Hydrogen Program is to integrate PEM fuel cell and novel stack designs at LANL with stack technology of H-Power Corporation (H-Power) in order to develop a manufacturable, low-cost/high-performance hydrogen/air fuel cell stack for stationary generation of electric power. A LANL/H-Power CRADA includes Tasks ranging from exchange, testing and optimization of membrane-electrode assemblies of large areas, development and demonstration of manufacturable flow field, backing and bipolar plate components, and testing of stacks at the 3-5 cell level and, finally, at the 4-5 kW level. The stack should demonstrate the basic features of manufacturability, overall low cost and high energy conversion efficiency. Plans for future work are to continue the CRADA work along the time line defined in a two-year program, to continue the LANL activities of developing and testing stainless steel hardware for longer term stability including testing in a stack, and to further enhance air cathode performance to achieve higher energy conversion efficiencies as required for stationary power application.

Zawodzinski, C.; Wilson, M.; Gottesfeld, S. [Los Alamos National Lab., NM (United States)

1996-10-01T23:59:59.000Z

146

Bioaugmentation for Electricity Generation from Corn Stover  

E-Print Network [OSTI]

for microbial fermenta- tion to ethanol. This conversion of cellulose to sugars can,suchascornstover,forethanolproduction (1-3). One of the main technical obstacles is that cellulose needs to first be converted to sugars gas through cellulose fermentation or electricity in microbial fuel cells (MFCs) (3, 4). On the anode

147

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents [OSTI]

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

Dederer, J.T.; Hager, C.A.

1998-03-31T23:59:59.000Z

148

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents [OSTI]

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

Dederer, Jeffrey T. (Valencia, PA); Hager, Charles A. (Mars, PA)

1998-01-01T23:59:59.000Z

149

Fuel cell using a hydrogen generation system  

DOE Patents [OSTI]

A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-10-19T23:59:59.000Z

150

Fuel cell generator with fuel electrodes that control on-cell fuel reformation  

DOE Patents [OSTI]

A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

2011-10-25T23:59:59.000Z

151

Fossil Fuel-Generated Energy Consumption Reduction for New Federal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document Fossil Fuel-Generated Energy...

152

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

153

CO? abatement by multi-fueled electric utilities: an analysis based on Japanese data  

E-Print Network [OSTI]

Multi-fueled electric utilities are commonly seen as offering relatively greater opportunities for reasonably priced carbon abatement through changes in the dispatch of generating units from capacity using high emission ...

Ellerman, A. Denny.; Tsukada, Natsuki.

154

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

time of use United States Postal Service v Distributed Generation Dispatch Optimization Under Various Electricity Tariffs

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

155

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING  

E-Print Network [OSTI]

SIMULTANEOUS DEMULTIPLEXING, ELECTRICAL CLOCK RECOVERY, AND OPTICAL CLOCK GENERATION USING of the PLL. As a result, simultaneous demultiplexing, electrical clock recovery and optical clock generation), and Masashi Usami (2) 1 : Department of Electrical and Computer Engineering, University of California Santa

Bowers, John

156

Webinar: Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)  

Broader source: Energy.gov [DOE]

Recording and text version of the webinar titled "Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)," originally presented on June 24, 2014.

157

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

purchase abs. cooling offset electric supply (kW) hourTariffs electric supply (kW) abs. cooling offset purchasecooling offset Distributed Generation Dispatch Optimization Under Various Electricity Tariffs electric supply (

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

158

Researchers use corn waste to generate electricity  

E-Print Network [OSTI]

directly. "People are looking at using cellulose to make ethanol," said Bruce E. Logan, the Kappe professor researchers thinks corn stover can be used not only to manufacture ethanol, but to generate electricity of environmental engineering. "You can make ethanol from exploded corn stover, but once you have the sugars, you

159

OPTIMAL OPERATION OF AN INTEGRATED ENERGY PARK INCLUDING FOSSIL FUEL POWER GENERATION,  

E-Print Network [OSTI]

combustion turbine, and wind generation. Energy park com- ponents are modeled using energy and mass balances with daily electricity price variability and mean wind generation. Taken in total, this study quantifies components to maximize operating profit given fuel prices, hourly electricity price, and hourly wind

Stanford University

160

Electric current generation in distorted graphene  

E-Print Network [OSTI]

Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

2014-09-23T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Two-stage electric generator system  

SciTech Connect (OSTI)

The system described herein is particularly adapted to convert mechanical energy from a wind or hydraulic driven turbine into electric energy and comprises: an exciter generator and a main generator in a housing traversed by a rotatable shaft; the exciter generator consists of permanent magnet mounted to the housing envelope and of a rotor mounted to the shaft and having a one-phase winding, the rotor being made of non-magnetic material to eliminate cogging and static torque associated with permanent magnet excitation; the main generator consists of a three-phase stator winding on a magnetic core mounted to the housing envelope and of a pole-type rotor mounted to the shaft, the rotor having a winding wound on a magnetic core; a rectifying bridge is rotatably mounted to the shaft and is connected to the one-phase winding of the rotor of the exciter generator and to the winding of the main generator rotor so that the rotation of the shaft as a result of mechanical energy generates a three-phase electric energy output from the stator winding.

Leroux, A.

1981-09-29T23:59:59.000Z

162

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network [OSTI]

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT vehicles (BEVs) and hydrogen fuel cell vehicles (FCVs). Hybrid solutions are also possible, such as battery electric vehicles equipped with range extenders (PHEVs), be they internal combustion engines or fuel cells

163

The Economics and Feasibility of Electricity Generation using  

E-Print Network [OSTI]

benefits of using biogas to generate electricity instead of coal are positive, implying that an otherwiseThe Economics and Feasibility of Electricity Generation using Manure Digesters on Small and Mid of electricity generation using methane from manure digesters on dairy farms under different electricity rate

Laughlin, Robert B.

164

Water Research 39 (2005) 49614968 Electricity generation from swine wastewater using microbial  

E-Print Network [OSTI]

Water Research 39 (2005) 4961­4968 Electricity generation from swine wastewater using microbial September 2005 Abstract Microbial fuel cells (MFCs) represent a new method for treating animal wastewaters indicated that electricity could be generated from swine wastewater containing 83207190 mg/L of soluble

165

Water Research 39 (2005) 16751686 Electricity generation using membrane and salt bridge  

E-Print Network [OSTI]

Water Research 39 (2005) 1675­1686 Electricity generation using membrane and salt bridge microbial Microbial fuel cells (MFCs) can be used to directly generate electricity from the oxidation of dissolved (Geobacter metallireducens) or a mixed culture (wastewater inoculum). Power output with either inoculum

166

Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

167

Fuel processor and method for generating hydrogen for fuel cells  

DOE Patents [OSTI]

A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL); Carter, John David (Bolingbrook, IL); Krumpelt, Michael (Naperville, IL); Myers, Deborah J. (Lisle, IL)

2009-07-21T23:59:59.000Z

168

Why do Particle Clouds Generate Electric Charges?  

E-Print Network [OSTI]

Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, because it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. Here, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains in the presence of an electric field, and we confirm the model's predictions using discrete-element simulations and a tabletop granular experiment.

T. Pähtz; H. J. Herrmann; T. Shinbrot

2015-03-16T23:59:59.000Z

169

Webinar: California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles  

Broader source: Energy.gov [DOE]

Video recording of the Fuel Cell Technologies Office webinar, California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles, originally presented on October 16, 2013.

170

Cost and quality of fuels for electric plants 1993  

SciTech Connect (OSTI)

The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1994-07-01T23:59:59.000Z

171

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network [OSTI]

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals for the diagnosis of electrochemical generators (batteries or fuel cell). It is now possible to acquire

Paris-Sud XI, Université de

172

National Fuel Cell Electric Vehicle Learning Demonstration Final...  

Broader source: Energy.gov (indexed) [DOE]

Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many...

173

BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION  

SciTech Connect (OSTI)

SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

2006-07-01T23:59:59.000Z

174

Electricity generation and environmental externalities: Case studies, September 1995  

SciTech Connect (OSTI)

Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

NONE

1995-09-28T23:59:59.000Z

175

Fuel cell power conditioning for electric power applications: a summary  

E-Print Network [OSTI]

Fuel cell power conditioning for electric power applications: a summary X. Yu, M.R. Starke, L.M. Tolbert and B. Ozpineci Abstract: Fuel cells are considered to be one of the most promising sources, multiple complications exist in fuel cell operation. Fuel cells cannot accept current in the reverse

Tolbert, Leon M.

176

Alternative Fuels Data Center: Electricity Research and Development  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticut Information toDist.Electricity

177

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

178

Alternative Fuels Data Center: Electricity Related Links  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticut Information toDist.

179

Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems  

E-Print Network [OSTI]

This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different types of electrical...

Alexander, H. R.; Rogge, D. S.

180

Establishing Thermo-Electric Generator (TEG) Design Targets for...  

Broader source: Energy.gov (indexed) [DOE]

of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Automotive Thermoelectric Generators and HVAC...

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen gas  

E-Print Network [OSTI]

MSNBC.com Winery waste makes fuel Electricity, bacteria break organics in wastewater into hydrogen method for generating hydrogen fuel from wastewater is now operating at a California winery material in the wastewater into hydrogen gas. There is a lot more energy locked in the wastewater than

182

Distributed Energy Fuel Cells Electricity Users  

E-Print Network [OSTI]

Distributed Power Package Unit: Fuel Processing Based On Autothermal Cyclic Reforming · Proton Conducting

183

Electrical faults modeling of the photovoltaic generator Wail Rezgui1  

E-Print Network [OSTI]

Electrical faults modeling of the photovoltaic generator Wail Rezgui1 , Leïla-Hayet Mouss1 , Kinza is captured by the generator and direct electrical energy resulting from the conversion of the solar radiation of a problem at the generator. Practically, the existence of electrical defects on this type of systems can

Boyer, Edmond

184

Commitment of Electric Power Generators under Stochastic Market Prices  

E-Print Network [OSTI]

Commitment of Electric Power Generators under Stochastic Market Prices Jorge Valenzuela 1 November 2001 1 Corresponding author. #12;1 Commitment of Electric Power Generators under Stochastic Market Prices Abstract A formulation for the commitment of electric power generators under a deregulated

Mazumdar, Mainak

185

Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires  

E-Print Network [OSTI]

Nanocomposite electrical generator based on piezoelectric zinc oxide nanowires K. Momeni, G. M October 2010; published online 1 December 2010 A nanocomposite electrical generator composed of an array system and loading configuration can generate up to 160% more electric potential than the values reported

Endres. William J.

186

Cost and quality of fuels for electric utility plants, 1992  

SciTech Connect (OSTI)

This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1993-08-02T23:59:59.000Z

187

Cost and quality of fuels for electric utility plants, 1994  

SciTech Connect (OSTI)

This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

NONE

1995-07-14T23:59:59.000Z

188

Fuel Cell Comparison of Distributed Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power...

189

Alternative Fuels Data Center: Fuel Cell Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCaseEthanol Printable Version

190

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle AnalysisPresentationDOE

191

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy Embrittlement Fundamentals,Slides | Department

192

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJenniferLeslie Pezzullo: ...theDepartmentfrom

193

Why do Particle Clouds Generate Electric Charges?  

E-Print Network [OSTI]

Grains in desert sandstorms spontaneously generate strong electrical charges; likewise volcanic dust plumes produce spectacular lightning displays. Charged particle clouds also cause devastating explosions in food, drug, and coal processing industries. Despite the wide-ranging importance of granular charging in both nature and industry, even the simplest aspects of its causes remain elusive, for it is difficult to understand how inert grains in contact with little more than other inert grains can generate the large charges observed. In this paper, we present a simple yet predictive explanation for the charging of granular materials in collisional flows. We argue from very basic considerations that charge transfer can be expected in collisions of identical dielectric grains, and we confirm the model's predictions using discrete element simulations and a tabletop granular experiment.

T. Pähtz; H. J. Herrmann; T. Shinbrot

2010-03-26T23:59:59.000Z

194

Generation of hydrogen peroxide in a shorted fuel cell  

SciTech Connect (OSTI)

Hydrogen peroxide is a {open_quotes}green{close_quotes} chemical with a well-assured future. As such, significant growth in demand is predicted for this material. To meet this growth, new technologies of manufacture are being contemplated to compete with the established Anthraquinone process. Some of these new methods seek the niche market of on-site generation of hydrogen peroxide. One good example of this is Dow`s caustic/peroxide generation scheme for the bleaching of paper pulp. Others rely on externally-supplied electrical power in an electrochemical reactor scheme, where peroxide may be generated additionally in neutral or acidic solution. It has long been realized that the chemical potential of the reactants themselves can be used in a controlled manner in an electrolytic cell. This is the basis of fuel cells (to generate electrical power) and has been extended to the synthesis of useful chemical species, either using solid polymer electrolytes or active oxygen transporting membranes. Use has also been made of the inherent chemical potential in H{sub 2}/O{sub 2} reactions to produce hydrogen peroxide. This reactor utilized a liquid phase cathode with dissolved air or oxygen to produce small concentrations of peroxide in a fixed volume. In fact, most schemes for the direct, electrochemical production of peroxide from hydrogen and oxygen yield low, millimolar peroxide concentrations. This paper describes the development of a scalable, segmented-flow, shorted fuel cell for the generation of greater than 1 w/o hydrogen peroxide. Three areas are of major importance in the development of a continuous, peroxide-forming reactor: the reactor design, catalyst choice and application, and the operating parameters for the reactor. The cathode catalyst is probably the single most important part. Operating parameters include such basics as temperature, pressure, gas flow rate, and liquid flow rate. Each of these topics will be discussed.

Webb, S.P.; McIntyre, J.A. [Dow Chemical Company, Midland, MI (United States)

1996-12-31T23:59:59.000Z

195

Tubular screen electrical connection support for solid oxide fuel cells  

DOE Patents [OSTI]

A solid oxide fuel assembly is made of fuel cells (16, 16', 18, 24, 24', 26), each having an outer interconnection layer (36) and an outer electrode (28), which are disposed next to each other with rolled, porous, hollow, electrically conducting metal mesh conductors (20, 20') between the fuel cells, connecting the fuel cells at least in series along columns (15, 15') and where there are no metal felt connections between any fuel cells.

Tomlins, Gregory W. (Pittsburgh, PA); Jaszcar, Michael P. (Murrysville, PA)

2002-01-01T23:59:59.000Z

196

Hydrogen Fuel Cells and Electric Forklift Trucks  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen Fuel Cell

197

Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-de cient mutant  

E-Print Network [OSTI]

Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome Keywords: Geobacter sulfurreducens Cytochrome Microbial fuel cells Microarray Geobacter sulfurreducens effectively produces electricity in microbial fuel cells by oxidizing acetate with an electrode serving

Lovley, Derek

198

Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency  

SciTech Connect (OSTI)

Suggested for Track 7: Advances in Reactor Core Design and In-Core Management _____________________________________________________________________________________ Fast Reactor Subassembly Design Modifications for Increasing Electricity Generation Efficiency R. Wigeland and K. Hamman Idaho National Laboratory Given the ability of fast reactors to effectively transmute the transuranic elements as are present in spent nuclear fuel, fast reactors are being considered as one element of future nuclear power systems to enable continued use and growth of nuclear power by limiting high-level waste generation. However, a key issue for fast reactors is higher electricity cost relative to other forms of nuclear energy generation. The economics of the fast reactor are affected by the amount of electric power that can be produced from a reactor, i.e., the thermal efficiency for electricity generation. The present study is examining the potential for fast reactor subassembly design changes to improve the thermal efficiency by increasing the average coolant outlet temperature without increasing peak temperatures within the subassembly, i.e., to make better use of current technology. Sodium-cooled fast reactors operate at temperatures far below the coolant boiling point, so that the maximum coolant outlet temperature is limited by the acceptable peak temperatures for the reactor fuel and cladding. Fast reactor fuel subassemblies have historically been constructed using a large number of small diameter fuel pins contained within a tube of hexagonal cross-section, or hexcan. Due to this design, there is a larger coolant flow area next to the hexcan wall as compared to flow area in the interior of the subassembly. This results in a higher flow rate near the hexcan wall, overcooling the fuel pins next to the wall, and a non-uniform coolant temperature distribution. It has been recognized for many years that this difference in sodium coolant temperature was detrimental to achieving greater thermal efficiency, since it causes the fuel pins in the center of the subassembly to operate at higher temperatures than those near the hexcan walls, and it is the temperature limit(s) for those fuel pins that limits the average coolant outlet temperature. Fuel subassembly design changes are being investigated using computational fluid dynamics (CFD) to quantify the effect that the design changes have on reducing the intra-subassembly coolant flow and temperature distribution. Simulations have been performed for a 19-pin test subassembly geometry using typical fuel pin diameters and wire wrap spacers. The results have shown that it may be possible to increase the average coolant outlet temperature by 20 C or more without changing the peak temperatures within the subassembly. These design changes should also be effective for reactor designs using subassemblies with larger numbers of fuel pins. R. Wigeland, Idaho National Laboratory, P.O. Box 1625, Mail Stop 3860, Idaho Falls, ID, U.S.A., 83415-3860 email – roald.wigeland@inl.gov fax (U.S.) – 208-526-2930

R. Wigeland; K. Hamman

2009-09-01T23:59:59.000Z

199

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 1, Main text  

SciTech Connect (OSTI)

This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO{sub 2}), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO{sub 2}-equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO{sub 2}-equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles.

DeLuchi, M.A. [California Univ., Davis, CA (United States)

1991-11-01T23:59:59.000Z

200

Fuel cells for electric utility and transportation applications  

SciTech Connect (OSTI)

This review article presents: the current status and expected progress status of the fuel cell research and development programs in the USA, electrochemical problem areas, techno-economic assessments of fuel cells for electric and/or gas utilities and for transportation, and other candidate fuel cells and their applications. For electric and/or gas utility applications, the most likely candidates are phosphoric, molten carbonate, and solid electrolyte fuel cells. The first will be coupled with a reformer (to convert natural gas, petroleum-derived, or biomass fuels to hydrogen), while the second and third will be linked with a coal gasifier. A fuel cell/battery hybrid power source is an attractive option for electric vehicles with projected performance characteristics approaching those for internal combustion or diesel engine powered vehicles. For this application, with coal-derived methanol as the fuel, a fuel cell with an acid electrolyte (phosphoric, solid polymer electrolyte or super acid) is essential; with pure hydrogen (obtained by splitting of water using nuclear, solar or hydroelectric energy), alkaline fuel cells show promise. A fuel cell researcher's dream is the development of a high performance direct methanol-air fuel cell as a power plant for electric vehicles. For long or intermittent duty cycle load leveling, regenerative hydrogen-halogen fuel cells exhibit desirable characteristics.

Srinivasan, S.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Overview of Fuel Cell Electric Bus Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009Energy Friction and

202

Fuel Cell Comparison of Distributed Power Generation Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen Telescope Looks4 Fuel Cycle

203

Nanomaterials for Polymer Electrolyte Membrane Fuel Cells; Materials Challenges Facing Electrical Energy Storate  

SciTech Connect (OSTI)

Symposium T: Nanomaterials for Polymer Electrolyte Membrane Fuel Cells Polymer electrolyte membrane (PEM) fuel cells are under intense investigation worldwide for applications ranging from transportation to portable power. The purpose of this seminar is to focus on the nanomaterials and nanostructures inherent to polymer fuel cells. Symposium topics will range from high-activity cathode and anode catalysts, to theory and new analytical methods. Symposium U: Materials Challenges Facing Electrical Energy Storage Electricity, which can be generated in a variety of ways, offers a great potential for meeting future energy demands as a clean and efficient energy source. However, the use of electricity generated from renewable sources, such as wind or sunlight, requires efficient electrical energy storage. This symposium will cover the latest material developments for batteries, advanced capacitors, and related technologies, with a focus on new or emerging materials science challenges.

Gopal Rao, MRS Web-Editor; Yury Gogotsi, Drexel University; Karen Swider-Lyons, Naval Research Laboratory

2010-08-05T23:59:59.000Z

204

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen Telescope Looks4 Fuel CycleFuelIssues

205

Short Communication Electricity generation from fermented primary sludge using single-chamber  

E-Print Network [OSTI]

Short Communication Electricity generation from fermented primary sludge using single-chamber air Keywords: Microbial fuel cell Electricity Primary sludge Fermentation Power density a b s t r a c t Single sludge. Fermentation (30 °C, 9 days) decreased total suspended solids (26.1­16.5 g/L), volatile suspended

206

Recent progress in zirconia-based fuel cells for power generation  

SciTech Connect (OSTI)

High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

Singhal, S.C.

1992-12-01T23:59:59.000Z

207

Recent progress in zirconia-based fuel cells for power generation  

SciTech Connect (OSTI)

High temperature solid oxide fuel cells based upon yttria-stabilized zirconia electrolyte offer a clean, pollution-free technology to electrochemically generate electricity at high efficiencies. This paper reviews the designs, materials and fabrication processes used for such fuel cells. Most progress to date has been achieved with tubular geometry cells. A large number of tubular cells have been electrically tested, some to times up to 30,000 hours; these cells have shown excellent performance and performance stability. In addition, successively larger size electric generators utilizing these cells have been designed, built and operated since 1984. Two 25 kW power generation field test units have recently been fabricated; these units represent a major milestone in the commercialization of zirconia-based fuel cells for power generation.

Singhal, S.C.

1992-01-01T23:59:59.000Z

208

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

209

Electricity Fuel Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatementNOT MEASUREMENTandDepartmentEnergy

210

Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water  

E-Print Network [OSTI]

through removal of metals from solution, but also for producing useful products such as electricity from gases or liquid fuels such as hydrogen or methanol. However, new types of microbial fuel cells

211

TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN  

E-Print Network [OSTI]

PWP-085 TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING CAPACITY IN CALIFORNIA, California 94720-5180 www.ucei.org #12;TRENDS IN ELECTRICITY CONSUMPTION, PEAK DEMAND, AND GENERATING** Abstract This study analyzes state and regional electricity supply and demand trends for the eleven states

California at Berkeley. University of

212

Stochastic Co-optimization for Hydro-Electric Power Generation  

E-Print Network [OSTI]

1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

213

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission  

E-Print Network [OSTI]

Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

214

October 2005 Gasification-Based Fuels and Electricity Production from  

E-Print Network [OSTI]

October 2005 Gasification-Based Fuels and Electricity Production from Biomass, without......................................................................... 9 3.1.1 Biomass Gasification, and production cost estimates for gasification-based thermochemical conversion of switchgrass into Fischer

215

York Electric Cooperative- Dual Fuel Heat Pump Rebate Program  

Broader source: Energy.gov [DOE]

York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and...

216

Thermoelectric Generator (TEG) Fuel Displacement Potential using  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |

217

Nuclear power generation and fuel cycle report 1997  

SciTech Connect (OSTI)

Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

NONE

1997-09-01T23:59:59.000Z

218

Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies  

E-Print Network [OSTI]

Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

Joskow, Paul L.

219

Integration of decentralized generators with the electric power grid  

E-Print Network [OSTI]

This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

Finger, Susan

1981-01-01T23:59:59.000Z

220

Assessing Strategies for Fuel and Electricity Production in a California Hydrogen Economy  

E-Print Network [OSTI]

based on electricity generation plant type classificationsof electricity generation met by natural gas plants and theelectricity generation among different types of power plants (

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations  

E-Print Network [OSTI]

Analysis of the Behavior of Electric Vehicle Charging Stations with Renewable Generations Woongsup between electric vehicle charging stations (EVCSs) with renewable electricity generation facilities (REGFs electricity generation [1]. Therefore, renewable power generation will play a significant role in smart grid

Wong, Vincent

222

Edison Electric Institute State Generation and Transmission Siting...  

Open Energy Info (EERE)

LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Edison Electric Institute State Generation and Transmission Siting DirectoryPermittingRegulatory...

223

Adapting On-site Electrical Generation Platforms for Producer Gas  

Broader source: Energy.gov [DOE]

Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

224

Renewable Energy for Electricity Generation in Latin America...  

Open Energy Info (EERE)

Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Focus...

225

Single module pressurized fuel cell turbine generator system  

DOE Patents [OSTI]

A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

2001-01-01T23:59:59.000Z

226

Alternative Fuels Data Center: Electricity Laws and Incentives  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someone by E-mail

227

Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen  

SciTech Connect (OSTI)

Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiency—the economic benefit derived from energy systems capital investment at a societal level—strongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

Charles Forsberg; Steven Aumeier

2014-04-01T23:59:59.000Z

228

Cost and quality of fuels for electric utility plants, 1984  

SciTech Connect (OSTI)

Information on the cost and quality of fossil fuel receipts in 1984 to electric utility plants is presented, with some data provided for each year from 1979 through 1984. Data were collected on Forms FERC-423 and EIA-759. Fuels are coal, fuel oil, and natural gas. Data are reported by company and plant, by type of plant, and by State and Census Region, with US totals. This report contains information on fossil fuel receipts to electric utility plants with a combined steam capacity of 50 megawatts or larger. Previous reports contained data on all electric plants with a combined capacity of 25 megawatts or larger. All historical data in this publication have been revised to reflect the new reporting threshold. Peaking unit data are no longer collected. A glossary of terms, technical notes, and references are also provided. 7 figs., 62 tabs.

Not Available

1985-07-01T23:59:59.000Z

229

Minimizing electricity costs with an auxiliary generator using stochastic programming  

E-Print Network [OSTI]

This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

Rafiuly, Paul, 1976-

2000-01-01T23:59:59.000Z

230

Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

Not Available

2012-01-01T23:59:59.000Z

231

OpenEI Community - electric generation  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast, 2012Coast

232

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer  

Broader source: Energy.gov (indexed) [DOE]

On-Board Ammonia Generation Using Delphi Diesel Fuel Reformer Mark Hemingway, Dr. Joachim Kupe, Joseph Bonadies, Mike Seino, Dr. John Kirwan, - Delphi Powertrain DEER, August...

233

World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station...  

Office of Environmental Management (EM)

to heat and electricity-in Fountain Valley. The system runs on natural gas and biogas generated by the Orange County Sanitation District's wastewater treatment facility....

234

Neutron Generators for Spent Fuel Assay  

E-Print Network [OSTI]

of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

235

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

Managing Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper, and to meet increasing electricity demand without harming the environment. Two of the most promising solutions for the energy issue are to rely on renewable energy, and to develop efficient electricity storage. Renewable

Sadeh, Norman M.

236

Electricity generation with looped transmission networks: Bidding to an ISO  

E-Print Network [OSTI]

on a transmission network from net generation nodes to net consumption nodes is governed by the Kirchoff Laws [45Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes

Ferris, Michael C.

237

Axial Current Generation from Electric Field: Chiral Electric Separation Effect  

E-Print Network [OSTI]

We study a relativistic plasma containing charged chiral fermions in an external electric field. We show that with the presence of both vector and axial charge densities, the electric field can induce an axial current along its direction and thus cause chirality separation. We call it the Chiral Electric Separation Effect (CESE). On very general basis, we argue that the strength of CESE is proportional to $\\mu_V\\mu_A$ with $\\mu_V$ and $\\mu_A$ the chemical potentials for vector charge and axial charge. We then explicitly calculate this CESE conductivity coefficient in thermal QED at leading-log order. The CESE can manifest a new gapless wave mode propagating along the electric field. Potential observable of CESE in heavy-ion collisions is also discussed.

Xu-Guang Huang; Jinfeng Liao

2013-06-07T23:59:59.000Z

238

Cost and Performance Assumptions for Modeling Electricity Generation Technologies  

SciTech Connect (OSTI)

The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

2010-11-01T23:59:59.000Z

239

Alternative Fuels Data Center: All-Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric Vehicles to someone by

240

Alternative Fuels Data Center: Benefits and Considerations of Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric Vehicles toas a Vehicle

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-ElectricCNGDieselDrop-InE85:

242

Development of an efficient, low cost, small-scale natural gas fuel reformer for residential scale electric power generation. Final report for the period October 1, 1998 - December 31, 1999  

SciTech Connect (OSTI)

In the final report, we present results from a technical and economic assessment of residential scale PEM fuel cell power systems. The objectives of our study are to conceptually design an inexpensive, small-scale PEMFC-based stationary power system that converts natural gas to both electricity and heat, and then to analyze the prospective performance and economics of various system configurations. We developed computer models for residential scale PEMFC cogeneration systems to compare various system designs (e.g., steam reforming vs. partial oxidation, compressed vs. atmospheric pressure, etc.) and determine the most technically and economically attractive system configurations at various scales (e.g., single family, residential, multi-dwelling, neighborhood).

Kreutz, Thomas G.; Ogden, Joan M.

2000-07-01T23:59:59.000Z

243

Flying Electric Generators | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlackFluvanna County, Virginia: EnergyFlying

244

What explains the increased utilization of Powder River Basin coal in electric power generation?  

SciTech Connect (OSTI)

This article examines possible explanations for increased utilization of Powder River Basin (PRB) coal in electric power generation that occurred over the last two decades. Did more stringent environmental policy motivate electric power plants to switch to less polluting fuels? Or, did greater use of PRB coal occur because relative price changes altered input markets in favor of this fuel. A key finding is that factors other than environmental policy such as the decline in railroad freight rates together with elastic demand by power plants were major contributors to the increased utilization of this fuel.

Gerking, S.; Hamilton, S.F. [University of Central Florida, Orlando, FL (United States)

2008-11-15T23:59:59.000Z

245

Boost Converters for Gas Electric and Fuel Cell Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) are driven by at least two prime energy sources, such as an internal combustion engine (ICE) and propulsion battery. For a series HEV configuration, the ICE drives only a generator, which maintains the state-of-charge (SOC) of propulsion and accessory batteries and drives the electric traction motor. For a parallel HEV configuration, the ICE is mechanically connected to directly drive the wheels as well as the generator, which likewise maintains the SOC of propulsion and accessory batteries and drives the electric traction motor. Today the prime energy source is an ICE; tomorrow it will very likely be a fuel cell (FC). Use of the FC eliminates a direct drive capability accentuating the importance of the battery charge and discharge systems. In both systems, the electric traction motor may use the voltage directly from the batteries or from a boost converter that raises the voltage. If low battery voltage is used directly, some special control circuitry, such as dual mode inverter control (DMIC) which adds a small cost, is necessary to drive the electric motor above base speed. If high voltage is chosen for more efficient motor operation or for high speed operation, the propulsion battery voltage must be raised, which would require some type of two-quadrant bidirectional chopper with an additional cost. Two common direct current (dc)-to-dc converters are: (1) the transformer-based boost or buck converter, which inverts a dc voltage, feeds the resulting alternating current (ac) into a transformer to raise or lower the voltage, and rectifies it to complete the conversion; and (2) the inductor-based switch mode boost or buck converter [1]. The switch-mode boost and buck features are discussed in this report as they operate in a bi-directional chopper. A benefit of the transformer-based boost converter is that it isolates the high voltage from the low voltage. Usually the transformer is large, further increasing the cost. A useful feature of the switch mode boost converter is its simplicity. Its inductor must handle the entire current, which is responsible for its main cost. The new Z-source inverter technology [2,3] boosts voltage directly by actively using the zero state time to boost the voltage. In the traditional pulse width modulated (PWM) inverter, this time is used only to control the average voltage by disconnecting the supply voltage from the motor. The purpose of this study is to examine the Z-source's potential for reducing the cost and improving the reliability of HEVs.

McKeever, JW

2005-06-16T23:59:59.000Z

246

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period July 1, 2001--September 30, 2001, Allegheny Energy Supply Co., LLC (Allegheny) continued construction of the Willow Island cofiring project, completed the installation of the fuel storage facility, the fuel receiving facility, and the processing building. All mechanical equipment has been installed and electrical construction has proceeded. During this time period significant short term testing of the Albright Generating Station cofiring facility was completed, and the 100-hour test was planned for early October. The testing demonstrated that cofiring at the Albright Generating Station could contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the construction activities at both sites along with the combustion modeling at the Willow Island site.

K. Payette; D. Tillman

2001-10-01T23:59:59.000Z

247

U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-10-21T23:59:59.000Z

248

A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels  

SciTech Connect (OSTI)

A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

Tao, Greg, G.

2007-03-31T23:59:59.000Z

249

U.S. Nuclear Generation of Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sector Transportation EnergyGlossary API5382009 2010Nuclear

250

Next Generation Electric Machines | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment ofNews News Recent news

251

Compare All CBECS Activities: Electricity Generation  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42 180Number of BuildingsNumberBy

252

Renewable Electricity Generation | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartmentEnergyFrequency | Department ofMayJoin over 800AsRenewable

253

THE BIRTH OF NUCLEAR-GENERATED ELECTRICITY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign Object DamageSystemsU.S. TALKS1 | ETHANKSGIVINGBIRTH

254

Scientists Studying Photosynthesis to Generate Electricity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted forHighlights Nuclear Physics (NP)DataScientist AmbassadorsScientists

255

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

of about 80 GW of coal-based generation technologyand reduces coal-based electricity generation by 18%.to offset coal- and natural gas-based electricity generation

Hand, Maureen

2008-01-01T23:59:59.000Z

256

Electric Power Generation from Low-Temperature Geothermal Resources  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGridCounty,Portal,105.Electric FuelGas

257

Generation and Solid Oxide Fuel Cell Carbon Sequestration in Northwest Indiana  

SciTech Connect (OSTI)

The objective of the project is to develop the technology capable of capturing all carbon monoxide and carbon dioxide from natural gas fueled Solid Oxide Fuel Cell (SOFC) system. In addition, the technology to electrochemically oxidize any remaining carbon monoxide to carbon dioxide will be developed. Success of this R&D program would allow for the generation of electrical power and thermal power from a fossil fuel driven SOFC system without the carbon emissions resulting from any other fossil fueled power generationg system.

Kevin Peavey; Norm Bessette

2007-09-30T23:59:59.000Z

258

Measured effect of wind generation on the fuel consumption of an isolated diesel power system  

SciTech Connect (OSTI)

The Block Island Power Company (BIPCO), on Block Island, Rhode Island, operates an isolated electric power system consisting of diesel generation and an experimental wind turbine. The 150-kW wind turbine, designated MOD-OA by the U.S. Department of Energy is typically operated in parallel with two diesel generators to serve an average winter load of 350 kW. Wind generation serves up to 60% of the system demand depending on wind speed and total system load. Results of diesel fuel consumption measurements are given for the diesel units operated in parallel with the wind turbine and again without the wind turbine. The fuel consumption data are used to calculate the amount of fuel displaced by wind energy. Results indicate that the wind turbine displaced 25,700 lbs. of the diesel fuel during the test period, representing a calculated reduction in fuel consumption of 6.7% while generating 11% of the total electrical energy. The amount of displaced fuel depends on operating conditions and system load. It is also shown that diesel engine throttle activity resulting from wind gusts which rapidly change the wind turbine output do not significantly influence fuel consumption.

Stiller, P.; Scott, G.; Shaltens, R.

1983-06-01T23:59:59.000Z

259

Fuel cell generator containing a gas sealing means  

DOE Patents [OSTI]

A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator. 5 figs.

Makiel, J.M.

1987-02-03T23:59:59.000Z

260

Fuel cell generator containing a gas sealing means  

DOE Patents [OSTI]

A high temperature solid electrolyte electrochemical generator is made, operating with flowing fuel gas and oxidant gas, the generator having a thermal insulation layer, and a sealing means contacting or contained within the insulation, where the sealing means is effective to control the contact of the various gases utilized in the generator.

Makiel, Joseph M. (Monroeville, PA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

GENERATION OF ELECTRIC Hesham E. Shaalan  

E-Print Network [OSTI]

Maximum Predicted Annual Loads . . . . . . . 8.18 Required Planning Reserve Margin energy source or fuel (e.g., oil) is often capable of being used in a number of different types

Powell, Warren B.

262

Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

263

Development of a Segregated Municipal Solid Waste Gasification System for Electrical Power Generation  

E-Print Network [OSTI]

. The overall engine-generator efficiency at 7.5 kW electrical power load was lower at 19.81% for gasoline fueled engine compared to 35.27% for synthesis gas. The pressure swing adsorption (PSA) system increased the net heating value of the product gas...

Maglinao, Amado Latayan

2013-04-11T23:59:59.000Z

264

Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle  

DOE Patents [OSTI]

The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

Labinov, Solomon D.; Christian, Jeffrey E.

2003-10-07T23:59:59.000Z

265

Category:Electricity Generating Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm JumpBLM)Development5 subcategories,

266

Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)  

SciTech Connect (OSTI)

Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

2010-03-01T23:59:59.000Z

267

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding electric generation....

268

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

269

Maine: Energy Efficiency Program Helps Generate Town's Electricity  

Office of Energy Efficiency and Renewable Energy (EERE)

Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

270

KRS Chapter 278: Electric Generation and Transmission Siting (Kentucky)  

Broader source: Energy.gov [DOE]

No person shall commence to construct a merchant electric generating facility until that person has applied for and obtained a construction certificate for the facility from the Kentucky State...

271

Sales and Use Tax Exemption for Electrical Generating Facilities  

Broader source: Energy.gov [DOE]

Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible...

272

Alternative electric generation impact simulator : final summary report  

E-Print Network [OSTI]

This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

Gruhl, Jim

1981-01-01T23:59:59.000Z

273

Competitive electricity markets and investment in new generating capacity  

E-Print Network [OSTI]

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

Joskow, Paul L.

2006-01-01T23:59:59.000Z

274

Evaluating Policies to Increase Electricity Generation from Renewable Energy  

E-Print Network [OSTI]

Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

Schmalensee, Richard

275

Applications for Certificates for Electric Generation Facilities (Ohio)  

Broader source: Energy.gov [DOE]

An applicant for a certificate to site an electric power generating facility shall provide a project summary and overview of the proposed project. In general, the summary should be suitable as a...

276

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network [OSTI]

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

277

Managing Wind-based Electricity Generation and Storage  

E-Print Network [OSTI]

and solar energy--is free, abundant, and most importantly, does not exacerbate the global warming problemManaging Wind-based Electricity Generation and Storage by Yangfang Zhou Submitted to the Tepper on renewable energy, and to develop efficient electricity storage. Renewable energy--such as wind energy

278

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

279

Renewable Electricity Generation Success Stories | Department...  

Broader source: Energy.gov (indexed) [DOE]

Read more water success stories Wind February 18, 2015 Mapping the Frontier of New Wind Power Potential June 17, 2014 Enhanced Efficiency of Wind-Diesel Power Generation in...

280

A rotating suspended liquid film as an electric generator  

E-Print Network [OSTI]

We have observed that a rotating liquid film generates electricity when a large external electric field is applied in the plane of the film. In our experiment suspended liquid film (soap film) is formed on a circular frame positioned horizontally on a rotating motor. This devise is located at the center of two capacitor-like vertical plates to apply external electric field in X-direction.The produced electric energy is piked up by two brushes in Y-direction of the suspended liquid film. We previously reported that a liquid film in an external electric field rotates when an electric current passes through it, naming it the liquid film motor (LFM). In this letter we report that the same system can be used as an electric generator, converting the rotating mechanical energy to an electric energy. The liquid film electric generator (LFEG) is in stark contrast to the LFM, both of which could be designed in very small scales like micro scales applicable in lab on a chip. The device is comparable to commercial DC ele...

Amjadi, Ahmad; Namin, Reza Montazeri

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Final Technical Report: Residential Fuel Cell Demonstration by the Delaware County Electric Cooperative, Inc.  

SciTech Connect (OSTI)

This demonstration project contributes to the knowledge base in the area of fuel cells in stationary applications, propane fuel cells, edge-of-grid applications for fuel cells, and energy storage in combination with fuel cells. The project demonstrated that it is technically feasible to meet the whole-house electrical energy needs of a typical upstate New York residence with a 5-kW fuel cell in combination with in-home energy storage without any major modifications to the residence or modifications to the consumption patterns of the residents of the home. The use of a fuel cell at constant output power through a 120-Volt inverter leads to system performance issues including: • relatively poor power quality as quantified by the IEEE-defined short term flicker parameter • relatively low overall system efficiency Each of these issues is discussed in detail in the text of this report. The fuel cell performed well over the 1-year demonstration period in terms of availability and efficiency of conversion from chemical energy (propane) to electrical energy at the fuel cell output terminals. Another strength of fuel cell performance in the demonstration was the low requirements for maintenance and repair on the fuel cell. The project uncovered a new and important installation consideration for propane fuel cells. Alcohol added to new propane storage tanks is preferentially absorbed on the surface of some fuel cell reformer desulfurization filters. The experience on this project indicates that special attention must be paid to the volume and composition of propane tank additives. Size, composition, and replacement schedules for the de-sulfurization filter bed should be adjusted to account for propane tank additives to avoid sulfur poisoning of fuel cell stacks. Despite good overall technical performance of the fuel cell and the whole energy system, the demonstration showed that such a system is not economically feasible as compared to other commercially available technologies such as propane reciprocating engine generators.

Mark Hilson Schneider

2007-06-06T23:59:59.000Z

282

Next Generation Bipolar Plates for Automotive PEM Fuel Cells | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |MillionNext Generation Attics and Roofof

283

Generating Revenue for Generating Green Electricity: Evidence from Laboratory Experiments on  

E-Print Network [OSTI]

Programs The first generation of green electricity programs were established over the last fifteen years generation. As of 2009, 860 such programs were operating in the United States (Bird and Sumner, 2010 per kilowatt-hour and decides the fraction of monthly electricity consumption to which the premium

Edwards, Paul N.

284

Sustainable Power Generation in Microbial Fuel Cells Using  

E-Print Network [OSTI]

Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer applications, especially for wastewater treatment. Introduction Microbial fuel cell (MFC) technology has drawn of electrodes (6­9), (iii) selection and treatment of membranes (10­12), and (iv) optimization of the MFC design

Tullos, Desiree

285

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2011-01-01T23:59:59.000Z

286

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

SciTech Connect (OSTI)

This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-07-01T23:59:59.000Z

287

Fuel Cell Electric Vehicle Powered by Renewable Hydrogen  

ScienceCinema (OSTI)

The National Renewable Energy Laboratory (NREL) recently received a Borrego fuel cell electric vehicle (FCEV) on loan from Kia for display at a variety of summer events. The Borrego is fueled using renewable hydrogen that is produced and dispensed at NREL's National Wind Technology Center near Boulder, Colorado. The hydrogen dispensed at the station is produced via renewable electrolysis as part of the wind-to-hydrogen project, which uses wind turbines and photovoltaic arrays to power electrolyzer stacks that split water into hydrogen and oxygen. The FCEV features state-of-the-art technology with zero harmful emissions.

None

2013-05-29T23:59:59.000Z

288

Electric Power Generation Systems | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLEEFFECTS OFElaineElectric Grid -

289

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network [OSTI]

for electric power generation, and for diesel and fuel oil,for electric power generation, and for diesel and fuel oil,

Coughlin, Katie

2013-01-01T23:59:59.000Z

290

Modeling of a detonation driven, linear electric generator facility  

E-Print Network [OSTI]

the heat and the force produced from the detonation wave. In previous experimental work, a single that involve coupling a PDE with different systems to drive a generator and produce electricity [2, 3]. One. For instance, it may be possible to design a generator that uses the force created by the pressure rise from

Texas at Arlington, University of

291

Direct fuel cell for the production of electricity from lignin  

SciTech Connect (OSTI)

This report describes the use of an anthraquinone mediated fuel cell for the direct production of electrical energy from sulfonated lignin and Kraft Black Liquor. The cell produces the equivalent of one kWh for each 2-3 lb sulfonated lignin and 5-8 lb black liquor combustibles. In the case of the sulfonated lignin, chain session occurs during the oxidation process, reducing the molecular weight from ca. 2 x 10/sup 4/ to less than 1000 D.

Weetall, H.H.; Forsyth, B.D.; Hertl, W.

1985-07-01T23:59:59.000Z

292

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

Hand, Maureen

2008-01-01T23:59:59.000Z

293

Hydrogen Operated Internal Combustion Engines – A New Generation Fuel  

E-Print Network [OSTI]

Abstract- The present scenario of the automotive and agricultural sectors is fairly scared with the depletion of fossil fuel. The researchers are working towards to find out the best replacement for the fossil fuel; if not at least to offset the total fuel demand. In regards to emission, the fuel in the form of gaseous state is much than liquid fuel. By considering the various aspects of fuel, hydrogen is expected as a best option when consider as a gaseous state fuel. It is identified as a best alternate fuel for internal combustion engines as well as power generation application, which can be produced easily by means of various processes. The hydrogen in the form of gas can be used in the both spark ignition and compression ignition engines for propelling the vehicles. The selected fuel is much cleaner and fuel efficient than conventional fuel. The present study focusing the various aspects and usage of hydrogen fuel in S.I engine and C.I engine. Keywords- Hydrogen, Spark ignition engine, compression ignition engine, performance, Emission I.

B. Rajendra Prasath; E. Leelakrishnan; N. Lokesh; H. Suriyan; E. Guru Prakash; K. Omur; Mustaq Ahmed

294

Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

Not Available

2011-11-01T23:59:59.000Z

295

Proposed strontium radiosotope thermoelectric generator fuel encapsulation facility  

SciTech Connect (OSTI)

The proposed Fuel Encapsulation Facility is a fully equipped facility for processing and encapsulating strontium Radioisotope Thermoelectric Generator (RTG) fuel from presently available Waste Encapsulation and Storage Facility (WESF) capsules. The facility location is on the second building level below ground of the Fuels and Materials Examination Facility (FMEF), Cells 142, 143, and 145. Capsules containing strontium fluoride (SrF[sub 2]) would be received from the WESF in Cell 145 and transferred to the three adjacent cells for processing and encapsulation into the final RTG fuel configuration.

Adkins, H.E. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-10T23:59:59.000Z

296

Next Generation Bipolar Plates for Automotive PEM Fuel Cells  

SciTech Connect (OSTI)

The results of a successful U.S. Department of Energy (DoE) funded two-year $2.9 MM program lead by GrafTech International Inc. (GrafTech) are reported and summarized. The program goal was to develop the next generation of high temperature proton exchange membrane (PEM) fuel cell bipolar plates for use in transportation fuel cell applications operating at temperatures up to 120 °C. The bipolar plate composite developed during the program is based on GrafTech’s GRAFCELL? resin impregnated flexible graphite technology and makes use of a high temperature Huntsman Advanced Materials resin system which extends the upper use temperature of the composite to the DoE target. High temperature performance of the new composite is achieved with the added benefit of improvements in strength, modulus, and dimensional stability over the incumbent resin systems. Other physical properties, including thermal and electrical conductivity of the new composite are identical to or not adversely affected by the new resin system. Using the new bipolar plate composite system, machined plates were fabricated and tested in high temperature single-cell fuel cells operating at 120 °C for over 1100 hours by Case Western Reserve University. Final verification of performance was done on embossed full-size plates which were fabricated and glued into bipolar plates by GrafTech. Stack testing was done on a 10-cell full-sized stack under a simulated drive cycle protocol by Ballard Power Systems. Freeze-thaw performance was conducted by Ballard on a separate 5-cell stack and shown to be within specification. A third stack was assembled and shipped to Argonne National Laboratory for independent performance verification. Manufacturing cost estimate for the production of the new bipolar plate composite at current and high volume production scenarios was performed by Directed Technologies Inc. (DTI). The production cost estimates were consistent with previous DoE cost estimates performed by DTI for the DoE on metal plates. The final result of DTI’s analysis for the high volume manufacturing scenario ($6.85 /kW) came in slightly above the DoE target of $3 to $5/kW. This estimate was derived using a “Best Case Scenario” for many of the production process steps and raw material costs with projections to high volumes. Some of the process improvements assumed in this “Best Case Scenario” including high speed high impact forming and solvent-less resins, have not yet been implemented, but have a high probability of potential success.

Orest Adrianowycz; Julian Norley; David J. Stuart; David Flaherty; Ryan Wayne; Warren Williams; Roger Tietze; Yen-Loan H. Nguyen; Tom Zawodzinski; Patrick Pietrasz

2010-04-15T23:59:59.000Z

297

Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)  

Broader source: Energy.gov [DOE]

Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

298

Entering a New Stage of Learning from the U.S. Fuel Cell Electric...  

Energy Savers [EERE]

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle...

299

Combined Power Generation and Carbon Sequestration Using Direct FuelCell  

SciTech Connect (OSTI)

The unique chemistry of carbonate fuel cell offers an innovative approach for separation of carbon dioxide from greenhouse gases (GHG). The carbonate fuel cell system also produces electric power at high efficiency. The simultaneous generation of power and sequestration of greenhouse gases offer an attractive scenario for re-powering the existing coal-fueled power plants, in which the carbonate fuel cell would separate the carbon dioxide from the flue gas and would generate additional pollutant-free electric power. Development of this system is concurrent with emergence of Direct FuelCell{reg_sign} (DFC{reg_sign}) technology for generation of electric power from fossil fuels. DFC is based on carbonate fuel cell featuring internal reforming. This technology has been deployed in MW-scale power plants and is readily available as a manufactured product. This final report describes the results of the conceptualization study conducted to assess the DFC-based system concept for separation of CO2 from GHG. Design and development studies were focused on integration of the DFC systems with coal-based power plants, which emit large amounts of GHG. In parallel to the system design and simulation activities, operation of laboratory scale DFC verified the technical concept and provided input to the design activity. The system was studied to determine its effectiveness in capturing more than ninety percent of CO2 from the flue gases. Cost analysis was performed to estimate the change in cost of electricity for a 200 MW pulverized coal boiler steam cycle plant retrofitted with the DFC-based CO2 separation system producing an additional 127 MW of electric power. The cost increments as percentage of levelized cost of electricity were estimated for a range of separation plant installations per year and a range of natural gas cost. The parametric envelope meeting the goal (<20% increase in COE) was identified. Results of this feasibility study indicated that DFC-based separation systems have the potential for capturing at least 90% of the emissions from the greenhouse gases generated by power plants and other industrial exhaust streams, and yet entail in less than 20% increase in the cost of energy services for long-term deployment (beyond 2012). The anticipated cost of energy increase is in line with DOE's goal for post-combustion systems as outlined in the ''Carbon Capture and Sequestration Systems Analysis Guidelines'', published by NETL, April 2005. During the course of this study certain enabling technologies were identified and the needs for further research and development were discussed.

Hossein Ghezel-Ayagh

2006-03-01T23:59:59.000Z

300

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies  

E-Print Network [OSTI]

of traditional emergency generator applications, these technologies are integrated in building energy systems to provide some portion of a facility’s electricity and thermal energy needs including space heating and air conditioning. In the event of a power.... These CHP systems provide electricity and utilize waste heat from the generation process in existing building thermal applications such as space heating, domestic water heating. Thermal energy can also be used in an absorption refrigeration cycle...

Jackson, J.

2006-01-01T23:59:59.000Z

302

PEM fuel cells for transportation and stationary power generation applications  

SciTech Connect (OSTI)

We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

1996-05-01T23:59:59.000Z

303

Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles  

E-Print Network [OSTI]

optimization of PEM fuel cell power system, and fuel cell powered, low speed electric vehicles. #12;iii TABLEModelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair Supervisors: Dr. Zuomin Dong ABSTRACT Electric vehicles, as an emerging transportation platform, have been

Victoria, University of

304

Control of a Fuel-Cell Powered DC Electric Vehicle Motor  

E-Print Network [OSTI]

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models and Control Strategies Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;3 Currently Available Models

Skogestad, Sigurd

305

The role of hydroelectric generation in electric power systems with large scale wind generation  

E-Print Network [OSTI]

An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

Hagerty, John Michael

2012-01-01T23:59:59.000Z

306

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

of the hybrid-electric diesel and LNG Class 8 trucks wereengine truck, diesel hybrid-electric, conventional LNGhybrid-electric vehicles with diesel and LNG engines, fuel

Zhao, Hengbing

2013-01-01T23:59:59.000Z

307

Rehabilitation project of some coal fired electricity generating units in compliance with RENEL`s development strategy  

SciTech Connect (OSTI)

The Romanian Authority of Electricity (RENEL) is a state-owned company for generation, transport, and distribution of electric and thermal power in Romania. The paper discusses the present situation regarding energy supply in Romania based on fossil fuels and RENEL`s strategy for energy sector development, namely, the rehabilitation of existing generating plants rather than new investments. The paper briefly describes RENEL`s rehabilitation programs, and the analysis of solutions suited for expanding RENEL`s rehabilitation program.

Octavian, P.; Cristian, T.

1996-12-31T23:59:59.000Z

308

1 Control Challenges of Fuel Cell-Driven Distributed Generation  

E-Print Network [OSTI]

Abstract — This paper discusses the load following capability of fuel cell-driven power plants. A linear model of a Solid Oxide Fuel Cell power plant is obtained and utilized for the design of robust controllers which enhance tracking response of the plant and reject disturbances originating from the distribution grid. Two robust controllers are synthesized applying the H? mixed-sensitivity optimization and their performance is validated by means of nonlinear time-domain simulations. The obtained results indicate that the disturbances can be successfully attenuated; however, the tracking response cannot be significantly improved without a modification of the design of the fuel cell power plant. The paper is concluded by a brief discussion on the physical limitations on the fuel cell output power ramp and possible solutions are outlined. Index Terms — Distributed generation, Solid Oxide Fuel Cells, robust control, H ? controller design, disturbance rejection.

Valery Knyazkin; Lennart Söder; Claudio Canizares

309

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

nuclear, geothermal, and fossil-fuel power plants. However,power plants, which are reviewed and licensed by the Nuclear Regulatory Commission (NRC), and relatively few areas of geothermal and

Nero, A.V.

2010-01-01T23:59:59.000Z

310

Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group...  

Broader source: Energy.gov (indexed) [DOE]

Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation...

311

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network [OSTI]

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

312

The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

such as wind and solar energy and from nuclear energy. Fuel cell vehicles (FCV) use hydrogen as fuel to produceINVITED P A P E R The State of the Art of Electric, Hybrid, and Fuel Cell Vehicles, and constraints on energy resources, the electric, hybrid, and fuel cell vehicles have attracted more and more

Leung, Ka-Cheong

313

Developing a tool to estimate water withdrawal and consumption in electricity generation in the United States.  

SciTech Connect (OSTI)

Freshwater consumption for electricity generation is projected to increase dramatically in the next couple of decades in the United States. The increased demand is likely to further strain freshwater resources in regions where water has already become scarce. Meanwhile, the automotive industry has stepped up its research, development, and deployment efforts on electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Large-scale, escalated production of EVs and PHEVs nationwide would require increased electricity production, and so meeting the water demand becomes an even greater challenge. The goal of this study is to provide a baseline assessment of freshwater use in electricity generation in the United States and at the state level. Freshwater withdrawal and consumption requirements for power generated from fossil, nonfossil, and renewable sources via various technologies and by use of different cooling systems are examined. A data inventory has been developed that compiles data from government statistics, reports, and literature issued by major research institutes. A spreadsheet-based model has been developed to conduct the estimates by means of a transparent and interactive process. The model further allows us to project future water withdrawal and consumption in electricity production under the forecasted increases in demand. This tool is intended to provide decision makers with the means to make a quick comparison among various fuel, technology, and cooling system options. The model output can be used to address water resource sustainability when considering new projects or expansion of existing plants.

Wu, M.; Peng, J. (Energy Systems); ( NE)

2011-02-24T23:59:59.000Z

314

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network [OSTI]

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

315

EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

316

Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)  

SciTech Connect (OSTI)

Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

Not Available

2013-01-01T23:59:59.000Z

317

Distributed Generation Dispatch Optimization under VariousElectricity Tariffs  

SciTech Connect (OSTI)

The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

318

Clean coal technologies in electric power generation: a brief overview  

SciTech Connect (OSTI)

The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

2006-07-15T23:59:59.000Z

319

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation  

E-Print Network [OSTI]

Atmospheric Mercury Deposition Impacts of Future Electric Power Generation Mark D. Cohen Physical fish consumption, and significant portions of the general population are believed to be consuming toxicologically significant levels of mercury (e.g., National Research Council, 2000). Historical discharges ­ e

320

Effective critical electric field for runaway electron generation  

E-Print Network [OSTI]

In this letter we investigate factors that influence the effective critical electric field for runaway electron generation in plasmas. We present numerical solutions of the kinetic equation, and discuss the implications for the threshold electric field. We show that the effective electric field necessary for significant runaway formation often is higher than previously calculated due to both (1) extremely strong dependence of primary generation on temperature, and (2) synchrotron radiation losses. We also address the effective critical field in the context of a transition from runaway growth to decay. We find agreement with recent experiments, but show that the observation of an elevated effective critical field can mainly be attributed to changes in the momentum-space distribution of runaways, and only to a lesser extent to a de facto change in the critical field.

Stahl, Adam; Decker, Joan; Embréus, Ola; Fülöp, Tünde

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

322

POWER PLANT RELIABILITY-AVAILABILITY AND STATE REGULATION. VOLUME 7 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

entry are u Table 4-6 GAS TURBINE FOR 1965-1974 (OUTAGES)AVERAGE utage Cause Code GAS TURBINE GENERATOR FORCED OUTAGEof fossil units, and for gas turbine units, the basic data

Nero, A.V.

2010-01-01T23:59:59.000Z

323

Environmental impact of fossil fuel combustion in power generation  

SciTech Connect (OSTI)

All the recent developments in the combustion systems employed for power generation have been based on environmental considerations. Combustion modifications have been developed and utilised in order to control NO{sub x} emissions and improvements continue to be made as the legislative requirements tighten. Chemical processes and fuel switching are used to control SO{sub x} emissions. After nitrogen, carbon dioxide is the major gas emitted from the combustion process and its potential potency as a greenhouse gas is well documented. Increased efficiency cycles, mainly based on natural gas as the prime fuel, can minimise the amount of CO{sub x} produced per unit of power generated. As the economics of natural gas utilisation become less favourable a return to clean coal technology based power generation processes may be required.

Allen, J.W.; Beal, P.R. [International Combustion Ltd., Derby (United Kingdom)

1996-12-31T23:59:59.000Z

324

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel-cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, EarlyFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early

Williams, Brett D

2010-01-01T23:59:59.000Z

325

Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies  

SciTech Connect (OSTI)

The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

2012-06-01T23:59:59.000Z

326

Assessment of the possibilities of electricity and heat co-generation from biomass in Romania's case  

SciTech Connect (OSTI)

This paper examines the use of biomass for electricity (and heat) production. The objectives of the works developed by RENEL--GSCI were to determine the Romanian potential biomass resources available in economic conditions for electricity production from biomass, to review the routes and the available equipment for power generation from biomass, to carry out a techno-economic assessment of different systems for electricity production from biomass, to identify the most suitable system for electricity and heat cogeneration from biomass, to carry out a detailed techno-economic assessment of the selected system, to perform an environmental impact assessment of the selected system and to propose a demonstration project. RENEL--GSCI (former ICEMENERG) has carried out an assessment concerning Romania's biomass potential taking into account the forestry and wood processing wastes (in the near term) and agricultural wastes (in mid term) as well as managing plantations (in the long term). Comparative techno-economical evaluation of biomass based systems for decentralized power generation was made. The cost analysis of electricity produced from biomass has indicated that the system based on boiler and steam turbine of 2,000 kW running on wood-wastes is the most economical. A location for a demonstration project with low cost financing possibilities and maximum benefits was searched. To mitigate the electricity cost it was necessary to find a location in which the fuel price is quite low, so that the low yield of small installation can be balanced. In order to demonstrate the performances of a system which uses biomass for electricity and heat generation, a pulp and paper mill which needed electricity and heat, and, had large amount of wood wastes from industrial process was found as the most suitable location. A technical and economical analysis for 8 systems for electricity production from bark and wood waste was performed.

Matei, M.

1998-07-01T23:59:59.000Z

327

Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?  

E-Print Network [OSTI]

in electricity generation, relative to IOU plants in stateselectricity generation sector restructuring in the United States on plant-plant over the year, measured by annual net megawatt-hours of electricity generation,

Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

2004-01-01T23:59:59.000Z

328

AVESTAR Center for Operational Excellence of Electricity Generation Plants  

SciTech Connect (OSTI)

To address industry challenges in attaining operational excellence for electricity generation plants, the U.S. Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) has launched a world-class facility for Advanced Virtual Energy Simulation Training and Research (AVESTARTM). This presentation will highlight the AVESTARTM Center simulators, facilities, and comprehensive training, education, and research programs focused on the operation and control of high-efficiency, near-zero-emission electricity generation plants. The AVESTAR Center brings together state-of-the-art, real-time, high-fidelity dynamic simulators with full-scope operator training systems (OTSs) and 3D virtual immersive training systems (ITSs) into an integrated energy plant and control room environment. AVESTAR’s initial offering combines--for the first time--a “gasification with CO2 capture” process simulator with a “combined-cycle” power simulator together in a single OTS/ITS solution for an integrated gasification combined cycle (IGCC) power plant with carbon dioxide (CO2) capture. IGCC systems are an attractive technology option for power generation, especially when capturing and storing CO2 is necessary to satisfy emission targets. The AVESTAR training program offers a variety of courses that merge classroom learning, simulator-based OTS learning in a control-room operations environment, and immersive learning in the interactive 3D virtual plant environment or ITS. All of the courses introduce trainees to base-load plant operation, control, startups, and shutdowns. Advanced courses require participants to become familiar with coordinated control, fuel switching, power-demand load shedding, and load following, as well as to problem solve equipment and process malfunctions. Designed to ensure work force development, training is offered for control room and plant field operators, as well as engineers and managers. Such comprehensive simulator-based instruction allows for realistic training without compromising worker, equipment, and environmental safety. It also better prepares operators and engineers to manage the plant closer to economic constraints while minimizing or avoiding the impact of any potentially harmful, wasteful, or inefficient events. The AVESTAR Center is also used to augment graduate and undergraduate engineering education in the areas of process simulation, dynamics, control, and safety. Students and researchers gain hands-on simulator-based training experience and learn how the commercial-scale power plants respond dynamically to changes in manipulated inputs, such as coal feed flow rate and power demand. Students also analyze how the regulatory control system impacts power plant performance and stability. In addition, students practice start-up, shutdown, and malfunction scenarios. The 3D virtual ITSs are used for plant familiarization, walk-through, equipment animations, and safety scenarios. To further leverage the AVESTAR facilities and simulators, NETL and its university partners are pursuing an innovative and collaborative R&D program. In the area of process control, AVESTAR researchers are developing enhanced strategies for regulatory control and coordinated plant-wide control, including gasifier and gas turbine lead, as well as advanced process control using model predictive control (MPC) techniques. Other AVESTAR R&D focus areas include high-fidelity equipment modeling using partial differential equations, dynamic reduced order modeling, optimal sensor placement, 3D virtual plant simulation, and modern grid. NETL and its partners plan to continue building the AVESTAR portfolio of dynamic simulators, immersive training systems, and advanced research capabilities to satisfy industry’s growing need for training and experience with the operation and control of clean energy plants. Future dynamic simulators under development include natural gas combined cycle (NGCC) and supercritical pulverized coal (SCPC) plants with post-combustion CO2 capture. These dynamic simulators are targeted for us

Zitney, Stephen

2012-08-29T23:59:59.000Z

329

Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.  

SciTech Connect (OSTI)

This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

Bloomquist, R. Gordon

1985-06-01T23:59:59.000Z

330

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

of fuel demands 30% of the natural gas demand (over 50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand. #12;Introduction Literature Review Integrated Electric Power Supply ChainsIntroduction Literature Review Integrated Electric Power Supply Chains Empirical Examples

Nagurney, Anna

331

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand. #12;Introduction LiteratureIntroduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel Market Network Framework: Theoretical Modeling

Nagurney, Anna

332

Potential growth of nuclear and coal electricity generation in the US  

SciTech Connect (OSTI)

Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity over the next fifty years. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will require solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear, the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. This report assesses the impacts associated with a range of projected growth rates in electricity demand over the next 50 years. The resource requirements and waste generation resulting from pursuing the coal and nuclear fuel options to meet the projected growth rates are estimated. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Improvements in technology and waste management practices must be pursued to mitigate environmental and safety concerns about electricity generation from both options. 34 refs., 18 figs., 14 tabs.

Bloomster, C.H.; Merrill, E.T.

1989-08-01T23:59:59.000Z

333

Identification and definition of unbundled electric generation and transmission services  

SciTech Connect (OSTI)

State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

Kirby, B.; Hirst, E.; Vancoevering, J.

1995-03-01T23:59:59.000Z

334

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost  

E-Print Network [OSTI]

Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation between electricity consumption and generation. On the consumption side, electric demand ramps up

Pedram, Massoud

335

Method and apparatus for improving the performance of a nuclear power electrical generation system  

DOE Patents [OSTI]

A method and apparatus for improving the efficiency and performance a of nuclear electrical generation system that comprises the addition of steam handling equipment to an existing plant that results in a surprising increase in plant performance. More particularly, a gas turbine electrical generation system with heat recovery boiler is installed along with a high pressure and a low pressure mixer superheater. Depending upon plant characteristics, the existing moisture separator reheater (MSR) can be either augmented or done away with. The instant invention enables a reduction in T.sub.hot without a derating of the reactor unit, and improves efficiency of the plant's electrical conversion cycle. Coupled with this advantage is a possible extension of the plant's fuel cycle length due to an increased electrical conversion efficiency. The reduction in T.sub.hot further allows for a surprising extension of steam generator life. An additional advantage is the reduction in erosion/corrosion of secondary system components including turbine blades and diaphragms. The gas turbine generator used in the instant invention can also replace or augment existing peak or emergency power needs.

Tsiklauri, Georgi V. (Richland, WA); Durst, Bruce M. (Kennewick, WA)

1995-01-01T23:59:59.000Z

336

The next generation of oxy-fuel boiler systems  

SciTech Connect (OSTI)

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

337

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith  

E-Print Network [OSTI]

Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad Introduction Research in fuel cells receives currently a lot of interest. Fuel cells can be used, in different. However, the dynamics of fuel cells has received comparatively less attention. Control of fuel cells

Skogestad, Sigurd

338

A Bio-Based Fuel Cell for Distributed Energy Generation  

SciTech Connect (OSTI)

The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

Anthony Terrinoni; Sean Gifford

2008-06-30T23:59:59.000Z

339

Microgrids in the Evolving Electricity Generation and DeliveryInfrastructure  

SciTech Connect (OSTI)

The legacy paradigm for electricity service in most of the electrified world today is based on the centralized generation-transmission-distribution infrastructure that evolved under a regulated environment. More recently, a quest for effective economic investments, responsive markets, and sensitivity to the availability of resources, has led to various degrees of deregulation and unbundling of services. In this context, a new paradigm is emerging wherein electricity generation is intimately embedded with the load in microgrids. Development and decay of the familiar macrogrid is discussed. Three salient features of microgrids are examined to suggest that cohabitation of micro and macro grids is desirable, and that overall energy efficiency can be increased, while power is delivered to loads at appropriate levels of quality.

Marnay, Chris; Venkataramanan, Giri

2006-02-01T23:59:59.000Z

340

Improving electricity production in tubular microbial fuel cells through optimizing the anolyte flow with spiral spacers  

E-Print Network [OSTI]

Improving electricity production in tubular microbial fuel cells through optimizing the anolyte h l i g h t s " The spiral spacers improve electricity production in tubular microbial fuel cells fuel cells Spiral spacers Energy Wastewater treatment a b s t r a c t The use of spiral spacers

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen and electricity production using microbial fuel cell-based technologies  

E-Print Network [OSTI]

1 Hydrogen and electricity production using microbial fuel cell-based technologies Bruce E. Logan/mol? ? #12;8 Energy Production using MFC technologies · Electricity production using microbial fuel cells · H to renewable energy #12;9 Demonstration of a Microbial Fuel Cell (MFC) MFC webcam (live video of an MFC running

Lee, Dongwon

342

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

343

Regulated apparatus for the generation of electrical energy, such as a wind generator  

SciTech Connect (OSTI)

The invention relates to a regulated apparatus for the generation of electrical energy. A wind generator comprises a propeller having fixed blades and a generator connected by a transmission to the propeller and having sets of main and secondary brushes. The hub of the propeller comprises a rotor of an eddy-current brake whose inductor stator is supplied by a current delivered, starting from a certain speed , by the secondary brushes of the generator which are angularly shifted relative to their neutral position.

Kant, M.

1980-04-15T23:59:59.000Z

344

DESIGNING AN OPPORTUNITY FUEL WITH BIOMASS AND TIRE-DERIVED FUEL FOR COFIRING AT WILLOW ISLAND GENERATING STATION AND COFIRING SAWDUST WITH COAL AT ALBRIGHT GENERATING STATION  

SciTech Connect (OSTI)

During the period October 1, 2001--December 31, 2001, Allegheny Energy Supply Co., LLC (Allegheny) completed construction of the Willow Island cofiring project. This included completion of the explosion proof electrical wiring, the control system, and the control software. Procedures for system checkout, shakedown, and initial operation were initiated during this period. During this time period the 100-hour test of the Albright Generating Station cofiring facility was completed. The testing demonstrated that cofiring at the Albright Generating Station could reliably contribute to a ''4P Strategy''--reduction of SO{sub 2}, NO{sub x}, mercury, and greenhouse gas emissions over a significant load range. During this period of time Allegheny Energy conducted facility tours of both Albright and Willow Island for the Biomass Interest Group of the Electric Power Research Institute. This report summarizes the activities associated with the Designer Opportunity Fuel program, and demonstrations at Willow Island and Albright Generating Stations. It details the completion of construction activities at the Willow Island site along with the 100-hr test at the Albright site.

K. Payette; D. Tillman

2002-01-01T23:59:59.000Z

345

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect (OSTI)

Boise Paper Solutions and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources. The overall objective of this project is to demonstrate the commercial applicability of an advanced biomass gasification-based power generation system at Boise Paper Solutions' pulp and paper mill located at DeRidder, Louisiana.

Joseph Rabovitser; Bruce Bryan

2002-10-01T23:59:59.000Z

346

Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units  

SciTech Connect (OSTI)

Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

Cai, H.; Wang, M.; Elgowainy, A.; Han, J. (Energy Systems)

2012-07-06T23:59:59.000Z

347

TEC as electric generator in an automobile catalytic converter  

SciTech Connect (OSTI)

Modern cars use more and more electric power due to more on-board electric systems, e.g., ABS brakes, active suspension systems, electric windows, chair adjustment systems and electronic engine control systems. One possible energy source for electricity generation is to use the waste heat from the car`s engine, which generally is as much as 80% of the total energy from the combustion of the gasoline. Maybe the best location to tap the excess heat is the Catalytic Converter (Cat) in the exhaust system or perhaps at the exhaust pipes close to the engine. The Cat must be kept within a certain temperature interval. Large amounts of heat are dissipated through the wall of the Cat. A Thermionic Energy Converter (TEC) in coaxial form could conveniently be located around the ceramic cartridge of the Cat. Since the TEC is a rather good heat insulator before it reaches its working temperature the Cat will reach working temperature faster, and the final temperature of it can be controlled better when encapsulated in a concentric TEC arrangement. It is also possible to regulate the temperature of the Cat and the TEC by controlling the electrical load of the TEC. The possible working temperatures of present and future Cats appear very suitable for the new low work function collector TEC, which has been demonstrated to work down to 470 K.

Svensson, R. [Chalmers Univ. of Technology, Goeteborg (Sweden); Holmlid, L. [Univ. of Goeteborg (Sweden). Dept. of Physical Chemistry

1996-12-31T23:59:59.000Z

348

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: “Mobile Electricity” technologies and opportunities  

E-Print Network [OSTI]

Transition: Designing a Fuel-Cell Hypercar," presented atgoals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

349

Simplest AB-Thermonuclear Space Propulsion and Electric Generator  

E-Print Network [OSTI]

The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

Alexander Bolonkin

2007-01-19T23:59:59.000Z

350

Fuel Price Forecasts INTRODUCTION  

E-Print Network [OSTI]

Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price because oil, coal, and natural gas are potential fuels for electricity generation. Natural gas

351

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2006-11-01T23:59:59.000Z

352

Webinar: BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs)  

Broader source: Energy.gov [DOE]

Video recording for the webinar, BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs), originally held on June 19, 2012.

353

NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)  

SciTech Connect (OSTI)

NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

Not Available

2014-01-01T23:59:59.000Z

354

Process for generating electricity in a pressurized fluidized-bed combustor system  

DOE Patents [OSTI]

A process and apparatus for generating electricity using a gas turbine as part of a pressurized fluidized-bed combustor system wherein coal is fed as a fuel in a slurry in which other constituents, including a sulfur sorbent such as limestone, are added. The coal is combusted with air in a pressurized combustion chamber wherein most of the residual sulfur in the coal is captured by the sulfur sorbent. After particulates are removed from the flue gas, the gas expands in a turbine, thereby generating electric power. The spent flue gas is cooled by heat exchange with system combustion air and/or system liquid streams, and the condensate is returned to the feed slurry.

Kasper, Stanley (Pittsburgh, PA)

1991-01-01T23:59:59.000Z

355

Webinar February 17: Material Handling Fuel Cells for Building Electric Peak Shaving Applications  

Broader source: Energy.gov [DOE]

The Fuel Cell Technologies Office will present a live webinar entitled "Material Handling Fuel Cells for Building Electric Peak Shaving Applications" on Tuesday, February 17, from 12 to 1 p.m. Eastern Standard Time.

356

Fuel Mix Disclosure  

Broader source: Energy.gov [DOE]

Washington’s retail electric suppliers must disclose details regarding the fuel mix of their electric generation to customers. Electric suppliers must provide such information in a standard format...

357

ADVANCED GASIFICATION-BASED FUEL CONVERSION AND ELECTRIC ENERGY PRODUCTION SYSTEM  

SciTech Connect (OSTI)

Boise Cascade Corporation and the Gas Technology Institute (GTI) are cooperating to develop, demonstrate and place in continuous operation an advanced biomass gasification-based power generation system suitable for near-term commercial deployment in the Forest Products Industry. The system will be used in conjunction with, rather than in place of, existing wood waste fired boilers and flue gas cleanup systems. The novel system will include three advanced technological components based on GTI's RENUGAS{reg_sign} and three-stage stoker combustion technologies, and a gas turbine-based power generation concept developed in DOE's High Performance Power System (HIPPS) program. The system has, as its objective, to avoid the major hurdles of high-pressure gasification, i.e., high-pressure fuel feeding and ash removal, and hot gas cleaning that are typical for conventional IGCC power generation. It aims to also minimize capital intensity and technology risks. The system is intended to meet the immediate needs of the forest products industry for highly efficient and environmentally friendly electricity and steam generation systems utilizing existing wood waste as fuel resources.

Joseph Rabovitser; Bruce Bryan

2002-07-01T23:59:59.000Z

358

Abstract--The deployment of small (generators, heat and electrical storage, efficiency investments,  

E-Print Network [OSTI]

1 Abstract--The deployment of small (generators, heat and electrical storage-CAM], extended to incorporate electrical storage options. DER-CAM chooses annual energy bill minimizing systems management systems, cogeneration, cooling, cost optimal control, dispersed storage and generation

Guillas, Serge

359

Electric Power Generation from Co-Produced and Other Oil Field...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

360

Risk implications of the deployment of renewables for investments in electricity generation  

E-Print Network [OSTI]

This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel cell power plants in a distributed generator application  

SciTech Connect (OSTI)

ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

Smith, M.J. [International Fuel Cells Corp., South Windsor, CT (United States)

1996-12-31T23:59:59.000Z

362

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect (OSTI)

This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

Kurt Montgomery; Nguyen Minh

2003-08-01T23:59:59.000Z

363

Diesel Generator Fuel Oil, Diesel Generator Lubricating Oil, and Diesel Generator Starting Air Requirements"  

E-Print Network [OSTI]

(ISTS) and adds requirements for DG Lubricating Oil, and DG Starting Air. The proposed changes will assure that required quality and quantity of DG Fuel Oil is maintained and also will assure that sufficient DG Lubricating Oil and DG Starting Air is maintained. This proposed amendment imposes limits on DG support system parameters to ensure the DGs will be able to perform their design function. This proposed amendment also brings the current TS on DG Fuel Oil into alignment with the ISTS. This amendment is modeled after the ISTS, Section 3.8.3. This amendment also incorporates into the FCS TS improvements to ISTS Sections 3.8.3 and 5.5 consistent with those provided in Technical Specification Task Force (TSTF) travelers TSTF-254, Rev. 2 and TSTF-374, Rev. 0. FCS also requests approval of reduction in commitments with respect to the FCS Quality Assurance (QA) Program associated with this License Amendment Request. This License Amendment Request adds a Surveillance [Table 3-5, Item 9c] stating that the DG Fuel Oil Properties are required to be verified within limits in accordance with the Diesel Fuel Oil Testing Program. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days.

Omaha Public; Power Distrct

1979-01-01T23:59:59.000Z

364

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

Specific Considerations Fossil Fuel Coal r. a. b. Normalliquid dominated) and fossil-fuel fired (either coal, oil,Specific Cons iderations Fossil Fuel Coal Oil 1. 1. 3. L 1

Nero, A.V.

2010-01-01T23:59:59.000Z

365

Messiah College Biodiesel Fuel Generation Project Final Technical Report  

SciTech Connect (OSTI)

Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

2012-03-30T23:59:59.000Z

366

METHODOLOGIES FOR REVIEW OF THE HEALTH AND SAFETY ASPECTS OF PROPOSED NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL SITES AND FACILITIES. VOLUME 9 OF THE FINAL REPORT ON HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA  

E-Print Network [OSTI]

for Fossil-Fuel and Geothermal Power Plants", Lawrenceof fossil-fuel and geothermal power plants. Choosing whatfor solid waste in geothermal power plants is the same as

Nero, A.V.

2010-01-01T23:59:59.000Z

367

Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies  

SciTech Connect (OSTI)

Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

2011-03-01T23:59:59.000Z

368

Role of solid oxide fuel cell distributed generation for stationary power application.  

E-Print Network [OSTI]

??Based on an availabe fuel cell dyanmical model, an inportant concept feasible operating area is introduced. Fuel cell based distributed generator is studied to solve… (more)

Li, Yonghui.

2008-01-01T23:59:59.000Z

369

Expert System analysis of non-fuel assembly hardware and spent fuel disassembly hardware: Its generation and recommended disposal  

SciTech Connect (OSTI)

Almost all of the effort being expended on radioactive waste disposal in the United States is being focused on the disposal of spent Nuclear Fuel, with little consideration for other areas that will have to be disposed of in the same facilities. one area of radioactive waste that has not been addressed adequately because it is considered a secondary part of the waste issue is the disposal of the various Non-Fuel Bearing Components of the reactor core. These hardware components fall somewhat arbitrarily into two categories: Non-Fuel Assembly (NFA) hardware and Spent Fuel Disassembly (SFD) hardware. This work provides a detailed examination of the generation and disposal of NFA hardware and SFD hardware by the nuclear utilities of the United States as it relates to the Civilian Radioactive Waste Management Program. All available sources of data on NFA and SFD hardware are analyzed with particular emphasis given to the Characteristics Data Base developed by Oak Ridge National Laboratory and the characterization work performed by Pacific Northwest Laboratories and Rochester Gas & Electric. An Expert System developed as a portion of this work is used to assist in the prediction of quantities of NFA hardware and SFD hardware that will be generated by the United States` utilities. Finally, the hardware waste management practices of the United Kingdom, France, Germany, Sweden, and Japan are studied for possible application to the disposal of domestic hardware wastes. As a result of this work, a general classification scheme for NFA and SFD hardware was developed. Only NFA and SFD hardware constructed of zircaloy and experiencing a burnup of less than 70,000 MWD/MTIHM and PWR control rods constructed of stainless steel are considered Low-Level Waste. All other hardware is classified as Greater-ThanClass-C waste.

Williamson, D.A.

1991-12-31T23:59:59.000Z

370

Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially-Efficient Transmission Investments? *  

E-Print Network [OSTI]

1 Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially that generation firms have in restructured electricity markets for supporting long-term transmission investments.S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity

371

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

372

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants  

E-Print Network [OSTI]

Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

Sadoulet, Elisabeth

373

A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation  

E-Print Network [OSTI]

an electric transmission network with wind power generation and their impact on its reliability. A stochastic disconnections leading to massive network blackout. 1. Introduction Systems of electric power generation, supply of generating units, the transfer of electric power over networks of transmission lines and, finally

Paris-Sud XI, Université de

374

Use of Linear Predictive Control for a Solar Electric Generating System  

E-Print Network [OSTI]

1 Use of Linear Predictive Control for a Solar Electric Generating System Thorsten Stuetzle, Nathan Engineering Drive Madison, WI, 53706, USA ABSTRACT In a Solar Electric Generating System (SEGS A solar electric generating system (SEGS), shown in Figure 1, refers to a class of solar energy systems

Wisconsin at Madison, University of

375

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Under Various Electricity Tariffs Firestone, R. , Creighton,Under Various Electricity Tariffs Table of Contents Table of3 2.1 Electricity Tariff

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

376

Alternative Fuels Data Center: Federal Laws and Incentives for Electricity  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticutEthanol Printable

377

Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticutEthanolNaturalHawaii

378

Influence of Climate Change Mitigation Technology on Global Demands of Water for Electricity Generation  

SciTech Connect (OSTI)

Globally, electricity generation accounts for a large and potentially growing water demand, and as such is an important component to assessments of global and regional water scarcity. However, the current suite—as well as potential future suites—of thermoelectric generation technologies has a very wide range of water demand intensities, spanning two orders of magnitude. As such, the evolution of the generation mix is important for the future water demands of the sector. This study uses GCAM, an integrated assessment model, to analyze the global electric sector’s water demands in three futures of climate change mitigation policy and two technology strategies. We find that despite five- to seven-fold expansion of the electric sector as a whole from 2005 to 2095, global electric sector water withdrawals remain relatively stable, due to the retirement of existing power plants with water-intensive once-through flow cooling systems. In the scenarios examined here, climate policies lead to the large-scale deployment of advanced, low-emissions technologies such as carbon dioxide capture and storage (CCS), concentrating solar power, and engineered geothermal systems. In particular, we find that the large-scale deployment of CCS technologies does not increase long-term water consumption from hydrocarbon-fueled power generation as compared with a no-policy scenario without CCS. Moreover, in sensitivity scenarios where low-emissions electricity technologies are required to use dry cooling systems, we find that the consequent additional costs and efficiency reductions do not limit the utility of these technologies in achieving cost-effective whole-system emissions mitigation.

Kyle, G. Page; Davies, Evan; Dooley, James J.; Smith, Steven J.; Clarke, Leon E.; Edmonds, James A.; Hejazi, Mohamad I.

2013-01-17T23:59:59.000Z

379

Electrical motor/generator drive apparatus and method  

DOE Patents [OSTI]

The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

Su, Gui Jia

2013-02-12T23:59:59.000Z

380

Maintaining Generation Adequacy in a Restructuring U.S. Electricity Industry  

SciTech Connect (OSTI)

Historically, decisions on the amounts, locations, types, and timing of investments in new generation have been made by vertically integrated utilities with approval from state public utility commissions. As the U.S. electricity industry is restructured, these decisions are being fragmented and dispersed among a variety of organizations. As generation is deregulated and becomes increasingly competitive, decisions on whether to build new generators and to retire, maintain, or repower existing units will increasingly be made by unregulated for-profit corporations. These decisions will be based largely on investor assessments of future profitability and only secondarily on regional reliability requirements. In addition, some customers will choose to face real-time (spot) prices and will respond to the occasionally very high prices by reducing electricity use at those times. Market-determined generation levels will, relative to centrally mandated reserve margins, lead to: (1) more volatile energy prices; (2) lower electricity costs and prices; and (3) a generation mix with more baseload, and less peaking, capacity. During the transition from a vertically integrated, regulated industry to a deintegrated, competitive industry, government regulators and system operators may continue to impose minimum-installed-capacity requirements on load-serving entities. As the industry gains experience with customer responses to real-time pricing and with operation of competitive intrahour energy markets, these requirements will likely disappear. We quantitatively analyzed these issues with the Oak Ridge Competitive Electricity Dispatch model (ORCED). Model results show that the optimal reserve margin depends on various factors, including fuel prices, initial mix of generation capacity, and customer response to electricity prices (load shapes and system load factor). Because the correct reserve margin depends on these generally unpredictable factors, mandated reserve margins might be too high, leading to higher electricity costs and prices. Absent mandated reserve margins, electricity prices and costs decline with increasing customer response to prices during high-demand periods. The issues discussed here are primarily transitional rather than enduring. However, the transition from a highly regulated, vertically integrated industry to one dominated by competition is likely to take another five to ten years.

Hirst, E.; Hadley, S.

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500W{sub e} at 9.2 V and 15.7{percent} efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel. {copyright} {ital 1997 American Institute of Physics.}

Wilson, V.C. [General Electric RDC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico871059 (United States)

1997-01-01T23:59:59.000Z

382

Outline for a multi-cell nuclear thermionic fuel element that may be pretested with electric heat  

SciTech Connect (OSTI)

A nuclear thermionic converter electrical generating system is proposed in which the nuclear fuel is clad in tungsten (W) and transmits heat to a tungsten emitter by radiation. The tungsten clad is a single unit, containing a continuous fuel stack with an unfueled section extending through one end of the reactor. The emitters are electrically insulated from the heat source; therefore, several converters may be connected by short leads to produce more voltage per fuel element and to reduce the power losses in the leads. A fast reactor design was chosen; consequently, tungsten may be used for the fuel cladding and the emitters without a significant reactivity penalty due to neutron capture by tungsten epithermal resonances. The ability to use all-tungsten emitters may permit high emitter temperatures. Calculations indicate that at an emitter temperature of 2150 K and current density of 10 A/cm{sup 2}, a 36 cm long thermionic fuel element (TFE) with 9 converters in series should produce 4500 W{sub e} at 9.2 V and 15.7% efficiency. One major advantage of this approach, relative to typical multicell designs is that the system can be tested by electrical heaters in the fuel cavity before loading fuel.

Wilson, Volney C. [General Electric R and DC, retired 2446 A Del Norte Dr. SW Albuquerque, New Mexico 87105 (United States)

1997-01-10T23:59:59.000Z

383

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:“Mobile Electricity” Technologies, Early California Household Markets, and Innovation Management  

E-Print Network [OSTI]

fuel- cell vehicles: “Mobile Electricity" technologies andFuel-Cell Vehicles: “Mobile Electricity” Technologies, Early4 2 Mobile Electricity technologies and

Williams, Brett D

2007-01-01T23:59:59.000Z

384

Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel  

E-Print Network [OSTI]

50% in the summer) 90% of the coal demand over 45% of the residual fuel oil demand. #12;Introduction, the wholesale electricity price in New England decreased by 38% mainly because the delivered natural gas priceIntroduction Literature Review Integrated Electric Power Supply Chains Empirical Examples

Nagurney, Anna

385

Submerged electricity generation plane with marine current-driven motors  

DOE Patents [OSTI]

An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

2014-07-01T23:59:59.000Z

386

Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.  

SciTech Connect (OSTI)

Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as an electrochemical 'working fluid'.

Wally, Karl

2006-05-01T23:59:59.000Z

387

Biomass fuel from woody crops for electric power generation  

SciTech Connect (OSTI)

This report discusses the biologic, environmental, economic, and operational issues associated with growing wood crops in managed plantations. Information on plantation productivity, environmental issues and impacts, and costs is drawn from DOE`s Biofuels Feedstock Development as well as commercial operations in the US and elsewhere. The particular experiences of three countries--Brazil, the Philippines, and Hawaii (US)--are discussed in considerable detail.

Perlack, R.D.; Wright, L.L.; Huston, M.A.; Schramm, W.E.

1995-06-22T23:59:59.000Z

388

Proton Exchange Membrane Fuel Cells for Electrical Power Generation...  

Broader source: Energy.gov (indexed) [DOE]

ft 3 ). Figure and data from 34. ... 45 11 Figure 14: The compressed gas hydrogen tanks from Lincoln Composites (left) and Quantum Technologies (right)....

389

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

technologies such as diesel, electric, hybrid, and hydrogen mode  (e.g. ,  diesel  trains  or  electric  trains).  

Birman, Kenneth

2012-01-01T23:59:59.000Z

390

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

391

Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Fuel Consumption and CO2 Generation -- What the Industry Does and What the Government Can Do Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the...

392

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas Success story about using waste water...

393

National Fuel Cell Electric Vehicle Learning Demonstration Final Report |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNV

394

Highlighting Hydrogen: Hawaii's Success with Fuel Cell Electric Vehicles  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann GeorgeLogging|America Top Innovation |R Walls -

395

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

396

Short run effects of a price on carbon dioxide emissions from U.S. electric generators  

SciTech Connect (OSTI)

The price of delivered electricity will rise if generators have to pay for carbon dioxide emissions through an implicit or explicit mechanism. There are two main effects that a substantial price on CO{sub 2} emissions would have in the short run (before the generation fleet changes significantly). First, consumers would react to increased price by buying less, described by their price elasticity of demand. Second, a price on CO{sub 2} emissions would change the order in which existing generators are economically dispatched, depending on their carbon dioxide emissions and marginal fuel prices. Both the price increase and dispatch changes depend on the mix of generation technologies and fuels in the region available for dispatch, although the consumer response to higher prices is the dominant effect. We estimate that the instantaneous imposition of a price of $35 per metric ton on CO{sub 2} emissions would lead to a 10% reduction in CO{sub 2} emissions in PJM and MISO at a price elasticity of -0.1. Reductions in ERCOT would be about one-third as large. Thus, a price on CO{sub 2} emissions that has been shown in earlier work to stimulate investment in new generation technology also provides significant CO{sub 2} reductions before new technology is deployed at large scale. 39 refs., 4 figs., 2 tabs.

Adam Newcomer; Seth A. Blumsack; Jay Apt; Lester B. Lave; M. Granger Morgan [Carnegie Mellon University, Pittsburgh, PA (United States). Carnegie Mellon Electricity Industry Center

2008-05-01T23:59:59.000Z

397

Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.  

SciTech Connect (OSTI)

The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

NONE

2005-07-01T23:59:59.000Z

398

Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someone by

399

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32Department U.S. Department oftoServices »National Fuel Cell

400

Hydrogen Fuel Cells and Electric Forklift Trucks | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andof Energy Embrittlement Fundamentals, Modeling,DepartmentFuel

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cell and Battery Electric Vehicles Compared | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel CellStakeholderand

402

Module 8: Fuel Cell Hybrid Electric Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE TribaltheMyMinutes fromBased|SEI5: Fuel Cell Systems6:7:8:

403

On parallel electric field generation in transversely inhomogeneous plasmas  

E-Print Network [OSTI]

The generation of parallel electric fields by the propagation of ion cyclotron waves in the plasma with a transverse density inhomogeneity was studied. It was proven that the minimal model required to reproduce the previous kinetic simulation results of E_{||} generation [Tsiklauri et al 2005, Genot et al 2004] is the two-fluid, cold plasma approximation in the linear regime. By considering the numerical solutions it was also shown that the cause of E_{||} generation is the electron and ion flow separation induced by the transverse density inhomogeneity. We also investigate how E_{||} generation is affected by the mass ratio and found that amplitude attained by E_{||} decreases linearly as inverse of the mass ratio m_i/m_e. For realistic mass ratio of m_i/m_e=1836, such empirical scaling law, within a time corresponding to 3 periods of the driving ion cyclotron wave, is producing E_{||}=14 Vm^{-1} for solar coronal parameters. Increase in mass ratio does not have any effect on final parallel (magnetic field aligned) speed attained by electrons. However, parallel ion velocity decreases linearly with inverse of the mass ratio m_i/m_e. These results can be interpreted as following: (i) ion dynamics plays no role in the E_{||} generation; (ii) E_{||} \\propto 1/m_i scaling is caused by the fact that omega_d = 0.3 omega_{ci} \\propto 1/m_i is decreasing with the increase of ion mass, and hence the electron fluid can effectively "short-circuit" (recombine with) the slowly oscillating ions, hence producing smaller E_{||}.

David Tsiklauri

2007-11-28T23:59:59.000Z

404

Challenges of Electric Power Industry Restructuring for Fuel Suppliers  

Reports and Publications (EIA)

Provides an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry.

1998-01-01T23:59:59.000Z

405

Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

406

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay

407

LEARN MORE @ HYBRID ELECTRIC SAVING FUEL = SAVING MONEY = CLEANER AIR  

E-Print Network [OSTI]

.S. DEPT OF ENERGY ALTERNATIVE FUELS AND ADVANCED VEHICLES DATA CENTER: www.afdc.energy.gov/afdcv U.S. DEPT.NCGetReady.com ADVANCED TRANSPORTATION ENERGY CENTER/NC STATE UNIVERSITY: www.atec.ncsu.edu CENTRALINA CLEAN FUELS of Governments, in Research Triangle Park, NC. [Award # DE-EE0002491]. Support for alternative fuel vehicles

408

Combination nickel foam expanded nickel screen electrical connection supports for solid oxide fuel cells  

DOE Patents [OSTI]

A solid oxide fuel assembly is made, wherein rows (14, 25) of fuel cells (17, 19, 21, 27, 29, 31), each having an outer interconnection (20) and an outer electrode (32), are disposed next to each other with corrugated, electrically conducting expanded metal mesh member (22) between each row of cells, the corrugated mesh (22) having top crown portions and bottom portions, where the top crown portion (40) have a top bonded open cell nickel foam (51) which contacts outer interconnections (20) of the fuel cells, said mesh and nickel foam electrically connecting each row of fuel cells, and where there are no more metal felt connections between any fuel cells.

Draper, Robert; Prevish, Thomas; Bronson, Angela; George, Raymond A.

2007-01-02T23:59:59.000Z

409

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybrid Electric

410

Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S  

SciTech Connect (OSTI)

This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

DeLuchi, M.A. [Argonne National Lab., IL (United States); [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-11-01T23:59:59.000Z

411

Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market  

SciTech Connect (OSTI)

Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated electric plant. Depending on the process heat temperature and power needs, up to 80 % of the nuclear heat is converted into useful power. An important feature of the design is the standardization of the heat source, as independent as possible of the process heat application. This should expedite licensing. The essential conditions for success include: 1. Timely adapted licensing process and regulations, codes and standards for such application and design; 2. An industry oriented R and D program to meet the technological challenges making the best use of the international collaboration. Gen IV could be the vector; 3. Identification of an end user (or a consortium of) willing to fund a FOAK. (authors)

Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel [AREVA, 3315 Old Forest Road, Lynchburg, Virginia, 24506 (United States); Carre, Franck [CEA, Saclay (France)

2007-07-01T23:59:59.000Z

412

Statistical Learning Controller for the energy management in a Fuel Cell Electric Vehicle  

E-Print Network [OSTI]

Statistical Learning Controller for the energy management in a Fuel Cell Electric Vehicle M a high efficiency energy management control strategy for a hybrid fuel cell vehicle. The proposed the model of a real hybrid car, "Smile" developed by FAAM, using a stack of fuel cells as the primary power

413

Competitiveness of Biomass-Fueled Electrical Power Plants Bruce A. McCarl  

E-Print Network [OSTI]

Competitiveness of Biomass-Fueled Electrical Power Plants Bruce A. McCarl Professor Department with suggested rollbacks in greenhouse gas emissions is by employing power plant fueled with biomass. We examine structure. We consider fueling power plants from milling residues, whole trees, logging residues, switch

McCarl, Bruce A.

414

Lightweight Sealed Steel Fuel Tanks for Advanced Hybrid Electric Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty LeanDepartment of Energy Sealed

415

RESCHEDULED: Webinar on Material Handling Fuel Cells for Building Electric  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? | DepartmentEnergy RECOVERYnote:RequestPeak

416

Sandia National Laboratories: clean hydrogen-powered fuel cell electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogen power Portable Hydrogen Fuel-Cell Unit

417

Alternative Fuels Data Center: New York Broadens Network for Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels inGoIndiana Natural GasFuel

418

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative Fuels Data Center:

419

Challenges of electric power industry restructuring for fuel suppliers  

SciTech Connect (OSTI)

The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

NONE

1998-09-01T23:59:59.000Z

420

Electric power monthly  

SciTech Connect (OSTI)

The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

Not Available

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Computational Needs for the Next Generation Electric Grid Proceedings  

SciTech Connect (OSTI)

The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

2011-10-05T23:59:59.000Z

422

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

power systems.  Electric Power Systems Research, 80(6):627?system”, Electric Power Systems Research, 20 (1990), pp.  1?Measurements”,  Electric  Power Systems Research, Vol.  79 

Birman, Kenneth

2012-01-01T23:59:59.000Z

423

Staff Draft Report. Comparative Cost of California Central Station Electricity Generation Technologies.  

SciTech Connect (OSTI)

This Energy Commission staff draft report presents preliminary levelized cost estimates for several generic central-station electricity generation technologies. California has traditionally adopted energy policies that balance the goals of supporting economic development, improving environmental quality and promoting resource diversity. In order to be effective, such policies must be based on comprehensive and timely gathering of information. With this goal in mind, the purpose of the report is to provide comparative levelized cost estimates for a set of renewable (e.g., solar) and nonrenewable (e.g., natural gas-fired) central-station electricity generation resources, based on each technology's operation and capital cost. Decision-makers and others can use this information to compare the generic cost to build specific technology. These costs are not site specific. If a developer builds a specific power plant at a specific location, the cost of siting that plant at that specific location must be considered. The Energy Commission staff also identifies the type of fuel used by each technology and a description of the manner in which the technology operates in the generation system. The target audiences of this report are both policy-makers and anyone wishing to understand some of the fundamental attributes that are generally considered when evaluating the cost of building and operating different electricity generation technology resources. These costs do not reflect the total cost to consumers of adding these technologies to a resources portfolio. These technology characterizations do not capture all of the system, environmental or other relevant attributes that would typically be needed by a portfolio manager to conduct a comprehensive ''comparative value analysis''. A portfolio analysis will vary depending on the particular criteria and measurement goals of each study. For example, some form of firm capacity is typically needed with wind generation to support system reliability. [DJE-2005

Badr, Magdy; Benjamin, Richard

2003-02-11T23:59:59.000Z

424

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics  

E-Print Network [OSTI]

Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics of frequency), termed electric field induced second harmonic-generation (EFISH), has been studied for a long Wei Ding, Liangcheng Zhou, and Stephen Y. Chou* NanoStructure Laboratory, Department of Electrical

425

November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity  

E-Print Network [OSTI]

November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

Oregon, University of

426

Science Blog -Bacterium cleans up uranium, generates electricity Create an account  

E-Print Network [OSTI]

Science Blog - Bacterium cleans up uranium, generates electricity Create an account :: Home electricity Department of Energy-funded researchers have decoded and analyzed the genome of a bacterium with the potential to bioremediate radioactive metals and generate electricity. In an article published

Lovley, Derek

427

Catalysts and materials development for fuel cell power generation  

E-Print Network [OSTI]

Catalytic processing of fuels was explored in this thesis for both low-temperature polymer electrolyte membrane (PEM) fuel cell as well as high-temperature solid oxide fuel cell (SOFC) applications. Novel catalysts were ...

Weiss, Steven E

2005-01-01T23:59:59.000Z

428

Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation  

SciTech Connect (OSTI)

The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

Bailey, Owen; Worrell, Ernst

2005-08-03T23:59:59.000Z

429

Computational Needs for the Next Generation Electric Grid Proceedings  

E-Print Network [OSTI]

Carrying  renewable electricity across the u.s.a.   http://electricity  supply  industry  (for  ten  years),  and various universities in Australia and the USA.  

Birman, Kenneth

2012-01-01T23:59:59.000Z

430

Emissions of Non-CO2 Greenhouse Gases From the Production and Use of Transportation Fuels and Electricity  

E-Print Network [OSTI]

CO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITYCO2 GREENHOUSE GASES FROM THE PRODUCTION AND USE OF TRANSPORTATION FUELS AND ELECTRICITY

Delucchi, Mark

1997-01-01T23:59:59.000Z

431

RESEARCH ARTICLE The proteome survey of an electricity-generating organ  

E-Print Network [OSTI]

RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

Vertes, Akos

432

Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States  

SciTech Connect (OSTI)

The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

None

1980-07-01T23:59:59.000Z

433

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

434

Mass Transfer and GDL Electric Resistance in PEM Fuel Cells.  

E-Print Network [OSTI]

??Many modeling studies have been carried out to simulate the current distribution across the channel and shoulder direction in a proton exchange membrane (PEM) fuel… (more)

Wang, Lin

2010-01-01T23:59:59.000Z

435

First Commercially Available Fuel Cell Electric Vehicles Hit the Street |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergyFinal FY 2009StructuresU.S.TrainingFirst

436

Hyundai Tucson Fuel Cell Electric Vehicle visits Department of Energy |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietip sheetK-4In 2013DepartmentAgenda forThisEnergyDepartment of

437

Washington Auto Show Spotlight: How Fuel Cell Electric Vehicles Work |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30,WP-07

438

Cost and Quality of Fuels for Electric Plants - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOilCompany LevelPhysicalAdministration

439

Advancing Hydrogen Infrastructure and Fuel Cell Electric Vehicle |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAboutSheet, AprilEdwardDepartment ofLoraDepartment of

440

Cost and Quality of Fuels for Electric Utility Plants  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYearThousandPADDecade1)

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Cost and Quality of Fuels for Electric Utility Plants 1997  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data CBECSYearThousandPADDecade1)7

442

Sandia National Laboratories: fuel-cell electric vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluating wind-turbine/radarmembrane ECIS-Automotivefuel-cell

443

Alternative Fuels Data Center: Rental Cars Go Electric in Florida  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane Tank Overfill Safety AdvisoryRefuseRental

444

Sandia National Laboratories: commercialization of fuel-cell electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe Goal ofco-locating natural gas and

445

Sandia National Laboratories: hydrogen fuel cell electric vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for USMaterialsthe Goal ofco-locating naturalSolar

446

Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its FleetonAFDC Printable VersionE85EVin

447

Alternative Fuels Data Center: Electric Trolley Boosts Business in  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its FleetonAFDC Printable

448

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its FleetonAFDC PrintableSchools

449

Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in ItsStation LocationsPropaneinHappyRides in

450

Alternative Fuels Data Center: Innovations Improve Electric Vehicle  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in ItsStationHydrogen PrintableIndiana

451

Fuel cell system including a unit for electrical isolation of a fuel cell stack from a manifold assembly and method therefor  

DOE Patents [OSTI]

A fuel cell system with improved electrical isolation having a fuel cell stack with a positive potential end and a negative potential, a manifold for use in coupling gases to and from a face of the fuel cell stack, an electrical isolating assembly for electrically isolating the manifold from the stack, and a unit for adjusting an electrical potential of the manifold such as to impede the flow of electrolyte from the stack across the isolating assembly.

Kelley; Dana A. (New Milford, CT), Farooque; Mohammad (Danbury, CT), Davis; Keith (Southbury, CT)

2007-10-02T23:59:59.000Z

452

Performance of solar electric generating systems on the utility grid  

SciTech Connect (OSTI)

The first year of performance of the Solar Electric Generating System I (SEGS I), which has been operating on the Southern California Edison (SCE) grid since December 1984 is discussed. The solar field, comprised of 71,680 m/sup 2/ of Luz parabolic trough line-focus solar collectors, supplies thermal energy at approx. 585/sup 0/F to the thermal storage tank. This energy is then used to generate saturated steam at 550 psia and 477/sup 0/F which passes through an independent natural gas-fired superheater and is brought to 780/sup 0/F superheat. The solar collector assembly (SCA) is the primary building block of this modular system. A single SCA consists of a row of eight parabolic trough collectors, a single drive motor, and a local microprocessor control unit. The basic components of the parabolic trough collector are a mirrored glass reflector, a unique and highly efficient heat collection element, and a tracking/positioning system. The heat collector element contains a stainless steel absorber tube coated with black chrome selective surface and is contained within an evacuated cylindrical glass envelope. The plant has reached the design capacity of 14.7 MW and, on a continuous basis, provides approx. 13.8 MW of net power during the utility's on-peak periods (nominally 12:00 noon to 6:00 p.m. during the summer weekdays and 5:00 p.m. to 10:00 p.m. during the winter weekdays).

Roland, J.R.

1986-01-01T23:59:59.000Z

453

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network [OSTI]

with hydrogen economy scenario. 4. Research Approach and Results Survey of fuel cell water ASU lab fuel cell Capacity (kW) 5 ­ 150 5 ­ 250 5 50 ­ 1100 100 ­ 2000 100 ­ 250 PEM Fuel cell Oxygen (From air) Hydrogen Implications of Using water from Fuel Cells in a Hydrogen Economy · Hydrogen as an energy and water carrier

Keller, Arturo A.

454

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWay TransportEthanolAll-Electric Vehicles to

455

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

456

Generating Electricity with your Steam System: Keys to Long Term Savings  

E-Print Network [OSTI]

The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings...

Bullock, B.; Downing, A.

2010-01-01T23:59:59.000Z

457

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network [OSTI]

in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institute’s (EPRI) and member...

Rastler, D. M.

458

The economic impact of state ordered avoided cost rates for photovoltaic generated electricity  

E-Print Network [OSTI]

The Public Utility Regulatory Policies Act (PURPA) of 1978 requires that electric utilities purchase electricity generated by small power producers (QFs) such as photovoltaic systems at rates that will encourage the ...

Bottaro, Drew

1981-01-01T23:59:59.000Z

459

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-11-08T23:59:59.000Z

460

Benchmark the Fuel Cost of Steam Generation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseField Experiment | Department

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Fuel Cell Tri-Generation System Case Study using the H2A Stationary Model |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0Agency

462

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect (OSTI)

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

Not Available

1981-06-25T23:59:59.000Z

463

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

464

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Stavanger, Norway, May 13-16, 2009  

E-Print Network [OSTI]

EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS24 Stavanger and Fuel Cell Electric Vehicle Symposium & Exhibition, Stavanger : Norway (2009)" #12;EVS24 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 2 that Discrete MDCM (Multi Criteria Decision

Boyer, Edmond

465

High Performance Fuel Desing for Next Generation Pressurized Water Reactors  

SciTech Connect (OSTI)

The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

Mujid S. Kazimi; Pavel Hejzlar

2006-01-31T23:59:59.000Z

466

Monthly/Annual Energy Review - electricity section  

Reports and Publications (EIA)

Monthly and latest annual statistics on electricity generation, capacity, end-use, fuel use and stocks, and retail price.

2015-01-01T23:59:59.000Z

467

Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast  

E-Print Network [OSTI]

............................................................................................................................... 12 Oil Price Forecast Range. The price of crude oil was $25 a barrel in January of 2000. In July 2008 it averaged $127, even approachingSixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast Introduction

468

Webinar: Material Handling Fuel Cells for Building Electric Peak Shaving Applications  

Broader source: Energy.gov [DOE]

This webinar, presented by the National Renewable Energy Laboratory, will explore the synergy between a facility's use of hydrogen fuel cell forklifts and its reduction of electric grid time of use energy charges.

469

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

LBNL-54447. Distributed Generation Dispatch OptimizationA Business Case for On-Site Generation: The BD Biosciencesrelated work. Distributed Generation Dispatch Optimization

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

470

Advanced liquid fuel production from biomass for power generation  

SciTech Connect (OSTI)

In the European Union, important political decisions recently adopted and concerning the evolution of the Common Agriculture Policy, the GATT trade liberalisation Agreement and new measures actually under discussion (CARBON TAX, Financial support for rural development...) will have significant impact, in a no distant future, on the bioenergy activity. Also the considerable energy import ({approximately} 55% of the consumption) is of increasing concerns. The biomass potential in the E.U. is large, but the availability of commercial technologies for processing and utilising this renewable energy resource is very modest. Thus, a strong effort for the development of new and efficient technologies (like the one implemented by ENEL/CRT) is essential, as well as the build-up of an efficient industry for the commercialisation of reliable, low-cost biomass conversion/utilisation systems. The recently founded {open_quotes}European Bioenergy Industry Association{close_quotes} will make an effort for the promotion of this specific new industrial sector. In this framework, a new research effort (in Germany/Italy) for up-grading the bio-crude-oil by high energetic electrons. This process, if demonstrated feasible, could be of great interest for the production of new liquid fuels of sufficient quality to be utilised in most types of modern power generator.

Grassi, G.; Palmarocchi, M.; Joeler, J. [Zentrum fuer Sonnenenergie, Pisa (Italy)] [and others

1995-11-01T23:59:59.000Z

471

Fueling the Next Generation of Vehicle Technology | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle BasicsValentineson

472

Fuel Cell Comparison of Distributed Power Generation Technologies |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings | DepartmentCase Study Fuel Cell Case

473

Chena Hot Springs Resort - Electric Power Generation Using Geothermal Fluid  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic

474

Attend a Webinar on AMO's Next Generation Electric Machines Funding  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment2015ServicesEfficiency | Department of|Opportunity |

475

EERE FY 2016 Budget Overview -- Renewable Electricity Generation |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & Power DeploymentYouDepartment of Energy Renewable

476

Next Generation Electric Machines: Megawatt Class Motors FOA Informational  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined HeatInformationDepartment ofNational| Department of853926News

477

Floating offshore wind farms : demand planning & logistical challenges of electricity generation .  

E-Print Network [OSTI]

??Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind… (more)

Nnadili, Christopher Dozie, 1978-

2009-01-01T23:59:59.000Z

478

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system.  

E-Print Network [OSTI]

??Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid… (more)

Issaeva, Natalia

2009-01-01T23:59:59.000Z

479

Bulk Electricity Generating Technologies This appendix describes the technical characteristics and cost and performance  

E-Print Network [OSTI]

PRICES The price forecasts for coal, fuel oil and natural gas are described in Appendix B. COAL-FIRED STEAM-ELECTRIC PLANTS Coal-fired steam-electric power plants are a mature technology, in use for over a century. Coal is the largest source of electric power in the United States as a whole, and the second

480

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

SciTech Connect (OSTI)

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

Sullivan, John

2013-06-04T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electricity generation" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

Sullivan, John

482

Hydrogen Fueling for Current and Anticipated Fuel Cell Electric Vehicles (FCEVs)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Groundto ApplyRoadmap HydrogenHydrogen FuelDepartment

483

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 2, FEBRUARY 2010 589 Electric, Hybrid, and Fuel-Cell Vehicles  

E-Print Network [OSTI]

, and Fuel-Cell Vehicles: Architectures and Modeling C. C. Chan, Fellow, IEEE, Alain Bouscayrol, Member, IEEE, fuel economy, and global warming, as well as energy resource constraints, electric, hybrid, and fuel-cell systems. This paper reviews the state of the art for electric, hybrid, and fuel-cell vehicles

Leung, Ka-Cheong

484

Fossil Fuel-Generated Energy Consumption Reduction for New Federal  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal7.pdfFlash_2010_-24.pdfOverviewPlansBuildings and Major

485

Overview of Options to Integrate Stationary Power Generation from Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergy Joining ActivitiesNEMS-H2, Version

486

Solar Electric Generating System II finite element analysis  

SciTech Connect (OSTI)

On June 2, 1992, Landers` earthquake struck the Solar Electric Generating System II, located in Daggett, California. The 30 megawatt power station, operated by the Daggett Leasing Corporation (DLC), suffered substantial damage due to structural failures in the solar farm. These failures consisted of the separation of sliding joints supporting a distribution of parabolic glass mirrors. At separation, the mirrors fell to the ground and broke. It was the desire of the DLC and the Solar Thermal Design Assistance Center (STDAC) of Sandia National Laboratories (SNL) and to redesign these joints so that, in the event of future quakes, costly breakage will be avoided. To accomplish this task, drawings of collector components were developed by the STDAC, from which a detailed finite element computer model of a solar collector was produced. This nonlinear dynamic model, which consisted of over 8,560 degrees of freedom, underwent model reduction to form a low order nonlinear dynamic model containing only 40 degrees of freedom. This model was then used as a design tool to estimate joint dynamics. Using this design tool, joint configurations were modified, and an acceptable joint redesign determined. The results of this analysis showed that the implementation of metal stops welded to support shafts for the purpose of preventing joint separation is a suitable joint redesign. Moreover, it was found that, for quakes of Landers` magnitude, mirror breakage due to enhanced vibration in the trough assembly is unlikely.

Dohner, J.L.; Anderson, J.R.

1994-04-01T23:59:59.000Z

487

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Optimization Common DG devices are reciprocating engines, gas turbines, microturbines, and fuel cells.

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

488

Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint  

SciTech Connect (OSTI)

This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

2007-05-01T23:59:59.000Z

489

Characterization of coal-water slurry fuel sprays generated by an electronically-controlled accumulator fuel injector  

E-Print Network [OSTI]

Experiments have been completed to characterize coal-water slurry sprays generated by an electronically-controlled accumulator fuel injection system for a diesel engine. The sprays were injected into a pressurized chamber equipped with quartz...

Payne, Stephen Ellis

1993-01-01T23:59:59.000Z

490

Radiological characterization of main cooling reservoir bottom sediments at The South Texas Project Electrical Generating Station  

E-Print Network [OSTI]

The South Texas Project Electrical Generating Station (STPEGS operating license directs that an effective radiological environmental monitoring program be established. Site- specific data should then augment the generation of an accurate dose model...

Blankinship, David Randle

1993-01-01T23:59:59.000Z

491

Electricity Monthly Update  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

492

Policymakers' Guidebook for Geothermal Electricity Generation | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips Color KineticsGrowth Jump

493

Energy Secretary Ernest Moniz Remarks at Vogtle Electric Generating Plant  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.Double |DepartmentEfficiency CompetitionLoan

494

Renewable Electricity Generation and Delivery at the Sacramento Municipal  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments on NBPSitingPresentation Remy: PresentationandUtility

495

EERE FY 2016 Budget Overview -- Renewable Electricity Generation  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirantPartners, Inc. |MoneyDoug Hollett, Deputy Assistant Secretary

496

Table 11.3 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"1.13

497

Table 11.4 Electricity: Components of Onsite Generation, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series6,9792"1.1334

498

Draft Fourth Northwest Conservation and Electric Power Plan, Appendix C FUEL PRICE FORECASTS  

E-Print Network [OSTI]

C-1 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix C APPENDIX C FUEL PRICE FORECASTS BACKGROUND Since the Council's 1991 Power Plan, fuel prices have been following the low forecast. Figure C-1 illustrates this for world oil prices, and similar patterns apply to natural gas. The last

499

Nuclear Fuel Recycling - the Value of the Separated Transuranics and the Levelized Cost of Electricity  

E-Print Network [OSTI]

We analyze the levelized cost of electricity (LCOE) for three different fuel cycles: a Once-Through Cycle, in which the spent fuel is sent for disposal after one use in a reactor, a Twice-Through Cycle, in which the spent ...

Parsons, John E.

500

Method for producing electricity using a platinum-ruthenium-palladium catalyst in a fuel cell  

DOE Patents [OSTI]

A method for producing electricity using a fuel cell that utilizes a ternary alloy composition as a fuel cell catalyst, the ternary alloy composition containing platinum, ruthenium and palladium. The alloy shows increased activity as compared to well-known catalysts.

Gorer, Alexander

2004-01-27T23:59:59.000Z