Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fossil Fuel Prices to Electric Utilities - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Fossil Fuel Prices to Electric Utilities. Sources: History: EIA; Projections: Short-Term Energy Outlook, July 2000.

2

Cost and quality of fuels for electric utility plants, 1994  

Science Conference Proceedings (OSTI)

This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

NONE

1995-07-14T23:59:59.000Z

3

Cost and quality of fuels for electric utility plants, 1992  

Science Conference Proceedings (OSTI)

This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1993-08-02T23:59:59.000Z

4

Cost and Quality of Fuels for Electric Utility Plants  

Gasoline and Diesel Fuel Update (EIA)

1) 1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Preface Background The Cost and Quality of Fuels for Electric Utility Plants 2001 is prepared by the Electric Power Divi- sion; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S.

5

Fossil Fuel Prices to Electric Utilities  

U.S. Energy Information Administration (EIA)

Natural gas for power generation is projected to yield its apparent average price advantage over residual fuel oil by the fourth quarter of this year.

6

Cost and Quality of Fuels for Electric Utility Plants 1997  

Gasoline and Diesel Fuel Update (EIA)

7 Tables 7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost and Quality of Fuels for Electric Utility Plants 1997 Tables ii Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

7

Fuel Inventory Management for Electric Companies: Current Uses of the EPRI Utility Fuel Inventory Model (UFIM)  

Science Conference Proceedings (OSTI)

This report describes current applications of the Utility Fuel Inventory Model (UFIM) developed by the Electric Power Research Institute (EPRI). This model is designed to help electric companies to better manage policy and operational decisions related to managing power plant fuel inventories. This report specifically address: (i) problems currently faced by electric power companies where fuel inventories can be used to address the problems; and, (ii) how the UFIM analysis tool can be used to ...

2013-07-26T23:59:59.000Z

8

Handbook for Utility Participation in Biogas-Fueled Electric Generation  

Science Conference Proceedings (OSTI)

Biogas is a methane-rich gas produced from the controlled biological degradation of organic wastes. Biogas is produced as part of the treatment of four general classes of wet waste streams: Wastewater Treatment Plant Sludge Animal Manure Industrial Wastes Municipal Solid Waste in Sealed Landfills. The high methane content of biogas makes it suitable for fueling electric power generation. As energy prices increase, generation of electric power form biogas becomes increasingly attractive and the number of ...

2007-12-17T23:59:59.000Z

9

CO? abatement by multi-fueled electric utilities: an analysis based on Japanese data  

E-Print Network (OSTI)

Multi-fueled electric utilities are commonly seen as offering relatively greater opportunities for reasonably priced carbon abatement through changes in the dispatch of generating units from capacity using high emission ...

Ellerman, A. Denny.; Tsukada, Natsuki.

10

Renewable utility-scale electricity production differs by fuel ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy.

11

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

1981-06-25T23:59:59.000Z

12

Cost and Quality of Fuels for Electric Utility Plants 2000 Tables  

Gasoline and Diesel Fuel Update (EIA)

0) 0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

13

Regional Impacts of Electric Utility Restructuring on Fuel Markets: Volumes 1 and 2  

Science Conference Proceedings (OSTI)

Will open transmission under electric utility restructuring cause low-cost generation to displace high-cost generation? Will this lead to dramatic shifts in patterns of fuel use? This report, the second in a multivolume series by EPRI and GRI addressing deregulation, shows what to expect for each of 10 major regions in the nation. It also dispels many myths about the ongoing effects of restructuring.

1997-06-02T23:59:59.000Z

14

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

15

Proceedings: 1991 Fuel Oil Utilization Workshop  

Science Conference Proceedings (OSTI)

To assist utilities in improving fossil steam plant operations, EPRI continues to conduct annual fuel oil utilization workshops. At the 1991 conference, personnel from 16 electric utilities exchanged ideas on improving residual fuel oil utilization in their generating plants.

1991-05-01T23:59:59.000Z

16

Electric Utilities and Electric Cooperatives (South Carolina) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) Electric Utilities and Electric Cooperatives (South Carolina) < Back Eligibility Commercial Construction Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Generating Facility Rate-Making Siting and Permitting Provider South Carolina Public Service Commission This legislation authorizes the Public Service Commission to promulgate regulations related to investor owned utilities in South Carolina, and addresses service areas, rates and charges, and operating procedures for

17

Joint Electrical Utilities (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) Joint Electrical Utilities (Iowa) < Back Eligibility Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board Cities may establish utilities to acquire existing electric generating facilities or distribution systems. Acquisition, in this statute, is defined as city involvement, and includes purchase, lease, construction, reconstruction, extension, remodeling, improvement, repair, and equipping of the facility. This chapter does not limit the powers or authority of

18

Test of Polymer Electrolyte Membrane Fuel Cell / Uninterruptible Power Supply for Electric Utility Battery Replacement Markets  

Science Conference Proceedings (OSTI)

A sub-scale polymer electrolyte membrane (PEM) fuel cell/capacitor uninterruptible power supply (UPS) was designed and constructed based on previous research. Testing of this sub-scale UPS as a replacement for existing battery systems is documented in this report. The project verified that the PEM fuel cells, coupled with an ultracapacitor, could functionally replace batteries used for emergency power at electric generating stations. Remaining steps to commercialization include continuing market research...

2001-12-18T23:59:59.000Z

19

Evaluation of the Westinghouse Solid Oxide Fuel Cell Technology for Electric Utility Applications in Japan  

Science Conference Proceedings (OSTI)

Analysis of integrated solid oxide fuel cell-steam turbine power plants indicates that these plants have the potential to maintain very high efficiencies over a broad range of load conditions. They may provide attractive utility applications for peaking, load following, and cogeneration if cost goals are achieved.

1992-08-18T23:59:59.000Z

20

Alternative Fuels Data Center: Public Utility Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Utility Public Utility Definition to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition on Google Bookmark Alternative Fuels Data Center: Public Utility Definition on Delicious Rank Alternative Fuels Data Center: Public Utility Definition on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition An entity that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge battery electric

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Gas and Electric Utilities Regulation (South Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) Gas and Electric Utilities Regulation (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Generation Disclosure Provider South Dakota Public Utilities Commission This legislation contains provisions for gas and electric utilities. As part of these regulations, electric utilities are required to file with the

22

Alternative Fuels Data Center: Public Utility Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Utility Public Utility Definition to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition on Google Bookmark Alternative Fuels Data Center: Public Utility Definition on Delicious Rank Alternative Fuels Data Center: Public Utility Definition on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition A corporation or individual that owns, controls, operates, or manages a facility that supplies electricity to the public exclusively to charge

23

Virginia Electric Utility Regulation Act (Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Regulation Act (Virginia) Electric Utility Regulation Act (Virginia) Virginia Electric Utility Regulation Act (Virginia) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Safety and Operational Guidelines Provider Virginia State Corporation Commission The Virginia Electric Utility Regulation Act constitutes the main legislation in Virginia that pertains to the regulation of the state's electric utilities. The Act directs the State Corporation Commission to construct regulations for electric utilities, and contains information on

24

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

25

PPL Electric Utilities Corp | Open Energy Information  

Open Energy Info (EERE)

PPL Electric Utilities Corp PPL Electric Utilities Corp Jump to: navigation, search Name PPL Electric Utilities Corp Place Allentown, Pennsylvania Service Territory Pennsylvania Website www.pplelectric.com Green Button Reference Page pplweb.mediaroom.com/inde Green Button Committed Yes Utility Id 14715 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PPL Electric Utilities Corp. Smart Grid Project was awarded $19,054,516 Recovery Act Funding with a total project value of $38,109,032.

26

PRODCOST: an electric utility generation simulation code  

SciTech Connect

The PRODCOST computer code simulates the operation of an electric utility generation system. Through a probabilistic simulation the expected energy production, fuel consumption, and cost of operation for each plant are determined. Total system fuel consumption, energy generation by type, total generation costs, as well as system loss of load probability and expected unserved energy are also calculated.

Hudson, II, C. R.; Reynolds, T. M.; Smolen, G. R.

1981-02-01T23:59:59.000Z

27

Whitehall Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Whitehall Electric Utility Whitehall Electric Utility Jump to: navigation, search Name Whitehall Electric Utility Place Wisconsin Utility Id 20583 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Lighting- City of Whitehall Lighting Athletic Field Lighting- Whitehall Schools Lighting General Service- Single-Phase Commercial General Service- Three-Phase Commercial General Service- Time-of-Day- Single-Phase- Peak: 7am-7pm Commercial

28

Page Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Page Electric Utility Page Electric Utility Jump to: navigation, search Name Page Electric Utility Place Arizona Utility Id 14373 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Service with Demand Meter Commercial Commercial Service without Demand Meter Commercial Residential Service > 200 Amps Residential Residential Service < 200 Amps Residential

29

Fuel cell electric power production  

DOE Patents (OSTI)

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

30

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

1989-02-01T23:59:59.000Z

31

Power Sales to Electric Utilities  

SciTech Connect

The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities with 55 MW of electrical output, 4 cogeneration projects with 34.5 MW of generating capability, and 4 wastewater treatment facility digester gas-to-energy projects with 5 MW of electrical production have come on-line (or are in the final stages of construction) since the passage of PURPA. These numbers represent only a small portion of Washington's untapped and underutilized cogeneration and renewable resource generating potentials. [DJE-2005

None

1989-02-01T23:59:59.000Z

32

Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Facebook Tweet about Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Twitter Bookmark Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Google Bookmark Alternative Fuels Data Center: Commercial Electric Vehicle Supply Equipment (EVSE) Rebate - Orlando Utilities Commission (OUC) on Delicious Rank Alternative Fuels Data Center: Commercial Electric Vehicle

33

Alternative Fuels Data Center: Utility District Natural Gas Fueling Station  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Utility District Natural Gas Fueling Station Regulation to someone by E-mail Share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Facebook Tweet about Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Twitter Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Google Bookmark Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Delicious Rank Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on Digg Find More places to share Alternative Fuels Data Center: Utility District Natural Gas Fueling Station Regulation on AddThis.com... More in this section... Federal

34

Alternative Fuels Data Center: Metropolitan Utilities District Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Metropolitan Utilities Metropolitan Utilities District Fuels Vehicles With Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Google Bookmark Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Delicious Rank Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Metropolitan Utilities District Fuels Vehicles With Natural Gas on

35

Electric utilities and residential solar systems  

DOE Green Energy (OSTI)

The long-run incremental cost (LRIC) of providing electricity for solar heating and hot water systems is estimated for three utilities using a utility capacity expansion model and compared to the cost of providing electricity to electric-only systems. All investment, fuel and operating costs are accounted for. Hot water systems and combined heating and hot water systems are analyzed separately. It is found that the LRIC for solar backup is no more than the LRIC of electricity used for purely electric heating and hot water devices and also no more than the incremental cost of normal load growth. For the three utilities studied, there appears to be little basis for rate distinctions between solar devices using electric backup and electric-only heating and hot water devices. Off-peak storage heating and hot water devices have a much lower LRIC than the standard systems; again, there appears to be no basis for distinguishing between solar and electric off-peak devices. Compared to average cost pricing, incremental cost pricing offers considerable benefits to customers using solar and electric heat and hot water, especially if a separate lower rate is adopted for off-peak storage devices; these benefits can amount to several hundred dollars per year. Substantial savings in the use of oil and gas fuels can be achieved if residences using these fuels convert to solar systems, savings not necessarily achievable by a shift, instead, to electric systems.

Bright, R; Davitian, H

1980-04-01T23:59:59.000Z

36

Integrated Analysis of Fuel, Technology and Emission Allowance Markets: Electric Utility Responses to the Clean Air Act Amendments o f 1990  

Science Conference Proceedings (OSTI)

This report provides a detailed analysis of the strategic responses of the electric utility industry to the Clean Air Act Amendments of 1990. The study analyzes the competitive interactions between fuel switching, scrubbing, and emission trading options and provides information on future regional coal demands and prices, the adoption of SO2 control technologies, compliance costs, and the character of SO2 emission allowance markets.

1993-08-30T23:59:59.000Z

37

Fuel Switching on a Dime -- Boiler Capabilities of Electric Utilities and Industrial Companies: EPRI Report Series on Gas Demands for Power Generation  

Science Conference Proceedings (OSTI)

Electric utilities play an unusual and important role in the natural gas market because so much of their ongoing gas demand is price sensitive. This report, which focuses on the pattern of this demand, tracks how switching between gas and alternative fuels by major users affects the overall market. Events over the past four years and new plant-specific data have changed our understanding of this phenomenon.

1994-01-01T23:59:59.000Z

38

Solving the problems facing the electric utilities  

SciTech Connect

The dimensions of the current problems of attracting capital for utilities investment, of achieving more efficient utilization of capacity, of siting and construction of new power plants, and of utilities receiving a return on their investment large enough to enable them to continue their service to American consumers are examined. Federal actions that are being taken to help get the utilities out of their current state of malaise are described. The author concludes that positive electric power load management, through a system of cost-based pricing incentives and load controls, can achieve a balanced future both for total electricity usage and for peak demand. This would minimize the consumption of scarce fossil fuels in electricity generation, moderate the future need for construction of new capacity, improve utility revenues, and eventually reduce the need for rate increases to maintain utility viability. The FEA feels that is a reasonable, attainable objective for substantial electrification of the economy beyond 1985. (MCW)

Hill, J.A.

1975-01-01T23:59:59.000Z

39

Alternative Fuels Data Center: Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center: Electricity on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Prices Find electricity fuel prices and trends. Electricity can be used to power all-electric vehicles and plug-in hybrid

40

American Municipal Power (Public Electric Utilities) - Residential...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency...

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Understanding Electric Utility Customers  

Science Conference Proceedings (OSTI)

How customers use and value electricity has been a subject of study and debate for many decades. A better understanding of how customers use electricity could help the industry find ways to improve energy efficiency, thereby helping to reduce green house gas emissions, increase energy sustainability, and improve overall growth in the economy. In addition, our ability to encourage more efficient consumption through real-time feedback, control technology, and pricing is better and less costly than it has e...

2012-02-07T23:59:59.000Z

42

Iowa seeks to end electric fuel surcharge  

SciTech Connect

Iowa is abolishing the fuel cost adjustment credits for investor-owned electric utilities because of illegal utility charges that added non-fuel costs into the credit. Abolishing the energy adjustment credit (EAC) will force utilities to file a rate case in order to pass changes in fuel costs to their customers. Investor-owned and municipal utilities have filed opposing testimony for the September hearing. Opponents claim that there will have to be changes made in the way costs are recovered from cogenerated power purchases and that it will be more difficult to make annual fuel procurements.

Ponczak, G.

1985-09-02T23:59:59.000Z

43

An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.  

DOE Green Energy (OSTI)

This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

44

Electric Utilities Industrial Transportation  

E-Print Network (OSTI)

240 million vehicles on the road Approximately 9M new cars & light trucks for 2009. Average is 15.7 M/yr 2002-2007 11.5 Million barrels of oil per day consumed by on-road vehicles Light-duty vehicles consume 60 % of transportation fuel, and account for 42% of total US petroleum use. Vehicle Technologies Program eere.energy.gov For Light-duty Passenger Vehicles Where are the opportunities for reducing transportation petroleum demand?

Edwin Owens; Million Barrels Per Day

1994-01-01T23:59:59.000Z

45

Deregulating the electric utility industry  

E-Print Network (OSTI)

Many functions must be performed in any large electric power system. A specific proposal for a deregulated power system, based on a real-time spot energy marketplace, is presented and analyzed. A central T&D utility acts ...

Bohn, Roger E.

1982-01-01T23:59:59.000Z

46

Monthly 2008 Utility and Nonutility Fuel Receipts and Fuel Quality...  

NLE Websites -- All DOE Office Websites (Extended Search)

Tags fossil fuel receipts, coal receipts, oil receipts, gas receipts, fossil fuel consumption, electricity generating fuel Dataset Ratings Overall 0 No votes yet Data...

47

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

48

Cost of Fuel to General Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fuel to Generate Electricity of Fuel to Generate Electricity Cost of Fuel to Generate Electricity Herb Emmrich Gas Demand Forecast, Economic Analysis & Tariffs Manager SCG/SDG&E SCG/SDG&E Federal Utility Partnership Working Group (FUPWG) 2009 Fall Meeting November 18, 2009 Ontario, California The Six Main Costs to Price Electricity are:  Capital costs - the cost of capital investment (debt & equity), depreciation, Federal & State income taxes and property taxes and property taxes  Fuel costs based on fuel used to generate electricity - hydro, natural gas, coal, fuel oil, wind, solar, photovoltaic geothermal biogas photovoltaic, geothermal, biogas  Operating and maintenance costs  Transmission costs  Distribution costs  Social adder costs - GHG adder, low income adder,

49

Electric Vehicle Fueling and Submetering  

Science Conference Proceedings (OSTI)

US National Work Group on Measuring Systems for Electric Vehicle Fueling and Submetering. The US National Work Group ...

2013-08-07T23:59:59.000Z

50

Studying the Communications Requirements of Electric Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities...

51

Electric utility system master plan  

SciTech Connect

This publication contains the electric utility system plan and guidelines for providing adequate electric power to the various facilities of Lawrence Livermore National Laboratory in support of the mission of the Laboratory. The topics of the publication include general information on the current systems and their operation, a planning analysis for current and future growth in energy demand, proposed improvements and expansions required to meet long range site development and the site`s five-year plan.

Erickson, O.M.

1992-10-01T23:59:59.000Z

52

Guidebook for the Use of Synfuels in Electric Utility Combustion Systems, Volume 3: Liquid Fuels Derived From Shale and Tar Sands  

Science Conference Proceedings (OSTI)

The properties of liquid fuels derived from oil shales or tar sands differ substantially and in varying degrees from those of conventional petroleum fuels. Utilities will find data and procedures in this guidebook to help them evaluate the modifications those fuels would require in their systems.

1985-08-01T23:59:59.000Z

53

Columbia Utilities Electricity | Open Energy Information  

Open Energy Info (EERE)

Utilities Electricity Place New York Utility Id 55814 Utility Location Yes Ownership R Operates Generating Plant Yes Activity Retail Marketing Yes References EIA Form EIA-861...

54

Energy efficiency and electric utilities  

SciTech Connect

Twenty years have now elapsed since the energy crisis irrevocably changed world energy priorities. The energy crisis banished all apparitions of cheap and almost limitless energy and made the public keenly aware of its scarcity. The sharp rise in energy prices that followed the Arab oil embargo created strong market incentives to conserve energy. Most users have substantially improved the efficiency with which they use energy, although one might lament that the gains have not been larger. In contrast to the increased efficiency with which electricity and other forms of energy are used, electric utilities themselves have singularly failed to improve their heat efficiency in generating electricity. This failure can be attributed to regulation preventing market forces from creating incentive to improve efficiency.

Studness, C.M.

1994-03-15T23:59:59.000Z

55

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies...

56

"List of Covered Electric Utilities" under the Public Utility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978...

57

Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Hybrid Electric State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: State Hybrid Electric (HEV) Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg

58

California Energy Commission - Electricity Consumption by Utility  

Open Energy Info (EERE)

Utility (1990-2009) Electricity consumption by Utility company for Commercial, Residential, Ag & Water Pump, Streetlight, Industry, Mining & Construction and Total...

59

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Incentives Program Avista Utilities (Electric) - Commercial Energy Efficiency Incentives Program Eligibility Commercial Industrial InstallerContractor Savings...

60

Cost and quality of fuels for electric plants 1993  

Science Conference Proceedings (OSTI)

The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications  

DOE Green Energy (OSTI)

This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

62

Electricity market module: Electricity fuel dispatch submodule  

Science Conference Proceedings (OSTI)

In previous Annual Energy Outlooks (AEO), international electricity trade was represented in the National Energy Modeling System (NEMS) Electricity Market Module (EMM) modeling framework as an exogenous input. The exception to this exogenous treatment was for firm power projections, i.e., new Canadian hydroelectric model builds. The AEO95 implementation of EMM allowed Canadian hydroelectric projects to be selected in the Electricity Capacity Planning (ECP) submodule on an annual basis and otherwise addressed as any other purchased power commitments. This technical memorandum addresses modifications to the Electricity Fuel Dispatch Submodule implemented in AEO96 to enhance the treatment of international electricity trade through the representation of economy imports from Canada.

NONE

1996-06-01T23:59:59.000Z

63

Alternative Fuels Data Center: Electricity Related Links  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Related Links to someone by E-mail Share Alternative Fuels Data Center: Electricity Related Links on Facebook Tweet about Alternative Fuels Data Center: Electricity Related Links on Twitter Bookmark Alternative Fuels Data Center: Electricity Related Links on Google Bookmark Alternative Fuels Data Center: Electricity Related Links on Delicious Rank Alternative Fuels Data Center: Electricity Related Links on Digg Find More places to share Alternative Fuels Data Center: Electricity Related Links on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations

64

Alternative Fuels Data Center: Fuel Cell Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Fuel Cell Electric Vehicles

65

Moreno Valley Electric Utility - Solar Electric Incentive Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program Moreno Valley Electric Utility - Solar Electric Incentive Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential systems 30 kW or less: $14,000 or 50% of cost, whichever is less Small commercial systems 30 kW or less: $50,000 or 50% of cost, whichever is less Program Info State California Program Type Utility Rebate Program Rebate Amount Systems 30 kW or less: $2.00 per W-AC Systems larger than 30 kW: $0.06 per kWh for 5 years Provider Moreno Valley Electric Utility Moreno Valley Electric Utility provides rebates to its electric customers for the purchase of photovoltaic (PV) systems. System must be on the same premises as the customer to qualify. Systems 30 kilowatts (kW) or less can

66

Table Commercial Industrial Vehicle Fuel Electric Power  

U.S. Energy Information Administration (EIA)

State Residential Commercial Industrial Vehicle Fuel Electric Power ... Form EIA?886, Annual Survey of Alternative Fueled Vehicles; ...

67

Emergency fuels utilization guidebook. Alternative Fuels Utilization Program  

DOE Green Energy (OSTI)

The basic concept of an emergency fuel is to safely and effectively use blends of specification fuels and hydrocarbon liquids which are free in the sense that they have been commandeered or volunteered from lower priority uses to provide critical transportation services for short-duration emergencies on the order of weeks, or perhaps months. A wide variety of liquid hydrocarbons not normally used as fuels for internal combustion engines have been categorized generically, including limited information on physical characteristics and chemical composition which might prove useful and instructive to fleet operators. Fuels covered are: gasoline and diesel fuel; alcohols; solvents; jet fuels; kerosene; heating oils; residual fuels; crude oils; vegetable oils; gaseous fuels.

Not Available

1980-08-01T23:59:59.000Z

68

Alternative Fuels Data Center: Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles Hybrid Electric Vehicles

69

Electric Utility Measurement & Verification Program  

E-Print Network (OSTI)

BC Hydro is an electric utility with a service area covering over 95% of the province of British Columbia in Canada. Power Smart is BC Hydros demand-side-management (DSM) division. Power Smart develops, operates and manages various DSM programs for residential, commercial and industrial customers. The Measurement and Verification (M&V) of applicable Power Smart Industrial projects is the process of verifying the results of the implementation of energy conservation measures (ECMs) at industrial customer facilities. Power Smart M&V activities are based on the International Performance Measurement & Verification Protocol (IPMVP); a consensus document produced with the international support of industry and government. This paper discusses BC Hydros M&V program and the M&V results from industrial projects. Several case history studies will also be reviewed. The case studies reviewed involve aeration motor speed controls upgrade, steam turbine controls upgrade and natural gas liquid pump speed controls upgrade.

Lau, K.; Henderson, G.; Hebert, D.

2007-05-01T23:59:59.000Z

70

City of Burlington-Electric, Vermont (Utility Company) | Open Energy  

Open Energy Info (EERE)

Burlington-Electric, Vermont (Utility Company) Burlington-Electric, Vermont (Utility Company) Jump to: navigation, search Name City of Burlington-Electric Place Vermont Utility Id 2548 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large General (LG) Rate Demand is less than 25KW- Net Metered Renewable

71

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Electric Vehicle (EV) Exemption from Vehicle Testing Requirements on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV)

72

Definition: Electric utility | Open Energy Information  

Open Energy Info (EERE)

utility utility Jump to: navigation, search Dictionary.png Electric utility A corporation, agency, or other legal entity that owns and/or operates facilities for the generation, transmission, distribution or sale of electricity primarily for use by the public. Also known as a power provider.[1][2] View on Wikipedia Wikipedia Definition An electric utility is an electric power company that engages in the generation, transmission, and distribution of electricity for sale generally in a regulated market. The electrical utility industry is a major provider of energy in most countries. It is indispensable to factories, commercial establishments, homes, and even most recreational facilities. Lack of electricity causes not only inconvenience, but also economic loss due to reduced industrial production. Utility in the terms of power system,

73

Hudson Municipal Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Municipal Electric Utility Municipal Electric Utility Jump to: navigation, search Name Hudson Municipal Electric Utility Place Iowa Utility Id 8966 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Residential Residential Residential All-Electric Residential School Rate Commercial Average Rates Residential: $0.0993/kWh Commercial: $0.0905/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Hudson_Municipal_Electric_Utility&oldid=410846

74

U.S. electric utility demand-side management 1995  

SciTech Connect

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-01-01T23:59:59.000Z

75

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1997 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

76

PPL Electric Utilities - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Energy Efficiency Rebate Program PPL Electric Utilities - Residential Energy Efficiency Rebate Program Eligibility Multi-Family Residential Residential Savings For Home...

77

Electric Utility Demand-Side Management 1997  

U.S. Energy Information Administration (EIA)

DOE/EIA-0589(97) Distribution Category UC-950 U.S. Electric Utility Demand-Side Management 1997 December 1998 Energy Information Administration Office of Coal ...

78

Trends in Utility Scale Renewable Electricity  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration Independent Statistics & Analysis www.eia.gov Trends in Utility Scale Renewable Electricity for ReTech 2012

79

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

80

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and...

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission and Fuel Gas Transmission Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) < Back Eligibility Commercial Fuel Distributor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Savings Category Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State New York Program Type Siting and Permitting Provider New York State Public Service Commission Any person who wishes to construct an electric or gas transmission line that is more than ten miles long must file documents describing the construction plans and potential land use and environmental impacts of the proposed transmission line. The regulations describe application and review

82

Tipton Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Tipton Municipal Electric Util Tipton Municipal Electric Util Jump to: navigation, search Name Tipton Municipal Electric Util Place Indiana Utility Id 18942 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Rate A- Residential Electric Service Residential Rate B- Commercial Electric Service Commercial Rate C- General and Industrial Power Service, Single Phase Industrial Rate C- General and Industrial Power Service, Three Phase Industrial Rate CG- Cogeneration Commercial Rate D- Primary Power and Lighting Service

83

Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Hybrid Electric Vehicle (HEV) Emissions Testing Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative

84

Tatitlek Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Tatitlek Electric Utility Tatitlek Electric Utility Jump to: navigation, search Name Tatitlek Electric Utility Place Alaska Utility Id 18480 Utility Location Yes Ownership M NERC Location AK NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.5470/kWh Commercial: $0.4590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Tatitlek_Electric_Utility&oldid=411647

85

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are

86

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs Liberty Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Low-Income Residential Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Other Sealing Your Home Ventilation Commercial Lighting Lighting Maximum Rebate Home Performance with ENERGY STAR®: $4000 Program Info Funding Source NH Saves State New Hampshire Program Type Utility Rebate Program Rebate Amount Home Performance with ENERGY STAR®: up to $4,000 for improvements ENERGY STAR® Homes Qualification: custom incentives and technical support

87

Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Liberty Utilities (Electric) - Commercial Energy Efficiency Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs Liberty Utilities (Electric) - Commercial Energy Efficiency Incentive Programs < Back Eligibility Commercial Industrial Local Government Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Custom Incentives: amount that buys down the cost of the project to a 1 year simple payback Program Info State New Hampshire Program Type Utility Rebate Program Rebate Amount Custom Retrofits and Engineering Studies: 50% of project cost Fluorescent Lighting: $10-$50 High Bay: $70 or $100 (retrofit) Metal Halide: $50 or $70 LED Exit Signs: $12 LED Traffic Signals: $50

88

Alternative Fuels Data Center: New Jersey Utility Saves With Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jersey Utility Jersey Utility Saves With Alternative Fuel to someone by E-mail Share Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Facebook Tweet about Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Twitter Bookmark Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Google Bookmark Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Delicious Rank Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on Digg Find More places to share Alternative Fuels Data Center: New Jersey Utility Saves With Alternative Fuel on AddThis.com... May 7, 2011 New Jersey Utility Saves With Alternative Fuel L earn how Atlantic County transports visitors with alternative fuel

89

UGI Utilities Electric Division | Open Energy Information  

Open Energy Info (EERE)

Utilities Electric Division Utilities Electric Division Jump to: navigation, search Logo: UGI Utilities Electric Division Name UGI Utilities Electric Division Address 2525 North 12th Street, Suite 360 Place Reading, Pennsylvania Zip 19605 Sector Services Product Green Power Marketer Website http://www.ugi.com/electric/in Coordinates 40.3746587°, -75.9149578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3746587,"lon":-75.9149578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Wisconsin Dells Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dells Electric Util Dells Electric Util Jump to: navigation, search Name Wisconsin Dells Electric Util Place Wisconsin Utility Id 20844 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single Phase Commercial General Service- Three Phase Commercial Large General Service Commercial Large Power Service Industrial Large Power Service(Primary Metering & Transformer Ownership) Industrial Large Power Service(Primary Metering) Industrial Large Power Service(Transformer Ownership) Industrial

91

Dublin Municipal Electric Util | Open Energy Information  

Open Energy Info (EERE)

Dublin Municipal Electric Util Dublin Municipal Electric Util Jump to: navigation, search Name Dublin Municipal Electric Util Place Indiana Utility Id 5392 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Power Rate OL: Outdoor Lighting (Security Lights) Lighting Rate SL: Street Lighting, All Public Street Lighting Lighting Rate SL: Street Lighting, State Highway Stoplight Lighting Residential Residential Residential: Space Heating and/or Air Conditioning Service Residential

92

Survey of Western U.S. Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U.S. Electric Utility Resource Plans Survey of Western U.S. Electric Utility Resource Plans Title Survey of Western U.S. Electric Utility Resource Plans Publication Type Journal Article Year of Publication 2014 Authors Wilkerson, Jordan, Peter H. Larsen, and Galen L. Barbose Journal Energy Policy Date Published 2014 Abstract We review long-term electric utility plans representing "' 90% of generation within the Western U.S. and Canadian provinces. We address what utility planners assume about future growth of electricity demand and supply; what types of risk they consider in their long-term resource planning; and the consistency in which they report resource planning-related data. The region is anticipated to grow by 2% annually by 2020 before Demand Side Management. About two-thirds of the utilities that provided an annual energy forecast also reported energy efficiency savings projections; in aggregate, they anticipate an average 6.4% reduction in energy and 8.6% reduction in peak demand by 2020. New natural gas-fired and renewable generation will replace retiring coal plants. Although some utilities anticipate new coal-fired plants, most are planning for steady growth in renewable generation over the next two decades. Most planned solar capacity will come online before 2020, with most wind expansion after 2020. Fuel mix is expected to remain "' 55% of total generation. Planners consider a wide range of risks but focus on future demand, fuel prices, and the possibility of GHG regulations. Data collection and reporting inconsistencies within and across electric utility resource plans lead to recommendations on policies to address this issue.

93

Alternative Fuels Data Center: Low Emission Vehicle Electricity...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles Electricity | Hybrid & Plug-In Electric Vehicles Ethanol | Flex Fuel Vehicles Hydrogen | Fuel...

94

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

95

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

96

Direct Carbon Fuel Cell System Utilizing Solid Carbonaceous Fuels  

DOE Green Energy (OSTI)

This 1-year project has achieved most of its objective and successfully demonstrated the viability of the fluidized bed direct carbon fuel cell (FB-DCFC) approach under development by Direct Carbon technologies, LLC, that utilizes solid carbonaceous fuels for power generation. This unique electrochemical technology offers high conversion efficiencies, produces proportionately less CO{sub 2} in capture-ready form, and does not consume or require water for gasification. FB-DCFC employs a specialized solid oxide fuel cell (SOFC) arrangement coupled to a Boudouard gasifier where the solid fuel particles are fluidized and reacted by the anode recycle gas CO{sub 2}. The resulting CO is electrochemically oxidized at the anode. Anode supported SOFC structures employed a porous Ni cermet anode layer, a dense yttria stabilized zirconia membrane, and a mixed conducting porous perovskite cathode film. Several kinds of untreated solid fuels (carbon and coal) were tested in bench scale FBDCFC prototypes for electrochemical performance and stability testing. Single cells of tubular geometry with active areas up to 24 cm{sup 2} were fabricated. The cells achieved high power densities up to 450 mW/cm{sup 2} at 850 C using a low sulfur Alaska coal char. This represents the highest power density reported in the open literature for coal based DCFC. Similarly, power densities up to 175 mW/cm{sup 2} at 850 C were demonstrated with carbon. Electrical conversion efficiencies for coal char were experimentally determined to be 48%. Long-term stability of cell performance was measured under galvanostatic conditions for 375 hours in CO with no degradation whatsoever, indicating that carbon deposition (or coking) does not pose any problems. Similar cell stability results were obtained in coal char tested for 24 hours under galvanostatic conditions with no sign of sulfur poisoning. Moreover, a 50-cell planar stack targeted for 1 kW output was fabricated and tested in 95% CO (balance CO{sub 2}) that simulates the composition of the coal syngas. At 800 C, the stack achieved a power density of 1176 W, which represents the largest power level demonstrated for CO in the literature. Although the FB-DCFC performance results obtained in this project were definitely encouraging and promising for practical applications, DCFC approaches pose significant technical challenges that are specific to the particular DCFC scheme employed. Long term impact of coal contaminants, particularly sulfur, on the stability of cell components and cell performance is a critically important issue. Effective current collection in large area cells is another challenge. Lack of kinetic information on the Boudouard reactivity of wide ranging solid fuels, including various coals and biomass, necessitates empirical determination of such reaction parameters that will slow down development efforts. Scale up issues will also pose challenges during development of practical FB-DCFC prototypes for testing and validation. To overcome some of the more fundamental problems, initiation of federal support for DCFC is critically important for advancing and developing this exciting and promising technology for third generation electricity generation from coal, biomass and other solid fuels including waste.

Turgut Gur

2010-04-30T23:59:59.000Z

97

Appendices Understanding Electric Utility Customers  

Science Conference Proceedings (OSTI)

EPRI report 1023562 provides a synthesis of the body of evidence regarding the major factors that affect how customers value and use electricity; this companion report contains five appendices to support that document. Appendix A provides additional background on price elasticity of demand as a companion to the economics of demand discussion in Section 2 of 1023562. Appendix B provides tables detailing elements of the experimental designs for the 10 pricing pilots examined in Section 3 of 1023562; Append...

2012-02-07T23:59:59.000Z

98

Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Utility Connecticut Utility Fleet Operates Vehicles on Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Connecticut Utility Fleet Operates Vehicles on Alternative Fuels on AddThis.com...

99

Utilization of alternative fuels in diesel engines:  

DOE Green Energy (OSTI)

The thrust of this resarch program has been to determine the effect of various alternative and synthetic fuels on the performance and emissions from Diesel engines. The purpose of research was to investigate the various fuels for extension of existing supplies or as emergency substitutes for Diesel fuels. Thus, the work did not emphasize optimization of the engines for a given fuel;the engines were generally run at manufacturers specifications for conventional fuels. During the various studies, regulated and unregualted emissions were investigated and the biological activity of the soluble organics on the particulate emissions was determined using the Ames test procedure. During the present contract period, three experimental programs were carried out. The first program investigated the utilization of methane and propane in an indirect injection, multicylinder engine. In the other two studies, a single cylinder direct injection Diesel engine was used to investigate the performance and emission characteristics of synthetic fuels derived from tar sands and oil shale and of three fuels derived from coal by the Exxon Donor Solvent (EDS) process. The body of this report consists of three chapters which summarize the experimental equipment, procedures, and major results from the studies of methane and propane fumigation, of synthetic fuels from oil shale and tar sands and of the coal-derived fuels.

Not Available

1987-06-01T23:59:59.000Z

100

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program York Electric Cooperative - Dual Fuel Heat Pump Rebate Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit Residential State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate 2 systems per household Program Info State South Carolina Program Type Utility Rebate Program Rebate Amount Dual Fuel Heat Pumps: $400/system Provider York Electric Cooperative, Inc York Electric Cooperative, Inc. (YEC) offers a $400 rebate to members who install a dual fuel heat pump in homes or businesses. The rebates are for primary residence and/or commercial and industrial locations. The incentive is for the property owner only, meaning that renters/tenants are not

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

American Municipal Power (Public Electric Utilities) - Residential  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

American Municipal Power (Public Electric Utilities) - Residential American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) American Municipal Power (Public Electric Utilities) - Residential Efficiency Smart Program (Ohio) < Back Eligibility Residential Savings Category Heating & Cooling Cooling Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info Funding Source American Municipal Power Start Date 01/2011 Expiration Date 12/31/2013 State Ohio Program Type Utility Rebate Program Rebate Amount Ceiling Fan with Lights: $15 Dehumidifier: $25 Select Clothes Washer: $50 ENERGY STAR Refrigerator: $50 Refrigerator/Freezer Recycling: $50 Furnace Fan with ECM: $100 Heat Pump Water Heaters: $250 CFLs: up to 85% of cost Efficiency Smart (tm) provides energy efficiency incentives to the American

102

Approaches to Electric Utility Energy Efficiency for Low Income...  

Open Energy Info (EERE)

to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Name Approaches to Electric Utility Energy...

103

Economic implications for the generation of electricity from biomass fuel sources.  

E-Print Network (OSTI)

??This study examines the economic theory, geographical implications, and relevant legislative history impacting the use of biomass fuel sources within the electric utility industry. Research (more)

Curtis, Thomas Wayne

2003-01-01T23:59:59.000Z

104

Evaluating the role of uncertainty in electric utility capacity planning  

SciTech Connect

This final report on Evaluating the Role of Uncertainty in Electric Utility Capacity Planning is divided into separate sections addressing demand, supply and the simultaneous consideration of both and describes several mathematical characterizations of the effects of uncertainty on the capacity expansion decision. The basic objective is to develop more robust models which can appropriately include the fundamental uncertainties associated with capacity expansion planning in the electric utility industry. Much of what has been developed in this project has been incorporated into a long-term, computer model for capacity expansion planning. A review is provided of certain deterministic capacity expansion methodologies. The effect of load curve uncertainty on capacity planning is considered and the use of a certain expected load curve to account for uncertainty in demand is proposed. How uncertainty influences the allocation of capital costs among the various load curve realizations is also discussed. The supply side uncertainties of fuel prices and random availability of generating units are considered. In certain cases it is shown that the use of the expected fuel costs will furnish a solution which minimizes the total expected costs. The effect of derating units to account for their random availability is also characterized. A stochastic linear program formulated to examine the simultaneous consideration of fuel cost and demand uncertainties is analyzed. This volume includes the report text one appendix with information on linear programming-based analysis of marginal cost pricing in the electric utility industry.

Soyster, A.L.

1981-08-31T23:59:59.000Z

105

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Multi-Family Residential Residential Savings Category Appliances & Electronics Commercial Lighting Lighting Water Heating Program Info State Wyoming Program Type Utility Rebate Program Rebate Amount Home Energy Audit: Contact Cheyenne Light, Fuel and Power CFL Bulbs: Up to 10 CFL bulbs at reduced cost Water Heater: $75 Refrigerator Recycling: $30 Cheyenne Light, Fuel and Power offers incentives to electric customers who wish to install energy efficient equipment in participating homes. Incentives are available for home energy audits, CFL light bulbs, tank water heaters and refrigerator recycling. Water heater purchases and

106

Electrical utilities model for determining electrical distribution capacity  

Science Conference Proceedings (OSTI)

In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

Fritz, R.L., Westinghouse Hanford, Richland, WA

1997-09-03T23:59:59.000Z

107

U.S. Electric Utility Demand-Side Management 1994  

U.S. Energy Information Administration (EIA)

10. U.S. Electric Utility Energy Savings by North American Electric Reliability Council Region and ... design, advanced electric motors and drive systems,

108

"Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

Net","Residual","Distillate",,"LPG and",,"Coke and"," " "Characteristic(a)","Total","Electricity(b)","Fuel Oil","Fuel Oil(c)","Natural Gas(d)","NGL(e)","Coal","Breeze","Other(f)"...

109

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market...

110

Economic impact of integrating photovoltaics with conventional electric utility operation  

SciTech Connect

The purpose of this study was to determine the parameters which impact the value of photovoltaics (PV) to the electric utility. We have, therefore, chosen the high, medium and low load days in winter (January) and summer (July). The daily peak load has varied from 5838 MW to 9712 MW. These six days are studied for reference (no PV), high, medium, low and intermittent PV output cases. Results from these 30 case studies are summarized in this paper. In order to study the impact of operating photovoltaic (PV) systems on the electric utility production cost (fuel and variable O and M) we have chosen the load profile of a southeastern utility and the PV output data from solar test facilities in Virginia and North Carolina. In order to incorporate the short-term variations we have used 10-minute resolution data for both load and PV output.

Rahman, S. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (USA). Dept. of Electrical Engineering)

1990-09-01T23:59:59.000Z

111

Fuel Cell Technologies Office: DOE Electrolysis-Utility Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis-Utility Integration Workshop Electrolysis-Utility Integration Workshop The U.S. Department of Energy sponsored an Electrolysis-Utility Integration Workshop in Broomfield, Colorado September 22-23, 2004. Attendees included representatives from utilities and energy companies, researchers, and government officials. Water electrolysis is a leading candidate for hydrogen production as the U.S. begins the transition to a hydrogen economy. Ideally, electrolysis will be able to provide hydrogen fuel for at least 20% of our light duty fleet; at prices competitive with traditional fuels and other hydrogen production pathways, using domestically available resources; and without adverse impacts to the environment. To be successful, the utility sector must play a vital role in identifying opportunities to diversify electricity generation and markets and begin to look at transportation fuel as a high priority business opportunity for the future. This workshop was held to identify the opportunities and challenges facing the widespread deployment of electrolysis based hydrogen production in the U.S.

112

Incorporating uncertainty into electric utility projections and decisions  

Science Conference Proceedings (OSTI)

This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The ``mean`` value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility`s net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

Hanson, D.A.

1992-07-01T23:59:59.000Z

113

Electricity as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity as a Transportation Fuel Electricity as a Transportation Fuel August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the...

114

Marketing Reordering of the Electric Utility Industry  

E-Print Network (OSTI)

ELCON is a group of large industrial consumers of electricity with facilities in most of the 50 states and many foreign countries. Our members produce a wide range of products including steel, aluminum, chemicals, industrial gases, glass, motor vehicles, textiles and food. ELCON members consume approximately ten percent of all electricity sold to industrial customers and nearly five percent of all electricity consumed in the United States. We require an adequate and reliable supply of electricity at reasonable prices, so as you can imagine, we have a continuing interest in all aspects of the production, pricing, and delivery of electricity. ELCON member companies believe strongly that the electric utility industry is undergoing a market reordering that is being shaped by technological, institutional and legal forces. We see technical developments that now make small-scale generation economically attractive, if not downright desirable. Key regulatory and consumer institutions are taking fresh, new looks at issues such as wheeling and access to the grid that used to be considered sacred and untouchable. Some states are passing laws and implementing regulations that will require new thinking and new operating procedures on the part of utilities and consumers. I see these developments as logical reactions to changes in market forces. Change will take place. The relevant questions are: How will regulators and policy makers be influenced by market forces in the future? And: Will utilities, consumers and regulators attempt to benefit from market pressures or, alternatively, try to oppose what I believe is inevitable evolution to a more market-oriented electric industry?

Anderson, J. A.

1986-06-01T23:59:59.000Z

115

Incorporating uncertainty into electric utility projections and decisions  

Science Conference Proceedings (OSTI)

This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The mean'' value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility's net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

Hanson, D.A.

1992-01-01T23:59:59.000Z

116

Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Knoxville Utilities Knoxville Utilities Board Reduces Petroleum Use to someone by E-mail Share Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Facebook Tweet about Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Twitter Bookmark Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Google Bookmark Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Delicious Rank Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on Digg Find More places to share Alternative Fuels Data Center: Knoxville Utilities Board Reduces Petroleum Use on AddThis.com... Jan. 22, 2011 Knoxville Utilities Board Reduces Petroleum Use F ind out how the Knoxville Utilities Board is displacing more than 46,000

117

High slot utilization systems for electric machines  

DOE Patents (OSTI)

Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

Hsu, John S (Oak Ridge, TN)

2009-06-23T23:59:59.000Z

118

Grid Reliability - An Electric Utility Company's Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Electric Utility Company's Perspective Marc Butts Southern Company Services 11/19/08 Topics * Business Continuity at Southern Company * NERC Cyber Security at Southern Company * Homeland Security at Southern Company * Physical recovery following a major outage * 5 questions to ask your local utility * Facing Realities 3 Service territory across four states: 120,000 square miles * Southern Linc * Southern Power * Southern Telecom * Southern Nuclear Other Subsidiaries: Serves approximately 4 million customers Business Continuity at Southern Company Southern Company Business Assurance Model Business Unit Management (Asset Owners) Southern Company Business Assurance Council Infrastructure Protection Business Continuity Incident Response * Identify critical assets * Design and implement

119

Consumer's Guide to the economics of electric-utility ratemaking  

SciTech Connect

This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

1980-05-01T23:59:59.000Z

120

Trends in electric utility load duration curves  

SciTech Connect

This report documents the development and analysis of annual and quarterly load duration curves for each of the 10 Federal regions. The report describes analyses performed to test for changes in load duration curve shapes over time. These analyses are intended to aid the electric utility analyses and modeling activities of the Energy Information Administration (EIA) by expanding the understanding of current and expected load duration curve shapes. 7 figs., 13 tabs.

1984-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Alternative Fuels Data Center: Public Utility Definition Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Utility Public Utility Definition Exemption to someone by E-mail Share Alternative Fuels Data Center: Public Utility Definition Exemption on Facebook Tweet about Alternative Fuels Data Center: Public Utility Definition Exemption on Twitter Bookmark Alternative Fuels Data Center: Public Utility Definition Exemption on Google Bookmark Alternative Fuels Data Center: Public Utility Definition Exemption on Delicious Rank Alternative Fuels Data Center: Public Utility Definition Exemption on Digg Find More places to share Alternative Fuels Data Center: Public Utility Definition Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Public Utility Definition Exemption An entity that owns, controls, operates, or manages a plant or facility

122

Energy Efficiency First Fuel Requirement (Gas and Electric) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency First Fuel Requirement (Gas and Electric) Energy Efficiency First Fuel Requirement (Gas and Electric) Energy Efficiency First Fuel Requirement (Gas and Electric) < Back Eligibility Investor-Owned Utility Utility Program Info State Massachusetts Program Type Energy Efficiency Resource Standard Provider Massachusetts Energy Efficiency Advisory Council Note: The 2013 Three Year Efficiency Plans have not yet been approved. The process is underway. For the latest draft plan, review the Massachusetts Energy Efficiency Advisory Council [http://www.ma-eeac.org/3%20Year%20Draft%20Plan%20November%202012.htm web site]. This summary will be updated once the Three Year Efficiency Plans have been approved in early 2013. In 2008, Governor Patrick signed a major energy reform bill, the [http://www.malegislature.gov/Laws/SessionLaws/Acts/2008/Chapter169 Green

123

Synthetic fuel utilization. Final report. Task 330  

DOE Green Energy (OSTI)

The presence of large coal resources in this country provided the spur for consideration of liquids derived from hydrogenation of coal in the search for alternate liquid fuels to replace petroleum. Previous developments particularly in German industry beginning in 1910 and reaching a capacity of approximately four million tons of products a year by 1944 and more recently a series of plants in South Africa have shown the practicability of coal liquefaction. A few more advanced processes have been developed variously to bench, pilot or commercial scale from among the thirty or more which were subject to study. Limitation in the amount of hydrogen used in these for reasons of economy and processing facility results in products containing major amounts of aromatics as well as significant portions of the sulfur and nitrogen of the coal feed. Combustion of the largely aromatic liquids can present problems in commercial burners designed for petroleum fuels, and combustion staging used to reduce NO/sub x/ emissions with the latter may encounter difficulties from sooting in the coal-derived fuels, which occurs readily with aromatics. This report presents a review of such problems in utilization of synthetic fuels from coal, emphasizing basic engineering and scientific studies which have been made. A research program involving a number of universities, industrial laboratories, and non-profit research institutions was carried out under the direction of the Department of Energy's Pittsburgh Energy Technology Center. This program is also reviewed. The major subjects covered are those of liquefaction product composition and properties, fuel spray and droplet processes, synfuel pyrolysis, combustion mechanics, soot formation, and pollutant emission. Recommendations concerning needs for investigation are made from an evaluation of the current status of the field and the results obtained in the program. 15 references, 1 figure, 7 tables.

Singer, S.

1983-01-01T23:59:59.000Z

124

Survey of Western U.S. electric utility resource plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey Survey of Western U.S. electric utility resource plans Jordan Wilkerson a,n , Peter Larsen a,b , Galen Barbose b a Management Science and Engineering Department, School of Engineering, Stanford University, Stanford, CA 94305, United States b Energy Analysis and Environmental Impacts Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, United States H I G H L I G H T S  Anticipated power plant retirements are split between coal and natural gas.  By 2030, natural gas-fired generation represents 60% of new capacity followed by wind (15%), solar (7%) and hydropower (7%).  Utilities anticipate most new solar capacity to come online before 2020 with significant growth in wind capacity after 2020.  Utilities focus their uncertainty analyses on future demand, fuel prices,

125

U.S. Electric Utility Demand-Side Management 1994  

U.S. Energy Information Administration (EIA)

Preface. The U.S. Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Elec-

126

Electric Market and Utility Operation Terminology (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet is a list of electric market and utility operation terminology for a series of three electricity fact sheets.

Not Available

2011-05-01T23:59:59.000Z

127

Does EIA publish electric utility rate, tariff, and demand charge ...  

U.S. Energy Information Administration (EIA)

Does EIA publish electric utility rate, tariff, and demand charge data? No, EIA does not collect or publish data on electricity rates, or tariffs, for the sale or ...

128

Decoupling treatment of electric and gas utilities can differ ...  

U.S. Energy Information Administration (EIA)

Many States institute decoupled rates for both electric and gas utilities ... Virginia and North Carolina have both decoupled gas rates but not electric rates.

129

PPL Electric Utilities - Commercial and Industrial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and...

130

Role of wind power in electric utilities  

SciTech Connect

Current estimates suggest that the cost of wind-generated power is likely to be competitive with conventionally generated power in the near future in regions of the United States with favorable winds and high costs for conventionally generated electricity. These preliminary estimates indicate costs of $500 to 700 per installed kW for mass-produced wind turbines. This assessment regarding competitiveness includes effects of reduced reliability of wind power compared to conventional sources. Utilities employing wind power are likely to purchase more peaking capacity and less baseload capacity than they would have otherwise to provide the lowest-cost reserve power. This reserve power is needed mainly when wind outages coincide with peak loads. The monetary savings associated with this shift contribute substantially to the value of wind energy to a utility.

Davitian, H

1977-09-01T23:59:59.000Z

131

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) -List of Covered Electric Utilities - 2006 "List of Covered Electric Utilities" under the Public Utility

132

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

1991-09-01T23:59:59.000Z

133

Electric utility industry experience with geomagnetic disturbances  

SciTech Connect

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

1991-09-01T23:59:59.000Z

134

Electric Utility Industry Experience with Geomagnetic Disturbances  

Science Conference Proceedings (OSTI)

A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

Barnes, P.R.

1991-01-01T23:59:59.000Z

135

Building a winning electric utility organization  

SciTech Connect

The key factor that will differentiate the winners and losers is the speed with which they build their skills and enhance their performance focus. Setting the {open_quote}right{close_quote} aspirations, then effectively managing the change process, will be critical for winning power companies. Historically, only certain dimensions of organizational performance have been critical to an electric utility`s financial success. As a result, utilities understandably focused on achieving high levels of customer satisfaction and reliability, excellent regulatory relationships, and safe and environmentally acceptable operations. However, as the power industry undergoes fundamental change, obtaining superior organizational performance will become much more crucial and difficult. Given the importance of meeting these organizational challenges head on, the authors believe CEOs can only address them by taking an important step back from day-to-day activities to define what high performance really means in the future competitive world and what steps should be taken to achieve their aspirations. To facilitate this rethink - which senior managers should view as a multiyear process - utilities need to do three things in an iterative way: (1) energize the transformation with the right performance aspirations. (2) Tailor a coherent change program to the company`s unique starting position. (3) Manage the change process to build a skill-based and performance-focused organization.

Farha, G.; Silverman, L. [McKinsey & Co., Washington, DC (United States)] [McKinsey & Co., Washington, DC (United States); Keough, K. [McKinsey & Co., Cleveland, OH (United States)] [McKinsey & Co., Cleveland, OH (United States)

1996-08-01T23:59:59.000Z

136

Inventory of Electric Utility Power Plants in the United States  

Reports and Publications (EIA)

Final issue of this report. Provides detailed statistics on existing generating units operated by electric utilities as of December 31, 2000, and certain summary statistics about new generators planned for operation by electric utilities during the next 5 years.

Information Center

2002-03-01T23:59:59.000Z

137

California Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) California Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

138

New Mexico Natural Gas % of Total Electric Utility Deliveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Electric Utility Deliveries (Percent) New Mexico Natural Gas % of Total Electric Utility Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

139

Alternative Fuels Data Center: Commercial Electric Truck Vouchers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Electric Truck Vouchers to someone by E-mail Share Alternative Fuels Data Center: Commercial Electric Truck Vouchers on Facebook Tweet about Alternative Fuels Data...

140

Regulations for Electric Transmission and Fuel Gas Transmission...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long (New York) Regulations for Electric Transmission and Fuel Gas Transmission Lines Ten or More Miles Long...

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cheyenne Light, Fuel and Power (Electric) - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program Cheyenne Light, Fuel and Power (Electric) - Residential Energy Efficiency Rebate Program <...

142

New Guide Will Allow Electric Utilities to Develop Green ...  

Science Conference Proceedings (OSTI)

New Guide Will Allow Electric Utilities to Develop Green Button Web Tools. From NIST Tech Beat: February 6, 2013. ...

2013-02-06T23:59:59.000Z

143

Financial statistics of major publicly owned electric utilities, 1991  

Science Conference Proceedings (OSTI)

The Financial Statistics of Major Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with data that can be used for policymaking and decisionmaking purposes relating to publicly owned electric utility issues.

Not Available

1993-03-31T23:59:59.000Z

144

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies in the Media Spotlight Vehicle Technologies in the Media Spotlight August 19, 2013 Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market between 2015 and 2020. A recent Denver Post article highlights the National Renewable Energy Laboratory's contribution to the progress that automakers have made in getting their fuel cell electric vehicles ready for production. "When I started working on fuel cells in the '90s, people said it was a good field because a solution would always be five years away," said Brian Pivovar, who leads NREL's fuel cell research. "Not anymore." The article references a variety of NREL's hydrogen and fuel cell

145

Utility Fuel Inventory Model (UFIM) 5.0  

Science Conference Proceedings (OSTI)

The Utility Fuel Inventory Model (UFIM) is the essential tool for performing fuel inventory analysis. Using the power of your personal computer, UFIM helps users develop money-saving inventory ...

2012-11-06T23:59:59.000Z

146

Alternative Fuels Data Center: Electric Vehicle Charging Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Stations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Stations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Stations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Electric Vehicle Charging Stations

147

EIA model documentation: Electricity market module - electricity fuel dispatch  

Science Conference Proceedings (OSTI)

This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

NONE

1997-01-01T23:59:59.000Z

148

Fuel Savings from Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

Bennion, K.; Thornton, M.

2009-03-01T23:59:59.000Z

149

Fuel Cell Technologies Office: DOE Electrolysis-Utility Integration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Miller, Atomic Energy of Canada Wind in the Electricity Infrastructure, Mark McGree, Xcel Energy Hydrogen at the Fueling Station, Steven Schlasner, Conoco Phillips Electrolysis...

150

The effects of utility DSM programs on electricity costs and prices  

SciTech Connect

More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity? This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a ``base`` that is typical of US utilities; a ``surplus`` utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a ``deficit`` utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

Hirst, E.

1991-11-01T23:59:59.000Z

151

The effects of utility DSM programs on electricity costs and prices  

SciTech Connect

More and more US utilities are running more and larger demand-side management (DSM) programs. Assessing the cost-effectiveness of these programs raises difficult questions for utilities and their regulators. Should these programs aim to minimize the total cost of providing electric-energy services or should they minimize the price of electricity This study offers quantitative estimates on the tradeoffs between total costs and electricity prices. This study uses a dynamic model to assess the effects of energy-efficiency programs on utility revenues, total resource costs, electricity prices, and electricity consumption for the period 1990 to 2010. These DSM programs are assessed under alternative scenarios. In these cases, fossil-fuel prices, load growth, the amount of excess capacity the utility has in 1990, planned retirements of power plants, the financial treatment of DSM programs, and the costs of energy- efficient programs vary. These analyses are conducted for three utilities: a base'' that is typical of US utilities; a surplus'' utility that has excess capacity, few planned retirements, and slow growth in fossil-fuel prices and incomes; and a deficit'' utility that has little excess capacity, many planned retirements, and rapid growth in fossil-fuel prices and incomes. 28 refs.

Hirst, E.

1991-11-01T23:59:59.000Z

152

"List of Covered Electric Utilities" under the Public Utility  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Revised 6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility. "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) More Documents & Publications "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2008 Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy Act of 2005 (EPACT 2005) - List of Covered Electric Utilities. Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the

153

Model documentation: Electricity Market Module, Electricity Fuel Dispatch Submodule  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Not Available

1994-04-08T23:59:59.000Z

154

Farmington Electric Utility System - Net Metering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering Farmington Electric Utility System - Net Metering < Back Eligibility Residential Savings Category Energy Sources Buying & Making Electricity Solar Home Weatherization Water Wind Program Info State New Mexico Program Type Net Metering Provider Farmington Electric Utility System Net metering rules developed by the New Mexico Public Regulation Commission (PRC) apply to the state's investor-owned utilities and electric cooperatives. Municipal utilities, which are not regulated by the commission, are exempt from the PRC rules but authorized to develop their own net metering programs. Farmington Electric, a municipal utility, offers net metering to residential customers with systems up to 10 kilowatts (kW) in capacity.

155

Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Insurance Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Insurance Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Insurance Regulation

156

Alternative Fuels Data Center: Electricity Research and Development  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Research Electricity Research and Development to someone by E-mail Share Alternative Fuels Data Center: Electricity Research and Development on Facebook Tweet about Alternative Fuels Data Center: Electricity Research and Development on Twitter Bookmark Alternative Fuels Data Center: Electricity Research and Development on Google Bookmark Alternative Fuels Data Center: Electricity Research and Development on Delicious Rank Alternative Fuels Data Center: Electricity Research and Development on Digg Find More places to share Alternative Fuels Data Center: Electricity Research and Development on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives

157

Alternative Fuels Data Center: Electric Vehicle Charging Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Station Locations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Station Locations on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development

158

Proton Exchange Membrane Fuel Cell Characterization for Electric Vehicle Applications  

E-Print Network (OSTI)

Characterization for Electric Vehicle Applications D.H. SwanHybridSystemfor Electric Vehicle Applications", SAEPaperFuel Cells for Electric Vehicles, Knowledge Gaps and

Swan, D.H.; Dickinson, B.E.; Arikara, M.P.

1994-01-01T23:59:59.000Z

159

DSM strikes again. [Demand-side management of gas and electric utilities  

SciTech Connect

This paper discusses and explains demand-side management (DSM) of the gas and electric utility companies. It contrasts the advantages that electric utilities offering economic incentives (with any cost passed on to rate payers) to increase demand while such offerings are rarely available from the gas utilities. It then discusses the cause and cost of pollution from conventional electrical facilities compared to gas-operated equipment and facilities. The paper goes on to discuss fuel switching and other incentives to get individuals and facilities to switch to natural gas.

Katz, M.

1994-02-01T23:59:59.000Z

160

Alternative Fuels Data Center: Benefits and Considerations of Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Benefits and Benefits and Considerations of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Delicious Rank Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on Digg Find More places to share Alternative Fuels Data Center: Benefits and Considerations of Electricity as a Vehicle Fuel on AddThis.com...

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Financial statistics of major US publicly owned electric utilities 1994  

SciTech Connect

This publication presents 5 years (1990--94) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. Generator and nongenerator summaries are presented. Composite tables present: Aggregates of income statement and balance sheet data, financial indicators, electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data.

NONE

1995-12-15T23:59:59.000Z

162

Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Electric Aftermarket Electric Vehicle (EV) Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Aftermarket Electric Vehicle (EV) Conversion Regulations on AddThis.com... More in this section...

163

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Installation Requirements on AddThis.com...

164

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Regulation Exemption on AddThis.com...

165

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

166

Alternative Fuels Data Center: Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Charging Infrastructure Availability to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Charging Infrastructure Availability on AddThis.com... More in this section...

167

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Electric

168

Alternative Fuels Data Center: State Agency Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Electric State Agency Electric Vehicle Supply Equipment (EVSE) Installation to someone by E-mail Share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Facebook Tweet about Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Twitter Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Google Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Delicious Rank Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Digg Find More places to share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on

169

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) Taxicab Restriction Exemption on AddThis.com...

170

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

171

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

172

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

173

Alternative Fuels Data Center: State Highway Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Highway Electric State Highway Electric Vehicle Supply Equipment (EVSE) Regulations to someone by E-mail Share Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Facebook Tweet about Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Twitter Bookmark Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Google Bookmark Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Delicious Rank Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on Digg Find More places to share Alternative Fuels Data Center: State Highway Electric Vehicle Supply Equipment (EVSE) Regulations on

174

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

175

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Requirements on AddThis.com... More in this section... Federal State Advanced Search

176

Alternative Fuels Data Center: Electric Trolley Boosts Business in  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trolley Electric Trolley Boosts Business in Bakersfield, California to someone by E-mail Share Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Facebook Tweet about Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Twitter Bookmark Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Google Bookmark Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Delicious Rank Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on Digg Find More places to share Alternative Fuels Data Center: Electric Trolley Boosts Business in Bakersfield, California on AddThis.com...

177

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - LADWP on AddThis.com... More in this section... Federal

178

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

179

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

180

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: State Agency Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State Agency Electric State Agency Electric Vehicle Supply Equipment (EVSE) Installation to someone by E-mail Share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Facebook Tweet about Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Twitter Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Google Bookmark Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Delicious Rank Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on Digg Find More places to share Alternative Fuels Data Center: State Agency Electric Vehicle Supply Equipment (EVSE) Installation on

182

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

183

Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mandatory Electric Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards to someone by E-mail Share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Facebook Tweet about Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Twitter Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Google Bookmark Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Delicious Rank Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on Digg Find More places to share Alternative Fuels Data Center: Mandatory Electric Vehicle Supply Equipment (EVSE) Building Standards on

184

Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Neighborhood Electric Neighborhood Electric Vehicle (NEV) Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Google Bookmark Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Delicious Rank Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on Digg Find More places to share Alternative Fuels Data Center: Neighborhood Electric Vehicle (NEV) Access to Roadways on AddThis.com... More in this section... Federal State

185

Overview of Fuel Cell Electric Bus Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Fuel Cell Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility & High Impact 3 FCEB Development Timeline since 2000 California Air Resources Board Transit Rule Early demonstrations of single prototypes DOE begins funding NREL technology validation for FCEBs First multiple bus fleet demonstrations in California FTA initiates National Fuel Cell Bus Program and

186

Impact of 1980 scheduled capacity additions on electric-utility oil consumption  

SciTech Connect

The electric-utility sector currently consumes approximately 8% of the total oil used in the Nation. This oil represented about 15% of total fuel consumed by electric utilities in 1979. Two important factors that affect the level of utility oil consumption in 1980 are the substantial increase in coal-fired generating capacity and the uncertainty surrounding nuclear-plant licensing. With particular emphasis on these considerations, this report analyzes the potential for changes in electric-utility oil consumption in 1980 relative to the 1979 level. Plant conversions, oil to coal, for example, that may occur in 1980 are not considered in this analysis. Only the potential reduction in oil consumption resulting from new generating-capacity additions is analyzed. Changes in electric-utility oil consumption depend on, among other factors, regional-electricity-demand growth and generating-plant mix. Five cases are presented using various electricity-demand-growth rate assumptions, fuel-displacement strategies, and nuclear-plant-licensing assumptions. In general, it is likely that there will be a reduction in electric-utility oil consumption in 1980. Using the two reference cases of the report, this reduction is projected to amount to a 2 to 5% decrease from the 1979 oil-consumption level; 7% reduction is the largest reduction projected.

Gielecki, M.; Clark, G.; Roberts, B.

1980-08-01T23:59:59.000Z

187

Annual Electric Utility Data - EIA-906/920/923 Data File  

Gasoline and Diesel Fuel Update (EIA)

923 detailed data with previous form data (EIA-906/920) 923 detailed data with previous form data (EIA-906/920) The survey Form EIA-923 collects detailed electric power data -- monthly and annually -- on electricity generation, fuel consumption, fossil fuel stocks, and receipts at the power plant and prime mover level. Specific survey information provided: Schedule 2 - fuel receipts and costs Schedules 3A & 5A - generator data including generation, fuel consumption and stocks Schedule 4 - fossil fuel stocks Schedules 6 & 7 - non-utility source and disposition of electricity Schedules 8A-F - environmental data Monthly data (M) - over 1,900 plants from the monthly survey Annual final data - approximately 1,900 monthly plants + 4,100 plants from the annual survey

188

Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Highway Electric Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements to someone by E-mail Share Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Facebook Tweet about Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Twitter Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Google Bookmark Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Delicious Rank Alternative Fuels Data Center: Highway Electric Vehicle Supply Equipment (EVSE) Installation Requirements on Digg Find More places to share Alternative Fuels Data Center: Highway

189

Fuel injector utilizing non-thermal plasma activation  

DOE Patents (OSTI)

A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

Coates, Don M. (Santa Fe, NM); Rosocha, Louis A. (Los Alamos, NM)

2009-12-01T23:59:59.000Z

190

Table 8.7a Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

Total 5: Wood 8: Waste 9: Thousand ... electric utility data also include a small amount of fuel oil no. 4. 10 ... and other manufactured and waste gases derived from ...

191

Alternative Fuels Data Center: Procurement Preference for Electric and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Procurement Preference Procurement Preference for Electric and Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Procurement Preference for Electric and Hybrid Electric Vehicles on AddThis.com...

192

Lead Fuel Assembly Programs Analysis: Utility Perspectives  

Science Conference Proceedings (OSTI)

Licensees, in association with nuclear fuel vendors, conduct lead fuel assembly (LFA) programs to test new design features prior to batch implementation. A limited number of LFAs are irradiated to obtain data and to confirm successful operation in the host reactor environment. The new LFA design features range from minor changes of dimensions and/or materials to an entirely new design from an alternate fuel vendor. LFA program elements can consist of design activities, methods development, analysis, ...

2013-10-17T23:59:59.000Z

193

U.S. Electric Utility Demand-Side Management 1999  

U.S. Energy Information Administration (EIA)

Electric Utility Demand-Side Management 1999 Executive Summary Background Demand-side management (DSM) programs consist of the planning, implementing, and monitoring ...

194

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs (Idaho) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives should not exceed 50% of the actual measure cost. Program Info State Idaho Program Type Utility Rebate Program Rebate Amount Replacement of Electric Straight Resistance: $750 Air Source Heat Pump: $100 Variable Speed Motor: $100 Refrigerator/Freezer Recycling: $30 Water Heater: $30 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

195

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Avista Utilities (Electric) - Residential Energy Efficiency Rebate Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs Avista Utilities (Electric) - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Heat Pumps Appliances & Electronics Water Heating Maximum Rebate Incentives will not exceed 50% of the actual measure cost Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100 Variable Speed Motor: $100 Water Heater: $30 Replacement of Electric Straight Resistance: $750 Floor and Wall Insulation: $0.50/sq. ft. Attic and Ceiling Insulation: $0.25/sq. ft.

196

Annual Electric Utility Data - Form EIA-906 Database  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed data files > Historic Form EIA-906 Historic Form EIA-906 Detailed Data with previous form data (EIA-759) Historic electric utility data files include information on net...

197

Avista Utilities (Gas and Electric)- Commercial Food Equipment Rebates  

Energy.gov (U.S. Department of Energy (DOE))

Avista Utilities offers incentives to customers who improve efficiency through electric food service equipment retrofits. A variety of cooking and refrigeration equipment are eligible for rebates...

198

Un Seminar On The Utilization Of Geothermal Energy For Electric...  

Open Energy Info (EERE)

icon Un Seminar On The Utilization Of Geothermal Energy For Electric Power Production And Space Heating, Florence 1984, Section 2- Geothermal Resources Jump to:...

199

U.S. Electric Utility Demand-Side Management  

Reports and Publications (EIA)

Final issue of this report. - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

Information Center

2002-12-01T23:59:59.000Z

200

PPL Electric Utilities- Commercial and Industrial Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

PPL Electric Utilities offers rebates and incentives for commercial and industrial products installed in their service area. The program offers heating and cooling equipment, motors, insulation,...

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An Updated Assessement of Copper Wire Thefts from Electric Utilities...  

NLE Websites -- All DOE Office Websites (Extended Search)

infrastructure in the United States. This report updates a previously published report on copper wire theft. The combined efforts of electric utilities, lawmakers, scrap metal...

202

Financial statistics of major US publicly owned electric utilities 1993  

SciTech Connect

The 1993 edition of the Financial Statistics of Major U.S. Publicly Owned Electric Utilities publication presents five years (1989 to 1993) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. The primary source of publicly owned financial data is the Form EIA-412, the Annual Report of Public Electric Utilities, filed on a fiscal basis.

Not Available

1995-02-01T23:59:59.000Z

203

Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Norwich Public Utilities (Electric) - Residential Energy Efficiency Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program Norwich Public Utilities (Electric) - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Energy Star rebate: one rebate per appliance per residential utility customer Program Info Expiration Date 12/31/12 State Connecticut Program Type Utility Rebate Program Rebate Amount Refrigerators/Freezers: $60 Washing Machines: $60 Room AC: $60 Heat Pump Water Heater: $500 Central AC: $200 - $300/ton Dual Enthalpy Economizer Controls: $250 Air Source Heat Pump: $200 - $300/ton Geothermal Heat Pump: $150/ton

204

Tutorial on Electric Utility Water Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Issues in the News TJFClearwater031003 Three Things Power Plants Require 1) Access to transmission lines 2) Available fuel, e.g., coal or natural gas 3) Water...

205

Liberty Utilities (Electric) - Commercial New Construction Rebate...  

Open Energy Info (EERE)

Service Department Liberty Utilities Address PO Box 960 Place Northborough, Massachusetts ZipPostal Code 1532-0960 Phone (800) 375-7413 Website http:liberty-utilities.comeast...

206

Generation, distribution and utilization of electrical energy  

SciTech Connect

An up-to-date account of electric power generation and distribution (including coverage of the use of computers in various components of the power system). Describes conventional and unconventional methods of electricity generation and its economics, distribution methods, substation location, electric drives, high frequency power for induction and heating, illumination engineering, and electric traction. Each chapter contains illustrative worked problems, exercises (some with answers), and a bibliography.

Wadhwa, C.L.

1989-01-01T23:59:59.000Z

207

Electric Utility Marketing Guide to Foodservice  

Science Conference Proceedings (OSTI)

Business groups apply rigorous evaluation standards to guide them toward increased efficiency. Utility foodservice programs are not immune to this same sort of scrutiny. Designed to address key issues facing utility foodservice programs, this marketing guide is essentially a set of crucial guidelines and advice. This information can assist utilities servicing the foodservice industry to become more profitable.

1998-11-09T23:59:59.000Z

208

Strategy for the practical utilization of thorium fuel cycles  

SciTech Connect

There has been increasing interest in the utilization of thorium fuel cycles in nuclear power reactors for the past few years. This is due to a number of factors, the chief being the recent emphasis given to increasing the proliferation resistance of reactor fuel cycles and the thorium cycle characteristic that bred /sup 233/U can be denatured with /sup 238/U (further, a high radioactivity is associated with recycle /sup 233/U, which increases fuel diversion resistance). Another important factor influencing interest in thorium fuel cycles is the increasing cost of U/sub 3/O/sub 8/ ores leading to more emphasis being placed on obtaining higher fuel conversion ratios in thermal reactor systems, and the fact that thorium fuel cycles have higher fuel conversion ratios in thermal reactors than do uranium fuel cycles. Finally, there is increasing information which indicates that fast breeder reactors have significantly higher capital costs than do thermal reactors, such that there is an economic advantage in the long term to have combinations of fast breeder reactors and high-conversion thermal reactors operating together. Overall, it appears that the practical, early utilization of thorium fuel cycles in power reactors requires commercialization of HTGRs operating first on stowaway fuel cycles, followed by thorium fuel recycle. In the longer term, thorium utilization involves use of thorium blankets in fast breeder reactors, in combination with recycling the bred /sup 233/U to HTGRs (preferably), or to other thermal reactors.

Kasten, P.R.

1978-01-01T23:59:59.000Z

209

Ak-Chin Electric Utility Authority | Open Energy Information  

Open Energy Info (EERE)

Ak-Chin Electric Utility Authority Ak-Chin Electric Utility Authority Jump to: navigation, search Name Ak-Chin Electric Utility Authority Place Arizona Utility Id 25866 Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1010/kWh Commercial: $0.0815/kWh Industrial: $0.0550/kWh The following table contains monthly sales and revenue data for Ak-Chin Electric Utility Authority (Arizona).

210

Generation of electricity with fuel cell using alcohol fuel  

Science Conference Proceedings (OSTI)

This patent describes a method for generating electricity in a fuel cell, the fuel cell comprising a cathode, an electrolyte, an anode comprising a first, fluid-permeable face and a second face in contact with the electrolyte, and an external circuit connecting the cathode and the anode. It comprises bringing a lower primary alcohol into contact with the first fluid-permeable face of the anode, thereby permitting the lower primary alcohol to penetrate into the cross-section of the anode toward the second face; oxidizing the lower primary alcohol essentially to carbon dioxide and water at the second face of the anode, reducing a reducible gas at the cathode, and obtaining electricity from the fuel cell.

Reddy, N.R.K.V.; Taylor, E.J.

1992-07-21T23:59:59.000Z

211

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Infrastructure Grants on Facebook Tweet about Alternative Fuels...

212

Challenges of Electric Power Industry Restructuring for Fuel ...  

U.S. Energy Information Administration (EIA)

Restructuring for Fuel Suppliers ... Office of Coal, Nuclear, Electric and Alternate Fuels Office of Oil and Gas ... Risk management will become an ...

213

Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Promotion and Infrastructure Development to someone by E-mail Promotion and Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Promotion and Infrastructure Development on AddThis.com...

214

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle (EV) Vehicle (EV) Infrastructure Definitions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

215

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) and Battery Exchange Station Regulations on Digg Find More places to share Alternative Fuels Data Center: Electric

216

Alternative Fuels Data Center: Light-Duty Vehicle Search  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Q5 Hybrid (2013) Fuel: Hybrid Electric (Hybrid Electric) Class: Sport Utility Vehicle Fuel Economy (Gasoline): 24 mpg city, 30...

217

"List of Covered Electric Utilities under the Public Utility Regulatory Policies Act of 1978 (PURPA)- 2009  

Energy.gov (U.S. Department of Energy (DOE))

Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies Act of 1978 (PURPA), the U.S. Department of Energy (DOE) is required to publish a list identifying each electric utility

218

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)  

DOE Green Energy (OSTI)

As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

Not Available

2011-02-01T23:59:59.000Z

219

Online Algorithm for Battery Utilization in Electric Computer Science Department  

E-Print Network (OSTI)

Online Algorithm for Battery Utilization in Electric Vehicles Ron Adany Computer Science Department the problem of utilizing the pack of batteries serving current demands in Electric Vehicles. When serving a demand, the current allocation might be split among the batteries in the pack. Due to its internal

Tamir, Tami

220

New Service Opportunities for Electric Utilities  

Science Conference Proceedings (OSTI)

Faced with intensifying competitive pressures, many utilities are offering non-traditional services that provide new revenue sources. This report provides an overview of utility experience with diversification into non-traditional areas and identifies meaningful utility opportunities in several areas. This report is available only to funders of Program 101A or 101.001. Funders may download this report at http://my.primen.com/Applications/DE/Community/index.asp .

1994-10-08T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Lodi Electric Utility - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - Residential Energy Efficiency Rebate Lodi Electric Utility - Residential Energy Efficiency Rebate Program Lodi Electric Utility - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Windows, Doors, & Skylights Maximum Rebate Energy Efficient Home Improvement Rebate Program: Maximum total rebate in a 12-month period is $500 per customer service address, PLUS, an additional $250 allowance for air duct repair, or an additional $800 allowance for air duct replacement, if eligible. Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Clothes Washer: $50 Dishwasher: $25 Air Duct Testing: $125

222

Liberty Utilities (Electric) - Commercial New Construction Rebate Program  

Open Energy Info (EERE)

Utilities (Electric) - Commercial New Construction Rebate Program Utilities (Electric) - Commercial New Construction Rebate Program (New Hampshire) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Summary Last modified on March 13, 2013. Financial Incentive Program Place New Hampshire Name Liberty Utilities (Electric) - Commercial New Construction Rebate Program (New Hampshire) Incentive Type Utility Rebate Program Applicable Sector Commercial, Industrial, Local Government, Schools Eligible Technologies Central Air conditioners, Chillers, Compressed air, Custom/Others pending approval, Energy Mgmt. Systems/Building Controls, Heat pumps, Lighting, Lighting Controls/Sensors, Motor VFDs, Motors, Geothermal Heat Pumps, Control Sensors, Economizers

223

Ashland Electric Utility - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Residential Energy Efficiency Rebate Ashland Electric Utility - Residential Energy Efficiency Rebate Programs Ashland Electric Utility - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Appliances & Electronics Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Sealing Your Home Ventilation Heat Pumps Water Heating Windows, Doors, & Skylights Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Washing Machines: $35 - $100 Dishwashers: $25 - $60 Refrigerators: $25 - $35 Refrigerator Recycling: $30 Water Heaters: $65 Ductwork: 80% of the cost up to $300 Insulation: Up to 70% of the cost Windows: $6.00 per square foot High-Efficiency Heat Pumps: $600

224

Alternative Fuels Data Center: Electricity Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity » Laws & Incentives Electricity » Laws & Incentives Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Electricity Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Electricity Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Electricity Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Electricity Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Electricity Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Electricity Laws and Incentives on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations

225

Electric Utility Demand-Side Management  

U.S. Energy Information Administration (EIA)

Demand side management (DSM) activities in the electric power industry. The report presents a general discussion of DSM, its history, current issues, and a ...

226

Avista Utilities (Electric) - Residential Energy Efficiency Rebate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

residential customers to save energy in eligible homes. Offers apply to residential homeowners in Idaho who heat homes primarily with Avista electricity Incentives vary depending...

227

Lodi Electric Utility - PV Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program Lodi Electric Utility - PV Rebate Program < Back Eligibility Commercial Industrial Local Government Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $7,000 Non-residential: $40,000 Program Info Expiration Date January 1, 2018 State California Program Type Utility Rebate Program Rebate Amount 2013 Program Year: $1.94/W AC Incentives will be adjusted based on expected performance Provider Customer Programs Lodi Electric Utility offers rebates to its residential, commercial, industrial and municipal customers who install photovoltaic (PV) systems. The rebate program is funded with approximately $6 million to support systems installed between January 1, 2008 and January 1, 2018. The total

228

Hawaii alternative fuels utilization program. Phase 3, final report  

DOE Green Energy (OSTI)

The Hawaii Alternative Fuels Utilization Program originated as a five-year grant awarded by the US Department of Energy (USDOE) to the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The overall program included research and demonstration efforts aimed at encouraging and sustaining the use of alternative (i.e., substitutes for gasoline and diesel) ground transportation fuels in Hawaii. Originally, research aimed at overcoming technical impediments to the widespread adoption of alternative fuels was an important facet of this program. Demonstration activities centered on the use of methanol-based fuels in alternative fuel vehicles (AFVs). In the present phase, operations were expanded to include flexible fuel vehicles (FFVs) which can operate on M85 or regular unleaded gasoline or any combination of these two fuels. Additional demonstration work was accomplished in attempting to involve other elements of Hawaii in the promotion and use of alcohol fuels for ground transportation in Hawaii.

Kinoshita, C.M.; Staackmann, M.

1996-08-01T23:59:59.000Z

229

Avista Utilities (Electric) - Commercial Lighting Energy Efficiency...  

Open Energy Info (EERE)

Applicable Sector Commercial Eligible Technologies Lighting, Lighting ControlsSensors, LED Lighting Active Incentive Yes Implementing Sector Utility Energy Category Energy...

230

Ashland Electric Utility - Residential Energy Efficiency Loan...  

Open Energy Info (EERE)

Building Insulation, CaulkingWeather-stripping, DuctAir sealing, Heat pumps, Windows, Solar Water Heat Active Incentive Yes Implementing Sector Utility Energy Category...

231

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or...

232

Galena Electric Utility | Open Energy Information  

Open Energy Info (EERE)

Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for...

233

Orange and Rockland Utilities (Electric) - Residential Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program (New York) < Back Eligibility Commercial Residential Savings Category Appliances & Electronics Program Info State New York Program Type Utility Rebate Program Rebate...

234

Workforce Trends in the Electric Utility Industry | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Trends in the Electric Utility Industry Trends in the Electric Utility Industry Workforce Trends in the Electric Utility Industry Section 1101 of the U.S. Energy Policy Act of 2005 (EPACT)1 calls for a report on the current trends in the workforce of (A) skilled technical personnel that support energy technology industries, and (B) electric power and transmission engineers. It also requests that the Secretary make recommendations (as appropriate) to meet the future labor requirements. Workforce Trends in the Electric Utility Industry More Documents & Publications Statement of Patricia A. Hoffman, Deputy Director of Research and Development and Acting Chief Operating Officer, Office of Electricity Delivery & Energy Reliability, Department of Energy before the Committee on Energy and Natural Resources United States

235

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program Gainesville Regional Utilities - Solar-Electric (PV) System Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $5,000 Program Info Start Date 10/1/2010 State Florida Program Type Utility Rebate Program Rebate Amount Solar window of 80% or more: $1.00/watt Provider Gainesville Regional Utilities '''''NOTE: Application targets for fiscal year 2013 have been met for the GRU Solar PV Rebate Program. The next round of applications are scheduled to open on October 1, 2013 pending approval of the GRU budget by the Gainesville City Commission.''''' Gainesville Regional Utilities (GRU) offers its customers a rebate to install photovoltaic (PV) systems. Systems with solar windows of 80% or

236

Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative

237

CPI anticipates price benefits in an open electricity market - but utilities `will erect roadblocks`  

SciTech Connect

Chemical manufacturers and industrial gas firms welcome the coming deregulation of electricity because the change offers them competitive choice in power supplies. They anticipate price benefits like those that have flowed from natural gas deregulation, which feed from manufacturers to bypass local utilities and shop for their own fuel supplies.

Pospisil, R.

1994-11-23T23:59:59.000Z

238

Can I generate and sell electricity to an electric utility? - FAQ ...  

U.S. Energy Information Administration (EIA)

How many alternative fuel and hybrid vehicles are there in the U.S.? How much U.S. energy consumption and electricity generation comes from renewable sources?

239

Alternative Fuels Data Center: Electric Vehicle Supply Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Supply Equipment (EVSE) Incentive - Bay Area to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Bay...

240

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Charging Rate Incentive - Hawaiian Electric Company to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Hawaiian...

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fuel Use in Electricity Generation - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Fuel Use in Electricity Generation ... Cost of coal and natural gas delivered to electric power plants in the Mid-Atlantic and Southeast, Jan 2007- April 2012 . 2

242

Alternative Fuels Data Center: Electric Vehicle Supply Equipment...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Supply Equipment (EVSE) Rebate - DTE Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebate - DTE Energy...

243

Chapter 3. Fossil-Fuel Stocks for Electricity Generation  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Electric Power Monthly June 2012 69 Chapter 3. Fossil-Fuel Stocks for Electricity Generation

244

Alternative Fuels Data Center: All-Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

All-Electric Vehicles All-Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: All-Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: All-Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Google Bookmark Alternative Fuels Data Center: All-Electric Vehicles on Delicious Rank Alternative Fuels Data Center: All-Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: All-Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids Plug-In Hybrids All-Electric Vehicles All-Electric Vehicles Content on this page requires a newer version of Adobe Flash Player.

245

Alternative Fuels Data Center: Electricity Provider and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Provider Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations to someone by E-mail Share Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Facebook Tweet about Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Twitter Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Google Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Delicious Rank Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Digg Find More places to share Alternative Fuels Data Center: Electricity

246

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back...

247

Cost and Quality of Fuels for Electric Plants  

Reports and Publications (EIA)

Provides comprehensive information concerning the quality, quantity, and cost of fossil fuels used to produce electricity in the United States.

Dean Fennell

2010-12-01T23:59:59.000Z

248

Alternative Fuels Data Center: Planned Community and Condominium Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Planned Community and Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations to someone by E-mail Share Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Facebook Tweet about Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Twitter Bookmark Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Google Bookmark Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Delicious Rank Alternative Fuels Data Center: Planned Community and Condominium Electric Vehicle Supply Equipment (EVSE) Installations on Digg

249

Ashland Electric Utility- Photovoltaic Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The City of Ashland Conservation Division offers electric customers installing photovoltaic systems a rebate of either $0.75 per watt (residential) or $1.00 per watt (commercial), up to a maximum...

250

Understanding Electric Utility Customers -- Summary Report  

Science Conference Proceedings (OSTI)

How customers use and value electricity has been a subject of study and debate for many decades. A better understanding of how customers use electricity could help the industry find ways to improve energy efficiency. In addition, our ability to encourage more efficient consumption through feedback, control technology, and dynamic pricing is better and less costly than it has ever been due to technology advancements.Despite decades of research into how customers use and value ...

2012-10-31T23:59:59.000Z

251

Enhanced methanol utilization in direct methanol fuel cell  

DOE Patents (OSTI)

The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

Ren, Xiaoming (Los Alamos, NM); Gottesfeld, Shimshon (Los Alamos, NM)

2001-10-02T23:59:59.000Z

252

Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Trucks Electric Trucks Deliver at Kansas City Schools to someone by E-mail Share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Facebook Tweet about Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Twitter Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Google Bookmark Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Delicious Rank Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on Digg Find More places to share Alternative Fuels Data Center: Electric Trucks Deliver at Kansas City Schools on AddThis.com... Sept. 17, 2011 Electric Trucks Deliver at Kansas City Schools F ind out how the Lee's Summit R-7 School District in Missouri uses electric

253

NREL Webinar: Treatment of Solar Generation in Electric Utility Resource  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NREL Webinar: Treatment of Solar Generation in Electric Utility NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning January 14, 2014 2:00PM to 3:00PM EST Online Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV "ownership" are leading to increasing interest in solar technologies, especially PV. In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes. Analysts from the National Renewable Energy Laboratory (NREL) and the Solar Electric Power

254

title Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans journal Energy Policy year month abstract p We review long term electric utility plans representing nbsp textquoteright of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy efficiency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in

255

Proceedings of the alcohol fuel production and utilization conference  

Science Conference Proceedings (OSTI)

A conference was held to provide farmers, businesses, industries, and specialty groups with the best available information on current and projected activities related to the production and utilization of biomass for alcohol fuels. All aspects of the alcohol fuel production and utilization process were discussed. From biomass sources, through conversion processes to end-use products and applications were topics discussed by numerous experts. Other experts took this basic information and put it together into total systems. Speakers presented overviews on alcohol fuel related activities on state, regional, and national levels. Finally, commercialization incentives, funding sources, environmental considerations, research developments, safety considerations, and regulatory requirements were discussed as factors which must be addressed when considering the production and utilization of alcohol fuels. Separate abstracts have been prepared for items within the scope of the Energy Data Base.

Not Available

1980-01-01T23:59:59.000Z

256

Wonewoc Electric & Water Util | Open Energy Information  

Open Energy Info (EERE)

Wonewoc Electric & Water Util Wonewoc Electric & Water Util Jump to: navigation, search Name Wonewoc Electric & Water Util Place Wisconsin Utility Id 20924 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service- Single-Phase Commercial General Service- Three-Phase Commercial Large Power Commercial Off Peak Water Heating Residential Residential Single Phase Residential Residential Three Phase Residential Street Lighting- 100W HPS Lighting Street Lighting- 144W F Lighting Street Lighting- 150W HPS Lighting

257

Electrolysis: Information and Opportunities for Electric Power Utilities  

DOE Green Energy (OSTI)

Recent advancements in hydrogen technologies and renewable energy applications show promise for economical near- to mid-term conversion to a hydrogen-based economy. As the use of hydrogen for the electric utility and transportation sectors of the U.S. economy unfolds, electric power utilities need to understand the potential benefits and impacts. This report provides a historical perspective of hydrogen, discusses the process of electrolysis for hydrogen production (especially from solar and wind technologies), and describes the opportunities for electric power utilities.

Kroposki, B.; Levene, J.; Harrison, K.; Sen, P.K.; Novachek, F.

2006-09-01T23:59:59.000Z

258

Shale oil: potential for electric power fuels. Final report  

SciTech Connect

This paper reviews the status of the oil shale industry and the impact it will have on the electric power industry in the years 1990 to 2000. The nontechnical problems are not addressed in detail as they have been suitably dealt with elsewhere. The available technologies for producing shale oil are reviewed. The major problem most processes face today is scale-up to commercial size. An industry of nearly 400,000 BPD is anticipated for 1990. The industry could grow to 1,000,000 BPD by the year 2000 with the introduction of second generation processes in the 1990s. The availability of shale oil may have a direct impact on the electric power industry initially. As the refineries improve their ability to handle shale oil, the availability of this fuel to the electric power industry for direct firing will decrease. The offgas from the oil shale industry could be of major importance to the electric power industry. One-quarter to one-third of the energy produced by the oil shale industry will be in the form of offgas (the gas produced in the retorting process). This will usually be a low Btu gas and therefore likely to be utilized on site to make electricity. The high yield of distillate fuels from shale oil could be important to the utility industry's demand for distillate fuels in peak shaving power generation. In addition to the potential supply implications, a shale oil industry and the people to support it will represent a substantial increase in power generation required in the shale oil region.

Gragg, M.; Lumpkin, R.E.; Guthrie, H.D.; Woinsky, S.G.

1981-12-01T23:59:59.000Z

259

Electric Fuel Battery Corporation | Open Energy Information  

Open Energy Info (EERE)

Fuel Battery Corporation Fuel Battery Corporation Jump to: navigation, search Name Electric Fuel Battery Corporation Place Auburn, Alabama Zip 36832 Product Develops and manufactures BA-8180/U high power zinc-air battery for military applications. Coordinates 42.79301°, -110.997909° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.79301,"lon":-110.997909,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Registration Fee The annual registration fee for an EV is $25.00 unless the vehicle is more

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Horsepower for Kentucky Schools to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Horsepower for Kentucky Schools on AddThis.com... April 7, 2011 Hybrid Electric Horsepower for Kentucky Schools " The hybrid school bus project not only serves as a means to improve

262

Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Oregon Celebrates 200 Oregon Celebrates 200 Miles of Electric Highways to someone by E-mail Share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Facebook Tweet about Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Twitter Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Google Bookmark Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Delicious Rank Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on Digg Find More places to share Alternative Fuels Data Center: Oregon Celebrates 200 Miles of Electric Highways on AddThis.com... April 18, 2012 Oregon Celebrates 200 Miles of Electric Highways " These [electric charging] stations will help create a corridor that, by the

263

Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Initiatives to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle Initiatives All solicitation documents that include the purchase of passenger

264

Activity-Based Costing for Electric Utilities  

Science Conference Proceedings (OSTI)

Activity-Based costing (ABC) is a cost-management approach that can help utility managers make better decisions through more-accurate process and product cost information and a better understanding of activities that either do or do not add value. This report is a primer on ABC.

1992-09-01T23:59:59.000Z

265

Financial statistics of major US publicly owned electric utilities 1992  

SciTech Connect

The 1992 edition of the Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 4 years (1989 through 1992) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Four years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. The primary source of publicly owned financial data is the Form EIA-412, {open_quotes}Annual Report of Public Electric Utilities.{close_quotes} Public electric utilities file this survey on a fiscal year, rather than a calendar year basis, in conformance with their recordkeeping practices. In previous editions of this publication, data were aggregated by the two most commonly reported fiscal years, June 30 and December 31. This omitted approximately 20 percent of the respondents who operate on fiscal years ending in other months. Accordingly, the EIA undertook a review of the Form EIA-412 submissions to determine if alternative classifications of publicly owned electric utilities would permit the inclusion of all respondents.

Not Available

1994-01-01T23:59:59.000Z

266

Superconducting magnetic energy storage for electric utilities and fusion systems  

DOE Green Energy (OSTI)

Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

1978-01-01T23:59:59.000Z

267

Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric) - Commercial Energy Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) Cheyenne Light, Fuel and Power (Electric) - Commercial Energy Efficiency Rebate Program (Wyoming) < Back Eligibility Commercial Industrial Savings Category Other Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Custom: 50% of project cost Program Info Start Date 06/09/2011 State Wyoming Program Type Utility Rebate Program Rebate Amount T8 Fixtures: $5 - $18 /system or $0.50 /lamp Fluorescents: $4 - $125 CFLs: $8 - $25 Indirect Lighting: $16 - $24 Pulse Start Metal Halide Fixtures: $25 - $65 Lighting Controls: $12 - $35 Variable Frequency Drive: $30 /hp Totally Enclosed Fan-Cooled: $10 - $600 Open Drip-Proof: $10 - $600 Custom: Buy down to 2 year pay back or 50% of cost, whichever is less

268

Approaches to Electric Utility Energy Efficiency for Low Income Customers  

Open Energy Info (EERE)

Approaches to Electric Utility Energy Efficiency for Low Income Customers Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Approaches to Electric Utility Energy Efficiency for Low Income Customers in a Changing Regulatory Environment Focus Area: Energy Efficiency Topics: Best Practices Website: www.ornl.gov/~webworks/cppr/y2001/misc/99601.pdf Equivalent URI: cleanenergysolutions.org/content/approaches-electric-utility-energy-ef Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Feebates This report, written for members of the Weatherization Assistance Program

269

U.S. electric utility demand-side management 1993  

SciTech Connect

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

270

Austin Utilities (Gas and Electric) - Commercial and Industrial Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Austin Utilities (Gas and Electric) - Commercial and Industrial Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program Austin Utilities (Gas and Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Heat Pumps Commercial Lighting Lighting Manufacturing Commercial Weatherization Water Heating Maximum Rebate Electric Measures: $100,000 per customer location, per technology, per year Custom Gas Measures: $75,000 per commercial location per year, $5,000 per industrial location per year Program Info State Minnesota Program Type Utility Rebate Program Rebate Amount Lighting Equipment: See Program Website Air Source Heat Pumps: $20-$25/ton, plus bonus rebate of $4/ton for each

271

U.S. Electric Utility Demand-Side Management  

Reports and Publications (EIA)

Final issue of this report. - 1996 - Presents comprehensive information on electric power industry demand side management (DSM) activities in the United States at the national, regional, and utility levels.

Information Center

1997-12-01T23:59:59.000Z

272

Sustainable Communities--Business Opportunities for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

The purposes of this study are to: develop and articulate a vision of sustainable communities of the future and identify and delineate resulting technology challenges and business opportunities facing the electric utility industry.

2006-01-30T23:59:59.000Z

273

U.S. Electric Utility Demand-Side Management 2000  

U.S. Energy Information Administration (EIA)

Energy Savings for the 516 large electric utilities increased to 53.7 billion kilowatthours (kWh), 3.1 billion kWh more than in 1999. These energy savings

274

U.S. Electric Utility Demand-Side Managment 1996  

U.S. Energy Information Administration (EIA)

Energy Savings as a Percentage of Retail Sales by U.S. Electric Utilities with DSM Energy Savings Programs and Sales to Ultimate Consumers by Class of Ownership, 1996

275

Fuel Economy of the 2014 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Ford Focus Electric Search for Other Vehicles View the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side All-Electric Vehicle EPA Fuel Economy Miles per...

276

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Heating Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info Start Date 1/1/2011 State Idaho Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

277

Avista Utilities (Electric) - Commercial Energy Efficiency Incentives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Commercial Lighting Lighting Water Heating Maximum Rebate 50% of cost See individual programs on Avista web site for incentive details Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Clothes Washer: $200 Food Service Equipment: Varies Lighting: Varies Motors: Varies Power management for PC Networks: $10/controlled unit Retro-Commissioning Study: $0.10/conditioned sq. ft. (agents receive $0.02/kWh) VFD Fans: $80/HP VFD Cooling Pump: $85/HP VFD Heating Pump: $100/HP Insulation: $0.28--$0.35/sq. ft. New Windows: $1/sq. ft. Retrofit Windows: $3.50/sq. ft. Standby Generator Block Heater: $400 Custom: $0.08 - $0.20/kWh saved in first year Avista Utilities offers numerous incentives to commercial and industrial customers to increase the energy efficiency of customer facilities or

278

An Updated Assessement of Copper Wire Thefts from Electric Utilities -  

NLE Websites -- All DOE Office Websites (Extended Search)

An Updated Assessement of Copper Wire Thefts from Electric An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 An Updated Assessement of Copper Wire Thefts from Electric Utilities - October 2010 The U.S. Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability monitors changes, threats, and risks to the energy infrastructure in the United States. This report updates a previously published report on copper wire theft. The combined efforts of electric utilities, lawmakers, scrap metal dealers, and local law enforcement have succeeded in reducing the problem. Updated Assessment-Copper-Final October 2010.pdf More Documents & Publications Investigation Letter Report: I11IG002 Semiannual Report to Congress: for the first half of Fiscal Year (FY) 1998 Energy Infrastructure Events and Expansions Year-in-Review 2010

279

Liquid Fuel From Renewable Electricity and Bacteria: Electro-Autotrophic Synthesis of Higher Alcohols  

SciTech Connect

Electrofuels Project: UCLA is utilizing renewable electricity to power direct liquid fuel production in genetically engineered Ralstonia eutropha bacteria. UCLA is using renewable electricity to convert carbon dioxide into formic acid, a liquid soluble compound that delivers both carbon and energy to the bacteria. The bacteriaare genetically engineered to convert the formic acid into liquid fuelin this case alcohols such as butanol. The electricity required for the process can be generated from sunlight, wind, or other renewable energy sources. In fact, UCLAs electricity-to-fuel system could be a more efficient way to utilize these renewable energy sources considering the energy density of liquid fuel is much higher than the energy density of other renewable energy storage options, such as batteries.

2010-07-01T23:59:59.000Z

280

PEBBLE-BED NUCLEAR REACTOR SYSTEM PHYSICS AND FUEL UTILIZATION  

E-Print Network (OSTI)

The Generation IV Pebble Bed Modular Reactor (PMBR) design may be used for electricity production, co-generation applications (industrial heat, hydrogen production, desalination, etc.), and could potentially eliminate some high level nuclear wastes. Because of these advantages, as well as the ability to build cost-effective small-to-medium sized reactors, this design is currently being considered for construction in many countries, from Japan, where test reactors are being analyzed, to China. The use of TRISO-coated micro-particles as a fuel in these reactors leads to multi-heterogeneity physics features that must be properly treated and accounted for. Inherent interrelationships of neutron interactions, temperature effects, and structural effects, further challenge computational evaluations of High Temperature Reactors (HTRs). The developed models and computational techniques have to be validated in code-to-code and, most importantly, code-to-experiment benchmark studies. This report quantifies the relative accuracy of various multi-heterogeneity treatments in whole-core 3D models for parametric studies of Generation IV Pebble Bed Modular Reactors as well as provide preliminary results of the PBMR performance analysis. Data is gathered from two different models, one based upon a benchmark for the African PBMR-400 design, and another based on the PROTEUS criticality experiment, since the African design is a more realistic power reactor, but the PROTEUS experiment model can be used for calculations that cannot be performed on the more complex model. Early data was used to refine final models, and the resulting final models were used to conduct parametric studies on composition and geometry optimization based on pebble bed reactor physics in order to improve fuel utilization.

Kelly, Ryan 1989-

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Electricity privatization : should South Korea privatize its state-owned electric utility?  

E-Print Network (OSTI)

The state-owned electric utility, Korea Electricity Power Cooperation (KEPCO), privatization has been a key word in South Korea since 1997, when the government received $55 billion from the International Monetary Fund in ...

Lim, Sungmin

2011-01-01T23:59:59.000Z

282

Learn More About the Fuel Economy Label for Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

283

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Digg

284

Perspectives on the future of the electric utility industry  

SciTech Connect

This report offers perspectives on the future of the electric utility industry. These perspectives will be used in further research to assess the prospects for Integrated Resource Planning (IRP). The perspectives are developed first by examining economic, political and regulatory, societal, technological, and environmental trends that are (1) national and global in scope and (2) directly related to the electric utility industry. Major national and global trends include increasing global economic competition, increasing political and ethnic strife, rapidly changing technologies, and increasing worldwide concern about the environment. Major trends in the utility industry include increasing competition in generation; changing patterns of electricity demand; increasing use of information technology to control power systems; and increasing implementation of environmental controls. Ways in which the national and global trends may directly affect the utility industry are also explored. The trends are used to construct three global and national scenarios- ``business as usual,`` ``technotopia future,`` and ``fortress state`` -and three electric utility scenarios- ``frozen in headlights,`` ``megaelectric,`` and ``discomania.`` The scenarios are designed to be thought provoking descriptions of potential futures, not predictions of the future, although three key variables are identified that will have significant impacts on which future evolves-global climate change, utility technologies, and competition. While emphasis needs to be placed on understanding the electric utility scenarios, the interactions between the two sets of scenarios is also of interest.

Tonn, B. [Oak Ridge National Lab., TN (United States); Schaffhauser, A. [Tennessee Univ., Knoxville, TN (United States)

1994-04-01T23:59:59.000Z

285

Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retail Electric Retail Electric Vehicle (EV) Charging Regulations to someone by E-mail Share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Facebook Tweet about Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Twitter Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Google Bookmark Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Delicious Rank Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on Digg Find More places to share Alternative Fuels Data Center: Retail Electric Vehicle (EV) Charging Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

286

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Financing to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Financing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

287

Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Registration Fee Reduction to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Registration Fee Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

288

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Open Access Requirements to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Open Access Requirements on AddThis.com...

289

Alternative Fuels Data Center: New York Broadens Network for Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

New York Broadens New York Broadens Network for Electric Vehicle Charging to someone by E-mail Share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Facebook Tweet about Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Twitter Bookmark Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Google Bookmark Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Delicious Rank Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on Digg Find More places to share Alternative Fuels Data Center: New York Broadens Network for Electric Vehicle Charging on AddThis.com... May 18, 2013 New York Broadens Network for Electric Vehicle Charging

290

Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle (EV) Electric Vehicle (EV) Parking Space Regulation to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Parking Space Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

291

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Incentive - Austin Energy on AddThis.com...

292

Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Shuttle Buses Offer Free Rides in Maryland to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on Digg Find More places to share Alternative Fuels Data Center: Hybrid Electric Shuttle Buses Offer Free Rides in Maryland on AddThis.com... June 18, 2010

293

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Information Resource to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on

294

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Infrastructure Promotion to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on AddThis.com... More in this section... Federal

295

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids

296

Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate -  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment Rebate - GWP to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment Rebate - GWP on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

297

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Credit and Charging Incentive - NIPSCO on Digg Find More places to share Alternative Fuels Data Center: Electric

298

Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Charging Incentive - Xcel Energy to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Charging Incentive - Xcel Energy on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

299

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Policies for Multi-Unit Dwellings on Digg Find More places to share Alternative Fuels Data Center: Electric

300

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Grants - Bay Area on AddThis.com... More in this section...

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Ice Electric Ice Resurfacers Improve Air Quality in Minnesota to someone by E-mail Share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Facebook Tweet about Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Twitter Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Google Bookmark Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Delicious Rank Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on Digg Find More places to share Alternative Fuels Data Center: Electric Ice Resurfacers Improve Air Quality in Minnesota on AddThis.com... Sept. 14, 2013

302

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

303

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Rebates to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

304

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

305

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on AddThis.com... More in this section...

306

Alternative Fuels Data Center: Residential Electric Vehicle Supply  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Residential Electric Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Google Bookmark Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Delicious Rank Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Residential Electric Vehicle Supply Equipment (EVSE) Tax Credit on AddThis.com...

307

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Oregon's 1999 electric utility restructuring legislation requires electricity companies and electric service suppliers to disclose details regarding their fuel mix and emissions of electric...

308

Innovative and Progressive Electric Utility Demand-Side Management Strategies  

E-Print Network (OSTI)

Conservation of electric energy has been a concern of energy users in the residential, commercial and industrial sectors for several decades, and has increased in significance since the 1973 energy shortages. During this time, it has also become increasing difficult for electric utilities to install new generating capacity due to public concerns about nuclear energy and environmental issues. In many areas of the country, utilities now find themselves capacity short during their peak periods, and have concerns about providing a reliable supply of electricity. These utilities have initiated programs which encourage their customers to conserve electric energy, and shift or lower use during the utility's peak periods. In other areas of the country there are utilities which have more than adequate electric supplies. These utilities have developed programs which ensure that costs of electricity are such that existing customers are maintained. Programs which address demand issues of an energy utility are referred to as Demand-Side Management (DSM) and are extremely rigorous in scope. Electric utilities have pursued many different DSM policies and strategies during the past decade. These programs have addressed various technologies and have included rebates for efficient lighting, electric motors and packaged air conditioning systems. More recently, however, many utilities have implemented very innovative programs, which indicates an increased commitment towards demand planning, and requires a substantial financial investment in new equipment and engineering services. Some programs have addressed such areas as thermal storage and industrial processes, and others have included comprehensive facility energy studies where greater than fifty percent of the cost of energy retrofits may be covered by the utility. Progressive pricing strategies have included real-time pricing and aggressive curtailable rates for commercial and industrial buildings. Further, new standards are being established by electric utilities which promote energy efficient new construct ion. All of these programs can have considerable impacts on both the customer's and utility's energy use patterns and load shapes. This paper will discuss a number of more significant and innovative DSM programs, and will explain the potential load and energy impacts.

Epstein, G. J.; Fuller, W. H.

1989-09-01T23:59:59.000Z

309

Wind Power Generation Dynamic Impacts on Electric Utility Systems  

Science Conference Proceedings (OSTI)

This technical planning study is an initial assessment of potential dynamic impacts on electric utility systems of wind power generation via large wind turbines. Three classes of dynamic problems-short-term transient stability, system frequency excursions, and minute-to-minute unit ramping limitations - were examined in case studies based on the Hawaiian Electric Co. System.

1980-11-01T23:59:59.000Z

310

Structural Change and Futures for the Electric Utility Industry  

Science Conference Proceedings (OSTI)

Technological change and evolving customer needs have already combined to precipitate fundamental structural change in several capital-intensive industries, notably the telecommunications, natural gas, and transportation sectors. These forces are now being unleashed in the electric utility sector. This report outlines some common patterns of change across several industries and presents scenarios of structural change for the electric power industry.

1995-08-09T23:59:59.000Z

311

A new method for electric utility resource planning  

Science Conference Proceedings (OSTI)

This paper presents an interval-based multi-attribute decision making (MADM) approach in support of the decision process with imprecise information. The proposed decision methodology is based on the model of linear additive utility function but extends ... Keywords: decision making, electric utilities, power generation, resource planning

M. Sedighizadeh

2006-04-01T23:59:59.000Z

312

Best Management Practices for Vegetation Management at Electric Utility Facilities  

Science Conference Proceedings (OSTI)

Controlling vegetation inside key electric utility facilities is a necessary maintenance activity for a utilitys safe and reliable operation. Substations, switchyards, and other facilities require perpetual maintenance to maintain a vegetation-free environment. At a minimum, vegetation-maintenance treatment needs to be conducted annually; in some climatic regions, multiple treatments may be required. The objective of this research paper was to define current industry practices by means of a ...

2013-11-22T23:59:59.000Z

313

Potential Effects of Climate Change on Electric Utilities  

Science Conference Proceedings (OSTI)

In recent years, increasing attention has been focused on the potential for greenhouse gas emissions to modify the global climate system. Significant climate change could affect utility operations and costs through impacts on electricity demand and on generation and delivery systems. Utilities, moreover, may be called upon to take actions to reduce their emissions of CO2, an important greenhouse gas. This report summarizes an assessment of the long-term risks to individual utilities posed by the potentia...

1995-03-17T23:59:59.000Z

314

Strategic planning in electric utilities: Using wind technologies as risk management tools  

Science Conference Proceedings (OSTI)

This paper highlights research investigating the ownership of renewable energy technologies to mitigate risks faced by the electric utility industry. Renewable energy technology attributes of fuel costs, environmental costs, lead time, modularity, and investment reversibility are discussed. Incorporating some of these attributes into an economic evaluation is illustrated using a municipal utility`s decision to invest in either wind generation or natural gas based generation. The research concludes that wind and other modular renewable energy technologies, such as photovoltaics, have the potential to provide decision makers with physical risk-management investments.

Hoff, T E [Pacific Energy Group, Stanford, CA (United States); Parsons, B [National Renewable Energy Lab., Golden, CO (United States)

1996-06-01T23:59:59.000Z

315

US electric utility demand-side management, 1994  

SciTech Connect

The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

NONE

1995-12-26T23:59:59.000Z

316

An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities  

E-Print Network (OSTI)

from within the electricity distribution system. The mainfrom up to 155 electricity distribution utilities. The dataelectricity consumers are caused by events affecting primarily the electric distribution

Eto, Joseph H.

2013-01-01T23:59:59.000Z

317

U.S. electric utility demand-side management 1996  

SciTech Connect

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-12-01T23:59:59.000Z

318

Electric Utility Sales and Revenue - EIA-826 detailed data file  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-826 detailed data Form EIA-826 detailed data The Form EIA-826 "Monthly Electric Utility Sales and Revenue Report with State Distributions" collects retail sales of electricity and associated revenue, each month, from a statistically chosen sample of electric utilities in the United States. The respondents to the Form EIA-826 are chosen from the Form EIA-861, "Annual Electric Utility Report." Methodology is based on the "Model-Based Sampling, Inference and Imputation." In 2003, EIA revised the survey to separate the transportation sales and reassign the other activities to the commercial and industrial sectors as appropriate. The "other" sector activities included public street and highway lighting, sales to public authorities, sales to railroads and railways, interdepartmental sales, and agricultural irrigations.

319

PPL Electric Utilities - Custom Energy Efficiency Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PPL Electric Utilities - Custom Energy Efficiency Program PPL Electric Utilities - Custom Energy Efficiency Program PPL Electric Utilities - Custom Energy Efficiency Program < Back Eligibility Commercial Industrial Institutional Nonprofit Schools State Government Savings Category Other Maximum Rebate Custom Efficiency Rebates: 50% of incremental cost, $500,000 per customer site per year, or 2 million per parent company Technical Study: $100,000 annually Program Info Expiration Date 5/31/2013 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Custom Incentive: $0.10 per projected first year kWh savings Technical study: 50% of cost '''The available budget for Large C&I (Commercial and Industrial) customers has been fully committed. New funding for energy efficiency projects will be available when Phase 2 begins on June 1, 2013. However, Phase 2 funding

320

Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orange and Rockland Utilities (Electric) - Commercial Efficiency Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs Orange and Rockland Utilities (Electric) - Commercial Efficiency Programs < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Prescriptive Rebates: 50% of cost Program Info Funding Source System Benefits Charge Start Date 4/1/2010 State New York Program Type Utility Rebate Program Rebate Amount Small Business Lighten Up Energy Savings Evaluation and CFLs: Free A/C A/C > 65 kBTU/h: $35/ton (11.5 EER); $55 (12 EER) Heat Pumps 14 SEER or 11.5 EER: $50-$65/ton

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Lodi Electric Utility - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lodi Electric Utility - Commercial Energy Efficiency Rebate Program Lodi Electric Utility - Commercial Energy Efficiency Rebate Program Lodi Electric Utility - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Cooling Commercial Heating & Cooling Appliances & Electronics Construction Design & Remodeling Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Windows, Doors, & Skylights Maximum Rebate G-1 Rebates: $250 G-1 AC/Lighting Improvement: $1,000 G-2 Rebates: $7,500 G-3 to I-1 Rebates: $25,000 Program Info State California Program Type Utility Rebate Program Rebate Amount G-1 Rebates: up to $250 G-1 AC/Lighting Improvement: 25% of cost G-2 Rebates: $0.13/kWh annual projected savings

322

Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Vehicle Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E to someone by E-mail Share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Facebook Tweet about Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Twitter Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Google Bookmark Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Delicious Rank Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on Digg Find More places to share Alternative Fuels Data Center: Clean Vehicle Electricity and Natural Gas Rate Reduction - PG&E on AddThis.com...

323

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Study to someone by E-mail Study to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle Supply Equipment (EVSE) Study

324

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rules to someone by E-mail Rules to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Rules on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle Supply Equipment (EVSE) Rules

325

Alternative Fuels Data Center: Electric Vehicle (EV) Fee  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fee to someone by E-mail Fee to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Fee on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Fee on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Electric Vehicle (EV) Fee EV operators must pay an annual vehicle registration renewal fee of $100. This fee expires if the legislature imposes a vehicle miles traveled fee or

326

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) and Zero Emission Vehicle (ZEV) Purchase Vouchers on Digg Find More places to share Alternative Fuels Data Center: Hybrid

327

Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid Electric Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption to someone by E-mail Share Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Facebook Tweet about Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Twitter Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Google Bookmark Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Delicious Rank Alternative Fuels Data Center: Hybrid Electric Vehicle (HEV) High Occupancy Vehicle (HOV) Lane Exemption on Digg Find More places to share Alternative Fuels Data Center: Hybrid

328

Financial statistics major US publicly owned electric utilities 1996  

Science Conference Proceedings (OSTI)

The 1996 edition of The Financial Statistics of Major US Publicly Owned Electric Utilities publication presents 5 years (1992 through 1996) of summary financial data and current year detailed financial data on the major publicly owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decision making purposes related to publicly owned electric utility issues. Generator and nongenerator summaries are presented in this publication. Five years of summary financial data are provided. Summaries of generators for fiscal years ending June 30 and December 31, nongenerators for fiscal years ending June 30 and December 31, and summaries of all respondents are provided. The composite tables present aggregates of income statement and balance sheet data, as well as financial indicators. Composite tables also display electric operation and maintenance expenses, electric utility plant, number of consumers, sales of electricity, and operating revenue, and electric energy account data. 2 figs., 32 tabs.

NONE

1998-03-01T23:59:59.000Z

329

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

U.S. Energy Information Administration (EIA) Indexed Site

Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Electricity: 30 Years of Industry Change Industry Change David K. Owens Executive Vice President Edison Electric Institute 30 Years of Energy Information and Analysis April 7, 2008 EIA Key to Policy Development and EIA Key to Policy Development and Advocacy Activities Advocacy Activities EIA Has Kept Pace With an Evolving EIA Has Kept Pace With an Evolving Energy Industry Energy Industry n EIA clearly provides more with less budgetary support l 1979: $347 million l 2007: $91 million (both in Real $2007) n EIA staff resource distribution has tracked changing energy markets and information needs Resource Management Oil & Gas Coal, Nuclear, Electric, Alt Fuels Energy Markets & End Use Integrated Analysis / Forecasting Information Technology

330

Electric heater for nuclear fuel rod simulators  

DOE Patents (OSTI)

The present invention is directed to an electric cartridge-type heater for use as a simulator for a nuclear fuel pin in reactor studies. The heater comprises an elongated cylindrical housing containing a longitudinally extending helically wound heating element with the heating element radially inwardly separated from the housing. Crushed cold-pressed preforms of boron nitride electrically insulate the heating element from the housing while providing good thermal conductivity. Crushed cold-pressed preforms of magnesia or a magnesia-15 percent boron nitride mixture are disposed in the cavity of the helical heating element. The coefficient of thermal expansion of the magnesia or the magnesia-boron nitride mixture is higher than that of the boron nitride disposed about the heating element for urging the boron nitride radially outwardly against the housing during elevated temperatures to assure adequate thermal contact between the housing and the boron nitride.

McCulloch, Reginald W. (Knoxville, TN); Morgan, Jr., Chester S. (Oak Ridge, TN); Dial, Ralph E. (Concord, TN)

1982-01-01T23:59:59.000Z

331

Battery electric vehicles, hydrogen fuel cells and biofuels. Which will  

E-Print Network (OSTI)

1 Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? ICEPT considered are: improved internal combustion engine vehicles (ICEVs) powered by biofuels, battery electric. All three fuels considered (i.e.: biofuels, electricity and hydrogen) are in principle compatible

332

ULTRACLEAN FUELS PRODUCTION AND UTILIZATION FOR THE TWENTY-FIRST CENTURY: ADVANCES TOWARDS SUSTAINABLE TRANSPORTATION FUELS  

SciTech Connect

Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

Fox, E.

2013-06-17T23:59:59.000Z

333

Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure and Battery Tax Exemptions to someone by E-mail Infrastructure and Battery Tax Exemptions to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Infrastructure and Battery Tax Exemptions on AddThis.com...

334

Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Road User Assessment System Pilot to someone by E-mail Road User Assessment System Pilot to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Google Bookmark Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Delicious Rank Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on Digg Find More places to share Alternative Fuels Data Center: Electric Vehicle (EV) Road User Assessment System Pilot on AddThis.com... More in this section... Federal State Advanced Search

335

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Evaluation to someone by E-mail Infrastructure Evaluation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on AddThis.com... More in this section... Federal State Advanced Search

336

Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) and Electricity Tax Exemption for Transit Use on Digg Find More places to share Alternative Fuels Data Center: Compressed

337

Connecting Your Solar Electric System to the Utility Grid: Better Buildings Series Solar Electric Fact Sheet  

DOE Green Energy (OSTI)

In recent years, the number of solar-powered homes connected to the local utility grid has increased dramatically. These''grid-connected'' buildings have solar electric panels or''modules'' that provide some or even most of their power, while still being connected to the local utility. This fact sheet provides information on connecting your solar electric system to the utility grid, including information on net metering.

Not Available

2002-07-01T23:59:59.000Z

338

Economic impact of non-utility generation on electric power systems .  

E-Print Network (OSTI)

??Non-Utility Generation is a major force in the way electrical energy is now being produced and marketed, and electric utilities are reacting to the growth (more)

Gupta, Rajnish

1997-01-01T23:59:59.000Z

339

Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Vehicle Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access to someone by E-mail Share Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Facebook Tweet about Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Twitter Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Google Bookmark Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Delicious Rank Alternative Fuels Data Center: Electric Vehicle Supply Equipment (EVSE) Multi-Unit Dwelling Installations and Access on Digg

340

Literature review of United States utilities computer codes for calculating actinide isotope content in irradiated fuel  

SciTech Connect

This paper reviews the accuracy and precision of methods used by United States electric utilities to determine the actinide isotopic and element content of irradiated fuel. After an extensive literature search, three key code suites were selected for review. Two suites of computer codes, CASMO and ARMP, are used for reactor physics calculations; the ORIGEN code is used for spent fuel calculations. They are also the most widely used codes in the nuclear industry throughout the world. Although none of these codes calculate actinide isotopics as their primary variables intended for safeguards applications, accurate calculation of actinide isotopic content is necessary to fulfill their function.

Horak, W.C.; Lu, Ming-Shih

1991-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Diesel Engine Waste Heat Recovery Utilizing Electric Turbocompound Technology  

DOE Green Energy (OSTI)

Caterpillar's Technology & Solutions Division conceived, designed, built and tested an electric turbocompound system for an on-highway heavy-duty truck engine. The heart of the system is a unique turbochargerr with an electric motor/generator mounted on the shaft between turbine and compressor wheels. When the power produced by the turbocharger turbine exceeds the power of the compressor, the excess power is converted to electrical power by the generator on the turbo shaft; that power is then used to help turn the crankshaft via an electric motor mounted in the engine flywheel housing. The net result is an improvement in engine fuel economy. The electric turbocompound system provides added control flexibility because it is capable of varying the amount of power extracted from the exhaust gases, thus allowing for control of engine boost. The system configuration and design, turbocharger features, control system development, and test results are presented.

Hopman, Ulrich,; Kruiswyk, Richard W.

2005-07-05T23:59:59.000Z

342

New London Electric&Water Util | Open Energy Information  

Open Energy Info (EERE)

Util Util Jump to: navigation, search Name New London Electric&Water Util Place Wisconsin Utility Id 13467 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Cp-1 Small Power Service Industrial Cp-1 Small Power Service Primary Metering Discount with Parallel Generation(20kW or less) Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount Industrial Cp-1 Small Power Service Primary Metering and Transformer Ownership Discount with Parallel Generation(20kW or less) Industrial

343

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council Northwest Power Pool Area This...

344

National Rural Electric Cooperative Association: Residential Fuel Cell Demonstration Program  

DOE Green Energy (OSTI)

Summarizes the National Rural Electric Cooperative Association's work, under contract to DOE's Distribution and Interconnection R&D, to create a residential fuel cell demonstration program.

Not Available

2003-10-01T23:59:59.000Z

345

Figure 29. Power sector electricity generation capacity by fuel in ...  

U.S. Energy Information Administration (EIA)

Power sector electricity generation capacity by fuel in five cases, 2011 ... Natural gas combined cycle Natural gas combustion turbine Nuclear Renewable/other Reference

346

Figure 77. Electricity generation capacity additions by fuel type ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 77. Electricity generation capacity additions by fuel type, including combined heat and power, 2012-2040 (gigawatts) Coal

347

Coal likely to remain most prevalent fuel for electricity ...  

U.S. Energy Information Administration (EIA)

Coal is currently the dominant fuel for electricity generation and is likely to remain so, even if additional environmental control regulations ...

348

Designing a Thermal Energy Storage Program for Electric Utilities  

E-Print Network (OSTI)

Electric utilities are looking at thermal energy storage technology as a viable demand side management (DSM) option. In order for this DSM measure to be effective, it must be incorporated into a workable, well-structured utility program. This paper describes a methodology to design a successful thermal energy storage program for electric utilities. The design process is addressed beginning with the market research phase. The research includes information obtained from utilities having successful thermal storage programs. In addition, information is gathered from interviews with local architects and engineers, air conditioning contractors and potential thermal energy storage customers. From this information a marketing plan is developed that addresses the target market, market penetration, promotional methods, incentive types and levels, internal and external training requirements and optimal organizational structure. The marketing plan also includes various rate structures, program procedures and evaluation techniques. In addition to the marketing plan, several case histories are addressed.

Niehus, T. L.

1994-01-01T23:59:59.000Z

349

Integrated Job Exposure Matrix for Electric Utility Workers  

Science Conference Proceedings (OSTI)

This report identifies and includes all exposure factors in a prototype job-exposure matrix (JEM) to inform utility professionals, exposure assessment experts, and epidemiologists about exposures other than electric and magnetic fields that should be considered when assessing health and safety issues related to work near electric facilities. The nature of exposures to these factors, the ordinal exposure ranking for most of the factors, and the methodology for establishing such determining ordinal exposur...

2009-07-14T23:59:59.000Z

350

Cost analysis of energy storage systems for electric utility applications  

DOE Green Energy (OSTI)

Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Energy Storage System Analysis and Development Department at Sandia National Laboratories (SNL) conducted a cost analysis of energy storage systems for electric utility applications. The scope of the study included the analysis of costs for existing and planned battery, SMES, and flywheel energy storage systems. The analysis also identified the potential for cost reduction of key components.

Akhil, A. [Sandia National Lab., Albuquerque, NM (United States); Swaminathan, S.; Sen, R.K. [R.K. Sen & Associates, Inc., Bethesda, MD (United States)

1997-02-01T23:59:59.000Z

351

Fuel Economy of the 2013 Ford Focus Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 105 Combined 110 City 99 Highway...

352

Fuel Economy of the 2013 smart fortwo electric drive convertible  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 107 Combined 122 City 93 Highway...

353

Fuel Economy of the 2013 smart fortwo electric drive coupe  

NLE Websites -- All DOE Office Websites (Extended Search)

the Mobile Version of This Page Automatic (A1) Electricity Compare Side-by-Side EV EPA Fuel Economy Miles per Gallon Personalize Electricity* 107 Combined 122 City 93 Highway...

354

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Vehicle Charging Rate Reduction - DTE Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Reduction - DTE...

355

Grease/fat waste utilized as a fuel. Final report  

Science Conference Proceedings (OSTI)

Chicken processing plants produce wastewater loaded with grease-oil-fat matter. Depending upon plant size, location, and pretreatment requirements some processing plants discharge untreated wastewater directly into publicly owned treatment works (POTW) while other plants pretreat, removing up to 98% of the grease-oil-fat (GOF) matter, prior to discharging the resulting effluent. The purpose of this study is to evaluate the energy potential of the GOF waste, analyze systems to separate the GOF waste from the process wastewater, select possible incineration systems which may utilize the GOF waste as fuel and recover the heat for plant use. The objective of this project is to theoretically determine if the GOF material, presently disposed of as waste, can be utilized as furnace fuel in a manner which is cost effective. Commercially available equipment in the areas of wastewater pretreatment, incineration, and heat recovery are analyzed for effective utilization. Results indicate that chicken processing plant GOF waste can be effectively utilized as fuel rather than disposed as waste which has compounded problems at landfills, treatment plants, oxidation pools, and receiving waters. 2 figures, 11 tables.

Davis, J.A.

1982-09-30T23:59:59.000Z

356

Tubular screen electrical connection support for solid oxide fuel cells  

DOE Patents (OSTI)

A solid oxide fuel assembly is made of fuel cells (16, 16', 18, 24, 24', 26), each having an outer interconnection layer (36) and an outer electrode (28), which are disposed next to each other with rolled, porous, hollow, electrically conducting metal mesh conductors (20, 20') between the fuel cells, connecting the fuel cells at least in series along columns (15, 15') and where there are no metal felt connections between any fuel cells.

Tomlins, Gregory W. (Pittsburgh, PA); Jaszcar, Michael P. (Murrysville, PA)

2002-01-01T23:59:59.000Z

357

Table 8.13 Electric Utility Demand-Side Management Programs ...  

U.S. Energy Information Administration (EIA)

Energy Savings: Electric Utility Costs 4: ... motor drive) with less electricity. Examples include high-efficiency appliances, ... advanced electric motor drives, and

358

Positioning the electric utility to build information infrastructure  

SciTech Connect

In two particular respects (briefly investigated in this study from a lawyer`s perspective), electric utilities appear uniquely well-positioned to contribute to the National Information Infrastructure (NII). First of all, utilities have legal powers derived from their charters and operating authorities, confirmed in their rights-of-way, to carry out activities and functions necessary for delivering electric service. These activities and functions include building telecommunications facilities and undertaking information services that have become essential to managing electricity demand and supply. The economic value of the efficiencies made possible by telecommunications and information could be substantial. How great remains to be established, but by many estimates electric utility applications could fund a significant share of the capital costs of building the NII. Though utilities` legal powers to pursue such efficiencies through telecommunications and information appear beyond dispute, it is likely that the effort to do so will produce substantial excess capacity. Who will benefit from this excess capacity is a potentially contentious political question that demands early resolution. Will this windfall go to the utility, the customer, or no one (because of political paralysis), or will there be some equitable and practical split? A second aspect of inquiry here points to another contemporary issue of very great societal importance that could very well become the platform on which the first question can be resolved fortuitously-how to achieve universal telecommunications service. In the effort to fashion the NII that will now continue, ways and means to maximize the unique potential contribution of electric utilities to meeting important social and economic needs--in particular, universal service--merit priority attention.

Not Available

1994-11-01T23:59:59.000Z

359

Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Medium-Speed and Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways to someone by E-mail Share Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Facebook Tweet about Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Twitter Bookmark Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Google Bookmark Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Delicious Rank Alternative Fuels Data Center: Medium-Speed and Neighborhood Electric Vehicle (NEV) Definition and Access to Roadways on Digg

360

Impact of state regulatory practices on electric utility: an empirical analysis  

Science Conference Proceedings (OSTI)

The objective of this study was to investigate the impact of state regulatory practices on investor-owned electric utilities in the context of interactions among 5 variables: allowed rate of return; cost of capital; cost of electric service; price of electricity; and realized rate of return. A recursive system of 5 equations was constructed and the ordinary least-squares estimation was adopted. Data sets comprise 77 utilities in the US for 1976 and 1980. Results are: (1) allowed rate of return is principally determined by firm specific variables rather than by commission-specific variables, and the behavior of the public utility commission is adaptive; (2) high common equity ratio and a high market to book value ratio lower the cost of external capital, as proxies for financial strength and regulatory risk; (3) long-run average cost of electric service is nearly horizontal and any inter-firm difference in the cost is predominantly explained by the difference in the price of fuel that a utility plant uses; inclusion of Construction Work in Progress adversely affects the realized rate of return, not the cost or price; (4) electricity price is mostly determined by the average cost, and inter-firm differences in the allowed rate of return have little effect on the price; and (5) regulation is effective mainly in the sense that the realized rate of return is severely affected by the allowed rate of return.

Lee, J.W.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

As part of the state's 1997 electric utility restructuring legislation, Illinois established provisions for the disclosure of fuel mix and emissions data. All electric utilities and alternative...

362

Price impacts of electric-utility DSM programs  

Science Conference Proceedings (OSTI)

As competition in the electricity industry increases, utilities (and others) worry more about the upward pressure on electricity prices that demand-side management (DSM) programs often impose. Because of these concerns, several utilities have recently reduced the scope of their DSM programs or focused these programs more on customer service and peak-demand reductions and less on improving energy efficiency. This study uses the Oak Ridge Financial Model (ORFIN) to calculate the rate impacts of DSM. The authors use ORFIN to examine the two factors that contribute to DSM`s upward pressure on prices: the cost of the programs themselves and the loss of revenue associated with fixed-cost recovery. This second factor reflects the reduction in revenues caused by the DSM-induced energy and demand savings that exceed the reduction in utility costs. This analysis examines DSM price impacts as functions of the following factors: the DSM program itself (cost, conservation load factor, geographic focus on deferral of transmission and distribution investments, and mix across customer classes); the utility`s cost and pricing structures (factors at least partly under the utility`s control, such as retail tariffs, fixed vs variable operating costs, and capital costs not related to kW or kWh growth); and external economic and regulatory factors (the level and temporal pattern of avoided energy and capacity costs; ratebasing vs expensing of DSM-program costs; shareholder incentives for DSM programs; load growth; and the rates for income, property, and revenue taxes).

Hirst, E.; Hadley, S.

1994-11-01T23:59:59.000Z

363

Use of alcohol in farming applications: alternative fuels utilization program  

DOE Green Energy (OSTI)

The use of alcohol with diesel fuel has been investigated as a means of extending diesel fuel supplies. The ability to use ethanol in diesel-powered farm equipment could provide the means for increasing the near-term fuels self-sufficiency of the American farmer. In the longer term, the potential availability of methanol (from coal) in large quantities could serve to further decrease the dependency on diesel fuel. This document gives two separate overviews of the use of alcohols in farm equipment. Part I of this document compares alcohol with No. 1 and No. 2 diesel fuels and describes several techniques for using alcohol in farm diesels. Part II of this document discusses the use of aqueous ethanol in diesel engines, spark ignition engines and provides some information on safety and fuel handling of both methanol and ethanol. This document is not intended as a guide for converting equipment to utilize alcohol, but rather to provide information such that the reader can gain insight on the advantages and disadvantages of using alcohol in existing engines currently used in farming applications.

Borman, G.L.; Foster, D.E.; Uyehara, O.A.; McCallum, P.W.; Timbario, T.J.

1980-11-01T23:59:59.000Z

364

CAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION  

E-Print Network (OSTI)

(forthcoming) study the historical origins of governance institutions for natural gas and water, respectivelyCAPTURE OR CONTRACT?: THE EARLY YEARS OF ELECTRIC UTILITY REGULATION Thomas P. Lyon Nathan Wilson prices rose in states that adopted state regulation before 1917, suggesting that regulators were

Lyon, Thomas P.

365

CASE STUDY -ELECTRIC UTILITY RESTRUCTURING -MASSACHUSETTS RENEWABLE ENERGY TRUST FUND  

E-Print Network (OSTI)

CASE STUDY - ELECTRIC UTILITY RESTRUCTURING - MASSACHUSETTS RENEWABLE ENERGY TRUST FUND John A or not WTE will be considered a "renewable energy" source with respect to mandated fractions of state. This discussion will provide a brief history of the Massachusetts, Renewable Energy Trust Fund (RETF), delineate

Columbia University

366

Electric Utility Terrain Vehicle Demonstration in a Military Base Application  

Science Conference Proceedings (OSTI)

Utility terrain vehicles (UTVs), also called all terrain vehicles (ATVs), are used for a variety of purposes ranging from transporting people and materials to recreation. Examples of uses include transportation at military bases, for beach patrols, at ports, agricultural locations, industrial sites, and local/municipal applications such as at parks and schools. As of August 30, 2012 the Federal Highway Administration estimated that annual fuel usage of All-terrain vehicles to be approximately 173 ...

2013-07-24T23:59:59.000Z

367

Greater fuel diversity needed to meet growing US electricity demand  

Science Conference Proceedings (OSTI)

Electricity demand is growing in the USA. One way to manage the uncertainty is to diversity fuel sources. Fuel sources include coal, natural gas, nuclear and renewable energy sources. Tables show actual and planned generation projects by fuel types. 1 fig., 2 tabs.

Burt, B.; Mullins, S. [Industrial Info Resources (United States)

2008-01-15T23:59:59.000Z

368

Public Service Commission Authorization to Utilize an Alternative...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial InstallerContractor Investor-Owned Utility Rural Electric Cooperative Utility Savings For Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Information...

369

"End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" " "," ","Net","Residual","and",,"LPG and","(excluding Coal"," " "End Use","Total","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke...

370

"End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural...  

U.S. Energy Information Administration (EIA) Indexed Site

Oil",,,"Coal" ,"Net Demand","Residual","and",,"LPG and","(excluding Coal" "End Use","for Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","NGL(d)","Coke and Breeze...

371

"Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel...  

U.S. Energy Information Administration (EIA) Indexed Site

","Net Demand","Residual","and",,"LPG and","(excluding Coal" "Code(a)","End Use","for Electricity(b)","Fuel Oil","Diesel Fuel(c)","Natural Gas(d)","NGL(e)","Coke and Breeze...

372

"Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","(gallons)","(1000 cu ft)","(gallons)","(short tons)...

373

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion"...  

U.S. Energy Information Administration (EIA) Indexed Site

,"for Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","NGL(d)","(million" "End Use","(million kWh)","(million bbl)","(million bbl)","cu ft)","(million bbl)","short tons...

374

Electric utility restructuring and the California biomass energy industry  

Science Conference Proceedings (OSTI)

A shock jolted the electric power industry in April 1994, when the California Public Utilities Commission (CPUC) announced its intention to restructure the industry. The proposal, commonly referred to as retail wheeling, is based on the principle that market deregulation and competition will bring down the cost of electricity for all classes of customers. It would effectively break up the monopoly status of the regulated utilities and allow customers to purchase electricity directly from competing suppliers. According to the original CPUC proposal, cost alone would be the basis for determining which generating resources would be used. The proposal was modified in response to public inputs, and issued as a decision at the end of 1995. The final proposal recognized the importance of renewables, and included provisions for a minimum renewables purchase requirement (MRPR). A Renewables Working Group convened to develop detailed proposals for implementing the CPUC`s renewables program. Numerous proposals, which represented the range of possible programs that can be used to support renewables within the context of a restructured electric utility industry, were received.

Morris, G. [Future Resources Associates, Inc., Berkeley, CA (United States)

1997-05-01T23:59:59.000Z

375

Electric utility applications of hydrogen energy storage systems  

DOE Green Energy (OSTI)

This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

Swaminathan, S.; Sen, R.K.

1997-10-15T23:59:59.000Z

376

What Does Industry Expect From An Electrical Utility  

E-Print Network (OSTI)

The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier quality programs we are developing include: 1. Performance and Delivery, 2. Conformance, 3. Responsiveness, 4. Communications, 5. Supplier Quality Efforts. The electric utility supplying each of our locations is our partner at that location. We do not have the same degree of flexibility to change electricity suppliers that we might have with other suppliers of goods and services. In order for our partnerships to work we must get to know each other better. We need to understand the other guys problems and then find ways to do business that are mutually beneficial to both of us. At Union Carbide our total quality process has started at the top of the corporation and is working its way throughout the organization. Our supplier quality programs are now beginning to take shape and we are relying upon our electric utility suppliers to become active in the final design and implementation of these programs.

Jensen, C. V.

1989-09-01T23:59:59.000Z

377

A feedback based load shaping strategy for fuel utilization control in SOFC systems  

Science Conference Proceedings (OSTI)

Solid Oxide Fuel Cells are attractive energy conversion devices due to their fuel flexibility and high efficiency. Fuel utilization is a critical variable in SOFC systems that directly impacts efficiency and longevity. In this paper we propose a control ...

Tuhin Das; Ryan Weisman

2009-06-01T23:59:59.000Z

378

Electric-utility DSM programs: Terminology and reporting formats  

SciTech Connect

The number, scope, effects, and costs of electric-utility demand-site management programs are growing rapidly in the United States. Utilities, their regulators, and energy policy makers need reliable information on the costs of, participation in, and energy and load effects of these programs to make informed decisions. In particular, information is needed on the ability of these programs to cost-effectively provide energy and capacity resources that are alternatives to power plants. This handbook addresses the need for additional and better information in two ways. First, it discusses the key concepts associated with DSM-program types, participation, energy and load effects, and costs. Second, the handbook offers definitions and a sample reporting form for utility DSM programs. The primary purpose in developing these definitions and this form is to encourage consistency in the collection and reporting of data on DSM programs. To ensure that the discussions, reporting formats, and definitions will be useful and used, development of this handbook was managed by a committee, with membership from electric utilities, state regulatory commissions, and the US Department of Energy. Also, this data-collection form was pretested by seven people from six utilities, who completed the form for nine DSM programs.

Hirst, E. (Oak Ridge National Lab., TN (United States)); Sabo, C. (Barakat and Chamberlin, Inc., Washington, DC (United States))

1991-10-01T23:59:59.000Z

379

Electric utility repowering assessment. Final report, July 1993-February 1994  

SciTech Connect

The report evaluates the potential for repowering of existing electric generation stations in the United States over the period 1994 to 2003. The report includes these topics: (1) Recommendations to GRI for technical development of repowering; (2) An evaluation of the major technological factors concerning major repowering options; (3) A generic economic assessment of the cost of repowering compared to alternatives; (4) An investigation of the factors that are important in the utility decision-making process concerning repowering. The topic was based on several in-depth interviews with utilities. (5) An evaluation of the potential market subdivided into two groups: gas- and oil-fired plants and coal-fired plants.

Lennox, F.; Siegel, J.; Preble, B.

1994-02-01T23:59:59.000Z

380

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A primer on incentive regulation for electric utilities  

SciTech Connect

In contemplating a regulatory approach, the challenge for regulators is to develop a model that provides incentives for utilities to engage in socially desirable behavior. In this primer, we provide guidance on this process by discussing (1) various models of economic regulation, (2) problems implementing these models, and (3) the types of incentives that various models of regulation provide electric utilities. We address five regulatory models in depth. They include cost-of-service regulation in which prudently incurred costs are reflected dollar-for-dollar in rates and four performance-based models: (1) price-cap regulation, in which ceilings are placed on the average price that a utility can charge its customers; (2) revenue-cap regulation, in which a ceiling is placed on revenues; (3) rate-of-return bandwidth regulation, in which a utility`s rates are adjusted if earnings fall outside a {open_quotes}band{close_quotes} around equity returns; and (4) targeted incentives, in which a utility is given incentives to improve specific components of its operations. The primary difference between cost-of-service and performance-based approaches is the latter sever the tie between costs and prices. A sixth, {open_quotes}mixed approach{close_quotes} combines two or more of the five basic ones. In the recent past, a common mixed approach has been to combine targeted incentives with cost-of-service regulation. A common example is utilities that are subject to cost-of-service regulation are given added incentives to increase the efficiency of troubled electric-generating units.

Hill, L.J.

1995-10-01T23:59:59.000Z

382

NETL: Publications - 2002 Conference Proceedings: Electric Utilities and  

NLE Websites -- All DOE Office Websites (Extended Search)

NETL Publications NETL Publications 2002 Conference Proceedings Electric Utilities and Water: Emerging Issues and R&D Needs Table of Contents Disclaimer Front Matter and Workshop Summary [PDF-49KB] Appendix A - Workshop Brochure [PDF-274KB] Appendix B - Summary of Breakout Session A [PDF-19KB] Appendix C - Summary of Breakout Session B [PDF-27KB] Appendix D - Presentations Appendix E - List of Workshop Attendees [PDF-8KB] Electric Utilities and Water Brochure Cover Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

383

Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants  

U.S. Energy Information Administration (EIA) Indexed Site

Updated Capital Cost Estimates Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants April 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants ii This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies.

384

PPL Electric Utilities Corp. Smart Grid Project | Open Energy Information  

Open Energy Info (EERE)

Corp. Smart Grid Project Corp. Smart Grid Project Jump to: navigation, search Project Lead PPL Electric Utilities Corp. Country United States Headquarters Location Allentown, Pennsylvania Recovery Act Funding $19,054,516.00 Total Project Value $38,109,032.00 Coverage Area Coverage Map: PPL Electric Utilities Corp. Smart Grid Project Coordinates 40.6084305°, -75.4901833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

385

Electrolysis: Information and Opportunities for Electric Power Utilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis: Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Technical Report NREL/TP-581-40605 September 2006 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Electrolysis: Information and Opportunities for Electric Power Utilities B. Kroposki, J. Levene, and K. Harrison National Renewable Energy Laboratory Golden, Colorado P.K. Sen Colorado School of Mines Golden, Colorado F. Novachek Xcel Energy Denver, Colorado Prepared under Task No. HY61.3620 Technical Report NREL/TP-581-40605 September 2006

386

Modeling the Canadian Electric System to Analyze the CO2 Content of Electric Transportation Fuel  

Science Conference Proceedings (OSTI)

Replacing fossil fuel with electricity for transportation can play an important role in reducing CO2 emissions provided the electricity can be used efficiently and can be produced without emitting significant amounts of CO2. Canada offers a particularly attractive opportunity to replace fossil fuels with electricity in the transportation sector because Canada has historically generated electricity with low emissions of CO2 and because the transportation sector is responsible for a larger percentage of na...

2010-12-17T23:59:59.000Z

387

Electric Utility Trace Substances Synthesis Report: Volumes 1-4  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of human health risks from trace substances in electric utility stack plumes was carried out for each of 600 U.S. power plants. Emissions estimates were based on measurements at 43 units. Under realistic assumptions of exposure and plant configuration, inhalation risks were well below one in one million for increased cancer likelihood to all individuals exposed to emissions from power plants. Mercury case studies at four power plants showed health risks lower than federal guide...

1995-01-11T23:59:59.000Z

388

Electric Utility Trace Substances Synthesis Report: Volumes 1-4  

Science Conference Proceedings (OSTI)

A comprehensive evaluation of human health risks from trace substances in electric utility stack plumes was carried out for each of 600 U.S. power plants. Emissions estimates were based on measurements at 43 units. Under realistic assumptions of exposure and plant configuration, inhalation risks were well below one in one million for increased cancer likelihood to all individuals exposed to emissions from power plants. Mercury case studies at four power plants showed health risks lower than federal guide...

1995-01-10T23:59:59.000Z

389

Load management strategies for electric utilities: a production cost simulation  

SciTech Connect

This paper deals with the development and application of a simulation model for analyzing strategies for managing the residential loads of electric utilities. The basic components of the model are (1) a production-cost model, which simulates daily operation of an electric power system; (2) a load model, which disaggregates system loads into appliance loads and other loads; and (3) a comparison model, which compares the production costs and energy consumption needed to meet a particular load profile to the corresponding costs and energy consumption required for another load profile. The profiles in each pair define alternative ways of meeting the same demand. A method for disaggregating load profiles into appliance components is discussed and several alternative strategies for residential load management for a typical northeastern electric utility are formulated. The method is based on an analysis of the composition of electric loads for a number of classes of residential customers in the model utility system. The effect of alternative load management strategies on the entire residential loadcurve is determined by predicting the effects of these strategies on the specific appliance components of the loadcurve. The results of using the model to analyze alternative strategies for residential load management suggest that load management strategies in the residential sector, if adopted by utilities whose operating and load characteristics are similar to those of the system modeled here, must take into account a wide variety of appliances to achieve significant changes in the total load profile. Moreover, the results also suggest that it is not easy to reduce costs significantly through new strategies for managing residential loads only and that, to be worthwhile, cost-reducing strategies will have to encompass many kinds of appliances.

Blair, P.D.

1979-03-01T23:59:59.000Z

390

A knowledge based model of electric utility operations. Final report  

SciTech Connect

This report consists of an appendix to provide a documentation and help capability for an analyst using the developed expert system of electric utility operations running in CLIPS. This capability is provided through a separate package running under the WINDOWS Operating System and keyed to provide displays of text, graphics and mixed text and graphics that explain and elaborate on the specific decisions being made within the knowledge based expert system.

NONE

1993-08-11T23:59:59.000Z

391

Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 7878 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

Whyatt, Greg A.; Chick, Lawrence A.

2012-04-01T23:59:59.000Z

392

Treatment of Solar Generation in Electric Utility Resource Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Treatment of Solar Generation Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov

393

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update Update Steve Kiesner Director, National Customer Markets FUPWG Spring 2010 Meeting April 14, 2010 What's On the Minds of Your Utilities?  Transformation of the Electricity Industry  Emerging smart technology  Financial reform  Reliability  Major initiatives to address climate change  Gaps / Lack of Clarity in Federal / State Decisions on Infrastructure and Market Issues  Operating in a carbon constrained world EEI  Our members serve 95% of the ultimate customers in the shareholder-owned segment of the industry,  and represent approximately 70% of the U.S. electric power industry.  We also have more than 80 international electric companies as Affiliate Members  Organized in 1933, EEI works closely with all of its members, representing their interests and

394

Comparing the Benefits and Impacts of Hybrid Electric Vehicle Options for Compact Sedan and Sport Utility Vehicles  

Science Conference Proceedings (OSTI)

Download report 1006892 for FREE. This study continues the Hybrid Electric Vehicle Working Group (WG) project in which EPRI brought together representatives of the utility and automotive industries, along with those of the U.S. Department of Energy (DOE), other regulatory agencies, and university research organizations. The study, the third in a series of three studies, examines the performance, energy economy, fuel cycle emissions, costs, and consumer acceptance for compact and sports utility hybrid ele...

2002-07-23T23:59:59.000Z

395

Economic assessment of the utilization of lead-acid batteries in electric utility systems. Final report  

DOE Green Energy (OSTI)

Specific applications in which lead--acid batteries might be economically competitive on an electric utility system are identified. Particular attention is given to searching the Public Service Electric and Gas Company (PSE and G) system for installations of batteries which could defer or cancel costly transmission and/or distribution projects. Although the transmission and distribution data are based on specific applications on the PSE and G system, the generation data are based on a national reference system. The report analyzes and summarizes all costs and savings attributable to lead--acid batteries. 40 figures, 78 tables. (RWR)

Johnson, A.C.; Hynds, J.A.; Nevius, D.R.; Nunan, G.A.; Sweetman, N.

1977-04-01T23:59:59.000Z

396

Renewable Electricity Benefits Quantification Methodology: A Request for Technical Assistance from the California Public Utilities Commission  

Science Conference Proceedings (OSTI)

The California Public Utilities Commission (CPUC) requested assistance in identifying methodological alternatives for quantifying the benefits of renewable electricity. The context is the CPUC's analysis of a 33% renewable portfolio standard (RPS) in California--one element of California's Climate Change Scoping Plan. The information would be used to support development of an analytic plan to augment the cost analysis of this RPS (which recently was completed). NREL has responded to this request by developing a high-level survey of renewable electricity effects, quantification alternatives, and considerations for selection of analytic methods. This report addresses economic effects and health and environmental effects, and provides an overview of related analytic tools. Economic effects include jobs, earnings, gross state product, and electricity rate and fuel price hedging. Health and environmental effects include air quality and related public-health effects, solid and hazardous wastes, and effects on water resources.

Mosey, G.; Vimmerstedt, L.

2009-07-01T23:59:59.000Z

397

Ways Electricity Can Be Used To Replace Fossil Fuels in The French Chemical Industry  

E-Print Network (OSTI)

France energy policy for the year 1990 foresees the following breakdown between various energy sources : renewable sources (including hydraulic) : 11%, coal + natural gas : 30.5%, nuclear : 26.5%, oil : 32%. The electricity will be produced mainly by nuclear: 66 % and by hydraulic : 14%, coal : 15%, fuel oil : 5%. Electricity and coal will then be the two major energy sources at the disposal of the French Industry. The new tariff structure of electricity proposed by Electricite de France will be given briefly explaining why and how electricity used to replace fossil fuels are seriously considered by the French Chemical Industry and by Rhone-Poulenc. Examples of various new utilisations of electrical equipment in chemical processes (thermal, heat pumps, filtration, electrolysis . . .) will be given. Emphasis will be put on research and development for new equipment and on the importance of good information and relationship between utilities suppliers, manufacturers and industrial consumers.

Mongon, A.

1982-01-01T23:59:59.000Z

398

Impact of residential photovoltaics on electric utilities: some evidence from field test and simulation  

SciTech Connect

The adoption of residential photovoltaics will affect the load profile of electric utilities, the adequacy and reliability of their capacity, and their consumption of fuels. Impacts are examined by a comparison of the actual load profile facing a Texas utility with solar outputs from both TRNSYS simulations and a test array in Fort Worth. Array output is scaled up parametrically to represent different levels of solar penetration. The reductions in peak load and loss-of-load probability indicate that the adoption of 5 kW arrays by 50% of the residences reduces capacity requirements by only 4%. The value of utility savings will exceed the cost of the PV systems before 1990. The field test results are more favorable than the simulation.

Katzman, M.T.

1981-01-01T23:59:59.000Z

399

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

Conversion of Coal to Electric Power--A Dollar and CentsR. C. Carr, Electric Power Research Institute, Palo Alto,Clean Fuels Today," Electric Power Research Institute,

Ferrell, G.C.

2010-01-01T23:59:59.000Z

400

Coal/biomass fuels and the gas turbine: Utilization of solid fuels and their derivatives  

Science Conference Proceedings (OSTI)

This paper discusses key design and development issues in utilizing coal and other solid fuels in gas turbines. These fuels may be burned in raw form or processed to produce liquids or gases in more or less refined forms. The use of such fuels in gas turbines requires resolution of technology issues which are of little or no consequence for conventional natural gas and refined oil fuels. For coal, these issues are primarily related to the solid form in which coal is naturally found and its high ash and contaminant levels. Biomass presents another set of issues similar to those of coal. Among the key areas discussed are effects of ash and contaminant level on deposition, corrosion, and erosion of turbine hot parts, with particular emphasis on deposition effects.

DeCorso, M. [Power Tech Associates, Inc., Paramus, NJ (United States); Newby, R. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Anson, D. [Battelle, Columbus, OH (United States); Wenglarz, R. [Allison Engine Co., Indianapolis, IN (United States); Wright, I. [Oak Ridge National Lab., TN (United States)

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Hydrogen Analysis Repository: Gasification-Based Fuels and Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasification-Based Fuels and Electricity Production from Biomass Gasification-Based Fuels and Electricity Production from Biomass Project Summary Full Title: Gasification-Based Fuels and Electricity Production from Biomass, without and with Carbon Capture and Storage Project ID: 226 Principal Investigator: Eric D. Larson Keywords: Biomass; Fischer Tropsch; hydrogen Purpose Develop and analyze process designs for gasification-based thermochemical conversion of switchgrass into Fischer-Tropsch (F-T) fuels, dimethyl ether (DME), and hydrogen. All process designs will have some level of co-production of electricity, and some will include capture of byproduct CO2 for underground storage. Performer Principal Investigator: Eric D. Larson Organization: Princeton University Telephone: 609-258-4966 Email: elarson@princeton.edu

402

On Road Fuel Economy Performance of Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Fuel Economy Performance of Hybrid Electric Vehicles Lee Slezak Office of FreedomCAR and Vehicle Technologies U.S. Department of Energy Jim Francfort Advanced Vehicle Testing...

403

Inventory of Electric Utility Power Plants in the United States 2000  

U.S. Energy Information Administration (EIA)

DOE/EIA-0095(2000) Inventory of Electric Utility Power Plants in the United States 2000 March 2002 Energy Information Administration Office of Coal, Nuclear, Electric

404

U.S. Electric Utility Companies and Rates: Look-up by Zipcode...  

Open Energy Info (EERE)

by NREL and Ventyx, provides average residential, commercial and industrial electricity rates by zip code for both investor owned utilities (IOU) and non-investor owned utilities....

405

Electrical contact structures for solid oxide electrolyte fuel cell  

DOE Patents (OSTI)

An improved electrical output connection means is provided for a high temperature solid oxide electrolyte type fuel cell generator. The electrical connection of the fuel cell electrodes to the electrical output bus, which is brought through the generator housing to be connected to an electrical load line maintains a highly uniform temperature distribution. The electrical connection means includes an electrode bus which is spaced parallel to the output bus with a plurality of symmetrically spaced transversely extending conductors extending between the electrode bus and the output bus, with thermal insulation means provided about the transverse conductors between the spaced apart buses. Single or plural stages of the insulated transversely extending conductors can be provided within the high temperatures regions of the fuel cell generator to provide highly homogeneous temperature distribution over the contacting surfaces.

Isenberg, Arnold O. (Forest Hills, PA)

1984-01-01T23:59:59.000Z

406

Energy Conservation and Management for Electric Utility Industrial Customers  

E-Print Network (OSTI)

Comprehensive energy management assistance within the industrial section is currently being offered by a growing number of electric utilities as part of their efforts to - provide additonal demand side services to their industrial customers. One of the keys to these enhanced services is the availability of a unique Industrial Energy Conservation and Management (EC&M) computer model that can be used to evaluate the technical and economic benefits of installing proposed process related energy management systems within an industrial plant. Details of an EPRI sponsored pilot program are summarized and results presented on the use of the computer model to provide comprehensive EC&M system evaluations of potential energy management opportunities in HL&P's and other utility service areas. This capability is currently being offered to HL&P's industrial customers and is primarily concerned with identifying and evaluating possible process heat recovery and other energy management opportunities to show how a plant's energy related operating costs can be reduced.

McChesney, H. R.; Obee, T. N.; Mangum, G. F.

1985-05-01T23:59:59.000Z

407

The Future Electricity Fuels Mix: Key Drivers  

U.S. Energy Information Administration (EIA)

cogeneration . Howard Gruenspecht Electric Power, May 15, 2012 . 2010 . Examples of updated environmental retrofit costs . 10 . Howard ...

408

Reexamination of electric-utility profitability in Ohio  

SciTech Connect

This article looks back to an earlier FORTNIGHTLY article by Coyne (Sept. 16, 1982), one which argued that investor-owned electric-utility companies in the state of Ohio could be demonstrated to be earning returns that were greater than those of major oil companies when the relative risks of the companies were taken into account. The author here points to considerations overlooked in the earlier article, leading to a conclusion that there is not statistical or practical difference between the risk-adjusted rates of return of the two industries. 6 references, 2 tables.

Davidson, W.N. III

1983-08-18T23:59:59.000Z

409

A Statistical Forecast Model of Weather-Related Damage to a Major Electric Utility  

Science Conference Proceedings (OSTI)

A generalized linear model (GLM) has been developed to relate meteorological conditions to damages incurred by the outdoor electrical equipment of Public Service Electric and Gas, the largest public utility in New Jersey. Utilizing a perfect-...

Brian J. Cerruti; Steven G. Decker

2012-02-01T23:59:59.000Z

410

Financial Statistics of Major U.S. Investor-Owned Electric Utilities  

Reports and Publications (EIA)

1996 - Final issue. Presents summary and detailed financial accounting data on the investor-owned electric utilities.

Information Center

1997-12-01T23:59:59.000Z

411

Cyber Security Challenges in Using Cloud Computing in the Electric Utility Industry  

SciTech Connect

This document contains introductory material that discusses cyber security challenges in using cloud computing in the electric utility industry.

Akyol, Bora A.

2012-09-01T23:59:59.000Z

412

Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities  

DOE Green Energy (OSTI)

The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

Porter, K.; Rogers, J.

2009-12-01T23:59:59.000Z

413

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch FCEVs in the U.S. market between 2015 and 2020....

414

U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-10-21T23:59:59.000Z

415

A summary of the California Public Utilities Commission`s two competing electric utility restructuring proposals  

Science Conference Proceedings (OSTI)

In May 1995, the California Public Utilities Commission (CPUC) released two proposals for restructuring the state`s electric power industry. The two proposals follow more than a year of testimony and public comment after the CPUC issued the ``Blue Book`` (CPUC 1994a) on April 20, 1994, which called for retail wheeling to be phased in to all customers over 5 years. The majority proposal, supported by three of the four CPUC commissioners (one seat was vacant when the proposals were released), calls for creating a central pool, or ``poolco``; setting electric prices to reflect true costs of service, or ``real-time pricing``; and allowing parties to negotiate ``contracts for differences`` between the pool price and the contract price. The minority proposal, sponsored by Commissioner Jesse Knight, calls for retail wheeling, or ``direct access,`` and for utilities to divest or spin off their generating assets. This paper presents a summary of the major provisions of the two CPUC proposals and the possible implications and issues associated with each. It is aimed at researchers who may be aware that various efforts to restructure the electric power industry are under way and want to known more about California`s proposals, as well as those who want to known the implications of certain restructuring proposals for renewable energy technologies. Presented at the end of the paper is a summary of alternative proposals promoted by various stakeholder in response to the two CPUC proposals.

Porter, K.

1995-11-01T23:59:59.000Z

416

Financial statistics of selected publicly owned electric utilities 1989. [Contains glossary  

Science Conference Proceedings (OSTI)

The Financial Statistics of Selected Publicly Owned Electric Utilities publication presents summary and detailed financial accounting data on the publicly owned electric utilities. The objective of the publication is to provide the Federal and State governments, industry, and the general public with data that can be used for policymaking and decision making purposes relating to publicly owned electric utility issues. 21 tabs.

Not Available

1991-02-06T23:59:59.000Z

417

Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

XXXXX XXXXX Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 PNNL-XXXXX Electrical Generation for More- Electric Aircraft using Solid Oxide Fuel Cells GA Whyatt LA Chick April 2012 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 Pacific Northwest National Laboratory Richland, Washington 99352 iii Summary This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate

418

Alternative Fuels Data Center: Research and Development of Electricity as a  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Research and Research and Development of Electricity as a Vehicle Fuel to someone by E-mail Share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Facebook Tweet about Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Twitter Bookmark Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Google Bookmark Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Delicious Rank Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on Digg Find More places to share Alternative Fuels Data Center: Research and Development of Electricity as a Vehicle Fuel on AddThis.com... More in this section...

419

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

goals for automotive fuel cell power systems hydrogen vs.a comparative assessment for fuel cell electric vehicles."plug-out hydrogen-fuel- cell vehicles: Mobile Electricity"

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

420

Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" 3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row" "Code(a)","Subsector and Industry","Transfers Offsite","Purchaser(b)","Purchaser(c)","Factors" ,,"Total United States"

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Electric Utility Transmission and Distribution Line Engineering Program  

Science Conference Proceedings (OSTI)

Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experienc

Peter McKenny

2010-08-31T23:59:59.000Z

422

NREL: Vehicles and Fuels Research - NREL to Showcase Renewable Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL to Showcase Renewable Electricity Generation Systems and Advanced NREL to Showcase Renewable Electricity Generation Systems and Advanced Vehicles at Denver Earth Day Fair April 18, 2013 The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will showcase two mobile renewable electricity generation systems and three advanced vehicles-a Toyota Highlander fuel cell electric vehicle, a plug-in Toyota Prius hybrid electric vehicle, and a Mitsubishi i-MiEV electric vehicle-at the Denver Earth Day Fair on April 22. The larger of NREL's two renewable electricity generation systems features a 12 kilowatt biodiesel-powered back-up generator as well as a 1.8 kilowatt photovoltaic array that taps into energy from the sun to produce renewable electricity, which will power the fair. The smaller system includes a 384

423

Low-cost load research for electric utilities  

Science Conference Proceedings (OSTI)

Golden Valley Electric Association (GVEA) developed two pragmatic approaches to meet most load-research objectives at a substantially lower cost than would be incurred with traditional techniques. GVEA serves three customer classes, with most of its load in the Fairbanks area. GVEA's new approaches simulate load curves for individual customer classes to the degree necessary to meet most load-research objectives for the utility, including applications to cost-of-service analysis, rate design, demand-side management, and load forecasting. These approaches make class load-shape information available to utilities that cannot otherwise afford to develop such data. Although the two approaches were developed for a small utility, they are likely to work at least as well for medium and large utilities. The first approach simulates class curves by combining load data from system feeders with information on customer mix and energy usage. GVEA's supervisory control and data acquisition system gives hourly data on feeder loads, and its billing database provides the number of customers and kilowatt-hour usage by customer class on each feeder. The second approach enhances load-research results by redefining target parameters. Data from several like-hours are used to calculate substitutes for the parameters traditionally defined from single-hour data points. The precision of peak responsibility estimates, for example, can be improved if several of the highest hourly demands in a given time period are used rather than the single highest hourly demand. Arguably, use of several highest hourly demands can also improve the reliability of the allocation of responsibility.

Gray, D.A.; Butcher, M.

1994-08-01T23:59:59.000Z

424

Deregulation and Resource Reconfiguration In The Electric Utility Industry  

E-Print Network (OSTI)

and Scale Economies in Electric Power Production: Some Newand Delivery of Electric Power. Land Economics 62(4): 378-1998 Challenges of Electric Power Industry Restructuring for

Delmas, Magali; Russo, Michael V.; Montes-Sancho, Maria J.

2005-01-01T23:59:59.000Z

425

Quantifying the fuel use and greenhouse gas reduction potential of electric and hybrid vehicles.  

Science Conference Proceedings (OSTI)

Since 1989, the Northeast Sustainable Energy Association (NESEA) has organized the American Tour de Sol in which a wide variety of participants operate electric vehicles (EVs) and hybrid electric vehicles (HEVs) for several hundred miles under various roadway conditions (e.g., city center and highway). The event offers a unique opportunity to collect on-the-road energy efficiency data for these EVs and HEVs as well as comparable gasoline-fueled conventional vehicles (CVs) that are driven under the same conditions. NESEA and Argonne National Laboratory (ANL) collaborated on collecting and analyzing vehicle efficiency data during the 1998 and 1999 NESEA American Tour de Sols. Using a transportation fuel-cycle model developed at ANL with data collected on vehicle fuel economy from the two events as well as electric generation mix data from the utilities that provided the electricity to charge the EVs on the two Tours, we estimated full fuel-cycle energy use and GHG emissions of EVs and CVs. This paper presents the data, methodology, and results of this study, including the full fuel-cycle energy use and GHG emission reduction potential of the EVs operating on the Tour.

Singh, M.; Wang, M.; Hazard, N.; Lewis, G.; Energy Systems; Northeast Sustainable Energy Association; Univ. of Michigan

2000-01-01T23:59:59.000Z

426

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network (OSTI)

NO x (63). ~ Control and Power Plant Thermal Efficiency.ELECTRIC COAL- FIRED POWER PLANT thermal efficiency (heatthe overall thermal efficiency of the power plant. Fuel-Gas

Ferrell, G.C.

2010-01-01T23:59:59.000Z

427

A CO-UTILIZATION OF COAL WITH E-FUEL FROM ENERTECH'S SLURRYCARBtm PROCESS  

Science Conference Proceedings (OSTI)

In August 1999, EnerTech Environmental, LLC (EnerTech) and the Federal Energy Technology Center (FETC) entered into a Cooperative Agreement to develop the first SlurryCarb{trademark} facility for converting Municipal Sewage Sludge (MSS) into a high-density slurry fuel, which could be co-utilized with coal in various industrial applications. Funded primarily by private investors, this program was divided into two major phases, Project Definition (Phase 0) and Design, Construction, and Operation (Phase 1). Project Definition, performed during this reporting period, was designed to define the project from a technical, economic, and scheduling standpoint. Once defined, much of the project risk would be appropriately mitigated thereby providing stakeholders, such as FETC, less risk when investing in the more costly Phase 1, which includes the design, construction, and operation of the first SlurryCarb{trademark} facility. Since May 1999, EnerTech has made significant progress in the tasks required in Phase 0 for bringing this project to Phase 1. These accomplishments have enhanced the probability for success thereby reducing the risk to the United States Department of Energy's (DOE) for its investment in the project. Phase 0 technical accomplishments include: Locating and securing a project site for the 60 dry ton per day (DTPD) SlurryCarb{trademark} facility; Locating and securing a project partner who will supply the necessary MSS for the project revenue stream; Completing the basic engineering of the project, which included value engineering for reducing technical risk and lowering project costs (final drawings, detail technical review, test runs on process development unit, fuel production for fuel usage research, and final cost estimate all pending); Research and a market study necessary for finding a potential fuel user, which included working with General Electric Environmental Research Corporation (EER) with a focus on coal utilization (locate actual fuel user and detailed combustion research pending); Beginning the National Environmental Policy Act (NEPA) process necessary for the DOE involvement (final NEPA report pending); Completing the basic design for the fuel delivery system and developing a research protocol for testing required by the fuel user (actual fuel testing pending); and Locating engineering, procurement, and construction firm (EPC) to provide a fixed price guaranteed schedule for the project (EPC contract negotiation pending). For this project, a semi-annual technical progress report is required to describe the technical progress made during the duration of the budget period.

Susan L. Hoang

2000-03-02T23:59:59.000Z

428

Mercury Control Technologies for Electric Utilities Burning Lignite Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury control technologies for Mercury control technologies for electric utilities Burning lignite coal Background In partnership with a number of key stakeholders, the U.S. Department of Energy's Office of Fossil Energy (DOE/FE), through its National Energy Technology Laboratory (NETL), has been carrying out a comprehensive research program since the mid-1990s focused on the development of advanced, cost-effective mercury (Hg) control technologies for coal-fired power plants. Mercury is a poisonous metal found in coal, which can be harmful and even toxic when absorbed from the environment and concentrated in animal tissues. Mercury is present as an unwanted by-product of combustion in power plant flue gases, and is found in varying percentages in three basic chemical forms(known as speciation): particulate-bound mercury, oxidized

429

Comparison of Control System Performance for Fossil-Fuel Fired Power Plants Using Emission Measurement Data from the Utility Industr y Information Collection Request for Hazardous Air Pollutants  

Science Conference Proceedings (OSTI)

On On May 3, 2011, the U.S. Environmental Protection Agency (EPA) published a notice of proposed rulemaking (40 Code of Federal Regulations Parts 60 and 63: National Emission Standards for Hazardous Air Pollutants from Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-FuelFired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial-Commercial-Institutional Steam-Generating Units). The intent of this rulemaking is to set Maximum Achiev...

2011-12-23T23:59:59.000Z

430

National Fuel Cell Electric Vehicle Learning Demonstration Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Electric National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Technical Report NREL/TP-5600-54860 July 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 National Fuel Cell Electric Vehicle Learning Demonstration Final Report K. Wipke, S. Sprik, J. Kurtz, T. Ramsden, C. Ainscough, and G. Saur Prepared under Task No. HT12.8110 Technical Report NREL/TP-5600-54860 July 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

431

Ancillary-service costs for 12 US electric utilities  

Science Conference Proceedings (OSTI)

Ancillary services are those functions performed by electrical generating, transmission, system-control, and distribution-system equipment and people to support the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission defined ancillary services as ``those services necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.`` FERC divided these services into three categories: ``actions taken to effect the transaction (such as scheduling and dispatching services) , services that are necessary to maintain the integrity of the transmission system [and] services needed to correct for the effects associated with undertaking a transaction.`` In March 1995, FERC published a proposed rule to ensure open and comparable access to transmission networks throughout the country. The rule defined six ancillary services and developed pro forma tariffs for these services: scheduling and dispatch, load following, system protection, energy imbalance, loss compensation, and reactive power/voltage control.

Kirby, B.; Hirst, E.

1996-03-01T23:59:59.000Z

432

A new FERC policy for electric utility mergers  

SciTech Connect

Section 203 of the FPA provides the FERC with significant authority to shape the future structure of the electric utility industry. The FERC should exercise this authority prudently, with due regard to the reality that competition works better than regulation. For the FERC, this means carefully selecting the type of regulation it pursues. Second guessing whether a particular merger makes good business sense or will create a more efficient firm are matters particularly ill-suited to the regulatory process. These decisions can generally be left to utility executives and shareholders. Competition will be more than adequate to discipline any mergers that do not live up to expectations. The goal should be to ensure that competition will remain a disciplining force following a merger. This means carefully considering the potential competitive impacts of a merger. In doing so, however, the FERC must remain cognizant of the interplay between its merger review standards and its other policies. FERC decisions regarding transmission pricing and future market institutions (such as Poolcos) will have a significant impact on the size and nature of markets. This, in turn, will affect the degree to which particular mergers may, or may not, harm competition. The FERC`s merger policies must not only be rational and clearly articulated, but coordinated with its other policies to achieve the common goal of more efficient bulk power markets.

Moot, J.S.

1996-12-31T23:59:59.000Z

433

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Digg Find More places to share Alternative Fuels Data Center: Plug-In

434

Global Assessment of Hydrogen Technologies Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a solar hydrogen economy has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

435

Global Assessment of Hydrogen Technologies Task 5 Report Use of Fuel Cell Technology in Electric Power Generation  

SciTech Connect

The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a solar hydrogen economy has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

2007-12-01T23:59:59.000Z

436

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

437

Tire-Derived Fuel Cofiring Test in a Pulverized Coal Utility Boiler  

Science Conference Proceedings (OSTI)

Several utilities are cofiring tire-derived fuel (TDF) with coal and other fuels in stoker, fluidized-bed, and cyclone-fired boilers. The field tests described in this report provide data on and will be of interest to utilities evaluating TDF cofiring in pulverized coal (PC) boilers.

1995-02-08T23:59:59.000Z

438

Boosting PEM Fuel Cell Catalyst Utilization with Ultrafast Lasers  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Fuel Cells: Materials, Processing, Manufacturing, Balance of Plant and...

439

Table 7.4b Consumption of Combustible Fuels for Electricity ...  

U.S. Energy Information Administration (EIA)

and Useful Thermal Output: Electric Power Sector (Subset of Table 7.4a) Coala Petroleum Natural Gasf Other Gasesg Biomass Otherj Distillate Fuel Oilb Residual Fuel Oilc

440

Coordinating Fuel Inventory and Electric Power Generation Under Uncertainty  

E-Print Network (OSTI)

We discuss the problem of hedging between the natural gas and electric power markets. Based on multiple forecasts for natural gas prices, natural gas demand, and electricity prices, a stochastic optimization model advises a decision maker on when to buy or sell natural gas and when to transform gas into electricity. For relatively small models, branch-and-bound solves the problem to optimality. Larger models are solved using Benders decomposition and Lagrangian relaxation. We apply our approach to the system of an electric utility and succeed in solving problems with 50,000 binary variables in less than 4 minutes to within 1.16% of the optimal value.

Samer Takriti; Chonawee Supatgiat; Lilian S.-Y. Wu

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel electric utilities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Liberty Utilities (Electric) Commercial New Construction Rebate Program (New Hampshire)  

Energy.gov (U.S. Department of Energy (DOE))

'''Liberty Utilities has assumed National Grid's customers base in the state of New Hampshire. Customers should contact Liberty Utilities for questions regarding incentive availability.'''

442

City of Shasta Lake Electric Utility - PV Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program City of Shasta Lake Electric Utility - PV Rebate Program < Back Eligibility Commercial Residential Savings Category Solar Buying & Making Electricity Maximum Rebate Residential: $9,050 Commercial: $192,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Residential: $1.81/W Commercial: $1.92/W Provider City of Shasta Lake Electric Utility '''''Note: This program is currently not accepting applications. Check the program web site for information regarding future solicitations. ''''' City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. For fiscal year

443

Ashland Electric Utility - Bright Way to Heat Water Loan | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan Ashland Electric Utility - Bright Way to Heat Water Loan < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate not specified Program Info State Oregon Program Type Utility Loan Program Rebate Amount not specified Provider Ashland Electric Utilities Department The City of Ashland Conservation Division offers a solar water heating program to residential electric customers who currently use an electric water heater. Under "The Bright Way to Heat Water Program," qualified home owners may take advantage of the City's zero-interest loan program or a cash rebate. Customers choosing a loan repay it as part of their monthly utility bill. Interested customers are provided site evaluations, consumer

444

Do You Buy Clean Electricity From Your Utility? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? Do You Buy Clean Electricity From Your Utility? November 19, 2009 - 7:00am Addthis This week, John discussed buying clean electricity from your utility. If you can't set up a small renewable energy system of your own, buying clean electricity is a great way to support the use of renewable energy. Do you buy clean electricity from your utility? Tell us about your experience. Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also feel free to respond to other comments. Addthis Related Articles You Can't Manage Energy Use That You Don't Measure Six Places to Find Help with Your Energy Costs Do You Drive a Hybrid Electric Vehicle?

445

Cloud computing and electricity: beyond the utility model  

Science Conference Proceedings (OSTI)

Assessing the strengths, weaknesses, and general applicability of the computing-as-utility business model.

Erik Brynjolfsson; Paul Hofmann; John Jordan

2010-05-01T23:59:59.000Z

446

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

447

Financial statistics of major US investor-owned electric utilities 1994  

SciTech Connect

The Financial Statistics of Major U.S. Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State Governments, industry, and the general public with current and historical data that can be used for making policy and decisions relating to investor-owned electric utility issues.

NONE

1995-12-01T23:59:59.000Z

448

Financial statistics of major U.S. investor-owned electric utilities 1993  

SciTech Connect

The Financial Statistics of Major US Investor-Owned Electric Utilities publication presents summary and detailed financial accounting data on the investor-owned electric utilities. The objective of the publication is to provide Federal and State governments, industry, and the general public with current and historical data that can be used for policymaking and decisionmaking purposes related to investor-owned electric utility issues.

Not Available

1995-01-01T23:59:59.000Z

449

Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition  

DOE Green Energy (OSTI)

The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

Rogers, J.; Porter, K.

2011-03-01T23:59:59.000Z

450

Penetration and air-emission-reduction benefits of solar technologies in the electric utilities  

DOE Green Energy (OSTI)

The results of a study of four solar energy technologies and the electric utility industry are reported. The purpose of the study was to estimate the penetration by federal region of four solar technologies - wind, biomass, phtovoltaics, and solar thermal - in terms of installed capacity and power generated. The penetration by these technologies occurs at the expense of coal and nuclear power. The displacement of coal plants implies a displacement of their air emissions, such as sulfur dioxide, oxides of nitrogen, and particulate matter. The main conclusion of this study is that solar thermal, photovoltaics, and biomass fail to penetrate significantly by the end of this century in any federal region. Wind energy penetrates the electric utility industry in several regions during the 1990s. Displaced coal and nuclear generation are also estimated by region, as are the corresponding reductions in air emissions. The small-scale penetration by the solar technologies necessarily limits the amount of conventional fuels displaced and the reduction in air emissions. A moderate displacement of sulfur dioxide and the oxides of nitrogen is estimated to occur by the end of this century, and significant lowering of these emissions should occur in the early part of the next century.

Sutherland, R.J.

1981-01-01T23:59:59.000Z

451

The ICF, Inc. coal and electric utilities model : an analysis and evaluation  

E-Print Network (OSTI)

v.1. The Electric Power Research Institute (EPRI) is sponsoring a series of evaluations of important energy policy and electric utility industry models by the MIT Energy Model Analysis Program (EMAP). The subject of this ...

Wood, David O.

1981-01-01T23:59:59.000Z

452

System average rates of U.S. investor-owned electric utilities : a statistical benchmark study  

E-Print Network (OSTI)

Using multiple regression methods, we have undertaken a statistical "benchmark" study comparing system average electricity rates charged by three California utilities with 96 other US utilities over the 1984-93 time period. ...

Berndt, Ernst R.

1995-01-01T23:59:59.000Z

453

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Digg

454

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Del