Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Efficiency Automobile Test Quality Assurance Narrative  

E-Print Network [OSTI]

Fuel Efficiency Automobile Test Quality Assurance Narrative Standard Operating Procedures Help ........................................................................................................... 3 FEAT Standard Operating Procedures...................................................................................................................24 Maintenance Items

Denver, University of

2

Low Carbon Fuel Standards  

E-Print Network [OSTI]

S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

3

Energy Efficiency Product Standards  

Broader source: Energy.gov [DOE]

'' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

4

Achieving Vehicle Fuel Efficiency: The CAFE Standards and Abstract: As a series of political objectives converge and call for enhanced domestic automobile  

E-Print Network [OSTI]

recommendations for the United States and China: rework minimum fuel efficiency standards, raise the gasoline tax situation in the United States is largely defined by the Energy Policy and Conservation Act, whichAchieving Vehicle Fuel Efficiency: The CAFE Standards and Beyond Abstract: As a series of political

Mauzerall, Denise

5

Approaches to representing aircraft fuel efficiency performance for the purpose of a commercial aircraft certification standard  

E-Print Network [OSTI]

Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft C02 emissions and ...

Yutko, Brian M. (Brian Matthew)

2011-01-01T23:59:59.000Z

6

Approaches to Representing Aircraft Fuel Efficiency Performance for the Purpose of a Commercial Aircraft Certification Standard  

E-Print Network [OSTI]

Increasing concern over the potential harmful effects of green house gas emissions from various sources has motivated the consideration of an aircraft certification standard as one way to reduce aircraft CO2 emissions and ...

Yutko, Brian

2011-06-27T23:59:59.000Z

7

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

8

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

9

2008 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network [OSTI]

2008 BUILDING ENERGY EFFICIENCY STANDARDS C A L I F O R N I A E N E RGY CO M M I S S I O N Buildings and Appliances Office #12;Acknowledgments The Building Energy Efficiency Standards (Standards the adoption of the 2008 Building Energy Efficiency Standards to Jon Leber, PE, (November 13, 1947 - February

10

Energy Efficiency Standards for Appliances  

Broader source: Energy.gov [DOE]

'' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

11

Appliance and Equipment Efficiency Standards  

Broader source: Energy.gov [DOE]

'' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

12

Low Carbon Fuel Standards  

E-Print Network [OSTI]

emissions for fuels such as biofuels, electric- ity, andcould, for instance, sell biofuels or buy credits fromthat 36 billion gallons of biofuels be sold annu- ally by

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

13

Renewable Fuel Standards Resources  

Broader source: Energy.gov [DOE]

Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum...

14

If Cars Were More Efficient Would We Use Less Fuel?  

E-Print Network [OSTI]

Efficient, Would We Use Less Fuel? B Y K E N N E T H A . S Mtask: just increase vehicle fuel efficiency, also known asexisting Corporate Average Fuel Economy (CAFE) standards.

Small, Kenneth A.; Dender, Kurt Van

2007-01-01T23:59:59.000Z

15

An Introduction to SAE Hydrogen Fueling Standardization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SAE H2 Fueling Standardization 5 SAE HYDROGEN FUELING STANDARDIZATION Jesse Schneider (BMW) SAE J2601 & J2799 Sponsor SAE INTERNATIONAL *Hydrogen Fueling Background *SAE H2...

16

Energy Efficiency Resource Standard  

Broader source: Energy.gov [DOE]

The California Legislature emphasized the importance of energy efficiency and established broad goals with the enactment of [http://docs.cpuc.ca.gov/word_pdf/FINAL_DECISION/85995.pdf Assembly Bill...

17

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

18

ENERGY EFFICIENCY STANDARDS FOR RESIDENTIALAND  

E-Print Network [OSTI]

ENERGY EFFICIENCY STANDARDS FOR RESIDENTIALAND NONRESIDENTIAL BUILDINGS 1 JULY 1995 CALIFORNIA ENERGY =I COMMISSION Pete Wilson, Governor ~400-95-001 For historical reference Current Title 24 Standards are available at: http://www.energy.ca.gov/title24/ #12;CALIFORNIA ENERGY COMMISSION Valerie Hall

19

State Clean Energy Practices: Renewable Fuel Standards  

SciTech Connect (OSTI)

The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, renewable fuel standards (RFS) policies are a mechanism for developing a market for renewable fuels in the transportation sector. This flexible market-based policy, when properly executed, can correct for market failures and promote growth of the renewable fuels industry better than a more command-oriented approach. The policy attempts to correct market failures such as embedded fossil fuel infrastructure and culture, risk associated with developing renewable fuels, consumer information gaps, and lack of quantification of the non-economic costs and benefits of both renewable and fossil-based fuels. This report focuses on renewable fuel standards policies, which are being analyzed as part of this project.

Mosey, G.; Kreycik, C.

2008-07-01T23:59:59.000Z

20

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

Council. Automotive Fuel Economy: How Far Can We Go? (Lee Schipper. Automobile Fuel. Economy and CO 2 Emissions inGraham. The Effect of Fuel Economy Standards on Automobile

Schipper, Lee

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Appliance and Equipment Energy Efficiency Standards  

Broader source: Energy.gov [DOE]

'' Note: The federal government has imposed and updated appliance efficiency standards through several legislative acts,* and now has standards in place or under development for 30 classes of...

22

Webinar: Introduction to SAE Hydrogen Fueling Standardization  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

23

Missouri Renewable Fuel Standard Brochure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1 CleanbuttonbuttonWeb siteJuly

24

PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS  

E-Print Network [OSTI]

PROPOSED 2013 BUILDING ENERGY EFFICIENCY STANDARDS Title 24, Part 6, and Associated400201200415 DAY #12;2013 Building Energy Efficiency Standards Page 1 NOTICE NOTICE This version of the 2013 Building Energy Efficiency Standards is a marked version; that is, it contains underlined or struck

25

Setting the Standard for Industrial Energy Efficiency  

E-Print Network [OSTI]

Voluntary Agreements for Energy Efficiency or GHG EmissionsACEEE Summer Study on Energy Efficiency in Industry, WestStandard for Industrial Energy Efficiency A. McKane 1 , R.

McKane, Aimee; Williams, Robert; Perry, Wayne; Li, Tienan

2008-01-01T23:59:59.000Z

26

Fuel Efficiency of New European HD Vehicles  

Broader source: Energy.gov (indexed) [DOE]

* Realistic duty cycles, including road gradient simulation for HD trucks * Standardization of test conditions and elimination of variations * standardized test fuel (ultra...

27

New Energy Efficiency Standards for Commercial Refrigeration...  

Office of Environmental Management (EM)

for Commercial Refrigeration Equipment to Cut Businesses' Energy Bills and Carbon Pollution New Energy Efficiency Standards for Commercial Refrigeration Equipment to Cut...

28

Appliance Efficiency Standards and Price Discrimination  

E-Print Network [OSTI]

2: Definition of Energy Efficiency-Based Market Segments/Minimum & ENERGY STAR Standards Market Segment Descriptiondrops. The markets for large energy consuming appliances are

Spurlock, Cecily Anna

2014-01-01T23:59:59.000Z

29

Standard Energy Efficiency Data (SEED) Platform Homepage Screenshot...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Standard Energy Efficiency Data (SEED) Platform Homepage Screenshot Standard Energy Efficiency Data (SEED) Platform Homepage Screenshot Standard Energy Efficiency Data (SEED)...

30

Historic Fuel Standards | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum,Information NewHinesStandards

31

Report: Efficiency, Alternative Fuels to Impact Market Through...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency, Alternative Fuels to Impact Market Through 2040 Report: Efficiency, Alternative Fuels to Impact Market Through 2040 February 26, 2014 - 12:00am Addthis Fuel efficiency...

32

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

33

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

Market Study for Improving ENergy Efficiency for Fans. ISI.of U.S. Federal Energy Efficiency Standards for Residentialet al. (2006). "Energy efficiency standards for equipment:

McNeil, Michael A

2008-01-01T23:59:59.000Z

34

Energy Efficiency Standards for State Buildings  

Broader source: Energy.gov [DOE]

In April 2009, the legislature passed [http://data.opi.mt.gov/bills/2009/billhtml/SB0049.htm S.B. 49], creating energy efficiency standards for state-owned and state-leased buildings. Energy...

35

Renewable Energy and Energy Efficiency Portfolio Standard  

Broader source: Energy.gov [DOE]

North Carolina's Renewable Energy and Energy Efficiency Portfolio Standard (REPS), established by [http://www.ncleg.net/Sessions/2007/Bills/Senate/PDF/S3v6.pdf Senate Bill 3] in August 2007,...

36

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

order for the low carbon fuel standard, 2012. URL http://mediated e?ects of low carbon fuel policies. AgBioForum, 15(Gas Reductions under Low Carbon Fuel Standards? American

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

37

Appliance Efficiency Standards and Price Discrimination  

SciTech Connect (OSTI)

I explore the effects of two simultaneous changes in minimum energy efficiency and ENERGY STAR standards for clothes washers. Adapting the Mussa and Rosen (1978) and Ronnen (1991) second-degree price discrimination model, I demonstrate that clothes washer prices and menus adjusted to the new standards in patterns consistent with a market in which firms had been price discriminating. In particular, I show evidence of discontinuous price drops at the time the standards were imposed, driven largely by mid-low efficiency segments of the market. The price discrimination model predicts this result. On the other hand, in a perfectly competition market, prices should increase for these market segments. Additionally, new models proliferated in the highest efficiency market segment following the standard changes. Finally, I show that firms appeared to use different adaptation strategies at the two instances of the standards changing.

Spurlock, Cecily Anna

2013-05-08T23:59:59.000Z

38

Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...  

Energy Savers [EERE]

5: December 12, 2011 Fuel Consumption Standards for Combination Tractors Fact 705: December 12, 2011 Fuel Consumption Standards for Combination Tractors The National Highway...

39

EISA 2007: Focus on Renewable Fuels Standard Program  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EISA 2007: Focus on Renewable Fuels Standard Focus on Renewable Fuels Standard Program Paul Argyropoulos Paul Argyropoulos Office of Office of T Tr ransportation ansportation and...

40

Stationary and Portable Fuel Cell Systems Codes and Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary and Portable Fuel Cell Systems Codes and Standards Citations Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and...

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Fuel-Efficient Distributed Control for  

E-Print Network [OSTI]

Fuel-Efficient Distributed Control for Heavy Duty Vehicle Platooning ASSAD ALAM Licentiate Thesis in Automatic Control Stockholm, Sweden 2011 #12;Fuel-Efficient Distributed Control for Heavy Duty Vehicle, vehicles can semi-autonomously travel at short intermediate spacings, effectively reducing congestion

Johansson, Karl Henrik

42

Development of energy-efficiency standards for Indian refrigerators  

SciTech Connect (OSTI)

The application of advanced techniques in engineering simulation and economic analysis for the development of efficiency standards for Indian refrigerators is illustrated in this paper. A key feature of this methodology is refrigerator simulation to generate energy savings for a set of energy-efficient design options and life-cycle cost (LCC) analysis with these design options. The LCC of a refrigerator is analyzed as a function of five variables: nominal discount rate, fuel price, appliance lifetime, incremental price, and incremental energy savings. The frequency of occurrence of the LCC minimum at any design option indicates the optimum efficiency level or range. Studies carried out in the US and European Economic Community show that the location of the LCC minimum under different scenarios (e.g., variable fuel price, life-time, discount rate, and incremental price) is quite stable. Thus, an efficiency standard can be developed based on the efficiency value at the LCC minimum. This paper examines and uses this methodology in developing efficiency standards for Indian refrigerators. The potential efficiency standard value is indicated to be 0.65 kWh/day for a 165-liter, CFC-based, manual defrost, single-door refrigerator-freezer.

Bhatia, P.

1999-07-01T23:59:59.000Z

43

October 2012 Renewable Fuel Standard Waiver  

E-Print Network [OSTI]

for four different biofuel categories and their effects on agricultural commodity markets. This report no waiver of the RFS in response to the drought. Analysis reported here estimates the effects of a waiverOctober 2012 Renewable Fuel Standard Waiver Options during the Drought of 2012 FAPRI-MU Report #11

Noble, James S.

44

Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch Highlights MediaFuelAboutCase Studies PrintableEfficient

45

A Bright Idea: New Efficiency Standards for Incandescent and...  

Broader source: Energy.gov (indexed) [DOE]

A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights A Bright Idea: New Efficiency Standards for Incandescent and Fluorescent Lights July 21, 2009 -...

46

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

GHG intensity among fossil fuels. We ?nd that the relativeunder a RFS while world fossil fuel price is the same orwith the more-polluting fossil fuels being consumed abroad

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

47

Effect of Energy Efficiency Standards on Natural Gas Prices  

SciTech Connect (OSTI)

A primary justification for the establishment of energy efficiency standards for home appliances is the existence of information deficiencies and externalities in the market for appliances. For example, when a long-term homeowner purchases a new gas-fired water heater, she will maximize the value of her purchase by comparing the life-cycle cost of ownership of available units, including both total installed cost - purchase price plus installation costs - and operating cost in the calculus. Choice of the appliance with the lowest life-cycle costs leads to the most economically efficient balance between capital cost and fuel cost. However, if the purchaser's expected period of ownership is shorter than the useful life of the appliance, or the purchaser does not pay for the fuel used by the appliance, as is often the case with rental property, fuel cost will be external to her costs, biasing her decision toward spending less on fuel efficiency and resulting in the purchase of an appliance with greater than optimal fuel usage. By imposing an efficiency standard on appliances, less efficient appliances are made unavailable, precluding less efficient purchases and reducing fuel usage. The reduction in fuel demanded by residential users affects the total demand for such fuels as natural gas, for example. Reduced demand implies that residential customers are willing to purchase less gas at each price level. That is, the demand curve, labeled D{sub 0} in Figure 1, shifts to the left to D{sub 1}. If there is no change in the supply function, the supply curve will intersect the demand curve at a lower price. Residential demand is only one component of the total demand for natural gas. It is possible that total demand will decline very little if demand in other sectors increases substantially in response to a decline in the price. If demand does decrease, modeling studies generally confirm the intuition that reductions in demand for natural gas will result in reductions in its price as seen at the wellhead (Wiser 2007). The magnitude of the effect on price relative to the demand reduction, and the mechanism through which it occurs, is less well established. This report attempts to quantify the potential effects of reduced demand for natural gas in the residential sector, in response to the implementation of an energy efficiency standard for water heaters.

Carnall, Michael; Dale, Larry; Lekov, Alex

2011-07-26T23:59:59.000Z

48

Sandia National Laboratories: improving fuel efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing the viability offuel efficiency CRF

49

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

carbon tax, mandate, intensity standard JEL classi?cations: Q42; Q48 Introduction Governments throughout the world

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

50

The Role of Lubricant Additives in Fuel Efficiency and Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects...

51

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and...

52

Improving Vehicle Fuel Efficiency Through Tire Design, Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight 2012 DOE Hydrogen...

53

University of Wisconsin-Madison Improves Fuel Efficiency in Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

University of Wisconsin-Madison Improves Fuel Efficiency in Advanced Diesel Engines University of Wisconsin-Madison Improves Fuel Efficiency in Advanced Diesel Engines April 15,...

54

Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency Goals (Agreement 13704) Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency Goals (Agreement 13704)...

55

Greenhouse Gas Reductions Under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS limits carbon emissions per unit of current energycarbon fuel standard expressed as a limit on the emissions per energy

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2007-01-01T23:59:59.000Z

56

Greenhouse Gas Reductions under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS limits carbon emissions per unit of current energycarbon fuel standard expressed as a limit on the emissions per energy

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2008-01-01T23:59:59.000Z

57

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

58

Buildings Energy Data Book: 7.6 Efficiency Standards for Lighting  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1 Efficiency Standards

59

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network [OSTI]

relates domestic crude oil consumption q c to the marginalDomestic ROW Total Crude oil consumption (mbpd) Domestic ROWcrude oil fuels while achieving a total level of biofuel consumption.

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

60

Examining new fuel economy standards for the United States.  

SciTech Connect (OSTI)

After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

Plotkin, S. E.; Energy Systems

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Distributional and Efficiency Impacts of Clean and Renewable Energy Standards  

E-Print Network [OSTI]

supply and demand, including renewable energy resources and generating technologies, while representingDistributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity on recycled paper #12;Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

62

Renewable Fuel Standards Resources | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy

63

Fuel Cells & Renewable Portfolio Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0AgencyLevel Fuel

64

Renewable Fuel Standard Schedule | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant of Access(California andEnergy Information|Technologies,Fuel

65

Introduction to SAE Hydrogen Fueling Standardization Webinar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

? At this time, the SAE J2601 only covers fueling for light-duty vehicles. However, motorcycle fueling (<2 kg) is planned to be covered in the future. Q: I may sound a little...

66

Fuel Cells and Renewable Portfolio Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014 2014 organized

67

An Introduction to SAE Hydrogen Fueling Standardization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluationfor Heating

68

Greenhouse Gas Reductions Under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS standard. If the carbon intensity is greater than (lessa national LCFS reducing carbon intensities by 10 percent),standard to reduce the carbon intensity of fuels for light-

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2007-01-01T23:59:59.000Z

69

Greenhouse Gas Reductions under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

LCFS standard. If the carbon intensity is greater than (lessa national LCFS reducing carbon intensities by 10 percent),standard to reduce the carbon intensity of fuels for light-

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2008-01-01T23:59:59.000Z

70

EISA 2007: Focus on Renewable Fuels Standard Program | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EISA 2007: Focus on Renewable Fuels Standard Program At the November 6, 2008 joint Web conference of DOE's Biomass and Clean Cities programs, Paul Argyropoulos (U.S....

71

Combustion, Efficiency, and Fuel Effects in a Spark-Assisted...  

Broader source: Energy.gov (indexed) [DOE]

COMBUSTION, EFFICIENCY, AND FUEL EFFECTS IN A SPARK- ASSISTED HCCI GASOLINE ENGINE Bruce G. Bunting Fuels, Engines, and Emissions Research Center Oak Ridge National Laboratory...

72

Energy Efficiency Resource Standard | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject)EnerVaultTechnologies

73

FUEL ECONOMY AND CO2 EMISSIONS STANDARDS, MANUFACTURER PRICING STRATEGIES, AND FEEBATES  

SciTech Connect (OSTI)

Corporate Average Fuel Economy (CAFE) standards and CO2 emissions standards for 2012 to 2016 have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting new standards, as well as the impact of feebate policies. The analysis is carried out by means of a dynamic optimization model that simulates manufacturer decisions with the objective of maximizing social surplus while simultaneously considering consumer response and meeting CAFE and emissions standards. The results indicate that technology adoption plays the major role and that the provision of compliance flexibility and the availability of cost-effective advanced technologies help manufacturers reduce the need for pricing to induce changes in the mix of vehicles sold. Feebates, when implemented along with fuel economy and emissions standards, can bring additional fuel economy improvement and emissions reduction, but the benefit diminishes with the increasing stringency of the standards.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL; Bunch, Dr David S. [University of California, Davis] [University of California, Davis

2012-01-01T23:59:59.000Z

74

Air Force Achieves Fuel Efficiency through Industry Best Practices...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Air Force Achieves Fuel Efficiency through Industry Best Practices Air Force Achieves Fuel Efficiency through Industry Best Practices Fact sheet offers an overview of the U.S. Air...

75

Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion  

SciTech Connect (OSTI)

The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

Confer, Keith

2014-09-30T23:59:59.000Z

76

Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines  

SciTech Connect (OSTI)

The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to provide experimental combustion data of our target fuels at gas turbine conditions. Based on an initial assessment of premixer design requirements and challenges, the most promising sub-scale premixer concepts were evaluated both experimentally and computationally. After comprehensive screening tests, two best performing concepts were scaled up for further development. High pressure single nozzle tests were performed with the scaled premixer concepts at target gas turbine conditions with opportunity fuels. Single-digit NOx emissions were demonstrated for syngas fuels. Plasma-assisted pilot technology was demonstrated to enhance ignition capability and provide additional flame stability margin to a standard premixing fuel nozzle. However, the impact of plasma on NOx emissions was observed to be unacceptable given the goals of this program and difficult to avoid.

Venkatesan, Krishna

2011-11-30T23:59:59.000Z

77

The Standard Energy Efficiency Database Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2Department ofDepartmentSEED: The

78

North America Energy Efficiency Standards and Labeling  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32DepartmentWells |ofDepartment ofLiven t e g rNorth American

79

SEED: Standard Energy Efficiency Data Platform  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT. NO. 14-98-LNG NFTAA-1 SECTIONSEESEED:

80

Energy Efficiency and Sustainable Construction Standards for Public Buildings  

Broader source: Energy.gov [DOE]

Senate Bill 130 of 2008 established energy efficiency goals for new state building projects. All major facility projects over 10,000 square feet should strive to exceed the efficiency standards of...

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nationwide: New Efficiency Standards for Power Supplies Anticipate...  

Energy Savers [EERE]

Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon California: Heliotrope Technologies Wins R&D 100 Award for Universal Smart...

82

Standard Energy Efficiency Data (SEED) Platform - 2014 BTO Peer...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Presentation More Documents & Publications Standard Energy Efficiency Database Platform - 2013 BTO Peer Review LBNL SEED: Why Open Source Overview LBNL SEED for Cities Overview...

83

Energy Efficiency Standards for Refrigerators in Brazil: A Methodology...  

Open Energy Info (EERE)

for Impact Evaluation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for Impact Evaluation Focus...

84

Energy-Efficient Building Standards for State Facilities  

Broader source: Energy.gov [DOE]

Via Executive Order 27, Maine requires that construction or renovation of state buildings must incorporate "green building" standards that would achieve "significant" energy efficiency and...

85

Energy Efficiency Resource Standard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sites offer educationalofAProgram|Washington

86

Energy Efficiency Resource Standards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sites offerDelaware Program Type Energy

87

Energy Efficiency Standard | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sites offerDelaware Program Type

88

Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with  

E-Print Network [OSTI]

to the development of low-cost, modular and fuel-flexible solid oxide fuel cell technology. #12;2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells

Rollins, Andrew M.

89

Fuel Cells & Renewable Portfolio Standards | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuel

90

Fuel Cells and Renewable Portfolio Standards | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and StandardsFuelCells

91

Buildings Energy Data Book: 7.6 Efficiency Standards for Lighting  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1 Efficiency Standards2

92

Buildings Energy Data Book: 7.6 Efficiency Standards for Lighting  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1 Efficiency Standards23

93

Buildings Energy Data Book: 7.6 Efficiency Standards for Lighting  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1 Efficiency Standards234

94

Stronger Manufacturers' Energy Efficiency Standards for Residential...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006 - 11:09am Addthis WASHINGTON, DC -- To increase the energy efficiency of residential air conditioners, the U.S. Department of Energy (DOE) has issued new manufacturing...

95

Energy Efficiency Standards for Public Buildings  

Broader source: Energy.gov [DOE]

In May 2008, Idaho enacted HB 422 (the Energy Efficient State Building Act) to reduce the amount of energy consumed by state facilities. To the extent feasible and practical, all major facility...

96

Timing for Startup of the Renewable Fuel Standard  

Reports and Publications (EIA)

This paper responds to whether or not moving the start date of the Renewable Fuel Standard (RFS) from its currently proposed January 2004 to October 2004 would improve the chances of a smooth transition.

2002-01-01T23:59:59.000Z

97

Alternative Fuels Data Center: Staples Delivers on Fuel Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative FuelsFuelingStaples Delivers on

98

Low Cost, High Efficiency Reversible Fuel Cell Systems  

E-Print Network [OSTI]

Low Cost, High Efficiency Reversible Fuel Cell Systems DE-FC36-99GO-10455 POC: Doug Hooker Dr Approach: System Concept Fuel Cell Subsystem Battery Subsystem Converter Electrolyzer Subsystem Inverter, -- (216) 541(216) 541--10001000 Slide 5 Approach: Challenges ·Electrolyzer Subsystem Efficiency ·Fuel Cell

99

NREL: State and Local Governments - Renewable Fuel Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NREL resource assessmentFuel Standards A

100

fuel efficiency | OpenEI Community  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats GeothermalElectricsecretary Homeexample Homefred

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy efficiency standards for residential and commercial equipment: Additional opportunities  

SciTech Connect (OSTI)

Energy efficiency standards set minimum levels of energy efficiency that must be met by new products. Depending on the dynamics of the market and the level of the standard, the effect on the market for a given product may be small, moderate, or large. Energy efficiency standards address a number of market failures that exist in the buildings sector. Decisions about efficiency levels often are made by people who will not be responsible for the energy bill, such as landlords or developers of commercial buildings. Many buildings are occupied for their entire lives by very temporary owners or renters, each unwilling to make long-term investments that would mostly reward subsequent users. And sometimes what looks like apathy about efficiency merely reflects inadequate information or time invested to evaluate it. In addition to these sector-specific market failures, energy efficiency standards address the endemic failure of energy prices to incorporate externalities. In the U.S., energy efficiency standards for consumer products were first implemented in California in 1977. National standards became effective starting in 1988. By the end of 2001, national standards were in effect for over a dozen residential appliances, as well as for a number of commercial sector products. Updated standards will take effect in the next few years for several products. Outside the U.S., over 30 countries have adopted minimum energy performance standards. Technologies and markets are dynamic, and additional opportunities to improve energy efficiency exist. There are two main avenues for extending energy efficiency standards. One is upgrading standards that already exist for specific products. The other is adopting standards for products that are not covered by existing standards. In the absence of new and upgraded energy efficiency standards, it is likely that many new products will enter the stock with lower levels of energy efficiency than would otherwise be the case. Once in the stock, it is either impossible or more costly to improve the energy efficiency. Therefore, by not expanding or upgrading energy efficiency standards, opportunities for saving energy would be lost. In the past two decades, standards have significantly raised the level of energy efficiency for new products. How much more might be gained by making standards more stringent on products already subject to them, or by extending standards to products not yet covered? The main goal of this study is to estimate key national impacts of new and upgraded energy efficiency standards for residential and commercial equipment. These impacts approximate the opportunity for national benefits that may be lost if standards are not upgraded and expanded from current levels. This study also identifies the end uses where the largest opportunities exist. This analysis was prepared for the National Commission on Energy Policy (NCEP). It uses an analytical approach that is similar in concept to that used by the U.S. Department of Energy (DOE) to set standard levels. It relies on much less data and uses more simplified assumptions than the detailed and complex formulations used in DOE's standard-setting process. The results of this analysis should thus be viewed as a first approximation of the impacts that would actually be achieved by new standards. All monetary values in this report are in 2002 dollars.

Rosenquist, Greg; McNeil, Michael; Iyer, Maithili; Meyers, Steve; McMahon, Jim

2004-08-02T23:59:59.000Z

102

The Renewable Fuel Standard and Ethanol Pricing: A Sensitivity Analysis  

E-Print Network [OSTI]

of biofuel. The current Renewable Fuel Standard (RFS) requires 36 billion gallons of renewable fuel use by 2022. A large proportion of the mandate is to consist of corn-based ethanol. Most ethanol is consumed in the U.S. as a 10 percent blend of ethanol...

McNair, Robert

2014-04-18T23:59:59.000Z

103

LOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS  

E-Print Network [OSTI]

common hydrocarbon fuels (e.g., natural gas, propane, and bio-derived fuel) as well as hydrogenLOW COST, HIGH EFFICIENCY REVERSIBLE FUEL CELL SYSTEMS Dr. Christopher E. Milliken, Materials Group Boulevard Cleveland, Ohio 44108 216-541-1000 Abstract Fuel cell technologies are described in the 2001 DOE

104

Lean Gasoline System Development for Fuel Efficient Small Cars  

SciTech Connect (OSTI)

The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

None

2013-08-30T23:59:59.000Z

105

Development and Demonstration of a Fuel-Efficient HD Engine ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Discusses engine efficiency contributions of enhanced fuel injection rematched to new piston geometry, improved charge air system, revised base engine components reduce friction...

106

Step change in Fuel Efficiency:Eatons perspective  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2011 Eaton Corporation. All rights reserved. Step change in Fuel Efficiency: Eaton's perspective October 2012 2 2 2011 Eaton Corporation. All rights reserved. Many parts of the...

107

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

108

Petroleum Reduction Strategies to Improve Vehicle Fuel Efficiency  

Broader source: Energy.gov [DOE]

For reducing greenhouse gas emissions, the table below describes petroleum reduction strategies to improve vehicle fuel efficiency, as well as guidance and best practices for each strategy.

109

Vehicle Mass and Fuel Efficiency Impact Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

110

Sandia National Laboratories: fuel-efficient engine  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluating

111

Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency  

E-Print Network [OSTI]

Consumer Response to Automobile Regulation and TechnologicalConsumer Discounting of Automobile Fuel Economy: ReviewingDecisions: Evidence from Automobiles Research Report.

Kurani, Ken; Turrentine, Thomas

2004-01-01T23:59:59.000Z

112

OpenEI Community - fuel efficiency  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahomast, 2012Coastfred <divmeasureshas begun!

113

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS  

E-Print Network [OSTI]

) · Solar (Solar thermal, Photovoltaic) · Renewables (Hydropower, Geothermal, Wind, Biomass) Nuclear power power generation ­ Electrolysis · Overall efficiency approximately 25-30% (efficiency of electric power · Splits water at moderate temperatures (~700-900°C vs ~5,000°C for thermolysis) · Plant efficiencies

114

Energy Efficiency Standards and Labels in North America: Opportunities for Harmonization  

E-Print Network [OSTI]

and Equipment Energy Efficiency Committee. Available fromE. McMahon. 2001. Energy-Efficiency Labels and Standards: ALloyd. 1999. Review of energy efficiency test standards and

Wiel, Stephen

2008-01-01T23:59:59.000Z

115

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

E-Print Network [OSTI]

on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA

Wenzel, Thomas P

2010-01-01T23:59:59.000Z

116

New Energy Efficiency Standards for Metal Halide Lamp Fixtures...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on Energy Bills and Reduce...

117

New Energy Efficiency Standards for Electric Motors and Walk...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Motors and Walk-in Coolers and Freezers to Save on Energy Bills and Reduce Carbon Pollution New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and Freezers...

118

Alternative Fuels Data Center: Transportation System Efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsTools Printable Version Share this resource Send

119

Standard Energy Efficiency Database Platform - 2013 BTO Peer Review |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the AmericasDOE-STD-3020-2005 DecemberSpurringStandardDepartment of

120

Future Engine Fluids Technologies: Durable, Fuel-Efficient, and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQualityAUGUSTPart 3EfficientDynamics

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Codes and Standards Title 24 Energy-Efficient Local Ordinances  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 #12;Energy Cost-Effectiveness Study for Local Green Building Ordinances in Climate Zone 6, 12 Standards. The energy requirements of a local green building ordinance are not legally enforceable untilCodes and Standards Title 24 Energy-Efficient Local Ordinances Title: Climate Zone 6 Energy Cost

122

2008 Building Energy2008 Building Energyg gy Efficiency Standards  

E-Print Network [OSTI]

Buildings p , p g , Luminaire Power, etc. for Nonresidential Buildings 4 #12;What is New for 2008? R d l B ld What is New for 2008? R d l B ldResidential BuildingsResidential Buildings Mandatory Measures2008 Building Energy2008 Building Energyg gy Efficiency Standards g gy Efficiency Standardsfficie

123

High Efficiency Fuel Reactivity Controlled Compression Ignition...  

Broader source: Energy.gov (indexed) [DOE]

0.1 0.2 0.3 0.4 0.5 0.6 PM gbhp-hr NOx gbhp-hr 1988 1991 2004 2007 2010 * SI gasoline engine with 3-Way Catalyst: Thermal Efficiency 30% * Diesel engines are the most...

124

FuelEff&PhysicsAutosSanders FUEL EFFICIENCY AND THE PHYSICS OF AUTOMOBILES1  

E-Print Network [OSTI]

FuelEff&PhysicsAutosSanders 1 FUEL EFFICIENCY AND THE PHYSICS OF AUTOMOBILES1 Marc Ross, Physics in the operation of a modern automobile are expressed in terms of simple algebraic approximations. One purpose-engine thermodynamic efficiency, and engine and transmission frictions. The analysis applies to today's automobiles

Edwards, Paul N.

125

Lean Gasoline System Development for Fuel Efficient Small Car...  

Broader source: Energy.gov (indexed) [DOE]

Small Car Lean Gasoline System Development for Fuel Efficient Small Car Vehicle Technologies Office Merit Review 2014: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine...

126

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

is only one type of fossil fuel and one alternative fuel andGHG emissions and reducing fossil fuel use, and ?nd biofuelin GHG intensity of both fossil fuels and renewable fuels,

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

127

High Efficiency Fuel Reactivity Controlled Compression Ignition Combustion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency| Department of

128

Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical and Nuclear Engineering Spring 2012 Fuel Efficient Stoves to Achieve Fuel Security Overview Tanzanians living near the Udzungwa Mountains National Park have 100,000 villagers without an available fuel source. One possible solution to alleviate this crisis

Demirel, Melik C.

129

Energy-Efficiency Labels and Standards: A Guidebook for Appliances, Equipment, and Lighting - 2nd Edition  

E-Print Network [OSTI]

minimum efficiency standards, initiated in 1989, was strengthened by the Energy Conservation Law in 1997, which put end- use energy efficiency and standards

Wiel, Stephen; McMahon, James E.

2005-01-01T23:59:59.000Z

130

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

A Low-Carbon Fuel Standard for California Part 1: TechnicalEnergy Air Quality, and Fuels 2000. Schwarzenegger, Arnold.Order S-01-07: Low Carbon Fuel Standard. Sacramento, CA.

2007-01-01T23:59:59.000Z

131

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

ITSRR0707 A Low-Carbon Fuel Standard for California PartEnergy Commission. A Low Carbon Fuel Standard For CaliforniaPont, et al. (2007). Full Fuel Cycle Assessment Well To Tank

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

132

Codes and Standards Title 24 Energy-Efficient Local Ordinances  

E-Print Network [OSTI]

Codes and Standards Title 24 Energy-Efficient Local Ordinances Title: San Mateo County Green Mateo County Green Building Ordinance Energy Cost-Effectiveness Study December 31, 2009 Report prepared . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 #12;Energy Cost-Effectiveness Study for the San Mateo County Green Building Ordinance, 12

133

45-Day Language Hearing Agenda Building Energy Efficiency Standards  

E-Print Network [OSTI]

Shirakh 09:15 AM Revisions to Sections 10-101 10-114 Energy Building Regulations, All Occupancies Gary45-Day Language Hearing Agenda Building Energy Efficiency Standards Revisions for Residential for Solar Ready Buildings All Occupancies Patrick Saxton 10:35 AM Revisions to Sections 150

134

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

security, renewable energy, bio- fuel, carbon tax, mandate,and taxpayer cost of bio- fuel excise tax credits dwarf the

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

135

Regional variations in US residential sector fuel prices: implications for development of building energy performance standards  

SciTech Connect (OSTI)

The Notice of Proposed Rulemaking for Energy Performance Standards for New Buildings presented life-cycle-cost based energy budgets for single-family detached residences. These energy budgets varied with regional climatic conditions but were all based on projections of national average prices for gas, oil and electricity. The Notice of Proposed Rulemaking indicated that further analysis of the appropriateness of various price measures for use in setting the Standards was under way. This part of that ongoing analysis addresses the availability of fuel price projections, the variation in fuel prices and escalation rates across the US and the effects of aggregating city price data to the state, Region, or national level. The study only provides a portion of the information required to identify the best price aggregation level for developing of the standards. The research addresses some of the economic efficiency considerations necessary for design of a standard that affects heterogeneous regions. The first section discusses the effects of price variation among and within regions on the efficiency of resource allocation when a standard is imposed. Some evidence of the extreme variability in fuel prices across the US is presented. In the second section, time series, cross-sectional fuel price data are statistically analyzed to determine the similarity in mean fuel prices and price escalation rates when the data are treated at increasing levels of aggregation. The findings of this analysis are reported in the third section, while the appendices contain price distributions details. The last section reports the availability of price projections and discusses some EIA projections compared with actual prices.

Nieves, L.A.; Tawil, J.J.; Secrest, T.J.

1981-03-01T23:59:59.000Z

136

High efficiency carbonate fuel cell/turbine hybrid power cycle  

SciTech Connect (OSTI)

The hybrid power cycle studies were conducted to identify a high efficiency, economically competitive system. A hybrid power cycle which generates power at an LHV efficiency > 70% was identified that includes an atmospheric pressure direct carbonate fuel cell, a gas turbine, and a steam cycle. In this cycle, natural gas fuel is mixed with recycled fuel cell anode exhaust, providing water for reforming fuel. The mixed gas then flows to a direct carbonate fuel cell which generates about 70% of the power. The portion of the anode exhaust which is not recycled is burned and heat transferred through a heat exchanger (HX) to the compressed air from a gas turbine. The heated compressed air is then heated further in the gas turbine burner and expands through the turbine generating 15% of the power. Half the exhaust from the turbine provides air for the anode exhaust burner. All of the turbine exhaust eventually flows through the fuel cell cathodes providing the O2 and CO2 needed in the electrochemical reaction. Exhaust from the cathodes flows to a steam system (heat recovery steam generator, staged steam turbine generating 15% of the cycle power). Simulation of a 200 MW plant with a hybrid power cycle had an LHV efficiency of 72.6%. Power output and efficiency are insensitive to ambient temperature, compared to a gas turbine combined cycle; NOx emissions are 75% lower. Estimated cost of electricity for 200 MW is 46 mills/kWh, which is competitive with combined cycle where fuel cost is > $5.8/MMBTU. Key requirement is HX; in the 200 MW plant studies, a HX operating at 1094 C using high temperature HX technology currently under development by METC for coal gassifiers was assumed. A study of a near term (20 MW) high efficiency direct carbonate fuel cell/turbine hybrid power cycle has also been completed.

Steinfeld, G.; Maru, H.C. [Energy Research Corp., Danbury, CT (United States); Sanderson, R.A. [Sanderson (Robert) and Associates, Wethersfield, CT (United States)

1996-07-01T23:59:59.000Z

137

Projected regional impacts of appliance efficiency standards for the U.S. residential sector  

SciTech Connect (OSTI)

Minimum efficiency standards for residential appliances have been implemented in the US for a large number of residential end-uses. This analysis assesses the potential energy, dollar, and carbon impacts of those standards at the state and national levels. In this assessment, the authors use historical and projected shipments of equipment, a detailed stock accounting model, measured and estimated unit energy savings associated with the standards, estimated incremental capital costs, demographic data, and fuel price data at the finest level of geographic disaggregation available. Energy savings from the standards are substantial. Total primary energy savings will peak in 2004 at about 0.7 exajoules/year (1 exajoule = 10{sup 18} joules {approx} 1 quadrillion Btu = 10{sup 15} Btus). Cumulative primary energy savings during the 1990 to 2010 period total 10.6 exajoules. Efficiency standards in the residential sector have been a highly cost-effective policy instrument for promoting energy efficiency. Projected cumulative present-values dollar savings after subtracting out the additional cost of the more efficient equipment are about $33 billion from 1990 to 2010. Average benefit/cost ratios for these standards are about 3.5 for the US as a whole. Projected carbon reductions are approximately 9 million metric tons of carbon/year from 2000 through 2010, an amount roughly equal to 4% of carbon emissions in 1990. Because these standards save energy at a cost less than the price of that energy, the resulting carbon emission reductions are achieved at negative net cost to society. Minimum efficiency standards reduce pollution and save money at the same time.

Koomey, J.G.; Mahler, S.A.; Webber, C.A.; McMahon, J.E.

1998-02-01T23:59:59.000Z

138

1989 annual book of ASTM standards. Section 5: Petroleum products, lubricants, and fossil fuels  

SciTech Connect (OSTI)

This standards volume covers test methods for rating motor, diesel, and aviation fuels. The standards include: Standard test method for knock characteristics of motor and aviation fuels by the motor method and Standard test method for knock characteristics of motor fuels by the research method.

Not Available

1989-01-01T23:59:59.000Z

139

A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency...  

Broader source: Energy.gov (indexed) [DOE]

to Enhancing Engine System Efficiency A MultiAir MultiFuel Approach to Enhancing Engine System Efficiency 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

140

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network [OSTI]

increase in fuel consumers and ethanol producers surplusof cane ethanol, higher emissions, lower expenditure on fuelthe sum of fuel consumer, oil producer, and ethanol producer

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Global Potential of Energy Efficiency Standards and Labeling Programs  

SciTech Connect (OSTI)

This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration with other strategies under consideration.

McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

2008-06-15T23:59:59.000Z

142

Efficiency of appliance models on the market before and after DOE standards  

SciTech Connect (OSTI)

Energy efficiency standards for appliances mandate that appliance manufacturers not manufacture or import models that have a test energy efficiency below a specified level after the standard effective date. Thus, appliance standards set a floor for energy efficiency. But do they also induce more significant changes in the efficiencies that manufacturers offer after the standard becomes effective? To address this question, we undertook an examination of before-standard and after-standard efficiency of models on the market for three products: (1) Refrigerators (1990, 1993, and 2001 standards); (2) Room air conditioners (1990 and 2000 standards); and (3) Gas furnaces (1992 standard).

Meyers, Stephen

2004-06-15T23:59:59.000Z

143

2013 California Building Energy Efficiency Standards December 2011 CODES AND STANDARDS ENHANCEMENT INITIATIVE (CASE)  

E-Print Network [OSTI]

INITIATIVE (CASE) Residential Refrigerant Charge Testing and Related Issues 2013 California Building Energy-owned rights including, but not limited to, patents, trademarks or copyrights #12;Residential Refrigerant Charge Testing and Related Issues Page 2 2013 California Building Energy Efficiency Standards December

144

1989 annual book of ASTM standards. Section 5: Petroleum products, lubricants and fossil fuels  

SciTech Connect (OSTI)

This volume of standards pertains to petroleum products and lubricants and to catalysts. The standards presented include: Standard test method for estimation of net and gross heat of combustion of petroleum fuels; Standard guide for generation and dissipation of static electricity in petroleum fuel systems; and Standard test method for solidification point of petroleum wax.

Not Available

1989-01-01T23:59:59.000Z

145

Stationary Fuel Cell Application Codes and Standards: Overview and Gap Analysis  

SciTech Connect (OSTI)

This report provides an overview of codes and standards related to stationary fuel cell applications and identifies gaps and resolutions associated with relative codes and standards.

Blake, C. W.; Rivkin, C. H.

2010-09-01T23:59:59.000Z

146

HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER  

SciTech Connect (OSTI)

OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

2003-06-01T23:59:59.000Z

147

Control apparatus and method for efficiently heating a fuel processor in a fuel cell system  

DOE Patents [OSTI]

A control apparatus and method for efficiently controlling the amount of heat generated by a fuel cell processor in a fuel cell system by determining a temperature error between actual and desired fuel processor temperatures. The temperature error is converted to a combustor fuel injector command signal or a heat dump valve position command signal depending upon the type of temperature error. Logic controls are responsive to the combustor fuel injector command signals and the heat dump valve position command signal to prevent the combustor fuel injector command signal from being generated if the heat dump valve is opened or, alternately, from preventing the heat dump valve position command signal from being generated if the combustor fuel injector is opened.

Doan, Tien M.; Clingerman, Bruce J.

2003-08-05T23:59:59.000Z

148

Greenhouse Gas Reductions under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

Association, Historic U.S. Fuel Ethanol Production. http://state subsides for fuel ethanol are excluded. The constantblending more ethanol into the fuel supply. The assumption

Holland, Stephen P; Knittel, Christopher R; Hughes, Jonathan E.

2008-01-01T23:59:59.000Z

149

Greenhouse Gas Reductions Under Low Carbon Fuel Standards?  

E-Print Network [OSTI]

Association, Historic U.S. Fuel Ethanol Production. http://state subsides for fuel ethanol are excluded. The constantblending more ethanol into the fuel supply. The assumption

Holland, Stephen P.; Knittel, Christopher R; Hughes, Jonathan E.

2007-01-01T23:59:59.000Z

150

Stationary and Portable Fuel Cell Systems Codes and Standards Citations (Brochure)  

SciTech Connect (OSTI)

This document lists codes and standards typically used for U.S. stationary and portable fuel cell systems.

Not Available

2011-05-01T23:59:59.000Z

151

Pellet Fueling Technology Development Leading to Efficient Fueling of ITER Burning Plasmas  

SciTech Connect (OSTI)

Pellet injection is the primary fueling technique planned for central fueling of the ITER burning plasma, which is a requirement for achieving high fusion gain. Injection of pellets from the inner wall has been shown on present day tokamaks to provide efficient fueling and is planned for use on ITER [1,2]. Significant development of pellet fueling technology has occurred as a result of the ITER R&D process. Extrusion rates with batch extruders have reached more than 1/2 of the ITER design specification of 1.3 cm3/s [3] and the ability to fuel efficiently from the inner wall by injecting through curved guide tubes has been demonstrated on several fusion devices. Modeling of the fueling deposition from inner wall pellet injection has been done using the Parks et al. ExB drift model [4] shows that inside launched pellets of 3mm size and speeds of 300 m/s have the capability to fuel well inside the separatrix. Gas fueling on the other hand is calculated to have very poor fueling efficiency due to the high density and wide scrape off layer compared to current machines. Isotopically mixed D/T pellets can provide efficient tritium fueling that will minimize tritium wall loading when compared to gas puffing of tritium. In addition, the use of pellets as an ELM trigger has been demonstrated and continues to be investigated as an ELM mitigation technique. During the ITER CDA and EDA the U.S. was responsible for ITER fueling system design and R&D and is in good position to resume this role for the ITER pellet fueling system. Currently the performance of the ITER guide tube design is under investigation. A mockup is being built that will allow tests with different pellet sizes and repetition rates. The results of these tests and their implication for fueling efficiency and central fueling will be discussed. The ITER pellet injection technology developments to date, specified requirements, and remaining development issues will be presented along with a plan to reach the design goal in time for employment on ITER.

Baylor, Larry R [ORNL; Combs, Stephen Kirk [ORNL; Jernigan, Thomas C [ORNL; Houlberg, Wayne A [ORNL; Maruyama, S. [ITER International Team, Garching, Germany; Owen, Larry W [ORNL; Parks, P. B. [General Atomics; Rasmussen, David A [ORNL

2005-01-01T23:59:59.000Z

152

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

SciTech Connect (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

153

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States  

E-Print Network [OSTI]

The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

Karplus, V.J.

154

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

Efficiency in Electricity Consumption. HWWA , HamburgischesB. Atanasiu (2006). Electricity Consumption and EfficiencyB. Atanasiu (2006). Electricity Consumption and Efficiency

McNeil, Michael A

2008-01-01T23:59:59.000Z

155

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

as furnaces or boilers lose efficiency through heat thatwww.eccj.or.jp Efficiency for both boiler and instantaneousto have same efficiency as Gas Boiler/ Furnace Assumption

McNeil, Michael A

2008-01-01T23:59:59.000Z

156

Summary of 2008 Building Energy Efficiency Standards Changes Summary of Changes For  

E-Print Network [OSTI]

Summary of 2008 Building Energy Efficiency Standards Changes Summary of Changes For California 2008 Building Energy Efficiency Standards Mazi Shirakh, P.E. Project Manager, Building Energy Efficiency Standards Buildings and Appliances Office California Energy Commission Adopted on April 23, 2008 #12;Summary

157

10 Questions Regarding SAE Hydrogen Fueling Standards | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021 -- NATIONAL

158

Stationary and Portable Fuel Cell Systems Codes and Standards Citations |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.

159

Property:RenewableFuelStandard/AdvancedBiofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,Website PropertyRegulationsAdvancedBiofuel Jump

160

Property:RenewableFuelStandard/CellulosicBiofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,Website

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Property:RenewableFuelStandard/RenewableBiofuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuel Jump to: navigation,

162

Property:RenewableFuelStandard/Total | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuel Jump to: navigation,Total

163

Property:RenewableFuelStandard/UndifferentiatedAdvancedBiofuel | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,WebsiteRenewableBiofuel Jump to:

164

* Corresponding author -kfingerman@berkeley.edu 1 Integrating Water Sustainability into the Low Carbon Fuel Standard  

E-Print Network [OSTI]

it to Average Fuel Carbon Intensity (AFCI) (c) Charge a tax on water use for biofuel production (d) Establish Carbon Fuel Standard Kevin Fingerman1* , Daniel Kammen1,2 , and Michael O'Hare2 1 Energy & Resources (Chapagain and Hoekstra, 2004). As the State of California implements the Low Carbon Fuel Standard (LCFS

Kammen, Daniel M.

165

State Energy Efficiency Resource Standards: Design, Status, and Impacts  

SciTech Connect (OSTI)

An energy efficiency resource standard (EERS) is a policy that requires utilities or other entities to achieve a specified amount of energy savings through customer energy efficiency programs within a specified timeframe. EERSs may apply to electricity usage, natural gas usage, or both. This paper provides an overview of the key design features of EERSs for electricity, reviews the variation in design of EERSs across states, and provides an estimate of the amount of savings required by currently specified EERSs in each state. As of December, 2013, 23 states have active and binding EERSs for electricity. We estimate that state EERSs will require annual electricity savings of approximately 8-11% of total projected demand by 2020 in states with EERSs, however the level of savings targeted by the policies varies significantly across states. In addition to the variation in targeted savings, the design of EERSs varies significantly across states leading to differences in the suite of incentives created by the policy, the flexibility of compliance with the policy, the balance of benefits and costs of the policy between producers and consumers, and the certainty with which the policy will drive long-term savings.

Steinberg, D.; Zinaman, O.

2014-05-01T23:59:59.000Z

166

DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop  

E-Print Network [OSTI]

to update 14687. To date, Type l, Grade D, has been added for fuel cell vehicles (distinct from grade A for fuel cell vehicles. JARI evaluated existing standards, namely JIS K0512 and ISO 14687, as well for the guidelines and standards e. rough budget for R&D and guideline/standard development. f. cost of analysis

167

Introduction to SAE Hydrogen Fueling Standardization | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch,Introducing the All-StarSAE Hydrogen Fueling

168

Alternative Fuels Data Center: Codes and Standards Basics  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDC Printable

169

Alternative Fuels Data Center: Codes and Standards Resources  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDC

170

Alternative Fuels Data Center: E85 Codes and Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota Laws andWisconsinAFDCNaturalE85

171

Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

hydrogen systems (TIR) 01-2009 Safety Being revised SAE J2594 Design for recycling PEM fuel cell system 09-2003 Perf. Static SAE J2600 Compressed hydrogen fueling receptacles...

172

SuperTruck ? Development and Demonstration of a Fuel-Efficient...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

173

Development and Demonstration of a Fuel-Efficient Class 8 Highway...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

174

Development and Demonstration of a Fuel-Efficient Class 8 Highway...  

Energy Savers [EERE]

and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

175

Advanced proton-exchange materials for energy efficient fuel cells.  

SciTech Connect (OSTI)

The ''Advanced Proton-Exchange Materials for Energy Efficient Fuel Cells'' Laboratory Directed Research and Development (LDRD) project began in October 2002 and ended in September 2005. This LDRD was funded by the Energy Efficiency and Renewable Energy strategic business unit. The purpose of this LDRD was to initiate the fundamental research necessary for the development of a novel proton-exchange membranes (PEM) to overcome the material and performance limitations of the ''state of the art'' Nafion that is used in both hydrogen and methanol fuel cells. An atomistic modeling effort was added to this LDRD in order to establish a frame work between predicted morphology and observed PEM morphology in order to relate it to fuel cell performance. Significant progress was made in the area of PEM material design, development, and demonstration during this LDRD. A fundamental understanding involving the role of the structure of the PEM material as a function of sulfonic acid content, polymer topology, chemical composition, molecular weight, and electrode electrolyte ink development was demonstrated during this LDRD. PEM materials based upon random and block polyimides, polybenzimidazoles, and polyphenylenes were created and evaluated for improvements in proton conductivity, reduced swelling, reduced O{sub 2} and H{sub 2} permeability, and increased thermal stability. Results from this work reveal that the family of polyphenylenes potentially solves several technical challenges associated with obtaining a high temperature PEM membrane. Fuel cell relevant properties such as high proton conductivity (>120 mS/cm), good thermal stability, and mechanical robustness were demonstrated during this LDRD. This report summarizes the technical accomplishments and results of this LDRD.

Fujimoto, Cy H.; Grest, Gary Stephen; Hickner, Michael A.; Cornelius, Christopher James; Staiger, Chad Lynn; Hibbs, Michael R.

2005-12-01T23:59:59.000Z

176

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarketsMillion DOE Award |Department

177

Template:Set RenewableFuelStandard | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark Jump to: navigation,TelluricTODO: Would be nice

178

Fact #705: December 12, 2011 Fuel Consumption Standards for Combination  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle?

179

Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle?| Department of

180

Property:RenewableFuelStandard/Year | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFYID6/OrganizationID8/Website PropertymaterialYear

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels and Advanced Vehicles Data Center - Codes and Standards  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergy Systems Place: Folsom,Inc Place:

182

Renewable Fuel Standards Program Update | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashes OfficeTexasEnergy DieselRenewablePlants

183

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network [OSTI]

based standard, carbon intensity, cost-effectiveness.from fuels with lower carbon intensity than gasoline orhave been assigned carbon intensity (CI) ratings (gCO 2 e/

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

184

Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single Leg NOx Adsorber Systems Use of a Diesel Fuel Processor for Rapid and Efficient Regeneration of Single...

185

NREL: Hydrogen and Fuel Cells Research - Safety, Codes, and Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectriaProjects Photo ofSafety, Codes,

186

Standard Energy Efficiency Data (SEED) Platform - 2014 BTO Peer Review |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite

187

Stronger Manufacturers' Energy Efficiency Standards for Residential Air  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSiteDepartment ofCreatingCellStrategicYears

188

Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan- Section 3.7 Hydrogen Safety, Codes and Standards  

Broader source: Energy.gov [DOE]

Hydrogen Safety, Codes and Standards technical plan section of the Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan; updated July 2013. This plan includes goals, objectives, technical targets, tasks, and schedules for the Office of Energy Efficiency and Renewable Energy's contribution to the DOE Hydrogen and Fuel Cells Program.

189

Effect of Energy Efficiency Standards on Natural Gas Prices  

E-Print Network [OSTI]

of a recently proposed water heater standard. The resultspurchases a new gas-fired water heater, she will maximizeefficiency standard for water heaters. 1.2 Overview of the

Carnall, Michael

2012-01-01T23:59:59.000Z

190

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy  

E-Print Network [OSTI]

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy://globalchange.mit.edu/ Printed on recycled paper #12;Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy

191

Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas  

E-Print Network [OSTI]

Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate

192

Buildings Energy Data Book: 7.7 Efficiency Standards for Lighting  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural1 Efficiency

193

Energy Efficiency and Green Building Standards for State Buildings  

Broader source: Energy.gov [DOE]

In March, 2006, Wisconsin enacted SB 459, the Energy Efficiency and Renewables Act. With respect to energy efficiency, this bill requires the Department of Administration (DOA) to prescribe and...

194

Fact #704: December 5, 2011 Fuel Consumption Standards for New...  

Energy Savers [EERE]

8,500 lbs., and passenger vans over 10,000 lbs. Standards were set separately for gasoline and diesel vehicles, on a scale that depends on a "work factor." The work factor,...

195

Bureau of Energy Efficiency Standard & Labelling (India) Website | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWendeGuo FengBoulder, CO) JumpNRELEnergyGHGsEnergyJump

196

New Energy Efficiency Standards for Furnace Fans to Reduce Carbon  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets with Wind PowerProcesses |FY

197

North America Energy Efficiency Standards and Labeling | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced Framing -Nissan: ISO 50001 -5Energy

198

Energy Department Issues New Appliance Efficiency Standards | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartment of Energy 7Department

199

EA-2001: Energy Efficiency Design Standards: New Federal Commercial and  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal1935:Department ofEA-1988:Plant,|the State

200

Appliance/Equipment Efficiency Standards | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT Biomass Facility JumpvolcanicPhase 1 Jump to:Virginia(West|

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Energy Efficiency Standards for Refrigerators in Brazil: A Methodology for  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soilsfilesystem socket.pngFigure 55NAMAs

202

Matching Federal Government EnergyMatching Federal Government Energy Needs with Energy Efficient Fuel CellsNeeds with Energy Efficient Fuel Cells  

E-Print Network [OSTI]

1 Matching Federal Government EnergyMatching Federal Government Energy Needs with Energy Efficient Fuel CellsNeeds with Energy Efficient Fuel Cells Keith A SpitznagelKeith A Spitznagel Senior VP Buildings & Facilities · 5 Kilowatts to Megawatts Speciality vehicles & Material handling · 1 to 50

203

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank  

E-Print Network [OSTI]

Hydrogen Fuel Cell Problems 1) Explain why the hydrogen fuel cell vehicle is not as efficient as the reported "tank to wheel" efficiencies would suggest. Hydrogen must be produced, stored, and transported to heat and leaking of hydrogen in the atmosphere. Additionally it takes power to produce hydrogen

Bowen, James D.

204

Standard guide for drying behavior of spent nuclear fuel  

E-Print Network [OSTI]

1.1 This guide is organized to discuss the three major components of significance in the drying behavior of spent nuclear fuel: evaluating the need for drying, drying spent nuclear fuel, and confirmation of adequate dryness. 1.1.1 The guide addresses drying methods and their limitations in drying spent nuclear fuels that have been in storage at water pools. The guide discusses sources and forms of water that remain in SNF, its container, or both, after the drying process and discusses the importance and potential effects they may have on fuel integrity, and container materials. The effects of residual water are discussed mechanistically as a function of the container thermal and radiological environment to provide guidance on situations that may require extraordinary drying methods, specialized handling, or other treatments. 1.1.2 The basic issue in drying is to determine how dry the SNF must be in order to prevent issues with fuel retrievability, container pressurization, or container corrosion. Adequate d...

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

205

E-Print Network 3.0 - automobile efficiency standards Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: automobile efficiency standards Page: << < 1 2 3 4 5 > >> 1 Links and Abstracts for Papers on...

206

National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements  

E-Print Network [OSTI]

Actuarial Pricing Of Energy Efficiency Projects: Lessonsand Effectiveness of Energy Efficiency Programs, LBNL-ACEEE 2010. State Energy Efficiency Resource Standard (

Schiller, Steven R.

2011-01-01T23:59:59.000Z

207

DOE Increases Energy Efficiency Standards for Residential Furnaces &  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies orMilestone |Energy DC -Boilers

208

DOE Proposes Higher Efficiency Standards for Refrigerators | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclearThis

209

Fact Sheet: Efficiency Standards for Natural Gas Compressors | Department  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S. Department-5 METRICNatural Gas Infrastructureof

210

Nationwide: New Efficiency Standards for Power Supplies Anticipate Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogenRegistration is OPEN!N tiSavings

211

New Energy Efficiency Standards for External Power Supplies to Cut  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy SecondWells | Department

212

Presenting a New (and Cool) Appliance Efficiency Standard | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,-Committee Meeting | Department ofEnergy

213

Request for Information on Efficiency Standards for Natural Gas Compressors  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015Department of EnergyReportingRequest| Department of

214

New Efficiency Standards Mean Big Energy Savings for Consumers | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’s EMGeothermalEnergyTechnologies |of

215

New Energy Efficiency Standards for Commercial Refrigeration Equipment to  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCut Businesses' Energy Bills and Carbon

216

New Energy Efficiency Standards for Residential Clothes Washers and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCut Businesses' Energy Bills and

217

Fact Sheet: Efficiency Standards for Natural Gas Compressors  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotalFacilityEnergyEvents atFact

218

Fact Sheet: Efficiency Standards for Natural Gas Compressors | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &ofDepartment of Energy On November 5, 2008,DepartmentInof

219

Energy Efficiency Resource Standards Resources | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoThese Web sites offer

220

Enforcing Energy-Efficiency Standards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment of EnergyScott Blake Harris

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 & 6,Department of EnergyAn agreementUpdates the Social

222

Upping Efficiency Standards, Lowering Utility Bills | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment ofEnergy,Potomac RiverNiketa Kumar Niketa Kumar

223

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

Domestic Electric Storage Water Heater (DESWH) Test Methodsand Renewable Energy (2000). Water Heater Energy StandardsAir Conditioners, Water Heaters, Direct Heating Equipment,

McNeil, Michael A

2008-01-01T23:59:59.000Z

224

New Energy Efficiency Standards for External Power Supplies to...  

Energy Savers [EERE]

on President Obama's State of the Union address, which called for reducing carbon pollution and helping communities move to greater energy efficiency, the Energy Department...

225

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

Administration UTE (1999). UTE Uruguay Consumo de Energa387. McNeil, M. (2003). Uruguay Energy Efficiency Project -Administration UTE (1999). UTE Uruguay Consumo de Energa

McNeil, Michael A

2008-01-01T23:59:59.000Z

226

Effect of Energy Efficiency Standards on Natural Gas Prices  

E-Print Network [OSTI]

local natural gas sector or the local economy in general.natural gas by residential customers will have effects throughout the economy,Natural Gas Supply Policy, Fueling the Demands of a Growing Economy",

Carnall, Michael

2012-01-01T23:59:59.000Z

227

City of Asheville- Efficiency Standards for City Buildings  

Broader source: Energy.gov [DOE]

In April 2007, the Asheville City Council adopted carbon emission reduction goals and set LEED standards for new city buildings. The council committed to reducing carbon emissions by 2% per year...

228

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

impact of room air conditioners energy labels in Malaysia."of electric Room Air Conditioner." Energy Economics 20Standard Levels for Room Air Conditioners. McNeil, M. A. ,

McNeil, Michael A

2008-01-01T23:59:59.000Z

229

Global Potential of Energy Efficiency Standards and Labeling Programs  

E-Print Network [OSTI]

report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiencyreport estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency

McNeil, Michael A

2008-01-01T23:59:59.000Z

230

Fuel Efficiency Potential of Hydrogen Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovemberDepartment of

231

Fuel Efficiency of New European HD Vehicles | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovemberDepartment ofusing

232

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWindEECBGSE

233

Matching Federal Government Energy Needs with Energy Efficient Fuel Cells |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment Accident TolerantDepartment of

234

Achieving and Demonstrating FreedomCAR Engine Fuel Efficiency Goals  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated6-05.pdfATTENDEEES:Supplythe Waste IsolationAchieving

235

Tradeoff Between Powertrain Complexity and Fuel Efficiency | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top Value

236

Lean Gasoline System Development for Fuel Efficient Small Car  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXXLocated and Methane

237

Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-Temperature Combustion DemonstratorEast Fork Poplar6Department|

238

Energy Department Offers $50 Million to Advance Fuel Efficient Autos |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartment ofNaturalTechnologies |Department

239

Catalyst for Improving the Combustion Efficiency of Petroleum Fuels in  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154:04-21-2014Innovative

240

Impact of Battery Management on Fuel Efficiency Validity | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho4 AUDIT

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Report: Efficiency, Alternative Fuels to Impact Market Through 2040 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartmentnews-flashesEnergy byNuclear

242

Fuel-Efficient Stove Programs in Humanitarian Settings | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using Renewable

243

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.IndianaofPilot Project | DepartmentandModuleImprovement

244

What Has the Federal Renewable Fuels Standard Accomplished - A National Perspective (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of the nation's biofuels industry accomplishments and a perspective on the challenges and implications of reaching goals set in the Renewable Fuel Standard (RFS).

Schwab, A.

2013-04-01T23:59:59.000Z

245

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 thFuel Processor for'Cell Stacks |

246

Energy efficiency standards for eight consumer products: public meeting clarification, questions and answers  

SciTech Connect (OSTI)

Eighteen corporations and manufacturers provided answers to many questions posed at a public meeting on energy efficiency standards for eight consumer products. Questions on the regulations concerning the manufacturing standards, performance standards, and testing standards are included. Questions were posed about air conditioners, refrigerators, refrigerator-freezers, stoves (ranges), ovens, clothes dryers, oil fired burners, water heaters, furnaces, etc. A presentation containing information pertaining to the values of average annual energy consumption per unit used by DOE in its analysis leading to proposed energy efficiency standards for nine types of consumer products is included. (MCW)

None

1980-08-01T23:59:59.000Z

247

A systems engineering methodology for fuel efficiency and its application to a tactical wheeled vehicle demonstrator  

E-Print Network [OSTI]

The U.S. Department of Defense faces growing fuel demand, resulting in increasing costs and compromised operational capability. In response to this issue, the Fuel Efficient Ground Vehicle Demonstrator (FED) program was ...

Luskin, Paul (Paul L.)

2010-01-01T23:59:59.000Z

248

Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels  

SciTech Connect (OSTI)

To identify basic research needs and opportunities underlying utilization of evolving transportation fuels, with a focus on new or emerging science challenges that have the potential for significant long-term impact on fuel efficiency and emissions.

McIlroy, A.; McRae, G.; Sick, V.; Siebers, D. L.; Westbrook, C. K.; Smith, P. J.; Taatjes, C.; Trouve, A.; Wagner, A. F.; Rohlfing, E.; Manley, D.; Tully, F.; Hilderbrandt, R.; Green, W.; Marceau, D.; O'Neal, J.; Lyday, M.; Cebulski, F.; Garcia, T. R.; Strong, D.

2006-11-01T23:59:59.000Z

249

High-temperature microfluidic systems for thermally-efficient fuel processing  

E-Print Network [OSTI]

Miniaturized fuel cell systems have the potential to outperform batteries in powering a variety of portable electronics. The key to this technology is the ability to efficiently process an easily-stored, energy-dense fuel. ...

Arana, Leonel R

2003-01-01T23:59:59.000Z

250

Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Mixing-Controlled Combustion Strategies for High-Efficiency Clean-Combustion Engines Optical-Engine and Surrogate-Fuels Research for an Improved Understanding of Fuel Effects on...

251

Cheyenne Light, Fuel and Power (Gas)- Residential Energy Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power offers incentives to gas customers who construct new energy efficient homes or install energy efficient equipment in existing homes. Incentives are available for home...

252

Fuels and Combustion Strategies for High-Efficiency Clean-Combustion...  

Broader source: Energy.gov (indexed) [DOE]

tools for understanding fuel-property effects on - Combustion - Engine efficiency optimization - Emissions Partners Project lead: Sandia - C.J. Mueller (PI); C.J. Polonowski...

253

Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

254

A Materials Approach to Fuel-Efficient Tires  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

255

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

256

Calif~rnia Energy Commission ENERGY EFFICIENCY STANDARDS  

E-Print Network [OSTI]

and Cooling Cooling with Outdoor Air Electric Resistance ,Heating Systems Power Consumption of Fans Maximum until 1/1-/87)!' f' tl ~ il ENERGY EFFICIENT August 1985 P400-84-007 For historical reference Current of Energy Consumption Compliance Approaches Sections 2-5305 thru 2-5310 are not used Page 13 17 23 24 Energy

257

Energy Efficiency First Fuel Requirement (Gas and Electric)  

Broader source: Energy.gov [DOE]

Note: The 2013 Three Year Efficiency Plans have not yet been approved. The process is underway. For the latest draft plan, review the Massachusetts Energy Efficiency Advisory Council [http://www.ma...

258

Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWindEECBGSE DOE/IG-480Vehicle

259

Gasoline Ultra Fuel Efficient Vehicle | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWindEECBGSE1 DOE Hydrogen and

260

Lean Gasoline System Development for Fuel Efficient Small Car | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen to HighJosephNOx Traps forLM2LarryLawsHaroldLeading

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Towards Fuel-Efficient DPF Systems: Understanding the Soot Oxidation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7 th ,Top Value AddedTotal EnergyProcess |

262

Lean Gasoline System Development for Fuel Efficient Small Car | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXXLocated and Methaneof Energy 1

263

Lean Gasoline System Development for Fuel Efficient Small Car | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington,LM-04-XXXXLocated and Methaneof Energy 1of

264

Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract andthe LosUsingMilestones |

265

Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract andthe LosUsingMilestones

266

HD Truck and Engine Fuel Efficiency Opportunities and Challenges Post  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground SourceHBLED Hot TestingEPA2010 | Department of

267

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground HawaiiWasteDepartmentHoney,in theEnergy How

268

Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan System Performance a PumpingReduced Weight

269

Automotive Fuel Efficiency Improvement via Exhaust Gas Waste Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5,Re evised JuneConversion to

270

Novel Materials for High Efficiency Direct Methanol Fuel Cells | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnershipEnergy University57Department1| Departmentof

271

Matching Government Needs with Energy Efficient Fuel Cells | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA: CommentsEnergyResidential EnergyMatch Pumps

272

Matching National Laboratory Needs with Energy Efficient Fuel Cells |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthComments MEMA: CommentsEnergyResidential EnergyMatch

273

Codes and Standards Requirements for Deployment of Emerging Fuel Cell Technologies  

SciTech Connect (OSTI)

The objective of this NREL report is to provide information on codes and standards (of two emerging hydrogen power fuel cell technology markets; forklift trucks and backup power units), that would ease the implementation of emerging fuel cell technologies. This information should help project developers, project engineers, code officials and other interested parties in developing and reviewing permit applications for regulatory compliance.

Burgess, R.; Buttner, W.; Riykin, C.

2011-12-01T23:59:59.000Z

274

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

2006-01-01T23:59:59.000Z

275

Impact of New Federal Efficiency Performance Standards on the Industrial Motor Marketplace  

E-Print Network [OSTI]

Impact of New Federal Efficiency Performance Standards on the Industrial Motor Marketplace R. Neal Elliott, Ph.D., P.E. Associate Director for Research American Council for an Energy-Efficient Economy Washington, DC ABSTRACT.... As noted above, beginning in the 1980's, the National Electrical Manufacturers' Association (NEMA) began including energy efficiency labeling requirements in its major stand MG-1. The efficiencies were based upon the Institute of Electrical...

Elliott, R. N.

276

Delaware's Energy Efficiency Potential and Program Scenarios to Meet Its Energy Efficiency Resource Standard  

E-Print Network [OSTI]

, state, federal and international agencies and nonprofit organizations. The Center is composed and development, environmental justice, conservation and renewable energy options, integrated resource planningDelaware's Energy Efficiency Potential and Program Scenarios to Meet Its Energy Efficiency Resource

Delaware, University of

277

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

2007-01-01T23:59:59.000Z

278

reliable, efficient, ultra-clean Fuel Cell Power Plant Experience  

E-Print Network [OSTI]

(US Army CERL) propane · 5 kW adiabatic fuel processor (US Army CERL) ­ B-100 bio diesel · Bench scale

279

Energy Department Offers $50 Million to Advance Fuel Efficient...  

Broader source: Energy.gov (indexed) [DOE]

lightweighting materials; cost-effective batteries and power electronics; advanced heating, ventilation, and air conditioning systems; and improved fuels and lubricants. With...

280

Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicles Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and impact of such approaches on...

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Lean Gasoline System Development for Fuel Efficient Small Car...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace063smith2011o.pdf More Documents & Publications Lean Gasoline System Development for Fuel...

282

Future Engine Fluids Technologies: Durable, Fuel-Efficient, and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Market Introducution in Europe Characteristics and Effects of Lubricant Additive Chemistry and Exhaust Conditions on Diesel Particulate Filter Service Life and Vehicle Fuel...

283

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: Energy.gov [DOE]

Besides their energy security and environmental benefits, many alternative fuels such as biodiesel, ethanol, and natural gas have unique chemical properties that offer advantages to drivers. These...

284

Vehicle Technologies Office: Fuel Efficiency and Emissions | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri Mechanical EngineerEnergy Vehicle

285

INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness Plan Competition |According to a new reporttakes

286

Air Force Achieves Fuel Efficiency through Industry Best Practices |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan42.2 (AprilDepartment of

287

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReportEnergy Ethanol can be|

288

DOE Expands International Effort to Develop Fuel-Efficient Trucks |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP | Department of Energy Exercises

289

Highly Efficient, Scalable Microbial Fuel Cell - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in theinPlastics -␤,of

290

Sandia National Laboratories: internal combustion engine fuel efficiency  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade manufacturing therenewables Sandia,internal combustion

291

BPA, public utilities fueling the energy efficiency powerhouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Rain

292

Berkeley Lab's Ashok Gadgil Takes Fuel Efficient Cookstoves to Ethiopia |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a Job ExternalBerkeleyDepartment of

293

Sandia National Laboratories: More Efficient Fuel Cells under Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWindInternationalby Engineers

294

Alternative Fuels Data Center: College Students Engineer Efficient Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuels in Its Fleet BluePetroleum Use

295

Testimonials - Partnerships in Fuel Efficiency - Cummins Inc. | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How The NIMROD multiof Energy

296

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov (indexed) [DOE]

NOx after-treatment systems have functional implementation limitations (i.e. performance, cost, packaging, etc.) * Significant fuel economy improvement requires integration of...

297

Development and Demonstration of a Fuel-Efficient HD Engine ...  

Broader source: Energy.gov (indexed) [DOE]

turbocharger 2200 bar Common Rail 2-stage EGR cooling DPF Bottoming Cycles Electric Turbo-compound Rankine Cycle, Thermo-electrics Variable Valve Actuation High Efficiency...

298

Supertruck - Development and Demonstration of a Fuel-Efficient...  

Broader source: Energy.gov (indexed) [DOE]

Attain 50% BTE Engine Demonstrate path towards 55% BTE Engine Barriers Assemble a cost effective, robust, reduced weight technologies for 50% freight efficiency Increase...

299

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,  

E-Print Network [OSTI]

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

300

Estimation of the Energy and Capacity Savings in Texas from Appliance Efficiency Standards  

E-Print Network [OSTI]

The purpose of this presentation will be to assess the technical potential for energy and capacity savings in Texas by the year 2006 by the statewide adoption of minimum appliance efficiency standards equivalent to those recently adopted...

Verdict, M.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice

302

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy Resources Jump

303

Plasma-assisted nitrogen doping of graphene-encapsulated Pt nanocrystals as efficient fuel cell  

E-Print Network [OSTI]

Plasma-assisted nitrogen doping of graphene- encapsulated Pt nanocrystals as efficient fuel cell, their ability to act as a relatively good fuel cell catalyst was confirmed. Furthermore, to further improve with hydrogen and oxygen intermediates to form the nal products,10 explaining their broad use in fuel cell

Tan, Weihong

304

Fuel Efficient Diesel Particulate Filter (DPF) Modeling and Development  

SciTech Connect (OSTI)

The project described in this report seeks to promote effective diesel particulate filter technology with minimum fuel penalty by enhancing fundamental understanding of filtration mechanisms through targeted experiments and computer simulations. The overall backpressure of a filtration system depends upon complex interactions of particulate matter and ash with the microscopic pores in filter media. Better characterization of these phenomena is essential for exhaust system optimization. The acicular mullite (ACM) diesel particulate filter substrate is under continuing development by Dow Automotive. ACM is made up of long mullite crystals which intersect to form filter wall framework and protrude from the wall surface into the DPF channels. ACM filters have been demonstrated to effectively remove diesel exhaust particles while maintaining relatively low backpressure. Modeling approaches developed for more conventional ceramic filter materials, such as silicon carbide and cordierite, have been difficult to apply to ACM because of properties arising from its unique microstructure. Penetration of soot into the high-porosity region of projecting crystal structures leads to a somewhat extended depth filtration mode, but with less dramatic increases in pressure drop than are normally observed during depth filtration in cordierite or silicon carbide filters. Another consequence is greater contact between the soot and solid surfaces, which may enhance the action of some catalyst coatings in filter regeneration. The projecting crystals appear to provide a two-fold benefit for maintaining low backpressures during filter loading: they help prevent soot from being forced into the throats of pores in the lower porosity region of the filter wall, and they also tend to support the forming filter cake, resulting in lower average cake density and higher permeability. Other simulations suggest that soot deposits may also tend to form at the tips of projecting crystals due to the axial velocity component of exhaust moving down the filter inlet channel. Soot mass collected in this way would have a smaller impact on backpressure than soot forced into the flow restrictions deeper in the porous wall structure. This project has focused on the development of computational, analytical, and experimental techniques that are generally applicable to a wide variety of exhaust aftertreatment technologies. By helping to develop improved fundamental understanding pore-scale phenomena affecting filtration, soot oxidation, and NOX abatement, this cooperative research and development agreement (CRADA) has also assisted Dow Automotive in continuing development and commercialization of the ACM filter substrate. Over the course of this research project, ACM filters were successfully deployed on the Audi R10 TDI racecar which won the 24 Hours of LeMans endurance race in 2006, 2007, and 2008; and the 12 Hours of Sebring endurance race in 2006 and 2007. It would not have been possible for the R10 to compete in these traditionally gasoline-dominated events without reliable and effective exhaust particulate filtration. These successes demonstrated not only the performance of automotive diesel engines, but the efficacy of DPF technology as it was being deployed around the world to meet new emissions standards on consumer vehicles. During the course of this CRADA project, Dow Automotive commercialized their ACM DPF technology under the AERIFYTM DPF brand.

Stewart, Mark L.; Gallant, Thomas R.; Kim, Do Heui; Maupin, Gary D.; Zelenyuk, Alla

2010-08-01T23:59:59.000Z

305

Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards  

SciTech Connect (OSTI)

Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

Brown, E.; Cory, K.; Arent, D.

2007-01-01T23:59:59.000Z

306

Information on the Department of Energy's analyses to determine the need for appliance efficiency standards  

SciTech Connect (OSTI)

A historical overview of three separate Department of Energy analyses performed to determine the need for appliance efficiency standards is presented. An identification of the assumptions used in each of the analyses and the conclusions reached in each analysis are covered. Standards for furnaces, water heaters, central air conditioners, refrigerators, ranges/ovens, clothes dryers, freezers, and room air conditioners are considered. (MCW)

Not Available

1981-12-23T23:59:59.000Z

307

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period  

Broader source: Energy.gov [DOE]

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Residential Dishwashers, Reopening of the Comment Period

308

Life-cycle cost analysis of energy efficiency design options for residential furnaces and boilers  

E-Print Network [OSTI]

energy conservation standard in terms of the Annual Fuel Utilization Efficiency (AFUE) descriptor at a minimum

Lutz, James; Lekov, Alex; Whitehead, Camilla Dunham; Chan, Peter; Meyers, Steve; McMahon, James

2004-01-01T23:59:59.000Z

309

Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"  

SciTech Connect (OSTI)

Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

Dr. Andrew Myers

2005-12-30T23:59:59.000Z

310

Field evaluation of a standard test method for screening fuels in soils at a railroad site  

SciTech Connect (OSTI)

American Society for Testing and Materials (ASTM) Method D-5831-95 is a standard test method for screening fuel contamination in soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. It is also fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol (IPA) following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet (UV) absorbance of the extract is measured at 254 nm. Depending on the information available concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil can be determined. ASTM Method D-5831 was evaluated by using the method to screen soil samples at an actual field site. Soil contaminated with weathered and fresh diesel fuel was sampled and tested for its contaminant concentration. Soil samples were screened in the field using ASTM Method D-5831 and a portable soil test kit. In addition, splits of the soil samples were analyzed in the laboratory using an extractable petroleum hydrocarbon method. Field and laboratory data were compared and show good correlation between field screening and laboratory results.

Schabron, J.F.; Sorini, S.S. [Western Research Institute, Laramie, WY (United States); Butler, E.L. [Gradient Corp., Cambridge, MA (United States); Frisbie, S. [Johnson Co., Inc., Montpelier, VT (United States)

1997-12-31T23:59:59.000Z

311

Fuel economy regulations and efficiency technology improvements in U.S. cars since 1975  

E-Print Network [OSTI]

Light-duty vehicles account for 43% of petroleum consumption and 23% of green- house gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum ...

MacKenzie, Donald Warren

2013-01-01T23:59:59.000Z

312

The impact of aircraft design reference mission on fuel efficiency in the air transportation system  

E-Print Network [OSTI]

Existing commercial aircraft are designed for high mission flexibility, which results in decreased fuel efficiency throughout the operational life of an aircraft. The objective of this research is to quantify the impact ...

Yutko, Brian M. (Brian Matthew)

2014-01-01T23:59:59.000Z

313

Novel Materials for High Efficiency Direct Methanol Fuel Cells  

SciTech Connect (OSTI)

Direct methanol fuel cell membranes were developed using blends of different polyelectrolytes with PVDF. The membranes showed complex relationships between polyelectrolyte chemistry, morphology, and processing. Although the PVDF grade was found to have little effect on the membrane permselectivity, it does impact membrane conductivity and methanol permeation values. Other factors, such as varying the polyelectrolyte polarity, using varying crosslinking agents, and adjusting the equivalent weight of the membranes impacted methanol permeation, permselectivity, and areal resistance. We now understand, within the scope of the project work completed, how these inter-related performance properties can be tailored to achieve a balance of performance.

Carson, Stephen; Mountz, David; He, Wensheng; Zhang, Tao

2013-12-31T23:59:59.000Z

314

Thermally efficient melting and fuel reforming for glass making  

DOE Patents [OSTI]

An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

1991-10-15T23:59:59.000Z

315

Thermally efficient melting and fuel reforming for glass making  

DOE Patents [OSTI]

An integrated process for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling.

Chen, Michael S. (Zionsville, PA); Painter, Corning F. (Allentown, PA); Pastore, Steven P. (Allentown, PA); Roth, Gary S. (Trexlertown, PA); Winchester, David C. (Allentown, PA)

1991-01-01T23:59:59.000Z

316

Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency  

E-Print Network [OSTI]

CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

Baumann, Philip Douglas

1974-01-01T23:59:59.000Z

317

Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiency and Load Range

318

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

SciTech Connect (OSTI)

This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2006 period, and of energy efficiency standards for fluorescent lamp ballasts and distribution transformers. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. It also performed new analysis for the first (1990) fluorescent ballast standards, which had been introduced in the NAECA legislation without a rulemaking. We estimate that the considered standards will reduce residential/ commercial primary energy consumption and carbon dioxide emissions in 2030 by 4percent compared to the levels expected without any standards. The reduction for the residential sector is larger, at 8percent. The estimated cumulative energy savings from the standards amount to 39 quads by 2020, and 63 quads by 2030. The standards will also reduce emissions of carbon dioxide by considerable amounts.The estimated cumulative net present value of consumer benefit amounts to $241 billion by 2030, and grows to $269 billion by 2045. The overall ratio of consumer benefits to costs (in present value terms) in the 1987-2050 period is 2.7 to 1. Although the estimates made in this study are subject to a fair degree of uncertainty, we believe they provide a reasonable approximation of the national benefits resulting from Federal appliance efficiency standards.

Meyers, Stephen P.; McMahon, James; Atkinson, Barbara

2008-05-08T23:59:59.000Z

319

EA-1872: Energy Efficiency and Sustainable Design Standards for New Federal Buildings  

Broader source: Energy.gov [DOE]

This EA evaluated the environmental impacts of a proposal to amend the current rule for commercial and high-rise multi-family residential buildings, 10 CFR 433 Energy Efficiency Standards for New Federal Commercial and High-Rise Multi-Family Residential Buildings, to replace ASHRAE Standard 90.1-2004 with the more stringent ASHRAE Standard 90.1-2007, incorporated by reference. This EA also evaluated the environmental impacts with regard to low-rise residential buildings; this rulemaking updated 10 CFR 435 Subpart A, Energy Efficiency Standards for New Federal Residential Low-Rise Residential Buildings, to replace the International Energy Conservation Code (IECC) 2004 with the more stringent IECC 2009, incorporated by reference. This EA was completed as DOE/EA-1871.

320

Japan's Residential Energy Demand Outlook to 2030 Considering Energy Efficiency Standards"Top-Runner Approach"  

SciTech Connect (OSTI)

As one of the measures to achieve the reduction in greenhouse gas emissions agreed to in the"Kyoto Protocol," an institutional scheme for determining energy efficiency standards for energy-consuming appliances, called the"Top-Runner Approach," was developed by the Japanese government. Its goal is to strengthen the legal underpinnings of various energy conservation measures. Particularly in Japan's residential sector, where energy demand has grown vigorously so far, this efficiency standard is expected to play a key role in mitigating both energy demand growth and the associated CO2 emissions. This paper presents an outlook of Japan's residential energy demand, developed by a stochastic econometric model for the purpose of analyzing the impacts of the Japan's energy efficiency standards, as well as the future stochastic behavior of income growth, demography, energy prices, and climate on the future energy demand growth to 2030. In this analysis, we attempt to explicitly take into consideration more than 30 kinds of electricity uses, heating, cooling and hot water appliances in order to comprehensively capture the progress of energy efficiency in residential energy end-use equipment. Since electricity demand, is projected to exhibit astonishing growth in Japan's residential sector due to universal increasing ownership of electric and other appliances, it is important to implement an elaborate efficiency standards policy for these appliances.

Lacommare, Kristina S H; Komiyama, Ryoichi; Marnay, Chris

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency in an HCCI Engine  

SciTech Connect (OSTI)

The effects of variable compression ratio (CR) and fuel composition on thermal efficiency were investigated in a homogeneous charge compression ignition (HCCI) engine using blends of n-heptane and toluene with research octane numbers (RON) of 0 to 88. Experiments were conducted by performing CR sweeps at multiple intake temperatures using both unthrottled operation, and constant equivalence ratio conditions by throttling to compensate for varying air density. It was found that CR is effective at changing and controlling HCCI combustion phasing midpoint, denoted here as CA 50. Thermal efficiency was a strong function of CA 50, with overly advanced CA 50 leading to efficiency decreases. Increases in CR at a constant CA 50 for a given fuel composition did, in most cases, increase efficiency, but the relationship was weaker than the dependence of efficiency on CA 50. The increase in efficiency with higher CR was fuel-dependent, so that the fuels requiring a higher CR to achieve ignition did not gain a proportionate efficiency increase. For example, n-heptane achieved an indicated thermal efficiency (ITE) of 38% at a CR of 9:1, whereas a 50 wt% blend of toluene with n-heptane required a CR of 12:1 to achieve the same ITE. A simple heat balance around the engine showed that higher toluene content fuels had higher cooling losses. The high toluene fuels exhibited higher rates of maximum pressure rise than the lower octane fuels. The increased cooling losses can be attributed to the higher pressure rise rates, which are a driving force for heat transfer.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2007-01-01T23:59:59.000Z

322

New analysis techniques for estimating impacts of federal appliance efficiency standards  

SciTech Connect (OSTI)

Impacts of U.S. appliance and equipment standards have been described previously. Since 2000, the U.S. Department of Energy (DOE) has updated standards for clothes washers, water heaters, and residential central air conditioners and heat pumps. A revised estimate of the aggregate impacts of all the residential appliance standards in the United States shows that existing standards will reduce residential primary energy consumption and associated carbon dioxide (CO{sub 2}) emissions by 89 percent in 2020 compared to the levels expected without any standards. Studies of possible new standards are underway for residential furnaces and boilers, as well as a number of products in the commercial (tertiary) sector, such as distribution transformers and unitary air conditioners. The analysis of standards has evolved in response to critiques and in an attempt to develop more precise estimates of costs and benefits of these regulations. The newer analysis elements include: (1) valuing energy savings by using marginal (rather than average) energy prices specific to an end-use; (2) simulating the impacts of energy efficiency increases over a sample population of consumers to quantify the proportion of households having net benefits or net costs over the life of the appliance; and (3) calculating marginal markups in distribution channels to derive the incremental change in retail prices associated with increased manufacturing costs for improving energy efficiency.

McMahon, James E.

2003-06-24T23:59:59.000Z

323

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

SciTech Connect (OSTI)

Industry utilizes very complex systems, consisting of equipment and their human interface, which are organized to meet the production needs of the business. Effective and sustainable energy efficiency programs in an industrial setting require a systems approach to optimize the integrated whole while meeting primary business requirements. Companies that treat energy as a manageable resource and integrate their energy program into their management practices have an organizational context to continually seek opportunities for optimizing their energy use. The purpose of an energy management system standard is to provide guidance for industrial and commercial facilities to integrate energy efficiency into their management practices, including fine-tuning production processes and improving the energy efficiency of industrial systems. The International Organization for Standardization (ISO) has identified energy management as one of its top five priorities for standards development. The new ISO 50001 will establish an international framework for industrial, commercial, or institutional facilities, or entire companies, to manage their energy, including procurement and use. This standard is expected to achieve major, long-term increases in energy efficiency (20percent or more) in industrial, commercial, and institutional facilities and to reduce greenhouse gas (GHG) emissions worldwide.This paper describes the impetus for the international standard, its purpose, scope and significance, and development progress to date. A comparative overview of existing energy management standards is provided, as well as a discussion of capacity-building needs for skilled individuals to assist organizations in adopting the standard. Finally, opportunities and challenges are presented for implementing ISO 50001 in emerging economies and developing countries.

McKane, Aimee; Desai, Deann; Matteini, Marco; Meffert, William; Williams, Robert; Risser, Roland

2009-08-01T23:59:59.000Z

324

HIGH EFFICIENCY, LOW EMISSIONS, SOLID OXIDE FUEL CELL SYSTEMS FOR MULTIPLE APPLICATIONS  

SciTech Connect (OSTI)

Technology Management Inc. (TMI), teamed with the Ohio Office of Energy Efficiency and Renewable Energy, has engineered, constructed, and demonstrated a stationary, low power, multi-module solid oxide fuel cell (SOFC) prototype system operating on propane and natural gas. Under Phase I, TMI successfully operated two systems in parallel, in conjunction with a single DC-AC inverter and battery bus, and produced net AC electricity. Phase II testing expanded to include alternative and renewable fuels typically available in rural regions of Ohio. The commercial system is expected to have ultra-low pollution, high efficiency, and low noise. The TMI SOFC uses a solid ceramic electrolyte operating at high temperature (800-1000 C) which electrochemically converts gaseous fuels (hydrogen or mixed gases) and oxygen into electricity. The TMI system design oxidizes fuel primarily via electrochemical reactions and uses no burners (which pollute and consume fuel)--resulting in extremely clean exhaust. The use of proprietary sulfur tolerant materials developed by TMI allows system operation without additional fuel pre-processing or sulfur removal. Further, the combination of high operating temperatures and solid state operation increases the potential for higher reliability and efficiencies compared to other types of fuel cells. Applications for the TMI SOFC system cover a wide range of transportation, building, industrial, and military market sectors. A generic technology, fuel cells have the potential to be embodied into multiple products specific to Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) program areas including: Fuel Cells and Microturbines, School Buildings, Transportation, and Bioenergy. This program focused on low power stationary applications using a multi-module system operating on a range of common fuels. By producing clean electricity more efficiently (thus using less fuel), fuel cells have the triple effect of cleaning up the environment, reducing the amount of fuel consumed and, for energy intensive manufacturers, boosting their profits (by reducing energy expenses). Compared to conventional power generation technologies such as internal combustion engines, gas turbines, and coal plants, fuel cells are extremely clean and more efficient, particularly at smaller scales.

Sara Ward; Michael A. Petrik

2004-07-28T23:59:59.000Z

325

PROJECTED REGIONAL IMPACTS OF APPLIANCE EFFICIENCY STANDARDS FOR THE U.S. RESIDENTIAL SECTOR  

E-Print Network [OSTI]

was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Building.S. for a large number of residential end-uses. This analysis assesses the potential energy, dollar, and carbon presented in this report represent lower bounds to the true benefits. Energy savings from the standards

326

Energy-efficiency labels and standards: A guidebook for appliances, equipment and lighting  

SciTech Connect (OSTI)

Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and the United Nations Foundation (UNF) recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This guidebook was prepared over the course of the past year with significant contribution from the authors and reviewers mentioned previously. Their diligent participation has made this the international guidance tool it was intended to be. The lead authors would also like to thank the following individuals for their support in the development, production, and distribution of the guidebook: Marcy Beck, Elisa Derby, Diana Dhunke, Ted Gartner, and Julie Osborn of Lawrence Berkeley National Laboratory as well as Anthony Ma of Bevilacqua-Knight, Inc. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards-setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsors to distribute copies of this book worldwide at no charge for the general public benefit. The guidebook is also available on the web at www.CLASPonline.org and can be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

McMahon, James E.; Wiel, Stephen

2001-02-16T23:59:59.000Z

327

Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository  

SciTech Connect (OSTI)

The U.S.Department of Energys (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, EM shall design and fabricate DOE SNF canisters for shipment to RW. (1) It also states, EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71. (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

2001-02-01T23:59:59.000Z

328

Status of the Local Enforcement of Energy Efficiency Standards and Labeling Program in China  

SciTech Connect (OSTI)

As part of its commitment to promoting and improving the local enforcement of appliance energy efficiency standards and labeling, the China National Institute of Standardization (CNIS) launched the National and Local Enforcement of Energy Efficiency Standards and Labeling project on August 14, 2009. The projects short-term goal is to expand the effort to improve enforcement of standards and labeling requirements to the entire country within three years, with a long-term goal of perfecting overall enforcement. For this project, Jiangsu, Shandong, Sichuan and Shanghai were selected as pilot locations. This report provides information on the local enforcement projects recent background, activities and results as well as comparison to previous rounds of check-testing in 2006 and 2007. In addition, the report also offers evaluation on the achievement and weaknesses in the local enforcement scheme and recommendations. The results demonstrate both improvement and some backsliding. Enforcement schemes are in place in all target cities and applicable national standards and regulations were followed as the basis for local check testing. Check testing results show in general high labeling compliance across regions with 100% compliance for five products, including full compliance for all three products tested in Jiangsu province and two out of three products tested in Shandong province. Program results also identified key weaknesses in labeling compliance in Sichuan as well as in the efficiency standards compliance levels for small and medium three-phase asynchronous motors and self-ballasted fluorescent lamps. For example, compliance for the same product ranged from as low as 40% to 100% with mixed results for products that had been tested in previous rounds. For refrigerators, in particular, the efficiency standards compliance rate exhibited a wider range of 50% to 100%, and the average rate across all tested models also dropped from 96% in 2007 to 63%, possibly due to the implementation of newly strengthened efficiency standards in 2009. Areas for improvement include: Greater awareness at the local level to ensure that all manufacturers register their products with the label certification project and to minimize their resistance to inspections; improvement of the product sampling methodology to include representative testing of both large and small manufacturers and greater standardization of testing tools and procedures; and continued improvement in local enforcement efforts.

Zhou, Nan; Zheng, Nina; Fino-Chen, Cecilia; Fridley, David; Ning, Cao

2011-09-26T23:59:59.000Z

329

Realized and prospective impacts of U.S. energy efficiency standards for residential appliances: 2004 update  

SciTech Connect (OSTI)

This study estimated energy, environmental and consumer economic impacts of U.S. federal residential energy efficiency standards that became effective in the 1988-2001 period or will take effect by the end of 2007. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products in order to estimate realized impacts and to update projected impacts. We estimate that the considered standards will reduce residential primary energy consumption and CO{sub 2} emissions in 2020 by 8% compared to the levels expected without any standards. They will save a cumulative total of 34 quads by 2020, and 54 quads by 2030. The estimated cumulative net present value of consumer benefit amounts to $93 billion by 2020, and grows to $125 billion by 2030. The overall benefit/cost ratio of cumulative consumer impacts is 2.45 to 1. While the results of this study are subject to a fair degree of uncertainty, we believe that the general conclusions--DOE's energy efficiency standards save significant quantities of energy (and associated carbon emissions) and reduce consumers' net costs--are robust.

Meyers, Stephen; McMahon, James; McNeil, Michael

2005-06-24T23:59:59.000Z

330

Optimization of induction motor efficiency. Volume 3. Experimental comparison of three-phase standard motors with Wanlass motors. Final report  

SciTech Connect (OSTI)

Researchers conducted comprehensive laboratory tests to evaluate the effectiveness of the Wanlass connection in improving motor efficiency. On the basis of these tests, they found no reason to conclude that such a connection is more efficient than the standard connection.

Fuchs, E.F.

1985-12-01T23:59:59.000Z

331

Comparison of the Energy Efficiency Prescribed by ASHRAE/ANSI/IESNA Standard 90.1-1999 and ASHRAE/ANSI/IESNA Standard 90.1-2004  

SciTech Connect (OSTI)

This document presents the qualitative comparison of DOEs formal determination of energy savings of ANSI/ASHRAE/IESNA Standard 90.1-2004. The term qualitative is used in the sense of identifying whether or not changes have a positive, negative, or neutral impact on energy efficiency of the standard, with no attempt made to quantify that impact. A companion document will present the quantitative comparison of DOEs determination. The quantitative comparison will be based on whole building simulation of selected building prototypes in selected climates. This document presents a comparison of the energy efficiency requirements in ANSI/ASHRAE/IESNA 90.1-1999 (herein referred to as Standard 90.1-1999) and ANSI/ASHRAE/IESNA 90.1-2004 (herein referred to as Standard 90.1-2004). The comparison was done through a thorough review of all addenda to Standard 90.1-1999 that were included in the published ANSI/ASHRAE/IESNA Standard 90.1-2001 (herein referred to as Standard 90.1-2001) and also all addenda to Standard 90.1-2001 that were included in the published Standard 90.1-2004. A summary table showing the impact of each addendum is provided. Each addendum to both Standards 90.1-1999 and 90.1-2001 was evaluated as to its impact on the energy efficiency requirements of the standard (greater efficiency, lesser efficiency) and as to significance. The final section of this document summarizes the impacts of the various addenda and proposes which addenda should be included in the companion quantitative portion of DOEs determination. Addenda are referred to with the nomenclature addendum 90.1-xxz, where xx is either 99 for 1999 or 01 for 2001, and z is the ASHRAE letter designation for the addendum. Addenda names are shown in bold face in text. DOE has chosen not to prepare a separate evaluation of Standard 90.1-2001 as that standard does not appear to improve energy efficiency in commercial buildings. What this means for the determination of energy savings for Standard 90.1-2004 is that the baseline standard for comparison is Standard 90.1-1999 and all addenda to both Standards 90.1-1999 and 90.1-2001 must be considered to determine the overall change in efficiency between Standard 90.1-1999 and Standard 90.1-2004.

Halverson, Mark A.; Liu, Bing; Richman, Eric E.; Winiarski, David W.

2006-12-01T23:59:59.000Z

332

Cost-efficiency analysis in support of the energy conservation standards for refrigerator/freezers  

SciTech Connect (OSTI)

The National Appliance Energy Conservation At (NAECA) of 1987 requires the Department of Energy (DOE) to consider new or amended energy-efficiency standards for refrigerators and freezers along with several other appliances. This paper describes the cost-efficiency analysis of design options carried out in support of the proposed 1998 standards for refrigerator/freezers. These proposed standards are unique in that they have been reached by a consensus of various interested parties including the trade association of refrigerator and freezer manufacturers, environmental groups, state energy offices, and utility companies. In large part, these consensus standards are based on the analysis described in this paper. The analysis shows that, for example, for a 515-liter (18.2-ft{sup 3}) top-mount automatic-defrost refrigerator-freezer, the annual energy consumption can be reduced from 700 kWh/yr (2.52 GJ/yr) to 484 kWh/yr (1.74 GJ/yr) (30.9%) by the use of more efficient fan motors and compressors, improved gaskets, and insulation that is {1/2}-inch (12.7 mm) thicker. The energy use can be further reduced to 422 kWh/yr (1.52 GJ/yr) (39.8%) by employing improved heat exchangers, switching to adaptive defrost, and employing vacuum panel insulation instead of thicker walls and doors.

Hakim, S.H.; Turiel, I. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-12-31T23:59:59.000Z

333

Energy Efficiency Standards and Labels in North America: Opportunities for Harmonization  

SciTech Connect (OSTI)

To support the North American Energy Working Group's Expert Group on Energy Efficiency (NAEWG-EE), USDOE commissioned the Collaborative Labeling and Appliance Standards Program (CLASP) to prepare a resource document comparing current standards, labels, and test procedure regulations in Canada, Mexico, and the United States. The resulting document reached the following conclusions: Out of 24 energy-using products for which at least one of the three countries has energy efficiency regulations, three products -- refrigerators/freezers, split system central air conditioners, and room air conditioners -- have similar or identical minimum energy performance standards (MEPS) in the three countries. These same three products, as well as three-phase motors, have similar or identical test procedures throughout the region. There are 10 products with different MEPS and test procedures, but which have the short-term potential to develop common test procedures, MEPS, and/or labels. Three other noteworthy areas where possible energy efficiency initiatives have potential for harmonization are standby losses, uniform endorsement labels, and a new standard or label on windows. This paper explains these conclusions and presents the underlying comparative data.

Vanwiemcgrory, Laura; Wiel, Stephen; Van Wie McGrory, Laura; Harrington, Lloyd

2002-05-16T23:59:59.000Z

334

Analysis of Minimum Efficiency Standards and Rebate Incentive Programs for Domestic Refrigerators in the Pacific Northwest.  

SciTech Connect (OSTI)

Refrigerator-freezers (R/Fs) and freezers (FRs) account for 16% of the electricity consumed in the residential sector of the Bonneville Power Administration (BPA) forecast region (Oregon, Washington, Idaho and Western Montana). After space and water heating, R/Fs are the largest residential electrical end-use. There is great potential for reducing electricity consumption in a cost-effective manner through the purchase and use of more energy-efficient R/Fs and FRs. For example, if every household in the BPA region had the best R/F model now mass-produced, the electricity savings would be about 5 billion kWh/yr, approximately the power supplied annually by 1000 MW of nuclear or coal-fired generating capacity. The Northwest Power Planning Council (NPPC) and BPA recognize the savings potential from efficient R/Fs and FRs as well as the barriers to their use. In the 1983 regional power plan, the Council directed BPA to develop and implement incentive and promotion programs for efficient appliances. The NPPC also called for the evaluation of minimum efficiency standards for appliances sold in the region. In response to this directive, the Office of Conservation in BPA funded an evaluation of both rebate incentive programs and minimum efficiency standards for R/Fs and FRs. The results are presented in this report.

Geller, Howard S.

1985-11-01T23:59:59.000Z

335

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

SciTech Connect (OSTI)

Water heating is a main consumer of energy in households, especially in temperate and cold climates. In South Africa, where hot water is typically provided by electric resistance storage tank water heaters (geysers), water heating energy consumption exceeds cooking, refrigeration, and lighting to be the most consumptive single electric appliance in the home. A recent analysis for the Department of Trade and Industry (DTI) performed by the authors estimated that standing losses from electric geysers contributed over 1,000 kWh to the annual electricity bill for South African households that used them. In order to reduce this burden, the South African government is currently pursuing a programme of Energy Efficiency Standards and Labelling (EES&L) for electric appliances, including geysers. In addition, Eskom has a history of promoting heat pump water heaters (HPWH) through incentive programs, which can further reduce energy consumption. This paper provides a survey of international electric storage water heater test procedures and efficiency metrics which can serve as a reference for comparison with proposed geyser standards and ratings in South Africa. Additionally it provides a sample of efficiency technologies employed to improve the efficiency of electric storage water heaters, and outlines programs to promote adoption of improved efficiency. Finally, it surveys current programs used to promote HPWH and considers the potential for this technology to address peak demand more effectively than reduction of standby losses alone

Johnson, Alissa; Lutz, James; McNeil, Michael A.; Covary, Theo

2013-11-13T23:59:59.000Z

336

INL receives GreenGov Presidential Award for fleet fuel efficiency improvements  

ScienceCinema (OSTI)

Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

337

INL receives GreenGov Presidential Award for fleet fuel efficiency improvements  

SciTech Connect (OSTI)

Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

None

2010-01-01T23:59:59.000Z

338

Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators  

E-Print Network [OSTI]

A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

2008-01-01T23:59:59.000Z

339

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Department of Energy. Alternative Fuels Data Center (HomeMotor Fuels: the Alternative Fuels Trade Model. Oak Ridge,Challenges for Alternative Fuel Vehicle and Transportation

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

340

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Department of Energy. Alternative Fuels Data Center (HomeMotor Fuels: the Alternative Fuels Trade Model. Oak Ridge,Challenges for Alternative Fuel Vehicle and Transportation

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Demonstration of Energy Efficient Steam Reforming in Microchannels for Automotive Fuel Processing  

SciTech Connect (OSTI)

A compact, energy efficient microchannel steam reforming system has been demonstrated. The unit generates sufficient reformate to provide H2 to a 10 kWe PEM fuel cell (when coupled with a water-gas shift and CO cleanup reactors). The overall volume of the reactor is 4.9 liters while that of the supporting network of heat exchangers is 1.7 liters . Use of a microchannel configuration in the steam reforming reactor produces rapid heat and mass transport which enables fast kinetics for the highly endothermic reaction. Heat is provided to the reactor by a combustion gas flowing in interleaved microchannels in cross flow with the reaction channels. A network of microchannel heat exchangers allows recovery of heat in the reformate product and combustion exhaust streams for use in vaporizing water and fuel, preheating reactants to reactor temperature and preheating combustion air. The microchannel architecture enables very compact and highly effective heat exchangers to be constructed. As a result of the heat exchange network, the system exhaust temperatures are typically ~50?C for the combustion gas and ~130?C for the reformate product while the reactor is operated at 750?C. While reforming isooctane at a rate sufficient to supply a 13.7 kWe fuel cell the system achieved 98.6% conversion with an estimated overall system efficiency after integration with WGS and PEM fuel cell of 44% (electrical output / LHV fuel). The efficiency estimate assumes integration with a WGS reactor (90% conversion CO to CO2 with 100% selectivity) and a PEM fuel cell (64% power conversion effectiveness with 85% H2 utilization for an overall 54% efficiency) and does not include parasitic losses for compression of combustion air. Acknowledgement The work described here was funded by the U.S. Department of Energy, Office of Transportation Technology as part of the OTT Fuel Cells Program.

Whyatt, Greg A.; TeGrotenhuis, Ward E.; Geeting, John GH; Davis, James M.; Wegeng, Robert S.; Pederson, Larry R.

2002-01-01T23:59:59.000Z

342

Realized and projected impacts of U.S. federal efficiency standards for residential appliances  

SciTech Connect (OSTI)

This study estimated energy, environmental and consumer economic impacts of U.S. Federal residential energy efficiency standards that became effective in the 1988-2001 period or will take effect by the end of 2007. These standards have been the subject of in-depth analyses conducted as part of DOE's standards rulemaking process. This study drew on those analyses, but updated certain data and developed a common framework and assumptions for all of the products. We estimate that the considered standards will reduce residential primary energy consumption and CO{sub 2} emissions in 2020 by 8-9% compared to the levels expected without any standards. They will save a cumulative total of 25-30 quads by the year 2015, and 60 quads by 2030. The estimated cumulative net present value of consumer benefit amounts to nearly $80 billion by 2015, and grows to $130 billion by 2030. The overall benefit/cost ratio of cumulative consumer impacts in the 1987-2050 period is 2.75:1. The cumulative cost of DOE's program to establish and implement the standards is in the range of $200-250 million.

Meyers, Stephen; McMahon, James; McNeil, Michael; Liu, Xiaomin

2002-06-01T23:59:59.000Z

343

Energy-efficiency standards for homes have the potential to reduce energy consumption and peak electrical demand.  

E-Print Network [OSTI]

The Issue Energy-efficiency standards for homes have the potential to reduce energy consumption HVAC system efficiency, including problems with airflows, refrigerant system components, and ductwork standards, but little data is available on the actu- al energy performance of new homes. The Solution

344

International Review of the Development and Implementation of Energy Efficiency Standards and Labeling Programs  

SciTech Connect (OSTI)

Appliance energy efficiency standards and labeling (S&L) programs have been important policy tools for regulating the efficiency of energy-using products for over 40 years and continue to expand in terms of geographic and product coverage. The most common S&L programs include mandatory minimum energy performance standards (MEPS) that seek to push the market for efficient products, and energy information and endorsement labels that seek to pull the market. This study seeks to review and compare some of the earliest and most well-developed S&L programs in three countries and one region: the U.S. MEPS and ENERGY STAR, Australia MEPS and Energy Label, European Union MEPS and Ecodesign requirements and Energy Label and Japanese Top Runner programs. For each program, key elements of S&L programs are evaluated and comparative analyses across the programs undertaken to identify best practice examples of individual elements as well as cross-cutting factors for success and lessons learned in international S&L program development and implementation. The international review and comparative analysis identified several overarching themes and highlighted some common factors behind successful program elements. First, standard-setting and programmatic implementation can benefit significantly from a legal framework that stipulates a specific timeline or schedule for standard-setting and revision, product coverage and legal sanctions for non-compliance. Second, the different MEPS programs revealed similarities in targeting efficiency gains that are technically feasible and economically justified as the principle for choosing a standard level, in many cases at a level that no product on the current market could reach. Third, detailed survey data such as the U.S. Residential Energy Consumption Survey (RECS) and rigorous analyses provide a strong foundation for standard-setting while incorporating the participation of different groups of stakeholders further strengthen the process. Fourth, sufficient program resources for program implementation and evaluation are critical to the effectiveness of standards and labeling programs and cost-sharing between national and local governments can help ensure adequate resources and uniform implementation. Lastly, check-testing and punitive measures are important forms of enforcement while the cancellation of registration or product sales-based fines have also proven effective in reducing non-compliance. The international comparative analysis also revealed the differing degree to which the level of government decentralization has influenced S&L programs and while no single country has best practices in all elements of standards and labeling development and implementation, national examples of best practices for specific elements do exist. For example, the U.S. has exemplified the use of rigorous analyses for standard-setting and robust data source with the RECS database while Japan?s Top Runner standard-setting principle has motivated manufacturers to exceed targets. In terms of standards implementation and enforcement, Australia has demonstrated success with enforcement given its long history of check-testing and enforcement initiatives while mandatory information-sharing between EU jurisdictions on compliance results is another important enforcement mechanism. These examples show that it is important to evaluate not only the drivers of different paths of standards and labeling development, but also the country-specific context for best practice examples in order to understand how and why certain elements of specific S&L programs have been effective.

Zhou, Nan; Zheng, Nina; Fridley, David

2012-02-28T23:59:59.000Z

345

Project Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel Vehicles for  

E-Print Network [OSTI]

agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract Number DTRT13-GProject Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel-UTC29 Start and End Dates May 16, 2014 to May 31, 2015 Brief Description of Research Project

California at Davis, University of

346

Sustainable Transportation: Accelerating Widespread Adoption of Energy Efficient Vehicles & Fuels (Brochure)  

SciTech Connect (OSTI)

While energy efficient transportation strategies have the potential to simultaneously slash oil consumption and reduce greenhouse gas (GHG) emissions, a truly sustainable solution will require more than just putting drivers behind the wheels of new fuel-efficient cars. As the only national laboratory dedicated 100% to renewable energy and energy efficiency, the National Renewable Energy Laboratory (NREL) accelerates widespread adoption of high-performance, low-emission, energy-efficient passenger and freight vehicles, as well as alternative fuels and related infrastructure. Researchers collaborate closely with industry, government, and research partners, using a whole-systems approach to design better batteries, drivetrains, and engines, as well as thermal management, energy storage, power electronic, climate control, alternative fuel, combustion, and emission systems. NREL's sustainable transportation research, development, and deployment (RD&D) efforts are not limited to vehicles, roads, and fueling stations. The lab also explores ways to save energy and reduce GHGs by integrating transportation technology advancements with renewable energy generation, power grids and building systems, urban planning and policy, and fleet operations.

Not Available

2014-12-01T23:59:59.000Z

347

Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

348

Will cheap gas and efficient cars imperil air-quality goals under relaxed emission standards  

SciTech Connect (OSTI)

Long-term trends, to the year 2000, of urban household travel were forecast for prototype metropolitan areas under several sets of energy prices, auto fuel economy, and emission standards. Dramatic improvements in air quality were forecast due to redistribution of travel and lowered emissions. The exception to this trend to rapidly growing cities, such as those in the west and southwest experiencing sprawl development that characterized many urbanized areas in the industrial northeast and midwest during the 1950's and 1960's. In one test city, where the rate of urbanization has slowed significantly, analysis indicated that relaxation of the light-duty-vehicle NO/sub x/ standard from 1.0 gm/mi to 2.0 gm/mi would not severely threaten attainment of the ambient NO/sub x/ standards by 1987 owing to redistribution of population and activities. The difference in total energy impacts was determined to be negligible, assuming moderate increase in petroleum prices through 1995 (3.1%/year). In another policy test, without changing emission standards, an increase in fuel price of 3.75%/year from 1980 to 2000 reduced travel and provided a 4% decrease in energy use and a corresponding decrease in CO, HC and NO/sub x/. Virtually all of the reduction in travel and emissions was due to non-work travel, which fell 9%. The price increase damped the increase in auto travel per person that would occur as autos become cheaper to operate and as household wealth increases, making the answer to the title a cautious yes, given steady or slowly rising fuel prices.

LaBelle, S.J.; Saricks, C.L.; Moses, D.O.

1983-04-01T23:59:59.000Z

349

Status of China's Energy Efficiency Standards and Labels for Appliances and International Collaboration  

SciTech Connect (OSTI)

China first adopted minimum energy performance standards (MEPS) in 1989. Today, there are standards for a wide range of domestic, commercial and selected industrial equipment. In 1999, China launched a voluntary endorsement label, which has grown to cover over 40 products including water-saving products (See Figure 1). Further, in 2005, China started a mandatory energy information label (also referred to as the 'Energy Label'). Today, the Energy Label is applied to four products including: air conditioners; household refrigerators; clothes washers; and unitary air conditioners (See Figure 2). MEPS and the voluntary endorsement labeling specifications have been updated and revised in order to reflect technology improvements to those products in the market. These programs have had an important impact in reducing energy consumption of appliances in China. Indeed, China has built up a strong infrastructure to develop and implement product standards. Historically, however, the government's primary focus has been on the technical requirements for efficiency performance. Less attention has been paid to monitoring and enforcement with a minimal commitment of resources and little expansion of administrative capacity in this area. Thus, market compliance with both mandatory standards and labeling programs has been questionable and actual energy savings may have been undermined as a result. The establishment of a regularized monitoring system for tracking compliance with the mandatory standard and energy information label in China is a major area for program improvement. Over the years, the Collaborative Labeling and Appliance Standards Program (CLASP) has partnered with several Chinese institutions to promote energy-efficient products in China. CLASP, together with its implementing partner Lawrence Berkeley National Laboratory (LBNL), has assisted China in developing and updating the above-mentioned standards and labeling programs. Because of the increasing need for the development of a monitoring system to track compliance with standards and labeling, CLASP, with support from Japan's Ministry of Economy, Trade and Industry (METI), has expanded its ongoing collaboration with the China National Institute of Standards (CNIS) to include enforcement and monitoring. CNIS has already begun working on the issue of compliance. CNIS has conducted modest sample testing in 2006 for refrigerators, freezers and room air-conditioners, and repeated the same task in 2007 with a similar sample size for three products (refrigerators, freezers, air-conditioners and clothes washers). And, CNIS, with technical support from LBNL, has analyzed the data collected through testing. At the same time, parallel effort has also been paid to look at the potential impact of the label to 2020. In conjunction with CNIS, CLASP technical experts reviewed the standards development timeline of the four products currently subject to the mandatory energy information label. CLASP, with the support of METI/IEEJ, collaborated with CNIS to develop the efficiency grades, providing: technical input to the process; comment and advice on particular technical issues; as well as evaluation of the results. In addition, in order to effectively evaluate the impact of the label on China's market, CLASP further provided assistance to CNIS to collect data on both the efficiency distribution and product volume distribution of refrigerators on the market. This short report summarizes the status of Standards and Labeling program, current enforcement and monitoring mechanism in China, and states the importance of international collaborations.

Zhou, Nan

2008-03-01T23:59:59.000Z

350

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel energy exceeds ethanol fuel energy on a GGE basis.the production of ethanol and other fuels. Both grain foral. (1999). Effects of Fuel Ethanol Use on Fuel-Cycle Energy

2007-01-01T23:59:59.000Z

351

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel energy exceeds ethanol fuel energy on a GGE basis.production of ethanol and other fuels. Cereals are generallyal. (1999). Effects of Fuel Ethanol Use on Fuel-Cycle Energy

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

352

The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

353

The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy  

E-Print Network [OSTI]

THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

Love, Michael Lee

1982-01-01T23:59:59.000Z

354

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Prospects for Hydrogen and Fuel Cells, Organization forquiet and powerful. .Hydrogen and fuel cells also offer thevehicles (PHEVs), hydrogen fuel cell vehicles (FCVs) are

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

355

Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile  

SciTech Connect (OSTI)

Minimum Efficiency Performance Standards (MEPS) have been chosen as part of Chile's national energy efficiency action plan. As a first MEPS, the Ministry of Energy has decided to focus on a regulation for lighting that would ban the sale of inefficient bulbs, effectively phasing out the use of incandescent lamps. Following major economies such as the US (EISA, 2007) , the EU (Ecodesign, 2009) and Australia (AS/NZS, 2008) who planned a phase out based on minimum efficacy requirements, the Ministry of Energy has undertaken the impact analysis of a MEPS on the residential lighting sector. Fundacion Chile (FC) and Lawrence Berkeley National Laboratory (LBNL) collaborated with the Ministry of Energy and the National Energy Efficiency Program (Programa Pais de Eficiencia Energetica, or PPEE) in order to produce a techno-economic analysis of this future policy measure. LBNL has developed for CLASP (CLASP, 2007) a spreadsheet tool called the Policy Analysis Modeling System (PAMS) that allows for evaluation of costs and benefits at the consumer level but also a wide range of impacts at the national level, such as energy savings, net present value of savings, greenhouse gas (CO2) emission reductions and avoided capacity generation due to a specific policy. Because historically Chile has followed European schemes in energy efficiency programs (test procedures, labelling program definitions), we take the Ecodesign commission regulation No 244/2009 as a starting point when defining our phase out program, which means a tiered phase out based on minimum efficacy per lumen category. The following data were collected in order to perform the techno-economic analysis: (1) Retail prices, efficiency and wattage category in the current market, (2) Usage data (hours of lamp use per day), and (3) Stock data, penetration of efficient lamps in the market. Using these data, PAMS calculates the costs and benefits of efficiency standards from two distinct but related perspectives: (1) The Life-Cycle Cost (LCC) calculation examines costs and benefits from the perspective of the individual household; and (2) The National Perspective projects the total national costs and benefits including both financial benefits, and energy savings and environmental benefits. The national perspective calculations are called the National Energy Savings (NES) and the Net Present Value (NPV) calculations. PAMS also calculate total emission mitigation and avoided generation capacity. This paper describes the data and methodology used in PAMS and presents the results of the proposed phase out of incandescent bulbs in Chile.

Letschert, Virginie E.; McNeil, Michael A.; Leiva Ibanez, Francisco Humberto; Ruiz, Ana Maria; Pavon, Mariana; Hall, Stephen

2011-06-01T23:59:59.000Z

356

Regional cooperation in energy efficiency standard-setting and labeling in North America  

SciTech Connect (OSTI)

The North American Energy Working Group (NAEWG) was established in 2001 by the governments of Canada, Mexico, and the United States. The goals of NAEWG are to foster communication and cooperation on energy-related matters of common interest, and to enhance North American energy trade and interconnections consistent with the goal of sustainable development, for the benefit of all three countries. At its outset, NAEWG established teams to address different aspects of the energy sector. One, the Energy Efficiency Expert Group, undertook activity in three areas: (1) analyzing commonalities and differences in the test procedures of Canada, Mexico, and the United States, and identifying specific products for which the three countries might consider harmonization; (2) exploring possibilities for increased mutual recognition of laboratory test results; and (3) looking at possibilities for enhanced cooperation in the Energy Star voluntary endorsement labeling program. To support NAEWG's Expert Group on Energy Efficiency (NAEWG-EE), USDOE commissioned Lawrence Berkeley National Laboratory, representing the Collaborative Labeling and Appliance Standards Program (CLASP), to prepare a resource document comparing current standards, labels, and test procedure regulations in Canada, Mexico, and the United States. The resulting document identified 46 energy-using products for which at least one of the three countries has energy efficiency regulations. Three products--refrigerators/freezers, room air conditioners, and integral horsepower three-phase electric motors--have identical minimum energy performance standards (MEPS) and test procedures in the three countries. Ten other products have different MEPS and test procedures, but have the near-term potential for harmonization. NAEWG-EE is currently working to identify mechanisms for mutual recognition of test results. With consultative support from the United States and Canada through NAEWG-EE, Mexico is exploring possibilities for extending the Energy Star endorsement label to Mexico.

Wiel, Stephen; Van Wie McGrory, Laura

2003-08-04T23:59:59.000Z

357

Estimate of Technical Potential for Minimum Efficiency Performance Standards in 13 Major World Economies  

E-Print Network [OSTI]

achievable energy-efficient designs, based on emergingachievable energy- efficient designs, based on efficientdesign that achieves high energy efficiency by combining the most efficient

Letschert, Virginie

2013-01-01T23:59:59.000Z

358

POTENTIAL IMPACT OF INTERFACIAL BONDING EFFICIENCY ON USED NUCLEAR FUEL VIBRATION INTEGRITY DURING NORMAL TRANSPORTATION  

SciTech Connect (OSTI)

Finite element analysis (FEA) was used to investigate the impacts of interfacial bonding efficiency at pellet pellet and pellet clad interfaces on surrogate of used nuclear fuel (UNF) vibration integrity. The FEA simulation results were also validated and benchmarked with reversible bending fatigue test results on surrogate rods consisting of stainless steel (SS) tubes with alumina-pellet inserts. Bending moments (M) are applied to the FEA models to evaluate the system responses of the surrogate rods. From the induced curvature, , the flexural rigidity EI can be estimated as EI=M/ . The impacts of interfacial bonding efficiency include the moment carrying capacity distribution between pellets and clad and cohesion influence on the flexural rigidity of the surrogate rod system. The result also indicates that the immediate consequences of interfacial de-bonding are a load carrying capacity shift from the fuel pellets to the clad and a reduction of the composite rod flexural rigidity. Therefore, the flexural rigidity of the surrogate rod and the bending moment bearing capacity between the clad and fuel pellets are strongly dependent on the efficiency of interfacial bonding at the pellet pellet and pellet clad interfaces. FEA models will be further used to study UNF vibration integrity.

Jiang, Hao [ORNL] [ORNL; Wang, Jy-An John [ORNL] [ORNL; Wang, Hong [ORNL] [ORNL

2014-01-01T23:59:59.000Z

359

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

the production and use of fuel ethanol in Brazil. Sao Paulo,and mandates, ethanol tariffs, vehicle and fuel testingthe decision over which fuel and ethanol they should buy and

2007-01-01T23:59:59.000Z

360

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

the production and use of fuel ethanol in Brazil. Sao Paulo,and mandates, ethanol tariffs, vehicle and fuel testingthe decision over which fuel and ethanol they should buy and

Sperling, Daniel; Farrell, Alexander

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel) and bio-based and FT diesel fuels are indicated,Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel energyDiesel Bio-Diesel Hydrogen Electric Figure 5-16: Fuel energy

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

362

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel) and bio-based and FT diesel fuels are indicated,Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel energyDiesel Bio-Diesel Hydrogen Electric Figure 5-19: Fuel energy

2007-01-01T23:59:59.000Z

363

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

SciTech Connect (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

364

ISSUANCE 2015-02-03: Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period  

Broader source: Energy.gov [DOE]

Energy Efficiency Program for Residential Products: Energy Conservation Standards for Miscellaneous Refrigeration Products, Reopening of Public Comment Period

365

National Fuel (Gas)- Small Commercial Conservation Program  

Broader source: Energy.gov [DOE]

In conjunction with NYSERDA's Existing Facilities Program, National Fuel provides an energy efficient equipment application for custom and standard rebates. These rebates are available for large...

366

Effect of Wide-Based Single Tires on Fuel Efficiency of Class 8 Combination Trucks  

SciTech Connect (OSTI)

In 2007 and 2008, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class- 8 trucks from a fleet engaged in normal freight operations. Such data and information is useful to support Class-8 modeling of heavy-truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within heavy-truck research and analyses. This paper presents some general statistics, including distribution of idling times during long-haul trucking operations. However, the main focus is on the analysis of some of the extensive real-world information collected in this project, specifically on the assessment of the effect that different types of tires (i.e., dual tires vs. new generation single wide-based tires or NGSWBTs) have on the fuel efficiency of Class-8 trucks. The tire effect is also evaluated as a function of the vehicle load level. In all cases analyzed, the statistical tests performed strongly suggest that fuel efficiencies achieved when using all NGSWBTs or combinations of duals and NGSWBTs are higher than in the case of a truck equipped with all dual tires.

Franzese, Oscar [ORNL] [ORNL; Knee, Helmut E [ORNL] [ORNL; Slezak, Lee [U.S. Department of Energy] [U.S. Department of Energy

2010-01-01T23:59:59.000Z

367

In 1991 UC Irvine adopted standards to outperform California's Title 24 Energy Efficiency Standards by 30 percent, use 100 percent reclaimed water, CO2 sensing for  

E-Print Network [OSTI]

in Sacramento. · Nine buildings at UC Irvine bear the U.S. Green Building Council's Leadership in Energy· In 1991 UC Irvine adopted standards to outperform California's Title 24 Energy Efficiency, and no rainforest hardwoods · UC Irvine's Smart Labs Initiative, which reduces energy consumption in new

Rose, Michael R.

368

National Energy Efficiency Evaluation, Measurement and Verification (EM&V) Standard: Scoping Study of Issues and Implementation Requirements  

SciTech Connect (OSTI)

This report is a scoping study that identifies issues associated with developing a national evaluation, measurement and verification (EM&V) standard for end-use, non-transportation, energy efficiency activities. The objectives of this study are to identify the scope of such a standard and define EM&V requirements and issues that will need to be addressed in a standard. To explore these issues, we provide and discuss: (1) a set of definitions applicable to an EM&V standard; (2) a literature review of existing guidelines, standards, and 'initiatives' relating to EM&V standards as well as a review of 'bottom-up' versus 'top-down' evaluation approaches; (3) a summary of EM&V related provisions of two recent federal legislative proposals (Congressman Waxman's and Markey's American Clean Energy and Security Act of 2009 and Senator Bingaman's American Clean Energy Leadership Act of 2009) that include national efficiency resource requirements; (4) an annotated list of issues that that are likely to be central to, and need to be considered when, developing a national EM&V standard; and (5) a discussion of the implications of such issues. There are three primary reasons for developing a national efficiency EM&V standard. First, some policy makers, regulators and practitioners believe that a national standard would streamline EM&V implementation, reduce costs and complexity, and improve comparability of results across jurisdictions; although there are benefits associated with each jurisdiction setting its own EM&V requirements based on their specific portfolio and evaluation budgets and objectives. Secondly, if energy efficiency is determined by the US Environmental Protection Agency to be a Best Available Control Technology (BACT) for avoiding criteria pollutant and/or greenhouse gas emissions, then a standard can be required for documenting the emission reductions resulting from efficiency actions. The third reason for a national EM&V standard is that such a standard is likely to be required as a result of future federal energy legislation that includes end-use energy efficiency, either as a stand-alone energy-efficiency resource standard (EERS) or as part of a clean energy or renewable energy standard. This study is focused primarily on this third reason and thus explores issues associated with a national EM&V standard if energy efficiency is a qualifying resource in federal clean energy legislation. Developing a national EM&V standard is likely to be a lengthy process; this study focuses on the critical first step of identifying the issues that must be addressed in a future standard. Perhaps the most fundamental of these issues is 'how good is good enough?' This has always been the fundamental issue of EM&V for energy efficiency and is a result of the counter-factual nature of efficiency. Counter-factual in that savings are not measured, but estimated to varying degrees of accuracy by comparing energy consumption after a project (program) is implemented with what is assumed to have been the consumption of energy in the absence of the project (program). Therefore, the how good is good enough question is a short version of asking how certain does one have to be of the energy savings estimate that results from EM&V activities and is that level of certainty properly balanced against the amount of effort (resources, time, money) that is utilized to obtain that level of certainty. The implication is that not only should energy efficiency investments be cost-effective, but EM&V investments should consider risk management principles and thus also balance the costs and value of information derived from EM&V (EM&V should also be cost-effective).

Schiller Consulting, Inc.; Schiller, Steven R.; Goldman, Charles A.; Galawish, Elsia

2011-02-04T23:59:59.000Z

369

A Report on the Economics of California's Low Carbon Fuel Standard & Cost Containment Mechanisms  

E-Print Network [OSTI]

Warming Solutions Act of 2006. The program calls for large reductions in the carbon intensity of fuel sold traditional fossil fuels and alternative, low carbon intensity fuels; or if there are capacity or technological constraints to deploying alternative fuels, particularly those with low carbon intensity

Lin, C.-Y. Cynthia

370

2006-01-0434 Standardized Equation for Hydrogen Gas Densities for Fuel  

E-Print Network [OSTI]

the Fuel Consumption and Range of Fuel Cell Powered Electric and Hybrid Electric Vehicles Using Compressed are presented with experimental data and with the full 32-term equation of state. INTRODUCTION Motor vehicle in fuel economy results. The advent of new drive technology and fuels in motor vehicles has required

Magee, Joseph W.

371

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

Catalysis Dimethyl Ether Flash Pyrolysis Fischer Tropschpure hydrogen fuel product. Flash pyrolysis Pyrolysis is the

2007-01-01T23:59:59.000Z

372

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

Catalysis Dimethyl Ether Flash Pyrolysis Fischer Tropschpure hydrogen fuel product. Flash pyrolysis Pyrolysis is the

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

373

Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartmentLifeDepartment|

374

Property:RenewableFuelStandard/BiomassBasedDiesel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: EnergyPotentialUrbanUtilityScalePVCapacity Jump to: navigation,Website PropertyRegulationsAdvancedBiofuel

375

Introduction to SAE Hydrogen Fueling Standardization Webinar: Q&A  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE VehicleStationary Fuel EnerNOC,FEDERAL ENERGY

376

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural

377

Using polymer electrolyte membrane fuel cells in a hybrid surface ship propulsion plant to increase fuel efficiency  

E-Print Network [OSTI]

An increasingly mobile US Navy surface fleet and oil price uncertainty contrast with the Navy's desire to lower the amount of money spent purchasing fuel. Operational restrictions limiting fuel use are temporary and cannot ...

Kroll, Douglas M. (Douglas Michael)

2010-01-01T23:59:59.000Z

378

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel-based compliance strategy with no significant advancesthese low-GHG biofuel blends. Significant advances in fuel

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

379

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

biofuel-based compliance strategy with no significant advancesthese low-GHG biofuel blends. Significant advances in fuel

2007-01-01T23:59:59.000Z

380

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network [OSTI]

fuels (e.g. , compressed natural gas, oil derived from tar20% by volume), compressed natural gas, electricity, and

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis  

E-Print Network [OSTI]

for calculating the carbon intensity of biofuels. London:the carbon intensity of fuels 47carbon intensity..

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

382

A Low-Carbon Fuel Standard for California Part 2: Policy Analysis  

E-Print Network [OSTI]

for calculating the carbon intensity of biofuels. London:the carbon intensity of fuels 47carbon intensity..

2007-01-01T23:59:59.000Z

383

High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001  

SciTech Connect (OSTI)

OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

Brown, L.C.

2002-11-01T23:59:59.000Z

384

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

The purpose of an energy management system standard is towww.iso.org/iso/energy_management_system_standard Relatedof an energy management system. For organizations already

McKane, Aimee

2010-01-01T23:59:59.000Z

385

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

Comparison of National Energy Management Standards, prepared2007, Industrial Energy Management: Issues Paper, preparedMeeting: Using Energy Management Standards to stimulate

McKane, Aimee

2010-01-01T23:59:59.000Z

386

Vehicle Technologies Office 2013 Merit Review: A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency  

Broader source: Energy.gov [DOE]

A presentation given by Chrysler at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting on its project to research a multi-air and multi-fuel approach to improving engine efficiency.

387

Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2:DepartmentYears

388

Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| DepartmentVehicle? |Department

389

Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards  

E-Print Network [OSTI]

energy efficiency business model on utility earnings EES w/energy efficiency business model on utility ROE EES w/RPCSticks: A Comprehensive Business Model for the Successful

Satchwell, Andrew

2013-01-01T23:59:59.000Z

390

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network [OSTI]

Hill. 1996. Energy test procedures for appliances. EnergyWater Efficiency Test Procedures Jim Lutz, Peter Biermayer,Water Efficiency Test Procedures Jim Lutz, Peter Biermayer,

Lutz, Jim

2012-01-01T23:59:59.000Z

391

An International Survey of Electric Storage Tank Water Heater Efficiency and Standards  

E-Print Network [OSTI]

Survey of Electric Storage Tank Water Heater Efficiency andSurvey of Electric Storage Tank Water Heater Efficiency andby electric resistance storage tank water heaters (geysers),

Johnson, Alissa

2013-01-01T23:59:59.000Z

392

DOE_EnergyEfficiencyStandardsForLargeVolumeWaterHeaters.pdf  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93Decemberof EnergySeptember 6, 2012 Scott Baker Sr.

393

EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant PotomacFinal Environmental891:Department ofFinding

394

Development and Demonstration of a New Generation High Efficiency 10kW Stationary Fuel Cell System  

SciTech Connect (OSTI)

The overall project objective is to develop and demonstrate a polymer electrolyte membrane fuel cell combined heat and power (PEMFC CHP) system that provides the foundation for commercial, mass produced units which achieve over 40% electrical efficiency (fuel to electric conversion) from 50-100% load, greater than 70% overall efficiency (fuel to electric energy + usable waste heat energy conversion), have the potential to achieve 40,000 hours durability on all major process components, and can be produced in high volumes at under $400/kW (revised to $750/kW per 2011 DOE estimates) capital cost.

Howell, Thomas Russell

2013-04-30T23:59:59.000Z

395

Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity  

E-Print Network [OSTI]

We examine the efficiency and distributional impacts of greenhouse gas policies directed toward the electricity

Rausch, Sebastian

2012-07-17T23:59:59.000Z

396

Assessment of Technologies for Compliance with the Low Carbon Fuel Standard  

E-Print Network [OSTI]

of U.S. croplands for biofuels increases greenhouse gasesthe indirect Effects of Biofuels Production. Renewable FuelsTyner, W. E. ; Birur, D. K. Biofuels for all? Understanding

Yeh, Sonia; Lutsey, Nicholas P.; Parker, Nathan C.

2009-01-01T23:59:59.000Z

397

Table 4b. Relative Standard Errors for Total Fuel Oil Consumption per  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.2 9,758.63,846.302.8Effective

398

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water Power

399

The Challenge of Achieving Californias Low Carbon Fuel Standard  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteamYearTexas--State Offshore Shale Proved Reserves (BillionAnalysis

400

Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO]Industry Group Learns About Lights

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Efficiency Improvement Opportunities for Light-Duty Natural-Gas-Fueled Vehicles  

SciTech Connect (OSTI)

The purpose of this report is to evaluate and make recommendations concerning technologies that promise to improve the efilciency of compressed natural gas (CNG) light-duty vehicles. Technical targets for CNG automotive technology given in the March 1998 OffIce of Advanced Automotive Technologies research and development plan were used as guidance for this effort. The technical target that necessitates this current study is to validate technologies that enable CNG light vehicles to have at least 10% greater - fuel economy (on a miles per gallon equivalent basis) than equivalent gasoline vehicles by 2006. Other tar- gets important to natural gas (NG) automotive technology and this study are to: (1) increase CNG vehicle range to 380 miles, (2) reduce the incremental vehicle cost (CNG vs gasoline) to $1500, and (3) meet the California ultra low-emission vehicle (ULEV) and Federal Tier 2 emission standards expected to be in effect in 2004.

Staunton, R.H.; Thomas, J.F.

1998-12-01T23:59:59.000Z

402

Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.414663161673

403

Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4146631616732

404

Buildings Energy Data Book: 7.3 Efficiency Standards for Residential HVAC  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41466316167323

405

Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial HVAC  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.414663161673231

406

Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial HVAC  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4146631616732312

407

Buildings Energy Data Book: 7.4 Efficiency Standards for Commercial HVAC  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41466316167323123

408

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.414663161673231231

409

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.4146631616732312312

410

Buildings Energy Data Book: 7.5 Efficiency Standards for Residential Appliances  

Buildings Energy Data Book [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for(EV) Road UserNatural U.S.41466316167323123123

411

Clean, Efficient, and Reliable Heat and Power for the 21st Century, Fuel Cell Technologies Program (FCTP) (Fact Sheet)  

SciTech Connect (OSTI)

This overview of the U.S. Department of Energy's Fuel Cell Technologies Program describes the program's focus and goals, along with current fuel cell applications and future potential. The program focuses on research and development of fuel cell systems for diverse applications in the stationary power, portable power, and transportation sectors. It works to reduce costs and improve technologies to advance fuel cell uses in areas such as combined heat and power, auxiliary power units, portable power systems, and stationary and backup power. To help ensure that fuel cell advances are realized, the program rigorously analyzes energy efficiency, economic, and environmental benefits of fuel cells and seeks to optimize synergies among fuel cell applications and other renewable technologies.

Not Available

2010-05-01T23:59:59.000Z

412

EA-1926: Energy Efficiency Design Standards for New Federal Low-Rise Residential Buildings (RIN# 1904-AC61)  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of implementing the provisions in the Energy Conservation and Production Act (ECPA) that require DOE to update the baseline Federal energy efficiency performance standards for the construction of new Federal buildings, including low-rise residential buildings.

413

Energy Efficiency Standards and Labels in North America: Opportunities for Harmonization  

E-Print Network [OSTI]

and voluntary standards for dry-type transformers.MEPS for dry-type distribution transformers (effective

Wiel, Stephen

2008-01-01T23:59:59.000Z

414

Analysis of Minimum Efficiency Standards and Rebate Incentive Programs for Domestic Refrigerators in the Pacific Northwest, Executive Summary.  

SciTech Connect (OSTI)

Refrigerator-freezers (R/Fs) and freezers (FRs) account for 16% of the electricity consumed in the residential sector of the Bonneville Power Administration (BPA) forecast region (Oregon, Washington, Idaho and Western Montana). After space and water heating, R/Fs are the largest residential electrical end-use. The Northwest Power Planning Council (NPPC) and BPA recognize the savings potential from efficient R/Fs and FRs as well as the barriers to their use. In the 1983 regional power plan, the Council directed BPA to develop and implement incentive and promotion programs for efficient appliances. The NPPC also called for the evaluation of minimum efficiency standards for appliances sold in the region. In response to this directive, the Office of Conservation in BPA funded an evaluation of both rebate incentive programs and minimum efficiency standards for R/Fs and FRs. The results are presented in this report. The energy savings potential and economic feasibility of rebate programs and efficiency standards are the primary issues considered.

Geller, Howard S.

1986-01-01T23:59:59.000Z

415

Energy-Efficiency Labels and Standards: A Guidebook forAppliances, Equipment, and Lighting - 2nd Edition  

SciTech Connect (OSTI)

Energy-performance improvements in consumer products are an essential element in any government's portfolio of energy-efficiency and climate change mitigation programs. Governments need to develop balanced programs, both voluntary and regulatory, that remove cost-ineffective, energy-wasting products from the marketplace and stimulate the development of cost-effective, energy-efficient technology. Energy-efficiency labels and standards for appliances, equipment, and lighting products deserve to be among the first policy tools considered by a country's energy policy makers. The U.S. Agency for International Development (USAID) and several other organizations identified on the cover of this guidebook recognize the need to support policy makers in their efforts to implement energy-efficiency standards and labeling programs and have developed this guidebook, together with the Collaborative Labeling and Appliance Standards Program (CLASP), as a primary reference. This second edition of the guidebook was prepared over the course of the past year, four years after the preparation of the first edition, with a significant contribution from the authors and reviewers mentioned previously. Their diligent participation helps maintain this book as the international guidance tool it has become. The lead authors would like to thank the members of the Communications Office of the Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory for their support in the development, production, and distribution of the guidebook. This guidebook is designed as a manual for government officials and others around the world responsible for developing, implementing, enforcing, monitoring, and maintaining labeling and standards setting programs. It discusses the pros and cons of adopting energy-efficiency labels and standards and describes the data, facilities, and institutional and human resources needed for these programs. It provides guidance on the design, development, implementation, maintenance, and evaluation of the programs and on the design of the labels and standards themselves. In addition, it directs the reader to references and other resources likely to be useful in conducting the activities described and includes a chapter on energy policies and programs that complement appliance efficiency labels and standards. This guidebook attempts to reflect the essential framework of labeling and standards programs. It is the intent of the authors and sponsor to distribute copies of this book worldwide, at no charge, for the general public benefit. The guidebook is also available on the web at www.clasponline.org and may be downloaded to be used intact or piecemeal for whatever beneficial purposes readers may conceive.

Wiel, Stephen; McMahon, James E.

2005-04-28T23:59:59.000Z

416

Lightweighting Automotive Materials for Increased Fuel Efficiency and Delivering Advanced Modeling and Simulation Capabilities to U.S. Manufacturers  

SciTech Connect (OSTI)

Abstract The National Center for Manufacturing Sciences (NCMS) worked with the U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), to bring together research and development (R&D) collaborations to develop and accelerate the knowledgebase and infrastructure for lightweighting materials and manufacturing processes for their use in structural and applications in the automotive sector. The purpose/importance of this DOE program: 2016 CAF standards. Automotive industry technology that shall adopt the insertion of lightweighting material concepts towards manufacturing of production vehicles. Development and manufacture of advanced research tools for modeling and simulation (M&S) applications to reduce manufacturing and material costs. U.S. competitiveness that will help drive the development and manufacture of the next generation of materials. NCMS established a focused portfolio of applied R&D projects utilizing lightweighting materials for manufacture into automotive structures and components. Areas that were targeted in this program: Functionality of new lightweighting materials to meet present safety requirements. Manufacturability using new lightweighting materials. Cost reduction for the development and use of new lightweighting materials. The automotive industrys future continuously evolves through innovation, and lightweight materials are key in achieving a new era of lighter, more efficient vehicles. Lightweight materials are among the technical advances needed to achieve fuel/energy efficiency and reduce carbon dioxide (CO2) emissions: Establish design criteria methodology to identify the best materials for lightweighting. Employ state-of-the-art design tools for optimum material development for their specific applications. Match new manufacturing technology to production volume. Address new process variability with new production-ready processes.

Hale, Steve

2013-09-11T23:59:59.000Z

417

New Energy Efficiency Standards for Electric Motors and Walk-in Coolers and  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartment of EnergyFreezers to Save on

418

The Second US-China Energy Efficiency Forum: Energy Management Standards  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2 NuclearTheThe SRNLDepartment

419

New Energy Efficiency Standards for Microwave Ovens to Save Consumers on  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarkets with Wind PowerProcesses |FYEnergy Bills

420

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Report on Potential Impact of Possible Energy Efficiencyenergy saver) lamps based on a report analyzing potential lamp efficiency

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

organizational framework for industrial facilities to integrate energy efficiencyof energy efficiency. A first step once the organizational

McKane, Aimee

2010-01-01T23:59:59.000Z

422

Supplement to: March 1982 consumer products efficiency standards, engineering analysis and economic analysis documents  

SciTech Connect (OSTI)

The following product types are discussed: refrigerators and refrigerator freezers, freezers, furnaces and boilers, and central air conditioners. Some topics included are: hybrid evaporators, cost efficiency relationships, high-efficiency compressor substitution, pulsed combustion, all aluminium heat exchanger, and high-efficiency two-speed compressor.

Not Available

1983-07-01T23:59:59.000Z

423

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

A. Miller (1980). "Oil Shales and Carbon Dioxide." Sciencefor CO2 evolved from oil shale." Fuel Processing TechnologyCTLs, or CTL synfuels), and oil shale-based synthetic crude

2007-01-01T23:59:59.000Z

424

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

study, such as diesel hybrid electric vehicles (D HEVs). Thefuel vehicle Yes Diesel hybrid electric vehicle No SparkF-T Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel

2007-01-01T23:59:59.000Z

425

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

study, such as diesel hybrid electric vehicles (D HEVs). Thefuel vehicle Yes Diesel hybrid electric vehicle No SparkF-T Diesel Bio-Diesel Hydrogen Electric Figure 5-6: Fuel

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

426

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

fuel economies for diesel vehicles, electric vehicles, and10%, /85%) Low-GHG FT diesel blends Electric charging & H2study, such as diesel hybrid electric vehicles (D HEVs). The

Farrell, Alexander; Sperling, Daniel

2007-01-01T23:59:59.000Z

427

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

and Greenhouse Gases of NExBTL. Heidelberg, IFEU - InstituteR. Linnaila, et al. (2005). NExBTL - Biodiesel fuel of therenewable diesel, such as the NexBTL process, are in active

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

428

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

and Greenhouse Gases of NExBTL. Heidelberg, IFEU - InstituteR. Linnaila, et al. (2005). NExBTL - Biodiesel fuel of therenewable diesel, such as the NexBTL process, are in active

2007-01-01T23:59:59.000Z

429

Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal  

E-Print Network [OSTI]

1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

430

A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis  

E-Print Network [OSTI]

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

Farrell, Alexander E.; Sperling, Dan

2007-01-01T23:59:59.000Z

431

A Low-Carbon Fuel Standard for California Part 1: Technical Analysis  

E-Print Network [OSTI]

for CO2 evolved from oil shale." Fuel Processing TechnologyT. and G. A. Miller (1980). "Oil Shales and Carbon Dioxide."oil, coal, tar sands, oil shale Natural gas, biomass Natural

2007-01-01T23:59:59.000Z

432

Standard test method for heat of combustion of hydrocarbon fuels by bomb calorimeter (high-precision method)  

SciTech Connect (OSTI)

This method covers the determination of the heat of combustion of hydrocarbon fuels. It is designed specifically for use with aviation turbine fuels when the permissible difference between duplicate determinations is of the order of 0.1%. It can be used for a wide range of volatile and nonvolatile materials where slightly greater differences in precision can be tolerated. The heat of combustion is determined by burning a weighed sample in an oxygen-bomb calorimeter under controlled conditions. The temperature is measured by means of a platinum resistance thermometer. The heat of combustion is calculated from temperature observations before, during, and after combustion, with proper allowance for thermochemical and heat-transfer corrections. Either isothermal or adiabatic calorimeters may be used. The heat of combustion is a measure of the energy available from a fuel. A knowledge of this value is essential when considering the thermal efficiency of equipment for producing either power or heat.

Not Available

1980-01-01T23:59:59.000Z

433

New Energy Efficiency Standards for Metal Halide Lamp Fixtures to Save on  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2Energy SecondWells | DepartmentPollution, HelpEnergy

434

New Energy Efficiency Standards to Help Americans Save Money by Saving  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge’sCut Businesses' Energy Bills andEnergy,

435

Realized and Projected Impacts of U.S. Energy Efficiency Standards for Residential and Commercial Appliances  

E-Print Network [OSTI]

Standards for Consumer Products: Room Air Conditioners,Energy Savings -- Residential Products Room Air Conditionersfor Consumer Products: Residential Central Air Conditioners

Meyers, Stephen P.

2008-01-01T23:59:59.000Z

436

Analysis of Minimum Efficiency Performance Standards for Residential General Service Lighting in Chile  

E-Print Network [OSTI]

Standard for Residential Lighting in Chile, 2010 USResidential General Service Lighting in Chile Virginie E.focus on a regulation for lighting that would ban the sale

Letschert, Virginie E.

2012-01-01T23:59:59.000Z

437

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

with the ISO quality (ISO 9001:2008) and environmental (ISOsystem standards such as ISO 9001 and ISO 14001 have somemanagement practices (ISO 9001) and environmental management

McKane, Aimee

2010-01-01T23:59:59.000Z

438

Status of China's Energy Efficiency Standards and Labels for Appliances and International Collaboration  

E-Print Network [OSTI]

testing in 2006 for refrigerators, freezers and room air-three products (refrigerators, freezers, air-conditionersStandards Domestic refrigerators/freezers* Room air

Zhou, Nan

2010-01-01T23:59:59.000Z

439

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network [OSTI]

standards Other Refrigerators and Freezers DWsandCWs: g aioo%- Other | Refrigerators and Freezers Gas and oil watermarket prices for refrigerators and freezers from 1987 to

Koomey, J.G.

2010-01-01T23:59:59.000Z

440

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

Thinking Globally: How ISO 50001 Energy Management canThinking Globally: How ISO 50001 Energy Management canOrganization for Standardization (ISO) has identified energy

McKane, Aimee

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Projected Regional Impacts of Appliance Efficiency Standards for the U.S. Residential Sector  

E-Print Network [OSTI]

Conservation and Renewable Energy, Building EquipmentEnergy Efficiency and Renewable Energy, Building Equipmentand Renewable Energy, Office of Building Technologies, State

Koomey, J.G.

2010-01-01T23:59:59.000Z

442

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

regarding energy efficiency; Limited awareness of theof awareness and the corresponding failure to manage energyawareness within the corporate management culture of the potential for energy

McKane, Aimee

2010-01-01T23:59:59.000Z

443

Modifying woody plants for efficient conversion to liquid and gaseous fuels  

SciTech Connect (OSTI)

The Short Rotation Woody Crop Program (SRWCP), Department of Energy, is developing woody plant species as sources of renewable energy. Much progress has been made in identifying useful species, and testing site adaptability, stand densities, coppicing abilities, rotation lengths, and harvesting systems. Conventional plant breeding and intensive cultural practices have been used to increase above-ground biomass yields. Given these and foreseeable accomplishments, program leaders are now shifting attention to prospects for altering biomass physical and chemical characteristics, and to ways for improving the efficiency with which biomass can be converted to gaseous and liquid fuels. This report provides a review and synthesis of literature concerning the quantity and quality of such characteristics and constituents, and opportunities for manipulating them via conventional selection and breeding and/or molecular biology. Species now used by SRWCP are emphasized, with supporting information drawn from others as needed. Little information was found on silver maple (Acer saccharinum), but general comparisons (Isenberg 1981) suggest composition and behavior similar to those of the other species. Where possible, conclusions concerning means for and feasibility of manipulation are given, along with expected impacts on conversion efficiency. Information is also provided on relationships to other traits, genotype X environment interactions, and potential trade-offs or limitations. Biomass productivity per se is not addressed, except in terms of effects that may by caused by changes in constituent quality and/or quantity. Such effects are noted to the extent they are known or can be estimated. Likely impacts of changes, however effected, on suitability or other uses, e.g., pulp and paper manufacture, are notes. 311 refs., 4 figs., 9 tabs.

Dinus, R.J.; Dimmel, D.R.; Feirer, R.P.; Johnson, M.A.; Malcolm, E.W. (Institute of Paper Science and Technology, Atlanta, GA (USA))

1990-07-01T23:59:59.000Z

444

Global residential appliance standards  

SciTech Connect (OSTI)

In most countries, residential electricity consumption typically ranges from 20% to 40% of total electricity consumption. This energy is used for heating, cooling, refrigeration and other end-uses. Significant energy savings are possible if new appliance purchases are for models with higher efficiency than that of existing models. There are several ways to ensure or encourage such an outcome, for example, appliance rebates, innovative procurement, and minimum efficiency standards. This paper focuses on the latter approach. At the present time, the US is the only country with comprehensive appliance energy efficiency standards. However, many other countries, such as Australia, Canada, the European Community (EC), Japan and Korea, are considering enacting standards. The greatest potential impact of minimum efficiency standards for appliances is in the developing countries (e.g., China and India), where saturations of household appliances are relatively low but growing rapidly. This paper discusses the potential savings that could be achieved from global appliance efficiency standards for refrigerators and freezers. It also could be achieved from global appliance efficiency standards for refrigerators and freezers. It also discusses the impediments to establishing common standards for certain appliance types, such as differing test procedures, characteristics, and fuel prices. A methodology for establishing global efficiency standards for refrigerators and freezers is described.

Turiel, I.; McMahon, J.E. (Lawrence Berkeley Lab., CA (United States)); Lebot, B. (Agence Francaise pour la Maitrise de l'Energie, Valbonne (France))

1993-03-01T23:59:59.000Z

445

Alternative Fuels Data Center: Coca-Cola Bottling Co. Brings...  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

30% more fuel efficient than their diesel counterparts. They also create less noise and pollution than standard delivery vehicles. CCE drivers report that the new vehicles handle...

446

National Fuel- Large Non-Residential Conservation Program  

Broader source: Energy.gov [DOE]

In conjunction with NYSERDA's Existing Facilities Program, National Fuel provides an energy efficient equipment application for custom and standard rebates. These rebates are available for large...

447

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network [OSTI]

Water Heaters With Input Ratings Above 75,000 Btu per Hour, Circulating and Instantaneous [ANSI Z21.10.3a] American National StandardsWater Heaters With Input Ratings Above 75,000 Btu Per Hour, Circulating and Instantaneous [ANSI Z21.10.3a] American National Standards

Lutz, Jim

2012-01-01T23:59:59.000Z

448

Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard  

E-Print Network [OSTI]

affected advanced biofuel companies and decreased soybean oil futures prices, while prices in other in biofuel consumption through 2022. To understand RIN market dynamics, we develop a dynamic model mandate, decreased the value of the subsidy (tax) provided by the RFS2 to the biofuel (fossil fuel

Lin, C.-Y. Cynthia

449

Hydrogen, Fuel Cells, and Infrastructure Technologies FY 2002 Progress Report Section VI. Safety and Codes & Standards  

E-Print Network [OSTI]

to H2 from 0-100% at 450o C in N2 background Future Directions · Fabricate 2nd generation sensors.A Safety VI.A.1 Gallium Nitride Integrated Gas/Temperature Sensors for Fuel Cell System Monitoring catalytic gate field effect transistor (FET) sensors to resolve and detect carbon monoxide (CO

450

Alternative Fuels Used in Transportation: Science Projects in Renewable Energy and Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S9-0s) All27,AlternativeFuelsFuels

451

Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »ExchangeDepartmentResolve to Save Energy This Year| Department

452

54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6Residential

453

DOEs Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93Decemberof EnergySeptember 6, 2012of

454

Step change in Fuel Efficiency:Eaton's perspective | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklinStatusJ.R. Simplot4:

455

Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic RelationsDepartment of EnergySuperTruck

456

Development and Demonstration of a Fuel-Efficient Class 8 Highway Vehicle |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services AuditTransatlantic RelationsDepartment of

457

A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-CylinderContinuousDepartment

458

Development and Demonstration of a Fuel-Efficient HD Engine (DOE SuperTruck  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new high capacity anodewithDepartment

459

Development and Demonstration of a Fuel-Efficient HD Engine | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Companya new high capacity

460

Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department ofDistribution Infrastructure | DepartmentPortal

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Developing Low-Cost, Highly Efficient Heat Recovery for Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle Battery PlantDetermineDetroitMicrochannel

462

Utilization of Process Off-Gas as a Fuel for Improved Energy Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept. ofUSA RSDepartmentProject Funding

463

Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel  

SciTech Connect (OSTI)

It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

Sonat Sen; Gilles Youinou

2013-02-01T23:59:59.000Z

464

Standard guide for establishing calibration for a measurement method used to analyze nuclear fuel cycle materials  

E-Print Network [OSTI]

1.1 This guide provides the basis for establishing calibration for a measurement method typically used in an analytical chemistry laboratory analyzing nuclear materials. Guidance is included for such activities as preparing a calibration procedure, selecting a calibration standard, controlling calibrated equipment, and documenting calibration. The guide is generic and any required technical information specific for a given method must be obtained from other sources.

American Society for Testing and Materials. Philadelphia

2003-01-01T23:59:59.000Z

465

Energy Efficiency Standards and Labels in North America: Opportunities for Harmonization  

E-Print Network [OSTI]

The US has a standard for incandescent non-reflector lamps.ve ,S m L mc ,L ve ,S m Incandescent Lamps and Luminaires SFluorescent lamps Incandescent reflector lamps Incandescent

Wiel, Stephen

2008-01-01T23:59:59.000Z

466

International Comparison of Energy Labeling and Standards for Energy Efficient and Green Buildings  

E-Print Network [OSTI]

This paper discusses the approaches of the European Union, Germany and India to reduce GHG- emissions and mitigate climate change impacts from buildings through the establishment of energy performance standards and green building...

Hennicke, P.; Shrestha, S.; Schleicher, T.

2011-01-01T23:59:59.000Z

467

Fuels and Combustion Strategies for High-Efficiency Clean-Combustion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality ChallengesFueling U.S.Engines |

468

2010 Fuel Cell Technologies Market Report, June 2011, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation,Emissions from anFUEL CELL

469

Clean Cities Guide to Alternative Fuel Commercial Lawn Equipment (Brochure), Energy Efficiency & Renewable Energy (EERE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1 Clean Cities90

470

Carrots and Sticks: A Comprehensive Business Model for the Successful Achievement of Energy Efficiency Resource Standards  

E-Print Network [OSTI]

As-Usual; DSM=Demand Side Management; EE=Energy Efficiency;of the demand side management (DSM) portfolio projectedshareholder returns. 11 4.2 Demand side management portfolio

Satchwell, Andrew

2013-01-01T23:59:59.000Z

471

How to Make Appliance Standards Work: Improving Energy and Water Efficiency Test Procedures  

E-Print Network [OSTI]

efficiency of commercial water heaters and hot water supplyheat pump water heaters). http://edocket.access.gpo.gov/2004/CSA 4.3- 2004 Gas Water Heaters - Volume III, Storage

Lutz, Jim

2012-01-01T23:59:59.000Z

472

Demonstration of a Highly Efficient Solid Oxide Fuel Cell Power System Using Adiabatic Steam Reforming and Anode Gas Recirculation  

SciTech Connect (OSTI)

Solid oxide fuel cells (SOFC) are currently being developed for a wide variety of applications because of their high efficiency at multiple power levels. Applications for SOFCs encompass a large range of power levels including 1-2 kW residential combined heat and power applications, 100-250 kW sized systems for distributed generation and grid extension, and MW-scale power plants utilizing coal. This paper reports on the development of a highly efficient, small-scale SOFC power system operating on methane. The system uses adiabatic steam reforming of methane and anode gas recirculation to achieve high net electrical efficiency. The anode exit gas is recirculated and all of the heat and water required for the endothermic reforming reaction are provided by the anode gas emerging from the SOFC stack. Although the single-pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization is up to 93%. The demonstrated system achieved gross power output of 1650 to 2150 watts with a maximum net LHV efficiency of 56.7% at 1720 watts. Overall system efficiency could be further improved to over 60% with use of properly sized blowers.

Powell, Michael R.; Meinhardt, Kerry D.; Sprenkle, Vincent L.; Chick, Lawrence A.; Mcvay, Gary L.

2012-05-01T23:59:59.000Z

473

FY 2012 USED FUEL DISPOSITION CAMPAIGN TRANSPORTATION TASK REPORT ON INL EFFORTS SUPPORTING THE MODERATOR EXCLUSION CONCEPT AND STANDARDIZED TRANSPORTATION  

SciTech Connect (OSTI)

Following the defunding of the Yucca Mountain Project, it is reasonable to assume that commercial used fuel will remain in storage for a longer time period than initially assumed. Previous transportation task work in FY 2011, under the Department of Energys Office of Nuclear Energy, Used Fuel Disposition Campaign, proposed an alternative for safely transporting used fuel regardless of the structural integrity of the used fuel, baskets, poisons, or storage canisters after an extended period of storage. This alternative assures criticality safety during transportation by implementing a concept that achieves moderator exclusion (no in-leakage of moderator into the used fuel cavity). By relying upon a component inside of the transportation cask that provides a watertight function, a strong argument can be made that moderator intrusion is not credible and should not be a required assumption for criticality evaluations during normal or hypothetical accident conditions of transportation. This Transportation Task report addresses the assigned FY 2012 work that supports the proposed moderator exclusion concept as well as a standardized transportation system. The two tasks assigned were to (1) promote the proposed moderator exclusion concept to both regulatory and nuclear industry audiences and (2) advance specific technical issues in order to improve American Society of Mechanical Engineers Boiler and Pressure Vessel Code, Section III, Division 3 rules for storage and transportation containments. The common point behind both of the assigned tasks is to provide more options that can be used to resolve current issues being debated regarding the future transportation of used fuel after extended storage.

D. K. Morton

2012-08-01T23:59:59.000Z

474

Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets  

SciTech Connect (OSTI)

This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive dry canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

Chad Pope; Larry L. Taylor; Soon Sam Kim

2007-02-01T23:59:59.000Z

475

SuperTruck ? Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

476

Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

477

FUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and  

E-Print Network [OSTI]

. Many odorants can also contaminate fuel cells. Hydrogen burns very quickly. Under optimal combustionFUEL CELL TECHNOLOGIES PROGRAM Safety, Codes, and Standards Hydrogen and fuel cell technologies, nuclear, natural gas, and coal with carbon sequestration. Fuel cells provide a highly efficient means

478

EM Safely and Efficiently Manages Spent Nuclear Fuel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1:EnergyDecember 10, 2014Correspondence

479

Fuel Effects on Mixing-Controlled Combustion Strategies for High-Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovemberDepartment of Energy

480

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovemberDepartment ofusing Model-Based

Note: This page contains sample records for the topic "fuel efficiency standards" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Combustion, Efficiency, and Fuel Effects in a Spark-Assisted HCCI Gasoline  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes andDepartment ofPressure SamplingEnergyon

482

Table 5.5. U.S. Vehicle Fuel Efficiency by Model Year, 1994  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic4,630.2 10,037.24. U.S. Vehicle Fuel7. U.S.8....

483

The Effects of Fuel Composition and Compression Ratio on Thermal Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeTheDepartmentAgreementThe Effects ofin

484

The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions:  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2 NuclearThe Road toImpurities

485

2009 Fuel Cell Market Report, November 2010, Energy Efficiency & Renewable Energy (EERE)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of ShipmentSimulation, Analysis |Summaryofof9Fourth Annual

486

Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel Efficient  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:of Energy 3:Plug-in VehiclesChoices

487

Federal Fuel Cell Tax Incentives: An Investment in Clean and Efficient Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxideof1 DOEFederal Energy9,effortsFlood Risk

488

Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow Cost 3-10kWSystem |

489

Development of an ORC system to improve HD truck fuel efficiency |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy DutyLow.4.3.100anan

490

SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJulyEvaluationOffi ce U.S.SuperWi-Fi

491

SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4 RecoveryJulyEvaluationOffi ce U.S.SuperWi-FiTractor

492

Supertruck - Development and Demonstration of a Fuel-Efficient Class 8  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4Superhard Coating Systems SuperhardTractor &

493

Supertruck - Development and Demonstration of a Fuel-Efficient Class 8  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4Superhard Coating Systems SuperhardTractor

494

A Materials Approach to Fuel-Efficient Tires | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-CylinderContinuous Processing ofofA

495

A MultiAir / MultiFuel Approach to Enhancing Engine System Efficiency |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-CylinderContinuousDepartment of

496

Efficient Use of Natural Gas Based Fuels in Heavy-Duty Engines | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECMWearthe ApplicationEnergy

497

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d FNEPA/309 Reviewers | DepartmentSiteMaryland | YieldHydrogen

498

Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment of Energy 0 DOEProtocol forSite Leads

499

SuperTruck Making Leaps in Fuel Efficiency | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young -Final ProgramAbout »SuperTruck Making Leaps

500

SuperTruck Making Leaps in Fuel Efficiency | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at Young -Final ProgramAbout »SuperTruck Making