Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Economy  

Broader source: Energy.gov [DOE]

The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

2

Car buyers and fuel economy?  

E-Print Network [OSTI]

corporate average fuel economy standards. Economic InquiryAll rights reserved. Keywords: Fuel economy; Fuel ef?ciency;improvement in the fuel economy of an SUV they have designed

Turrentine, Tom; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

3

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

4

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

Car Buyers and Fuel Economy? ” Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? ” Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

5

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

Council. Automotive Fuel Economy: How Far Can We Go? (Lee Schipper. Automobile Fuel. Economy and CO 2 Emissions inGraham. The Effect of Fuel Economy Standards on Automobile

Schipper, Lee

2009-01-01T23:59:59.000Z

6

"Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon)"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesWyoming" "Item","Value","Rank" "Primary Energy

7

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

S. Kurani, “Car Buyers and Fuel Economy? ” Energy Policy,Fuel Economy: What Drives Consumer Choice? BY TOMa car, do they think about fuel costs over time, are they

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

8

Vehicle Fuel Economy Improvement through Thermoelectric Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

9

Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety  

SciTech Connect (OSTI)

The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2007-06-11T23:59:59.000Z

10

Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency  

E-Print Network [OSTI]

Consumer Response to Automobile Regulation and TechnologicalConsumer Discounting of Automobile Fuel Economy: ReviewingDecisions: Evidence from Automobiles” Research Report.

Kurani, Ken; Turrentine, Thomas

2004-01-01T23:59:59.000Z

11

Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...  

Energy Savers [EERE]

9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The...

12

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So it’s unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

13

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So it’s unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

14

Fuel Prices and New Vehicle Fuel Economy in Europe  

E-Print Network [OSTI]

This paper evaluates the effect of fuel prices on new vehicle fuel economy in the eight largest European markets. The analysis spans the years 2002–2007 and uses detailed vehicle registration and specification data to ...

Klier, Thomas

15

Fuel Economy With the price of gasoline at over $3.50 a gallon the fuel economy of  

E-Print Network [OSTI]

Fuel Economy With the price of gasoline at over $3.50 a gallon the fuel economy of vehicles proposed raising the Corporate Average Fuel Economy (CAFÉ) standard for cars and trucks. In 2004, American cars needed to achieve an average fuel economy of 27.5 miles per gallon (MPG) while light trucks needed

Carriquiry, Alicia

16

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving...

17

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

18

Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas  

E-Print Network [OSTI]

Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions constraint? Implications for energy and climate

19

A G E N D A Fuel Economy &  

E-Print Network [OSTI]

A G E N D A Fuel Economy & Idle Reduction Seminar SPEAKERS Rich Cregar, Wake Technical Program Jonathan Overly 8:4510:15 ­ Fuel Economy & Idle Reduction Technologies & Practices Rich Cregar 10:1510:30 ­ Break 10:3010:55 ­ FuelEconomy.gov & increasing Fuel Efficiency Robert

Tennessee, University of

20

Fact #692: September 12, 2011 Fuel Economy Distribution for New...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(MY) 1975 had combined highwaycity fuel economy of 15 miles per gallon (mpg) or less blue shading. By 2010, 63% of cars had fuel economy of 25 mpg or higher green shading and...

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs 2012...

22

BAYESIAN ESTIMATION OF FUEL ECONOMY POTENTIAL  

E-Print Network [OSTI]

BAYESIAN ESTIMATION OF FUEL ECONOMY POTENTIAL DUE TO TECHNOLOGY IMPROVEMENTS by Richard W. Andrews in the engineering assessment phase of this project: N.T. Barnes, B. Beeson, R.C. Belaire, W.C. Follmer, R.J. Genik, R.C. Heathfield, T.E. Kenney, D.L. Kulp, J.G. LaFond, J.D. Medrick, N.M. Novelli, G. Pietron, N

Berger, Jim

23

Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

24

Sipping fuel and saving lives: increasing fuel economy without sacrificing safety  

E-Print Network [OSTI]

Ford delays plans to boost fuel economy of its SUVs. WallImproving safety without impacting fuel economy. Honda MotorCompany, October 4. SIPPING FUEL AND SAVING LIVES / 24

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2008-01-01T23:59:59.000Z

25

Turbocharged Spark Ignited Direct Injection - A Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers...

26

Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...  

Broader source: Energy.gov (indexed) [DOE]

national standards for greenhouse gas (GHG) emissions and Corporate Average Fuel Economy (CAFE). The standards would apply to model year 2012 - 2016 passenger cars and light...

27

High Fuel Economy Heavy-Duty Truck Engine  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers...

28

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of iStockphoto.comThomasEyeDesign Read the 2014 Fuel Economy Guide to inform your...

29

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

30

Assessment of California reformulated gasoline impact on vehicle fuel economy  

SciTech Connect (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CAROB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4 %, with a 95% upper confidence bound of 6 %. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CAROB with respect to the impact of CaRFG on fuel economy.

Aceves, S.; Glaser, R.; Richardson, J.

1997-01-01T23:59:59.000Z

31

Assessment of California reformulated gasoline impact on vehicle fuel economy  

SciTech Connect (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

Aceves, S., LLNL

1997-01-01T23:59:59.000Z

32

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

K. , 1993b, Fuel Prices and Economy: Factors Effecting LandCar Test and Actual Fuel Economy: Yet Another Gap? Transportof automobile fuel economy in Europe. Energy Policy 34 14.

Schipper, Lee

2008-01-01T23:59:59.000Z

33

Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues...  

Energy Savers [EERE]

3: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise Fact 813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise The sales-weighted fuel economy...

34

Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation  

E-Print Network [OSTI]

for Federal Fuel Economy Regulation Final Report preparedand have higher fuel economy, and safer than conventionaland have higher fuel economy, without sacrificing safety. 1.

Wenzel, Thomas P.

2010-01-01T23:59:59.000Z

35

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

36

Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

3: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute Fact 833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute A 2014 survey...

37

Evaluation of the Fuel Economy Impacts of Low Temperature Combustion...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 15, 2013 Neeraj Shidore...

38

Global Fuel Economy Initiative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to: navigation,OpenBusGEF Jump to:Risk

39

Fuel Economy Coach | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent URIFrontier, North Dakota:Coach Jump to: navigation,

40

Fuel Economy Valentines | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014EnergyNEACClass

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522

42

Fuel Economy Fact and Fiction | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdf Flash2010-72.pdfAccomplishments |Activities | DepartmentFuelSiCFuel Economy

43

Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost...  

Broader source: Energy.gov (indexed) [DOE]

graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the...

44

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,  

E-Print Network [OSTI]

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

45

Demonstration of the fuel economy potential associated with M85-fueled vehicles  

SciTech Connect (OSTI)

A gasoline-fueled 1988 Chevrolet Corsica was converted to operate on M85 to demonstrate that the characteristics of methanol fuels can be exploited to emphasize vehicle fuel economy rather than vehicle performance. The results of the tests performed indicated fuel economy improvements of up to 21% at steady highway speeds, and almost 20% on the US Environmental Protection Agency`s federal test procedure city and highway cycles.

Hodgson, J.W.; Huff, S.P. [Tennessee Univ., Knoxville, TN (United States)] [Tennessee Univ., Knoxville, TN (United States)

1993-12-01T23:59:59.000Z

46

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Circle of Measuring Automobile Fuel Use, Energy Policy 21. (M. , Dolan, K. , 1993b, Fuel Prices and Economy: Factors1994. New Car Test and Actual Fuel Economy: Yet Another Gap?

Schipper, Lee

2008-01-01T23:59:59.000Z

47

Prospects on fuel economy improvements for hydrogen powered vehicles.  

SciTech Connect (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

48

Development of Test Methodology for Evaluation of Fuel Economy in Motorcycle Engines.  

E-Print Network [OSTI]

??Rising fuel costs and concerns over fossil fuel emissions have resulted in more stringent fuel economy and emissions standards globally. As a result, motor vehicle… (more)

Michlberger, Alexander

2014-01-01T23:59:59.000Z

49

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect (OSTI)

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

50

TRB 05-1336 The Effect of Fuel Economy on Automobile Safety: A Reexamination  

E-Print Network [OSTI]

TRB 05-1336 The Effect of Fuel Economy on Automobile Safety: A Reexamination November 16, 2004 Word of 1975. The program requires automobile producers to meet fleet average fuel economy standards set

51

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...  

Office of Environmental Management (EM)

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am...

52

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the...

53

Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines...

54

Fact #680: June 20, 2011 Fuel Economy is "Most Important" When...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle Fact 680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle A June 2011 survey asked the...

55

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS  

E-Print Network [OSTI]

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy new traffic flow and traffic light control concepts with respect to emissions and fuel economy. Some

California at Davis, University of

56

Examining new fuel economy standards for the United States.  

SciTech Connect (OSTI)

After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

Plotkin, S. E.; Energy Systems

2007-01-01T23:59:59.000Z

57

2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition#EnergyFaceoff1 1Electricity

58

Fuel Economy of Vehicles Made in 2004 Description of the sample  

E-Print Network [OSTI]

Fuel Economy of Vehicles Made in 2004 Description of the sample: A random sample of 36 cars and light trucks was obtained from all the vehicle models made in 2004. The combined fuel economy estimate the vehicles got 22 MPG or less. There was a good deal of variability in the fuel economy of the 36 cars

Carriquiry, Alicia

59

Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures  

E-Print Network [OSTI]

Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures Zhekang Du, Kai and do not require costly batteries, they have the potential to achieve high fuel economy and performance and effectiveness in engine management. This paper compares the fuel economies and performance

Li, Perry Y.

60

A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles  

E-Print Network [OSTI]

A fuel economy optimization system with applications in vehicles with human drivers and autonomous University of New York, Buffalo, USA a r t i c l e i n f o Keywords: Vehicle fuel economy Eco-driving Human developed and validated a new fuel-economy optimization system (FEOS), which receives input from vehicle

Wu, Changxu (Sean)

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Comments on the Joint Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards  

E-Print Network [OSTI]

on occupant safety than fuel economy standards that arethe automobile fuel economy standards program, NHTSA docketCorporate Average Fuel Economy Standards Docket No. NHTSA–

Wenzel, Thomas P

2010-01-01T23:59:59.000Z

62

E-Print Network 3.0 - average fuel economy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Analysis Collection: Energy Storage, Conversion and Utilization 10 Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency Summary: , will higher income...

63

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Circle of Measuring Automobile Fuel Use, Energy Policy 21. (1995. Determinants of Automobile Energy Use and Energythe baseline evolution of automobile fuel economy in Europe.

Schipper, Lee

2008-01-01T23:59:59.000Z

64

Economy  

E-Print Network [OSTI]

Dynasty. (Davies 1943: pl. XXIX). Economy, Haring, UEE 2009J OHN B AINES Short Citation: Haring, 2009, Economy. UEE.Citation: Haring, Ben, 2009, Economy. In Elizabeth Frood and

Haring, Ben

2009-01-01T23:59:59.000Z

65

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel  

SciTech Connect (OSTI)

This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers’ expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers’ expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

Wu, Ko-Jen

2011-12-31T23:59:59.000Z

66

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2006-11-01T23:59:59.000Z

67

E-Print Network 3.0 - automobile fuel economy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Search Powered by Explorit Topic List Advanced Search Sample search results for: automobile fuel economy Page: << < 1 2 3 4 5 > >> 1 BERKELEY CATALYSIS CENTER November 11, 2005...

68

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

69

Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles  

SciTech Connect (OSTI)

This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

1998-12-31T23:59:59.000Z

70

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy  

E-Print Network [OSTI]

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy://globalchange.mit.edu/ Printed on recycled paper #12;Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy

71

Fact #793: August 19, 2013 Improvements in Fuel Economy for Low...  

Broader source: Energy.gov (indexed) [DOE]

economy by 5 mpg does not translate to a constant fuel savings amount. Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a...

72

Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.  

SciTech Connect (OSTI)

This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

1999-06-18T23:59:59.000Z

73

Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

Thomas, John F [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

2012-04-01T23:59:59.000Z

74

Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has  

E-Print Network [OSTI]

2 Risø Energy Report 3 Interest in the hydrogen economy and in fuel cells has increased used for natural gas. Existing fuel cells can convert hydrogen efficiently into electric power. Emerging fuel cell technologies can do the same for other hydrogen-rich fuels, while generating little

75

Emissions and fuel economy of a prechamber diesel engine with natural gas dual fuelling  

SciTech Connect (OSTI)

A four-cylinder turbocharged prechamber diesel engine (Caterpillar 3304) was operated with natural gas and pilot diesel fuel ignition over a wide range of load and speed. Measurements were made of fuel consumption and the emissions of unburned hydrocarbons, carbon monoxide, and the oxides of nitrogen. Improvements in fuel economy and emissions were found to be affected by the diesel fuel-gas fraction, and by air restriction and fuel injection timing. Boundaries of unstable, inefficient and knocking operation were defined and the importance of gas-air equivalance ratio was demonstrated in its effect on economy, emissions and stability of operation.

Ding, X.; Hill, P.G.

1986-01-01T23:59:59.000Z

76

Vehicle fuel economy benefit and aftertreatment requirement of an HCCI-SI engine system  

E-Print Network [OSTI]

This body of work dimensions the HCCI fuel economy benefits and required aftertreatment performance for compliance with emissions regulations in North America and Europe. The following parameters were identified as key ...

Hardy, AliciA Jillian Jackson, 1978-

2007-01-01T23:59:59.000Z

77

Fuel economy regulations and efficiency technology improvements in U.S. cars since 1975  

E-Print Network [OSTI]

Light-duty vehicles account for 43% of petroleum consumption and 23% of green- house gas emissions in the United States. Corporate Average Fuel Economy (CAFE) standards are the primary policy tool addressing petroleum ...

MacKenzie, Donald Warren

2013-01-01T23:59:59.000Z

78

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

2007-01-01T23:59:59.000Z

79

DOE SuperTruck utilizes ORNL technology to boost fuel economy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Media Relations 865.574.4165 DOE SuperTruck utilizes ORNL technology to boost fuel economy DOE SuperTruck DOE SuperTruck (hi-res image) Listen to the audio The Department of...

80

Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency  

E-Print Network [OSTI]

CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

Baumann, Philip Douglas

1974-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

What is the Viability of Cellulosic Ethanol as an Alternative to Fossil Fuels in today's Economy?  

E-Print Network [OSTI]

What is the Viability of Cellulosic Ethanol as an Alternative to Fossil Fuels in today's Economy. Assessing the viability of cellulosic ethanol as an alternative to fossil fuels in today's and future the world. The consequences from anthropogenic burning of fossil fuels experienced over the last few decades

Iglesia, Enrique

82

FreedomCAR and Fuel Cells: Toward the Hydrogen Economy?  

E-Print Network [OSTI]

best to deliver hydrogen to the fuel cell on the vehicle.to simply deliver hydrogen to a fuel cell via another typefor selling fuel cell vehicles and hydrogen, and consumers

Sperling, Daniel

2003-01-01T23:59:59.000Z

83

Biomass Fueling America's Growing Clean Energy Economy | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas and FuelCookstoves

84

2011 Fuel Economy Guide Now Available | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) | DepartmentFeedstockConference2011 Fuel

85

Fuel Economy.gov - Mobile | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,using Renewable Fuels

86

Fuel Economy on the Fly | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10,

87

Fueling South Carolina's Clean Energy Economy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges

88

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow Carbon TransitionENERGYEnvironmental

89

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirectLow Carbon TransitionENERGYEnvironmentalGuide

90

Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrierof| Department

91

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

92

Fuel Economy on the Fly | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle BasicsValentineson the Fly

93

BioFacts: Fueling a stronger economy, Biodiesel. Revision 2  

SciTech Connect (OSTI)

Biodiesel is a substitute for or an additive to diesel fuel that is derived from the oils and fats of plants. It is an alternative fuel that can be used in diesel engines and provides power similar to conventional diesel fuel. It is a biodegradable transportation fuel that contributes little, if any, net carbon dioxide or sulfur to the atmosphere, and is low in particulate emission. It is a renewable, domestically produced liquid fuel that can help reduce US dependence on foreign oil imports. This overview presents the resource potential, history, processing techniques, US DOE programs cost and utilization potential of biodiesel fuels.

NONE

1995-01-01T23:59:59.000Z

94

2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice)1021STATE ENERGY3 Commercial andof4 FUEL

95

Real-World PHEV Fuel Economy Prediction | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList? |EnergyDepartmentMilestoneFiltersPHEV Fuel

96

Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport Maine WindFLASH2011-6-OPAMFY2012 EERE CongressionalConsider Fuel1978-2014 -

97

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

98

FUEL ECONOMY AND CO2 EMISSIONS STANDARDS, MANUFACTURER PRICING STRATEGIES, AND FEEBATES  

SciTech Connect (OSTI)

Corporate Average Fuel Economy (CAFE) standards and CO2 emissions standards for 2012 to 2016 have significantly increased the stringency of requirements for new light-duty vehicle fuel efficiency. This study investigates the role of technology adoption and pricing strategies in meeting new standards, as well as the impact of feebate policies. The analysis is carried out by means of a dynamic optimization model that simulates manufacturer decisions with the objective of maximizing social surplus while simultaneously considering consumer response and meeting CAFE and emissions standards. The results indicate that technology adoption plays the major role and that the provision of compliance flexibility and the availability of cost-effective advanced technologies help manufacturers reduce the need for pricing to induce changes in the mix of vehicles sold. Feebates, when implemented along with fuel economy and emissions standards, can bring additional fuel economy improvement and emissions reduction, but the benefit diminishes with the increasing stringency of the standards.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL; Bunch, Dr David S. [University of California, Davis] [University of California, Davis

2012-01-01T23:59:59.000Z

99

Comparison of Different Load Road Implementation Strategies on Fuel Economy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment ofComparison of Cleanof USPS

100

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule 4 module51:11|ofConference9 National90 -2010

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment7DepartmentEnergy TurbineTurboThe US |

102

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarketsMillion DOE Award |Department

103

Energy Department and Environmental Protection Agency Release Fuel Economy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y. | Department of EnergyClean

104

International Partnership for Hydrogen and Fuel Cells in the Economy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan KalinResearch, Development,CoP)Builders'NEDO,

105

Natural Gas Pathways and Fuel Economy Guide Comparison | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOETowardExecutive Summary In0|ExportsLogistical

106

www.steps.ucdavis.edu How vehicle fuel economy improvements can  

E-Print Network [OSTI]

from Internal Combustion Engine (ICE) vehicles · Role of plug-in electric vehicles (PEV) · Relative are very cost- effective Fuel savings more than pays for fuel economy improvements in light-duty vehicles Fuelsavings #12;7 Some cost/benefit estimates FE Improvement, hybrids, PEVs v. a base ICE vehicle over time

California at Davis, University of

107

Data Collection for Class-8 Long-Haul Operations and Fuel Economy Analysis  

E-Print Network [OSTI]

Data Collection for Class-8 Long-Haul Operations and Fuel Economy Analysis A s part of a long Research Company ­ Michelin), have collected data and information related to Class-8 heavy truck long-haul-world data for the heavy-truck research community. An initial fuel efficiency study was conducted with regard

108

An analysis of bulk agricultural commodity buying behavior in selected developing economies  

E-Print Network [OSTI]

AN ANALYSIS OF BULK AGRICULTURAL COMMODITY BUYING BEHAVIOR IN SELECTED DEVELOPING ECONOMIES A Thesis by Kimberly Renee Moore Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1982 Major Subject: Agricultural Economics AN ANALYSIS OF BULK AGRICULTURAL COMMODITY BUYING BEHAVIOR IN SELECTED DEVELOPING ECONOMIES A Thesis by Kimberly Renee Moore Approved as to style and content by: ( i n o Committee...

Moore, Kimberly Renee

1982-01-01T23:59:59.000Z

109

Improving Fuel Economy When the Weather's Cold | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of EnergyDepartment ofPhotoDepartmentMake sure

110

Very High Fuel Economy, Heavy Duty Truck, Narrow Range Speed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy Duty Truck, Narrow Range Speed Engine, Optimized Via Unique Energy Recovery Turbines and Facilitated by High Efficiency Continuously Variable Drivetrain Very High Fuel...

111

Figure ES6. Fuel Economy Effects on Annual Energy Growth  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31ES5 Figure ES5.

112

Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FYRANDOM DRUG TESTING The

113

SEP Success Story: Fueling South Carolina's Clean Energy Economy |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research |Regulation Services2014 Update |Department of Energy Pure Power, LLC

114

Economic Impact Report Discovery Science Fuels Economy, Technology, Education  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYear 1 Winners Announced!Tri Cities Economic

115

NREL: Transportation Research - Emissions and Fuel Economy Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternativeVehicle

116

2012 Fuel Economy of New Vehicles Sets Record High: EPA | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6 ProjectsEnergy 2 Fuel Economy of

117

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and07-01-3994 Fuel Economy and

118

High Fuel Economy Heavy-Duty Truck Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency|Fuel Economy

119

Review of alternate automotive engine fuel economy. Final report January-October 78  

SciTech Connect (OSTI)

This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

1980-11-01T23:59:59.000Z

120

Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)  

Reports and Publications (EIA)

The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Annual Fuel Economy Guide with 2014 Models Released | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1Annual Fuel Economy Guide with 2014 Models Released

122

Turbocharged Spark Ignited Direct Injection ? A Fuel Economy...  

Broader source: Energy.gov (indexed) [DOE]

8 DEER Conference, August 5 th 2009 Showing The Potential Of Turbocharged SIDI AVL- Turbo SIDI Demonstrator GDI-Turbo Concept Car for low Fuel Consumption 5.0 5.5 6.0 6.5 7.0...

123

Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)  

SciTech Connect (OSTI)

Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

Gonder, J.

2011-11-01T23:59:59.000Z

124

Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication  

SciTech Connect (OSTI)

In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

2014-01-01T23:59:59.000Z

125

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect (OSTI)

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

126

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem  

E-Print Network [OSTI]

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

Coello, Carlos A. Coello

127

Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck  

SciTech Connect (OSTI)

We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

Daw, C Stuart [ORNL; Gao, Zhiming [ORNL; Smith, David E [ORNL; LaClair, Tim J [ORNL; Pihl, Josh A [ORNL; Edwards, Kevin Dean [ORNL

2013-01-01T23:59:59.000Z

128

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses  

SciTech Connect (OSTI)

The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

Brooker, A. D.; Ward, J.; Wang, L.

2013-01-01T23:59:59.000Z

129

Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes  

SciTech Connect (OSTI)

We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL; Franzese, Oscar [ORNL] [ORNL

2014-01-01T23:59:59.000Z

130

Global Economy and IT IT: Recovery and Growth Government and IT IT and Society Strengthening Economies Innovation in information technology (IT) has fueled unprecedented economic gains in the last 30  

E-Print Network [OSTI]

Global Economy and IT IT: Recovery and Growth Government and IT IT and Society Strengthening Economies Innovation in information technology (IT) has fueled unprecedented economic gains in the last 30-term stimulus to local economies but also position both developed and developing economies to compete

Narasayya, Vivek

131

Fact #861 February 23, 2015 Idle Fuel Consumption for Selected...  

Energy Savers [EERE]

1 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles Fact 861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles...

132

Some evidence on determinants of fuel economy as a function of driving cycle and test type  

SciTech Connect (OSTI)

Statistical methods are used with 107 vehicles whose fuel economy was presented and reported for five test types in a single publication by Consumers Union (CU) for 1986--1988 vehicles. Standard loglinear statistical formulations (i.e., multiplicative models of interactions) are used with data from this and supplementary sources to develop coefficients estimating the percent fuel economy gain per percent change in engine/vehicle design characteristic. The coefficients are developed for the five different test conditions evaluated by CU and are compared with each other on the basis of attributes of the tests. The insights of engineering models are used to develop expectations regarding the shift in size of coefficients as driving cycles change. In both the engineering models and the statistical model, the effect of weight is estimated to be higher in urban driving than in highway driving. For two test categories -- field tests and dynamometer tests -- the benefits of weight reduction are statistically estimated to be greatest in urban driving conditions. The effect on idle fuel flow rate of designing vehicles to hold performance roughly constant by maintaining power per kilogram and/or displacement per kilogram is examined, and its implication for the size of the weight effect is simply approximated from Sovran`s 1983 engineering model results. The fuel-economy-decreasing effect of the desire for performance is estimated to be somewhat larger in the statistical analysis than in the NAS study, when engine technology is held constant.

Santini, D.J.; Anderson, J.

1993-08-01T23:59:59.000Z

133

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles  

SciTech Connect (OSTI)

In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

2012-10-01T23:59:59.000Z

134

Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)  

Reports and Publications (EIA)

In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

2006-01-01T23:59:59.000Z

135

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

136

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice

137

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy Resources Jump

138

New Automobile Regulations: Double the Fuel Economy, Half the CO2 Emissions, and Even Automakers Like It  

E-Print Network [OSTI]

Lead-Time: The Case of US Automobile Greenhouse Gas EmissionNew Automobile Regulations Double the Fuel Economy, Half thephysics of the modern automobile involve an uphill battle to

Lutsey, Nic

2012-01-01T23:59:59.000Z

139

The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOfficeTheDepartmentAgreement |TheTechnology

140

Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1: March 9,3:DepartmentVehicle

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July 19,Department4: MayEnergy 4:

142

Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:of EnergyLast Five Years |in

143

The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy  

E-Print Network [OSTI]

THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

Love, Michael Lee

1982-01-01T23:59:59.000Z

144

1994 U.S. Department of Energy Strategic Plan: Fueling a Competitive Economy  

SciTech Connect (OSTI)

The Department of Energy has a rich heritage of meeting important national goals in the areas of energy, national security, science, and technology. The end of the Cold War, and the election of President Clinton, have given us a new national agenda. Through a comprehensive strategic planning process, we have determined that the Department must now unleash its extraordinary scientific and technical talent and resources on new and more sharply focused goals: fueling a competitive economy, improving the environment through waste management and pollution prevention, and reducing the nuclear danger.

None,

1994-04-01T23:59:59.000Z

145

Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014- Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

146

Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon- Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

147

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

148

Engineering-economic analyses of automotive fuel economy potential in the United States  

SciTech Connect (OSTI)

Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

Greene, D.L.; DeCicco, J.

2000-02-01T23:59:59.000Z

149

Comparative analysis of selected fuel cell vehicles  

SciTech Connect (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

150

BioFacts: Fueling a stronger economy, Thermochemical conversion of biomass  

SciTech Connect (OSTI)

A primary mission of the US DOE is to stimulate the development, acceptance, and use of transportation fuels made from plants and wastes called biomass. Through the National Renewable Energy Laboratory (NREL), Doe is developing and array of biomass conversion technologies that can be easily integrated into existing fuel production and distribution systems. The variety of technology options being developed should enable individual fuel producers to select and implement the most cost-effective biomass conversion process suited to their individual needs. Current DOE biofuels research focuses on the separate and tandem uses of biochemical and thermochemical conversion processes. This overview specifically addresses NREL`s thermochemical conversion technologies, which are largely based on existing refining processes.

NONE

1994-12-01T23:59:59.000Z

151

Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982  

SciTech Connect (OSTI)

The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

none,

1982-01-01T23:59:59.000Z

152

Selecting the proper fuel gas for cost-effective oxyfuel cutting  

SciTech Connect (OSTI)

The motivating factor behind recent research and development efforts in metal cutting has been the growing need for companies everywhere to embrace emerging technologies if they are to complete in the global economy. To quickly implement these productivity improvements and gain lower bottom line costs for welding and cutting operations, rapid commercialization of these process advancements is needed. Although initially more expensive, additive-enhanced fuel gases may be the most cost-effective choice for certain cutting applications. The cost of additive-enhanced fuel gases can be justified where oxygen pricing is low (such as with bulk oxygen). Propylene exhibited equal cutting speeds to acetylene and improved cutting economy under specific conditions, which involved longer cuts on thicker base materials. With a longer cut distance, the extra time required to reach the kindling temperature (when compared to acetylene) becomes less critical. It is important to note that kindling temperature was reached more rapidly with propylene than it was with propane, but both fuel gases were slower than acetylene. When factors such as these are considered, many applications are found to be more cost effectively performed with the more expensive acetylene or propylene fuel gases. Each individual application must be studied on a singular basis to determine the most cost-effective choice when selecting the fuel gas.

Lyttle, K.A.; Stapon, W.F.G. [Praxair, Inc., Danbury, CT (United States); Guimaraes, A.

1997-07-01T23:59:59.000Z

153

Table 3.5 Selected Byproducts in Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.1 Nonfuel20112 Fuel3 Fuel5

154

FY 2014 Solid Oxide Fuel Cell Project Selections  

Broader source: Energy.gov [DOE]

In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energy’s...

155

The effect of carburetor refurbishing on emissions, performance, and fuel economy in a classic pickup tested using real-world tests  

E-Print Network [OSTI]

This project investigated how refurbishing the carburetor of a 1952 Chevrolet Pickup would affect emissions, performance, and fuel economy. The test used were real-world tests that anyone, with or without access to a ...

Holmes, Jacklyn (Jacklyn A.)

2010-01-01T23:59:59.000Z

156

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic Impact in the United States  

E-Print Network [OSTI]

The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use, as well as (more recently) greenhouse gas (GHG) ...

Karplus, V.J.

157

Material Selection for Accident Tolerant Fuel Cladding  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ?1200°C for short (?4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that is not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich ?’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated. Keywords: Accident tolerant LWR Fuel cladding, FeCrAl, Mo, Ti2AlC, Al2O3, high temperature steam oxidation resistance

none,

2014-07-01T23:59:59.000Z

158

Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles  

SciTech Connect (OSTI)

Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

Jeff Wishart; Matthew Shirk

2012-12-01T23:59:59.000Z

159

Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-ÂŤOBC-DPF +  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMPRelatedEnergy Fuel:

160

Investigating greenhouse gas emission pathways In selected OECD countries using a hybrid energy-economy approach.  

E-Print Network [OSTI]

??This report outlines the development and analysis of CIMS OECD-EPM. CIMS OECD-EPM is a hybrid energy-economy model that forecasts energy consumption and GHG emissions in… (more)

Goldberg, Suzanne

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6ResidentialEnergy

162

Fuel economy and emissions reduction of HD hybrid truck over transient  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergyQuality Challenges An OEMLife10and

163

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYGStrategic HumanDOEWells |of

164

Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| Department of

165

Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide Emission Standards, Model Years

166

Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide Emission Standards, Modeland Canada

167

Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORTMAMayCrossColoradoMotion to Withdraw

168

Vehicle Mass Impact on Vehicle Losses and Fuel Economy | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrierof|

169

Journal of Power Sources, Vol.165, issue 2, March 2007, pp.819-832. Abstract--Power management strategy is as significant as component sizing in achieving optimal fuel economy of a  

E-Print Network [OSTI]

Management and Design Optimization of Fuel Cell/Battery Hybrid Vehicles #12;Journal of Power Sources, Vol.165 strategy is as significant as component sizing in achieving optimal fuel economy of a fuel cell hybrid management strategy and component sizing affect vehicle performance and fuel economy considerably in hybrid

Peng, Huei

170

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell Vehicle Basics Fuel Cell Vehicle BasicsValentines

171

Fuel Economy Sticker Revs Up Used Car Sales | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of Energy Freeport LNG Expansion, L.P.Fuel CellResearchFuel

172

Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July 19, 2010Energy 5:Fuel

173

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealingVehicle1:EnergyDecemberof Energy87: PreserveStates |of

174

Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy FrozenNovember 10, 2014EnergyNEACClass 4

175

Policy Discussion - Heavy-Duty Truck Fuel Economy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2Activity

176

The Road to Improved Heavy Duty Fuel Economy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2 NuclearThe Road to HiroshimaThe

177

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy The U.S. and China

178

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of Energy The U.S. and ChinaEmissions in

179

Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1: March 9,3: June0:

180

Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel Economy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1: March 9,3: June0:Improvement |

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1: March 9,3: June0:Improvement

182

Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1: March 9,3:

183

Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1: March 9,3:Department ofSpeed |

184

Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:Energy 2:DepartmentYears

185

Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:EnergyDepartment of

186

Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:EnergyDepartmentDepartment of

187

Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 2011 Report1:EnergyDepartmentDepartment

188

Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July| Department of Energy

189

Fact #730: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July|Rise |Department of Energy1980

190

Fact #773: April 1, 2013 Fuel Economy Penalty at Higher Speeds | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:of EnergyLast Five Years |inof

191

Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:ofElectric Vehicle Purchases

192

Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:ofElectric1975-2012 |10: DecemberisRise

193

Fact #818: April 21, 2014 The Effect of Winter Weather on Fuel Economy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112:ofElectric1975-2012

194

EHRS Impact on Engine Warm-up and Fuel Economy | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9:Department of EnergyQCJuly 2015AbsorptionEHRS

195

AVTA: Quantifying the Effects of Idle Stop Systems on Fuel Economy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601Department ofEnergy PHEV Demand and

196

Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof EnergyHouse EnvironmentalEstimatingin U.S.for HEVs and

197

EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit| Department of EnergyProgramMeeting at OMB - ATI10635ofEPA'sEnergy

198

Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECMWear | Department ofEmissions Reduction

199

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeat PumpDutyEnergy 0Department of

200

Global Fuel Economy Initiative: 50by50 Prospects and Progress | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to: navigation,GigaCrete Inc JumpGland,GlenrockGlobalInformation

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Compact Bidding Languages and Supplier Selection for Markets with Economies of Scale and Scope  

E-Print Network [OSTI]

describe key characteristics of a supplier's production function that influence al- locations and prices setup costs, but low marginal costs leading to a unit price degression. On the other hand economies complex conditions for these pricing rules. We propose an optimization formulation to solve the resulting

Cengarle, MarĂ­a Victoria

202

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C. -Affordable |

203

DOE and EPA Release 2012 Annual Fuel Economy Guide | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C. -Affordable |WASHINGTON, D.C. -

204

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National AcceleratorMemoranda andEnergy andIt goesLast week,|

205

Very High Fuel Economy, Heavy Duty Truck, Narrow Range Speed Engine,  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram2-26TheUtility-ScaleofLabReportEnergy81Arizona, Site

206

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water Power

207

What Steps Do You Take to Improve Your Fuel Economy? | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department of Energy Westinghouse Pays

208

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5 QuestionsDepartment of

209

Figure ES7. Adjusted Annual Energy Growth - No Fuel Economy Effects  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 6221,2372003ofDec. 31ES5 Figure ES5.ES7

210

DOE SuperTruck utilizes ORNL technology to boost fuel economy | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newmango!Department ofStrategic HumanField

211

Federal Express CleanFleet Final Report Volume 4: Fuel Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚· EIA expects that theDepartmentPolicy4

212

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement ||MoreThisDepartment of Energy To accessof

213

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmasSandy-Nor'easter SituationHybridVehicles

214

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA -NationaltoDepartment ofMarch 7,Thein EnergyEnergy The.States

215

E-Print Network 3.0 - automotive fuel economy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

proposed hydrogen tax credit supports the market introduction of hydrogen for use... in fuel cells and internal combustion engines in nearer-term applications, including forklifts,...

216

Trends and drivers of the performance : fuel economy tradeoff in new automobiles  

E-Print Network [OSTI]

Cars sold in the United States have steadily become more fuel-efficient since the 1970s, and assessments of emerging technologies demonstrate a significant potential for continued evolutionary improvements. However, historic ...

MacKenzie, Donald Warren

2009-01-01T23:59:59.000Z

217

HYBRID ELECTRIC VEHICLE OWNERSHIP AND FUEL ECONOMY ACROSS TEXAS: AN APPLICATION OF SPATIAL MODELS  

E-Print Network [OSTI]

and environmental policies (Koo et al. 2012). While EV sales (including both HEVs and PEVs) have risen considerably significant. If households registering more fuel- efficient vehicles, including hybrid EVs, are also more inclined to purchase plug-in EVs, these #12;findings can assist in spatial planning of charging

Kockelman, Kara M.

218

Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks  

SciTech Connect (OSTI)

In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

Franzese, Oscar [ORNL; Davidson, Diane [ORNL

2011-11-01T23:59:59.000Z

219

Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)  

SciTech Connect (OSTI)

Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

Not Available

2009-04-01T23:59:59.000Z

220

SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS  

SciTech Connect (OSTI)

While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

Murph, S.

2012-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

222

Selection of Isotopes and Elements for Fuel Cycle Analysis  

SciTech Connect (OSTI)

Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

Steven J. Piet

2009-04-01T23:59:59.000Z

223

Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFYOxide EmissionEconomy thanNewVehicleCrudeDiesel

224

Fuel Economy and Emissions Effects of Low Tire Pressure, Open Windows, Roof Top and Hitch-Mounted Cargo, and Trailer  

SciTech Connect (OSTI)

To quantify the fuel economy (FE) effect of some common vehicle accessories or alterations, a compact passenger sedan and a sport utility vehicle (SUV) were subjected to SAE J2263 coastdown procedures. Coastdowns were conducted with low tire pressure, all windows open, with a roof top or hitch-mounted cargo carrier, and with the SUV pulling an enclosed cargo trailer. From these coastdowns, vehicle dynamometer coefficients were developed which enabled the execution of vehicle dynamometer experiments to determine the effect of these changes on vehicle FE and emissions over standard drive cycles and at steady highway speeds. The FE penalty associated with the rooftop cargo box mounted on the compact sedan was as high as 25-27% at higher speeds, where the aerodynamic drag is most pronounced. For both vehicles, use of a hitch mounted cargo tray carrying a similar load resulted in very small FE penalties, unlike the rooftop cargo box. The results for the SUV pulling a 3500 pound enclosed cargo trailer were rather dramatic, resulting in FE penalties ranging from 30%, for the city cycle, to 50% at 80 mph, at which point significant CO generation indicated protective enrichment due to high load. Low tire pressure cases resulted in negligible to 10% FE penalty depending on the specific case and test point. Driving with all four windows open decreased FE by 4-8.5% for the compact sedan, and 1-4% for the SUV.

Thomas, John F [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; West, Brian H [ORNL] [ORNL

2014-01-01T23:59:59.000Z

225

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment of Energy Watch it

226

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download6 Electricity: Sales to31 19932335

227

Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative FuelsFueling

228

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection,  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department ofDepartment of Energy Watch it LiveOctoberDepartment

229

Short Communication A rapid selection strategy for an anodophilic consortium for microbial fuel cells  

E-Print Network [OSTI]

Microbial fuel cell (MFC) a b s t r a c t A rapid selection method was developed to enrich for a stable and efficient anodophilic consortium (AC) for microbial fuel cells (MFCs). A biofilm sample from a microbial. Introduction Current generation in microbial fuel cells (MFCs) is dependent on the presence of exoelectrogenic

230

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing,  

E-Print Network [OSTI]

Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff MeetingWater Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design fuel cell design and operation; Demonstrate improvements in water management resulting in improved

231

Fuel-cycle assessment of selected bioethanol production.  

SciTech Connect (OSTI)

A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel, farming consumes most of the fossil fuel in the life cycle of corn stover-based ethanol.

Wu, M.; Wang, M.; Hong, H.; Energy Systems

2007-01-31T23:59:59.000Z

232

Evaluation of the Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

233

Fact #680: June 20, 2011 Fuel Economy is "Most Important" When Buying a  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCofConstructionofFY 20112: July 19,Department4: May 9,|Vehicle |

234

New Vehicle Choices, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and Gasoline Tax  

E-Print Network [OSTI]

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliot William

2009-01-01T23:59:59.000Z

235

New Vehicle Choice, Fuel Economy and Vehicle Incentives: An Analysis of Hybrid Tax Credits and the Gasoline Tax  

E-Print Network [OSTI]

7: Change in Sales of Hybrid Vehicles Due to Federal Taxof alternative fuels and hybrid vehicles. A primary policythe federal level to hybrid vehicles. This policy, begun in

Martin, Elliott William

2009-01-01T23:59:59.000Z

236

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import Costs for Selected CountriesU.S.1 Nonfuel20112 Fuel3

237

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 "1. Consumption1. Selected

238

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2Argonne National4ArtificialAs summer

239

Selection and preparation of activated carbon for fuel gas storage  

DOE Patents [OSTI]

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

240

AECL/US INERI - Development of Inert Matrix Fuels for Plutonium and Minor Actinide Management in Power Reactors -- Fuel Requirements and Down-Select Report  

SciTech Connect (OSTI)

The U.S. Advanced Fuel Cycle Program and the Atomic Energy Canada Ltd (AECL) seek to develop and demonstrate the technologies needed to minimize the overall Pu and minor actinides present in the light water reactor (LWR) nuclear fuel cycles. It is proposed to reuse the Pu from LWR spent fuel both for the energy it contains and to decrease the hazard and proliferation impact resulting from storage of the Pu and minor actinides. The use of fuel compositions with a combination of U and Pu oxide (MOX) has been proposed as a way to recycle Pu and/or minor actinides in LWRs. It has also been proposed to replace the fertile U{sup 238} matrix of MOX with a fertile-free matrix (IMF) to reduce the production of Pu{sup 239} in the fuel system. It is important to demonstrate the performance of these fuels with the appropriate mixture of isotopes and determine what impact there might be from trace elements or contaminants. Previous work has already been done to look at weapons-grade (WG) Pu in the MOX configuration [1][2] and the reactor-grade (RG) Pu in a MOX configuration including small (4000 ppm additions of Neptunium). This program will add to the existing database by developing a wide variety of MOX fuel compositions along with new fuel compositions called inert-matrix fuel (IMF). The goal of this program is to determine the general fabrication and irradiation behavior of the proposed IMF fuel compositions. Successful performance of these compositions will lead to further selection and development of IMF for use in LWRs. This experiment will also test various inert matrix material compositions with and without quantities of the minor actinides Americium and Neptunium to determine feasibility of incorporation into the fuel matrices for destruction. There is interest in the U.S. and world-wide in the investigation of IMF (inert matrix fuels) for scenarios involving stabilization or burn down of plutonium in the fleet of existing commercial power reactors. IMF offer the potential advantage for more efficient destruction of plutonium and minor actinides (MA) relative to MOX fuel. Greater efficiency in plutonium reduction results in greater flexibility in managing plutonium inventories and in developing strategies for disposition of MA, as well as a potential for fuel cycle cost savings. Because fabrication of plutonium-bearing (and MA-bearing) fuel is expensive relative to UO{sub 2} in terms of both capital and production, cost benefit can be realized through a reduction in the number of plutonium-bearing elements required for a given burn rate. In addition, the choice of matrix material may be manipulated either to facilitate fuel recycling or to make plutonium recovery extremely difficult. In addition to plutonium/actinide management, an inert matrix fuel having high thermal conductivity may have operational and safety benefits; lower fuel temperatures could be used to increase operating and safety margins, uprate reactor power, or a combination of both. The CANDU reactor offers flexibility in plutonium management and MA burning by virtue of online refueling, a simple bundle design, and good neutron economy. A full core of inert matrix fuel containing either plutonium or a plutonium-actinide mix can be utilized, with plutonium destruction efficiencies greater than 90%, and high (>60%) actinide destruction efficiencies. The Advanced CANDU Reactor (ACR) could allow additional possibilities in the design of an IMF bundle, since the tighter lattice pitch and light-water coolant reduce or eliminate the need to suppress coolant void reactivity, allowing the center region of the bundle to include additional fissile material and to improve actinide burning. The ACR would provide flexibility for management of plutonium and MA from the existing LWR fleet, and would be complementary to the AFCI program in the U.S. Many of the fundamental principles concerning the use of IMF are nearly identical in LWRs and the ACR, including fuel/coolant compatibility, fuel fabrication, and fuel irradiation behavior. In addition, the U.S. and Canada both

William Carmack; Randy D. Lee; Pavel Medvedev; Mitch Meyer; Michael Todosow; Holly B. Hamilton; Juan Nino; Simon Philpot; James Tulenko

2005-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623PrimarySelected Industries,

242

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

243

Divorce Economy  

E-Print Network [OSTI]

Broadcast Transcript: Is divorce good for the economy? Some market analysts in South Korea would answer with a resounding "geu rum yo!" That's "Yes!" in Korean. Korea's rapidly rising divorce rate seems to have softened the stigma attached...

Hacker, Randi; Tsutsui, William

2006-08-09T23:59:59.000Z

244

Influence of fuel sulfur on the selective reduction of NO by NH/sub 3/  

SciTech Connect (OSTI)

The selective reduction of NO by NH/sub 3/ addition has been studied in a lean-burning oil fired laboratory combustion tunnel with pyridine and thiophene added to the fuel oil. Two distinct, but interrelated effects were observed. The conversion of a fixed amount of fuel nitrogen to NO in the flame increased as the fuel sulfur concentration increased. In the post-combustion gases, there was a shift in the temperature dependence of the reduction process when the sulfur combustion products were present. The extent of the NO reduction was not significantly altered, but the optimum temperature for reduction shifted to higher values as the sulfur concentration increased.

Lucas, D.; Brown, N.J.

1981-10-01T23:59:59.000Z

245

Criteria for selection of components for surrogates of natural gas and transportation fuels q  

E-Print Network [OSTI]

Criteria for selection of components for surrogates of natural gas and transportation fuels q reserved. Keywords: Kerosene reaction mechanism; Gasoline reaction mechanism; Natural gas reaction found in minor amounts in natural gas [4]. The widely studied heptane reaction set [5,6] is often used a

Utah, University of

246

Influence of fuel sulfur on the selective reduction of NO by NH/sub 3/  

SciTech Connect (OSTI)

More intensive regulations of the emissions of nitrogen oxides from stationary combustion sources have prompted the innovation and characterization of new control technologies suitable for applications in utilities. One of the more recent and attractive abatement technologies is the Thermal DeNO/sub x/ process which has been described by Lyon and Longwell. This process removes NO by selectively reducing it with NH/sub 3/ added to the post-combustion gases containing excess oxygen. This process is thus independent of the NO formation mechanism and makes no distinction between thermal and fuel NO. The present study is concerned with characterizing the selective reduction process for light distillate oil fuel admixed with variable amounts of pyridene and thiophene in a laboratory scale combustion tunnel under a variety of experimental conditions. This paper reports on those aspects of the study concerned with the investigation of possible synergistic effects between the sulfur and selective reduction chemistry.

Lucas, D.; Brown, N.J.

1981-01-01T23:59:59.000Z

247

Parameter Selection for Department of Energy Spent Nuclear Fuel to be Used in the Yucca Mountain License Application  

SciTech Connect (OSTI)

This report contains the chemical, physical, and radiological parameters that were chosen to represent the U.S. Department of Energy spent nuclear fuel in the Yucca Mountain license application. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data are reported for representative fuels and bounding fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported were not generated under any quality assurance program.

D. L. Fillmore

2003-10-01T23:59:59.000Z

248

The Methanol Economy Project  

SciTech Connect (OSTI)

The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields. ? Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application. ? Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm). ? CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching. ? CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer. ? Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts. ? Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nation’s energy independence.

Olah, George; Prakash, G.K.

2013-12-31T23:59:59.000Z

249

Fuel reforming for fuel cell application.  

E-Print Network [OSTI]

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

250

New generation nuclear fuel structures: dense particles in selectively soluble matrix  

SciTech Connect (OSTI)

We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (1) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO2 particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials.

Sickafus, Kurt E [Los Alamos National Laboratory; Devlin, David J [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Pattillo, Steve G [Los Alamos National Laboratory; Valdez, James [Los Alamos National Laboratory; Phillips, Jonathan [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

251

DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS  

SciTech Connect (OSTI)

Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

Fox, E.

2012-05-01T23:59:59.000Z

252

Selection and Properties of Alternative Forming Fluids for TRISO Fuel Kernel Production  

SciTech Connect (OSTI)

Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

Doug Marshall; M. Baker; J. King; B. Gorman

2013-01-01T23:59:59.000Z

253

Hydrogen Economy: Opportunities and Challenges *  

E-Print Network [OSTI]

A hydrogen economy, the long-term goal of many nations, can potentially provide energy security, along with environmental and economic benefits. However, the transition from a conventional petroleum-based energy system to a hydrogen economy involves many uncertainties, such as the development of efficient fuel cell technologies, problems in hydrogen production and distribution infrastructure, and the response of petroleum markets. This study uses the U.S. MARKAL model to simulate the impacts of hydrogen technologies on the U.S. energy system and identify potential impediments to a successful transition. Preliminary findings identify potential market barriers facing the hydrogen economy, as well as opportunities in new R&D and product markets for bioproducts. Quantitative analysis also offers insights on policy options for promoting hydrogen technologies. The objective of this paper is to study the transition from a petroleum-based energy system to a hydrogen economy, and ascertain the consequent opportunities and

254

Energy Economy  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary826Industrythe UnitedAdam

255

On fuel selection in controlled auto-ignition engines : the link between intake conditions, chemical kinetics, and stratification  

E-Print Network [OSTI]

The objective of this research is to examine the impact fuel selection can have on the high-load limit in a stratified Compression Auto-Ignition (CAI) engine. This was accomplished by first studying the validity of the ...

Maria, Amir Gamal

2012-01-01T23:59:59.000Z

256

Decontamination performance of selected in situ technologies for jet fuel contamination. Master's thesis  

SciTech Connect (OSTI)

Specific study of jet fuel is warranted because of the quantitive and qualitative component differences between jet fuel and other hydrocarbon fuels. Quantitatively, jet fuel contains a larger aliphatic or saturate fraction and a smaller aromatic fraction than other fuels (i.e. heating oil and diesel oil) in the medium-boiling-point-distillate class of fuels. Since the aliphatic and aromatic fractions of fuel are not equally susceptible to biodegradation, jet fuel decontamination using biodegradation may be different from other fuels.

Chesley, G.D.

1993-01-01T23:59:59.000Z

258

Overall Energy Considerations for Algae Species Comparison and Selection in Algae-to-Fuels Processes  

SciTech Connect (OSTI)

The controlled growth of microalgae as a feedstock for alternative transportation fuel continues to receive much attention. Microalgae have the characteristics of rapid growth rate, high oil (lipid) content, and ability to be grown in unconventional scenarios. Algae have also been touted as beneficial for CO{sub 2} reuse, as algae can be grown using CO{sub 2} emissions from fossil-based energy generation. Moreover, algae does not compete in the food chain, lessening the 'food versus fuel' debate. Most often, it is assumed that either rapid production rate or high oii content should be the primary factor in algae selection for algae-to-fuels production systems. However, many important characteristics of algae growth and lipid production must be considered for species selection, growth condition, and scale-up. Under light limited, high density, photoautotrophic conditions, the inherent growth rate of an organism does not affect biomass productivity, carbon fixation rate, and energy fixation rate. However, the oil productivity is organism dependent, due to physiological differences in how the organisms allocate captured photons for growth and oil production and due to the differing conditions under which organisms accumulate oils. Therefore, many different factors must be considered when assessing the overall energy efficiency of fuel production for a given algae species. Two species, Chlorella vulgaris and Botryococcus braunii, are popular choices when discussing algae-to-fuels systems. Chlorella is a very robust species, often outcompeting other species in mixed-culture systems, and produces a lipid that is composed primarily of free fatty acids and glycerides. Botryococcus is regarded as a slower growing species, and the lipid that it produces is characterized by high hydrocarbon content, primarily C28-C34 botryococcenes. The difference in growth rates is often considered to be an advantage oiChlorella. However, the total energy captured by each algal species in the same photobioreactor system should be similar at light limited growth conditions based on photon flux. It is how the algae 'allocate' this energy captured that will vary: Data will be presented that shows that Botryococcus invests greater energy in oil production than Chlorella under these growth conditions. In essence, the Chlorella can grow 'fast and lean' or can be slowed to grow 'slow and fat'. The overall energy potential between the Chlorella and Botryococcus, then, becomes much more equivalent on a per-photon basis. This work will indicate an interesting relationship between two very different algae species, in terms of growth rate, lipid content and composition, and energy efficiency of the overall process. The presentation will indicate that in light-limited growth, it cannot be assumed that either rapid growth rate or lipid production rate can be used as stand-alone indicators of which species-lipid relationships will truly be more effective in algae-to-fuels scenarios.

Link, D.; Kail, B.; Curtis, W.; Tuerk,A.

2011-01-01T23:59:59.000Z

259

FreedomCAR and Fuel Partnership  

E-Print Network [OSTI]

and fuel cells) required for implementation of a hydrogen economy. Technical teams for each for a hydrogen economy will need to compete against an existing fuel infrastructure that is well understood Section 1: Analyzing Hydrogen Fuel Pathways..........................................5 Section 2

260

Manufacturing R&D for the Hydrogen Economy Roadmap Workshop  

E-Print Network [OSTI]

Manufacturing R&D for the Hydrogen Economy Roadmap Workshop In his 2003 State of the Union Address of the hydrogen and fuel cell technologies needed to move the U.S. toward a future hydrogen economy. While many-volume commercial manufacturing has been identified as one potential showstopper to a future hydrogen economy

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImportsBG4, 2012 1:00 -22-01-2049 Measured

262

Biomass Fuel Characterization : Testing and Evaluating the Combustion Characteristics of Selected Biomass Fuels : Final Report May 1, 1988-July, 1989.  

SciTech Connect (OSTI)

Results show that two very important measures of combustion efficiency (gas temperature and carbon dioxide based efficiency) varied by only 5.2 and 5.4 percent respectively. This indicates that all nine different wood fuel pellet types behave very similarly under the prescribed range of operating parameters. The overall mean efficiency for all tests was 82.1 percent and the overall mean temperature was 1420 1{degree}F. Particulate (fly ash) ad combustible (in fly ash) data should the greatest variability. There was evidence of a relationship between maximum values for both particulate and combustible and the percentages of ash and chlorine in the pellet fuel. The greater the percentage of ash and chlorine (salt), the greater was the fly ash problem, also, combustion efficiency was decreased by combustible losses (unburned hydrocarbons) in the fly ash. Carbon monoxide and Oxides of Nitrogen showed the next greatest variability, but neither had data values greater than 215.0 parts per million (215.0 ppm is a very small quantity, i.e. 1 ppm = .001 grams/liter = 6.2E-5 1bm/ft{sup 3}). Visual evidence indicates that pellets fuels produced from salt laden material are corrosive, produce the largest quantities of ash, and form the only slag or clinker formations of all nine fuels. The corrosion is directly attributable to salt content (or more specifically, chloride ions and compounds formed during combustion). 45 refs., 23 figs., 19 tabs.

Bushnell, Dwight J.; Haluzok, Charles; Dadkhah-Nikoo, Abbas

1990-04-01T23:59:59.000Z

263

A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-DecemberBased onIn-Cylinder

264

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download6 Electricity: Sales to31

265

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative FuelsTotal" (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History71.7 588.51 "1. Consumption1.

266

The Effect of Diesel Fuel Properties on Emissions-Restrained...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at...

267

Ecology or Economy  

E-Print Network [OSTI]

Broadcast Transcript: File this under "Statistics to the Rescue". Economy or ecology? Ecology or economy? Tough choice. Especially for China which is barreling recklessly ahead in its quest to become top consumer nation. A recent release from...

Hacker, Randi; Tsutsui, William

2007-07-18T23:59:59.000Z

268

Candidate Fuels for Vehicle Fuel Cell Power Systems  

E-Print Network [OSTI]

, Petroleum, HEV Gasoline, Petroleum, ICEV Energy, MJ/mi Vehicle: Petroleum Vehicle: Other Fossil Fuel Vehicle: Non Fossil Fuel Fuel Chain: Petroleum Fuel Chain: Other Fossil Fuel Fuel Chain: Non Fossil Fuel price premium · Subsidies/taxes · Supply chain (natural gas, materials) · Fuel economy · FCV and fueling

269

Fuel Cell Project Selected for First Ever Technology-to-Market SBIR Award |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdf Flash2010-72.pdfAccomplishments | DepartmentWolfinger,Financing forSummit

270

Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartment of EnergyLight-Duty Diesel InDOE for Further

271

Turbocharging of small internal combustion engine as a means of improving engine/application system fuel economy-further turbocharger improvements. Final report Oct 80-Feb 82  

SciTech Connect (OSTI)

Improvements to a small diesel engine turbocharger were made based on data gathered during a previous Army contract. The improved turbocharger was fabricated and tested on a small, four cylinder, 239 CID diesel engine. Engine dynamometer test data revealed a 2 to 9 percent reduction in fuel consumption at all points over the operating envelope. A turbocharger was operated for 1011 hours at speeds between 70000 and 78000 rpm without incident. The ball bearings were in excellent condition at the end of the test. A math model of the engine and turbocharger was generated. The model was used to estimate 13 Mode Federal Diesel Emissions Cycle, the LA4 driving cycle and the application of the variable area turbine nozzle (VATN) turbocharger to a diesel engine driven generator set. A recommendation was made to build a gen set demo unit. A fuel savings of 8 to 10 percent was estimated for a 30KW DED generator set.

Arvin, J.R.

1982-04-01T23:59:59.000Z

272

A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ConocoPhillips and Nexant Corporatin 2004deerabbott.pdf More Documents & Publications Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects...

273

Fuel Cell Project Selected for First Ever Technology-to-Market...  

Energy Savers [EERE]

cell electric vehicles to enable significant reductions in greenhouse gas emissions and air pollution. In addition to this technology-to-market award, two fuel cell projects were...

274

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 Estimation59.5

275

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 Estimation59.561.7 67.5 69.9

276

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 Estimation59.561.7 67.5 69.975.6

277

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 Estimation59.561.7 67.5

278

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProved ReservesFeet)per Thousand Cubic Feet)5.257 Estimation59.561.7 67.544.6 48.9

279

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623Primary

280

FY 2014 Solid Oxide Fuel Cell Project Selections | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA5 &of EnergyOrganizationtotal FYNuclear Research FOA |In FY

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain  

SciTech Connect (OSTI)

The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

Bahman Habibzadeh

2010-01-31T23:59:59.000Z

282

On selection and operation of an international interim storage facility for spent nuclear fuel  

E-Print Network [OSTI]

Disposal of post-irradiation fuel from nuclear reactors has been an issue for the nuclear industry for many years. Most countries currently have no long-term disposal strategy in place. Therefore, the concept of an ...

Burns, Joe, 1966-

2004-01-01T23:59:59.000Z

283

Naval ship propulsion and electric power systems selection for optimal fuel consumption  

E-Print Network [OSTI]

Although propulsion and electric power systems selection is an important part of naval ship design, respective decisions often have to be made without detailed ship knowledge (resistance, propulsors, etc.). Propulsion and ...

Sarris, Emmanouil

2011-01-01T23:59:59.000Z

284

Technical Approach and Results from the Fuels Pathway on an Alternative Selection Case Study  

SciTech Connect (OSTI)

The report presents a detailed plan for conducting case studies to characterize probabilistic safety margins associated with different fuel cladding types in a way that supports a valid comparison of different fuels' performance. Recent work performed in other programs is described briefly and used to illustrate the challenges posed by characterization of margin in a probabilistic way. It is additionally pointed out that consistency of evaluation of performance across different cladding types is not easy to assure; a process for achieving the needed consistency is described.

Bob Youngblood; Curtis Smith

2013-09-01T23:59:59.000Z

285

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

286

Energy and the economy: Soaring development in Thailand  

SciTech Connect (OSTI)

Thailand's economy is one of the fastest growing in the world. Spectacular economic growth has brought a number of growing pains, energy being one of the many notables. Thailand's growth campaign has been fueled by oil, and as the economy shows little sign of slowing, energy use continues to grow. The government must balance a surging economy while scrambling to maintain sufficient energy supplies and infrastructure.

Not Available

1993-08-25T23:59:59.000Z

287

Green Economy Toolbox | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place: Golden, COIndiana JumpGrayIncentivesGreen Economy

288

WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization  

SciTech Connect (OSTI)

Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

2012-10-02T23:59:59.000Z

289

California's Green Economy  

E-Print Network [OSTI]

: Number of workers in green or clean product manufacturing and/or services Number of businesses that haveCalifornia's Green Economy California Green Workforce Coalition July 9, 2010 Bonnie Graybill Employment Development Department Labor Market Information Division #12;Understanding the Green Economy What

290

Comparison of selected fuel and chemical content values for seven Populus hybrid clones  

SciTech Connect (OSTI)

Fuel and chemical content values were determined for seven Populus clones by component (wood, bark, and wood/bark specimens) and tissue age (1 to 8 years old). The fuel and chemical content values obtained included: gross heat of combustion, extractives, holocellulose, alpha-cellulose, lignin and ash. In general, analysis of the data for the wood, bark, and wood/bark specimens indicated that: 1) wood was higher in holocellulose and alpha-cellulose content than bark; 2) bark was higher in gross heat of combustion, lignin, extractive, and ash content values than wood; and 3) combined wood/bark fuel and chemical content values were usually between the individual values for the wood and bark. Statistical analyses indicated that significant differences existed within and among clones. Within the wood, bark, and wood/bark specimens, tissue age influenced the chemical content values more than the parentage. Potential chemical yields derived from the seven Populus hybrid clones investigated will depend on component and age with limited parentage effects. 15 references.

Blankenhorn, P.R.; Bowersox, T.W.; Kuklewski, K.M.; Stimely, G.L.; Murphey, W.K.

1985-04-01T23:59:59.000Z

291

Potential Roles of Ammonia in a Hydrogen Economy  

E-Print Network [OSTI]

Potential Roles of Ammonia in a Hydrogen Economy A Study of Issues Related to the Use Ammonia economy, particularly with regard to the viability of ammonia as an on-board hydrogen carrier for fuel for On-Board Vehicular Hydrogen Storage U.S. Department of Energy #12;#12;Primary Authors: George Thomas1

292

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

to coordinate and leverage the current federal efforts focused on manufacturability issues such as low-cost of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

293

Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution  

SciTech Connect (OSTI)

Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

2014-03-01T23:59:59.000Z

294

Pipe Insulation Economies  

E-Print Network [OSTI]

PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram written in IBM basic to simplify the economic insulation thickness for an insulated pipe. Many... ECONOMIES" 30 LOCATE 10,29:PRINT"ROBERT E. SCHILLING,P.E." 40 LOCATE l2,3l:PRINT"EATON CORPORATION" 50 LOCATE l3,26:PRINT"119 Q SOUTH CHILLICOTHE ROAD" 598 ESL-IE-86-06-97 Proceedings from the Eighth Annual Industrial Energy Technology Conference...

Schilling, R. E.

295

Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017  

E-Print Network [OSTI]

vehicle component costs (for fuel cells and hydrogenand cost issues for hydrogen and fuel cell vehicles, andFuel economy: • Fuel cell system cost: % of DOE 2015 Target

Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

2010-01-01T23:59:59.000Z

296

Real-World PHEV Fuel Economy Prediction  

Broader source: Energy.gov (indexed) [DOE]

data - Cleansed data freely available for download - Controlled access to detailed spatial data * User application process * Software tools available through secure web...

297

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

and $1.85 a gallon. Crude oil prices in early 2009 werethe oil we consume. The price of crude oil in early 1973 was

Schipper, Lee

2009-01-01T23:59:59.000Z

298

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

$1.85 a gallon. Crude oil prices in early 2009 were stillBut in light of fluctuating oil prices and concerns aboutwhen the inevitable rise in oil prices occurs with economic

Schipper, Lee

2009-01-01T23:59:59.000Z

299

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

behavior much in response to gasoline price changes on thereally think about and respond to gasoline prices? Dohow much they spend on gasoline over the course of a year,

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

300

SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS  

SciTech Connect (OSTI)

A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

Murph, S.

2010-06-16T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

The Value of Renewable Energy as a Hedge Against Fuel Price Risk: Analytic Contributions from Economic and Finance Theory  

E-Print Network [OSTI]

prices hurt the economy), then natural gas is said to have aNatural Gas Policy – Fueling the Demands of a Growing Economy.Natural Gas Policy – Fueling the Demands of a Growing Economy.

Bolinger, Mark A

2009-01-01T23:59:59.000Z

302

CLIMATE CHANGE GLOBAL ECONOMY How to decarbonise the global economy  

E-Print Network [OSTI]

CLIMATE CHANGE · GLOBAL ECONOMY How to decarbonise the global economy Today's report on deep efforts of independent experts from 15 countries to find national pathways to making economies based-zero emissions sometime in the second half of this century. This deep cut should occur in a growing world economy

303

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

trucks can increase fuel economy by 3-6% over the long haultrucks can increase fuel economy by 3-6% over the long haul

Zhao, Hengbing

2013-01-01T23:59:59.000Z

304

An Integrated Assessment of the Impacts of Hydrogen Economy on Transportation, Energy Use, and Air Emissions  

E-Print Network [OSTI]

Economy on Transportation, Energy Use, and Air Emissions fossil fuel imports such as natural gas.Economy on Transportation, Energy Use, and Air Emissions penetration of H 2 -FCVs could increase the use of natural gasEconomy on Transportation, Energy Use, and Air Emissions With the most cost-effective sources of hydrogen likely to be natural gas

Yeh, Sonia; Loughlin, Daniel H.; Shay, Carol; Gage, Cynthia

2007-01-01T23:59:59.000Z

305

Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18 miles per gallon or less for brand new vehicles with improved fuel economy. The...

306

Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed...

307

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

SciTech Connect (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

308

EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy  

E-Print Network [OSTI]

EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy EconoGrid is a detailed simulation model, implemented in SLX1 , of a grid compute economy that implements selected of users. In a grid compute economy, computing resources are sold to users in a market where price

309

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

310

Open economy politics: A critical review  

E-Print Network [OSTI]

brain. New Political Economy. forthcoming. Zysman, J. , & D’Press. Bates, R. H. (1997). Open-economy politics:The political economy of the world coffee trade. Princeton,

Lake, David A.

2009-01-01T23:59:59.000Z

311

Comparative economics: evolution and the modern economy  

E-Print Network [OSTI]

A comparison of primate economies. Journal of Bioeconomics,1999). Complexity and the economy. Science, 284, 107–109.evolution and the modern economy Ghabrial, A. S. , &

Vermeij, Geerat J.

2009-01-01T23:59:59.000Z

312

Money Distributions in Chaotic Economies  

E-Print Network [OSTI]

This paper considers the ideal gas-like model of trading markets, where each individual is identified as a gas molecule that interacts with others trading in elastic or money-conservative collisions. Traditionally this model introduces different rules of random selection and exchange between pair agents. Real economic transactions are complex but obviously non-random. Consequently, unlike this traditional model, this work implements chaotic elements in the evolution of an economic system. In particular, we use a chaotic signal that breaks the natural pairing symmetry $(i,j)\\Leftrightarrow(j,i)$ of a random gas-like model. As a result of that, it is found that a chaotic market like this can reproduce the referenced wealth distributions observed in real economies (the Gamma, Exponential and Pareto distributions).

Carmen Pellicer-Lostao; Ricardo Lopez-Ruiz

2009-06-10T23:59:59.000Z

313

Ideas Economy: Innovation Forum 2013  

E-Print Network [OSTI]

Ideas Economy: Innovation Forum 2013 Guy Wollaert Senior vice-president, chief technical officer, and innovate fastenough to compete in the 21stcentury? Join us at the Ideas Economy: Innovation Forum

Walker, Matthew P.

314

Instructions for use Second Economy  

E-Print Network [OSTI]

Instructions for use #12;- 123 - No. 582011 1969­1988 * 1969­1988 Second Economy 1 Gregory Grossman 2 4 4 4 4 3 07-712 2 1 Horst Brezinski, "The Second Economies­33; Michael Alexeev, "Russian Underground Economy in Transition," in Owen Lippert and Michael Walker, eds

Tachizawa, Kazuya

315

The Political Economy of Inter-  

E-Print Network [OSTI]

The Political Economy of Inter- national Relations Robert Gilpin After the end of World War II by the creative use of power in the support of an institutional framework that created a world economy. Gilpin's exposition of the influence of politics on the interna- tional economy was a model of clarity, making

Landweber, Laura

316

Law as Economy: Convention, Corporation, Currency  

E-Print Network [OSTI]

1015 Law as Economy: Convention, Corporation, Currency Ritu Birla* I. Law as Economy: Nomos. Law Inside/Outside Economy of an orthodox faith in economy as universal law, that is, in the free market as the law of the universe

Barrett, Jeffrey A.

317

Transforming America's Energy Economy Transforming America's  

E-Print Network [OSTI]

#12;Transforming America's Energy Economy Transforming America's Energy Economy This document #12;Transforming America's Energy Economy A. Introduction: A Call for Action B. Envisioning the Future.5 Energy Efficiency C. Charting the Path Forward 1 #12;Transforming America's Energy Economy

318

THE HYDROGEN ECONOMY A non-technical review  

E-Print Network [OSTI]

, Distribution and Storage 11 Fuel Cells for Mobile and Stationary Uses 14 Carbon Capture and Storage 17-makers, environmental organisations, energy analysts and industry leaders that hydrogen is the fuel of the futureTHE HYDROGEN ECONOMY A non-technical review UNITEDNATIONSENVIRONMENTPROGRAMME #12;Copyright

319

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov (indexed) [DOE]

Targets: Meeting the targets below relies heavily on predictive engine models for optimization of engine design: * Fuel economy improvement of 25 and 40% for gasolinediesel by...

320

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

various powertrains and alternative fuel options have beenthe corresponding breakeven alternative fuel price needed totruck, hybridization, alternative, fuel cell, fuel economy,

Zhao, Hengbing

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Hydrogen, Fuel Cells & Infrastructure Technologies ProgramHydrogen, Fuel Cells & Infrastructure Technologies Program Program Overview  

E-Print Network [OSTI]

For The Hydrogen Economy President Bush "Hydrogen fuel cells represent one of the most encouraging, innovative for the Hydrogen Economy Hydrogen is America's clean energy choice. Hydrogen is flexible, affordable, safe Calls for "International Partnership for the Hydrogen Economy" April 28, 2003 Secretary of Energy

322

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network [OSTI]

with hydrogen economy scenario. 4. Research Approach and Results Survey of fuel cell water ASU lab fuel cell Capacity (kW) 5 ­ 150 5 ­ 250 5 50 ­ 1100 100 ­ 2000 100 ­ 250 PEM Fuel cell Oxygen (From air) Hydrogen Implications of Using water from Fuel Cells in a Hydrogen Economy · Hydrogen as an energy and water carrier

Keller, Arturo A.

323

Modeling Investment Strategies in the Transition to a Hydrogen Transportation Economy  

E-Print Network [OSTI]

economy" personal vehicles will be powered by either fuel cells or hydrogen fueled internal combustion in hydrogen fueling stations. An investigation focusing on the driver agents and how they drive the demand for hydrogen fuel was reported at the 2008 NHA Conference. In this report we shift the focus to the investor

Kemner, Ken

324

Major Economies Forum on Energy and Climate | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held &InformationWind Farm Jump to:Economies

325

Namibia-UNEP Green Economy Advisory Services | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus AreaDataBus Jump to:NSTARNamibia-UNEP Green Economy

326

Clean Economy Network-Rockies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota:Clean Air ActDieselEconomy

327

Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor  

SciTech Connect (OSTI)

The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

B. Boer; A. M. Ougouag

2010-09-01T23:59:59.000Z

328

Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors  

DOE Patents [OSTI]

A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

Hames, Bonnie R. (Westminster, CO); Sluiter, Amie D. (Arvada, CO); Hayward, Tammy K. (Broomfield, CO); Nagle, Nicholas J. (Broomfield, CO)

2004-05-18T23:59:59.000Z

329

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-2015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

330

Fuels for Advanced Combustion Engines  

Broader source: Energy.gov (indexed) [DOE]

2011-1015 MYPP Goals (cross-cut w Advanced Combustion Engines) - By 2015, improve the fuel economy of light-duty gasoline vehicles by 25% and of light-duty diesel vehicles by 40%...

331

Lean Gasoline System Development for Fuel Efficient Small Cars  

SciTech Connect (OSTI)

The General Motors and DOE cooperative agreement program DE-EE0003379 is completed. The program has integrated and demonstrated a lean-stratified gasoline engine, a lean aftertreatment system, a 12V Stop/Start system and an Active Thermal Management system along with the necessary controls that significantly improves fuel efficiency for small cars. The fuel economy objective of an increase of 25% over a 2010 Chevrolet Malibu and the emission objective of EPA T2B2 compliance have been accomplished. A brief review of the program, summarized from the narrative is: The program accelerates development and synergistic integration of four cost competitive technologies to improve fuel economy of a light-duty vehicle by at least 25% while meeting Tier 2 Bin 2 emissions standards. These technologies can be broadly implemented across the U.S. light-duty vehicle product line between 2015 and 2025 and are compatible with future and renewable biofuels. The technologies in this program are: lean combustion, innovative passive selective catalyst reduction lean aftertreatment, 12V stop/start and active thermal management. The technologies will be calibrated in a 2010 Chevrolet Malibu mid-size sedan for final fuel economy demonstration.

None

2013-08-30T23:59:59.000Z

332

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor  

SciTech Connect (OSTI)

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

2010-09-01T23:59:59.000Z

333

Workforce Development in the Global Economy  

E-Print Network [OSTI]

Workforce Development in the Global Economy: LINKING SKILLS AND CAPABILITIES Phil Psilos & Competitiveness Duke University INTRODUCTION NOVEMBER 2011 #12;Workforce Development in the Global Economy competitiveness, and innovation in the knowledge economy. Duke CGGC works with a network of researchers

Richardson, David

334

The California Economy: Singing the Housing Blues  

E-Print Network [OSTI]

THE CALIFORNIA ECONOMY: SINGING THE HOUSING  BLUES Many  parts  of  the  economy  are  doing  better  than towards 2007 the entire economy is being threatened by the 

Thornberg, Christopher

2007-01-01T23:59:59.000Z

335

System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint  

SciTech Connect (OSTI)

From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

Duffy, M.; Sandor, D.

2008-06-01T23:59:59.000Z

336

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Broader source: Energy.gov [DOE]

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

337

Renewable Hydrogen Carrier Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy  

SciTech Connect (OSTI)

Abstract The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology called cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms cannot complete, for example, C6H10O5 (aq) + 7 H2O (l) 12 H2 (g) + 6 CO2 (g) (PLoS One 2007, 2:e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from PEM fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

Zhang, Y.-H. Percival [Virginia Polytechnic Institute and State University (Virginia Tech); Mielenz, Jonathan R [ORNL

2011-01-01T23:59:59.000Z

338

Open economy politics: A critical review  

E-Print Network [OSTI]

political economy of the tariff cycle. American Politicalpolitical economy of U.S. tariffs: An empirical analysis.of political choice: Canada’s tariff structure. Canadian

Lake, David A.

2009-01-01T23:59:59.000Z

339

Essays on Political Economy of Religion  

E-Print Network [OSTI]

2000; Roland Gérard. “The Political Economy of Transition”,Democracy and the Market: Political and Economic Reforms inand R. Somanathan. “The political economy of public goods:

Grigoriadis, Theocharis Nikolaou

2012-01-01T23:59:59.000Z

340

HYBRID ENERGY-ECONOMY MODELS AND ENDOGENOUS TECHNOLOGICAL CHANGE  

E-Print Network [OSTI]

, etc.) from any fossil fuel source in- cluding unconventional oil and gas, oil sands, orimulsion that include economy-wide emissions charges and technology-specific regulations and subsidies. Recent of renewable energy and nuclear power could satisfy global energy needs almost single-handedly. Even fossil

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

If Cars Were More Efficient Would We Use Less Fuel?  

E-Print Network [OSTI]

Efficient, Would We Use Less Fuel? B Y K E N N E T H A . S Mtask: just increase vehicle fuel efficiency, also known asexisting Corporate Average Fuel Economy (CAFE) standards.

Small, Kenneth A.; Dender, Kurt Van

2007-01-01T23:59:59.000Z

342

Alternative fuel trucks case studies: Running line-haul trucks on ethanol  

SciTech Connect (OSTI)

This bulletin describes case studies of trucks operating on ethanol fuel. Cost, maintenance and repair, as well as fuel economy are discussed.

Norton, P.; Kelly, K.J.; Marek, N.J.

1996-10-01T23:59:59.000Z

343

Technical Highlights April 2013 Fuels, Engines, and Emissions Research Center (FEERC) Staff Organize and Participate in Multiple Events  

E-Print Network [OSTI]

of the papers on the effects of air conditioner use on real-world fuel economy received special coverage Congress (April 16­18). A paper on the fuel economy penalties for air #12;conditioner use and driving

344

Material Performance of Fully-Ceramic Micro-Encapsulated Fuel under Selected LWR Design Basis Scenarios: Final Report  

SciTech Connect (OSTI)

The extension to LWRs of the use of Deep-Burn coated particle fuel envisaged for HTRs has been investigated. TRISO coated fuel particles are used in Fully-Ceramic Microencapsulated (FCM) fuel within a SiC matrix rather than the graphite of HTRs. TRISO particles are well characterized for uranium-fueled HTRs. However, operating conditions of LWRs are different from those of HTRs (temperature, neutron energy spectrum, fast fluence levels, power density). Furthermore, the time scales of transient core behavior during accidents are usually much shorter and thus more severe in LWRs. The PASTA code was updated for analysis of stresses in coated particle FCM fuel. The code extensions enable the automatic use of neutronic data (burnup, fast fluence as a function of irradiation time) obtained using the DRAGON neutronics code. An input option for automatic evaluation of temperature rise during anticipated transients was also added. A new thermal model for FCM was incorporated into the code; so-were updated correlations (for pyrocarbon coating layers) suitable to estimating dimensional changes at the high fluence levels attained in LWR DB fuel. Analyses of the FCM fuel using the updated PASTA code under nominal and accident conditions show: (1) Stress levels in SiC-coatings are low for low fission gas release (FGR) fractions of several percent, as based on data of fission gas diffusion in UO{sub 2} kernels. However, the high burnup level of LWR-DB fuel implies that the FGR fraction is more likely to be in the range of 50-100%, similar to Inert Matrix Fuels (IMFs). For this range the predicted stresses and failure fractions of the SiC coating are high for the reference particle design (500 {micro}mm kernel diameter, 100 {micro}mm buffer, 35 {micro}mm IPyC, 35 {micro}mm SiC, 40 {micro}mm OPyC). A conservative case, assuming 100% FGR, 900K fuel temperature and 705 MWd/kg (77% FIMA) fuel burnup, results in a 8.0 x 10{sup -2} failure probability. For a 'best-estimate' FGR fraction of 50% and a more modest burnup target level of 500 MWd/kg ,the failure probability drops below 2.0 x 10{sup -5}, the typical performance of TRISO fuel made under the German HTR research program. An optimization study on particle design shows improved performance if the buffer size is increased from 100 to 120 {micro}mm while reducing the OPyC layer. The presence of the latter layer does not provide much benefit at high burnup levels (and fast fluence levels). Normally the shrinkage of the OPyC would result in a beneficial compressive force on the SiC coating. However, at high fluence levels the shrinkage is expected to turn into swelling, resulting in the opposite effect. However, this situation is different when the SiC-matrix, in which the particles are embedded, is also considered: the OPyC swelling can result in a beneficial compressive force on the SiC coating since outward displacement of the OPyC outer surface is inhibited by the presence of the also-swelling SiC matrix. Taking some credit for this effect by adopting a 5 {micro}mm SiC-matrix layer, the optimized particle (100 {micro}mm buffer and 10 {micro}mm OPyC), gives a failure probability of 1.9 x 10{sup -4} for conservative conditions. During a LOCA transient, assuming core re-flood in 30 seconds, the temperature of the coated particle can be expected to be about 200K higher than nominal temperature (900K). For this event the particle failure fraction for a conservative case is 1.0 x 10{sup -2}, for the optimized particle design. For a FGR-fraction of 50% this value reduces to 6.4 x 10{sup -4}.

B. Boer; R. S. Sen; M. A. Pope; A. M. Ougouag

2011-09-01T23:59:59.000Z

345

Oregon Agriculture and the Economy  

E-Print Network [OSTI]

Oregon Agriculture and the Economy: An Update Oregon State University Extension Service Rural Analyst Department of Agricultural and Resource Economics Oregon State University #12;Contents ...........................................................................................................................................12 Agricultural Support Services, Wholesale Trade, Transportation and Warehousing, Retail Trade

Tullos, Desiree

346

The Hydrogen Economy  

SciTech Connect (OSTI)

Since the industrial revolution began in the 18th century, fossil fuels in the form of coal, oil, and natural gas have powered the technology and transportation networks that drive society. But continuing to power the world from fossil fuels threatens our energy supply and puts enormous strains on the environment. The world's demand for energy is projected to double by 2050 in response to population growth and the industrialization of developing countries. The supply of fossil fuels is limited, with restrictive shortages of oil and gas projected to occur within our lifetimes (see the article by Paul Weisz in PHYSICS TODAY, July 2004, page 47). Global oil and gas reserves are concentrated in a few regions of the world, while demand is growing everywhere; as a result, a secure supply is increasingly difficult to assure. Moreover, the use of fossil fuels puts our own health at risk through the chemical and particulate pollution it creates. Carbon dioxide and other greenhouse gas emissions that are associated with global warming threaten the stability of Earth's climate.

Dresselhaus, M [Massachusetts Institute of Technology (MIT); Buchanan, Michelle V [ORNL; Crabtree, George [Argonne National Laboratory (ANL)

2004-01-01T23:59:59.000Z

347

Saving diesel fuel in the oil field  

SciTech Connect (OSTI)

Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

Elder, B.

1982-11-01T23:59:59.000Z

348

FEATURE FOCUS: Fuels & Combustion a new dawn for  

E-Print Network [OSTI]

way to boost fuel economy in light- duty vehicles and stem the rise in fuel consumption in the United economy, proponents say. Ultra-low sulfur fuel, set to become available in the United States in 2006 in the last decade or so. Engine manufacturers have succeeded in producing refined engines, to the extent

349

Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519  

SciTech Connect (OSTI)

Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

2013-07-01T23:59:59.000Z

350

Cooperatives' contributions to a plural economy  

E-Print Network [OSTI]

23 Cooperatives' contributions to a plural economy JĂ©rĂ´me Blanc* and Denis Colongo** T he European economy(1) . The central theme of the conference was the contributions of cooperatives to a plural economy and solidarity economy and elsewhere, and some of them draw on Karl Polanyi's conceptual framework (a key

Paris-Sud XI, Université de

351

Manufacturing R&D of PEM Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell Systems for Transportation Applications Background Material for the Manufacturing R&D Workshop to be...

352

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Broader source: Energy.gov (indexed) [DOE]

testing does not in any way reflect the properties of the vehicle itself (weight, aerodynamic drag, design of the driveline etc.) - no requirements to report fuel economy VTT...

353

2008 Annual Merit Review Results Summary - 10. Fuels Technologies  

Broader source: Energy.gov (indexed) [DOE]

enable high fuel economy, deliver lower emissions, and contribute to petroleum displacement. Activities aim to identify advanced petroleum- and non-petroleum-based...

354

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov (indexed) [DOE]

NOx after-treatment systems have functional implementation limitations (i.e. performance, cost, packaging, etc.) * Significant fuel economy improvement requires integration of...

355

From a Failed-Growth Economy to a Steady-State Economy  

E-Print Network [OSTI]

From a Failed-Growth Economy to a Steady-State Economy By Herman Daly A steady-state economy of negative growth, a depression such as we are entering now, is a failed-growth economy, not a steady-state economy. Halting an accelerating downward spiral is necessary but is not the same thing as resuming

Zaferatos, Nicholas C.

356

Testimony to the United States Senate Committee on Energy and Natural Resources POLICIES TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL  

E-Print Network [OSTI]

TO INCREASE PASSENGER CAR AND LIGHT TRUCK FUEL ECONOMY 2:30 pm, Tuesday, January 30, 2007 Dirksen Senate to formulate effective policies to significantly increase motor vehicle fuel economy. The views I express today to supply the world's growing demand for liquid fuels. Why do we need fuel economy policy? For too long we

357

Peru-Partnership for Action on Green Economy | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources JumpPerryman, Maryland:Economy Jump to:

358

Survey of waste package designs for disposal of high-level waste/spent fuel in selected foreign countries  

SciTech Connect (OSTI)

This report presents the results of a survey of the waste package strategies for seven western countries with active nuclear power programs that are pursuing disposal of spent nuclear fuel or high-level wastes in deep geologic rock formations. Information, current as of January 1989, is given on the leading waste package concepts for Belgium, Canada, France, Federal Republic of Germany, Sweden, Switzerland, and the United Kingdom. All but two of the countries surveyed (France and the UK) have developed design concepts for their repositories, but none of the countries has developed its final waste repository or package concept. Waste package concepts are under study in all the countries surveyed, except the UK. Most of the countries have not yet developed a reference concept and are considering several concepts. Most of the information presented in this report is for the current reference or leading concepts. All canisters for the wastes are cylindrical, and are made of metal (stainless steel, mild steel, titanium, or copper). The canister concepts have relatively thin walls, except those for spent fuel in Sweden and Germany. Diagrams are presented for the reference or leading concepts for canisters for the countries surveyed. The expected lifetimes of the conceptual canisters in their respective disposal environment are typically 500 to 1,000 years, with Sweden's copper canister expected to last as long as one million years. Overpack containers that would contain the canisters are being considered in some of the countries. All of the countries surveyed, except one (Germany) are currently planning to utilize a buffer material (typically bentonite) surrounding the disposal package in the repository. Most of the countries surveyed plan to limit the maximum temperature in the buffer material to about 100{degree}C. 52 refs., 9 figs.

Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

1989-09-01T23:59:59.000Z

359

Mind the Gap: The Vicious Circle of Measuring Automobile Fuel Use  

E-Print Network [OSTI]

K. DoIan, Fuel Prices, Automobile Fuel Economy, Fuel Use foruse for the Norwegian automobile fuel during the periodL. Sehipper, Modelling Automobile Travel De- mand, Institute

Schipper, Lee; Figueroa, Maria J.; Price, Lynn; Espey, Molly

1993-01-01T23:59:59.000Z

360

Lifecycle Analysis of Air Quality Impacts of Hydrogen and Gasoline Transportation Fuel Pathways  

E-Print Network [OSTI]

2004. Fuel economy of hydrogen fuel cell vehicles. JournalSwitching to a U.S. hydrogen fuel cell vehicle fleet: TheImproving Health with Hydrogen Fuel-Cell Vehicles. SCIENCE

Wang, Guihua

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

reason for downsizing the fuel cell is cost rather than fuelthe fuel cell as a means of reducing system cost. Thecost, vehicle performance, and fuel economy potential. Figure 3 illustrates schematically the fuel cell

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

362

LEARN MORE @ CENTRALINA CLEAN FUELS COALITION  

E-Print Network [OSTI]

ALTERNATIVE FUELS AND ADVANCED VEHICLES DATA CENTER www.afdc.energy.gov/afdc U.S. DEPT OF ENERGY FUEL ECONOMY. [Award # DE-EE0002491]. Support for alternative fuel vehicles and infrastructure projects is facilitatedLEARN MORE @ ETHANOL E85 CENTRALINA CLEAN FUELS COALITION www.4cleanfuels.com GROWTH ENERGY www

363

Hidden Innovation: A Reconsideration of An 'Old Economy' Industry in a 'New Economy' Region  

E-Print Network [OSTI]

2002). Globalization and a high-tech economy: California,economies. Attention has instead focused on globalization andEconomy” .13 2.3 Historical Perspectives on Manufacturing Matters16 2.4 The Globalization

Chiang, Lifang

2008-01-01T23:59:59.000Z

364

Hidden Innovation: A Reconsideration of An 'Old Economy' Industry in a 'New Economy' Region  

E-Print Network [OSTI]

and a high-tech economy: California, the United States andWho gets ahead in the global economy? Industrial upgrading,T. (2004). Designing the economy: a profile of Ontario's

Chiang, Lifang

2008-01-01T23:59:59.000Z

365

Migration and the Sending Economy: A Disaggregated Rural Economy Wide Analysis  

E-Print Network [OSTI]

A Stylized Village Economy-Wide Model with Nonseparable FarmNetworks in the Modern Economy: Mexican Migrants in the U.S.in a Household-farm Economy. ” Journal of Development

Taylor, J. Edward; Dyer, George

2006-01-01T23:59:59.000Z

366

January 2009 Hydrogen and Fuel Cell Activities,  

E-Print Network [OSTI]

of primary industry (or a related industry) to a fully commercialized hydrogen economy; (3) any change made a Related Industry) to a Fully Commercialized Hydrogen Economy [response to EPACT section 811(a)(2January 2009 Hydrogen and Fuel Cell Activities, Progress, and Plans Report to Congress #12;Preface

367

Co-Pt core-shell nanostructured catalyst prepared by selective chemical vapor pulse deposition of Pt on Co as a cathode in polymer electrolyte fuel cells  

SciTech Connect (OSTI)

A new type of PtCo/C catalyst for use as a cathode in polymer electrolyte fuel cells was prepared by selective chemical vapor pulse deposition (CVPD) of Pt on the surface of Co. The activity of the prepared catalyst for oxygen reduction was higher than that of a catalyst prepared by sequential impregnation (IMP) with the two metallic components. This catalytic activity difference occurs because the former catalyst has smaller Pt crystallites that produce stronger Pt-Co interactions and have a larger Pt surface area. Consequently, the CVPD catalyst has a great number of Co particles that are in close contact with the added Pt. The Pt surface was also electronically modified by interactions with Co, which were stronger in the CVPD catalyst than in the IMP catalyst, as indicated by X-ray diffraction, X-ray photoemission spectroscopy, and cyclic voltammetry measurements of the catalysts.

Seo, Sang-Joon; Chung, Ho-Kyoon [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University, Suwon, Gyeonggi 440-746 (Korea, Republic of); Yoo, Ji-Beom [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nanotechnology (HINT), Sungkyunkwan University, Suwon, Gyeonggi 440-746, Korea and School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Gyeonggi 440-746 (Korea, Republic of); Chae, Heeyeop; Seo, Seung-Woo; Min Cho, Sung, E-mail: sungmcho@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 440-746 (Korea, Republic of)

2014-01-15T23:59:59.000Z

368

Policies, Political-Economy, and Swidden in Southeast Asia  

E-Print Network [OSTI]

J. C. (1976). The Moral Economy of the Peasant: Rebellionand the Political Economy of Ignorance. Agroforestryof Small-holder Oil Palm Economies of Sabah and Sarawak.

2009-01-01T23:59:59.000Z

369

Fragmented Economy, Stratified Society, and the Shattered Dream  

E-Print Network [OSTI]

Future of the California Economy is on the Coast, FebruaryMarch 17, 2010. Fragmented Economy, Stratified Society, andFragmented Economy, Stratified Society, and the Shattered

Mordechay, Kfir; Orfield, Gary

2011-01-01T23:59:59.000Z

370

Green Jobs and Energy Economy  

E-Print Network [OSTI]

, that is The clean energy industry has been targeted as a key area for investment for three primary reasons: greaterGreen Jobs and the Clean Energy Economy ThoughT Leadership series Co-authors Daniel M. Kammen, Founding Director, Renewable and Appropriate Energy Laboratory University of California, Berkeley Ditlev

Kammen, Daniel M.

371

Green Jobs and Energy Economy  

E-Print Network [OSTI]

as a key area for investment for three primary reasons: greater energy in- dependence, improvedGreen Jobs and the Clean Energy Economy THOUGHT LEADERSHIP SERIES Co-authors Ditlev Engel, Chief Distinguished Professor of Energy Founding Director, Renewable and Appropriate Energy Laboratory Co

Kammen, Daniel M.

372

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

by pro- moting alternative energy, encouraging cleaner waysEnergy Economy include: * ConocoPhillips, which established its global alternative

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

373

Probabilistic political economy and endogenous money  

E-Print Network [OSTI]

Cockshott,W.P. Cottrell,A. First Conference on Probabilistic Political Economy, July 2008, University of Kingston

Cockshott, W.P.

374

Constructing a Cleaner Economy Info Graphic  

Broader source: Energy.gov [DOE]

An overview of the impact that the clean energy economy is having on the U.S. construction industry.

375

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost effective and reliable dual combustion mode engine - Development of a model-based SI...

376

The Emerging Chinese economy & its Global Impacts  

E-Print Network [OSTI]

The Emerging Chinese economy & its Global Impacts Department of Geography & IDS University of Sussex 5 February: The Emerging Chinese Economy & its Global Impacts + Decoding the Harmonious Socialist of Leicester 19 February: Global Production Network & the Chinese Economy Prof. John Humphrey, IDS 26 February

Sussex, University of

377

Island Political Economy Geoff Bertram & Bernard Poirine  

E-Print Network [OSTI]

323 Chapter 10 Island Political Economy Geoff Bertram & Bernard Poirine Introduction In this chapter we build on the observation that island economies, and especially small ones (population below one of development strategies. Common elements of "islandness" may serve to define island economies as a general

Paris-Sud XI, Université de

378

NEW ECONOMY NO REQUIEM YET Rudi Dornbusch  

E-Print Network [OSTI]

June 2000 NEW ECONOMY ­ NO REQUIEM YET Rudi Dornbusch Massachusetts Institute of Technology Until recently the new economy" was reigning supreme: there was the boom--no inflation to speak of, stocks at all to the new economy. But now everything looks a bit different. There are signs of inflation in product

Bilbao Arrese, JesĂşs Mario

379

Scotland's Creative Economy: the Role of Universities  

E-Print Network [OSTI]

Scotland's Creative Economy: the Role of Universities #12;www.universities-scotland.ac.uk #12 sector can continue to grow to the benefit of Scotland's economy and society. Andrew Dixon, Chief. Universities play a major role in the creative economy in identifying and growing talent and skills as well

Hall, Christopher

380

Regional Report New Jersey's New Economy  

E-Print Network [OSTI]

Rutgers Regional Report New Jersey's New Economy Growth Challenges James W. Hughes Dean Edward J July 2006 #12;advanced new-economy peers--New York, Connecticut, and Massachusetts--have been experi- encing employment declines in the post­2000 period in a number of important "new economy" sectors

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Engineering Economy Outline IE 305-Part 2  

E-Print Network [OSTI]

Engineering Economy Outline IE 305-Part 2 Stephen B. Vardeman ISU Fall 2013 Stephen B. Vardeman (ISU) Engineering Economy Outline Fall 2013 1 / 52 #12;Kinds of Production Costs Costs incurred). Stephen B. Vardeman (ISU) Engineering Economy Outline Fall 2013 2 / 52 #12;Costs and Production Volume

Vardeman, Stephen B.

382

Engineering Economy Outline IE 305-Part 1  

E-Print Network [OSTI]

Engineering Economy Outline IE 305-Part 1 Stephen B. Vardeman ISU Fall 2013 Stephen B. Vardeman (ISU) Engineering Economy Outline Fall 2013 1 / 53 #12;THE Basics The very basic notion that governs) Engineering Economy Outline Fall 2013 2 / 53 #12;Solving for P The (N

Vardeman, Stephen B.

383

KEYNOTE ADDRESS ECONOMIES IN TRANSITION: SOME ASPECTS  

E-Print Network [OSTI]

couple of days, with my focus on transition economies and environmental management in this neighborhoodKEYNOTE ADDRESS ECONOMIES IN TRANSITION: SOME ASPECTS OF ENVIRONMENTAL POLICY Jeffrey Sachs. Tel: (617) 495-5999. Fax: (617) 495-0527. #12;2 Keynote Address Economies in Transition: Some Aspects

384

Impact of Policy on Fuels RD&D (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of fuel economy and emissions policy and its relationship with fuel research, development, and deployment (RD&D). Solutions explored include biofuels and increased engine efficiency.

Gearhart, C.

2013-12-01T23:59:59.000Z

385

Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards  

SciTech Connect (OSTI)

Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

Brown, E.; Cory, K.; Arent, D.

2007-01-01T23:59:59.000Z

386

Microbial Fuel Cells -Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM  

E-Print Network [OSTI]

.com Hydrogen Fuel Cells Buy Commercial & Educational Stacks PEM, Fuel Cell Generators & More! www.TheHydrogenCompany.com Hydrogen Fuel Cell Improve Your Fuel Economy 20 to 50% Begin Saving Fuel Now www.SaveMoreWithHydrogenMicrobial Fuel Cells - Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6

Lovley, Derek

387

Tales From the 'Global' Economy: Cross National Production Networks and the Re-organization of the European Economy  

E-Print Network [OSTI]

The Problem of Globalization," Economy and Society , 21,Globalization and the Future of the Nation State," Economy

Zysman, John; Doherty, Eileen; Schwartz, Andrew

1996-01-01T23:59:59.000Z

388

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

389

Theorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy,  

E-Print Network [OSTI]

of carbon capture and storage and nuclear technologies. These dimensionsöand surface-level to deeperTheorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy, the `low' carbon economy, the carbon `neutral' economy

390

EHRS Impact on Engine Warm-up and Fuel Economy  

Broader source: Energy.gov (indexed) [DOE]

20% Traction Power Gasoline 6% Transmission and misc 37% Cooling 37% Exhaust Diesel 25% Traction Power 6% Transmission and misc 37% Cooling 32% Exhaust Diesel...

391

Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...  

Energy Savers [EERE]

2012-1016 Model Year Cars Light Trucks Combined Cars and Light Trucks 2012 33.3 25.4 29.7 2013 34.2 26.0 30.5 2014 34.9 26.6 31.3 2015 36.2 27.5 32.6 2016 37.8 28.8 34.1 Source:...

392

The political economy of motor-fuel taxation  

SciTech Connect (OSTI)

This paper examines the political and economic underpinnings of gasoline tax policy. The theoretical model extends the earlier work of Hettich and Winer (1988) to flush out the effect of a change in the pre-tax price of a taxable activity on the politically optimal tax rate. Using a large cross-sectional sample of US states over 1960--94, the empirical model tests the predictions of the theoretical model within the context of the state tax policy on gasoline. While simultaneously controlling for other politico-economic influences, the authors find that the influence of changes in gas prices on tax rates is negative. To their knowledge, this is the first study to include a fully developed theoretical model and its empirical application to the gasoline market for a test of the vote-maximizing model of tax policy.

Goel, R.K.; Nelson, M.A. (Illinois State Univ., Normal, IL (United States). Dept. of Economics)

1999-01-01T23:59:59.000Z

393

Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...  

Broader source: Energy.gov (indexed) [DOE]

for HEVs - New highway FE label calculations may shift additional focus to vehicle aerodynamics with higher US06 speeds Identified and quantified charge-balance concern with...

394

Gasoline Prices, Fuel Economy, and the Energy Paradox  

E-Print Network [OSTI]

It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

Wozny, Nathan

395

Economy  

E-Print Network [OSTI]

hydraulic civilization in Egypt: A study of cultural ecology. Chicago and London: The University of Chicago Press.

Haring, Ben

2009-01-01T23:59:59.000Z

396

Economy  

E-Print Network [OSTI]

market women of Pharaonic Egypt. In Le commerce en ÉgypteWilke, Thomas 2000 Ancient Egypt: An economist's view.of dues from southern Egypt (detail), Theban Tomb 100, 18 th

Haring, Ben

2009-01-01T23:59:59.000Z

397

Supporting a Hawaii Hydrogen Economy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4Superhard CoatingNovemberDecember 23,Supporting a

398

Forests and The Texas Economy.  

E-Print Network [OSTI]

I UUL; Z TA24S.7 8873 NO.1S96 (Blank Page In -O~-.BilUetiBJ ' t '. ,-. "0: . : ?. FORESTS AND THE TEXAS ECONOMY by Jay O'Laughlin i\\ssociate Professor Texas i\\gricultural Experiment Station (Department of Forest Science) Texas i...\\&M University and Richard A. Williams Graduate Research i\\ssistant Texas i\\gricultural Experiment Station (Department of Forest Science) Texas i\\&M University The assistance and support of the Texas Forestry Association and the Texas Forest Service...

Laughlin, Jay O'; Williams, Richard A.

1988-01-01T23:59:59.000Z

399

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

400

The Political Economy of Clean Coal .  

E-Print Network [OSTI]

??This dissertation investigates the nature of the political economy of Clean Coal. It begins by reviewing the literature of global warming and the current usage… (more)

Wu, Hao Howard

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

transmission, have languished. Colorado looks forward withA Colorado Perspective: The New Energy Economy Jim Martin*REPORTING .. VIII. COLORADO'S STATE

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

402

Thermal-Hydraulic Bases for the Safety Limits and Limiting Safety System Settings for HFIR Operation at 100 MW and 468 psig Primary Pressure, Using Specially Selected Fuel Elements  

SciTech Connect (OSTI)

This report summarizes thermal hydraulic analyses performed to support HFIR operation at 100 MW and 468 psig pressure using specially selected fuel elements. The analyses were performed with the HFIR steady state heat transfer code, originally developed during HFIR design. This report addresses the increased core heat removal capability which can be achieved in fuel elements having coolant channel thicknesses that exceed the minimum requirements of the HFIR fuel fabrication specifications. Specific requirements for the minimum value of effective uniform as-built coolant channel thickness are established for fuel elements to be used at 100 MW. The burnout correlation currently used in the steady-state heat transfer code was also compared with more recent experimental results for stability of high-velocity flow in narrow heated channels, and the burnout correlation was found to be conservative with respect to flow stability at typical HFIR hot channel exit conditions at full power.

Rothrock, R.B.

1998-09-01T23:59:59.000Z

403

California and Connecticut: National Fuel Cell Bus Programs Drive Fuel  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (AprilBiden2 Categorical ExclusionOrderEconomy Higher | Department of

404

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf More DocumentsAt anEnergy ProjectThe

405

Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

406

Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

NONE

1995-02-01T23:59:59.000Z

407

Senegal-Partnership for Action on Green Economy (PAGE) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation, search Name:OpenOpenInformation on Green Economy

408

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

409

The Political Economy of Transition Grard Roland  

E-Print Network [OSTI]

1 The Political Economy of Transition GĂ©rard Roland GĂ©rard Roland is Professor of Economics on an earlier draft. He also thanks symposium participants in Prague, March 23 2001. #12;2 Political economy there was a "window of opportunity" (or a "honeymoon period" or a "period of exceptional politics") created

Sadoulet, Elisabeth

410

LICENCE Economie-Gestion Parcours GESTION  

E-Print Network [OSTI]

1/7 LICENCE Economie-Gestion Parcours GESTION Formation continue QUIMPER 2013 Institut CORNOUAILLE LICENCE EconomieGestion Parcours GESTION Diplôme national universitaire (Bac +3) Responsable Pédagogique Marie-Louise QUERE Agrégée d'économie et gestion ŕ l'IAE de Bretagne Occidentale

Brest, Université de

411

LICENCE Economie-Gestion Parcours GESTION  

E-Print Network [OSTI]

1/6 LICENCE Economie-Gestion Parcours GESTION Formation continue QUIMPER 2014 institut d CORNOUAILLE - EMBA LICENCE Economie-Gestion Parcours GESTION Diplôme national universitaire (Bac +3) Responsable Pédagogique Marie-Louise QUERE Agrégée d'économie et gestion ŕ l'IAE de Bretagne Occidentale

Brest, Université de

412

Shaky emerging economies in view of the global financial crisis: The Turkish economy after three decades of liberal reforms  

E-Print Network [OSTI]

Shaky emerging economies in view of the global financial crisis: The Turkish economy after three of the global change of a new accumulation regime in major capitalist economies, the opening up2012 #12;1 Shaky emerging economies in view of the global financial crisis: The Turkish economy after

Paris-Sud XI, Université de

413

Wisconsin Agriculture Status of the Wisconsin Farm Economy  

E-Print Network [OSTI]

STATUS OF Wisconsin Agriculture 2010 · Status of the Wisconsin Farm Economy · Current Outlook: Farm Products, Farm Inputs and the General Economy · Framing the Financial Crisis for Wisconsin Agriculture Farm Economy . . . . . . 1 II. Current Outlook . . . . . . . . . . . . . . . . . . . . . . . . 7

Radeloff, Volker C.

414

AGRICULTURE, 2005 Status of the Wisconsin Farm Economy  

E-Print Network [OSTI]

STATUS OF WISCONSIN AGRICULTURE, 2005 Status of the Wisconsin Farm Economy Situation and Outlook: Farm Products, Farm Inputs and the General Economy Special Articles · Expansion, Modernization..............................................................................................................................v I. Status of the Wisconsin Farm Economy

Radeloff, Volker C.

415

Energy and the Wealth of Nations Understanding the Biophysical Economy  

E-Print Network [OSTI]

Economy Charles A.S. Hall, SUNY, Environmental Science & Forestry Kent Klitgaard been treated as a social science in which economies are modeled sheets that drive our "petroleum economy." Hall and Klitgaard explore the relation

Hall, Charles A.S.

416

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

Townsend, H.E.; Barbanti, G.

1994-03-01T23:59:59.000Z

417

Power Politics: The Political Economy of Russia's Electricity Sector Liberalization  

E-Print Network [OSTI]

natural gas in the context of growing energy demand of the Russian economy. ”natural gas in the context of growing energy demand of the Russian economy. ”

Wengle, Susanne Alice

2010-01-01T23:59:59.000Z

418

Recent Trends in Car Usage in Advanced Economies - Slower Growth...  

Open Energy Info (EERE)

Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

419

The effects of financial liberalisation in emerging market economies .  

E-Print Network [OSTI]

??The aim of this research is to show the effects of financial liberalisation on emerging market economies, how these economies removed restrictions on financial institutions… (more)

Chauhan, Shobha

2012-01-01T23:59:59.000Z

420

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington D.C. tiarravt052ebert2010p.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through...

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Peer Evaluation arravt052tiebert2011p.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through...

422

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives Town of Hempstead: Project Energy,...

423

PA Nanotechnology 2012 Nanotech's Role in Advancing PA's Economy  

E-Print Network [OSTI]

PA Nanotechnology 2012 Nanotech's Role in Advancing PA's Economy June 5, 2012 Harrisburg University technologies that can impact your business and Pennsylvania's economy Moderator: Charles Brumlik, Nanobiz #12

Gilchrist, James F.

424

The Political economy of environmental policy with overlapping generations  

E-Print Network [OSTI]

Political Economy of Environmental Policy with OverlappingPolitical Economy of Environmental Policy with Overlappinggenerational con?ict, environmental policy, dynamic bar-

Karp, Larry; Rezai, Amon

2012-01-01T23:59:59.000Z

425

Fossil fuels -- future fuels  

SciTech Connect (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

426

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities  

SciTech Connect (OSTI)

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Michael A. Pope

2011-10-01T23:59:59.000Z

427

Table 8. Carbon intensity of the economy by State (2000Â…2011)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael Schaal Director, OiltheCarbon intensity of the economy by

428

Optimally Controlled Flexible Fuel Powertrain System  

SciTech Connect (OSTI)

A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

2011-06-30T23:59:59.000Z

429

Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered...  

Energy Savers [EERE]

Economy program for producing flex-fuel vehicles, which run on E-85, a blend of 85% ethanol and 15% gasoline, andor gasoline. Number of Flex Fuel Vehicle Models by...

430

Study of CANDU Thorium-based Fuel Cycles by Deterministic and Monte Carlo Methods  

E-Print Network [OSTI]

an excellent neutron economy and consequently a high fissile conversion ratio [7]. For these reasons, we try, slightly enriched uranium) and fuel spatial distribution. In particular, we compare Th/Pu fuel performance

Paris-Sud XI, Université de

431

Sun, Jan 09, 2005 Domestic Economy  

E-Print Network [OSTI]

Sun, Jan 09, 2005 Front Page National Domestic Economy Science Panorama Economic Focus Dot Coms on which SM was focusing, the team used a 'bubble test' in which only part of the face is revealed

Gosselin, Frédéric

432

Essays on institutions in developing economies  

E-Print Network [OSTI]

The primary goal of this thesis is to gain a deeper understanding of how institutional structure responds and evolves in equilibrium, particularly in the idiosyncratic and dynamic settings of developing economies. I use ...

Wang, Xiao Yu, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

433

The role of networks in political economy  

E-Print Network [OSTI]

This dissertation investigates the different roles that networks play in political economy. In the first chapter, I study how a political party uses electoral data to monitor and incentivize the political brokers who control ...

Larreguy Arbesú, Horacio Alejandro

2013-01-01T23:59:59.000Z

434

Webinar: Supporting a Hawaii Hydrogen Economy  

Broader source: Energy.gov [DOE]

The Energy Department will present a live webinar titled "Supporting a Hawaii Hydrogen Economy" on Tuesday, July 29, from 3:00 p.m. to 4:00 p.m. Eastern Daylight Time (EDT). The webinar will...

435

Towards A Hydrogen Economy, 3. edition  

SciTech Connect (OSTI)

The report provides a study of the movement towards using hydrogen as a key energy carrier in the future and takes a high-level look at the current state of hydrogen and addresses the infrastructure requirements needed to make the hydrogen economy a reality. The report offers a detailed look at the move to a hydrogen economy by: identifying the current status of hydrogen production and use; discussing the key business drivers of the move towards hydrogen; discussing the barriers to implementation that stand in the way of a transition; providing a critical look at whether the hydrogen economy can succeed; describing the options that exist for a hydrogen infrastructure; identifying the key government initiatives making the hydrogen economy a reality; providing company-by-company profiles of automobile manufacturer efforts to develop and commercialize hydrogen vehicles; and, providing profiles of key hydrogen infrastructure manufacturers.

NONE

2007-05-15T23:59:59.000Z

436

Modeling Water, Climate, Agriculture, and the Economy  

E-Print Network [OSTI]

Describes two models used in the integrated modeling framework designed to study water, climate, agriculture and the economy in Pakistan's Indus Basin: (1) the Indus Basin Model Revised (IBMR-1012), a hydro-economic ...

Yu, Winston

437

A Caricature (Model) of the World Economy  

E-Print Network [OSTI]

This paper provides a stylized model of the workings of a global economy where one of its key driving factors is economic agents’ continuous struggle to find assets in which to park financial resources. This struggle ...

Caballero, Ricardo

2010-11-23T23:59:59.000Z

438

Essays on economies with heterogeneous labor  

E-Print Network [OSTI]

In this thesis, I study two different economies that consist of heterogeneous labor. By allowing for differences among individuals where previous analyses restricted attention to homogeneous labor, I am able to understand ...

Lehr, Brandon Charles

2010-01-01T23:59:59.000Z

439

Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCost Savings |Safety, Codes and07-01-3994 Fuel EconomyFuel

440

Marketing Strategies in a Downturn Economy  

E-Print Network [OSTI]

MARKETING STRATEGIES IN A DOWNTURN ECONOMY MALCOLM WILLIAMS Manager Business Development Gulf States Utilities Beaumont, ABSTRACT The economic activity in an area may affect electric utility sales more than other retailers. Statistics show... in inventory, and with current regulatory treatment the price is difficult to raise. These unique problems, which are compounded in a declining economy, have caused utilities to abandon traditional marketing techniques and develop new strategies to cope...

Williams, M.

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Microfluidic fuel cell for off-the-grid applications.  

E-Print Network [OSTI]

??The present doctoral thesis studies air-breathing microfluidic fuel cells with separated fuel and electrolyte streams as well as a membraneless fuel cell with selective electrodes.… (more)

Seyed Ali Mousavi Shaegh.

2012-01-01T23:59:59.000Z

442

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

443

NETL - Fuel Reforming Facilities  

SciTech Connect (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2013-06-12T23:59:59.000Z

444

Fuel option for gas turbine  

SciTech Connect (OSTI)

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

445

Bright Spots in the South Carolina the Economy  

E-Print Network [OSTI]

Bright Spots in the South Carolina the Economy 2012 African American Economic Summit Doug Woodward Professor of Economics #12;Overview · Why we should worry. ­ Global economy and financial contagion. ­ U.S. economy and political uncertainty. · Why we should be happy. ­ South Carolina economy healing. · Robust

Almor, Amit

446

The Space Economy NASA 50th Anniversary Lecture Series  

E-Print Network [OSTI]

The Space Economy NASA 50th Anniversary Lecture Series Michael D. Griffin Administrator National growth that didn't previously exist. This is the emerging Space Economy, an economy that is transforming our lives here on Earth in ways that are not yet fully understood or appreciated. It is not an economy

447

Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters,  

E-Print Network [OSTI]

. The development of fuel cells is considered to be an integral part of a sustainable `hydrogen economy', in whichFuel Cells for a Sustainable Future? Jane Powell, Michael Peters, Alan Ruddell and Jim Halliday March 2004 Tyndall Centre for Climate Change Research Working Paper 50 #12;Fuel Cells for a Sustainable

Watson, Andrew

448

Gasoline Jet Fuels  

E-Print Network [OSTI]

C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 Fermentation of sugars Biofuel "Nanobowls" are inorganic catalysts that could provide the selectivity for converting sugars to fuels IACT Proposes Synthetic, Inorganic Catalysts to Produce Biofuels Current Process

Kemner, Ken

449

Demand-side issues of the service economy Paru dans : Review of Political Economy, Vol. 16, No. 4, Oct. 2004.  

E-Print Network [OSTI]

Demand-side issues of the service economy Paru dans : Review of Political Economy, Vol. 16, No. 4 the relevance of the demand-side approach to the development of a service economy. Its starts by addressing some in "Review of Political Economy 16, 4 (2004) 473-483" #12;2 1. Introduction Since the 1980s, most

Boyer, Edmond

450

BA Political Economy Political Economy caters for students who wish to understand the  

E-Print Network [OSTI]

BA Political Economy Political Economy caters for students who wish to understand the political to offer such a programme. www.birmingham.ac.uk/polsis Department of Political Science and International.birmingham.ac.uk/international/ students/country Programme Structure First Year Required modules: Foundations of Politics; Introduction

Miall, Chris

451

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

IV. FOSSIL FUEL ELECTRICITY GENERATION . A.beetles. IV. FosSIL FUEL A. ELECTRICITY GENERATION Existing

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

452

Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"  

SciTech Connect (OSTI)

Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

Dr. Andrew Myers

2005-12-30T23:59:59.000Z

453

Improving Fuel Economy via Management of Auxiliary Loads in Fuel-Cell Electric Vehicles.  

E-Print Network [OSTI]

??The automotive industry is in a state of flux at the moment. Traditional combustion engine technologies are becoming challenged by newer, more efficient and environmentally… (more)

Lawrence, Christopher Paul

2007-01-01T23:59:59.000Z

454

Sipping fuel and saving lives: increasing fuel economy without sacrificing safety  

E-Print Network [OSTI]

Disruption Oil Imports, National Security, and Tradepolicy. Oil Imports, National Security, and Trade Deficitsdependence, oil imports, national security, trade deficits,

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2008-01-01T23:59:59.000Z

455

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

SciTech Connect (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

456

Technology Selection Process  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign In About | Careers |

457

Develop Improved Materials to Support the Hydrogen Economy  

SciTech Connect (OSTI)

The Edison Materials Technology Center (EMTEC) solicited and funded hydrogen infrastructure related projects that have a near term potential for commercialization. The subject technology of each project is related to the US Department of Energy hydrogen economy goals as outlined in the multi-year plan titled, 'Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan.' Preference was given to cross cutting materials development projects that might lead to the establishment of manufacturing capability and job creation. The Edison Materials Technology Center (EMTEC) used the US Department of Energy hydrogen economy goals to find and fund projects with near term commercialization potential. An RFP process aligned with this plan required performance based objectives with go/no-go technology based milestones. Protocols established for this program consisted of a RFP solicitation process, white papers and proposals with peer technology and commercialization review (including DoE), EMTEC project negotiation and definition and DoE cost share approval. Our RFP approach specified proposals/projects for hydrogen production, hydrogen storage or hydrogen infrastructure processing which may include sensor, separator, compression, maintenance, or delivery technologies. EMTEC was especially alert for projects in the appropriate subject area that have cross cutting materials technology with near term manufacturing and commercialization opportunities.

Dr. Michael C. Martin

2012-07-18T23:59:59.000Z

458

Emerging Economies, Trade Policy, and Macroeconomic Shocks  

E-Print Network [OSTI]

are generally found to be the source of more than two thirds of the policy-imposing economies’ non-oil imports during the sample period, ranging from 65 percent for Thailand to 91 percent for Mexico. The Philippines is a notable outlier for which the available... import restrictions increased more than 50 percent between 2007 and 2010 alone. 3 Finally, Bown (2011) finds that many of the G20 emerging economies also in our sample – including Argentina, Brazil, China, India, Indonesia, Mexico, South Africa...

Bown, Chad P.; Crowley, Meredith A.

2014-05-09T23:59:59.000Z

459

Catalytic conversion of cellulose to liquid hydrocarbon fuels by progressive removal of oxygen to facilitate separation processes and achieve high selectivities  

DOE Patents [OSTI]

Described is a method to make liquid chemicals, such as functional intermediates, solvents, and liquid fuels from biomass-derived cellulose. The method is cascading; the product stream from an upstream reaction can be used as the feedstock in the next downstream reaction. The method includes the steps of deconstructing cellulose to yield a product mixture comprising levulinic acid and formic acid, converting the levulinic acid to .gamma.-valerolactone, and converting the .gamma.-valerolactone to pentanoic acid. Alternatively, the .gamma.-valerolactone can be converted to a mixture of n-butenes. The pentanoic acid so formed can be further reacted to yield a host of valuable products. For example, the pentanoic acid can be decarboxylated yield 1-butene or ketonized to yield 5-nonanone. The 5-nonanone can be hydrodeoxygenated to yield nonane, or 5-nonanone can be reduced to yield 5-nonanol. The 5-nonanol can be dehydrated to yield nonene, which can be dimerized to yield a mixture of C.sub.9 and C.sub.18 olefins, which can be hydrogenated to yield a mixture of alkanes. Alternatively, the nonene may be isomerized to yield a mixture of branched olefins, which can be hydrogenated to yield a mixture of branched alkanes. The mixture of n-butenes formed from .gamma.-valerolactone can also be subjected to isomerization and oligomerization to yield olefins in the gasoline, jet and Diesel fuel ranges.

Dumesic, James A. (Verona, WI); Ruiz, Juan Carlos Serrano (Madison, WI); West, Ryan M. (Madison, WI)

2012-04-03T23:59:59.000Z

460

The Causes of Trade Globalization: A Political-Economy and World-Systems Approach  

E-Print Network [OSTI]

A. 2000. ?Globalization of the Economy. ? National Bureau ofof Trade Globalization: A Political-Economy and World-of Trade Globalization: A Political Economy and World-

Kwon, Roy

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Shadow Economy, Tax Morale, Governance and Institutional Quality: A Panel Analysis  

E-Print Network [OSTI]

Exploring the Underground Economy. Kalamazoo W. E. UpjohnDependent Variable: Shadow Economy A) GOVERN. /INSTIT.of Tax Reform in the Global Economy. New York: Springer, pp.

Torgler, Benno; Schneider, Friedrich

2007-01-01T23:59:59.000Z

462

The Traffic in Praise: Pindar and the Poetics of Social Economy  

E-Print Network [OSTI]

in the Homeric World. ” In Economy and Society in AncientYork. ??—??. 1975. The Ancient Economy. London. ??—??. 1977.1965. Primitive Polynesian Economy. London. Fisher, N. R. E.

Kurke, Leslie

2013-01-01T23:59:59.000Z

463

BRINGING AROUND REAL CHANGE JOBS. ECONOMY. ENVIRONMENT.  

E-Print Network [OSTI]

BRINGING AROUND REAL CHANGE JOBS. ECONOMY. ENVIRONMENT. INNOVATIVE ENERGY EFFICIENCY FINANCE stewardship of public resources BENEFIT LOCAL COMMUNITY THROUGH JOB CREATION BENEFITS OF ENERGY EFFICIENCY SOLUTIONS #12;K-12 school districts spend more than $8B annually on energy Energy costs are second only

California at Davis, University of

464

ESD.70J Engineering Economy Session One  

E-Print Network [OSTI]

;· More about uncertainty and flexibility in 1.146/3.56/16.861/ESD.71/ESD.710 ­ Risk and Decision Analysis tool for decision analysis ESD.70J Engineering Economy Module - Session 1 8 · We teach you how ­ Introduction of advanced Excel techniques · Want more? ­ ESD.712: Tools for Analysis: Design for Real Estate

Entekhabi, Dara

465

TRANSFORMING health society culture economy environment  

E-Print Network [OSTI]

TRANSFORMING health society culture economy environment #12;0302 04 32 62 92 110 132 #12;5 health resistant to current treatments. An added advantage is that the phage can be freeze-dried for long Professions, and one of its projects, headed by Professor Ann Moore, sets out to see if a type of exercise

Bontcheva, Kalina

466

The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs  

SciTech Connect (OSTI)

The announcement of a hydrogen fuel initiative in the President’s 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation’s long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation’s future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.

Committee on Alternatives and Strategies for Future Hydrogen Production and Use

2004-08-31T23:59:59.000Z

467

Development of a Conceptual Process for Selective CO{sub 2} Capture from Fuel Gas Streams Using [hmim][Tf2N] Ionic Liquid as a Physical Solvent  

SciTech Connect (OSTI)

The Ionic Liquid (IL) [hmim][Tf2N] was used as a physical solvent in an Aspen Plus simulation, employing the Peng-Robinson Equation of State (P-R EOS) with Boston-Mathias (BM) alpha function and standard mixing rules, to develop a conceptual process for CO{sub 2} capture from a shifted warm fuel gas stream produced from Pittsburgh # 8 coal for a 400 MWe power plant. The physical properties of the IL, including density, viscosity, surface tension, vapor pressure and heat capacity were obtained from literature and modeled as a function of temperature. Also, available experimental solubility values for CO{sub 2}, H{sub 2}, H{sub 2}S, CO, and CH{sub 4} in this IL were compiled and their binary interaction parameters ({delta}{sub ij} and l{sub ij}) were optimized and correlated as functions of temperature. The Span-Wager Equation-of-State EOS was also employed to generate CO{sub 2} solubilities in [hmim][Tf2N] at high pressures (up to 10 MPa) and temperatures (up to 510 K). The conceptual process developed consisted of 4 adiabatic absorbers (2.4 m ID, 30 m high) arranged in parallel and packed with Plastic Pall Rings of 0.025 m for CO{sub 2} capture; 3 flash drums arranged in series for solvent (IL) regeneration with the pressure-swing option; and a pressure-intercooling system for separating and pumping CO{sub 2} up to 153 bar to the sequestration sites. The compositions of all process streams, CO{sub 2} capture efficiency, and net power were calculated using Aspen Plus simulator. The results showed that, based on the composition of the inlet gas stream to the absorbers, 95.67 mol% of CO{sub 2} was captured and sent to sequestration sites; 99.5 mol% of H{sub 2} was separated and sent to turbines; the solvent exhibited a minimum loss of 0.31 mol%; and the net power balance of the entire system was 30.81 MW. These results indicated that [hmim][Tf2N] IL could be used as a physical solvent for CO{sub 2} capture from warm shifted fuel gas streams with high efficiency.

Basha, Omar M.; Keller, Murphy J.; Luebke, David R.; Resnik, Kevin; P Morsi, Badie I.

2013-07-01T23:59:59.000Z

468

Kansas wind program stimulates rural economy | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Kansas wind program stimulates rural economy Kansas wind program stimulates rural economy December 9, 2009 - 11:38am Addthis Joshua DeLung What will the project do? Students in the...

469

VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy ...  

Energy Savers [EERE]

VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy VP 100: Brevini Wind Factory Helps Rust Belt Town's Economy October 5, 2010 - 10:00am Addthis Brevini Wind is building a...

470

Globalization or Europeanization? Evidence on the European Economy Since 1980  

E-Print Network [OSTI]

Globalization and its limits: reports of the death of the national economyglobalization has been about the rapid rise of the East Asian economies.Globalization or Europeanization? Evidence on the European Economy

Fligstein, Neil; Merand, Frederic

2001-01-01T23:59:59.000Z

471

actual world economy: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A&M University - TxSpace Summary: PIPE INSULATION ECONOMIES Robert E. Schilling, P.E. Eaton Corporation Aurora, Ohio ABSTRACT Pipe Insulation Economies is a computer pro gram...

472

The mixed economy in China: through rhetorical perspective  

E-Print Network [OSTI]

Mixed economies gradually emerge in many countries. China is no exception. China's traditional planned economy system is limited to state-owned enterprises, which are undergoing reform. In the private sector, the market system has begun to play a...

Yuan, Yuchun

2004-11-15T23:59:59.000Z

473

Aspects of the political economy of development and synthetic biology  

E-Print Network [OSTI]

What implications might synthetic biology’s potential as a wholly new method of production have for the world economy, particularly developing countries? Theories of political economy predict that synthetic biology can ...

Wellhausen, Rachel

474

PA Regional Nanotechnology Conference Collaborating in Today's Economy  

E-Print Network [OSTI]

4/23/2009 Present PA Regional Nanotechnology Conference Collaborating in Today's Economy May 27's future economy and workforce will be affected by new initiatives such as development and implementation

Gilchrist, James F.

475

Moving to a Clean Energy Economy:Opportunities for Colorado ...  

Broader source: Energy.gov (indexed) [DOE]

Moving to a Clean Energy Economy:Opportunities for Colorado Moving to a Clean Energy Economy:Opportunities for Colorado A report on the ways in which moving towards a clean energy...

476

A National Vision of America's Transition to a Hydrogen Economy...  

Energy Savers [EERE]

A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond A National Vision of America's Transition to a Hydrogen Economy--To 2030 and Beyond The summary...

477

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

478

Checklist for transition to new highway fuel(s).  

SciTech Connect (OSTI)

Transportation is vital to the U.S. economy and society. As such, U.S. Presidents have repeatedly stated that the nation needs to reduce dependence on petroleum, especially for the highway transportation sector. Throughout history, highway transportation fuel transitions have been completed successfully both in United States and abroad. Other attempts have failed, as described in Appendix A: Historical Highway Fuel Transitions. Planning for a transition is critical because the changes can affect our nation's ability to compete in the world market. A transition will take many years to complete. While it is tempting to make quick decisions about the new fuel(s) of choice, it is preferable and necessary to analyze all the pertinent criteria to ensure that correct decisions are made. Doing so will reduce the number of changes in highway fuel(s). Obviously, changes may become necessary because of occurrences such as significant technology breakthroughs or major world events. With any and all of the possible transitions to new fuel(s), the total replacement of gasoline and diesel fuels is not expected. These conventional fuels are envisioned to coexist with the new fuel(s) for decades, while the revised fuel and vehicle infrastructures are implemented. The transition process must analyze the needs of the primary 'players,' which consist of the customers, the government, the fuel industry, and the automotive industry. To maximize the probability of future successes, the prime considerations of these groups must be addressed. Section 2 presents a succinct outline of the Checklist. Section 3 provides a brief discussion about the groupings on the Checklist.

Risch, C.; Santini, D.J. (Energy Systems)

2011-12-15T23:59:59.000Z

479

2006-01-0434 Standardized Equation for Hydrogen Gas Densities for Fuel  

E-Print Network [OSTI]

the Fuel Consumption and Range of Fuel Cell Powered Electric and Hybrid Electric Vehicles Using Compressed are presented with experimental data and with the full 32-term equation of state. INTRODUCTION Motor vehicle in fuel economy results. The advent of new drive technology and fuels in motor vehicles has required

Magee, Joseph W.

480

The Effect of Reformate on PEM Fuel Cell Performance Mahesh Murthy  

E-Print Network [OSTI]

Exchanged Membrane (PEM) fuel cells in a "hydrogen-challenged" economy, hydrogen can be produced contains about 35 - 40 % hydrogen [1]. The effects of reformate fuel on the performance of PEM fuel cells in hydrogen for a laboratory polymer electrolyte membrane fuel cell [3, 4]. In these earlier studies

Van Zee, John W.

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 7/18/13 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic Hybrid 1.ncsc.ncsu.edu | 7/18/13 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919.S. Environmental Protection Agency (EPA) Green Vehicle Guide provides fuel economy estimates and tailpipe emission

482

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.ncsc.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

city/44 hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic.ncsc.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | 919.S. Environmental Protection Agency (EPA) Green Vehicle Guide provides fuel economy estimates and tailpipe emission

483

North Carolina State University, Campus Box 7409, Raleigh, NC 27695 | 919-515-3480 | www.nccleantech.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy  

E-Print Network [OSTI]

city/44 hwy, Bin 5 Honda Civic Natural Gas 1.8L, Auto, Natural Gas 27 city/38 hwy, Bin 2 Honda Civic.nccleantech.ncsu.edu | 1/14 Advancing Clean Energy for a Sustainable Economy Clean Transportation Program | www) Green Vehicle Guide provides fuel economy estimates and tailpipe emission levels on user customized

484

Clean Diesels, an Economy or Performance Option?  

Broader source: Energy.gov (indexed) [DOE]

Hybrid - Tier2Bin2 Breakthrough - DIESELMAX - land speed record Ricardo plc 2007 4 Energy Security, Fuel Availability and Low Carbon Fuel Efficient Vehicle Technologies are...

485

Effects of a Transition to a Hydrogen Economy on  

E-Print Network [OSTI]

Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress July 2008 #12;2 #12;3 EFFECTS OF TRANSITION TO A HYDROGEN ECONOMY ON EMPLOYMENT IN THE UNITED STATES......................................................................................................... 11 2.0 SCENARIOS SHAPING A HYDROGEN ECONOMY ........................................... 13 2.1 Base

486

Global Political Economy Wednesdays 5:30-8:10 PM  

E-Print Network [OSTI]

Global Political Economy Fall 2012 Wednesdays 5:30-8:10 PM Ajai Gaur Room 1098, 1 Washington Park This course offers a global perspective on long term change in the world economy, and the interaction between imbalances and protectionism, foreign direct investment and the role of MNCs in the global economy. The role

Lin, Xiaodong

487

Open economy models of distribution and growth Robert A. Blecker*  

E-Print Network [OSTI]

Chapter 9 Open economy models of distribution and growth Robert A. Blecker* To appear in: Eckhard-Keynesian macro models for closed economies, the present chapter focuses on extensions of these models the post-Keynesian framework to a global economy that has become much more integrated in the past few

Carlini, David

488

Industrial Structure and Monetary Policy in a Small Open Economy  

E-Print Network [OSTI]

Industrial Structure and Monetary Policy in a Small Open Economy Thomas A. Lubik Department supply which is empirically quite small. In principle, this link can be broken in a multisectoral economy sectors. This paper reinterprets this line of reasoning in a small open economy with a traded and a non

Niebur, Ernst

489

ECON S180 1 (30151) Introduction to Chinese Economy  

E-Print Network [OSTI]

ECON S180 1 (30151) Introduction to Chinese Economy July 8th - August 9th Yale Summer Session 2013 This course is designed to provide students with an intensive overview of the Chinese economy with focus. Over three decades, the Chinese economy undergone a rapid economic transformation at an unprecedented

490

The Florida Economy and a Federal Carbon Cap  

E-Print Network [OSTI]

The Florida Economy and a Federal Carbon Cap A QuAntitAtive AnAlysis Authors David Roland-Holst Dep-and-trade program--the policy recommended by Governor Crist's Action Team--on the Florida economy over the coming decades. The model looks at the entire Florida economy on an interactive basis over time, and takes

Sadoulet, Elisabeth

491

China Economy: Technology, Growth and Global Connections (3 Credits)  

E-Print Network [OSTI]

China Economy: Technology, Growth and Global Connections (3 Credits) Instructor Susan Mays. It examines major trends in the economy and society, including trends in income, the workforce, trade, foreign, drivers, and challenges in China's unique and dynamic economy, in a global context. Topics 1. China

492

ver the past few years, the global economy has been  

E-Print Network [OSTI]

O ver the past few years, the global economy has been sluggish and its growth far below what that in the mid- 2000s. Although the world economy has mostly recovered from the 2009 recession, it still lacks the strong growth that characterized the first decade of the post-Cold War era. The world economy posted a 3

Hemmers, Oliver

493

Effects of Foreign Direct Investment (FDI) in the Indian Economy  

E-Print Network [OSTI]

1 Effects of Foreign Direct Investment (FDI) in the Indian Economy Sourangsu Banerji Visiting study the effects of Foreign Direct Investment (FDI) with respect to India and its economy. We try interest (10 percent or more of voting stock) in an enterprise operating in an economy other than

Paris-Sud XI, Université de

494

Exact Measures of Income in a Hyperbolic Economy  

E-Print Network [OSTI]

Exact Measures of Income in a Hyperbolic Economy JOHN PEZZEY EEN0203 #12;Exact Measures of Income in a Hyperbolic Economy John C. V. Pezzey Centre for Resource and Environmental Studies Australian National.K. Draft of 23 January 2002 Abstract. Exact optimal paths are calculated for a closed economy with human

Pezzey, Jack

495

THE ECONOMY OF MANATEE AND SARASOTA COUNTIES Effie Philippakos  

E-Print Network [OSTI]

i THE ECONOMY OF MANATEE AND SARASOTA COUNTIES By Effie Philippakos Alan W. Hodges David Mulkey Charles M. Adams Abstract This report is intended to characterize the economies of Manatee and Sarasota-county region. The overall size and seasonal variations in the economies of Manatee and Sarasota Counties were

Florida, University of

496

State of the economy and the prospect for recovery  

E-Print Network [OSTI]

State of the economy and the prospect for recovery According to Dr. Ira Kalish, the director of global economics at Deloitte Research, the global economy has "stabilized" somewhat in the first quarter policy in the economy. Although the impact of the federal government stimulus package was debated

Moore, Paul A.

497

MANAGING NETWORK ORGANIZATIONS IN THE KNOWLEDGE ECONOMY: LEARNING  

E-Print Network [OSTI]

ECONOMY: LEARNING FROM SUCCESS AND FAILURE Hamid R. Ekbia School of Library and Information Science The current economy has brought the network model of organization to the forefront of management theory. INTRODUCTION The information economy seems to favor the network model of organiza- tion. This is what various

Indiana University

498

Page 1 from 33 The "New Economy" and  

E-Print Network [OSTI]

Page 1 from 33 The "New Economy" and Information Technology Policy Pamela Samuelson Hal R. Varian of the information technology sector (IT) in the 1980s was an important development for the economy, but it spurred that the 1990's witnessed the emergence of a "New Economy." That term dates back to the 1980's when it referred

Varian, Hal R.

499

Is the New Economy a Useful Concept ? Bernard PAULR *  

E-Print Network [OSTI]

1 Is the New Economy a Useful Concept ? Bernard PAULR� * Université Paris 1 Panthéon Sorbonne of the concept of a New Economy. This construct, which first began to appear in the media in the mid-1990s that is associated with it, express an extremely optimistic view of the future of the U.S. economy, and are best

Boyer, Edmond

500

And Our State's Economic Vitality Colorado's Recreation Economy  

E-Print Network [OSTI]

And Our State's Economic Vitality Colorado's Recreation Economy Bryan Martin, The Colorado Mountain Club #12;Colorado's Recreation Economy The Colorado Mountain Club · 8,000 Members · 14 Chapters's Recreation Economy By the Numbers · $10 Billion Annually · 107,000 Jobs · $500 Million in State Tax Revenue