Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Guide Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

2

"Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon)"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Economy, Selected Survey Years (Miles Per Gallon)" Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census Region and Division" " Northeast",15.6,"NA",19.6,20.9,20.7,20.85531 " New England",16.5,"NA",19.7,21.1,20.4,20.97907 " Middle Atlantic ",15.3,"NA",19.6,20.8,20.8,20.79659 " Midwest ",14.8,"NA",18.2,19,20.1,20.18362 " East North Central",14.9,"NA",18.4,19.4,20.1,20.26056 " West North Central ",14.5,"NA",17.8,17.9,20,20.01659 " South",15,"NA",18,19.2,19.6,20.17499 " South Atlantic",15.6,"NA",19,20.2,20.2,20.5718

3

Download Fuel Economy Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Download Fuel Economy Data Download Fuel Economy Data Fuel economy data are the result of vehicle testing done at the Environmental Protection Agency's National Vehicle and Fuel Emissions Laboratory in Ann Arbor, Michigan, and by vehicle manufacturers with oversight by EPA. 2013 Ford C-MAX Hybrid Data Revised (August 15, 2013) 2011-2013 Hyundai and Kia data revised (November 2, 2012) Downloadable Fuel Economy Data Find and Compare Cars data - MPG data for all 1984-2014 vehicles (Updated: Friday December 20 2013) For Developers: Fueleconomy.gov Web Services CSV: /feg/epadata/vehicles.csv.zip (Documentation) XML: /feg/epadata/vehicles.xml.zip (Documentation) Fuel Economy Datafile* Fuel Economy Guide Adobe Acrobat Icon Green Vehicle Guide Datafile Green Vehicle Guide Adobe Acrobat Icon

4

EPA Fuel Economy Ratings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Window Sticker Current Window Sticker The U.S. Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) recently redesigned and enhanced the window sticker that appears on new vehicles. The new Fuel Economy and Environment Label will be mandatory on all new vehicles beginning with the 2013 model year. For the 2012 model year, manufacturers can use the new window sticker or the older window sticker shown below. Roll over the highlighted elements on the label below to learn more about EPA's current fuel economy label. EPA's Current Fuel Economy Label EPA's New Fuel Economy Label Estimated Annual Fuel Cost: $2,039 based on 15,000 mile at $2.80 per gallon Your fuel cost may differ depending on annual miles and fuel prices. Combined Fuel Economy for this Vehicle: 21 MPG, Range for all SUVs: 10-31

5

Chapter 4. Fuel Economy, Consumption and Expenditures  

U.S. Energy Information Administration (EIA) Indexed Site

4. Fuel Economy, Consumption, and Expenditures 4. Fuel Economy, Consumption, and Expenditures Chapter 4. Fuel Economy, Consumption, and Expenditures This chapter analyzes trends in fuel economy, fuel consumption, and fuel expenditures, using data unique to the Residential Transportation Energy Consumption Survey, as well as selected data from other sources. Analysis topics include the following: Following the oil supply and price disruptions caused by the Arab oil embargo of 1973-1974, motor gasoline price increases, the introduction of corporate average fuel economy standards, and environmental quality initiatives helped to spur major changes in vehicle technology. But have the many advances in vehicle technology resulted in measurable gains in the fuel economy of the residential vehicle fleet?

6

Fuel Economy Web Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FuelEconomy.gov Web Services FuelEconomy.gov Web Services Data Description atvtype - alternative fuel or advanced technology vehicle Bifuel (CNG) - Bi-fuel gasoline and compressed natural gas vehicle Bifuel (LPG) - Bi-fuel gasoline and propane vehicle CNG - Compressed natural gas vehicle Diesel - Diesel vehicle EV - Electric vehicle FFV - Flexible fueled vehicle (gasoline or E85) Hybrid - Hybrid vehicle Plug-in Hybrid - Plug-in hybrid vehicle drive - drive axle type 2-Wheel Drive 4-Wheel Drive* 4-Wheel or All-Wheel Drive* All-Wheel Drive* Front-Wheel Drive Part-time 4-Wheel Drive* Rear-Wheel Drive *Prior to Model Year 2010 EPA did not differentiate between All Wheel Drive and Four Wheel Drive salesArea - EPA sales area code. The area of the country where the vehicle can legally be sold. New federally certified vehicles can be sold in all states except California

7

Print the Fuel Economy Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Print the Fuel Economy Guide Print the Fuel Economy Guide 2014 Fuel Economy Guide 2014 Fuel Economy Guide Adobe Acrobat Icon MPG data updated December 19, 2013 The annual fuel cost estimates in the 2008-2014 electronic fuel economy guides are updated weekly to match EIA's current national average prices for gasoline and diesel fuel. Order a printed copy: Order Note that the published guides may not be as up-to-date at the downloadable version. View vehicles from 1984 to the present: Go to Find-a-Car Unlike the annual guides which cover only one model year, Find-a-Car provides the most up-to-date fuel economy information for vehicles from model year 1984 to the present, along with environmental and safety data. Find a Car Developer Tools 2013 Fuel Economy Guide 2013 Fuel Economy Guide Adobe Acrobat Icon

8

Fuel Economy Valentines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Economy Valentines Fuel Economy Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model of your vehicle, you'll choose a way to keep track of your fill-ups at the pump, recording your odometer and/or the amount of fuel you put in your vehicle. The tool then calculates your gallons per mile and saves this information in your account; you can log back in anytime to update and monitor your

9

Fuel Economy Valentines | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Economy Valentines Fuel Economy Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model of your vehicle, you'll choose a way to keep track of your fill-ups at the pump, recording your odometer and/or the amount of fuel you put in your vehicle. The tool then calculates your gallons per mile and saves this information in your account; you can log back in anytime to update and monitor your

10

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

S. Kurani, “Car Buyers and Fuel Economy? ” Energy Policy,Fuel Economy: What Drives Consumer Choice? BY TOMa car, do they think about fuel costs over time, are they

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

11

Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy Test Fuel Economy Test Procedures and Labeling to someone by E-mail Share Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Facebook Tweet about Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Twitter Bookmark Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Google Bookmark Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Delicious Rank Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on Digg Find More places to share Alternative Fuels Data Center: Fuel Economy Test Procedures and Labeling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Economy Test Procedures and Labeling

12

Model Year 1999 Fuel Economy Guide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FUEL FUEL ECONOMY GUIDE MODEL YEAR 1999 DOE/EE-0178 Fuel Economy Estimates October 1998 1 CONTENTS PAGE Purpose of the Guide ..................................................... 1 Interior Volume ................................................................ 1 How the Fuel Economy Estimates are Obtained ........... 1 Factors Affecting MPG .................................................... 2 Fuel Economy and Climate Change ............................... 2 Gas Guzzler Tax ............................................................. 2 Vehicle Classes Used in This Guide. .............................. 2 Annuel Fuel Costs .......................................................... 3 How to Use the Guide .................................................... 4 Where to Re-order Guides

13

Why is fuel Economy Important?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Why Is Fuel Economy Important? Why Is Fuel Economy Important? Saves You Money Save as much as $1,700 in fuel costs each year by choosing the most efficient vehicle that meets your needs. See how much you can save! Photo of gasoline receipt on top of money Reduces Climate Change Carbon dioxide (CO2) from burning gasoline and diesel contributes to global climate change. You can do your part to reduce climate change by reducing your carbon footprint! Photo of Earth from space Reduces Oil Dependence Costs Our dependence on oil makes us vulnerable to oil market manipulation and price shocks. Find out how oil dependence hurts our economy! Chart showing annual cost of oil imports increasing from $21 billion per year in 1975 to approximately $330 billion in 2011 Increases Energy Sustainability

14

Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Vehicle Fuel State Vehicle Fuel Economy Requirements to someone by E-mail Share Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Facebook Tweet about Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Twitter Bookmark Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Google Bookmark Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Delicious Rank Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on Digg Find More places to share Alternative Fuels Data Center: State Vehicle Fuel Economy Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Vehicle Fuel Economy Requirements State contracts for the purchase or lease of new passenger automobiles must

15

Getting to Know the New Fuel Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Getting to Know the New Fuel Economy Getting to Know the New Fuel Economy and Environment Labels / 1 * Understanding the Guide Listings / 2 * Why Some Vehicles Are Not Listed / 2 * Vehicle Classes Used in This Guide / 3 * Tax Incentives and Disincentives / 3 * Why Consider Fuel Economy / 3 * Fueling Options / 4 * Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes / 4 * Model Year 2013 Fuel Economy Leaders / 5 * 2013 Model Year Vehicles / 6 * Diesel Vehicles / 26 * Electric Vehicles / 27 * Plug-in Hybrid Electric Vehicles / 29 * Hybrid Electric Vehicles / 28 * Compressed Natural Gas Vehicles / 31 * Fuel Cell Vehicles / 31 * Ethanol Flexible Fuel Vehicles / 32 * Index / 37 * USING THE FUEL ECONOMY GUIDE The U.S. Environmental Protection Agency (EPA) and U.S. Department of Energy (DOE) produce the Fuel Economy Guide to help car buyers choose the most

16

Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Fuel Economy Vehicle Fuel Economy and Greenhouse Gas Emissions Standards to someone by E-mail Share Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Facebook Tweet about Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Twitter Bookmark Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Google Bookmark Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Delicious Rank Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on Digg Find More places to share Alternative Fuels Data Center: Vehicle Fuel Economy and Greenhouse Gas Emissions Standards on AddThis.com...

17

Fuel Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Fuel Economy Fuel Economy Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel. Featured New Investment in Energy-Efficient Manufacturing The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility.

18

What is FuelEconomy.gov  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

FuelEconomy.gov? FuelEconomy.gov? FuelEconomy.gov is an Internet resource that helps consumers make informed fuel economy choices when purchasing a vehicle and achieve the best fuel economy possible from the cars they own. FuelEconomy.gov is maintained by the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy with data provided by the U.S. Environmental Protection Agency (EPA). The site helps fulfill DOE and EPA's responsibility under the Energy Policy Act of 1992 to provide accurate miles per gallon (MPG) information to consumers. What has FuelEconomy.gov accomplished? In 2011 alone, FuelEconomy.gov is estimated to have helped to

19

Fuel Economy in the News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Economy in the News Fuel Economy in the News Disclaimer: The opinions expressed in the following articles belong to the original authors and do not necessarily reflect the opinions or policies of the U.S. Department of Energy or the Environmental Protection Agency. May 31, 2013 Drive On: Ford rocks hybrid sales - USA Today 2014 Chevrolet Cruze Diesel: Could this be the anti-TDI? - Car and Driver Tips for Buying and Servicing a Used Hybrid Car - The New York Times May 30, 2013 Mercedes' GLK250 joins fuel efficiency with luxury - The Detroit News Honda Fit EV lease drops to $259 with no down payment, unlimited miles - Autoblog Tesla tripling supercharger network for LA to NY trip - CNN May 29, 2013 Musk sticking to plan for 'affordable' Tesla model - Autoblog 2015 Toyota Prius Spy Shots: Next-Gen Hybrid Breaks Cover - Green

20

Fuel Economy and Environment Labels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

note that these labels are examples and do not represent real automobiles. The sample labels are intended to note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 1 A New Fuel Economy Label for a New Generation of Cars Gasoline Label Please note that these labels are examples and do not represent real automobiles. The sample labels are intended to illustrate the elements on the label that would be associated with each vehicle technology/fuel type. They are not meant to represent the actual values that any particular vehicle type could achieve. 2 Flexible Fuel Vehicle: Gasoline-Ethanol (E85) Without Driving Range

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

09 Fuel Economy Guide and FuelEconomy.gov 09 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than 30 seconds, as Elizabeth pointed out last week. Driving conservatively and buying a fuel efficient car can make even more of an impact. The 2009 Fuel Economy Guide, released on October 15, can help you choose the most fuel efficient car for your needs, both new and used. Whether

22

Global Fuel Economy Initiative | Open Energy Information  

Open Energy Info (EERE)

Global Fuel Economy Initiative Global Fuel Economy Initiative Jump to: navigation, search Tool Summary Name: Global Fuel Economy Initiative Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Fuels & Efficiency Topics: Best Practices Website: www.globalfueleconomy.org/ The Global Fuel Economy Initiative has launched the 50by50 challenge to facilitate large reductions of greenhouse gas emissions and oil use through improvements in automotive fuel economy. The website provides access to working papers, a map showing countries with fuel economy standards, and other related information. How to Use This Tool This tool is most helpful when using these strategies: Avoid - Cut the need for travel

23

Real-World PHEV Fuel Economy Prediction | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Economy Prediction Real-World PHEV Fuel Economy Prediction 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

24

Fuel Economy Standards, New Vehicle Sales, and Average Fuel Efficiency  

Science Journals Connector (OSTI)

The average fuel efficiency of new automobiles sold in the ... trend stagnated in 1981, however, and average fuel efficiency has actually fallen since 1987. Corporate Average Fuel Economy (CAFE) standards—the maj...

Steven G. Thorpe

1997-05-01T23:59:59.000Z

25

Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...  

Energy Savers [EERE]

9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The...

26

Automobile Buyer Decisions about Fuel Economy and Fuel Efficiency  

E-Print Network [OSTI]

Consumer Response to Automobile Regulation and TechnologicalConsumer Discounting of Automobile Fuel Economy: ReviewingDecisions: Evidence from Automobiles” Research Report.

Kurani, Ken; Turrentine, Thomas

2004-01-01T23:59:59.000Z

27

HOW CONSUMERS VALUE FUEL ECONOMY: A LITERATURE REVIEW  

E-Print Network [OSTI]

......................................... xiii 1 Passenger Car and Light Truck Fuel Economy, Fuel Economy Standards and the Price of GasolineHOW CONSUMERS VALUE FUEL ECONOMY: A LITERATURE REVIEW David L. Greene Oak Ridge National ...............................................................................................................1 2. ALTERNATIVE MODELS OF CONSUMERS' EVALUATION OF FUEL ECONOMY

28

MotorWeek: Fuel Economy Focus  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Navigational links Navigational links Site Map | Videos | Links | More Info | Search | Contacts | HOME www.fueleconomy.gov Photograph of Cars Find and Compare Cars | Gas Mileage Tips | Gasoline Prices | Your MPG Will Vary | Why is Fuel Economy Important? | Your MPG | Hybrids, Diesels, Alt Fuels, Etc. | Tax Incentives | Extreme MPG U.S. Department of Energy | Print the Fuel Economy Guide | U.S. Environmental Protection Agency Gas Mileage Tips Driving more efficiently Keeping your car in shape Planning and combining trips Choosing a more efficient vehicle More Info MotorWeek: Text Version Video: MotorWeek test showing impact of driving style on MPG. Fuel Economy Focus John Davis The window sticker on a new car contains lots of information besides just the price. For instance, down at the bottom are the all important government fuel economy estimates. But just like the price on the sticker may have little in common with what you actually pay for the car, the mileage estimates may also be far different from real world results. So, why does gas mileage vary so much? Well, the answers are as varied as your mileage.

29

Fuel cell and hydrogen economy  

Science Journals Connector (OSTI)

This article reviews some of the recent developments in the materials, design, and concepts for bipolar/end plates in the polymer electrolyte membrane fuel cell stack. Experimental results for the use of iron- an...

Ramana G. Reddy

2006-08-01T23:59:59.000Z

30

Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs 2012...

31

Annual Fuel Economy Guide with 2014 Models Released | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Annual Fuel Economy Guide with 2014 Models Released Annual Fuel Economy Guide with 2014 Models Released December 4, 2013 - 12:00am Addthis The U.S. Environmental Protection Agency...

32

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 -...

33

Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Utah Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

34

Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Federal Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

35

Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Alaska Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

36

Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Maine Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

37

Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Indiana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

38

Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Idaho Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

39

Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Florida Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

40

Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Vermont Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Oregon Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

42

Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

43

Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Hawaii Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

44

Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Montana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

45

New Fuel Economy and Environment Label  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Window Sticker Beyond Tailpipe Emissions About the Label Gasoline Vehicles Plug-in Hybrid Vehicles Electric Vehicles QR Codes | Share Learn About the New Label Greenhouse gas emissions from vehicles are an important contributor to climate change. Visit EPA's climate change page for more details. View a video about the new labels. Click on a tab to view the new labels for various vehicle/fuel types. Move the cursor over parts of the label to learn more. Gasoline Vehicle Plug-In Hybrid Electric Vehicle (PHEV) Electric Vehicle Shows the type of fuel or fuels the vehicle can use. You will most commonly see "Gasoline Vehicle," "Flexible Fuel Vehicle: Gasoline-Ethanol," or "Diesel Vehicle." Learn more Find the MPG fuel economy estimates here. The Combined City/Highway

46

Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8: September 14, 8: September 14, 2009 Fuel Economy Changes Due to Ethanol Content to someone by E-mail Share Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Facebook Tweet about Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Twitter Bookmark Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Google Bookmark Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Delicious Rank Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on Digg Find More places to share Vehicle Technologies Office: Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content on

47

Fuel Economy Fact and Fiction | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Economy Fact and Fiction Fuel Economy Fact and Fiction Fuel Economy Fact and Fiction April 4, 2011 - 1:01pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With gas prices soaring higher than ever, there's a lot of information-true and false-floating around about fuel economy. From well-intentioned friends to salespeople trying to make a buck, everyone has an opinion on how you can use less gas. Thankfully, the Department of Energy has solid facts based on data that will help you sort out the reality from the myth. Check out FuelEconomy.gov for even more tips. Just the facts... The best device for improving your fuel economy is a tire gauge. There are all sorts of products out there that claim they can help improve your fuel economy, from inserts for your exhaust pipe to magnets clamped on

48

Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas  

E-Print Network [OSTI]

Should a vehicle fuel economy standard be combined with an economy-wide greenhouse gas emissions the Marine Biology Laboratory (MBL) at Woods Hole and short- and long-term visitors--provide the united: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Should a vehicle fuel economy standard

49

BAYESIAN ESTIMATION OF FUEL ECONOMY POTENTIAL  

E-Print Network [OSTI]

BAYESIAN ESTIMATION OF FUEL ECONOMY POTENTIAL DUE TO TECHNOLOGY IMPROVEMENTS by Richard W. Andrews in the engineering assessment phase of this project: N.T. Barnes, B. Beeson, R.C. Belaire, W.C. Follmer, R.J. Genik, R.C. Heathfield, T.E. Kenney, D.L. Kulp, J.G. LaFond, J.D. Medrick, N.M. Novelli, G. Pietron, N

Berger, Jim

50

Sipping fuel and saving lives: increasing fuel economy without sacrificing safety  

E-Print Network [OSTI]

Ford delays plans to boost fuel economy of its SUVs. WallImproving safety without impacting fuel economy. Honda MotorCompany, October 4. SIPPING FUEL AND SAVING LIVES / 24

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2008-01-01T23:59:59.000Z

51

Fuel Economy on the Fly | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Economy on the Fly Fuel Economy on the Fly Fuel Economy on the Fly January 19, 2011 - 5:06pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Fuel Economy information at your fingertips Cross Post from the Energy Savers Blog. Written by Shannon Brescher Shea. With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. Although most people don't bring their computer with them to the dealership, you're in luck if you have a smartphone or other mobile internet device. FuelEconomy.gov has a mobile version of its popular Find and Compare Cars

52

Fuel Economy on the Fly | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Economy on the Fly Fuel Economy on the Fly Fuel Economy on the Fly January 18, 2011 - 1:45pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. Although most people don't bring their computer with them to the dealership, you're in luck if you have a smartphone or other mobile internet device. FuelEconomy.gov has a mobile version of its popular Find and Compare Cars tool that allows you to search anytime, anywhere. The mobile tool works just like the one on the FuelEconomy.gov website. You

53

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

10 Annual Fuel Economy Guide Now Available 10 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

54

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

55

Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: September 12, 2: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks to someone by E-mail Share Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Facebook Tweet about Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Twitter Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Google Bookmark Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Delicious Rank Vehicle Technologies Office: Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks on Digg

56

Effect of Fuel Economy on Automobile Safety: A Reexamination  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

75, the fuel economy of passenger cars and light trucks has been 75, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards and their impact on highway safety. A seminal study of the link between CAFE and traffic fatalities was published by R. W. Crandall and J. D. Graham in 1989. They linked higher fuel economy levels to decreases in vehicle weight and correlated the decline in new car weight with about a 20% increase in occupant fatalities. The time series available to them, 1947-1981, includes only the first 4 years of fuel economy regulation, but any statistical relationship estimated over such

57

Learn More About the Fuel Economy Label for Electric Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electric Vehicles Electric Vehicles Learn More About the New Label Electric Vehicle Fuel Economy and Environment Label Vehicle Technology & Fuel Fuel Economy Comparing Fuel Economy to Other Vehicles You Save Fuel Consumption Rate Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating Details in Fine Print QR Code Fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that is powered by electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

58

Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...  

Energy Savers [EERE]

(NHTSA) jointly announced a proposal to establish national standards for greenhouse gas (GHG) emissions and Corporate Average Fuel Economy (CAFE). The standards would apply to...

59

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and...

60

Consumer Valuation of Fuel Economy Over Time: 2003-2012.  

E-Print Network [OSTI]

??This study is in-depth analysis of consumer valuation of fuel economy with the objective of assessing how that value has changed over time using ten… (more)

Sari, Mehmet

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

High Fuel Economy Heavy-Duty Truck Engine  

Broader source: Energy.gov (indexed) [DOE]

contain any proprietary, confidential, or otherwise restricted information ACE060 High Fuel Economy Heavy Duty Truck Engine Overview Timeline October 2007 - October 2011 Barriers...

62

Turbocharged Spark Ignited Direct Injection - A Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

- A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers...

63

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

64

Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

8: September 14, 2009 Fuel Economy Changes Due to Ethanol Content Fact 588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content The fuel economy of a vehicle is...

65

Fuel Economy Sticker Revs Up Used Car Sales | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sticker Revs Up Used Car Sales Fuel Economy Sticker Revs Up Used Car Sales May 1, 2014 - 2:29pm Addthis FuelEconomy.govs newest tool -- the Used Car Fuel Economy Label --...

66

Fueling South Carolina's Clean Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of Flickr user ClatieK. Julie McAlpin Communications Liaison, State Energy Program What does this mean for me? Pure Power increased energy efficiency while expanding plant

67

EPA-Fuel Economy Guide | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » EPA-Fuel Economy Guide (Redirected from EPA Fuel Economy Guide) Jump to: navigation, search Tool Summary Name: Fuel Economy Guide Agency/Company /Organization: United States Environmental Protection Agency Focus Area: Energy Efficiency, Transportation Resource Type: Guide/manual User Interface: Website Website: www.fueleconomy.gov/ Research light duty vehicles by fuel economy and greenhouse gas emissions. Retrieved from "http://en.openei.org/w/index.php?title=EPA-Fuel_Economy_Guide&oldid=375897" Categories: Tools Community Energy Tools

68

Fuel Economy of Hybrids, Diesels, and Alternative Fuel Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel You are here: Find a Car - Home > Hybrids, Diesels, and Alternative Fuel Vehicles Hybrids, Diesels, and Alternative Fuel Vehicles Search by Vehicle Type 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 Select Vehicle Type Diesel Electric Ethanol-Gasoline Hybrid Plug-in Hybrid Natural Gas Bifuel Natural Gas Bifuel Propane Go More Search Options Browse New Cars Hybrid Vehicles Plug-in Hybrid Vehicles Battery Electric Vehicles Diesel Vehicles Flex-Fuel Vehicles CNG Vehicles Related Information How Hybrid Vehicles Work How Fuel Cell Vehicles Work MotorWeek Videos Compare Hybrids Compare Diesels Extreme MPG Tax Incentive Information Center Alternative Fuel Station Locator Alternative Fuel and Advanced Vehicle Data Center | Share I want to... Compare Side-by-Side

69

Energy Department and Environmental Protection Agency Release Fuel Economy  

Broader source: Energy.gov (indexed) [DOE]

Energy Department and Environmental Protection Agency Release Fuel Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles September 12, 2013 - 9:00am Addthis News Media Contact DOE: (202) 586-4940 EPA: (202) 564-4355 WASHINGTON - As part of the Obama Administration's ongoing efforts to increase fuel efficiency, reduce carbon pollution and address climate change, the U.S. Energy Department and the Environmental Protection Agency (EPA) today released a new label that features EPA fuel economy estimates and CO2 estimates for used vehicles sold in the United States since 1984. Consumers may create the new label electronically as part of a new tool on FuelEconomy.gov. This electronic graphic can be downloaded and included in

70

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

71

Assessment of California reformulated gasoline impact on vehicle fuel economy  

SciTech Connect (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CAROB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4 %, with a 95% upper confidence bound of 6 %. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CAROB with respect to the impact of CaRFG on fuel economy.

Aceves, S.; Glaser, R.; Richardson, J.

1997-01-01T23:59:59.000Z

72

Assessment of California reformulated gasoline impact on vehicle fuel economy  

SciTech Connect (OSTI)

Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

Aceves, S., LLNL

1997-01-01T23:59:59.000Z

73

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

fuel supply cut-off. Fuel prices had jumped, and fuelWhen CAFE was passed, the fuel price increases of 1973 hadof pressure from higher fuel prices. The mpg of new trucks

Schipper, Lee

2009-01-01T23:59:59.000Z

74

Fuel Economy.gov - Mobile | Open Energy Information  

Open Energy Info (EERE)

Economy.gov - Mobile Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: fueleconomy.gov/ Web Application Link: fueleconomy.gov/m/ Cost: Free References: www.fueleconomy.gov[1] Logo: Fuel Economy.gov - Mobile Calculate gas mileage (MPG), annual fuel costs, annual petroleum use, and the carbon footprint information for your car or truck. Overview Calculate gas mileage (MPG), annual fuel costs, annual petroleum use, and the carbon footprint information for your car or truck. Highlights Find a Car MPG ratings for new and used cars.

75

The Road to Improved Heavy Duty Fuel Economy  

Broader source: Energy.gov [DOE]

Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance on-highway driving

76

EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2015 Fuel Economy Guide, providing consumers with a valuable resource to help them choose the...

77

Biomass Fueling America’s Growing Clean Energy Economy  

Office of Energy Efficiency and Renewable Energy (EERE)

Biomass is the most abundant biological material on the planet. It is renewable; it grows almost everywhere; and it provides fuel, power, chemicals, and many other products. Find out how biomass is helping grow America's clean energy economy.

78

Minorities and fuel-economy standards: Differences in EPA-test vs in-use fuel economy  

SciTech Connect (OSTI)

A vehicle`s in-use or on-the-road fuel economy often differs substantially from the miles-per-gallon estimates developed by the US Environmental Protection Agency (EPA) as part of its emissions certification program. As a result, the certification values are routinely adjusted by a set of correction factors so that the resulting estimates will better reflect in-use experience. Our analysis investigated how well the correction factors replicated the shortfall experience of all household vehicles on the road in 1985 and of those vehicles held by different population groups. Using data from the Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration of the US Department of Energy, our analysis showed that fleetwide, the shortfall is larger than the EPA correction factors, and that light trucks are experiencing larger shortfalls than automobiles. Controlling for vehicle age and size class, shortfalls did not appear to differ by population group. However, African-American households appeared to select vehicles with systematically lower fuel economy (both EPA-test and on-the-road) within individual vehicle age and size class categories.

Mintz, M.M.; Vyas, A.D.; Conley, L.A.

1991-12-31T23:59:59.000Z

79

Minorities and fuel-economy standards: Differences in EPA-test vs in-use fuel economy  

SciTech Connect (OSTI)

A vehicle's in-use or on-the-road fuel economy often differs substantially from the miles-per-gallon estimates developed by the US Environmental Protection Agency (EPA) as part of its emissions certification program. As a result, the certification values are routinely adjusted by a set of correction factors so that the resulting estimates will better reflect in-use experience. Our analysis investigated how well the correction factors replicated the shortfall experience of all household vehicles on the road in 1985 and of those vehicles held by different population groups. Using data from the Residential Transportation Energy Consumption Survey conducted by the Energy Information Administration of the US Department of Energy, our analysis showed that fleetwide, the shortfall is larger than the EPA correction factors, and that light trucks are experiencing larger shortfalls than automobiles. Controlling for vehicle age and size class, shortfalls did not appear to differ by population group. However, African-American households appeared to select vehicles with systematically lower fuel economy (both EPA-test and on-the-road) within individual vehicle age and size class categories.

Mintz, M.M.; Vyas, A.D.; Conley, L.A.

1991-01-01T23:59:59.000Z

80

Fuel prices and new vehicle fuel economy—Comparing the United States and Western Europe  

Science Journals Connector (OSTI)

Abstract Several recent papers have documented an effect of fuel prices on new vehicle fuel economy in the United States. This paper estimates the effect of fuel prices on average new vehicle fuel economy for the eight largest European markets. The analysis spans the years 2002–2007 and uses detailed vehicle registration and specification data to control for policies, consumer preferences, and other potentially confounding factors. We find fuel prices to have a statistically significant effect on average new vehicle fuel economy in Europe. The effect estimated for Europe is much smaller than comparable estimates for the United States.

Thomas Klier; Joshua Linn

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Fuel Economy Standards Will Continue to Inspire Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary Ray LaHood. (Official White House Photo by Samantha Appleton) President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and

82

New EPA Fuel Economy and Environment Label - Gasoline Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gasoline Vehicles Gasoline Vehicles Gasoline Vehicles Fuel Economy In addition to the MPG estimates displayed on previous labels, combined city/highway fuel use is also given in terms of gallons per 100 miles. New! Fuel Economy & Greenhouse Gas Rating Use this scale to compare vehicles based on tailpipe greenhouse gas emissions, which contribute to climate change. New! Smog Rating You can now compare vehicles based on tailpipe emissions of smog-forming air pollutants. New! Five-Year Fuel Savings This compares the five-year fuel cost of the vehicle to that of an average gasoline vehicle. The assumptions used to calculate these costs are listed at the bottom of the label. Annual Fuel Cost This cost is based on the combined city/highway MPG estimate and assumptions about driving and fuel prices listed at the bottom of the

83

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Circle of Measuring Automobile Fuel Use, Energy Policy 21. (M. , Dolan, K. , 1993b, Fuel Prices and Economy: Factors1994. New Car Test and Actual Fuel Economy: Yet Another Gap?

Schipper, Lee

2008-01-01T23:59:59.000Z

84

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards,  

E-Print Network [OSTI]

Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the corporate average fuel economy (CAFE) standards, established during the energy crises of the 1970s. Calls to increase fuel economy are usually met by a fierce debate on the effectiveness of the CAFE standards

85

Development of Test Methodology for Evaluation of Fuel Economy in Motorcycle Engines.  

E-Print Network [OSTI]

??Rising fuel costs and concerns over fossil fuel emissions have resulted in more stringent fuel economy and emissions standards globally. As a result, motor vehicle… (more)

Michlberger, Alexander

2014-01-01T23:59:59.000Z

86

California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher  

Office of Energy Efficiency and Renewable Energy (EERE)

In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses.

87

Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes  

Broader source: Energy.gov [DOE]

The graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the two-seater model...

88

Feature - Fuel Economy for Medium- and Heavy-Duty Vehicles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles New Report Looks at Fuel Economy for Medium- and Heavy-Duty Vehicles heavy duty trucks Argonne researcher Aymeric Rousseau was part of a National Academy of Science (NAS) committee established to make recommendations on improving and regulating fuel consumption for medium- and heavy-duty vehicles. On March 31, the committee issued a report that evaluates various technologies and methods that could improve the fuel economy of these vehicles. As a system analysis engineer at Argonne's Center for Transportation Research, Rousseau contributed his expertise on vehicle modeling and simulation to the committee, which was comprised of 19 members from industry, research organizations and academia. Rousseau, who leads the development of Argonne's PSAT and Autonomie software tools, helped the committee determine how modeling and simulation tools can be used to:

89

The Effect of Fuel Economy on Automobile Safety: A Reexamination  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TRB 05-1336 TRB 05-1336 The Effect of Fuel Economy on Automobile Safety: A Reexamination November 16, 2004 Word Count: 5,966 (including 3 tables and 1 figure) Sanjana Ahmad Research Assistant The University of Tennessee, Knoxville 2360 Cherahala Boulevard Knoxville, Tennessee 37932 Phone: (865) 946-1311 Fax: (865) 946-1314 Email: sahmad2@utk.edu David L. Greene Corporate Research Fellow Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, Tennessee 37932 Phone: (865) 946-1310 Fax: (865) 946-1314 Email: dlgreene@ornl.gov Ahmad and Greene 1 ABSTRACT Since 1975, the fuel economy of passenger cars and light trucks has been regulated by the Corporate Average Fuel Economy (CAFE) standards, established during the energy crises of the 1970s. Calls to

90

Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles  

SciTech Connect (OSTI)

This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

2014-10-01T23:59:59.000Z

91

Prospects on fuel economy improvements for hydrogen powered vehicles.  

SciTech Connect (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

92

Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: October 26, 4: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes to someone by E-mail Share Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Facebook Tweet about Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Twitter Bookmark Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Google Bookmark Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Delicious Rank Vehicle Technologies Office: Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes on Digg

93

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas station—if that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

94

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas station—if that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

95

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet Agency/Company /Organization: FIA Foundation, International Energy Agency, International Transport Forum, United Nations Environment Programme Focus Area: Vehicles Topics: Best Practices Website: www.unep.org/transport/gfei/autotool/ This tool is designed to provide policymakers and interested individuals and groups with overviews of policy tools and approaches to improving fleet-wide automobile fuel efficiency and promote lower CO2 and non-CO2 emissions from cars, along with case studies that depict these approaches from developed and developing countries. How to Use This Tool

96

Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks  

Broader source: Energy.gov [DOE]

Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

97

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...  

Broader source: Energy.gov (indexed) [DOE]

Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis...

98

Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy  

Broader source: Energy.gov [DOE]

The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy...

99

Fact #818: April 21, 2014 The Effect of Winter Weather on Fuel Economy  

Broader source: Energy.gov [DOE]

Winter driving conditions and cold temperatures can have a significant effect on a vehicle’s fuel economy. For a conventional gasoline-powered vehicle, fuel economy at 20°F is about 12% lower than...

100

Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed  

Broader source: Energy.gov [DOE]

Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per...

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy...  

Broader source: Energy.gov (indexed) [DOE]

629: June 28, 2010 Top Ten Misconceptions about Fuel Economy The Fuel Economy Guide Web site, sponsored by the U. S. Department of Energy and the U.S. Environmental Protection...

102

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the...

103

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Circle of Measuring Automobile Fuel Use, Energy Policy 21. (1995. Determinants of Automobile Energy Use and Energythe baseline evolution of automobile fuel economy in Europe.

Schipper, Lee

2008-01-01T23:59:59.000Z

104

The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient  

Broader source: Energy.gov (indexed) [DOE]

The 2014 Fuel Economy Guide Can Help You Choose Your Next The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - 1:10pm Addthis Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Jason Lutterman Communications Specialist, Office of Energy Efficiency and Renewable Energy Other ways to save money at the pump You can save money and use less fuel even without the purchase of a new car. Check out these easy tips to boost your gas mileage and save money. Are you in the market for a new car to start off the New Year? Choosing the

105

Examining new fuel economy standards for the United States.  

SciTech Connect (OSTI)

After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

Plotkin, S. E.; Energy Systems

2007-01-01T23:59:59.000Z

106

Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: July 5, 2010 0: July 5, 2010 Fuel Economy vs. Weight and Performance to someone by E-mail Share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Facebook Tweet about Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Twitter Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Google Bookmark Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Delicious Rank Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on Digg Find More places to share Vehicle Technologies Office: Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance on AddThis.com...

107

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect (OSTI)

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL] [ORNL; Aguilar, Juan P. [Georgia Institute of Technology] [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

108

A Structural Analysis of Vehicle Design Responses to Corporate Average Fuel Economy Policy  

E-Print Network [OSTI]

sensitive to fuel prices than to CAFE standards, with the 2007 average fuel price implying that current CAFE09-0588 A Structural Analysis of Vehicle Design Responses to Corporate Average Fuel Economy Policy, Michalek, and Hendrickson 1 ABSTRACT The U.S. Corporate Average Fuel Economy (CAFE) regulations, which aim

Michalek, Jeremy J.

109

Improvements of vehicle fuel economy using mechanical regenerative braking  

Science Journals Connector (OSTI)

The paper presents a mixed theoretical and experimental evaluation of the improvements in fuel economy that follow the introduction of a mechanical Kinetic Energy Recovery System (KERS) on a full size passenger car. This system, made up of a high speed storage flywheel and a Constant Variable Transmission (CVT), has a full regenerative cycle overall efficiency about twice the efficiency of battery-based hybrids. With reference to the baseline configuration having a 4L gasoline engine, adoption of a KERS may reduce the fuel consumption covering the NEDC by 25% without downsizing, and by 33% downsizing the engine to 3.3L.

Alberto A. Boretti

2011-01-01T23:59:59.000Z

110

DOE and EPA Release 2012 Annual Fuel Economy Guide | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

EPA Release 2012 Annual Fuel Economy Guide EPA Release 2012 Annual Fuel Economy Guide DOE and EPA Release 2012 Annual Fuel Economy Guide November 16, 2011 - 2:37pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help them choose a more efficient new vehicle that saves them money and reduces greenhouse gas emissions. While fuel efficient vehicles come in a variety of fuel types, classes, and sizes, many new advanced technology vehicles debut on this year's annual list of top fuel economy performers. Fuel economy leaders within each vehicle category - from two-seaters to large SUVs - include widely available products such as conventional gasoline models and clean

111

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel  

SciTech Connect (OSTI)

This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers’ expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers’ expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

Wu, Ko-Jen

2011-12-31T23:59:59.000Z

112

Investigating the Effect of Engine Lubricant Viscosity on Engine Friction and Fuel Economy of a Diesel Engine.  

E-Print Network [OSTI]

??Fuel economy is affected, both by fuel and engine lubricant quality. Engine lubricant quality plays a vital role in reduction of fuel consumption by effective… (more)

Singh, Devendra

2011-01-01T23:59:59.000Z

113

How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?  

Broader source: Energy.gov (indexed) [DOE]

How Does Your Fuel Economy Compare to the Test Ratings on How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles. Fueleconomy.gov also offers a tool called Your MPG, where you can track your own fuel economy and compare it to that of other users and to the test ratings. Many factors affect your mileage, and you may see different numbers than those list on Fueleconomy.gov. Whether you are using Your MPG or just keeping track on your own: How does your fuel economy compare to the test ratings on Fueleconomy.gov? Each Thursday, you have the chance to share your thoughts on a question

114

Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates  

Broader source: Energy.gov [DOE]

Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

115

Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy...  

Energy Savers [EERE]

(EPA) fuel economy ratings on the window stickers of new cars are based on strict test cycles conducted in a controlled laboratory setting. These official EPA estimates do...

116

Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions  

Broader source: Energy.gov [DOE]

Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent...

117

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

118

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

119

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1 Annual Fuel Economy Guide 1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

120

Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings  

Broader source: Energy.gov [DOE]

The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel savings amount...

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016  

Broader source: Energy.gov [DOE]

The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

122

Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise  

Broader source: Energy.gov [DOE]

The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

123

High Fuel Economy Heavy-Duty Truck Engine | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine High Fuel Economy Heavy-Duty Truck Engine 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

124

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy  

E-Print Network [OSTI]

Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy: Energy and Economic established research centers at MIT: the Center for Global Change Science (CGCS) and the Center for Energy://globalchange.mit.edu/ Printed on recycled paper #12;Combining a New Vehicle Fuel Economy Standard with a Cap-and-Trade Policy

125

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |  

Broader source: Energy.gov (indexed) [DOE]

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be used in vehicles. | Photo courtesy of Oak Ridge National Laboratory. Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be

126

The hydrogen economy, fuel cells, and electric cars  

Science Journals Connector (OSTI)

Hopes have again been raised about developing a “hydrogen economy”, in which hydrogen could be expected to replace oil and natural gas for most uses, including transportation and heating. It is again being claimed that hydrogen will be a widely available, clean, safe fuel. This article argues that such expectations are almost certainly illusory. Hydrogen, like electricity, is not an energy resource but an energy carrier. It takes more energy to extract hydrogen from water than burning the hydrogen can ever provide. There are also inevitable losses in storage, transmission, and final mechanical or heating applications. The question then turns on the efficiency—and safety—of the entire chain of conversion, from the energy source (fossil, solar, or other) to the final use. Moreover, energy sources (preferably renewable, for the long term) can be used for the direct creation of electricity, which can be introduced into the existing grid without requiring a vast investment in a new hydrogen distribution system. In addition, a hydrogen-based system would be unacceptably dangerous. This report will present a detailed technical and economic analysis of the problems with the proposed hydrogen economy and the advantages of some alternatives, principally electricity-based. A hypothetical case of what would be required for a hydrogen filling station serving the general public is closely examined.

Reuel Shinnar

2003-01-01T23:59:59.000Z

127

Hybrid Electric Vehicle Testing (Batteries and Fuel Economies)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Hybrid Electric Vehicle Energy Hybrid Electric Vehicle Battery and Fuel Economy Testing Donald Karner a , James Francfort b a Electric Transportation Applications 401 South 2nd Avenue, Phoenix, AZ 85003, USA b Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415, USA Abstract The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy's FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles.

128

Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy  

Science Journals Connector (OSTI)

US fuel economy standards have not been changed significantly in 20 years. Feebates are a market-based alternative in which vehicles with fuel consumption rates above a “pivot point” are charged fees while vehicles below receive rebates. By choice of pivot points, feebate systems can be made revenue neutral. Feebates have been analyzed before. This study re-examines feebates using recent data, assesses how the undervaluing of fuel economy by consumers might affect their efficacy, tests sensitivity to the cost of fuel economy technology and price elasticities of vehicle demand, and adds assessments of gas-guzzler taxes or rebates alone. A feebate rate of $500 per 0.01 gallon per mile (GPM) produces a 16 percent increase in fuel economy, while a $1000 per 0.01 GPM results in a 29 percent increase, even if consumers count only the first 3 years of fuel savings. Unit sales decline by about 0.5 percent but sales revenues increase because the added value of fuel economy technologies outweighs the decrease in sales. In all cases, the vast majority of fuel economy increase is due to adoption of fuel economy technologies rather than shifts in sales.

David L. Greene; Philip D. Patterson; Margaret Singh; Jia Li

2005-01-01T23:59:59.000Z

129

Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon  

Broader source: Energy.gov [DOE]

In 1975, only three percent of all new cars had a fuel economy above 25 miles per gallon (mpg), but by 2014, 73% did. Great improvements were made in the fuel economy of cars from 1975 to 1985, so...

130

Ris Energy Report 3 Interest in the hydrogen economy and in fuel cells has  

E-Print Network [OSTI]

2 RisĂž Energy Report 3 Interest in the hydrogen economy and in fuel cells has increased used for natural gas. Existing fuel cells can convert hydrogen efficiently into electric power. Emerging fuel cell technologies can do the same for other hydrogen-rich fuels, while generating little

131

Global Fuel Economy Initiative: 50by50 Prospects and Progress | Open Energy  

Open Energy Info (EERE)

Global Fuel Economy Initiative: 50by50 Prospects and Progress Global Fuel Economy Initiative: 50by50 Prospects and Progress Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative: 50by50 Prospects and Progress Focus Area: Clean Transportation Topics: Potentials & Scenarios Website: www.globalfueleconomy.org/Documents/Publications/prospects_and_progres Equivalent URI: cleanenergysolutions.org/content/global-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates/Targets" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

132

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Broader source: Energy.gov (indexed) [DOE]

EPA Release Annual Fuel Economy Guide with 2013 Models EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013 models include efficient and low-emission vehicles in a variety of classes and sizes, but notable this year is the growing availability of hybrids and the increasing number of electric vehicles. "This Administration has been working to foster a new generation of clean, fuel-efficient American vehicles, and part of that effort is

133

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

134

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Broader source: Energy.gov (indexed) [DOE]

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and environmental bottom line are high priorities when shopping for a new vehicle," said Administrator Gina

135

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department  

Broader source: Energy.gov (indexed) [DOE]

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014 models include efficient and low-emission vehicles in a variety of classes and sizes, ensuring a wide variety of choices available for consumers. "For American families, the financial and environmental bottom line are high priorities when shopping for a new vehicle," said Administrator Gina

136

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department  

Broader source: Energy.gov (indexed) [DOE]

DOE and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013 models include efficient and low-emission vehicles in a variety of classes and sizes, but notable this year is the growing availability of hybrids and the increasing number of electric vehicles. "This Administration has been working to foster a new generation of

137

Emissions and fuel economy of a prechamber diesel engine with natural gas dual fuelling  

SciTech Connect (OSTI)

A four-cylinder turbocharged prechamber diesel engine (Caterpillar 3304) was operated with natural gas and pilot diesel fuel ignition over a wide range of load and speed. Measurements were made of fuel consumption and the emissions of unburned hydrocarbons, carbon monoxide, and the oxides of nitrogen. Improvements in fuel economy and emissions were found to be affected by the diesel fuel-gas fraction, and by air restriction and fuel injection timing. Boundaries of unstable, inefficient and knocking operation were defined and the importance of gas-air equivalance ratio was demonstrated in its effect on economy, emissions and stability of operation.

Ding, X.; Hill, P.G.

1986-01-01T23:59:59.000Z

138

Fact #587: September 7, 2009 Cash for Clunkers Program – Fuel Economy Improvement  

Broader source: Energy.gov [DOE]

The Car Allowance Rebate System (CARS), also known as the Cash for Clunkers Program, provided Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18...

139

Turbocharged Spark Ignited Direct Injection- A Fuel Economy Solution for The US  

Broader source: Energy.gov [DOE]

Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers double digit fuel economy benefits, much lower cost than diesel or hybrid.

140

Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity  

Broader source: Energy.gov [DOE]

The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity....

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy  

Broader source: Energy.gov [DOE]

Researchers at Oak Ridge National Laboratory recently conducted a study that measured the effect of tire pressure on fuel economy at speeds ranging from 40 to 80 miles per hour. The figure below...

142

Fact #804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers  

Broader source: Energy.gov [DOE]

Because used vehicle sales outnumber new vehicle sales by about three to one, a new tool has been developed that allows those selling used vehicles to produce a fuel economy label for the vehicle....

143

Fuel Economy Standards for New Light Trucks (released in AEO2007)  

Reports and Publications (EIA)

In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

2007-01-01T23:59:59.000Z

144

Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies to Meet Fuel Economy Requirements  

Broader source: Energy.gov [DOE]

Vehicle manufacturers are turning to vehicle technologies to improve efficiency and meet strict fuel economy requirements. Over the last 10 years, the use of engine technologies like multi-valves...

145

Fact #680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle  

Broader source: Energy.gov [DOE]

A June 2011 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low...

146

Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type  

Broader source: Energy.gov [DOE]

The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

147

Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

07-01-3994 Fuel Economy and Emissions of the Ethanol- Optimized Saab 9-5 Biopower Brian H. West, Alberto J. Lpez, Timothy J. Theiss, Ronald L. Graves, John M. Storey and Samuel...

148

Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy  

Broader source: Energy.gov [DOE]

The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars....

149

Correlations of fuel economy, exhaust hydro-carbon concentrations, and vehicle performance efficiency  

E-Print Network [OSTI]

CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE December 1974 Major Subject: Civil Engineering CORRELATIONS OF FUEL ECONOMY, EXHAUST HYDROCARBON CONCENTRATIONS, AND VEHICLE PERFORMANCE EFFICIENCY A Thesis by PHILIP DOUGLAS BAUMANN Approved as to style and content by...

Baumann, Philip Douglas

2012-06-07T23:59:59.000Z

150

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017–2025 Vehicle Fuel Economy Standards in the United States  

E-Print Network [OSTI]

Increases in the U.S. Corporate Average Fuel Economy (CAFE) Standards for 2017 to 2025 model year light-duty vehicles are currently under consideration. This analysis uses an economy-wide model with detail in the passenger ...

Karplus, Valerie

2012-07-31T23:59:59.000Z

151

FreedomCAR and Fuel Cells: Toward the Hydrogen Economy?  

E-Print Network [OSTI]

best to deliver hydrogen to the fuel cell on the vehicle.to simply deliver hydrogen to a fuel cell via another typefor selling fuel cell vehicles and hydrogen, and consumers

Sperling, Daniel

2003-01-01T23:59:59.000Z

152

EPA and DOE Release Annual Fuel Economy Guide with 2014 Models  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas-emitting ve

153

www.steps.ucdavis.edu How vehicle fuel economy improvements can  

E-Print Network [OSTI]

from Internal Combustion Engine (ICE) vehicles · Role of plug-in electric vehicles (PEV) · Relative are very cost- effective Fuel savings more than pays for fuel economy improvements in light-duty vehicles Fuelsavings #12;7 Some cost/benefit estimates FE Improvement, hybrids, PEVs v. a base ICE vehicle over time

California at Davis, University of

154

Fossil fuel producing economies have greater potential for industrial interfuel substitution  

Science Journals Connector (OSTI)

Abstract This study analyzes industrial interfuel substitution in an international context using a large unbalanced panel dataset of 63 countries. We find that compared to other countries fossil fuel producing economies have higher short-term interfuel substitution elasticities. This difference increases further in the long run as fossil fuel producing countries have a considerably longer adjustment of their fuel-using capital stock. These results imply lower economic cost for policies aimed at climate abatement and more efficient utilization of energy resources in energy-intensive economies.

Jevgenijs Steinbuks; Badri G. Narayanan

2015-01-01T23:59:59.000Z

155

We Can't Wait: Driving Forward with New Fuel Economy Standards |  

Broader source: Energy.gov (indexed) [DOE]

Can't Wait: Driving Forward with New Fuel Economy Standards Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. Heather Zichal Deputy Assistant to the President for Energy and Climate Change What does this project do? Saves you money by increasing the fuel efficiency equivalent of light-duty trucks and cars to 54.5 miles per gallon by 2025. Drives innovation in the manufacturing sector and helps create

156

Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed  

SciTech Connect (OSTI)

The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

Thomas, John F [ORNL; Hwang, Ho-Ling [ORNL; West, Brian H [ORNL; Huff, Shean P [ORNL

2013-01-01T23:59:59.000Z

157

Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy  

Broader source: Energy.gov [DOE]

Proposed statement of work for the upcoming solicitation for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy.

158

Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

159

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

160

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NREL: Transportation Research - Emissions and Fuel Economy Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that result in...

162

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem  

E-Print Network [OSTI]

Comparison Study of SPEA2+, SPEA2, and NSGA-II in Diesel Engine Emissions and Fuel Economy Problem@mail.doshisha.ac.jp Abstract- Recently, the technology that can control NOx and Soot values of diesel engines by changing between fuel economy and NOx values. Therefore, the diesel engines that can change their characteristics

Coello, Carlos A. Coello

163

Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication  

SciTech Connect (OSTI)

In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

LaClair, Tim J [ORNL; Verma, Rajeev [Eaton Corporation; Norris, Sarah [Eaton Corporation; Cochran, Robert [Eaton Corporation

2014-01-01T23:59:59.000Z

164

An analysis of bulk agricultural commodity buying behavior in selected developing economies  

E-Print Network [OSTI]

AN ANALYSIS OF BULK AGRICULTURAL COMMODITY BUYING BEHAVIOR IN SELECTED DEVELOPING ECONOMIES A Thesis by Kimberly Renee Moore Submitted to the Graduate College of Texas AAM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE May 1982 Major Subject: Agricultural Economics AN ANALYSIS OF BULK AGRICULTURAL COMMODITY BUYING BEHAVIOR IN SELECTED DEVELOPING ECONOMIES A Thesis by Kimberly Renee Moore Approved as to style and content by: ( i n o Committee...

Moore, Kimberly Renee

1982-01-01T23:59:59.000Z

165

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

been if the diesel/gasoline new car market shares had beendiesel and gasoline new car fuel economy in 2005 in two important European markets.diesels is in part responsible for an increase in driving compared to what would have obtained if market

Schipper, Lee

2008-01-01T23:59:59.000Z

166

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS  

E-Print Network [OSTI]

each agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract NumberProject Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy Project Currently trucks are viewed as any other vehicle in traffic management Currently trucks are viewed

California at Davis, University of

167

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Híbridos Eléctricos Enchufables Híbridos Eléctricos Enchufables Aprenda mås acerca del Nuevo Engomado Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Tecnología y Combustible para Vehículos La esquina superior derecha del engomado muestra el texto y el ícono que identifica que el vehículo puede utilizar gasolina y electricidad. Usted verå otro texto e íconos diferentes en los engomados de otros vehículos; Vehículo de Gasolina Vehículo de Diesel Vehículo de Gas Natural Comprimido Vehículo de Célula de Combustible

168

Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 (2005) 757-775 Feebates, rebates and gas-guzzler taxes: a study of incentives for increased fuel economy $ David L. Greene a, *, Philip D. Patterson b , Margaret Singh c , Jia Li d a Oak Ridge National Laboratory, National Transportation Research Center, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA b Office of Planning, Budget Formulation and Analysis, US Department of Energy, Forestall Building (EE-3B), 1000 Independence Avenue, S.W., Washington, DC 20585, USA c Argonne National Laboratory, 955 L'Enfant Plaza, S.W., Suite 6000, Washington, DC 20024, USA d National Transportation Research Center, The University of Tennessee, 2360 Cherahala Boulevard, Knoxville, TN 37932, USA Abstract US fuel economy standards have not been changed significantly in 20 years. Feebates are a market-based alternative in which vehicles with fuel consumption rates above a ''pivot point''

169

Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lightweight Buses With Electric Drive Improve Lightweight Buses With Electric Drive Improve Fuel Economy and Passenger Experience Background The standard, 40-foot diesel- powered transit bus is noisy, consumes a gallon of fuel for every three miles it travels, weighs 28,000 pounds, and contributes significantly to ur- ban air pollution. While hybrid electric buses do exist, they are very expensive, and typi- cally get just four miles to the gallon. Autokinetics and the Department of Energy Office of FreedomCAR and Vehicle Technologies Program saw sig- nificant room for improvement in hybrid electric buses-in terms of weight and noise reduction, better fuel economy, lower cost, and rider percep- tion-using lightweight body

170

Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes  

SciTech Connect (OSTI)

We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

Gao, Zhiming [ORNL] [ORNL; LaClair, Tim J [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Smith, David E [ORNL] [ORNL; Franzese, Oscar [ORNL] [ORNL

2014-01-01T23:59:59.000Z

171

Torque modelling for optimising fuel economy in variable compression engines  

Science Journals Connector (OSTI)

Fuel optimal control of a variable compression engine is studied and it is shown that a crucial component is the model for the engine torque. A model for the produced work that captures the important effects of ignition and compression ratio is proposed and investigated. The main task for the model is to be a mean for determining the fuel optimal control signals, for each requested engine torque and speed. The contribution is a model suitable for finding this optimal combination. This model consists of well-known components, and the novelty lies in the compilation and validation of the control-oriented efficiency model for a variable compression engine. The modelling and validation is performed on a multicylinder variable compression engine using two fuels with different octane rating. Despite the models simplicity, it describes the indicated work with good accuracy, and suits its purpose of finding optimal control signals. In the evaluation, it is shown that a fuel optimal controller based on the proposed model captures the optimal IMEP to within 1.2%. This corresponds to a loss in engine efficiency that is in the range of 0.5% units or less.

Ylva Nilsson; Lars Eriksson; Martin Gunnarsson

2008-01-01T23:59:59.000Z

172

Assessment of Fuel Economy Technologies for Light-Duty Vehicles  

SciTech Connect (OSTI)

An analysis of the number of stations and vehicles necessary to achieve future goals for sales of ethanol fuel (E85) is presented. Issues related to the supply of ethanol, which may turn out to be of even greater concern, are not analyzed here. A model of consumers decisions to purchase E85 versus gasoline based on prices, availability, and refueling frequency is derived, and preliminary results for 2010, 2017, and 2030 consistent with the president s 2007 biofuels program goals are presented. A limited sensitivity analysis is carried out to indicate key uncertainties in the trade-off between the number of stations and fuels. The analysis indicates that to meet a 2017 goal of 26 billion gallons of E85 sold, on the order of 30% to 80% of all stations may need to offer E85 and that 125 to 200 million flexible-fuel vehicles (FFVs) may need to be on the road, even if oil prices remain high. These conclusions are tentative for three reasons: there is considerable uncertainty about key parameter values, such as the price elasticity of choice between E85 and gasoline; the future prices of E85 and gasoline are uncertain; and the method of analysis used is highly aggregated it does not consider the potential benefits of regional strategies or the possible existence of market segments predisposed to purchase E85. Nonetheless, the preliminary results indicate that the 2017 biofuels program goals are ambitious and will require a massive effort to produce enough FFVs and ensure widespread availability of E85.

Greene, David L [ORNL

2008-01-01T23:59:59.000Z

173

Fuel economy goals for future powertrain and engine options  

Science Journals Connector (OSTI)

Efficiency goals represent one of the key factors governing powertrain choice. These goals are specified for three novel developments in automotive technology which would enable them to compete on this single basis with the conventional four-speed manual or automatic transmission (with torque converter lock-up) coupled with a fixed displacement spark-ignition engine. The fuel consumption figures of continuously variable ratio and infinitely variable ratio automobile transmissions are presented using a simulation model of a vehicle in both urban (EPA cycle) and constant-speed operation. A powertrain utilising a variable displacement engine is also simulated.

D.B. Gilmore

1988-01-01T23:59:59.000Z

174

Data Collection for Class-8 Long-Haul Operations and Fuel Economy Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long-Haul Long-Haul Operations and Fuel Economy Analysis A s part of a long-term study sponsored by the U.S. Department of Energy (DOE) Office of Vehicle Technologies (OVT), the Oak Ridge National Laboratory (ORNL) in conjunction with a number of industry partners (Michelin Americas Research Company - Michelin), have collected data and information related to Class-8 heavy truck long-haul operations in real-world

175

New Automobile Regulations: Double the Fuel Economy, Half the CO2 Emissions, and Even Automakers Like It  

E-Print Network [OSTI]

Lead-Time: The Case of US Automobile Greenhouse Gas EmissionNew Automobile Regulations Double the Fuel Economy, Half thephysics of the modern automobile involve an uphill battle to

Lutsey, Nic

2012-01-01T23:59:59.000Z

176

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

177

The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy  

E-Print Network [OSTI]

THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

Love, Michael Lee

2012-06-07T23:59:59.000Z

178

"Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon...  

U.S. Energy Information Administration (EIA) Indexed Site

" 60 Years or More","NA","NA",17.1,18.3,18.8,19.20543 "Race of Householder1" " White",15.3,"NA",18.3,19.3,19.8,20.02113 " Black ",13.3,"NA",18.5,19.4,19.8,21.37109 " Other...

179

A structural analysis of vehicle design responses to Corporate Average Fuel Economy policy  

Science Journals Connector (OSTI)

The US Corporate Average Fuel Economy (CAFE) regulations are intended to influence automaker vehicle design and pricing choices. CAFE policy has been in effect for the past three decades, and new legislation has raised standards significantly. We present a structural analysis of automaker responses to generic CAFE policies. We depart from prior CAFE analyses by focusing on vehicle design responses in long-run oligopolistic equilibrium, and we view vehicles as differentiated products, taking demand as a general function of price and product attributes. We find that under general cost, demand, and performance functions, single-product profit maximizing firm responses to CAFE standards follow a distinct pattern: firms ignore CAFE when the standard is low, treat CAFE as a vehicle design constraint for moderate standards, and violate CAFE when the standard is high. Further, the point and extent of first violation depends upon the penalty for violation, and the corresponding vehicle design is independent of further standard increases. Thus, increasing CAFE standards will eventually have no further impact on vehicle design if the penalty for violation is also not increased. We implement a case study by incorporating vehicle physics simulation, vehicle manufacturing and technology cost models, and a mixed logit demand model to examine equilibrium powertrain design and price decisions for a fixed vehicle body. Results indicate that equilibrium vehicle design is not bound by current CAFE standards, and vehicle design decisions are directly determined by market competition and consumer preferences. We find that with increased fuel economy standards, a higher violation penalty than the current stagnant penalty is needed to cause firms to increase their design fuel economy at equilibrium. However, the maximum attainable improvement can be modest even if the penalty is doubled. We also find that firms’ design responses are more sensitive to variation in fuel prices than to CAFE standards, within the examined ranges.

Ching-Shin Norman Shiau; Jeremy J. Michalek; Chris T. Hendrickson

2009-01-01T23:59:59.000Z

180

International reserves holding and the political risk: evidence from selected emerging economies  

Science Journals Connector (OSTI)

The objective of this paper is to investigate the relationship between financial and economic uncertainty (risk) and the demand for international reserves. In addition, the association between this relationship and the political risk condition is further analysed for selected emerging economies. By using panels of 20 emerging countries, the empirical results show that the decision by the emerging economies to hold international reserves is largely dependent on the fluctuations in the financial risk indicators. In addition, the interdependency between the demand reserves function and the type of financial risk indicator also varies across countries' political conditions.

Siti Nurazira Mohd Daud; Abd Halim Ahmad

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Smithtown Selects CNG Smithtown Selects CNG to Cut Refuse Collection Costs to someone by E-mail Share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Facebook Tweet about Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Twitter Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Google Bookmark Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Delicious Rank Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on Digg Find More places to share Alternative Fuels Data Center: Smithtown Selects CNG to Cut Refuse Collection Costs on AddThis.com... April 7, 2011 Smithtown Selects CNG to Cut Refuse Collection Costs

182

Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon- Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

183

Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014- Dataset  

Broader source: Energy.gov [DOE]

Excel file with dataset for Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

184

Selected Isotopes for Optimized Fuel Assembly Tags  

SciTech Connect (OSTI)

In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-10-01T23:59:59.000Z

185

Analysis of Ontario's hydrogen economy demands from hydrogen fuel cell vehicles  

Science Journals Connector (OSTI)

The ‘Hydrogen Economy’ is a proposed system where hydrogen is produced from carbon dioxide free energy sources and is used as an alternative fuel for transportation. The utilization of hydrogen to power fuel cell vehicles (FCVs) can significantly decrease air pollutants and greenhouse gases emission from the transportation sector. In order to build the future hydrogen economy, there must be a significant development in the hydrogen infrastructure, and huge investments will be needed for the development of hydrogen production, storage, and distribution technologies. This paper focuses on the analysis of hydrogen demand from hydrogen \\{FCVs\\} in Ontario, Canada, and the related cost of hydrogen. Three potential hydrogen demand scenarios over a long period of time were projected to estimate hydrogen \\{FCVs\\} market penetration, and the costs associated with the hydrogen production, storage and distribution were also calculated. A sensitivity analysis was implemented to investigate the uncertainties of some parameters on the design of the future hydrogen infrastructure. It was found that the cost of hydrogen is very sensitive to electricity price, but other factors such as water price, energy efficiency of electrolysis, and plant life have insignificant impact on the total cost of hydrogen produced.

Hui Liu; Ali Almansoori; Michael Fowler; Ali Elkamel

2012-01-01T23:59:59.000Z

186

The latest trend of turbocharging technologies for emissions compliance and fuel economy  

Science Journals Connector (OSTI)

Abstract The recent developments in turbocharging technology play a vital role for engine manufacturers in order to meet the market demand for fuel economy and to comply with local emissions regulations. It is becoming more difficult for an engine manufacturer to decide on the best turbocharging system for their application. Wastegate, variable geometry, two-stage, sequential and turbocompound systems all have their merits and compromises but choosing the best option for each application requires significant knowledge and analysis. This paper provides an overview of different turbocharging systems and its merits and compromises involved in each solution to suit a particular engine application. More emphasis is given to the use of variable geometry turbocharger systems and two stage sequential charging systems because of their ability to provide higher boosting pressure at low engine speeds and better transient response. The introduction of legislation to reduce CO2 emissions is currently driving the passenger car and heavy duty engine market to explore different options of waste heat recovery methods. This paper briefly describes waste heat recovery systems like turbocompound and their potential for fuel economy improvement.

G. Subramanian; M. Jondhale

2011-01-01T23:59:59.000Z

187

Journal of Power Sources, Vol.165, issue 2, March 2007, pp.819-832. Abstract--Power management strategy is as significant as component sizing in achieving optimal fuel economy of a  

E-Print Network [OSTI]

significantly improve the fuel economy of FCHVs. Rodatz et al. [2] used the equivalent consumption minimization combination in maximizing the fuel economy. For the engine scaling, in particular, they replaced the linear strategy is as significant as component sizing in achieving optimal fuel economy of a fuel cell hybrid

Peng, Huei

188

Assessment of free-rotating air swirling device to reduce SI engine emissions and improve fuel economy  

Science Journals Connector (OSTI)

Claims are furnished in several patents that swirling the intake air in SI engines can improve fuel economy and reduce environmental impact. In this paper, we investigate the effect of a free rotating air swirling device (FRASD) installed in the air intake hose on the overall performance and emission characteristics of an SI engine. FRASDs with three vane angles were tested; 6, 9 and 12 degrees. The baseline engine was tested without FRASD at selected loads. Then, the engine was tested at the same loads with each FRASD and results were compared with the baseline engine. Experiments show that all tested FRASDs exhibit some degree of enhancement in the overall performance and reduction in exhaust emissions. It was found that enhancement greatly depends on the engine operating condition in addition to the FRASD vane angle. Specifically, best enhancement in performance and highest reduction in emissions was observed with the 9-degrees which reduced specific fuel consumption by 12%, hydrocarbon (HC) emissions by 20% and carbon monoxide emissions by 12%. Suggestions are made to modify the FRASD design to magnify its impact on engine performance.

Raed Kafafy; Sharzali Che Mat

2011-01-01T23:59:59.000Z

189

Fuel-economy and exhaust-emissions characteristics of diesel vehicles: test results of a prototype Chrysler Volare, 225 CID (3. 7-liter) automobile  

SciTech Connect (OSTI)

The results obtained from fuel economy and emission tests conducted on a prototype Chrysler Volare diesel vehicle are documented. The vehicle was tested on a chassis dynamometer over selected drive cycles and steady-state conditions. The fuel used, was a DOE/BETC referee fuel. Particulate emission rates were calculated from dilution tunnel measurements and large volume particulate samples were collected for biological and chemical analysis. The vehicle obtained 32.7 mpg for the FTP urban cycle and 48.8 mpg for the highway cycle. The emissions rates were 0.42/1.58/1.17/0.28 g/mile of hydrocarbon, CO, NO/sub x/ and particulates respectively.

Walter, R.A.

1982-07-01T23:59:59.000Z

190

CO2-SELECTIVE MEMBRANE FOR FUEL CELL APPLICATIONS.  

E-Print Network [OSTI]

??We have developed CO2-selective membranes to purified hydrogen and nitrogenfor fuel cell processes. Hydrogen purification impacts other industries such as ammoniaproduction and flue gas purification… (more)

El-Azzami, Louei Abdel Raouf

2006-01-01T23:59:59.000Z

191

Fuel Economy of the 2014 Toyota Prius Plug-in Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Toyota Prius Plug-in Hybrid Toyota Prius Plug-in Hybrid Search for Other Vehicles View the Mobile Version of This Page Compare Side-by-Side 4 cyl, 1.8 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 50 Combined 51 City 49 Highway Elec+Reg. Gas 95 Combined 29 kw-hrs/100 miles *Miles per Gallon Equivalent - 1 gallon of gasoline=33.7 kw-hr Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data EPA Size Class Additional Information Midsize Cars Drive Front-Wheel Drive Gas Guzzler no Turbocharger no Supercharger no Passenger Volume 94ft3 (Hatchback) Luggage Volume 22ft3 (Hatchback) Engine Descriptor Additional Information PHEV

192

Effect of Intake Air Filter Condition on Vehicle Fuel Economy--ORNL/TM-2009/021  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

021 021 Effect of Intake Air Filter Condition on Vehicle Fuel Economy February 2009 Prepared by Kevin Norman Shean Huff Brian West DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.gov Web site http://www.ntis.gov/support/ordernowabout.htm Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange

193

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

194

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vehicle Air- Vehicle Air- Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range Preprint September 2000 * NREL/CP-540-28960 R. Farrington and J. Rugh To Be Presented at the Earth Technologies Forum Washington, D.C. October 31, 2000 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * * * * Battelle * * * * Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published

195

Selecting the proper fuel gas for cost-effective oxyfuel cutting  

SciTech Connect (OSTI)

The motivating factor behind recent research and development efforts in metal cutting has been the growing need for companies everywhere to embrace emerging technologies if they are to complete in the global economy. To quickly implement these productivity improvements and gain lower bottom line costs for welding and cutting operations, rapid commercialization of these process advancements is needed. Although initially more expensive, additive-enhanced fuel gases may be the most cost-effective choice for certain cutting applications. The cost of additive-enhanced fuel gases can be justified where oxygen pricing is low (such as with bulk oxygen). Propylene exhibited equal cutting speeds to acetylene and improved cutting economy under specific conditions, which involved longer cuts on thicker base materials. With a longer cut distance, the extra time required to reach the kindling temperature (when compared to acetylene) becomes less critical. It is important to note that kindling temperature was reached more rapidly with propylene than it was with propane, but both fuel gases were slower than acetylene. When factors such as these are considered, many applications are found to be more cost effectively performed with the more expensive acetylene or propylene fuel gases. Each individual application must be studied on a singular basis to determine the most cost-effective choice when selecting the fuel gas.

Lyttle, K.A.; Stapon, W.F.G. [Praxair, Inc., Danbury, CT (United States); Guimaraes, A.

1997-07-01T23:59:59.000Z

196

Table 3.5 Selected Byproducts in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2002;" 5 Selected Byproducts in Fuel Consumption, 2002;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke","Waste","Petroleum","or","Wood Chips,","and Waste","Row"

197

Comparative analysis of selected fuel cell vehicles  

SciTech Connect (OSTI)

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

198

AN EVALUATION OF SELECT PEM FUEL CELL SYSTEM MODELS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EVALUATING PEM FUEL CELL SYSTEM MODELS EVALUATING PEM FUEL CELL SYSTEM MODELS Kristina Haraldsson, Keith Wipke National Renewable Energy Laboratory (NREL) 1617 Cole Boulevard, MS 1633 Golden, Colorado, 80401 ABSTRACT Many proton exchange membrane (PEM) fuel cell models have been reported in publications, and some are available commercially. This paper helps users match their modeling needs with specific fuel cell models. The paper has three parts. First, it describes the model selection criteria for choosing a fuel cell model. Second, it applies these criteria to select state- of-the-art fuel cell models available in literature and commercially. The advantages and disadvantages of commercial models are discussed. Third, the paper illustrates the process of choosing a fuel cell model with an

199

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 4 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises. The rising price of fuel has another consequence: refiners tend to purchase cheaper fuels of poorer quality. These poor quality fuels contain increasing amounts of sulfur and other pollutants leading to a decline

200

Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle  

Broader source: Energy.gov [DOE]

A 2012 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low price,...

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FY 2014 Solid Oxide Fuel Cell Project Selections  

Broader source: Energy.gov [DOE]

In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energy’s...

202

The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions  

Broader source: Energy.gov [DOE]

Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints.

203

Shipboard investigations with selected fuels of tomorrow  

SciTech Connect (OSTI)

This paper describes a 2 1/2 year project to investigate both short and long term effects that extreme marine residual fuel qualities could have on shipboard handling, preparation and engine performance. The investigations were carried out on a 44800 T deadweight ''LASH'' vessel, powered by a Sulzer 9RND90 two-stroke crosshead diesel engine. 15 refs.

Hellingman, G.J.; Barrow, S.

1982-03-01T23:59:59.000Z

204

NETL: News Release - SECA Fuel Cell Program Selects Two Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, 2008 9, 2008 SECA Fuel Cell Program Selects Two Projects Low-Cost Fuel Cell Systems to Address Energy Security, Climate and Water Challenges WASHINGTON, DC - The U.S. Department of Energy (DOE) has selected two projects for the Department's Solid State Energy Conversion Alliance (SECA) Program portfolio. The projects, focused on enhancing energy security through zero-emission applications, will be led by UTC Power, a United Technologies Corporation, in partnership with Delphi Corporation, and Rolls-Royce Fuel Cell Systems (U.S.) Inc. The Rolls-Royce project will include work at Ohio's Stark State College Fuel Cell Prototyping Center, which is also supported through a National Science Foundation grant. From an environmental perspective, fuel cells are one of the most attractive technologies for generating electricity. Solid oxide fuel cells operate by separating and transferring oxygen across a solid electrolyte membrane, where it reacts with a fuel - such as synthesis gas derived from coal, biofuels or natural gas - to produce steam and carbon dioxide (CO2). Condensing the steam results in a pure stream of CO2 gas; this can be readily captured for storage or other use in a central location. This feature, coupled with the well-known fact that fuel cell efficiency does not depend on high temperatures, results in near-zero emissions (e.g., NOx < 0.5ppm) at equivalent or reduced cost-of-electricity compared to today's power generation.

205

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

engine itself is more efficient, providing potentially more power for a given average fuel consumption.

Schipper, Lee

2008-01-01T23:59:59.000Z

206

Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs  

Broader source: Energy.gov [DOE]

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

207

Material Selection for Accident Tolerant Fuel Cladding  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Alternative cladding materials are being investigated for accident tolerance, which can be defined as >100X improvement (compared to current Zr-based alloys) in oxidation resistance in steam environments at ?1200°C for short (?4 h) times. After reviewing a wide range of candidates, current steam oxidation testing is being conducted on Mo, MAX phases and FeCrAl alloys. Recently reported low mass losses for Mo in steam at 800°C could not be reproduced. Both FeCrAl and MAX phase Ti2AlC form a protective alumina scale in steam. However, commercial Ti2AlC that is not single phase, formed a much thicker oxide at 1200°C in steam and significant TiO2, and therefore may be challenging to use as a cladding or a coating. Alloy development for FeCrAl is seeking to maintain its steam oxidation resistance to 1475°C, while reducing its Cr content to minimize susceptibility to irradiation assisted Cr-rich ?’ formation. The composition effects and critical limits to retaining protective scale formation at >1400°C are still being evaluated. Keywords: Accident tolerant LWR Fuel cladding, FeCrAl, Mo, Ti2AlC, Al2O3, high temperature steam oxidation resistance

none,

2014-07-01T23:59:59.000Z

208

Investigating greenhouse gas emission pathways In selected OECD countries using a hybrid energy-economy approach.  

E-Print Network [OSTI]

??This report outlines the development and analysis of CIMS OECD-EPM. CIMS OECD-EPM is a hybrid energy-economy model that forecasts energy consumption and GHG emissions in… (more)

Goldberg, Suzanne

2009-01-01T23:59:59.000Z

209

Assessment of the fuel magnetisation capacity to improve fuel economy and enhance performance in a four-stroke SI engine  

Science Journals Connector (OSTI)

In this paper, we investigate the effect of fuel magnetisation on the overall performance of a four-stroke Spark Ignition (SI) engine. To achieve this objective, we have designed a set of experiments using the Mitsubishi 1.5 L (4G15) SI engine. Each experiment is performed in two phases: with and without the fuel magnetisation. The collected data was analysed to assess the overall performance of the engine at several operating conditions. Our study shows that fuel magnetiser can enhance the overall performance of a typical SI engine. However, the enhancement greatly depends on the operating condition of the engine. Specifically, the best-observed performance enhancement in the tested engine owing to the usage of the fuel magnetiser was to reduce the Brake Specific Fuel Consumption (BSFC) by 9% increase the Brake Power (BP) by 9% and boost the brake thermal efficiency (?b) from 29% to 31%.

Raed Kafafy; Wajdi Bin Ali; Waleed Faris

2012-01-01T23:59:59.000Z

210

E-Print Network 3.0 - automotive fuel economy Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

proposed hydrogen tax credit supports the market introduction of hydrogen for use... in fuel cells and internal combustion engines in nearer-term applications, including forklifts,...

211

2012 Fuel Economy of New Vehicles Sets Record High: EPA | Department...  

Energy Savers [EERE]

New Vehicles Sets Record High: EPA Increasing Energy Security Testimony of Christopher Smith before the House Committee on Energy and Commerce This infographic looks how new fuel...

212

Table 3.5 Selected Byproducts in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

5 Selected Byproducts in Fuel Consumption, 2010; 5 Selected Byproducts in Fuel Consumption, 2010; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Blast Pulping Liquor NAICS Furnace/Coke Petroleum or Wood Chips, Code(a) Subsector and Industry Total Oven Gases Waste Gas Coke Black Liquor Bark Total United States 311 Food 11 0 7 0 0 1 3112 Grain and Oilseed Milling 5 0 2 0 0 * 311221 Wet Corn Milling * 0 * 0 0 0 31131 Sugar Manufacturing * 0 * 0 0 * 3114 Fruit and Vegetable Preserving and Specialty Foods 1 0 1 0 0 0 3115 Dairy Products 1 0 1 0 0 0 3116 Animal Slaughtering and Processing 4 0 4 0 0 * 312 Beverage and Tobacco Products 3 0 2 0 0 1 3121 Beverages 3 0 2 0 0 1 3122 Tobacco 0 0 0 0 0 0 313 Textile Mills 0 0 0 0 0 0 314 Textile Product Mills

213

Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute  

Broader source: Energy.gov [DOE]

A 2014 survey asked a sample of the U.S. population the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel...

214

Measured Laboratory and In-Use Fuel Economy Observed over Targeted...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are still questions to be answered about when and where this technology offers a valuable return on investment in the form of fuel savings. The objective of this project was to...

215

Modeling effects of vehicle specifications on fuel economy based on engine fuel consumption map and vehicle dynamics  

Science Journals Connector (OSTI)

Abstract The present study conducts a vehicle dynamic modeling of gasoline and diesel vehicles by using the AVL commercial program. 10 passenger vehicles were tested for 7 types of driving modes containing city, express and highway driving mode. The various vehicle data (specifications, fuel consumption map, gear shifting curve data, etc.) were collected and implemented as input data. The calculations were conducted with changing driving modes and vehicle types, and prediction accuracy of the calculation results were validated based on chassis dynamometer test data. In order to increase prediction accuracy for a wide vehicle operating range, some modifications regarding gear shifting was also conducted. From these processes, it is confirmed that the prediction accuracy of fuel efficiency and CO2 emissions shows a strong correlations with test results. After ensuring the accuracy of the calculation result, parametric studies were conducted to reveal correlations between vehicle specifications (e.g., vehicle weight and frontal area) on fuel efficiency and CO2 emissions and check which parameters were highly impact on fuel efficiency.

Yunjung Oh; Junhong Park; Jongtae Lee; Myung Do Eom; Sungwook Park

2014-01-01T23:59:59.000Z

216

Fleet-averaged engine matrices for Australian vehicles and their use in fuel economy modelling  

Science Journals Connector (OSTI)

Data obtained during standard chassis dynamometer testing at the University of Sydney is used to produce an engine fuel consumption matrix for the test vehicle. The matrix includes the effect of engine operational transients and is presented in a generalised engine parameter form which allows comparisons between dissimilar vehicles. A sufficient number of tests have been carried out to construct a fleet-averaged engine matrix for in-use Australian vehicles. A model is described which uses this matrix to predict the effect of variations in vehicle parameters and traffic flow patterns on the fuel consumption of a motor vehicle on the road or on the dynamometer.

T.J. Gibson; R.W. Bilger

1987-01-01T23:59:59.000Z

217

Simulating Study of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions Control  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models to simulate the impact of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty (LD) diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results indicate that utilizing PCCI combustion significantly reduces fuel consumption and tailpipe emissions for the conventional diesel-powered vehicle with NOx and particulate emissions controls. These benefits result from a favorable engine speed-load distribution over the cycle combined with a corresponding reduction in the need to regenerate the LNT and DPF. However, the current PCCI technology appears to offer less potential benefit for diesel HEVs equipped with similar emissions controls. This is because PCCI can only be activated over a relatively small part of the drive cycle. Thus we conclude that future utilization of PCCI in diesel HEVs will require significant extension of the available speed-load range for PCCI and revision of current HEV engine management strategies before significant benefits can be realized.

Gao, Zhiming [ORNL] [ORNL; Daw, C Stuart [ORNL] [ORNL; Wagner, Robert M [ORNL] [ORNL

2012-01-01T23:59:59.000Z

218

Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries  

Science Journals Connector (OSTI)

Countries differ considerably in terms of the price drivers pay for gasoline. This paper uses data for 132 countries for the period 1995–2008 to investigate the implications of these differences for the consumption of gasoline for road transport. To address the potential for simultaneity bias, we use both a country's oil reserves and the international crude oil price as instruments for a country's average gasoline pump price. We obtain estimates of the long-run price elasticity of gasoline demand of between ? 0.2 and ? 0.5. Using newly available data for a sub-sample of 43 countries, we also find that higher gasoline prices induce consumers to substitute to vehicles that are more fuel-efficient, with an estimated elasticity of + 0.2. Despite the small size of our elasticity estimates, there is considerable scope for low-price countries to achieve gasoline savings and vehicle fuel economy improvements via reducing gasoline subsidies and/or increasing gasoline taxes.

Paul J. Burke; Shuhei Nishitateno

2013-01-01T23:59:59.000Z

219

SHAPE SELECTIVE NANOCATALYSTS FOR DIRECT METHANOL FUEL CELL APPLICATIONS  

SciTech Connect (OSTI)

While gold and platinum have long been recognized for their beauty and value, researchers at the Savannah River National Laboratory (SRNL) are working on the nano-level to use these elements for creative solutions to our nation's energy and security needs. Multiinterdisciplinary teams consisting of chemists, materials scientists, physicists, computational scientists, and engineers are exploring unchartered territories with shape-selective nanocatalysts for the development of novel, cost effective and environmentally friendly energy solutions to meet global energy needs. This nanotechnology is vital, particularly as it relates to fuel cells.SRNL researchers have taken process, chemical, and materials discoveries and translated them for technological solution and deployment. The group has developed state-of-the art shape-selective core-shell-alloy-type gold-platinum nanostructures with outstanding catalytic capabilities that address many of the shortcomings of the Direct Methanol Fuel Cell (DMFC). The newly developed nanostructures not only busted the performance of the platinum catalyst, but also reduced the material cost and overall weight of the fuel cell.

Murph, S.

2012-09-12T23:59:59.000Z

220

Selection of Isotopes and Elements for Fuel Cycle Analysis  

SciTech Connect (OSTI)

Fuel cycle system analysis simulations examine how the selection among fuel cycle options for reactors, fuel, separation, and waste management impact uranium ore utilization, waste masses and volumes, radiotoxicity, heat to geologic repositories, isotope-dependent proliferation resistance measures, and so forth. Previously, such simulations have tended to track only a few actinide and fission product isotopes, those that have been identified as important to a few criteria from the standpoint of recycled material or waste, taken as a whole. After accounting for such isotopes, the residual mass is often characterized as “fission product other” or “actinide other”. However, detailed assessment of separation and waste management options now require identification of key isotopes and residual mass for Group 1A/2A elements (Rb, Cs, Sr, Ba), inert gases (Kr, Xe), halogens (Br, I), lanthanides, transition metals, transuranic (TRU), uranium, actinide decay products. The paper explains the rationale for a list of 81 isotopes and chemical elements to better support separation and waste management assessment in dynamic system analysis models such as Verifiable Fuel Cycle Simulation (VISION)

Steven J. Piet

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Effects of Air Conditioner Use on Real-World Fuel Economy  

SciTech Connect (OSTI)

Vehicle data were acquired on-road and on a chassis dynamometer to assess fuel consumption under several steady cruise conditions and at idle. Data were gathered for various air conditioner (A/C) settings and with the A/C off and the windows open. Two vehicles were used in the comparisonstudy: a 2009 Ford Explorer and a 2009 Toyota Corolla. At steady speeds between 64.4 and 112.7 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 112.7 kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 120.7 kph (75 mph), and exceeded it at 128.7 kph (80 mph). The largest incremental fuel consumption rate penalty due to air conditioner use occurred was nearly constant with a weakslight trend of increasing consumption with increasing compressor (and vehicle) speed. Lower consumption is seenobserved at idle for both vehicles, likely due to the low compressor speed at this operating point

Huff, Shean P [ORNL; West, Brian H [ORNL; Thomas, John F [ORNL

2013-01-01T23:59:59.000Z

222

HYBRID ELECTRIC VEHICLE OWNERSHIP AND FUEL ECONOMY ACROSS TEXAS: AN APPLICATION OF SPATIAL MODELS  

E-Print Network [OSTI]

and environmental policies (Koo et al. 2012). While EV sales (including both HEVs and PEVs) have risen considerably significant. If households registering more fuel- efficient vehicles, including hybrid EVs, are also more inclined to purchase plug-in EVs, these #12;findings can assist in spatial planning of charging

Kockelman, Kara M.

223

Fuel Economy Comparisons of Series, Parallel and HMT Hydraulic Hybrid Architectures  

E-Print Network [OSTI]

battery to store energy, and electric motor/generators for energy conversion, a hydraulic hybrid power-train stores energy in hydraulic accumulators and uses hydraulic pump/motors for energy conversion. Hydraulic of these architectures and validates these features. Using a Toyota Prius like engine and chassis as common factors, fuel

Li, Perry Y.

224

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own...

225

The Hydrogen Economy  

Science Journals Connector (OSTI)

The hydrogen economy is a vision for a future in which hydrogen replaces fossil fuels. There are a variety ... of methods for generating, storing and delivering hydrogen since no single method has yet proven supe...

2009-01-01T23:59:59.000Z

226

Optimal economy-based battery degradation management dynamics for fuel-cell plug-in hybrid electric vehicles  

Science Journals Connector (OSTI)

Abstract This work analyses the economical dynamics of an optimized battery degradation management strategy intended for plug-in hybrid electric vehicles (PHEVs) with consideration given to low-cost technologies, such as lead-acid batteries. The optimal management algorithm described herein is based on discrete dynamic programming theory (DDP) and was designed for the purpose of PHEV battery degradation management; its operation relies on simulation models using data obtained experimentally on a physical PHEV platform. These tools are first used to define an optimal management strategy according to the economical weights of PHEV battery degradation and the secondary energy carriers spent to manage its deleterious effects. We then conduct a sensitivity study of the proposed optimization process to the fluctuating economic parameters associated with the fuel and energy costs involved in the degradation management process. Results demonstrate the influence of each parameter on the process's response, including daily total operating costs and expected battery lifetime, as well as establish boundaries for useful application of the method; in addition, they provide a case for the relevance of inexpensive battery technologies, such as lead-acid batteries, for economy-centric PHEV applications where battery degradation is a major concern.

François Martel; Sousso Kelouwani; Yves Dubé; Kodjo Agbossou

2015-01-01T23:59:59.000Z

227

California and Connecticut: National Fuel Cell Bus Programs Drive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August...

228

Green Jobs and Energy Economy  

E-Print Network [OSTI]

' fossil-fuel economies of the last century, while investments in energy efficiency measures will redirect that the renewable energy sector generates more jobs per unit of energy delivered than the fossil fuel- based sectorGreen Jobs and the Clean Energy Economy ThoughT Leadership series Co-authors Daniel M. Kammen

Kammen, Daniel M.

229

Table N5.1. Selected Byproducts in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

1. Selected Byproducts in Fuel Consumption, 1998;" 1. Selected Byproducts in Fuel Consumption, 1998;" " Level: National Data and Regional Totals; " " Row: NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." " "," "," "," "," "," "," "," ","Waste"," ",," " " "," "," ","Blast"," "," ","Pulping Liquor"," ","Oils/Tars","RSE" "NAICS"," "," ","Furnace/Coke"," ","Petroleum","or","Wood Chips,","and Waste","Row"

230

Role of Hydrogen Peroxide in a Selected Emulsified Fuel Ratio and Comparing It to Diesel Fuel  

Science Journals Connector (OSTI)

(9) At higher load conditions, the brake thermal efficiency slightly increases for the hydrogen-peroxide-added emulsified fuel than for the remaining two fuels. ... Reduction of NOx, smoke, BSFC, and maximum combustion pressure by low compression ratios in a diesel engine fueled by emulsified fuel. ...

M. P. Ashok; C. G. Saravanan

2008-05-03T23:59:59.000Z

231

FY 2014 Solid Oxide Fuel Cell Project Selections | Department...  

Office of Environmental Management (EM)

Effects and Degradation in Solid Oxide Fuel Cells: Understanding Transport and Thermodynamics." The goals of this project are to: 1) understand the detailed mechanisms of...

232

Fossil fuel prices and the economic and budgetary challenges of a small energy-importing economy: the case of Portugal  

Science Journals Connector (OSTI)

This paper examines the economic and budgetary impacts of fuel prices using a dynamic general equilibrium model of ... detailed modeling of the public sector. The fuel price scenarios are based on forecasts by th...

Alfredo Marvăo Pereira; Rui Marvăo Pereira

2013-12-01T23:59:59.000Z

233

Evaluation of the Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

234

Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by  

Broader source: Energy.gov (indexed) [DOE]

That Will Advance Solid Oxide Fuel Cell Research That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy resources have been selected for further research by the Department of Energy (DOE). The projects, managed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL), are valued at a total of $4,391,570, with DOE contributing $3,499,250 and the remaining cost provided by the recipients. Four of the selected projects will pursue advances in cathode performance,

235

Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Illinois Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

236

Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Arkansas Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

237

Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

238

Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Virginia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

239

Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

240

Alternative Fuels Data Center: Washington Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Washington Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Connecticut Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

242

Alternative Fuels Data Center: California Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: California Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

243

Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Mississippi Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

244

Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Louisiana Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State

245

Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.  

SciTech Connect (OSTI)

A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

Cole, R. L.; Poola, R. B.; Sekar, R.

1999-04-08T23:59:59.000Z

246

Fuel reforming for fuel cell application.  

E-Print Network [OSTI]

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

247

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002  

U.S. Energy Information Administration (EIA) Indexed Site

6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" 6 Selected Wood and Wood-Related Products in Fuel Consumption, 2002;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

248

Table N5.2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998  

U.S. Energy Information Administration (EIA) Indexed Site

2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" 2. Selected Wood and Wood-Related Products in Fuel Consumption, 1998;" " Level: National and Regional Data; " " Row: Selected NAICS Codes; Column: Energy Sources;" " Unit: Trillion Btu." ,,"S e l e c t e d","W o o d","a n d","W o o d -","R e l a t e d","P r o d u c t s" ,,,,,"B i o m a s s" ,,,,,,"Wood Residues" ,,,,,,"and","Wood-Related" " "," ","Pulping Liquor"," "," ","Wood","Byproducts","and","RSE",," " "NAICS"," ","or","Biomass","Agricultural","Harvested Directly","from Mill","Paper-Related","Row"

249

Parameter Selection for Department of Energy Spent Nuclear Fuel to be Used in the Yucca Mountain License Application  

SciTech Connect (OSTI)

This report contains the chemical, physical, and radiological parameters that were chosen to represent the U.S. Department of Energy spent nuclear fuel in the Yucca Mountain license application. It also contains the selected packaging requirements for the various fuel types and the criticality controls that were used. The data are reported for representative fuels and bounding fuels in groups of fuels that were selected for the analysis. The justification for the selection of each parameter is given. The data reported were not generated under any quality assurance program.

D. L. Fillmore

2003-10-01T23:59:59.000Z

250

Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx  

SciTech Connect (OSTI)

We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

Gao, Zhiming [ORNL; Daw, C Stuart [ORNL; Wagner, Robert M [ORNL; Edwards, Kevin Dean [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

251

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

over the vehicle's useful life. Low carbon fuels include hydrogen, biomethane, electricity, or natural gas blends of at least 90%. State agencies must phase in fuel economy...

252

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Regulations User Type Jurisdiction Biodiesel Ethanol Natural Gas Propane (LPG) Hydrogen Fuel Cells EVs HEVs or PHEVs NEVs Aftermarket Conversions Fuel Economy or Efficiency Idle...

253

The Methanol Economy Project  

SciTech Connect (OSTI)

The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields. ? Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application. ? Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm). ? CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching. ? CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer. ? Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts. ? Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nation’s energy independence.

Olah, George; Prakash, G.K.

2013-12-31T23:59:59.000Z

254

STILL CHASING THE HYDROGEN ECONOMY  

Science Journals Connector (OSTI)

Water electrolysis firm aims to help meet 2015 global target for first commercial FUEL-CELL CARS ... IN HIS 2003 State of the Union address, President George W. Bush proclaimed that the time was ripe for the hydrogen economy, a world in which hydrogen is the primary energy currency instead of fossil fuels. ...

STEPHEN K. RITTER

2011-11-07T23:59:59.000Z

255

Selection and preparation of activated carbon for fuel gas storage  

DOE Patents [OSTI]

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

256

New generation nuclear fuel structures: dense particles in selectively soluble matrix  

SciTech Connect (OSTI)

We have developed a technology for dispersing sub-millimeter sized fuel particles within a bulk matrix that can be selectively dissolved. This may enable the generation of advanced nuclear fuels with easy separation of actinides and fission products. The large kinetic energy of the fission products results in most of them escaping from the sub-millimeter sized fuel particles and depositing in the matrix during burning of the fuel in the reactor. After the fuel is used and allowed to cool for a period of time, the matrix can be dissolved and the fission products removed for disposal while the fuel particles are collected by filtration for recycle. The success of such an approach would meet a major goal of the GNEP program to provide advanced recycle technology for nuclear energy production. The benefits of such an approach include (1) greatly reduced cost of the actinide/fission product separation process, (2) ease of recycle of the fuel particles, and (3) a radiation barrier to prevent theft or diversion of the recycled fuel particles during the time they are re-fabricated into new fuel. In this study we describe a method to make surrogate nuclear fuels of micrometer scale W (shell)/Mo (core) or HfO2 particles embedded in an MgO matrix that allows easy separation of the fission products and their embedded particles. In brief, the method consists of physically mixing W-Mo or hafnia particles with an MgO precursor. Heating the mixture, in air or argon, without agitation, to a temperature is required for complete decomposition of the precursor. The resulting material was examined using chemical analysis, scanning electron microscopy, X-ray diffraction and micro X-ray computed tomography and found to consist of evenly dispersed particles in an MgO + matrix. We believe this methodology can be extended to actinides and other matrix materials.

Sickafus, Kurt E [Los Alamos National Laboratory; Devlin, David J [Los Alamos National Laboratory; Jarvinen, Gordon D [Los Alamos National Laboratory; Patterson, Brian M [Los Alamos National Laboratory; Pattillo, Steve G [Los Alamos National Laboratory; Valdez, James [Los Alamos National Laboratory; Phillips, Jonathan [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

257

Criteria for selection of components for surrogates of natural gas and transportation fuels q  

E-Print Network [OSTI]

Criteria for selection of components for surrogates of natural gas and transportation fuels q reserved. Keywords: Kerosene reaction mechanism; Gasoline reaction mechanism; Natural gas reaction found in minor amounts in natural gas [4]. The widely studied heptane reaction set [5,6] is often used a

Utah, University of

258

International Partnership for Hydrogen and Fuel Cells in the...  

Energy Savers [EERE]

Partnership for Hydrogen and Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the...

259

Manufacturing for the Hydrogen Economy Manufacturing Research & Development  

E-Print Network [OSTI]

Manufacturing for the Hydrogen Economy Manufacturing Research & Development of PEM Fuel Cell of the hydrogen and fuel cell technologies needed to move the United States toward a future hydrogen economy of a hydrogen energy economy, moving from today's laboratory-scale fabrication technologies to high

260

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010;  

U.S. Energy Information Administration (EIA) Indexed Site

Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2010; Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources; Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0 44 43 * * 1 311221 Wet Corn Milling 0 1 1 0 0 0 312 Beverage and Tobacco Products 0 1 0 0 1 0 321 Wood Products 0 218 * 13 199 6 321113 Sawmills 0 100 * 5 94 1 3212 Veneer, Plywood, and Engineered Woods 0 95 * 6 87 2 321219 Reconstituted Wood Products 0 52 0 6 46 1 3219 Other Wood Products

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DEVELOPMENT AND SELECTION OF IONIC LIQUID ELECTROLYTES FOR HYDROXIDE CONDUCTING POLYBENZIMIDAZOLE MEMBRANES IN ALKALINE FUEL CELLS  

SciTech Connect (OSTI)

Alkaline fuel cell (AFC) operation is currently limited to specialty applications such as low temperatures and pure H{sub 2}/O{sub 2} due to the corrosive nature of the electrolyte and formation of carbonates. AFCs are the cheapest and potentially most efficient (approaching 70%) fuel cells. The fact that non-Pt catalysts can be used, makes them an ideal low cost alternative for power production. The anode and cathode are separated by and solid electrolyte or alkaline porous media saturated with KOH. However, CO{sub 2} from the atmosphere or fuel feed severely poisons the electrolyte by forming insoluble carbonates. The corrosivity of KOH (electrolyte) limits operating temperatures to no more than 80?C. This chapter examines the development of ionic liquids electrolytes that are less corrosive, have higher operating temperatures, do not chemically bond to CO{sub 2}, and enable alternative fuels. Work is detailed on the IL selection and characterization as well as casting methods within the polybenzimidazole based solid membrane. This approach is novel as it targets the root of the problem (the electrolyte) unlike other current work in alkaline fuel cells which focus on making the fuel cell components more durable.

Fox, E.

2012-05-01T23:59:59.000Z

262

Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Rhode Island Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

263

Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Jersey Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

264

Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Hampshire Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

265

Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New Mexico Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal

266

Alternative Fuels Data Center: New York Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: New York Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

267

Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: North Carolina Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section...

268

The Effect of Improved Fuel Economy on Vehicle Miles Traveled: Estimating the Rebound Effect Using U.S. State Data, 1966-2001  

E-Print Network [OSTI]

1979, State Energy Fuel Prices by Major Economic Sector fromon variations in the fuel price P F , 1 in which case it isempirical estimates of the fuel-price elasticities of fuel

Small, Kenneth A; Van Dender, Kurt

2005-01-01T23:59:59.000Z

269

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in PEM Fuel Cells: in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling bipolar plate channel dimensions J.H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, pp. 4595-4611 (2003) Relevant Barriers and Targets ƒ Improved Gas Diffusion Layer, Flow Fields, Membrane Electrode Assemblies Needed to Improve Water Management: * Flooding blocks reactant transport

270

FreedomCAR and Fuel Partnership  

E-Print Network [OSTI]

and fuel cells) required for implementation of a hydrogen economy. Technical teams for each for a hydrogen economy will need to compete against an existing fuel infrastructure that is well understood Section 1: Analyzing Hydrogen Fuel Pathways..........................................5 Section 2

271

Comparison of selected foreign plans and practices for spent fuel and high-level waste management  

SciTech Connect (OSTI)

This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

1990-04-01T23:59:59.000Z

272

Selective adsorption of tert-butylmercaptan and tetrahydrothiophene on modified activated carbons for fuel processing in fuel cell applications  

Science Journals Connector (OSTI)

Abstract The effects of surface oxidation and KOH impregnation on activated carbon for the selective adsorption of tert-butylmercaptan (TBM) and tetrahydrothiophene (THT) present in natural fuel gas were studied. Physicochemical properties of the adsorbents were characterized by N2 adsorption, X-ray diffraction (XRD), temperature programmed desorption (TPD), scanning electron microscopy (SEM), and surface pH measurements. Oxidation treatments by HNO3 or H2O2 gave rise to considerable increases in both TBM and THT adsorption capacity, about a threefold enhancement from those on pristine activated carbon. Notably, it was found that the oxidative modifications led to an enhancement in THT adsorption selectivity, whereas KOH impregnation led to a marked increase in TBM adsorption selectivity. The properties of the adsorption sites and the adsorption strength of TBM and THT on the sites were characterized. These results agree well with the experimental sulfur adsorption capacities of the samples and can be explained by an adsorption model proposed in this work.

Phuoc Hoang Ho; So-Yun Lee; Doohwan Lee; Hee-Chul Woo

2014-01-01T23:59:59.000Z

273

Where's the Hydrogen Economy? | Open Energy Information  

Open Energy Info (EERE)

Where's the Hydrogen Economy? Where's the Hydrogen Economy? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Where's the Hydrogen Economy? Agency/Company /Organization: Canada Library of Parliament Focus Area: Fuels & Efficiency, Hydrogen Topics: Analysis Tools, Market Analysis Website: www2.parl.gc.ca/Content/LOP/ResearchPublications/2010-16-e.pdf Equivalent URI: cleanenergysolutions.org/content/wheres-hydrogen-economy Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This paper examines the state of the Canadian hydrogen and fuel cell industry and the general state of the global hydrogen economy, along with reasons why the hydrogen economy has not, thus far, lived up to expectations. How to Use This Tool This tool is most helpful when using these strategies:

274

ENERGY | Hydrogen Economy  

Science Journals Connector (OSTI)

Abstract The growing concerns about global climate change, local pollution, and availability and security of energy supply have drawn the larger public attention, well outside the frontiers of the research community. A large debate has been considering the potential benefits of a hydrogen economy with low- or carbon-free primary energy sources. The attractive potential of hydrogen is countered by uncertainties about the development and the economics of the implied key enabling technologies, such as renewable energy sources, advanced production processes, fuel cells (FCs), novel storage technologies, safety, and a brand new or a substantially modified infrastructure. A paradigm shift to a hydrogen economy will surely require substantial research and development (R&D) breakthroughs on critical technologies with a lengthy transitional approach.

M. Conte; M. Ronchetti

2013-01-01T23:59:59.000Z

275

On fuel selection in controlled auto-ignition engines : the link between intake conditions, chemical kinetics, and stratification  

E-Print Network [OSTI]

The objective of this research is to examine the impact fuel selection can have on the high-load limit in a stratified Compression Auto-Ignition (CAI) engine. This was accomplished by first studying the validity of the ...

Maria, Amir Gamal

2012-01-01T23:59:59.000Z

276

Green Jobs and Energy Economy  

E-Print Network [OSTI]

century, while investments in energy ef ciency measures will redirect money otherwise spent on energy energy sector generates more jobs per unit of energy delivered than the fossil fuel- based sectorGreen Jobs and the Clean Energy Economy THOUGHT LEADERSHIP SERIES Co-authors Ditlev Engel, Chief

Kammen, Daniel M.

277

Selective Catalytic Oxidation of Hydrogen Sulfide to Elemental Sulfur from Coal-Derived Fuel Gases  

SciTech Connect (OSTI)

The development of low cost, highly efficient, desulfurization technology with integrated sulfur recovery remains a principle barrier issue for Vision 21 integrated gasification combined cycle (IGCC) power generation plants. In this plan, the U. S. Department of Energy will construct ultra-clean, modular, co-production IGCC power plants each with chemical products tailored to meet the demands of specific regional markets. The catalysts employed in these co-production modules, for example water-gas-shift and Fischer-Tropsch catalysts, are readily poisoned by hydrogen sulfide (H{sub 2}S), a sulfur contaminant, present in the coal-derived fuel gases. To prevent poisoning of these catalysts, the removal of H{sub 2}S down to the parts-per-billion level is necessary. Historically, research into the purification of coal-derived fuel gases has focused on dry technologies that offer the prospect of higher combined cycle efficiencies as well as improved thermal integration with co-production modules. Primarily, these concepts rely on a highly selective process separation step to remove low concentrations of H{sub 2}S present in the fuel gases and produce a concentrated stream of sulfur bearing effluent. This effluent must then undergo further processing to be converted to its final form, usually elemental sulfur. Ultimately, desulfurization of coal-derived fuel gases may cost as much as 15% of the total fixed capital investment (Chen et al., 1992). It is, therefore, desirable to develop new technology that can accomplish H{sub 2}S separation and direct conversion to elemental sulfur more efficiently and with a lower initial fixed capital investment.

Gardner, Todd H.; Berry, David A.; Lyons, K. David; Beer, Stephen K.; Monahan, Michael J.

2001-11-06T23:59:59.000Z

278

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Agency Petroleum Reduction Plan All state agencies must reduce their fleets' petroleum consumption by increasing vehicle fuel economy and operating efficiency and reducing...

279

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

with state agencies, must set and implement fuel economy goals for the state automobile fleet, including expanding the number of AFVs and hybrid electric vehicles in the...

280

Alternative Fuels Data Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gas Emissions Standards Vehicle manufacturers must meet fuel economy and greenhouse gas (GHG) emissions standards for vehicles sold in the United States. The U.S. Department of...

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

gas (propane), hydrogen, a combination of compressed natural gas and hydrogen, or electricity. Qualified HEVs with U.S. Environmental Protection Agency fuel economy ratings of...

283

Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: April 3, 2000 2: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy to someone by E-mail Share Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Facebook Tweet about Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Twitter Bookmark Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Google Bookmark Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Delicious Rank Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on Digg Find More places to share Vehicle Technologies Office: Fact #122: April 3, 2000 Potential Fuel Savings of Doubling Fuel Economy on

284

Energy Economy  

U.S. Energy Information Administration (EIA) Indexed Site

Adam Sieminski (202) 662-1624 April 2010 Adam Sieminski (202) 662-1624 April 2010 Energy and the Economy US EIA & JHU SAIS 2010 Energy Conference April 6, 2010 All prices are those current at the end of the previous trading session unless otherwise indicated. Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. Adam Sieminski, CFA Chief Energy Economist adam.sieminski@db.com +1 202 662 1624 Adam Sieminski (202) 662-1624 April 2010 1 Energy Demand Simplified Population, economic growth, and energy intensity Source: Deutsche Bank Global Energy Demand = Population X Per Capita Income X Energy Demand / Dollar of Output Adam Sieminski (202) 662-1624 April 2010

285

The selective catalytic cracking of Fischer-Tropsch liquids to high value transportation fuels. Final report  

SciTech Connect (OSTI)

Amoco Oil Company, investigated a selective catalytic cracking process (FCC) to convert the Fischer-Tropsch (F-T) gasoline and wax fractions to high value transportation fuels. The primary tasks of this contract were to (1) optimize the catalyst and process conditions of the FCC process for maximum conversion of F-T wax into reactive olefins for later production of C{sub 4}{minus}C{sub 8} ethers, and (2) use the olefin-containing light naphtha obtained from FCC processing of the F-T wax as feedstock for the synthesis of ethers. The catalytic cracking of F-T wax feedstocks gave high conversions with low activity catalysts and low process severities. HZSM-5 and beta zeolite catalysts gave higher yields of propylene, isobutylene, and isoamylenes but a lower gasoline yield than Y zeolite catalysts. Catalyst selection and process optimization will depend on product valuation. For a given catalyst and process condition, Sasol and LaPorte waxes gave similar conversions and product selectivities. The contaminant iron F-T catalyst fines in the LaPorte wax caused higher coke and hydrogen yields.

Schwartz, M.M.; Reagon, W.J.; Nicholas, J.J.; Hughes, R.D.

1994-11-01T23:59:59.000Z

286

REFORMING OF LIQUID HYDROCARBONS IN A NOVEL HYDROGEN-SELECTIVE MEMBRANE-BASED FUEL PROCESSOR  

SciTech Connect (OSTI)

We propose to develop an inorganic metal-metal composite membrane to study reforming of liquid hydrocarbons and methanol by equilibrium shift in membrane-reactor configuration, viewed as fuel processor. Based on our current understanding and experience in the Pd-ceramic composite membrane, we propose to further develop this membrane to a Pd and Pd-Ag alloy membrane on microporous stainless steel support to provide structural reliability from distortion due to thermal cycling. Because of the metal-metal composite structure, we believe that the associated end-seal problem in the Pd-ceramic composite membrane in tubular configuration would not be an issue at all. We plan to test this membrane as membrane-reactor-separator for reforming liquid hydrocarbons and methanol for simultaneous production and separation of high-purity hydrogen for PEM fuel cell applications. To improve the robustness of the membrane film and deep penetration into the pores, we have used osmotic pressure field in the electroless plating process. Using this novel method, we deposited thin Pd-film on the inside of microporous stainless steel tube and the deposited film appears to robust and defect free. Work is in progress to evaluate the hydrogen perm-selectivity of the Pd-stainless steel membrane.

Shamsuddin Ilias

2003-06-30T23:59:59.000Z

287

President's Hydrogen Fuel Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

President's Hydrogen Fuel Initiative President's Hydrogen Fuel Initiative Presentation prepared by JoAnn Milliken for the 2005 Manufacturing for the Hydrogen Economy workshop...

288

Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium  

Science Journals Connector (OSTI)

Selective Transformation of 5-Hydroxymethylfurfural into the Liquid Fuel 2,5-Dimethylfuran over Carbon-Supported Ruthenium ... A simple and efficient process was presented for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) into the high-quality liquid fuel 2,5-dimethylfuran (DMF) in the presence of tetrahydrofuran (THF). ... (1-3) Among the many possible chemicals, 5-hydroxymethylfurfural (HMF), which can be produced from a variety of biomass-derived carbohydrates,(4-8) is recognized as a versatile intermediate (Scheme 1), and it can be further converted into a series of high-quality fuels such as ethyl levulinate (EL),(9) 5-ethoxymethylfurfural (EMF),(10) 2,5-dimethylfuran (DMF),(11) C9–C15 alkanes,(12) and high-value chemicals such as levulinic acid (LA),(13) 2,5-dihydroxymethylfurfural (DHMF),(14) 2,5-diformylfuran (DFF),(15) and 2,5-furandicarboxylic acid (FDCA). ...

Lei Hu; Xing Tang; Jiaxing Xu; Zhen Wu; Lu Lin; Shijie Liu

2014-02-02T23:59:59.000Z

289

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Uses for structured catalytic supports, such as ceramic straight-channel monoliths and ceramic foams, have been established for a long time. One of the most prominent examples is the washcoated ceramic monolith as a three-way catalytic converter for gasoline-powered automobiles. A distinct alternative to the ceramic monolith is the metal foam, with potential use in fuel cell-powered automobiles. The metal foams are characterized by their pores per inch (ppi) and density ({rho}). In previous research, using 5 wt% platinum (Pt) and 0.5 wt% iron (Fe) catalysts, washcoated metal foams, 5.08 cm in length and 2.54 cm in diameter, of both varying and similar ppi and {rho} were tested for their activity (X{sub CO}) and selectivity (S{sub CO}) on a CO preferential oxidation (PROX) reaction in the presence of a H{sub 2}-rich gas stream. The variances in these metal foams' activity and selectivity were much larger than expected. Other structured supports with 5 wt% Pt, 0-1 wt% Fe weight loading were also examined. A theory for this phenomenon states that even though these structured supports have a similar nominal catalyst weight loading, only a certain percentage of the Pt/Fe catalyst is exposed on the surface as an active site for CO adsorption. We will use two techniques, pulse chemisorption and temperature programmed desorption (TPD), to characterize our structured supports. Active metal count, metal dispersion, and other calculations will help clarify the causes for the activity and selectivity variations between the supports. Results on ceramic monoliths show that a higher Fe loading yields a lower dispersion, potentially because of Fe inhibition of the Pt surface for CO adsorption. This theory is used to explain the reason for activity and selectivity differences for varying ppi and {rho} metal foams; less active and selective metal foams have a lower Fe loading, which justifies their higher metal dispersion. Data on the CO desorption temperature and average metal crystallite size for TPD are also collected.

Paul Chin; George W. Roberts; James J. Spivey

2003-12-31T23:59:59.000Z

290

Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

291

Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Dist. of Columbia Laws and Incentives for Fuel Economy / Efficiency on

292

Green Economy Toolbox | Open Energy Information  

Open Energy Info (EERE)

Green Economy Toolbox Green Economy Toolbox Jump to: navigation, search Tool Summary Name: Green Economy Toolbox Agency/Company /Organization: United Nations Economic Commission for Europe Sector: Climate Focus Area: Renewable Energy, Agriculture, Buildings, Economic Development, Energy Efficiency, Forestry, Fuels & Efficiency, Greenhouse Gas, Industry, Standards - Incentives - Policies - Regulations Transportation"Standards - Incentives - Policies - Regulations Transportation" cannot be used as a page name in this wiki., Vehicles, Water Power Phase: Create a Vision Topics: Analysis Tools, Low emission development planning, -LEDS Resource Type: Software/modeling tools User Interface: Website Website: www.unece.org/fileadmin/DAM/GET/ Cost: Free Language: English

293

Selective Separation of Thiols from a Model Fuel by Metal Oxides  

Science Journals Connector (OSTI)

These fossil fuels typically contain sulfur compounds on the order of a few percent. ... The authors have found that sulfur-loaded coals adsorb heavy metals in aqueous solutions. ... methods for fuel oils in relation to demand of low-sulfur fuel oils for air pollution control. ...

Yuuki Mochizuki; Katsuyasu Sugawara

2008-10-14T23:59:59.000Z

294

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 1b. End Uses of Fuel Consumption (Site Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,044 1,116 1,186 312 Beverage and Tobacco Products 108 104 109 313 Textile Mills 254 205 178 314 Textile Product Mills 49 60 72 315 Apparel 48 30 14 316 Leather and Allied Products 8 7 3 321 Wood Products 504 375 445 322 Paper 2,744 2,361 2,354 323 Printing and Related Support 98 98 85 324 Petroleum and Coal Products 3,622 3,202 3,396 325 Chemicals 3,704 3,769 3,195 326 Plastics and Rubber Products 327 348 336 327 Nonmetallic Mineral Products 969 1,052 1,105 331 Primary Metals 2,576 2,123 1,744 332 Fabricated Metal Products 441 387 397

295

EIA Energy Efficiency-Table 2b. Primary Fuel Consumption for Selected  

Gasoline and Diesel Fuel Update (EIA)

b b Page Last Modified: May 2010 Table 2b. End Uses of Fuel Consumption (Primary 1 Energy) for Selected Industries, 1998, 2002, and 2006 (Trillion Btu) MECS Survey Years NAICS Subsector and Industry 1998 2002 2006 311 Food 1,468 1,572 1,665 312 Beverage and Tobacco Products 156 156 166 313 Textile Mills 457 375 304 314 Textile Product Mills 85 94 110 315 Apparel 84 54 27 316 Leather and Allied Products 14 11 5 321 Wood Products 647 518 619 322 Paper 3,221 2,803 2,833 323 Printing and Related Support 199 197 171 324 Petroleum and Coal Products 3,873 3,454 3,657 325 Chemicals 4,851 4,803 4,181 326 Plastics and Rubber Products 691 707 683 327 Nonmetallic Mineral Products 1,235 1,331 1,385 331 Primary Metals 3,660 3,100 2,617 332 Fabricated Metal Products 791 706 670 333 Machinery 404 341 416 334 Computer and Electronic Products

296

Selective collection as a pretreatment for indirect solid recovered fuel generation  

Science Journals Connector (OSTI)

Abstract Effective selective collection (SC) has been increasing in many countries of the European Union. As a consequence the composition of residual municipal solid waste (RMSW) is changing not only because of economic development, but also due to the collection system. The input of RMSW treatment plants is thus not homogeneous. This paper analyses two case studies involving a total of five SC scenarios and their impact on the generation of solid recovered fuel (SRF) with/without bio-drying, post-treatment and packaging take back programs (TBPs). These case studies are based on two types of SC: kerbside and drop-off. The latest regulation on SRF classification is taken into account: energy content, Cl and Hg concentrations are assessed and discussed. The role of the respirometric index (RI) is also analyzed. Results show that when SC is highly efficient RMSW can be classified directly as SRF, but only if the introduction of RI does not set stringent respirometric targets. The role of packaging \\{TBPs\\} is important as the residual waste remaining after the packaging has been processed, can be valorized increasing the lower heating value (LHV) of the residual RMSW and minimizing the streams that should be landfilled. The source separation of food waste has a significant impact on the suitability of bio-drying: when the SC of food waste is very efficient, its percentage in the RMSW may be too low for effective bio-drying.

Elena Cristina Rada; Marco Ragazzi

2014-01-01T23:59:59.000Z

297

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

298

Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications  

E-Print Network [OSTI]

various powertrains and alternative fuel options have beenthe corresponding breakeven alternative fuel price needed totruck, hybridization, alternative, fuel cell, fuel economy,

Zhao, Hengbing

2013-01-01T23:59:59.000Z

299

Fuel Cell Project Selected for First Ever Technology-to-Market...  

Energy Savers [EERE]

cell electric vehicles to enable significant reductions in greenhouse gas emissions and air pollution. In addition to this technology-to-market award, two fuel cell projects were...

300

Analysis of Fuel Cell Vehicle Hybridization and Implications for Energy Storage Devices: June 2004  

SciTech Connect (OSTI)

This paper addresses the impact of fuel efficiency characteristics on vehicle system efficiency, fuel economy from downsizing different fuel cells, as well as the energy storage system.

Zolot, M.; Markel, T.; Pesaran, A.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ecology or Economy  

E-Print Network [OSTI]

Broadcast Transcript: File this under "Statistics to the Rescue". Economy or ecology? Ecology or economy? Tough choice. Especially for China which is barreling recklessly ahead in its quest to become top consumer nation. A recent release from...

Hacker, Randi; Tsutsui, William

2007-07-18T23:59:59.000Z

302

Energy and the economy: Soaring development in Thailand  

SciTech Connect (OSTI)

Thailand's economy is one of the fastest growing in the world. Spectacular economic growth has brought a number of growing pains, energy being one of the many notables. Thailand's growth campaign has been fueled by oil, and as the economy shows little sign of slowing, energy use continues to grow. The government must balance a surging economy while scrambling to maintain sufficient energy supplies and infrastructure.

Not Available

1993-08-25T23:59:59.000Z

303

The Hydrogen Economy  

Science Journals Connector (OSTI)

Before describing the characteristics of an economy in which hydrogen is the medium of energy, let us...

J. O’M. Bockris; Z. Nagy

1974-01-01T23:59:59.000Z

304

An assessment of energy balance from sugar-based ethanol for fuel-saving and climate policy - the case of an island economy  

Science Journals Connector (OSTI)

The study assesses the efficiency of sugar-based ethanol production in Mauritius using the net energy balance and energy ratio. The findings indicate a positive net energy balance. For every one unit of fossil fuel used, the system returns more than six times in terms of renewable energy from ethanol. The fuel savings and other economic benefits which may be accrued to Mauritius are discussed. The sensitivity analysis shows that the fossil energy consumed in the production of fertilisers and in the transportation of feedstock to factory represents the main components which influence efficiency indicators. Greening the supply chain may enhance the efficiency and sustainability of bio-ethanol production systems. Green strategies may include the use of organic fertilisers, clean technology, and sustainable transportation and land use. The efficiency indicators can also be used to guide the CDM for sugar-based ethanol project.

Riad Sultan; Abdel Khoodaruth

2013-01-01T23:59:59.000Z

305

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

306

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov [DOE]

This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

307

Methanol: A Versatile Fuel for Immediate Use  

Science Journals Connector (OSTI)

...Specific fuel consumption-will certainly...necessitat-ing a larger fuel tank; but specific energy consumption (energy per...found that (i) fuel economy increased...Toyota (1900 cms engine, 85 brake horsepower...of knock and "Diesel operation...

T. B. Reed; R. M. Lerner

1973-12-28T23:59:59.000Z

308

NREL: Energy Analysis - Vehicles and Fuels Research Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exhaust emissions, and more. Transportation Data and Statistics Tools Alternative Fuels Data Center EERE Energy Analysis Publications Fuel Economy Guide Future U.S. Highway...

309

Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain  

SciTech Connect (OSTI)

The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

Bahman Habibzadeh

2010-01-31T23:59:59.000Z

310

Screening Microalgae Strains for Biodiesel Production: Lipid Productivity and Estimation of Fuel Quality Based on Fatty Acids Profiles as Selective Criteria  

Science Journals Connector (OSTI)

The viability of algae-based biodiesel industry depends on the selection of adequate ... fatty acid profiles, used for estimating the biodiesel fuel properties. Volumetric lipid productivity varied among...?1 day

Iracema Andrade Nascimento; Sheyla Santa Izabel Marques…

2013-03-01T23:59:59.000Z

311

A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...  

Broader source: Energy.gov (indexed) [DOE]

with both conventional and ultra-low sulfur diesel, and FRFG motor fuels. * The UCF LCA develops a set of near-term (2006) and long-term (2015) scenarios to assess impacts...

312

Hydrogen and Fuel Cell Systems  

Science Journals Connector (OSTI)

The hydrogen economy emerged as a potential response to two major problems that mankind faces today, namely, its dependence on fossil fuels and the high level of pollution associated with the fossil fuel combusti...

?brahim Dinçer; Calin Zamfirescu

2012-01-01T23:59:59.000Z

313

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

system-efficiency Go system-efficiency Go Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-1fnxsdr Average Per-Passenger Fuel Economy of Various Travel Modes Generated_thumb20130810-31804-1fnxsdr Comparison of per-passenger fuel economy for various modes of transportation. Last update April 2013 View Graph Graph Download Data Average Annual Fuel Use of Major Vehicle Categories Class 8 Truck Transit Bus Refuse Truck Para. Shuttle Taxi Delivery Truck School Bus Police Light Truck Light-Duty Vehicle Car Motorcycle Annual Fuel Use (GGE) 11500 10063 9876.738 2695 3392 1814 1896.33375 1423.474 853.56725 528.8785 459.4805 33

314

IMPACTT5A model : enhancements and modifications since December 1994 - with special reference to the effect of tripled-fuel-economy vehicles on fuel-cycle energy and emissions.  

SciTech Connect (OSTI)

Version 5A of the Integrated Market Penetration and Anticipated Cost of Transportation Technologies (IMPACTT5A) model is a spreadsheet-based set of algorithms that calculates the effects of advanced-technology vehicles on baseline fuel use and emissions. Outputs of this Argonne National Laboratory-developed model include estimates of (1) energy use and emissions attributable to conventional-technology vehicles under a baseline scenario and (2) energy use and emissions attributable to advanced- and conventional-technology vehicles under an alternative market-penetration scenario. Enhancements to IMPACIT made after its initial documentation in December 1994 have enabled it to deal with a wide range of fuel and propulsion system technologies included in Argonne's GREET model in a somewhat modified three-phased approach. Vehicle stocks are still projected in the largely unchanged STOCK module. Vehicle-miles traveled, fuel use, and oil displacement by advanced-technology vehicles are projected in an updated USAGE module. Now, both modules can incorporate vehicle efficiency and fuel share profiles consistent with those of the Partnership for a New Generation of Vehicles. Finally, fuel-cycle emissions of carbon monoxide, volatile organic compounds, nitrogen oxides, toxics, and greenhouse gases are computed in the EMISSIONS module via an interface with the GREET model that was developed specifically to perform such calculations. Because of this interface, results are now more broadly informative than were results from earlier versions of IMPACTT.

Mintz, M. M.; Saricks, C. L.

1999-08-28T23:59:59.000Z

315

REFORMULATION OF COAL-DERIVED TRANSPORTATION FUELS: SELECTIVE OXIDATION OF CARBON MONOXIDE ON METAL FOAM CATALYSTS  

SciTech Connect (OSTI)

Hydrocarbon fuels must be reformed in a series of steps to provide hydrogen for use in proton exchange membrane fuel cells (PEMFCs). Preferential oxidation (PROX) is one method to reduce the CO concentration to less than 10 ppm in the presence of {approx}40% H{sub 2}, CO{sub 2}, and steam. This will prevent CO poisoning of the PEMFC anode. Structured supports, such as ceramic monoliths, can be used for the PROX reaction. Alternatively, metal foams offer a number of advantages over the traditional ceramic monolith.

Paul Chin; Xiaolei Sun; George W. Roberts; Amornmart Sirijarhuphan; Sourabh Pansare; James G. Goodwin Jr; Richard W. Rice; James J. Spivey

2005-06-01T23:59:59.000Z

316

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

to achieve stable system operation and maximum fuel economy.optimizing the fuel cell system operation and the sizing ofoptimize the fuel cell system operation over the full load

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

317

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

fuel blends of at least 20% biodiesel fuel or that mix fuel from separate storage tanks and allow the user to select the percentage of renewable fuel. The maximum credit...

318

Economic Development for a Growing Economy Tax Credit (Indiana) |  

Broader source: Energy.gov (indexed) [DOE]

Economic Development for a Growing Economy Tax Credit (Indiana) Economic Development for a Growing Economy Tax Credit (Indiana) Economic Development for a Growing Economy Tax Credit (Indiana) < Back Eligibility Commercial Agricultural Industrial Construction Retail Supplier Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Indiana Program Type Corporate Tax Incentive Provider Indiana Economic Development Corporation The Economic Development for a Growing Economy Tax Credit is awarded to businesses with projects that result in net new jobs. The tax credit must be a major factor in the company's decision to move forward with the project in Indiana. The refundable tax credit is calculated as a percentage of the expected increased tax withholdings generated from the new jobs. The

319

WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization  

SciTech Connect (OSTI)

Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

2012-10-02T23:59:59.000Z

320

EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy  

E-Print Network [OSTI]

EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy EconoGrid is a detailed simulation model, implemented in SLX1 , of a grid compute economy that implements selected

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

California's Green Economy  

E-Print Network [OSTI]

California's Green Economy California Green Workforce Coalition July 9, 2010 Bonnie Graybill Employment Development Department Labor Market Information Division #12;Understanding the Green Economy What a shared "green web page" http://www.labormarketinfo.edd.ca.gov/?pageid=1032 Surveying California

322

THE HYDROGEN ECONOMY A non-technical review  

E-Print Network [OSTI]

, Distribution and Storage 11 Fuel Cells for Mobile and Stationary Uses 14 Carbon Capture and Storage 17-makers, environmental organisations, energy analysts and industry leaders that hydrogen is the fuel of the futureTHE HYDROGEN ECONOMY A non-technical review UNITEDNATIONSENVIRONMENTPROGRAMME #12;Copyright

323

Comparison of selected fuel and chemical content values for seven Populus hybrid clones  

SciTech Connect (OSTI)

Fuel and chemical content values were determined for seven Populus clones by component (wood, bark, and wood/bark specimens) and tissue age (1 to 8 years old). The fuel and chemical content values obtained included: gross heat of combustion, extractives, holocellulose, alpha-cellulose, lignin and ash. In general, analysis of the data for the wood, bark, and wood/bark specimens indicated that: 1) wood was higher in holocellulose and alpha-cellulose content than bark; 2) bark was higher in gross heat of combustion, lignin, extractive, and ash content values than wood; and 3) combined wood/bark fuel and chemical content values were usually between the individual values for the wood and bark. Statistical analyses indicated that significant differences existed within and among clones. Within the wood, bark, and wood/bark specimens, tissue age influenced the chemical content values more than the parentage. Potential chemical yields derived from the seven Populus hybrid clones investigated will depend on component and age with limited parentage effects. 15 references.

Blankenhorn, P.R.; Bowersox, T.W.; Kuklewski, K.M.; Stimely, G.L.; Murphey, W.K.

1985-04-01T23:59:59.000Z

324

Modeling Investment Strategies in the Transition to a Hydrogen Transportation Economy  

E-Print Network [OSTI]

economy" personal vehicles will be powered by either fuel cells or hydrogen fueled internal combustion in hydrogen fueling stations. An investigation focusing on the driver agents and how they drive the demand for hydrogen fuel was reported at the 2008 NHA Conference. In this report we shift the focus to the investor

Kemner, Ken

325

Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir  

E-Print Network [OSTI]

with hydrogen economy scenario. 4. Research Approach and Results Survey of fuel cell water ASU lab fuel cell Capacity (kW) 5 ­ 150 5 ­ 250 5 50 ­ 1100 100 ­ 2000 100 ­ 250 PEM Fuel cell Oxygen (From air) Hydrogen Implications of Using water from Fuel Cells in a Hydrogen Economy · Hydrogen as an energy and water carrier

Keller, Arturo A.

326

Determination of Uranium Metal Concentration in Irradiated Fuel Storage Basin Sludge Using Selective Dissolution  

SciTech Connect (OSTI)

Uranium metal corroding in water-saturated sludges now held in the US Department of Energy Hanford Site K West irradiated fuel storage basin can create hazardous hydrogen atmospheres during handling, immobilization, or subsequent transport and storage. Knowledge of uranium metal concentration in sludge thus is essential to safe sludge management and process design, requiring an expeditious routine analytical method to detect uranium metal concentrations as low as 0.03 wt% in sludge even in the presence of 30 wt% or higher total uranium concentrations.

Delegard, Calvin H.; Sinkov, Sergey I.; Chenault, Jeffrey W.; Schmidt, Andrew J.; Welsh, Terri L.; Pool, Karl N.

2014-03-01T23:59:59.000Z

327

Fuel Cell Project Selected for First Ever Technology-to-Market SBIR Award  

Broader source: Energy.gov [DOE]

EERE recently announced the selection of 40 small businesses for new Small Business Innovation Research (SBIR) awards that total nearly $6.3 million, including a first-of-its-kind award under a new EERE SBIR technology-to-market topic.

328

The Response of the Auto Industry and Consumers to Changes in the Exhaust Emission and Fuel Economy Standards (1975-2003): A Historical Review of Changes in Technology, Prices and Sales of Various Classes of Vehicles  

E-Print Network [OSTI]

income, inflation, and fuel prices over the same timeHistorical review of the effect of fuel prices and macro-because of the high fuel prices. When the CAFE standards

Burke, Andy; Abeles, Ethan; Chen, Belinda

2004-01-01T23:59:59.000Z

329

NREL: ReFUEL Laboratory - Working with Us  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with Us Working with Us Interaction with industrial, academic, and government partners is key to moving advanced vehicle and fuel technologies into the marketplace and the U.S. economy. The Renewable Fuels and Lubricants (ReFUEL) Laboratory is available to members of the research community interested in testing advanced fuels, prototype engines, and hybrid powertrains. There are a variety of ways to get involved with NREL's advanced vehicle and fuels research activities: Work collaboratively with NREL through one of our technology partnership agreements. We can assist you in selecting the agreement most suitable for your research project. Gain access to NREL's expertise and specialized research facilities through a work-for-others agreement. In addition, NREL's patented transportation technologies are available for

330

A Hydrogen Economy  

Science Journals Connector (OSTI)

For some time, people have envisioned an economy where the only source of energy was hydrogen. The idea may have originated in Jules...Mysterious Island....There, a shipwrecked engineer says that once they ran ou...

Sidney Borowitz

1999-01-01T23:59:59.000Z

331

A Hydrogen Economy  

Science Journals Connector (OSTI)

The history of the “hydrogen economy” may be broken down into three parts ... is the history of the founding of the Hydrogen Energy Society which took place in Miami,...

J. O’M. Bockris

1981-01-01T23:59:59.000Z

332

SHAPE SELECTIVE NANO-CATALYSTS: TOWARD DIRECT METHANOL FUEL CELLS APPLICATIONS  

SciTech Connect (OSTI)

A series of bimetallic core-shell-alloy type Au-Pt nanomaterials with various morphologies, aspect ratios and compositions, were produced in a heterogenous epitaxial fashion. Gold nanoparticles with well-controlled particle size and shape, e.g. spheres, rods and cubes, were used as 'seeds' for platinum growth in the presence of a mild reducing agent, ascorbic acid and a cationic surfactant cethyltrimethyl ammonium bromide (CTAB). The reactions take place in air and water, and are quick, economical and amenable for scaling up. The synthesized nanocatalysts were characterized by electron microscopy techniques and energy dispersive X-ray analysis. Nafion membranes were embedded with the Au-Pt nanomaterials and analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) for their potential in direct methanol fuel cells applications.

Murph, S.

2010-06-16T23:59:59.000Z

333

Economic Development for a Growing Economy Tax Credit Program (Illinois) |  

Broader source: Energy.gov (indexed) [DOE]

Economic Development for a Growing Economy Tax Credit Program Economic Development for a Growing Economy Tax Credit Program (Illinois) Economic Development for a Growing Economy Tax Credit Program (Illinois) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Illinois Program Type Corporate Tax Incentive Provider Illinois Department of Commerce and Economic Opportunity The Economic Development for a Growing Economy Tax Credit Program encourages companies to remain, expand, or locate in Illinois. The program provides tax credits to qualifying companies equal to the amount of state income taxes withheld from salaries for newly created jobs. A company must

334

If Cars Were More Efficient Would We Use Less Fuel?  

E-Print Network [OSTI]

Efficient, Would We Use Less Fuel? B Y K E N N E T H A . S Mtask: just increase vehicle fuel efficiency, also known asexisting Corporate Average Fuel Economy (CAFE) standards.

Small, Kenneth A.; Dender, Kurt Van

2007-01-01T23:59:59.000Z

335

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

and $1.85 a gallon. Crude oil prices in early 2009 werethe oil we consume. The price of crude oil in early 1973 was

Schipper, Lee

2009-01-01T23:59:59.000Z

336

Waste Heat Recovery Systems for Fuel Economy.  

E-Print Network [OSTI]

?? The largest automakers strive to reduce carbon dioxide emissions to meet regulations by improving engine efficiency. A device that recovers a portion of the… (more)

Capano, Gianmarco

2014-01-01T23:59:59.000Z

337

Moving Forward With Fuel Economy Standards  

E-Print Network [OSTI]

$1.85 a gallon. Crude oil prices in early 2009 were stillBut in light of fluctuating oil prices and concerns aboutwhen the inevitable rise in oil prices occurs with economic

Schipper, Lee

2009-01-01T23:59:59.000Z

338

Fuel Economy: What Drives Consumer Choice?  

E-Print Network [OSTI]

behavior much in response to gasoline price changes on thereally think about and respond to gasoline prices? Dohow much they spend on gasoline over the course of a year,

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

339

Engineering porous materials for fuel cell applications  

Science Journals Connector (OSTI)

...wide range of fuels, including hydrogen, and are seen as a clean, high...an enabling technology for the hydrogen economy. Potential applications for fuel...applications (operating on pure hydrogen) or battery replacement (operating...

2006-01-01T23:59:59.000Z

340

Mind the Gap: The Vicious Circle of Measuring Automobile Fuel Use  

E-Print Network [OSTI]

K. DoIan, Fuel Prices, Automobile Fuel Economy, Fuel Use foruse for the Norwegian automobile fuel during the periodL. Sehipper, Modelling Automobile Travel De- mand, Institute

Schipper, Lee; Figueroa, Maria J.; Price, Lynn; Espey, Molly

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

SciTech Connect (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

342

Cost analysis of air cargo transport and effects of fluctuations in fuel price  

Science Journals Connector (OSTI)

Abstract This study developed a model with cost functions formulated for different stages of cargo transport operation. A case analysis was performed with actual data from four air cargo traffic routes and eight aircraft types to validate the applicability of the model. The results show that the optimal payloads for various aircraft types vary with fuel price fluctuations. Furthermore, this study determined optimal types of freighter aircraft for different routes. Freight rates increase with rises in fuel price due to the corresponding increase in the fuel surcharge, thus bringing in higher total revenue. When the increase in total revenue exceeds the rise in fuel cost, the optimal payload will drop. Not only can the cost functions reveal the impact of fuel price fluctuations on different aspects of air cargo transport, they can also assist airlines in selecting the aircraft type with the best fuel economy for different route distances and cargo volumes.

Ching-Cheng Chao; Ching-Wen Hsu

2014-01-01T23:59:59.000Z

343

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

344

Development of decision support system to select the best fuel blend in IC engines to enhance the energy efficiency  

Science Journals Connector (OSTI)

This paper describes an application of hybrid MCDM technique for the selection of optimum blend in fish oil biodiesel among the six alternative fuel blends diesel, B20, B40, B60, B80 and B100 which is prepared by varying the amount of diesel with biodiesel. Brake thermal efficiency (BTE), exhaust gas temperature (EGT), oxides of nitrogen (NOx), smoke, hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2), ignition delay (ID), combustion duration (CD) and maximum rate of pressure rise (MRPR) are considered as evaluation criteria. A single cylinder, constant speed and direct injection diesel engine with a rated output of 4.4 kW was used for exploratory analysis of evaluation criteria at different load conditions. The proposed model, fuzzy analytical hierarchy process (FAHP) is integrated with elimination et and choice translating reality (ELECTRE) to evaluate the optimum blend. Here the FAHP is used to determine the relative weights of the criteria, whereas ELECTRE is used for obtaining the final ranking of alternative blends.

G. Sakthivel; M. Ilangkumaran

2013-01-01T23:59:59.000Z

345

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Local Laws and Incentives There are a variety of local laws and incentives that support reducing U.S. petroleum consumption by encouraging or requiring individuals and/or public and private organizations to use alternative fuels, advanced vehicles, and strategies to decrease fuel use or increase fuel economy. Local city and county governments create such laws and incentives to ensure people use

346

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Center to someone by E-mail Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Recent Federal Actions This list includes recent federal actions, such as Federal Register notices and rulemaking actions, agency directives or agency communications, that are all publicly available. These actions relate to alternative fuels and vehicles, fuel blends, hybrid vehicles, and idle reduction and fuel economy measures. When rulemakings are finalized, they will move to the list of

347

LEARN MORE @ CENTRALINA CLEAN FUELS COALITION  

E-Print Network [OSTI]

ALTERNATIVE FUELS AND ADVANCED VEHICLES DATA CENTER www.afdc.energy.gov/afdc U.S. DEPT OF ENERGY FUEL ECONOMY. [Award # DE-EE0002491]. Support for alternative fuel vehicles and infrastructure projects is facilitatedLEARN MORE @ ETHANOL E85 CENTRALINA CLEAN FUELS COALITION www.4cleanfuels.com GROWTH ENERGY www

348

Microbial Fuel Cells -Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM  

E-Print Network [OSTI]

.com Hydrogen Fuel Cells Buy Commercial & Educational Stacks PEM, Fuel Cell Generators & More! www.TheHydrogenCompany.com Hydrogen Fuel Cell Improve Your Fuel Economy 20 to 50% Begin Saving Fuel Now www.SaveMoreWithHydrogenMicrobial Fuel Cells - Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6

Lovley, Derek

349

College of Engineering and Computing Endowed Chair Search: Center for Economic Excellence for the Hydrogen Economy  

E-Print Network [OSTI]

for the Hydrogen Economy As part of the State of South Carolina's Center for Economic Excellence for the Hydrogen Economy, the Department of Chemical Engineering in College of Engineering and Computing at the University and scientists engaged in fuel cell, hydrogen, and energy research. This chair will focus on major funded

Almor, Amit

350

Renewable Hydrogen Carrier Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy  

SciTech Connect (OSTI)

Abstract The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology called cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms cannot complete, for example, C6H10O5 (aq) + 7 H2O (l) 12 H2 (g) + 6 CO2 (g) (PLoS One 2007, 2:e456). Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from PEM fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

Zhang, Y.-H. Percival [Virginia Polytechnic Institute and State University (Virginia Tech); Mielenz, Jonathan R [ORNL

2011-01-01T23:59:59.000Z

351

Webinar: I2CNER: An International Collaboration to Enable a Carbon-Neutral Energy Economy  

Broader source: Energy.gov [DOE]

Slides presented at the Fuel Cell Technologies Officer webinar "International Institute for Carbon-Neutral Energy Research (I2CNER): An International Collaboration to Enable a Carbon-Neutral Energy Economy" on March 7, 2011.

352

Department of Energy - Energy Economy  

353

Microclimate effects of fuels-reduction and group-selection silviculture: Implications for fire behavior in Sierran mixed-conifer forests  

Science Journals Connector (OSTI)

Fire suppression and other past management practices in the western USA have led to dense conifer forests with high canopy cover and thick layers of surface fuels, changes likely to alter understory microclimate relative to historical conditions. Silvicultural treatments are used to restore forest resilience, but little is known about their microclimate-mediated effects on fire behavior. We measured fire-related microclimate variables for two years before and after experimental, operational-scale application of fuels-reduction thinning and group selection treatments in a Sierra Nevada mixed-conifer forest. Measurements included air speed, temperature, and relative humidity; soil temperature and moisture; and dead fuel moisture. Wind gust speed increased moderately (average 0.7 m s?1 or 31% increase) in thinned forest and sharply (average 2.5 m s?1 or 128% increase) in group-selection openings. Surprisingly, treatments did not affect air temperature or humidity. Soil temperatures increased by a mean of 4 °C in group openings but did not increase in thinned stands. Duff moisture in group selection openings was 72% of that in the control stands, but there were no effects on moisture in other fuel particle size classes, or in thinned stands. Soil moisture increased in group-selection openings at depths down to 0.7 m but did not change in thinned stands. Fire spread simulation modeling with \\{FMAPlus\\} indicated that elevated wind speeds could increase the fire rate of spread, but that increases are moderate and largely linear rather than exponential across the observed range of wind gust speeds. In general our results suggest that group selection openings placed in high canopy cover, Sierran mixed-conifer forests are distinct microclimatic environments that will have slightly different fire behavior than the surrounding matrix due to higher surface temperatures and faster wind speeds. Current fuels-reduction thinning practices in dry western forests, however, will have minimal microclimatic-mediated influence on wildfire behavior, and there is little cause for concern about a faster rate of fire spread or drier fuels in such stands.

Seth W. Bigelow; Malcolm P. North

2012-01-01T23:59:59.000Z

354

A HYDROGEN ECONOMY MATTVINCENTILLUSTRATION;JOERAEDLEGettyImages(photograph)  

E-Print Network [OSTI]

A HYDROGEN ECONOMY MATTVINCENTILLUSTRATION;JOERAEDLEGettyImages(photograph) Developing cleaner of hydrogen as a transportation fuel. Unfortunately, the commercializa- tion of electric vehicles has been- butionwillbecostly. High Hopes for 94 SCIENTIFIC AMERICAN Will motorists someday fill up their tanks with hydrogen

Kammen, Daniel M.

355

2008 Annual Merit Review Results Summary - 10. Fuels Technologies  

Broader source: Energy.gov (indexed) [DOE]

enable high fuel economy, deliver lower emissions, and contribute to petroleum displacement. Activities aim to identify advanced petroleum- and non-petroleum-based...

356

Effects of Fuel Dilution with Biodiesel on Lubricant Acidity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Affecting Fuel Economy and Engine Wear Reducing Lubricant Ash Impact on Exhaust Aftertreatment with a Oil Conditioning Filter Development of High Performance Heavy Duty Engine Oils...

357

Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to use extensively. That is until recently. As automakers look for ways to increase vehicle efficiency and lower emissions to meet new fuel economy standards -- all while...

358

FreedomCAR and Fuel Partnership 2005 Highlights of Technical...  

Broader source: Energy.gov (indexed) [DOE]

reliability testing). In addition to fuel economy testing, all maintenance and repair events and costs are documented, allowing life-cycle cost analysis. Each HEV model...

359

Lean Gasoline System Development for Fuel Efficient Small Car  

Broader source: Energy.gov (indexed) [DOE]

NOx after-treatment systems have functional implementation limitations (i.e. performance, cost, packaging, etc.) * Significant fuel economy improvement requires integration of...

360

Saving diesel fuel in the oil field  

SciTech Connect (OSTI)

Describes how diesel electric SCR (silicon controlled rectifier) drilling rigs are helping drillers save fuel expense in the oil fields, along with other energy conservation methods. Compares SCR to conventional drilling rigs. Points out that on conventional rigs, diesel engines drive rig components directly, while on the SCR electric rigs, diesel engines turn a.c. electric generators which supply energy to d.c. electric motors for rig component power. Components of the SCR rigs include drawworks, mud pumps, rotary table, compressors, shakers, blenders and the camp load. Recommends economic principles such as supplying generators large enough to handle the low p.f. (power factor) as well as peak power requirements; and keeping the work load on diesel engines as high as possible for fuel economy. Presents tables of fuel consumed per 100 kW at various load factors; effect of power factor on engine hp required; electric drilling rig power modules; and engine and generator selection guide. Emphasizes consideration of the competitive difference in diesel engine economy.

Elder, B.

1982-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Hydrogen Economy  

Science Journals Connector (OSTI)

A rather obvious but long-ignored fact is that the supplies of raw materials and fossil fuels such as coal, natural gas, and oil on our planet are limited. For decades, it was believed that these deposits were...

Dr. P. W. Brennecke; Prof. H. H. Ewe

1987-01-01T23:59:59.000Z

362

The Hydrogen Economy  

Science Journals Connector (OSTI)

During the 1970s a concept grew up: one of the better ways to reduce the spread of pollutants from the burning of fossil fuels would be to replace these with hydrogen. Thoughts concerning this were expressed in t...

J. O’M. Bockris

1977-01-01T23:59:59.000Z

363

Renewable Hydrogen Economy  

Science Journals Connector (OSTI)

Renewable energies usually claim to be the alternative to oil. Renewable energies provide us with electricity, heat and fuels from biomass. Thus, these latter appear first as an energy alternative to oil. In f...

Roberto Bermejo

2014-01-01T23:59:59.000Z

364

Understanding and Informing the Policy Environment: State-Level Renewable Fuels Standards  

SciTech Connect (OSTI)

Renewable fuels standard (RFS) policies are becoming a popular public policy mechanism for developing the market for renewable fuels in the transportation sector. During the past decade, U.S. states and several countries began implementing these more market-based (less command and control) policies to support increased biofuels production and use. This paper presents an overview of current and proposed U.S. state-level policies, as well as selected electric sector policies and international fuel standard policies. Current U.S. state-level renewable fuel policies list drivers including an improved economy and environment, as well as fuel self-sufficiency. Best practices and experience from an evaluation of renewable portfolio standards (RPS) in the United States and international RFS policies can inform U.S. state-level policy by illustrating the importance of policy flexibility, binding targets, effective cost caps, and tradable permits. Understanding and building on the experiences from these previous policies can improve the policy mechanism and further develop a market for renewable fuels to meet the goals of improved economy, environment, and fuel self-sufficiency.

Brown, E.; Cory, K.; Arent, D.

2007-01-01T23:59:59.000Z

365

Vehicle Technologies Office: 2010 Fuel Technologies R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

366

Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report  

Broader source: Energy.gov [DOE]

The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

367

Vehicle Technologies Office: 2012 Fuel and Lubricant Technologies R&D Annual Progress Report  

Broader source: Energy.gov [DOE]

The Fuel & Lubricant Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

368

Very High Temperature Reactor (VHTR) Deep Burn Core and Fuel Analysis -- Complete Design Selection for the Pebble Bed Reactor  

SciTech Connect (OSTI)

The Deep-Burn (DB) concept focuses on the destruction of transuranic nuclides from used light water reactor fuel. These transuranic nuclides are incorporated into TRISO coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400). Although it has been shown in the previous Fiscal Year (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup, while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239-Pu, 240-Pu and 241-Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a ”standard,” UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. The effort of this task in FY 2010 has focused on the optimization of the core to maximize the pebble discharge burnup level, while retaining its inherent safety characteristics. Using generic pebble bed reactor cores, this task will perform physics calculations to evaluate the capabilities of the pebble bed reactor to perform utilization and destruction of LWR used-fuel transuranics. The task will use established benchmarked models, and will introduce modeling advancements appropriate to the nature of the fuel considered (high TRU content and high burn-up).

B. Boer; A. M. Ougouag

2010-09-01T23:59:59.000Z

369

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

370

Process for the conversion of and aqueous biomass hydrolyzate into fuels or chemicals by the selective removal of fermentation inhibitors  

DOE Patents [OSTI]

A process of making a fuel or chemical from a biomass hydrolyzate is provided which comprises the steps of providing a biomass hydrolyzate, adjusting the pH of the hydrolyzate, contacting a metal oxide having an affinity for guaiacyl or syringyl functional groups, or both and the hydrolyzate for a time sufficient to form an adsorption complex; removing the complex wherein a sugar fraction is provided, and converting the sugar fraction to fuels or chemicals using a microorganism.

Hames, Bonnie R. (Westminster, CO); Sluiter, Amie D. (Arvada, CO); Hayward, Tammy K. (Broomfield, CO); Nagle, Nicholas J. (Broomfield, CO)

2004-05-18T23:59:59.000Z

371

INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

The Road to Fuel Efficiency The Road to Fuel Efficiency INFOGRAPHIC: The Road to Fuel Efficiency November 27, 2012 - 11:01am Addthis This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by Sarah Gerrity. This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by Sarah Gerrity. Sarah Gerrity Sarah Gerrity Multimedia Editor, Office of Public Affairs The Obama Administration's new national fuel economy standards for passenger vehicles will improve vehicle efficiency and save Americans money at the pump, all while reducing our dependence on foreign oil and growing

372

High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor  

SciTech Connect (OSTI)

The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450MWth DB-HTRs. The TRISO fuel microanalysis covers the gas pressure buildup in a coated fuel particle including helium production, the thermo-mechanical behavior of a CFP, the failure probabilities of CFPs, the temperature distribution in a CPF, and the fission product (FP) transport in a CFP and a graphite. In Chapter VIII, it contains the core design and analysis of sodium cooled fast reactor (SFR) with deep burn HTR reactor. It considers a synergistic combination of the DB-MHR and an SFR burner for a safe and efficient transmutation of the TRUs from LWRs. Chapter IX describes the design and analysis results of the self-cleaning (or self-recycling) HTR core. The analysis is considered zero and 5-year cooling time of the spent LWR fuels.

Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

2010-09-01T23:59:59.000Z

373

Impact of Policy on Fuels RD&D (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of fuel economy and emissions policy and its relationship with fuel research, development, and deployment (RD&D). Solutions explored include biofuels and increased engine efficiency.

Gearhart, C.

2013-12-01T23:59:59.000Z

374

Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability  

Broader source: Energy.gov [DOE]

Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

375

Fuel Cells Team  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Judith Valerio at one of our 31 single-cell test stands Fuel Cell Team The FC team focus is R&D on polymer electrolyte membrane (PEM) fuel cells for commercial and military applications. Our program has had ongoing funding in the area of polymer electrolyte fuel cells since 1977 and has been responsible for enabling breakthroughs in the areas of thin film electrodes and air bleed for CO tolerance. For more information on the history of fuel cell research at Los Alamos, please click here. Fuel cells are an important enabling technology for the Hydrogen Economy and have the potential to revolutionize the way we power the nation and the world. The FC team is exploring the potential of fuel cells as energy-efficient, clean, and fuel-flexible alternatives that will

376

Fuel Cells Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

377

A hedonic test of the effects of the Alternative Motor Fuels Act  

Science Journals Connector (OSTI)

Under the Alternative Motor Fuels Act (AMFA), vehicles that run on ethanol, methanol, or natural gas get extra credits in the calculation of Corporate Average Fuel Economy (CAFE). This paper uses hedonic techniques to examine the effect of production of alternative-fuel vehicles (AFVs) on the implicit price of fuel economy. This study finds that, after \\{AFVs\\} came to market, the marginal value of fuel economy from companies producing them decreased. This finding suggests that manufacturers who produced \\{AFVs\\} were willing to offer a lower price for fuel economy, because automakers had an additional way to achieve fuel economy standards beyond improving the fuel efficiency of conventional cars. These findings bolster the argument that a major role of the AMFA credit for \\{AFVs\\} is to allow automakers to increase their production of fuel-inefficient vehicles.

Yimin Liu; Gloria E. Helfand

2012-01-01T23:59:59.000Z

378

Biofuel Economy and Hydrogen Competition  

Science Journals Connector (OSTI)

Biofuel Economy and Hydrogen Competition† ... Only with a reformed economic structure resembling a developed country, the biofuels and hydrogen economy can be realized in Taiwan. ... According to ref 3, biofuels can substitute up to 10% of the current petroleum consumption in the U.S. if its all corn-planted land was used for biofuel production. ...

Duu-Hwa Lee; Duu-Jong Lee

2007-09-21T23:59:59.000Z

379

The hydrogen economy: Its history  

Science Journals Connector (OSTI)

The concept leading to a hydrogen economy lay in the work of a Nazi engineer, Lawaceck, 1968. I heard his suggestion of cheaper transfer of energy in hydrogen through pipes at a dinner in that year. A paper was published with Appleby in 1972 which was the first published document concerning that title and involving the title of A Hydrogen Economy. The first meeting was in Cornell University in 1973. In 1974 T. Nejat Veziroglu organized the first big meeting on hydrogen (900 attendees). At this meeting I presented privately to Veziroglu the possibilities of a world development and he told me that he was ready to put his organizing ability to use in spreading the ideas worldwide. However, he not only proceeded to do this but he, also a professor at the University of Miami, contributed several papers of notes, particularly the one with Awad of 1974 about the cost of pollution. Gregory worked at the Gas Research Institute from 1971 and confirmed the expectations put down by Lawaceck. Veziroglu founded the International Journal of Hydrogen Energy in 1974. Research in hydrogen was relatively low cost and therefore was taken up most eagerly by those from the newer countries. The National Science Foundation awarded Texas A&M University in 1982 a five year support for hydrogen as a fuel with the condition that half the costs be borne by at least five industrial companies. I was appointed director of the research under the grant and chose to concentrate upon the decomposition of water by solar light via an electrochemical photo fuel cell. We were able to obtain considerable increases in efficiency of decomposition of water by solar light, and at the time the work was interrupted we had 9.6 percent efficiency for decomposition. S.U.M. Khan and R. Kainthla were the principal contributors to the theory of using light via electrochemical cells for this purpose. The Texas A&M University work on hydrogen was interrupted in 1989 by the arrival of claims that one of my former students had carried out electrolysis of deuterium oxide saying that an extra unexplained heat had been observed and he suggested this heat was nuclear in origin. Later, seeking to reduce the cost of hydrogen as a fuel I involved Sol Zaromb in discussions and we came across the idea that if one included a carbon dioxide molecule obtained by removing it from the atmosphere in the structure of methanolAT, no increase in global warming would occur from the use of methanol with that condition, (published in 2008). By this condition methanol took on the largest advantage of gaseous hydrogen: That it did not cause global warming. The estimated cost of the new (anti-global warming) fuel, methanolAT was less than $30/GJ. This estimated cost could be compared with the $48/GJ which is now being supported by a French Canadian group who published an attractive book with six pages of calculations of costs. The difference between the cost estimated by this group and the costs which have been assumed by hydrogen enthusiasts in earlier times was that they took into account the auxiliary expenses which would come with the use of hydrogen, in particular the storage at high pressure. The characteristics of the new methanol to cause no global warming put that aspect of it on an equal footing to the gaseous hydrogen. The CO2 which was an essential part of the structure of methanolAT was necessary to be created in a stream, rather than directly from the atmosphere, but it was easily shown that this could be done by the use of biomass and by carbonaceous wastes. A German team under Weiderman and Grob appeared in 2008 and proceeded to suggest some extensions of the ideas which had been undergoing publication for some time. The aim of the German work was to reduce costs of a compound which they called Methasyn. The present situation is that the claim of methanolAT as a world fuel to be used without any concerns of exhaustion or pollution depends on the commercial point of view of the costs being less than that of obtaining oil from the tar sands.

John O'.M. Bockris

2013-01-01T23:59:59.000Z

380

The Hydrogen Economy  

SciTech Connect (OSTI)

Since the industrial revolution began in the 18th century, fossil fuels in the form of coal, oil, and natural gas have powered the technology and transportation networks that drive society. But continuing to power the world from fossil fuels threatens our energy supply and puts enormous strains on the environment. The world's demand for energy is projected to double by 2050 in response to population growth and the industrialization of developing countries. The supply of fossil fuels is limited, with restrictive shortages of oil and gas projected to occur within our lifetimes (see the article by Paul Weisz in PHYSICS TODAY, July 2004, page 47). Global oil and gas reserves are concentrated in a few regions of the world, while demand is growing everywhere; as a result, a secure supply is increasingly difficult to assure. Moreover, the use of fossil fuels puts our own health at risk through the chemical and particulate pollution it creates. Carbon dioxide and other greenhouse gas emissions that are associated with global warming threaten the stability of Earth's climate.

Dresselhaus, M [Massachusetts Institute of Technology (MIT); Buchanan, Michelle V [ORNL; Crabtree, George [Argonne National Laboratory (ANL)

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519  

SciTech Connect (OSTI)

Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

Dilger, Fred [Black Mountain Research, Henderson, NV 81012 (United States)] [Black Mountain Research, Henderson, NV 81012 (United States); Halstead, Robert J. [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States)] [State of Nevada Agency for Nuclear Projects, Carson City, NV 80906 (United States); Ballard, James D. [Department of Sociology, California State University, Northridge, CA 91330 (United States)] [Department of Sociology, California State University, Northridge, CA 91330 (United States)

2013-07-01T23:59:59.000Z

382

Essays on Political Economy of Religion  

E-Print Network [OSTI]

2000; Roland Gérard. “The Political Economy of Transition”,Democracy and the Market: Political and Economic Reforms inand R. Somanathan. “The political economy of public goods:

Grigoriadis, Theocharis Nikolaou

2012-01-01T23:59:59.000Z

383

08FFL-0020Influence of High Fuel Rail Pressure and Urea Selective Catalytic Reduction on PM Formation in an Off-Highway Heavy-Duty Diesel Engine  

SciTech Connect (OSTI)

The influence of fuel rail pressure (FRP) and urea-selective catalytic reduction (SCR) on particulate matter (PM) formation is investigated in this paper along with notes regarding the NOx and other emissions. Increasing FRP was shown to reduce the overall soot and total PM mass for four operating conditions. These conditions included two high speed conditions (2400 rpm at 540 and 270 Nm of torque) and two moderated speed conditions (1400 rpm at 488 and 325 Nm). The concentrations of CO2 and NOx increased with fuel rail pressure and this is attributed to improved fuel-air mixing. Interestingly, the level of unburned hydrocarbons remained constant (or increased slightly) with increased FRP. PM concentration was measured using an AVL smoke meter and scanning mobility particle sizer (SMPS); and total PM was collected using standard gravimetric techniques. These results showed that the smoke number and particulate concentrations decrease with increasing FRP. However the decrease becomes more gradual as very high rail pressures. Additionally, the total PM decreased with increasing FRP; however, the soluble organic fraction (SOF) reaches a maximum after which it declines with higher rail pressure. The total PM was collected for the two 1400 rpm conditions downstream of the engine, diesel oxidation catalyst, and a urea-SCR catalyst. The results show that significant PM reduction occurs in the SCR catalyst even during high rates of urea dosage. Analysis of the PM indicates that residual SOF is burned up in the SCR catalyst.

Kass, Michael D [ORNL; Domingo, Norberto [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL

2008-01-01T23:59:59.000Z

384

Fuel Consumption and NOx Trade-offs on a Port-Fuel-Injected SI Gasoline Engine Equipped with a Lean-NOx Trap  

Broader source: Energy.gov [DOE]

Lean-burn improves PFI fuel economy by ~3% relative to best stoichiometric VCT/EGR conditions, when used in combination with VCT & EGR.

385

CANDU fuel cycle flexibility  

SciTech Connect (OSTI)

High neutron economy, on-power refuelling, and a simple bundle design provide a high degree of flexibility that enables CANDU (CANada Deuterium Uranium; registered trademark) reactors to be fuelled with a wide variety of fuel types. Near-term applications include the use of slightly enriched uranium (SEU), and recovered uranium (RU) from reprocessed spent Light Water Reactor (LWR) fuel. Plutonium and other actinides arising from various sources, including spent LWR fuel, can be accommodated, and weapons-origin plutonium could be destroyed by burning in CANDU. In the DUPIC fuel cycle, a dry processing method would convert spent Pressurized Water Reactor (PWR) fuel to CANDU fuel. The thorium cycle remains of strategic interest in CANDU to ensure long-term resource availability, and would be of specific interest to those countries possessing large thorium reserves, but limited uranium resources.

Torgerson, D.F.; Boczar, P.G. [Chalk River Lab., Ontario (Canada); Dastur, A.R. [AECL CANDU, Mississauga, Ontario (Canada)

1994-12-31T23:59:59.000Z

386

Environmental Protection Agency (EPA) evaluation of the Super-Mag Fuel Extender under Section 511 of the Motor Vehicle Information and Cost Savings Act. Technical report  

SciTech Connect (OSTI)

This document announces the conclusions of the EPA evaluation of the 'Super-Mag Fuel Extender' device under provisions of Section 511 of the Motor Vehicle Information and Cost Savings Act. On December 10, 1980, the EPA received a written request from the Metropolitan Denver District Attorney's Office of Consumer Fraud and Economic Crime to test at least one 'cow magnet' type of fuel economy device. Following a survey of devices being marketed, the Metropolitan Denver District Attorney's Office selected the 'Super-Mag' device as typical of its category and on April 13, 1981 provided EPA with units for testing. The EPA evaluation of the device using three vehicles showed neither fuel economy nor exhaust emissions were affected by the installation of the 'Super-Mag' device. In addition, any differences between baseline test results and results from tests with the device installed were within the range of normal test variability.

Ashby, H.A.

1982-01-01T23:59:59.000Z

387

Flex Fuel Optimized SI and HCCI Engine  

Broader source: Energy.gov (indexed) [DOE]

mode engine for a blend of gasoline and E85 for the best fuel economy - Development of a cost effective and reliable dual combustion mode engine - Development of a model-based SI...

388

54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of  

Broader source: Energy.gov (indexed) [DOE]

4.5 MPG and Beyond: Fueling Energy-Efficient Vehicles 4.5 MPG and Beyond: Fueling Energy-Efficient Vehicles 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles November 27, 2012 - 11:08am Addthis This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. Click here to view the full infographic. | Infographic by Sarah Gerrity.

389

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

economy as a function of fuel prices, technology prices, andshould be a function of fuel prices, electricity demand, andturn are a function of fuel price, system costs, and other

Delucchi, Mark

2005-01-01T23:59:59.000Z

390

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network [OSTI]

economy as a function of fuel prices, technology prices, andshould be a function of fuel prices, electricity demand, andturn are a function of fuel price, system costs, and other

Delucchi, Mark

2005-01-01T23:59:59.000Z

391

International Partnerships for the Hydrogen Economy Fact Sheet  

Broader source: Energy.gov (indexed) [DOE]

Partnerships for the Hydrogen Economy Fact Sheet Partnerships for the Hydrogen Economy Fact Sheet "I am proposing $1.2 billion in research funding so that America can lead the world in developing clean, hydrogen powered automobiles" President George Bush, 2003 State of the Union Address, January 28, 2003 A growing number of countries have committed to accelerate the development of hydrogen and fuel cell technologies in order to improve their energy, environment and economic security. For example, those countries that have made commitments include: * The United States has committed $1.7 billion for the first five years of a long- term hydrogen infrastructure, fuel cells, and hybrid vehicle technologies development program. * The European Union has committed up to 2 billion Euros over five years to

392

Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

NONE

1995-12-01T23:59:59.000Z

393

Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

NONE

1995-02-01T23:59:59.000Z

394

Lithium Economy: Will It Get the Electric Traction?  

Science Journals Connector (OSTI)

Lithium Economy: Will It Get the Electric Traction? ... In the battle for alternative fuels for a decarbonized transportation sector, electricity has a definite edge. ... However, at the large scales of extraction required for transforming the automobile scene, the production facilities could pose severe challenges to the environment in terms of water table and fresh water supplies as well as the fallout of the extraction on the flora and fauna in the neighborhood. ...

A. K. Shukla; T. Prem Kumar

2013-02-07T23:59:59.000Z

395

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy Economy Energy Economy Energy Economy January 6, 2014 The Clean Energy Economy in Three Charts Over the last five years, American inventors and investors have made significant progress in developing and deploying key clean energy technologies -- supported by Energy Department policies. December 3, 2013 Additional Funding & Financing Resources Want to know more about funding and financing for energy projects and businesses? Check out general resources at the Energy Department and other parts of the federal government. December 3, 2013 Funding & Financing for Energy Businesses Do you own or represent an energy business? Learn about funding and financing resources from the Energy Department and other U.S. government agencies. November 15, 2013 Energy Department Authorizes Additional Volume at Proposed Freeport LNG

396

Oregon Agriculture and the Economy  

E-Print Network [OSTI]

Oregon Agriculture and the Economy: An Update Oregon State University Extension Service Rural Analyst Department of Agricultural and Resource Economics Oregon State University #12;Contents ...........................................................................................................................................12 Agricultural Support Services, Wholesale Trade, Transportation and Warehousing, Retail Trade

Tullos, Desiree

397

Economy slows Arco's capital expenditures  

Science Journals Connector (OSTI)

Economy slows Arco's capital expenditures ... Arco Chemical's new president and chief executive officer, Alan R. Hirsig, told shareholders the company plans to stretch out its capital expenditure program and as a result, expects sharply lower capital spending in 1992. ...

MARC REISCH

1991-06-10T23:59:59.000Z

398

International Partnership for a Hydrogen Economy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership Partnership for the Hydrogen Economy (IPHE) U.S. Department of Energy Why Hydrogen? It's abundant, clean, efficient, and can be derived from diverse domestic resources. . Distributed Generation Transportation Biomass Hydro Wind Solar Geothermal Coal Nuclear Natural Gas Oil With Carbon Sequestration HIGH EFFICIENCY & RELIABILITY ZERO/NEAR ZERO EMISSIONS 3 President Bush Launches the Hydrogen Fuel Initiative "Tonight I am proposing $1.2 billion in research funding .... "With a new national commitment, our scientists and engineers will overcome obstacles to taking these cars from laboratory to showroom so that the first car driven by a child born today could be powered by hydrogen, and pollution-free. President George W. Bush 2003 State of the Union Address January 28, 2003

399

The role of hydrogen cars in the economy of California  

Science Journals Connector (OSTI)

Hydrogen has been proposed as an alternative transportation fuel that could reduce energy consumption and eliminate tailpipe emissions when used in fuel cell vehicles (FCVs). To investigate the potential effects of hydrogen vehicles on California’s economy over the next two decades, we employed the modified Costs for Advanced Vehicles and Energy (CAVE) model and a California-specific computable general equilibrium model. Results indicate that, even in the aggressive scenario, hydrogen cars can only account for a minor fraction of the on-road fleet through 2030. Although new sales could drop sharply, conventional gasoline cars and carryover pre-2010 vehicles are still expected to dominate the on-road vehicle stock and consume the majority of transportation energy through 2030. Transportation energy consumption could decline dramatically, mainly because of the fuel economy advantage of \\{FCVs\\} over conventional cars. Both moderate and aggressive hydrogen scenarios are estimated to have a slightly negative influence on California’s economy. However, the negative economic impacts could be lessened as the market for hydrogen and \\{FCVs\\} builds up. Based on the economic optimization model, both hydrogen scenarios would have a negative economic impact on California’s oil refining sector and, as expected, a positive impact on the other directly related sectors that contribute to either hydrogen production or FCV manufacturing.

Guihua Wang

2011-01-01T23:59:59.000Z

400

Microfluidic fuel cell for off-the-grid applications.  

E-Print Network [OSTI]

??The present doctoral thesis studies air-breathing microfluidic fuel cells with separated fuel and electrolyte streams as well as a membraneless fuel cell with selective electrodes.… (more)

Seyed Ali Mousavi Shaegh.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fuel Cell Technologies Program Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

402

Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration  

Broader source: Energy.gov [DOE]

Learn how a new clean diesel engine could improve the fuel economy of full-sized pickup trucks by 40 percent while meeting new emissions standards.

403

Ultra-Lite Diesel Particulate Filter Cartridge for Reduced Regeneration Time and Fuel Consumption  

Broader source: Energy.gov [DOE]

Self-cleaning ceramic filter cartridges offer the advantage of better fuel economy, faster regeneration time, improved heat transfer, and reduction in manufacturing steps

404

Compare Fuel Cell Vehicles Side-by-Side  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recently Tested Vehicles Recently Tested Vehicles Fuel cell vehicles (FCVs) are not yet for sale in the United States. However, manufacturers are producing small fleets of FCVs for evaluation and have estimated the fuel economy of some vehicles using EPA test procedures. Fuel economy estimates and other information for recently tested vehicles are provided below. 2012 Honda FCX Clarity Honda FCX Clarity 2012 Mercedes-Benz F-Cell Mercedes F-Cell Fuel Economy and Driving Range Fuel Economy (miles/kg) Note: One kg of hydrogen is roughly equivalent to one gallon of gasoline. Hydrogen 60 Combined 60 City 60 Hwy Hydrogen 52 Combined 52 City 53 Hwy Range (miles) 240 190 Vehicle Characteristics Vehicle Class Midsize Car Small Station Wagon Motor DC Brushless 100kW DC Permanent Magnet (brushless) Type of Fuel Cell Proton Exchange Membrane Proton Exchange Membrane

405

Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts  

Science Journals Connector (OSTI)

Fuel cell powered vehicles using hydrogen (H2) as a fuel are currently being developed in an effort to mitigate the emissions of green house gases such as CO2, NOx, and hydrocarbons. The H2 fuel is extracted from methanol onboard a vehicle by steam reforming of methanol (SRM) reaction. A considerable amount of CO is produced as a by-product, which is a poison to the Pt anode of the fuel cell. Very recently, we have demonstrated that a combined SRM and partial oxidation of methanol (POM), which we labeled as “oxidative steam reforming of methanol (OSRM)” reaction is more efficient for the selective production of H2 relatively at a lower temperature of around 230°C over CuZnAl(Zr)-oxide catalysts derived from hydroxycarbonate precursors containing hydrotalcite (HT)-like layered double hydroxides (LDHs)/aurichalcite phases. There are several operating parameters such as catalyst composition, reaction temperature, O2/CH3OH and H2O/CH3OH molar ratios and methanol injection rate that are need to be optimized in order to produce H2 suitable for fuelling a fuel cell. In the present study, we have investigated the effect of these variable parameters on the catalytic performance over a series of CuZnAl- and CuZnAlZr-oxide catalysts. Our study indicated that among the CuZn-based catalysts, those containing Zr were the most active. The optimum O2/CH3OH and H2O/CH3OH molar ratios should be in the ranges 0.20–0.30 and 1.3–1.6, respectively, in order to achieve a better catalytic performance. Studies of the effect of methanol contact time on the catalytic performance over a Zr-containing catalyst revealed that the OSRM reaction proceeds through the formation of formaldehyde intermediate. CO was produced as a secondary product by the decomposition of formaldehyde and it is subsequently transformed into CO2 and H2 by the water-gas shift (WGS) reaction.

S Velu; K Suzuki; M.P Kapoor; F Ohashi; T Osaki

2001-01-01T23:59:59.000Z

406

Fuel efficient power trains and vehicles  

SciTech Connect (OSTI)

The pressure on the automotive industry to improve fuel economy has already resulted in major developments in power train technology, as well as highlighting the need to treat the vehicle as a total system. In addition emissions legislation has resulted in further integration of the total vehicle engineering requirement. This volume discusses subject of fuel efficiency in the context of vehicle performance. The contents include: energy and the vehicle; the interaction of fuel economy and emission control in Europe-a literature study; comparison of a turbocharger to a supercharger on a spark ignited engine; knock protection - future fuel and engines; the unomatic transmission; passenger car diesel engines charged by different systems for improved fuel economy.

Not Available

1984-01-01T23:59:59.000Z

407

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

West Virginia Incentives and Laws West Virginia Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuels Studies Archived: 04/01/2012 The Joint Committee on Government and Finance (Committee) must conduct two separate studies related to alternative fuels. The first study must focus on the impact of alternative fuels on West Virginia's economy, specifically the use of alternative fuels in transportation. This report must include input from state agencies and private industry. The second study must investigate the environmental benefits and economic impact of renewable energy utilization, including the use of biofuels in vehicles, and the

408

"Table A2. Total Consumption of LPG, Distillate Fuel Oil,...  

U.S. Energy Information Administration (EIA) Indexed Site

. Total Consumption of LPG, Distillate Fuel Oil, and Residual Fuel" " Oil for Selected Purposes by Census Region, Industry Group, and Selected" " Industries, 1991" " (Estimates in...

409

The biogenic content of process streams from mechanical–biological treatment plants producing solid recovered fuel. Do the manual sorting and selective dissolution determination methods correlate?  

Science Journals Connector (OSTI)

The carbon emissions trading market has created a need for standard methods for the determination of biogenic content (?B) in solid recovered fuels (SRF). We compare the manual sorting (MSM) and selective dissolution methods (SDM), as amended by recent research, for a range of process streams from a mechanical–biological treatment (MBT) plant. The two methods provide statistically different biogenic content values, as expressed on a dry mass basis, uncorrected for ash content. However, they correlate well (r2 > 0.9) and the relative difference between them was <5% for ?B between 21% w/wd and 72% w/wd (uncorrected for ash content). This range includes the average SRF biogenic content of ca. 68% w/wd. Methodological improvements are discussed in light of recent studies. The repeatability of the SDM is characterised by relative standard deviations on triplicates of <2.5% for the studied population.

Mélanie Séverin; Costas A. Velis; Phil J. Longhurst; Simon J.T. Pollard

2010-01-01T23:59:59.000Z

410

A model-based approach to battery selection for truck onboard fuel cell-based APU in an anti-idling application  

Science Journals Connector (OSTI)

Abstract The paper presents a model-based approach to supporting battery selection for a fuel cell (FC)-based auxiliary power unit (APU). It is introduced to a case study of electrical power production and consumption management in a truck anti-idling application of a diesel-powered FC-based APU, a system under development in FCGEN, a FCH JU European project of the FP7 program. With fuel cell and related technologies increasingly competing with others in the market, they need to form complete systems with matching and well-balanced components to enable using the technology to its best. Within the whole system, the battery, serving as an energy buffer, represents a medium-cost element, but it affects the operating parameters importantly. Within the scope of this study, a purpose-oriented model of the diesel powered FC-based system is developed together with a realistic load scenario for the comparison of three batteries. The battery size and type are investigated and discussed in the light of the simulation results.

Boštjan Pregelj; Darko Vre?ko; Janko Petrov?i?; Vladimir Jovan; Gregor Dolanc

2015-01-01T23:59:59.000Z

411

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

Townsend, H.E.; Barbanti, G.

1994-03-01T23:59:59.000Z

412

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool.

Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Cupertino, CA)

1994-01-01T23:59:59.000Z

413

Building an American Economy to Last: American Competiveness in  

Broader source: Energy.gov (indexed) [DOE]

Building an American Economy to Last: American Competiveness in Building an American Economy to Last: American Competiveness in Manufacturing Building an American Economy to Last: American Competiveness in Manufacturing August 16, 2012 - 9:20am Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop

414

Building an American Economy to Last: American Competiveness in  

Broader source: Energy.gov (indexed) [DOE]

Building an American Economy to Last: American Competiveness in Building an American Economy to Last: American Competiveness in Manufacturing Building an American Economy to Last: American Competiveness in Manufacturing August 16, 2012 - 9:20am Addthis Saving Energy and Resources 1 of 4 Saving Energy and Resources Thanks to additive manufacturing technology, Oak Ridge National Laboratory was able to fabricate a robotic hand with less energy use and material waste. The novel, lightweight, low-cost fluid powered hand was selected for a 2012 R&D 100 award. | Photo courtesy of Oak Ridge National Laboratory. Partnering with Industry 2 of 4 Partnering with Industry The Energy Department's Manufacturing Demonstration Facility at Oak Ridge National Laboratory includes an array of state-of-the-art additive manufacturing capabilities, allowing researchers and industry to develop

415

CLIMATE CHANGE GLOBAL ECONOMY How to decarbonise the global economy  

E-Print Network [OSTI]

as the world economy is growing? The research teams identified three main pillars for deep decarbonisation avoid dangerous climate change and achieve sustainable development. The report, produced by the Deep Decarbonisation Pathways Project which is overseen by the UN Sustainable Development Network, describes the joint

416

E-Print Network 3.0 - alternative fuel reductions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zero Emissions Summary: ,000 Passengers 1.6 to 2.0 Times Better Fuel Economy 43% GHG Reductions (Reforming Natural Gas; 100... of Alternative Fuels Policy 510-891-7244,...

417

Fuel Cell Transit Buses: ThunderPower Bus Evaluation at SunLine...  

Broader source: Energy.gov (indexed) [DOE]

so it can be compared to something familiar. The fuel economy calculation starts with an energy conversion with standard energy content values 2 for each fuel: * Hydrogen: 51,532...

418

Thermal-Hydraulic Bases for the Safety Limits and Limiting Safety System Settings for HFIR Operation at 100 MW and 468 psig Primary Pressure, Using Specially Selected Fuel Elements  

SciTech Connect (OSTI)

This report summarizes thermal hydraulic analyses performed to support HFIR operation at 100 MW and 468 psig pressure using specially selected fuel elements. The analyses were performed with the HFIR steady state heat transfer code, originally developed during HFIR design. This report addresses the increased core heat removal capability which can be achieved in fuel elements having coolant channel thicknesses that exceed the minimum requirements of the HFIR fuel fabrication specifications. Specific requirements for the minimum value of effective uniform as-built coolant channel thickness are established for fuel elements to be used at 100 MW. The burnout correlation currently used in the steady-state heat transfer code was also compared with more recent experimental results for stability of high-velocity flow in narrow heated channels, and the burnout correlation was found to be conservative with respect to flow stability at typical HFIR hot channel exit conditions at full power.

Rothrock, R.B.

1998-09-01T23:59:59.000Z

419

Overview of Hydrogen and Fuel Cell Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

economy. DOD-DOE MOU Jet Fuel 53% Marine Diesel 12% Electricity 12% Fuel Oil 3% Natural Gas 8% Coal 2% Steam 1% Other 0.2% Auto Gas 1% Auto Diesel 8% Percent of FY06 Total DoD...

420

Lessons Learned from a Regional Approach to Route Selection for Spent Nuclear Fuel Shipments to Yucca Mountain  

Broader source: Energy.gov (indexed) [DOE]

Midwestern Route Identification Project Midwestern Route Identification Project Sarah K. Wochos Policy Analyst Council of State Governments - Midwest Approach Why Regional? * States need to know the routes as soon as possible * Regions develop and use the criteria that is important to them * States have a better feel for routes that run through their jurisdictions * States felt that EIS routes were a poor starting point for discussions * Regional framework has worked well on other issues Why a Suite of Routes? * Better variety and thus perhaps better security? * Flexibility during construction, bad weather or special events * Inevitable further winnowing through national discussion Methodology Primary Factors - from U.S. DOT's Guidelines for Selecting Preferred Highway Routes for Highway Route Controlled Shipments of Radioactive Materials

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The functioning of natural ecosystems and the health of the human economy have been intrinsically linked since  

E-Print Network [OSTI]

of its existence.With the development of the industrial revolution,massive increases in fossil-fuel use absolutely necessary for human existence (Costanza et al.1997,De Groot et al.2002), fossil-fuel use hasArticles The functioning of natural ecosystems and the health of the human economy have been

Hall, Charles A.S.

422

Advanced Fuels Synthesis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

423

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

by pro- moting alternative energy, encouraging cleaner waysEnergy Economy include: * ConocoPhillips, which established its global alternative

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

424

Probabilistic political economy and endogenous money  

E-Print Network [OSTI]

Cockshott,W.P. Cottrell,A. First Conference on Probabilistic Political Economy, July 2008, University of Kingston

Cockshott, W.P.

425

Status of hydrogen fuel cell electric buses worldwide  

Science Journals Connector (OSTI)

Abstract This review summarizes the background and recent status of the fuel cell electric bus (FCEB) demonstration projects in North America and Europe. Key performance metrics include accumulated miles, availability, fuel economy, fuel cost, roadcalls, and hydrogen fueling. The state-of-the-art technology used in today's fuel cell bus is highlighted. Existing hydrogen infrastructure for refueling is described. The article also presents the challenges encountered in these projects, the experiences learned, as well as current and future performance targets.

Thanh Hua; Rajesh Ahluwalia; Leslie Eudy; Gregg Singer; Boris Jermer; Nick Asselin-Miller; Silvia Wessel; Timothy Patterson; Jason Marcinkoski

2014-01-01T23:59:59.000Z

426

KEYNOTE ADDRESS ECONOMIES IN TRANSITION: SOME ASPECTS  

E-Print Network [OSTI]

couple of days, with my focus on transition economies and environmental management in this neighborhoodKEYNOTE ADDRESS ECONOMIES IN TRANSITION: SOME ASPECTS OF ENVIRONMENTAL POLICY Jeffrey Sachs. Tel: (617) 495-5999. Fax: (617) 495-0527. #12;2 Keynote Address Economies in Transition: Some Aspects

427

Fuel Cells for a Sustainable Future? Jane Powell, Michael Peters,  

E-Print Network [OSTI]

. The development of fuel cells is considered to be an integral part of a sustainable `hydrogen economy', in whichFuel Cells for a Sustainable Future? Jane Powell, Michael Peters, Alan Ruddell and Jim Halliday March 2004 Tyndall Centre for Climate Change Research Working Paper 50 #12;Fuel Cells for a Sustainable

Watson, Andrew

428

The Economic, Energy, and GHG Emissions Impacts of Proposed 20172025 Vehicle Fuel  

E-Print Network [OSTI]

The Economic, Energy, and GHG Emissions Impacts of Proposed 2017­2025 Vehicle Fuel Economy of the Marine Biology Laboratory (MBL) at Woods Hole, and by short- and long-term visitors to the Program-2025 Vehicle Fuel Economy Standards in the United States Valerie J. Karplus* and Sergey Paltsev* Abstract

429

Development and Demonstration of a Fuel-Efficient HD Engine  

Broader source: Energy.gov [DOE]

Approach to selection of technologies and their contribution to enhance heavy-duty truck fuel efficiency.

430

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

September 22, 2011 September 22, 2011 Brian Andrews is a former meter reader who now works with smart meter and intelligent grid projects. | Image courtesy of CenterPoint Energy. New Technologies Bring New Opportunities for Meter Reader Brian Andrews leveraged training programs to transition from being a meter reader at CenterPoint Energy in Houston, Texas to implementing the company's smart meter and intelligent electric grid projects. September 22, 2011 Recovery Act Energy Jobs Bring New Era of Opportunity Hundreds of thousands of people found work in the past few years thanks to Recovery Act and Energy Department programs designed to stimulate the economy while creating new power sources, conserving resources and aligning the nation to once again lead the global energy economy.

431

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 9, 2011 February 9, 2011 Show me the Data! EIA.gov Just Got Even Better The U.S. Energy Information Administration (EIA) launched a new website that includes new features, even more information, and improved navigation. This is the latest in a comprehensive initiative to improve the agency's capacity to achieve its mission -- collecting, analyzing, and disseminating independent and impartial energy information. February 11, 2011 Winning the Future with a Responsible Budget As part of President Obama's commitment to winning the future, the Department of Energy will make critical investments in science, research and innovation that will create jobs, grow the economy, and position America to lead the global clean energy economy. Next week, the Administration will unveil its budget for FY 2012, which will include over

432

Fuel option for gas turbine  

SciTech Connect (OSTI)

Growth in electricity demand is an average of 10% per year. Energy, emission, and economy are importance of critical concerns for generating systems. Therefore, combined cycle power plant is preferred to Electricity Generating Authority of Thailand (EGAT) new power generating capacity. The various option of available fuel for gas turbine are natural gas, liquid fuel and coal fuel. Particularly with the tremendous price increases in imported and domestic fuel supplies, natural gas is an attractive low cost alternative for power generation. EGAT has researched using heavy fuel instead of natural gas since the year 1991. The problems of various corrosion characteristics have been found. In addition, fuel treatment for gas turbine are needed, and along with it, the environmental consideration are options that provide the limitation of environmental regulation.

Tantayakom, S. [Electricity Generating Authority of Thailand, Nonthaburi (Thailand). Chemical and Analysis Dept.

1995-12-31T23:59:59.000Z

433

Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed...  

Energy Savers [EERE]

fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon...

434

Hydrogen and Fuel Cell Research for Future Markets  

Science Journals Connector (OSTI)

The hydrogen economy is regarded as a vector to increase energy and environmental security. Hydrogen and fuel cell technologies could be an ... in these technologies. A possible shift to hydrogen as an energy car...

Hanns-Joachim Neef

2008-01-01T23:59:59.000Z

435

Non-Petroleum-Based Fuel Effects on Advanced Combustion  

Broader source: Energy.gov (indexed) [DOE]

* Consumers experience 25-30% drop in fuel economy with FFV's, attributable to lower energy content 7 Managed by UT-Battelle for the U.S. Department of Energy FT008: NPBF...

436

A Vehicle Manufacturer's Perspective on Higher-Octane Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of octane rating 4 EPA report 420-R-13-011 "Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2013" Technology is evolving rapidly...

437

SuperTruck Making Leaps in Fuel Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how the Energy Department and industry partners are improving fuel efficiency of long-haul tractor-trailers in an effort to reduce the nation’s oil consumption, decrease carbon pollution, and move our economy forward.

438

Theorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy,  

E-Print Network [OSTI]

of carbon capture and storage and nuclear technologies. These dimensionsöand surface-level to deeperTheorizing the carbon economy: introduction to the special issue The term `carbon economy'often has an adjective placed nearby: the `new'carbon economy, the `low' carbon economy, the carbon `neutral' economy

439

2006-01-0434 Standardized Equation for Hydrogen Gas Densities for Fuel  

E-Print Network [OSTI]

the Fuel Consumption and Range of Fuel Cell Powered Electric and Hybrid Electric Vehicles Using Compressed are presented with experimental data and with the full 32-term equation of state. INTRODUCTION Motor vehicle in fuel economy results. The advent of new drive technology and fuels in motor vehicles has required

Magee, Joseph W.

440

An enriched undergraduate research experience based on the simulation, experiments, and theory of fuel cells  

Science Journals Connector (OSTI)

Fuel cells are one of the key enabling technologies for future hydrogen economy. Some applications for fuel cells can be found in aerospace, automobile vehicles, power generation, etc. Despite their modern high-tech aura, fuel cells actually have been ... Keywords: fuel cell, mathematical model, mentoring, power electronics, renewable energy, undergraduate research

Eduardo Ortiz-Rivera; Andres Salazar-Llinas; Jose Velez-Delgado

2009-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The Effect of Reformate on PEM Fuel Cell Performance Mahesh Murthy  

E-Print Network [OSTI]

Exchanged Membrane (PEM) fuel cells in a "hydrogen-challenged" economy, hydrogen can be produced contains about 35 - 40 % hydrogen [1]. The effects of reformate fuel on the performance of PEM fuel cells in hydrogen for a laboratory polymer electrolyte membrane fuel cell [3, 4]. In these earlier studies

Van Zee, John W.

442

Renewable hydrogen economy in Asia – Opportunities and challenges: An overview  

Science Journals Connector (OSTI)

Abstract Renewable alternative energy sources are getting more attention due to the depleting nature of non-renewable fossil fuels. Increasing global warming, caused by the combustion of fossil fuels, triggered the intense research in finding out better energy options with low emission. Among the potential energy options, hydrogen is a clean fuel candidate as it simply produces water as byproducts when burning. Hydrogen can be generated from different renewable sources and Asia is one of the continents which is rich in renewable energy resources. The resources, safety parameters, public acceptability, and proper government incentives are the major factors affecting the implementation of hydrogen as an economical energy source in Asian countries. The present review deals with the necessity of employing hydrogen as an alternative fuel, its production paths, storage issues, transportation and the available sources. Special emphasis has been given to the discussion of renewable hydrogen economy in some Asian countries like, Japan, Korea, China, India and Malaysia. The challenges in the execution of hydrogen as an economical fuel in Asia are also highlighted.

Manoj Pudukudy; Zahira Yaakob; Masita Mohammad; Binitha Narayanan; Kamaruzzaman Sopian

2014-01-01T23:59:59.000Z

443

Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year?  

Broader source: Energy.gov [DOE]

According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel...

444

Department of Energy Selects Recipients of GNEP Siting Grants | Department  

Broader source: Energy.gov (indexed) [DOE]

Recipients of GNEP Siting Grants Recipients of GNEP Siting Grants Department of Energy Selects Recipients of GNEP Siting Grants November 29, 2006 - 9:34am Addthis Eleven sites to be analyzed for potential nuclear recycling facilities WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that 11 commercial and public consortia have been selected to receive up to $16 million in grants, subject to negotiation, to conduct detailed siting studies for integrated spent fuel recycling facilities under the Global Nuclear Energy Partnership (GNEP) initiative. DOE will award the grants early next year after negotiations are completed with prospective awardees. "As our economy grows so will the need for reliable, emissions-free energy generation. Nuclear energy can help meet that need and GNEP can do it in

445

Final Scientific Report - "Improved Fuel Efficiency from Nanocomposite Tire Tread"  

SciTech Connect (OSTI)

Rolling resistance, a measure of the energy lost as a tire rotates while moving, is a significant source of power and fuel loss. Recently, low rolling resistant tires have been formulated by adding silica to tire tread. These "Green Tires" (so named from the environmental advantages of lower emissions and improved fuel economy) have seen some commercial success in Europe, where high fuel prices and performance drive tire selection. Unfortunately, the higher costs of the silica and a more complicated manufacturing process have prevented significant commercialization - and the resulting fuel savings - in the U.S. In this project, TDA Research, Inc. (TDA) prepared an inexpensive alternative to silica that leads to tire components with lower rolling resistance. These new tire composite materials were processed with traditional rubber processing equipment. We prepared specially designed nanoparticle additives, based on a high purity, inorganic mineral whose surface can be easily modified for compatibility with tire tread formulations. Our nanocomposites decreased energy losses to hysteresis, the loss of energy from the compression and relaxation of an elastic material, by nearly 20% compared to a blank SBR sample. We also demonstrated better performance than a leading silica product, with easier production of our final rubber nanocomposite.

Dr. Andrew Myers

2005-12-30T23:59:59.000Z

446

Ethanol-blended Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

447

Catalysis and the hydrogen economy  

Science Journals Connector (OSTI)

Perspectives regarding the current and future production of hydrogen are offered. It is important to appreciate...2 is captively produced and not easily committed to a major new market need (such as H2 for fuel c...

J. N. Armor

2005-06-01T23:59:59.000Z

448

Electrochemistry and the Hydrogen Economy  

Science Journals Connector (OSTI)

For many years, fuel cells have been considered a possible future means of electricity generation. Perhaps the most dramatic role visualized has been their use as a propulsion system for automobiles—a way of m...

Derek P. Gregory

1975-01-01T23:59:59.000Z

449

Clean Cities Now, Vol. 12, No. 2 - May 2008; Official Publication of Clean Cities and the Alternative Fuels and Advanced Vehicles Data Center (Newsletter)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Law to Increase Fuel Economy to 35 mpg by 2020 Law to Increase Fuel Economy to 35 mpg by 2020 A new law signed by President George W. Bush in December authorizes the U.S. Department of Transporta- tion to set tougher fuel economy standards starting in model year (MY) 2011. Outlined in the Energy Inde- pendence and Security Act (EISA) of 2007, the new standard authorizes vehicles sold in the United States to achieve a combined corporate average fuel economy of at least 35 miles per gallon (mpg) by 2020. It applies

450

Forests and The Texas Economy.  

E-Print Network [OSTI]

I UUL; Z TA24S.7 8873 NO.1S96 (Blank Page In -O~-.BilUetiBJ ' t '. ,-. "0: . : ?. FORESTS AND THE TEXAS ECONOMY by Jay O'Laughlin i\\ssociate Professor Texas i\\gricultural Experiment Station (Department of Forest Science) Texas i...\\&M University and Richard A. Williams Graduate Research i\\ssistant Texas i\\gricultural Experiment Station (Department of Forest Science) Texas i\\&M University The assistance and support of the Texas Forestry Association and the Texas Forest Service...

Laughlin, Jay O'; Williams, Richard A.

1988-01-01T23:59:59.000Z

451

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

agency must select one that is capable of being powered by cleaner fuels, including electricity and natural gas, if the total lifecycle cost of ownership is less than or...

453

Gasoline Jet Fuels  

E-Print Network [OSTI]

C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 Fermentation of sugars Biofuel "Nanobowls" are inorganic catalysts that could provide the selectivity for converting sugars to fuels IACT Proposes Synthetic, Inorganic Catalysts to Produce Biofuels Current Process

Kemner, Ken

454

The Fireman's Handbook and Guide to Fuel Economy  

Science Journals Connector (OSTI)

... this little book. The author, however, is not quite happy in some of his fundamental explanations. Thus on p. 3 we read that “heat is a form of ...

1922-02-16T23:59:59.000Z

455

SEP Success Story: Fueling South Carolina's Clean Energy Economy...  

Broader source: Energy.gov (indexed) [DOE]

South Carolina Community Lights Up the Season with Energy-Efficient Holiday Lights A robot works on crystalline solar cells at Wisconsin-based Helios USA, LLC. The opening of...

456

The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ft10wu.pdf More Documents &...

457

Policy Discussion- Heavy-Duty Truck Fuel Economy  

Broader source: Energy.gov [DOE]

2004 Diesel Engine Emissions Reduction (DEER) Conference Presesntation: National Commission on Energy Policy

458

Gasoline Prices, Fuel Economy, and the Energy Paradox  

E-Print Network [OSTI]

It is often asserted that consumers purchasing automobiles or other goods and services underweight the costs of gasoline or other "add-ons." We test this hypothesis in the US automobile market by examining the effects of ...

Wozny, Nathan

459

A Colorado Perspective: The New Energy Economy  

E-Print Network [OSTI]

transmission, have languished. Colorado looks forward withA Colorado Perspective: The New Energy Economy Jim Martin*REPORTING .. VIII. COLORADO'S STATE

Martin, Jim; Brannon, Ginny

2009-01-01T23:59:59.000Z

460

The Political Economy of Clean Coal .  

E-Print Network [OSTI]

??This dissertation investigates the nature of the political economy of Clean Coal. It begins by reviewing the literature of global warming and the current usage… (more)

Wu, Hao Howard

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Property:AdvancedEconomy | Open Energy Information  

Open Energy Info (EERE)

AdvancedEconomy AdvancedEconomy Jump to: navigation, search This is a property of type Boolean. Pages using the property "AdvancedEconomy" Showing 25 pages using this property. (previous 25) (next 25) A Afghanistan + false + Albania + false + Algeria + false + Andorra + false + Angola + false + Anguilla + false + Antigua and Barbuda + false + Argentina + false + Armenia + false + Aruba + false + Australia + true + Austria + true + Azerbaijan + false + B Bahamas + false + Bahrain + false + Bangladesh + false + Barbados + false + Belarus + false + Belgium + true + Belize + false + Benin + false + Bermuda + false + Bhutan + false + Bolivia + false + Bosnia and Herzegovina + false + (previous 25) (next 25) Retrieved from "http://en.openei.org/w/index.php?title=Property:AdvancedEconomy&oldid=282067#SMWResults"

462

Alternative Fuels Data Center: Biofuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biofuels Promotion to Biofuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Biofuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Biofuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Biofuels Promotion on Google Bookmark Alternative Fuels Data Center: Biofuels Promotion on Delicious Rank Alternative Fuels Data Center: Biofuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Biofuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Promotion The New Jersey Assembly urges the U.S. Congress to maintain the federal Renewable Fuels Standard, which will increase the production of domestic renewable fuel, enhance consumer choice, improve the economy, increase

463

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Consumption and Efficiency Consumption and Efficiency All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Generated_thumb20130810-31804-1ox6tpc Average Annual Fuel Use of Major Vehicle Categories Generated_thumb20130810-31804-1ox6tpc Comparison of fuel use, miles traveled, and fuel economy among vehicle types Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-ufdolp Average Annual Vehicle Miles Traveled of Major Vehicle Categories

464

Clean Cities: Clean Fuels Ohio coalition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Fuels Ohio Coalition Clean Fuels Ohio Coalition The Clean Fuels Ohio coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Fuels Ohio coalition Contact Information Sam Spofforth 614-884-7336 sam@cleanfuelsohio.org Andrew Conley 614-884-7336 andrew@cleanfuelsohio.org Coalition Website Clean Cities Coordinators Coord Sam Spofforth Coord Coord Andrew Conley Coord Photo of Sam Spofforth Sam Spofforth has served as Executive Director of Clean Fuels Ohio since the organization's founding in 2002. Under Spofforth's leadership, Clean Fuels Ohio has become the "go to" resource in Ohio for cleaner fuels, vehicles and energy-saving transportation technologies that reduce climate change, increase American energy security and strengthen Ohio's economy. He

465

Impacts of Comprehensive Climate Legislation on the U.S. Economy | Open  

Open Energy Info (EERE)

Impacts of Comprehensive Climate Legislation on the U.S. Economy Impacts of Comprehensive Climate Legislation on the U.S. Economy Jump to: navigation, search Tool Summary Name: Impacts of Comprehensive Climate Legislation on the U.S. Economy Agency/Company /Organization: Johns Hopkins University and Center for Climate Strategies Sector: Energy Topics: Co-benefits assessment, Implementation, Policies/deployment programs Resource Type: Guide/manual, Lessons learned/best practices Website: www.climatestrategies.us/ewebeditpro/items/O25F23463.PDF Country: United States UN Region: Northern America References: Impacts of Comprehensive Climate Legislation on the U.S. Economy[1] Summary "This Annex provides brief descriptions of the 23 super options that are the basis of this study. To provide some context on the selection of the

466

Alternative Fuels Data Center: Publications  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports National Renewable Energy Laboratory, Golden, Colorado The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge.Each year DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterizes the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this report.

467

Mathematical modeling of polymer exchange membrane fuel cells.  

E-Print Network [OSTI]

??Fuel cells are predicted to be the power delivery devices of the future. They have many advantages such as the wide fuel selection, high energy… (more)

Spiegel, Colleen

2008-01-01T23:59:59.000Z

468

Engineering Economy Outline IE 305-Part 1  

E-Print Network [OSTI]

Rates A fundamental activity of engineering economics is the analysis of the value of a series of cash economic equivalence. Stephen B. Vardeman (ISU) Engineering Economy Outline Fall 2013 7 / 53 #12;ConstantEngineering Economy Outline IE 305-Part 1 Stephen B. Vardeman ISU Fall 2013 Stephen B. Vardeman

Vardeman, Stephen B.

469

The service economy: ‘wealth without resource consumption’?  

Science Journals Connector (OSTI)

...service economy: wealth without resource consumption? W. R. Stahel The Product-Life...with regard to its per capita material consumption in the industrialized countries. A...economy: `wealth without resource consumption'? B y W. R. Stahel The Product-Life...

1997-01-01T23:59:59.000Z

470

THE BURNING OF BIOMASS Economy, Environment, Health  

E-Print Network [OSTI]

THE BURNING OF BIOMASS Economy, Environment, Health Kees Kolff, MD, MPH April 21, 2012 #12;OUR TRUCKS OF BIOMASS/ DAY (Currently 82) #12;BAD FOR THE ECONOMY · Taxpayers will pay 50% - tax credits, etc · Not a cogen project so only 25% efficient · Biomass better for biofuels, not electricity · MILL JOBS

471

The Political Economy of Transition Grard Roland  

E-Print Network [OSTI]

1 The Political Economy of Transition GĂ©rard Roland GĂ©rard Roland is Professor of Economics on an earlier draft. He also thanks symposium participants in Prague, March 23 2001. #12;2 Political economy there was a "window of opportunity" (or a "honeymoon period" or a "period of exceptional politics") created

Sadoulet, Elisabeth

472

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 15, 2012 June 15, 2012 Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Solar in Demand The clean energy economy is here, creating jobs and helping secure our energy independence. June 12, 2012 DOE is investing in projects that will increase energy efficiency in the manufacturing industry. One project will develop a new process for producing titanium components that could reduce the materials needed by ten-fold in aircraft and vehicle manufacturing. | Courtesy of Flickr user markjhandel, Creative Commons license. American Manufacturing Gets a Boost "Invented in America, made in America, and sold around the world." At

473

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

February 8, 2011 February 8, 2011 Energy 101: Solar PV January 31, 2011 Missed the Town Hall with Secretary Chu? Check out the video of our online town hall event with Energy Secretary Chu. January 31, 2011 Are you up for the President's Challenge? Join us at the 2011 ARPA-E Energy Innovation Summit Hundreds of the leaders who are stepping up to this challenge to "out-innovate the rest of the world." January 20, 2011 Discover and Deliver: The Big Picture on Energy Read Secretary Chu's take on how we're changing the way the Department of Energy works by creating new jobs, investing in the clean energy economy, and helping consumers save money while saving energy. January 19, 2011 It Gets Better At the Department of Energy, Secretary Steven Chu has said that one of our

474

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 6, 2010 October 6, 2010 Growth in Solar Means Growth in Ohio Solarbuzz reports that global demand soared by 54 percent in the second quarter of 2010. September 30, 2010 Marking the End of One Recovery Act Chapter and the Beginning of Another The Department formally committed all $32.7 billion of our grand and contract funding to clean energy projects and met the Recovery Act deadline. Now it's time for the recipients to get to work on their innovative projects. September 30, 2010 A Path Forward for the Gulf Coast Our country has made a promise to the people and small businesses of the Gulf Coast to restore their environment, economy and health, and continue a conversation with the fisherman, environmental workers, elected officials, health officials, scientists and Gulf residents on how to restore the Gulf.

475

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 31, 2011 August 31, 2011 Dr. Anthony Atti, CEO of Phononic Devices, demonstrates the standard semiconductor bonding equipment used to fabricate Phononic's high performance thermoelectric devices. Phononic Devices is one of the five innovative ARPA-E Awardees that have attracted over $100 million in outside capital investments. | Photo Courtesy of Phononic Devices. A Major Milestone for ARPA-E To create jobs and lead in the global clean energy economy, the Obama Administration has made a point of supporting game-changing innovations - including the Energy Department's Advance Research Programs Agency for Energy (ARPA-E). August 30, 2011 Vice President Biden Announces New Private Sector Backing for Five Pioneering Energy Companies ARPA-E Awardees Attract Another $100 Million to Advance Clean Energy

476

Energy Economy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 21, 2010 July 21, 2010 This part from the inside of a wind turbine might someday generate clean, renewable energy. | Photo courtesy Merrill Technologies Group Retooling Michigan: 'Wheels' to Wind Merrill is using $3 million awarded through the U.S. Department of Energy's State Energy Program and the Recovery Act to purchase equipment for manufacturing commercial-sized wind turbine systems for a strategic partner who owns the intellectual property. The result - Merrill joins other manufacturers in Michigan's growing clean energy economy industry and creates green jobs. July 20, 2010 Clean Energy Ministerial: Join the Discussion Today marks the second and final day of the world's first Clean Energy Ministerial, which brings together ministers from 23 countries who

477

The Sustainable Global Energy Economy: Hydrogen or Silicon?  

Science Journals Connector (OSTI)

A sustainable global silicon energy economy is proposed as a potential alternative to the hydrogen economy. This first visualization of a silicon energy economy is based on large-scale and carbon- ... uncertainti...

W. Earl Bardsley

2008-12-01T23:59:59.000Z

478

Ecopolitics of 'Green Economy', Environmentalism and Education (with Rodrigo Britez)  

Science Journals Connector (OSTI)

The ‘green economy’ has emerged as a strong policy direction ... oil supplies. The concept of the ‘green economy’ has appeared at the point of the ... promise of distributed energy systems and the ‘hydrogen economy

Michael A. Peters

2012-01-01T23:59:59.000Z

479

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings  

Science Journals Connector (OSTI)

Exhaust Emissions and Combustion Characteristics of a Direct Injection (DI) Diesel Engine Fueled with Methanol?Diesel Fuel Blends at Different Injection Timings ... Because of their fuel economy and high reliability, compression-ignition (CI) engines known as diesel engines have been penetrating a number of markets around the world. ...

Mustafa Canakci; Cenk Sayin; Metin Gumus

2008-09-27T23:59:59.000Z

480

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

Note: This page contains sample records for the topic "fuel economy selected" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

482

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 59, NO. 2, FEBRUARY 2010 589 Electric, Hybrid, and Fuel-Cell Vehicles  

E-Print Network [OSTI]

, and Fuel-Cell Vehicles: Architectures and Modeling C. C. Chan, Fellow, IEEE, Alain Bouscayrol, Member, IEEE, fuel economy, and global warming, as well as energy resource constraints, electric, hybrid, and fuel-cell systems. This paper reviews the state of the art for electric, hybrid, and fuel-cell vehicles

Leung, Ka-Cheong

483

Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison  

SciTech Connect (OSTI)

All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

Ogden, J.; Steinbugler, M.; Kreutz, T. [Princeton Univ., NJ (United States). Center for Energy and Environmental Studies

1997-12-31T23:59:59.000Z

484

Natural Gas Utilities Options Analysis for the Hydrogen Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Utilities Options Analysis for the Hydrogen Economy Natural Gas Utilities Options Analysis for the Hydrogen Economy Presentation by 12-Richards to DOE Hydrogen Pipeline...

485

Natural Gas Utilities Options Analysis for the Hydrogen Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Utilities Options Analysis for the Hydrogen Economy Natural Gas Utilities Options Analysis for the Hydrogen Economy Objectives: Identify business opportunities and...

486

Recent Trends in Car Usage in Advanced Economies - Slower Growth...  

Open Energy Info (EERE)

Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

487

The effects of financial liberalisation in emerging market economies .  

E-Print Network [OSTI]

??The aim of this research is to show the effects of financial liberalisation on emerging market economies, how these economies removed restrictions on financial institutions… (more)

Chauhan, Shobha

2012-01-01T23:59:59.000Z

488

Mongolia-Partnership for Action on Green Economy (PAGE) | Open...  

Open Energy Info (EERE)

Green Economy (PAGE) Jump to: navigation, search Name Mongolia-Partnership for Action on Green Economy (PAGE) AgencyCompany Organization United Nations Environment Programme...

489

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington D.C. tiarravt052ebert2010p.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through...

490

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Peer Evaluation arravt052tiebert2011p.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through...

491

Promoting a Green Economy through Clean Transportation Alternatives...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives Town of Hempstead: Project Energy,...

492

Before the Subcommittee on Environment and the Economy -- House...  

Broader source: Energy.gov (indexed) [DOE]

Environment and the Economy -- House Energy and Commerce Committee Before the Subcommittee on Environment and the Economy -- House Energy and Commerce Committee Testimony of Peter...

493

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY...  

Broader source: Energy.gov (indexed) [DOE]

SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY SECURING OIL AND NATURAL GAS INFRASTRUCTURES IN THE NEW ECONOMY Based on the finding of a growing potential...

494

Hydrogen Consumption Measurement Research Platform for Fuel Cell Vehicles  

Science Journals Connector (OSTI)

Hydrogen consumption measurement research platform is designed for fuel economy test of the proton exchange membrane fuel cell vehicle (PEM FCV). Hardware is constructed with industrial PC (IPC), field bus data acquisition module and device control module. ... Keywords: Hydrogen Consumption Measuremen, LabVIEW, Data Acquisition

Fang Maodong; Chen Mingjie; Lu Qingchun; Jin Zhenhua

2010-06-01T23:59:59.000Z

495

North Central Texas Council of Governments North Central Texas Alternative Fuel and Advanced Technology Investments initiative is one of 25 Area of Interest 4 Selections  

Broader source: Energy.gov (indexed) [DOE]

CLEAN CITIES RECOVERY ACT AWARDS CLEAN CITIES RECOVERY ACT AWARDS FOR ALTERNATIVE AND ADVANCED VEHICLES North Central Texas Council of Governments' North Central Texas Alternative Fuel and Advanced Technology. The project will deploy refueling stations and alternative fuel vehicles in the Dallas-Fort Worth area. The project includes a portfolio of different technologies and fuels, including B20 (three stations), ethanol E85 (three stations), compressed natural gas (three stations and 97 vehicles), electricity (four recharging sites and 34 vehicles), and 251 hybrid electric vehicles. In addition to the city fleets, high mileage and high visibility fleets are included, such as Coca-Cola, Sysco, Frito Lay, school districts, and taxis. DOE estimates that this project will help displace approximately 1.3 million gallons of petroleum annually.

496

President's Hydrogen Fuel Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Workshop on Manufacturing R&D for the Hydrogen Economy Washington, DC July 13, 2005 JoAnn Milliken DOE Hydrogen Program Planning U.S. Energy Dependence is Driven By Transportation * The U.S. imports 55% of its oil; expected to grow to 68% by 2025 under the status quo. * Transportation accounts for 2/3 of the 20 million barrels of oil our nation uses each day. * Gasoline hybrid electric vehicles will help in the near -mid term; a replacement for petroleum is needed for the long-term. 0 2 4 6 8 10 12 14 16 18 20 22 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 Million barrels per day Marine Rail Actual Projection Cars Air Light Trucks Heavy Vehicles U.S. Production Off-Road Projection Hydrogen Provides a Solution Producing hydrogen from domestic resources, including renewable, nuclear, and coal

497

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

driving-behavior Go driving-behavior Go Generated_thumb20130810-31804-1c5lrlb Commuter Responses to the 2008 Oil Price Spike Generated_thumb20130810-31804-1c5lrlb Ways that workers changed their commutes in response to high gasoline prices Last update May 2012 View Graph Graph Download Data Generated_thumb20130810-31804-1jtc9qa Fuel Economy at Various Driving Speeds Generated_thumb20130810-31804-1jtc9qa Trend of fuel efficiency at different speeds, grouped by vehicle age Last update April 2013 View Graph Graph Download Data Generated_thumb20130810-31804-pe0nga Average Vehicle Trip Length by Purpose Generated_thumb20130810-31804-pe0nga Average trip length and distribution by trip type in U.S., 2009 Last update May 2012 View Graph Graph Download Data Commuter Responses to the 2008 Oil Price Spike

498

Problems and policies for transitional economies  

Science Journals Connector (OSTI)

This paper focuses on problems encountered by transitional economies in continued development. It discusses long waves, ascribed by some theoreticians as an explanation for the structural difficulties faced by post-industrial economies. It considers specific recent responses and their uncertainty of success. It then examines Porter's prescriptive model of country competitiveness. Relying on home-based internationally competitive firms, the model is found to be unconvincing in the face of mounting evidence of economic and corporate globalization, and also not quite applicable to transitional economies. Instead, a cooperative strategy developing an attractive business environment and providing locational corporate advantage for all firms, home and foreign-based, appears more defensible.

Arshad M. Khan

1993-01-01T23:59:59.000Z

499

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

ScienceCinema (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems and components; alternative fuels; as well as fuel cells, hybrid electric, and plug-in hybrid vehicles. For a text version of this video visit http://www.nrel.gov/learning/advanced_vehicles_fuels.html

None

2013-05-29T23:59:59.000Z

500

NREL - Advanced Vehicles and Fuels Basics - Center for Transportation Technologies and Systems 2010  

SciTech Connect (OSTI)

We can improve the fuel economy of our cars, trucks, and buses by designing them to use the energy in fuels more efficiently. Researchers at the National Renewable Energy Laboratory (NREL) are helping the nation achieve these goals by developing transportation technologies like: advanced vehicle systems