National Library of Energy BETA

Sample records for fuel economy fact

  1. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The ...

  2. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards Fact 589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards On ...

  3. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact 870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel ...

  4. Fact #692: September 12, 2011 Fuel Economy Distribution for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks Fact 692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks Nearly 64% of ...

  5. Fuel Economy Fact and Fiction | Department of Energy

    Energy Savers [EERE]

    Fact and Fiction Fuel Economy Fact and Fiction April 4, 2011 - 1:01pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With gas prices soaring higher than ever, there's a lot of information-true and false-floating around about fuel economy. From well-intentioned friends to salespeople trying to make a buck, everyone has an opinion on how you can use less gas. Thankfully, the Department of Energy has solid facts based on data that will help you sort out the reality from

  6. Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings

    Broader source: Energy.gov [DOE]

    An increase in fuel economy by 5 miles per gallon (mpg) does not translate to a constant fuel savings amount. Thus, trading a low-mpg car or truck for one with just slightly better mpg will save...

  7. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For more detailed information, see supporting information below. Final MY 2011-2016 Light Truck Fuel Economy Targets Line graph showing the fuel economy targets for light trucks ...

  8. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise Fact 813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise The sales-weighted fuel economy ...

  9. Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy

    Broader source: Energy.gov [DOE]

    The Fuel Economy Guide Web site, sponsored by the U. S. Department of Energy and the U.S. Environmental Protection Agency, displays a list of misconceptions about fuel economy. Knowing the facts on...

  10. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings - Dataset Excel file and dataset for Improvements in Fuel Economy for Low-MPG ...

  11. Fact #680: June 20, 2011 Fuel Economy is "Most Important" When...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle Fact 680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle A June 2011 survey asked the ...

  12. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yield the Greatest Savings - Dataset | Department of Energy 25: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings - Dataset Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings - Dataset Excel file and dataset for Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings File fotw#925_web.xlsx More Documents & Publications Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction

  13. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute A 2014 survey asked a sample of the U.S. population the question "Which one of the following ...

  14. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yield the Greatest Savings | Department of Energy Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings SUBSCRIBE to the Fact of the Week The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a

  15. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

  16. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes

    Broader source: Energy.gov [DOE]

    The graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the two-seater model...

  17. Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel

    Broader source: Energy.gov [DOE]

    A recent study by Oak Ridge National Laboratory shows that the fuel economy of cars and light trucks in the study decreases rapidly at speeds above 50 miles per hour (mph). The study of 74 light...

  18. Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks

    Broader source: Energy.gov [DOE]

    Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or...

  19. Fact #818: April 21, 2014 The Effect of Winter Weather on Fuel Economy

    Broader source: Energy.gov [DOE]

    Winter driving conditions and cold temperatures can have a significant effect on a vehicle’s fuel economy. For a conventional gasoline-powered vehicle, fuel economy at 20°F is about 12% lower than...

  20. Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy...

  1. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014

    Broader source: Energy.gov [DOE]

    The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer’s fleet of new cars or light trucks in a certain model year (MY). First enacted by...

  2. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed

    Broader source: Energy.gov [DOE]

    Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per...

  3. Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content

    Broader source: Energy.gov [DOE]

    The fuel economy of a vehicle is dependent on many things, one of which is the fuel used in the vehicle. Two National Laboratories recently studied the effects that ethanol blends have on the fuel...

  4. Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance

    Broader source: Energy.gov [DOE]

    From 1980 to 2009, there have been significant gains made in automotive technology, but those advancements have been applied toward improved performance and safety rather than fuel economy....

  5. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

    Broader source: Energy.gov [DOE]

    Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent...

  6. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise

    Broader source: Energy.gov [DOE]

    The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel...

  7. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016

    Broader source: Energy.gov [DOE]

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

  8. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

  9. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

  10. Fact #773: April 1, 2013 Fuel Economy Penalty at Higher Speeds

    Broader source: Energy.gov [DOE]

    Each vehicle reaches an optimal fuel economy at a different speed or range of speeds. A recent study by Oak Ridge National Laboratory illustrates that point with a wide range of data collected on...

  11. Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency (EPA) fuel economy ratings on the window stickers of new cars are based on strict test cycles conducted in a controlled laboratory setting. These official EPA...

  12. Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies to Meet Fuel Economy Requirements

    Broader source: Energy.gov [DOE]

    Vehicle manufacturers are turning to vehicle technologies to improve efficiency and meet strict fuel economy requirements. Over the last 10 years, the use of engine technologies like multi-valves...

  13. Fact #804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers

    Broader source: Energy.gov [DOE]

    Because used vehicle sales outnumber new vehicle sales by about three to one, a new tool has been developed that allows those selling used vehicles to produce a fuel economy label for the vehicle....

  14. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type

    Broader source: Energy.gov [DOE]

    The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs)...

  15. Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    In the next few years it is expected that fuel economy standards will be imposed on new medium and heavy trucks sold in the U.S. Currently, the estimates of the medium and heavy truck population...

  16. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity....

  17. Fact #587: September 7, 2009 Cash for Clunkers Program – Fuel Economy Improvement

    Broader source: Energy.gov [DOE]

    The Car Allowance Rebate System (CARS), also known as the Cash for Clunkers Program, provided Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18...

  18. Fact #680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle

    Broader source: Energy.gov [DOE]

    A June 2011 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low...

  19. Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy

    Broader source: Energy.gov [DOE]

    The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars....

  20. Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy

    Broader source: Energy.gov [DOE]

    Researchers at Oak Ridge National Laboratory recently conducted a study that measured the effect of tire pressure on fuel economy at speeds ranging from 40 to 80 miles per hour. The figure below...

  1. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings

    Broader source: Energy.gov [DOE]

    The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel savings amount...

  2. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

    Broader source: Energy.gov [DOE]

    In 1975, only three percent of all new cars had a fuel economy above 25 miles per gallon (mpg), but by 2014, 73% did. Great improvements were made in the fuel economy of cars from 1975 to 1985, so...

  3. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles – Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  4. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  5. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Fact 591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed Seven vehicles were tested by ...

  6. Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7, 2009 Cash for Clunkers Program - Fuel Economy Improvement Fact 587: September 7, 2009 Cash for Clunkers Program - Fuel Economy Improvement The Car Allowance Rebate System ...

  7. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. For example, trading a truck ...

  8. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute

    Broader source: Energy.gov [DOE]

    A 2014 survey asked a sample of the U.S. population the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel...

  9. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

    Broader source: Energy.gov [DOE]

    Despite a 124% increase in horsepower and 47% decrease in 0-60 time from 1980 to 2014, the fuel economy of vehicles improved 27%. All of these data series are sales-weighted averages. The weight of...

  10. Fact #730: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from 1980 to 2011

    Broader source: Energy.gov [DOE]

    In addition to a 120% increase in horsepower and 35% decrease in 0-60 time from 1980 to 2011, the fuel economy of vehicles improved nearly 19%. All of these data series are sales-weighted averages...

  11. BioFacts: Fueling a stronger economy, Global warming and biofuels emissions

    SciTech Connect (OSTI)

    1994-12-01

    The focus of numerous federal and state regulations being proposed and approved today is the reduction of automobile emissions -- particularly carbon dioxide (CO{sub 2}), which is the greenhouse gas considered responsible for global warming. Studies conducted by the USDOE through the National Renewable Energy Laboratory (NREL) indicate that the production and use of biofuels such as biodiesel, ethanol, and methanol could nearly eliminate the contribution of net CO{sub 2} from automobiles. This fact sheet provides and overview of global warming, followed by a summary of NREL`s study results.

  12. Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

  13. Predicting Individual Fuel Economy

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

  14. Fuel Cells Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing fuel cell technologies. PDF icon Fuel Cells Fact Sheet More Documents & ...

  15. Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy

    Broader source: Energy.gov [DOE]

    A February 2009 study conducted by Oak Ridge National Laboratory found that for modern computer-controlled, fuel-injected engines, changing a clogged air filter has no measurable affect on fuel...

  16. Fact #777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important When Purchasing a Vehicle

    Broader source: Energy.gov [DOE]

    A 2012 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low price,...

  17. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  18. 2011 Fuel Economy Guide Now Available

    Broader source: Energy.gov [DOE]

    This annual Fuel Economy Guide provides consumers with information about estimated mileage and fuel costs

  19. Fuel Cells Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel cells are the most energy efficient devices for extracting power from fuels. Capable of running on a variety of fuels, including hydrogen, natural gas, and biogas, fuel cells ...

  20. Fuel Cells Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen fuel cell technology. Fuel Cells More Documents & Publications Hydrogen and Fuel Cell...

  1. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions ...

  2. Fuel Economy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Fuel Economy Ltd. Place: United Kingdom Product: Fuel Economy Ltd is perhaps better known by their core product 'Savastat', the highly...

  3. Fuel Economy Valentines | Department of Energy

    Energy Savers [EERE]

    Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model

  4. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  5. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  6. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  7. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  8. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  9. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  10. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  11. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  12. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  13. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  14. Model Year 2008 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  15. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  16. Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet ...

    Open Energy Info (EERE)

    Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet AgencyCompany Organization: FIA...

  17. Ukraine Fuel Removal: Fact Sheet | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Removal: Fact Sheet | National Nuclear Security Administration Facebook Twitter ... Blog Home Library Fact Sheets Ukraine Fuel Removal: Fact Sheet Ukraine Fuel Removal: ...

  18. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

  19. 2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy

    Energy Savers [EERE]

    09 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than 30

  20. Nuclear Fuel Facts: Uranium | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing

  1. Comparison of Fuel Cell Technologies: Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Fuel Cell Technologies: Fact Sheet Comparison of Fuel Cell Technologies: Fact Sheet An overview comparison of fuel cell technologies by the Fuel Cell Technologies Office. PDF icon Comparison of Fuel Cell Technologies More Documents & Publications Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fuel Cells Fact Sheet MCFC and PAFC R&D Workshop Summary Report

  2. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI ...

  3. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    EPA-Fuel Economy Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy Guide AgencyCompany Organization: United States Environmental Protection Agency...

  4. Technological trends for improving automobile fuel economy

    SciTech Connect (OSTI)

    Katoh, K.

    1984-01-01

    Since the first oil embargo in 1973, energy conservation has been receiving greater attention. In the field of automobiles, the last decade has seen significant improvement in vehicle fuel economy attained by inter-industries comprehensive efforts. Today the theme of ''Age of Unlimited Fuel Economy Competition'' or ''Age of Unlimited MPG Competition'' is often heard and the development of super fuel economy vehicles is being pursued actively. For example, it should be noted that the VW experimental vehicle with a direct-injection diesel engine has already exceeded 80 mpg in the U.S. test cycle. This paper will discuss the recent technological approach, especially from the standpoint of engine design, to achieve further improvements in vehicle fuel economy and its impacts on the properties of fuel and lubricants.

  5. Alternative Fuels Data Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  6. Global Fuel Economy Initiative: 50by50 Prospects and Progress...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentglobal-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates...

  7. What Steps Do You Take to Improve Your Fuel Economy? | Department of Energy

    Energy Savers [EERE]

    Improve Your Fuel Economy? What Steps Do You Take to Improve Your Fuel Economy? April 7, 2011 - 7:30am Addthis On Monday, Shannon told you some facts about fuel economy and how you can use less gas and save money at the pump. What steps do you take to improve your fuel economy? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov.

  8. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  9. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  10. Renewable Fuels and Lubricants Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-08-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  11. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel The Use of Exhaust Gas Recirculation to Optimize Fuel Economy ...

  12. Fuel Economy.gov - Mobile | Open Energy Information

    Open Energy Info (EERE)

    Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile AgencyCompany Organization: United States Department of Energy Sector:...

  13. 2010 Annual Fuel Economy Guide Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their

  14. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are flexible fuel vehicles. The fact sheet discusses how E85 affects vehicle performance, the costs and benefits of using E85, and how to find E85 station locations.

  15. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  16. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  17. International nuclear fuel cycle fact book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  18. Fuel Economy on the Fly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy on the Fly Fuel Economy on the Fly January 18, 2011 - 1:45pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With the North American ...

  19. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms. | Photo...

  20. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms....

  1. 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles November 5, 2015 - 1:07am Addthis Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Shannon Brescher Shea Communications Manager, Clean Cities Program The 2016 Fuel Economy Guide is now available. It provides fuel economy, greenhouse gas emission, and projected fuel cost information on model year

  2. National Template: Stationary & Portable Fuel Cell Systems (Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) US DRIVE Hydrogen Codes and Standards Technical Team Roadmap CODES & STANDARDS FOR THE HYDROGEN ECONOMY...

  3. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...

    Energy Savers [EERE]

    The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - ...

  4. Renewable Fuels and Lubricants (ReFUEL) Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet describes the Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve vehicle efficiency and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such as biodiesel and synthetic diesel derived from biomass. The ReFUEL Laboratory features a chassis dynamometer for vehicle performance and emissions research, two engine dynamometer test cells for advanced fuels research, and precise emissions analysis equipment. As a complement to these capabilities, detailed studies of fuel properties, with a focus on ignition quality, are performed at NREL's Fuel Chemistry Laboratory.

  5. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions and Fuel Economy Analysis Photo of a man hooking up test instruments to an engine mounted on an engine dynamometer. An NREL engineer maintains an engine fuel economy and emissions test stand at the ReFUEL Laboratory. Photo by Dennis Schroeder, NREL NREL's emissions and fuel economy testing and analysis projects help address greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that

  6. Fact #633: July 26, 2010 Alternative Fuel Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: July 26, 2010 Alternative Fuel Vehicles Fact 633: July 26, 2010 Alternative Fuel Vehicles The Energy Information Administration publishes estimates of the number of alternative ...

  7. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 ...

  8. Fact #850: December 8, 2014 Automatic Transmissions have closed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    have closed the Fuel Economy Gap with Manual Transmissions Fact 850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions ...

  9. Fact #682: July 4, 2011 Federal Alternative Fuel Use | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: July 4, 2011 Federal Alternative Fuel Use Fact 682: July 4, 2011 Federal Alternative Fuel Use The Federal Government used nearly 9 million gasoline-gallon equivalents of ...

  10. Fact #704: December 5, 2011 Fuel Consumption Standards for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans Fact 704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans In September ...

  11. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary

  12. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient

    Energy Savers [EERE]

    Vehicle | Department of Energy The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - 1:10pm Addthis Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Jason

  13. Assessment of California reformulated gasoline impact on vehicle fuel economy

    SciTech Connect (OSTI)

    Aceves, S., LLNL

    1997-01-01

    Fuel economy data contained in the 1996 California Air Resources Board (CARB) report with respect to the introduction of California Reformulated Gasoline (CaRFG) has been examined and reanalyzed by two additional statistical methodologies. Additional data has also been analyzed by these two statistical approaches. Within the assumptions of the analysis, point estimates for the reduction in fuel economy using CaRFG as compared to conventional, non-reformulated gasoline were 2-4%, with a 95% upper confidence bound of 6%. Substantial variations in fuel economy are routine and inevitable due to additional factors which affect mileage, even if there is no change in fuel reformulation. This additional analysis confirms the conclusion reached by CARB with respect to the impact of CaRFG on fuel economy.

  14. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

  15. Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, 2014 | Department of Energy Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 Microchannel High-Temperature Recuperator for Fuel Cell Systems - Fact Sheet, 2014 FuelCell Energy, Inc., in collaboration with Pacific Northwest National Laboratory, the Oregon State University Materials Institute, the Microproducts Breakthrough Institute, and the Oregon Nanoscience and Materials Institute, developed an efficient, microchannel-based waste heat recuperator

  16. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  17. Biomass Fueling America’s Growing Clean Energy Economy

    Broader source: Energy.gov [DOE]

    Biomass is the most abundant biological material on the planet. It is renewable; it grows almost everywhere; and it provides fuel, power, chemicals, and many other products. Find out how biomass is helping grow America's clean energy economy.

  18. The Road to Improved Heavy Duty Fuel Economy

    Broader source: Energy.gov [DOE]

    Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is increased or load is decreased, as in long distance on-highway driving

  19. 2012 Fuel Economy of New Vehicles Sets Record High: EPA

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon.

  20. "Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census...

  1. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    This fact sheet describes opportunities for leading fuel cell industry partners from the United States and abroad to participate in an objective and credible fuel cell technology performance and durability analysis by sharing their raw fuel cell test data related to operations, maintenance, safety, and cost with the National Renewable Energy Laboratory via the Hydrogen Secure Data Center.

  2. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

  3. Fact #777: April 29, 2013 For the Second Year in a Row, Survey...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consider Fuel Economy Most Important When Purchasing a Vehicle Fact 777: April 29, 2013 For the Second Year in a Row, Survey Respondents Consider Fuel Economy Most Important ...

  4. Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance but Not Fuel Economy Fact 568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy A February 2009 study ...

  5. Fact #804: November 18, 2013 Tool Available to Print Used Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Available to Print Used Vehicle Fuel Economy Window Stickers Fact 804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers Because used vehicle ...

  6. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  7. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  8. Fuel Economy on the Fly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy on the Fly Fuel Economy on the Fly January 19, 2011 - 5:06pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs What does this mean for me? Fuel Economy information at your fingertips Cross Post from the Energy Savers Blog. Written by Shannon Brescher Shea. With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new

  9. Fueling South Carolina's Clean Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of <a href="http://www.flickr.com/photos/clatiek/47587765/">Flickr user ClatieK</a>. Pure Power, LLC makes products that allow truck engines to reduce emissions and

  10. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  11. Fuel Cell Development and Test Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Fuel Cell Development and Test Laboratory at the Energy Systems Integration Facility. NREL's state-of-the-art Fuel Cell Development and Test Laboratory in the Energy Systems Integration Facility (ESIF) supports NREL's fuel cell research and development projects through in-situ fuel cell testing. Current projects include various catalyst development projects, a system contaminant project, and the manufacturing project. Testing capabilities include but are not limited to single cell fuel cells and fuel cell stacks.

  12. Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

  13. Fact #657: January 10, 2011 Record Increase for New Light Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Record Increase for New Light Vehicle Fuel Economy Fact 657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy The sales-weighted fuel economy average of all ...

  14. California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher

    Broader source: Energy.gov [DOE]

    In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses.

  15. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  16. Global Fuel Economy Initiative | Open Energy Information

    Open Energy Info (EERE)

    & North America, Europe, Latin America & Caribbean, Africa & Middle East Related Tools Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Turn Down the...

  17. Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For a consumer purchasing a new large car in 2008, the highest combined cityhighway fuel economy available was 25 miles per gallon (mpg); for 2013, the top fuel economy of the ...

  18. Advanced Aerodynamic Technologies for Improving Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce these parasitic losses has gained significant attention as fuel costs ...

  19. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  20. International nuclear fuel cycle fact book: Revision 9

    SciTech Connect (OSTI)

    Leigh, I.W.

    1989-01-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  1. Chapter 11. Fuel Economy: The Case for Market Failure

    SciTech Connect (OSTI)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

  2. CleanFleet. Final report: Volume 4, fuel economy

    SciTech Connect (OSTI)

    1995-12-01

    Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

  3. Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

  4. Fuel Technologies: Goals, Strategies, and Top Accomplishments; Vehicle Technologies Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet describes the top accomplishments, goals, and strategies of DOE's Fuel Technologies sub program.

  5. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  6. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February ...

  7. DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    H-Prize Safety Guidelines, Fuel Economy Resources, and More DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy Resources, and More August 6, 2015 - 8:30am Addthis ...

  8. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...

    Broader source: Energy.gov (indexed) [DOE]

    track your own fuel economy and compare it to that of other users and to the test ratings. ... How does your fuel economy compare to the test ratings on Fueleconomy.gov? Each Thursday, ...

  9. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the ...

  10. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by ...

  11. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight...

  12. 2012 Fuel Economy of New Vehicles Sets Record High: EPA | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Fuel Economy of New Vehicles Sets Record High: EPA 2012 Fuel Economy of New Vehicles Sets Record High: EPA December 18, 2013 - 12:00am Addthis The U.S. Environmental...

  13. International nuclear fuel cycle fact book. [Contains glossary

    SciTech Connect (OSTI)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  14. International Nuclear Fuel Cycle Fact Book. Revision 12

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  15. DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency

  16. International nuclear fuel cycle fact book. Revision 4

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  17. International Nuclear Fuel Cycle Fact Book. Revision 5

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  18. Examining new fuel economy standards for the United States.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-01-01

    After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

  19. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

  20. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  1. Vehicle Technologies Office Merit Review 2015: Fuel Economy Information Project- Research, Data Validation, and Technical Assistance Related to Collecting, Analyzing, and Disseminating Accurate Fuel Economy Information

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel economy...

  2. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  3. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  4. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected during this period lead to the conclusion that the BMW Hydrogen 7 Mono-Fuel demonstration vehicles are likely the cleanest combustion engine vehicles ever tested at Argonne's APRF.

  5. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?

    Energy Savers [EERE]

    | Department of Energy Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles. Fueleconomy.gov also offers a tool called Your MPG, where you can track your own fuel economy and compare it to that of other users and to the test ratings. Many factors

  6. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David; Gibson, Robert

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  7. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates

    Broader source: Energy.gov [DOE]

    Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

  8. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  9. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  10. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  11. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    07-01-3994 Fuel Economy and Emissions of the Ethanol- Optimized Saab 9-5 Biopower Brian H. ... use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. ...

  12. DOE and EPA Release 2012 Annual Fuel Economy Guide | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Annual Fuel Economy Guide DOE and EPA Release 2012 Annual Fuel Economy Guide November 16, 2011 - 2:37pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help them choose a more efficient new vehicle that saves them money and reduces greenhouse gas emissions. While fuel efficient vehicles come in a variety of fuel types, classes, and sizes, many

  13. Fact #897: November 2, 2015 Fuel Wasted in Traffic Congestion...

    Energy Savers [EERE]

    Powertrain Efficiency Improvements, 2005 to 2013 - Dataset Fact 883: July 27, 2015 Hybrid Powertrains are More Efficient than Conventional Counterparts - Dataset Fact 869:...

  14. Analysis of In-Use Fuel Economy Shortfall Based on Voluntarily Reported MPG Estimates

    SciTech Connect (OSTI)

    Greene, David L; Goeltz, Rick; Hopson, Dr Janet L; Tworek, Elzbieta

    2007-01-01

    The usefulness of the Environmental Protection Agency's (EPA) passenger car and light truck fuel economy estimates has been the subject of debate for the past three decades. For the labels on new vehicles and the fuel economy information given to the public, the EPA adjusts dynamometer test results downward by 10% for the city cycle and 22% for the highway cycle to better reflect real world driving conditions. These adjustment factors were developed in 1984 and their continued validity has repeatedly been questioned. In March of 2005 the U.S. Department of Energy (DOE) and EPA's fuel economy information website, www.fueleconomy.gov, began allowing users to voluntarily share fuel economy estimates. This paper presents an initial statistical analysis of more than 3,000 estimates submitted by website users. The analysis suggests two potentially important results: (1) adjusted, combined EPA fuel economy estimates appear to be approximately unbiased estimators of the average fuel economy consumers will experience in actual driving, and (2) the EPA estimates are highly imprecise predictors of any given individual's in-use fuel economy, an approximate 95% confidence interval being +/-7 MPG. These results imply that what is needed is not less biased adjustment factors for the EPA estimates but rather more precise methods of predicting the fuel economy individual consumers will achieve in their own driving.

  15. Examining the potential for voluntary fuel economy standards in the United States and Canada.

    SciTech Connect (OSTI)

    Plotkin, S.; Greene, D.; Duleep, K.

    2003-03-19

    This report is designed to assist the U.S. Department of Energy, the U.S. government in general, and Natural Resources Canada with understanding the potential for voluntary fuel economy standards designed to increase the fuel economy of the North American fleet of light-duty vehicles (LDVs-passenger cars and light trucks) within a 10-15-year timeframe. The approach of this study has been: First, to examine and evaluate recent fuel economy initiatives taken in Japan and Europe; Second, to review the technologies available to improve fuel economy in the U.S. (and Canadian) fleets, focusing on their costs and fuel economy improvement potential; Third, to identify and broadly evaluate some alternatives to the current U.S. and Canadian Corporate Average Fuel Economy system of specifying uniform fuel economy targets (27.5 mpg for cars, 20.7 mpg for light trucks) for individual companies; and Fourth, to try to determine an approximate level of fuel economy increase and form of company agreements that would be conducive to a voluntary agreement, based on the assumption that an acceptable voluntary standard would impose an equitable burden on each manufacturer and would be approximately cost-effective from consumers' private perspectives.

  16. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  17. Straight Vegetable Oil as a Diesel Fuel? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  18. Fact #883 July 27, 2015 Hybrid Powertrains are More Efficient...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 July 27, 2015 Hybrid Powertrains are More Efficient than Conventional Counterparts Fact ... Many cars have a fuel economy advantage over light trucks due to weight and aerodynamics, ...

  19. Fact #868: April 13, 2015 Automotive Technology Has Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Fact 868: April 13, 2015 Automotive Technology Has Improved Performance and ...

  20. DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2013

  1. EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers November 6, 2014 - 12:07pm Addthis NEWS MEDIA CONTACT 202-586-4940 The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2015 Fuel Economy Guide, providing consumers with a valuable resource to help them choose the most fuel-efficient and low greenhouse gas emitting vehicles that meet their needs. In comparison to previous

  2. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  3. Gasoline-fueled hybrid vs. conventional vehicle emissions and fuel economy.

    SciTech Connect (OSTI)

    Anderson, J.; Bharathan, D.; He, J.; Plotkin, S.; Santini, D.; Vyas, A.

    1999-06-18

    This paper addresses the relative fuel economy and emissions behavior, both measured and modeled, of technically comparable, contemporary hybrid and conventional vehicles fueled by gasoline, in terms of different driving cycles. Criteria pollutants (hydrocarbons, carbon monoxide, and nitrogen oxides) are discussed, and the potential emissions benefits of designing hybrids for grid connection are briefly considered. In 1997, Toyota estimated that their grid-independent hybrid vehicle would obtain twice the fuel economy of a comparable conventional vehicle on the Japan 10/15 mode driving cycle. This initial result, as well as the fuel economy level (66 mpg), made its way into the U.S. press. Criteria emissions amounting to one-tenth of Japanese standards were cited, and some have interpreted these results to suggest that the grid-independent hybrid can reduce criteria emissions in the U.S. more sharply than can a conventional gasoline vehicle. This paper shows that the potential of contemporary grid-independent hybrid vehicle technology for reducing emissions and fuel consumption under U.S. driving conditions is less than some have inferred. The importance (and difficulty) of doing test and model assessments with comparable driving cycles, comparable emissions control technology, and comparable performance capabilities is emphasized. Compared with comparable-technology conventional vehicles, grid-independent hybrids appear to have no clear criteria pollutant benefits (or disbenefits). (Such benefits are clearly possible with grid-connectable hybrids operating in zero emissions mode.) However, significant reductions in greenhouse gas emissions (i.e., fuel consumption) are possible with hybrid vehicles when they are used to best advantage.

  4. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet)

    Broader source: Energy.gov [DOE]

    This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's (DOE) involvement; included are specifications for the fuel cell bus and information about its operation.

  5. Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Levied on New Cars with Low Fuel Economy Fact 724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy The "Gas Guzzler Tax" is collected from the ...

  6. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of New Cars have Fuel Economy above 25 Miles per Gallon Fact 848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon In ...

  7. NREL's ReFUEL Laboratory: Center for Transportation Technologies and Systems (CTTS) Fact Sheet

    SciTech Connect (OSTI)

    Not Available

    2002-09-01

    CTTS fact sheet describing NREL's new Renewable Fuels and Lubricants (ReFUEL) Research Laboratory, which will be used to facilitate increased renewable diesel use in heavy-duty vehicles.

  8. Fuel Synthesis Catalysis Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Synthesis Catalyst Testing Equipment Specifications Systems 10 mL isothermal tubular ... Massatomic balances 3% typical This bench-scale fuel synthesis reactor can be used to ...

  9. Fueling Robot Automates Hydrogen Hose Reliability Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Harrison, K.

    2014-01-01

    Automated robot mimics fueling action to test hydrogen hoses for durability in real-world conditions.

  10. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Light-Duty Advanced Technology Powertrain | Department of Energy FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain March 7, 2016 - 10:57am Addthis EERE Success Story—FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story—FCA and Partners Achieve 25%

  11. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be used in vehicles. | Photo courtesy

  12. Alternative Fuel and Advanced Vehicle Tools (AFAVT), AFDC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The Alternative Fuels and Advanced Vehicles Web site offers a collection of calculators, interactive maps, and informational tools to assist fleets, fuel providers, and others looking to reduce petroleum consumption in the transportation sector.

  13. Fact #648: November 8, 2010 Conventional and Alternative Fuel Prices

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy's Clean Cities Alternative Fuel Price Report is a quarterly report that tracks prices for conventional and alternative fuels in the U.S. The graph below shows the...

  14. Fuel Cell Technologies Office: Technology Validation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel cells are a critical part of the Energy Department's balanced portfolio of research and development activities and its "all-of- the-above" energy strategy. The Fuel Cell ...

  15. EPAct Alternative Fuel Transportation Program: Success Story (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    This success story highlights the EPAct Alternative Fuel Transportation Program's series of workshops that bring fleets regulated under the Energy Policy Act of 1992 (EPAct) together with Clean Cities stakeholders and fuel providers to form and strengthen regional partnerships and initiate projects that will deploy more alternative fuel infrastructure.

  16. Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.

  17. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  18. Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles

    Broader source: Energy.gov [DOE]

    The U.S. Energy Department and the Environmental Protection Agency (EPA) released a new label that features EPA fuel economy estimates and CO2 estimates for used vehicles sold in the United States since 1984.

  19. New Find-a-Car App Brings Fuel Economy Right to Your Phone

    Broader source: Energy.gov [DOE]

    With more car buyers than ever using the Internet to research their future vehicles, accessing information on fuel economy needs to be simple and convenient. To make searching easier on mobile...

  20. Turbocharged Spark Ignited Direct Injection- A Fuel Economy Solution for The US

    Broader source: Energy.gov [DOE]

    Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers double digit fuel economy benefits, much lower cost than diesel or hybrid.

  1. EPA and DOE Release Annual Fuel Economy Guide with 2014 Models...

    Office of Environmental Management (EM)

    EPA and DOE Release Annual Fuel Economy Guide with 2014 ... and the Department of Energy (DOE) are releasing the ... like air conditioning usage and a variety of speed and ...

  2. DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources, and More | Department of Energy H-Prize Safety Guidelines, Fuel Economy Resources, and More DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy Resources, and More August 6, 2015 - 8:30am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch

  3. Fact #897 November 2, 2015 Fuel Wasted in Traffic Congestion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SUBSCRIBE to the Fact of the Week The researchers at the Texas Transportation Institute ... 2.5 2012 3.0 2013 3.1 2014 3.1 Source: Texas Transportation Institute, 2015 Urban ...

  4. Fun Fact Friday: Fueling Growth | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recent Energy Department reports indicate the fuel cell and hydrogen industry is continuing to grow. | Photo courtesy of Plug Power, Inc. Paul Lester Paul Lester Digital Content ...

  5. Fact #706: December 19, 2011 Vocational Vehicle Fuel Consumption Standards

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration recently published final fuel consumption standards for heavy vehicles called "vocational" vehicles. A vocational vehicle is generally a single...

  6. Fact #705: December 12, 2011 Fuel Consumption Standards for Combinatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    mid, and high), gross vehicle weight rating (class 7 and 8), and types of tractor (day cab, sleeper cab). Combination Tractor Fuel Consumption Standards, Model Years (MY)...

  7. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  8. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Except for two-seater cars, these vehicle classes all contain hybrid models which greatly extend the range of their respective classes. Consumers interested in purchasing a vehicle ...

  9. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  10. Fact# 905: December 28, 2015 Alternative Fuels Account for One...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in 2013. Beginning in the mid-2000's biodiesel, a diesel fuel based on vegetable oil or animal fat was also used in transit buses. Biodiesel is typically blended with ...

  11. Fact #817: February 17, 2014 Conventional and Alternative Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The figure below shows quarterly price fluctuations for select fuel types from 2000 to 2013. Gasoline, diesel, propane, E85 (85% ethanol and 15% gasoline), and B20 (20% biodiesel ...

  12. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  13. Fact #581: July 27, 2009 Fuel Wasted in Traffic Congestion

    Broader source: Energy.gov [DOE]

    The researchers at the Texas Transportation Institute have recently published new estimates of the effects of traffic congestion. Nearly 3 billion gallons of fuel is wasted each year due to traffic...

  14. Making Fuel Cells Cleaner, Better, and Cheaper(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    This NREL S&T Highlights describes NREL work to reduce contaminants in fuel cells, enabling the industry to cut costs and commercialize state-of-the-art technologies.

  15. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet)

    Broader source: Energy.gov [DOE]

    Fact sheet describes the initiation of NREL’s evaluation of a fuel cell hybrid electric bus at Hickam Air Force Base in Honolulu, Hawaii as part of DOE’s Hydrogen, Fuel Cells & Infrastructure Technologies Program.

  16. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.

    Broader source: Energy.gov [DOE]

    Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOE’s Advanced Vehicle Testing Activity.

  17. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  18. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  19. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sheet, 2015 | Department of Energy Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2015 TDA Research Inc., in collaboration with FuelCell Energy, is developing a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing

  20. High Fuel Economy Heavy-Duty Truck Engine

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  1. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year?

    Broader source: Energy.gov [DOE]

    According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline vehicle with that fuel...

  4. Alternative fuel information: Facts about CNG and LPG conversion

    SciTech Connect (OSTI)

    O`Connor, K.

    1994-06-01

    As new environmental and energy related laws begin to take effect, increasing numbers of alternative fuel vehicles (AFVs) will be required in federal, state, municipal, and private fleets across the country. The National Energy Policy Act of 1992 and the Clean Air Act Amendments of 1990, along with several new state and local laws, will require fleet managers to either purchase original equipment manufacturer (OEM) vehicles, which are produced by automakers, or convert existing vehicles to run on alternative fuels. Because there is a limited availability and selection of OEM vehicles, conversions are seen as a transition to the time when automakers will produce more AFVs for public sale. A converted vehicle is any vehicle that originally was designed to operate on gasoline, and has been altered to run on an alternative fuel such as compressed natural gas (CNG) or propane (liquefied petroleum gas -- LPG), the two most common types of fuel conversions. In the United States, more than 25,000 vehicles already have been converted to COG, and 300,000 have been converted to LPG.

  5. Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed

    SciTech Connect (OSTI)

    Thomas, John F; Hwang, Ho-Ling; West, Brian H; Huff, Shean P

    2013-01-01

    The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

  6. Hydrogen and Fuel Cell Technologies Program: Storage Fact Sheet

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Storage Hydrogen Storage Developing safe, reliable, compact, and cost-effective hydrogen storage tech- nologies is one of the most technically challenging barriers to the widespread use of hydrogen as a form of energy. To be competitive with conventional vehicles, hydrogen-powered cars must be able to travel more than 300 mi between flls. This is a challenging goal because hydrogen has physical characteristics that make it

  7. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  8. Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy

    Broader source: Energy.gov [DOE]

    Proposed statement of work for the upcoming solicitation for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy.

  9. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Broader source: Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  10. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  11. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  12. We Can't Wait: Driving Forward with New Fuel Economy Standards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car

  13. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  14. Annual Fuel Economy Guide with 2014 Models Released | Department...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Environmental Protection Agency (EPA) and the Energy ... including an estimated annual fuel cost for each vehicle. ... like air conditioning usage and a variety of speed and ...

  15. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  16. National Labs Work to Settle PHEV Fuel Economy Conundrum - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL National Labs Work to Settle PHEV Fuel Economy Conundrum NREL-developed methodology shows promise for estimating real-world energy use September 28, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently joined forces with researchers from Idaho National Laboratory (INL) and Argonne National Laboratory (ANL) to take the lead in developing and testing a new method for predicting the real-world fuel and electricity consumption of plug-in hybrid

  17. Real-World PHEV Fuel Economy Prediction | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    11 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss047_gonder_2011_o.pdf More Documents & Publications Light Duty Plug-in Hybrid Vehicle Systems Analysis Defining Real World Drive Cycles to Support APRF Technology Evaluations Analysis of maximizing the Synergy between PHEVs/EVs and PV

  18. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  19. 2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy

    Energy Savers [EERE]

    Department of Energy 3 Diesel Engine Emissions Reduction (DEER) Conference Presentations 2003 Diesel Engine Emissions Reduction (DEER) Conference Presentations August 24-28, 2003 Newport, Rhode Island The following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Plenary Session: A View from the Bridge Session 6: Environmentally Concerned Public Sector Organization Panel Session 1: Emerging Diesel Technologies Session 7: Combustion and HCCI Regimes Session 2: Fuels and

  20. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuels characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the projects objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  1. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  2. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  3. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    What is an FFV? An FFV, as its name implies, has the flex- ibility of running on more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Like conventional gasoline vehicles, FFVs have a single fuel tank, fuel system, and engine. And they are available in a wide range of models such as sedans, pickups, and minivans. Light-duty FFVs are designed to operate with at least 15% gasoline in the fuel, mainly to ensure they start in cold weather. FFVs

  4. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect (OSTI)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  5. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  6. Fuel economy and emissions reduction of HD hybrid truck over transient

    Broader source: Energy.gov (indexed) [DOE]

    driving cycles and interstate roads | Department of Energy Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks PDF icon p-12_gao.pdf More Documents & Publications Advanced HD Engine Systems and Emissions Control Modeling and Analysis Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office Merit Review 2014: Advanced Heavy-Duty Engine Systems and Emissions Control Modeling

  7. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51%...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014 Fact 849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better ...

  8. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a...

  9. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards

    Broader source: Energy.gov [DOE]

    On September 15, the U.S. Environmental Protection Agency (EPA) and U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA) jointly announced a proposal to...

  10. Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

    SciTech Connect (OSTI)

    West, Brian H; Lopez Vega, Alberto; Theiss, Timothy J; Graves, Ronald L; Storey, John Morse; Lewis Sr, Samuel Arthur

    2007-01-01

    Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

  11. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  12. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  13. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  14. Install Waste Heat Recovery Systems for Fuel-Fired Furnaces (English/Chinese) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Chinese translation of ITP fact sheet about installing Waste Heat Recovery Systems for Fuel-Fired Furnaces. For most fuel-fired heating equipment, a large amount of the heat supplied is wasted as exhaust or flue gases. In furnaces, air and fuel are mixed and burned to generate heat, some of which is transferred to the heating device and its load. When the heat transfer reaches its practical limit, the spent combustion gases are removed from the furnace via a flue or stack. At this point, these gases still hold considerable thermal energy. In many systems, this is the greatest single heat loss. The energy efficiency can often be increased by using waste heat gas recovery systems to capture and use some of the energy in the flue gas. For natural gas-based systems, the amount of heat contained in the flue gases as a percentage of the heat input in a heating system can be estimated by using Figure 1. Exhaust gas loss or waste heat depends on flue gas temperature and its mass flow, or in practical terms, excess air resulting from combustion air supply and air leakage into the furnace. The excess air can be estimated by measuring oxygen percentage in the flue gases.

  15. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  16. Voluntary Truck and Bus Fuel-Economy-Program marketing plan. Final technical report, September 29, 1980-January 29, 1982

    SciTech Connect (OSTI)

    1982-01-01

    The aim of the program is to improve the utilization of fuel by commercial trucks and buses by updating and implementing specific approaches for educating and monitoring the trucking industry on methods and means of conserving fuels. The following outlines the marketing plan projects: increase use of program logo by voluntary program members and others; solicit trade publication membership and support; brief Congressional delegations on fuel conservation efforts; increase voluntary program presence before trade groups; increase voluntary program presence at truck and trade shows; create a voluntary program display for use at trade shows and in other areas; review voluntary program graphics; increase voluntary program membership; and produce placemats carrying fuel conservation messages; produce a special edition of Fuel Economy News, emphasizing the driver's involvement in fuel conservation; produce posters carrying voluntary program fuel conservation message. Project objectives, activities, and results for each project are summarized.

  17. Vehicle Technologies' Fact of the Week 2012

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Moore, Sheila A; Boundy, Robert Gary

    2013-02-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2012. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  18. Vehicle Technologies Fact of the Week 2013

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Williams, Susan E; Moore, Sheila A; Boundy, Robert Gary

    2014-03-01

    Each week the U.S. Department of Energy s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2013. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  19. Vehicle Technologies' Fact of the Week 2011

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W; Boundy, Robert Gary

    2012-04-01

    Each week the U.S. Department of Energy s Vehicle Technology Program (VTP) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/. These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current Fact is available Monday through Friday on the VTP homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2011. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  20. Vehicle Technologies’ Fact of the Week 2013

    SciTech Connect (OSTI)

    Davis, Stacy Cagle; Diegel, Susan W.; Moore, Sheila A.; Boundy, Robert Gary

    2014-04-01

    Each week the U.S. Department of Energy’s Vehicle Technology Office (VTO) posts a Fact of the Week on their website: http://www1.eere.energy.gov/vehiclesandfuels/ . These Facts provide statistical information, usually in the form of charts and tables, on vehicle sales, fuel economy, gasoline prices, and other transportation-related trends. Each Fact is a stand-alone page that includes a graph, text explaining the significance of the data, the supporting information on which the graph was based, and the source of the data. A link to the current week’s Fact is available on the VTO homepage, but older Facts are archived and still available at: http://www1.eere.energy.gov/vehiclesandfuels/facts/. This report is a compilation of the Facts that were posted during calendar year 2013. The Facts were written and prepared by staff in Oak Ridge National Laboratory's Center for Transportation Analysis.

  1. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #832: Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

  2. Fact #679: June 13, 2011 U.S. Imports of Fuel Ethanol Drop Sharply

    Broader source: Energy.gov [DOE]

    U.S. imports of fuel ethanol were low until 2004 when imports began to rise sharply. By 2006 imports of fuel ethanol reached a record high of 735.8 million gallons. As domestic supply of fuel...

  3. Fact #635: August 9, 2010 Fuel Consumption from Lawn and Garden Equipment

    Broader source: Energy.gov [DOE]

    Most lawn and garden equipment uses gasoline instead of diesel fuel. Mowing equipment consumes nearly half of all the fuel used by lawn and garden equipment. The fuel used in this equipment...

  4. Fact #634: August 2, 2010 Off-highway Transportation-related Fuel Consumption

    Broader source: Energy.gov [DOE]

    The Environmental Protection Agency's NONROAD2008a model estimates fuel use for off-highway equipment. Construction and mining equipment using diesel fuel account for the majority of this fuel use....

  5. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  6. Renewable Fuels and Lubricants Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Fuels and Lubricants Laboratory State-of-the-Art Fuel and Vehicle Testing The Renewable Fuels and Lubricants (ReFUEL) Laboratory at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is a state-of-the-art research and testing facility for advanced fuels and vehicles. Research and development aims to improve efficiency of conventional gasoline-powered vehicles and overcome barriers to the increased use of renewable diesel and other nonpetroleum-based fuels, such

  7. Alternative Fuels Data Center (Fact Sheet), Clean Cities, Vehicle Technologies Office (VTO)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to

  8. Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-12-01

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines.

  9. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    SciTech Connect (OSTI)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  10. More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports on the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.

  11. Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FUEL CELL FUEL CELL FUEL CELL Fourth Edition November 1998 Fuel Cell Handbook Fuel Cell Handbook Fourth Edition November 1998 DOE/FETC-99/1076 by J.H. Hirschenhofer, D.B. Stauffer, R.R. Engleman, and M.G. Klett Parsons Corporation Reading, PA 19607 Under Contract No. DE-AC21-94MC31166 for U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center P.O. Box 880, 3610 Collins Ferry Road Morgantown, WV 26507-0880 Fuel Cell Handbook, Fourth Edition Contents Disclaimer List of

  12. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These systems provide power for cab heating and cooling, powering lifts, welding equipment, power tools, laptops and other equipment while the main truck engine is shut down. Fact ...

  13. Fact #576: June 22, 2009 Carbon Dioxide from Gasoline and Diesel Fuel

    Broader source: Energy.gov [DOE]

    The amount of carbon dioxide released into the atmosphere by a vehicle is primarily determined by the carbon content of the fuel. However, there is a small portion of the fuel that is not oxidized...

  14. Fact #699: October 31, 2011 Transportation Energy Use by Mode and Fuel Type, 2009

    Broader source: Energy.gov [DOE]

    Highway vehicles are responsible for most of the energy consumed by the transportation sector. Most of the fuel used in light vehicles is gasoline, while most of the fuel used in med/heavy trucks...

  15. Fact #776: April 22, 2013 Fuel Savings from Attempts to Alleviate Traffic Congestion

    Broader source: Energy.gov [DOE]

    Despite the news that traffic congestion wasted nearly 2.9 billion gallons of fuel in 2011, fuel savings were achieved due to efforts to combat congestion. According to the Texas Transportation...

  16. Fact #817: February 17, 2014 Conventional and Alternative Fuel Price Trends from 2000 to 2013

    Broader source: Energy.gov [DOE]

    Retail prices for most transportation fuels have been highly volatile over the past 13 years. The figure below shows quarterly price fluctuations for select fuel types from 2000 to 2013. Gasoline,...

  17. Fact #650: November 22, 2010 Diesel Fuel Prices hit a Two-Year High

    Office of Energy Efficiency and Renewable Energy (EERE)

    According to the Energy Information Administration's weekly fuel price data, the price of highway diesel fuel on the week of November 17, 2010, reached a 2-year high of $3.18 per gallon. Back in...

  18. What Is the Alternative Fuels and Advance Vehicles Data Center? (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    Document gives an overview of the material and tools on the Alternative Fuels and Advanced Vehicles Data Center Web site.

  19. Low-NOx Gas Turbine Injectors Utilizing Hydrogen-Rich Opportunity Fuels- Fact Sheet, 2015

    Broader source: Energy.gov [DOE]

    Factsheet summarizing how this project will modify a gas turbine combustion system to operate on hydrogen-rich opportunity fuels

  20. Motor Fuel Excise Taxes (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Motor Fuel Excise Taxes A new report from the National Renewable Energy Laboratory (NREL) explores the role of alternative fuels and energy efficient vehicles in motor fuel taxes. Throughout the United States, it is common practice for federal, state, and local governments to tax motor fuels on a per gallon basis to fund construction and maintenance of our transportation infrastructure. In recent years, however, expenses have outpaced revenues-creating substantial funding shortfalls that have

  1. The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions

    Broader source: Energy.gov [DOE]

    Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints.

  2. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  3. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energy’s Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  4. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "full power mode," this vehicle only used more efficient stoichiometric fueling, when the engine injects an even mixture of fuel and air during the piston's intake stroke. ...

  5. Fuel Injector Holes | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  6. Careers in Fuel Cell Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Careers in Fuel Cell Technologies Careers in Fuel Cell Technologies Fact sheet produced by the Fuel Cell Technologies Office describing job growth potential in existing and emerging fuel cell applications. PDF icon Careers in Fuel Cell Technologies More Documents & Publications Education and Outreach Fact Sheet Effects Of a Transition to a Hydrogen Economy on Employment in the United States: Report to Congress Hydrogen and Fuel Cell Technologies Overview

  7. National Template: Stationary & Portable Fuel Cell Systems (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: Energy.gov [DOE]

    This graphic template shows the SDOs responsible for leading the support and development of key codes and standards for stationary and portable fuel cell systems.

  8. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  9. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles.

  10. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  11. Perspective and current status on fuel cycle system of fast reactor cycle Technology development (FaCT) project in Japan

    SciTech Connect (OSTI)

    Funasaka, Hideyuki; Itoh, Masanori

    2007-07-01

    FaCT Project taking over from Feasibility Study on Commercialized FR cycle system (FS) has been launched in 2006 by Japanese joint team with the participation of all parties concerned in Japan. Combination system of (the sodium-cooled reactor,) the advanced aqueous reprocessing system and the simplified pelletizing fuel fabrication (MOX fuel) is evaluated as the most promising fuel cycle system concept so that it has potential conformity to the design requirements, as well as a high level of technical feasibility as the final report of Phase II in FS. Current status and R and D prospects for this combination system of the advanced aqueous reprocessing system and the simplified pelletizing fuel fabrication (MOX fuel) system until around 2015 have been studied. Then, it is anticipated that in FR reprocessing commercial facility will start to operate around same time that in LWR reprocessing subsequent plant will be required to replace Rokkasho Reprocessing Plant (provided that life time 40 years) around 2050. From the view point of the smooth transition from LWRs to FRs in approximately the year 2050 and beyond in Japan, some issues on fuel cycle have been also discussed. (authors)

  12. Vehicle Technologies Office Merit Review 2015: Fuel Economy Guide and fueleconomy.gov Website

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel...

  13. Fact #651: November 29, 2010 Hybrid Vehicles Dominate EPA's Top Ten Fuel Sippers List for 2011

    Broader source: Energy.gov [DOE]

    Each year, the Environmental Protection Agency (EPA) produces a list of the top ten most fuel efficient vehicles for the model year. In past years, it was the small, lightweight vehicles that...

  14. Fact #704: December 5, 2011 Fuel Consumption Standards for New Heavy Pickups and Vans

    Broader source: Energy.gov [DOE]

    In September 2011 the National Highway Traffic Safety Administration issued the final rule to set standards regulating the fuel use of new vehicles heavier than 8,500 lbs. gross vehicle weight....

  15. Fact #861 February 23, 2015 Idle Fuel Consumption for Selected Gasoline and Diesel Vehicles

    Broader source: Energy.gov [DOE]

    Based on a worksheet developed by Argonne National Laboratory, the idle fuel consumption rate for selected gasoline and diesel vehicles with no load (no use of accessories such as air conditioners,...

  16. Fact #776: April 22, 2013 Fuel Savings from Attempts to Alleviate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Saved Due to Methods of Alleviating Congestion Year Operational Treatments and High-Occupancy Vehicle Lanes Public Transportation 1982 1 204 1983 4 208 1984 7 219 1985 9 235 ...

  17. Fact #718: March 12, 2012 Number of Flex-Fuel Models Offered Increased in 2011

    Broader source: Energy.gov [DOE]

    General Motors (GM), Ford, and Chrysler have produced many different models of flex-fuel vehicles (cars and light trucks) over the last five years. In 2011, the number of models offered by those...

  18. Fact #645: October 18, 2010 Price of Diesel Fuel versus Gasoline in Europe

    Broader source: Energy.gov [DOE]

    A comparison between the average annual price of a gallon of gasoline and a gallon of highway diesel fuel in several European countries shows that a large change took place in 2008. In most of the...

  19. Fact #764: January 28, 2013 Model Year 2013 Brings More Fuel Efficient Choices for Consumers

    Broader source: Energy.gov [DOE]

    Over the last six years, manufacturers have made more fuel efficient choices available to consumers in several size classes. For a consumer purchasing a new large car in 2008, the highest combined...

  20. Fact #705: December 12, 2011 Fuel Consumption Standards for Combination Tractors

    Broader source: Energy.gov [DOE]

    The National Highway Traffic Safety Administration published a final rule setting fuel consumption standards for heavy trucks in September 2011. For tractor-trailers, the standards focus on the...

  1. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind.energy.gov WIND PROGRAM NEWSLETTER - MAY 2015 1 National Renewable Energy Laboratory 15013 Denver West Parkway, Golden, CO 80401 303-275-3000 * www.nrel.gov NREL prints on paper that contains recycled content. Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) is seeking partners to participate in an objective and credible analysis of stationary fuel cell systems to benchmark the

  2. Fact# 905: December 28, 2015 Alternative Fuels Account for One-Third of

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon Fact Sheet -- Climate VISION 02-12-031.doc&#0; More Documents & Publications Meeting President Bush's Climate Change Challenge to Business and Industry Climate Vision Progress Report 2007 Climate VISION Progress Report 2007

    April 15, 2011, the National Nuclear Security Administration (NNSA) issued a Preliminary Notice of Violation (PNOV) to Los Alamos National Security, LLC (LANS), for violations of Department of Energy's (DOE) occupational radiation protection regulations.

  3. Vehicle Technologies Office Merit Review 2015: Integrated Boosting and Hybridization for Extreme Fuel Economy and Downsizing

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated boosting and hybridization...

  4. Fuel Economy Sticker Revs Up Used Car Sales | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel-efficient model and save money at the pump. | Photo by the Energy Department. Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public ...

  5. Study Reveals Fuel Injection Timing Impact on Particle Number Emissions (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Start of injection can improve environmental performance of fuel-efficient gasoline direct injection engines. In an ongoing quest to meet ever-more-rigorous fuel economy and emissions requirements, vehicle manufacturers are increasingly turning to gasoline direct injection (GDI) coupled with turbocharging as a cost-effective option for improving the efficiency and performance of gasoline engines. While GDI engines are expected to account for 60% of the U.S. market by 2016, and the technology

  6. More Than 410,000 Hours of Real-World Fuel Cell System Operation Have Been Analyzed by NREL's Technology Validation Team (Fact Sheet)

    SciTech Connect (OSTI)

    Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

    2011-02-01

    This fact sheet discusses how researchers at the National Renewable Energy Laboratory (NREL) are working to validate hydrogen and fuel cell systems in real-world settings. NREL strives to provide an independent third-party technology assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, and safety.

  7. NREL Produces Ethylene via Photosynthesis; Breakthrough Offers Cleaner Alternative for Transportation Fuels (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01

    NREL scientists have demonstrated a way to produce ethylene through photosynthesis, a breakthrough that could lead to more environmentally friendly ways to produce a variety of materials, chemicals, and transportation fuels. The scientists introduced a gene into a cyanobacterium and demonstrated that the organism remains stable through at least four generations, producing ethylene gas that can be easily captured. In the laboratory, the organism, Synechocystis sp. PCC 6803, produced 720 milligrams of ethylene per liter each day.

  8. Fuel from Waste Helps Power Two Tribes | Department of Energy

    Energy Savers [EERE]

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  9. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

    2009-08-01

    Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

  10. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  11. Hybrid Taxis Give Fuel Economy a Lift -Clean Cities Fleet Experiences -

    SciTech Connect (OSTI)

    2009-04-01

    The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids.

  12. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

  13. Market Transformation Fact Sheet

    Broader source: Energy.gov [DOE]

    This fact sheet describes the Fuel Cell Technologies Office's Market Transformation strategies and activities, which are aimed at accelerating early market adoption and advancing pre-competitive technologies.

  14. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid drivetrains have shown signifcant promise as part of an overall petroleum reduction feet strategy [1, 2, 3, 4, 5, 6]. Hybrid drivetrains consist of an energy storage device and a motor integrated into a traditional powertrain and offer the potential fuel savings by capturing energy normally lost during deceleration through the application of regenerative braking. Because hybrid technologies, especially hydraulic hybrids, have low adoption rates in the medium-duty vehicle segment and

  15. Biodiesel Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-06-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  16. Transportation Fact of the Week - 2013 Archive | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... April 15, 2013 774 Fuel Wasted in Traffic Congestion April 8, 2013 773 Fuel Economy Penalty at Higher Speeds April 1, 2013 772 Fuel Economy by Speed: Slow Down to Save Fuel ...

  17. ?Aceite Vegetal Puro Como Combustible Diesel? (Straight Vegetable Oil as a Diesel Fuel? Spanish Version) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Discusses the use of straight vegetable oil as a diesel fuel and the use of biodiesel as a transportation fuel.

  18. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF +

    Broader source: Energy.gov (indexed) [DOE]

    Hydrated-EGRŽ System for Retrofit of In-UseŽ Trucks | Department of Energy Reports on truck fleet emission test results obtained from retrofitting in-useŽ old class-8 trucks with IMETs GreenPower’ DPF-Hydrated-EGR system PDF icon p-24_rim.pdf More Documents & Publications GreenPower Trap Water-Muffler System GreenPowerTM Trap-Muffler System DPF -"Hydrated EGR" Fuel Saver System

  19. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This fact sheet describes the performance evaluation of United Parcel Service's second-generation hybrid-electric delivery vans. The Fleet Test and Evaluation Team at the National Renewable Energy Laboratory (NREL) is evaluating the 18-month, in-service performance of 11 of these vans along with 11 comparable conventional diesel vans operating in Minneapolis, Minnesota. As a complement to the field study, the team recently completed fuel economy and emissions testing at NREL's Renewable Fuels and Lubricants (ReFUEL) laboratory.

  20. Fuel Economy and Emissions Effects of Low Tire Pressure, Open Windows, Roof Top and Hitch-Mounted Cargo, and Trailer

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2014-01-01

    To quantify the fuel economy (FE) effect of some common vehicle accessories or alterations, a compact passenger sedan and a sport utility vehicle (SUV) were subjected to SAE J2263 coastdown procedures. Coastdowns were conducted with low tire pressure, all windows open, with a roof top or hitch-mounted cargo carrier, and with the SUV pulling an enclosed cargo trailer. From these coastdowns, vehicle dynamometer coefficients were developed which enabled the execution of vehicle dynamometer experiments to determine the effect of these changes on vehicle FE and emissions over standard drive cycles and at steady highway speeds. The FE penalty associated with the rooftop cargo box mounted on the compact sedan was as high as 25-27% at higher speeds, where the aerodynamic drag is most pronounced. For both vehicles, use of a hitch mounted cargo tray carrying a similar load resulted in very small FE penalties, unlike the rooftop cargo box. The results for the SUV pulling a 3500 pound enclosed cargo trailer were rather dramatic, resulting in FE penalties ranging from 30%, for the city cycle, to 50% at 80 mph, at which point significant CO generation indicated protective enrichment due to high load. Low tire pressure cases resulted in negligible to 10% FE penalty depending on the specific case and test point. Driving with all four windows open decreased FE by 4-8.5% for the compact sedan, and 1-4% for the SUV.

  1. Safety, Codes, and Standards Fact Sheet

    Broader source: Energy.gov [DOE]

    Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen safety, codes, and standards.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own ...

  3. Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

  4. Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fact sheet describing President Obama's proposed changes to advanced vehicle tax credits as part of the Administration's Fiscal Year 2016 Revenue Proposals.

  5. Fact #901: November 30, 2015 States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for States Assessing Fees on Electric Vehicles to Make Up For Lost Fuel Tax Revenue

  6. Fact #920: April 11, 2016 Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station

  7. Fuel Cell Vehicles Enhance NREL Hydrogen Research Capabilities (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * www.nrel.gov Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. Expanded research, development, and testing activities will help advance fuel cell electric vehicle technology. The National Renewable Energy Laboratory (NREL) has acquired four Fuel Cell Hybrid Vehicle-Advanced (FCHV-adv) sport utility vehicles on loan from Toyota. Over the next two years the lab will use the FCHVs, also known as fuel cell electric vehicles or

  8. Improving Catalyst Efficiency in Bio-Based Hydrocarbon Fuels (Fact Sheet), NREL Highlights in Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New study determines the effect of catalyst structure on product yields and coking during vapor phase upgrading of biomass pyrolysis products. Converting biomass, an abun- dant and renewable resource, into liquid transportation fuels has attracted significant atten- tion because of depleting fossil fuel reserves and associated environmental concerns. In the quest for sustainable and eco-friendly fuel alternatives, much research is focusing on improving the properties of bio-oil. Scientists at

  9. Vehicle Efficiency and Tractive Work: Rate of Change for the Past Decade and Accelerated Progress Required for U.S. Fuel Economy and CO2 Regulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, John

    2016-04-05

    A major driving force for change in light-duty vehicle design and technology is the National Highway Traffic Safety Administration (NHTSA) and the U.S. Environmental Protection Agency (EPA) joint final rules concerning Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emissions for model years (MY) 2016 through 2025 passenger cars and light trucks. The chief goal of this current study is to compare the already rapid pace of fuel economy improvement and technological change over the previous decade to the needed rate of change to meet regulations over the next decade. EPA and NHTSA comparisons of the MY 2004 USmore » light-duty vehicle fleet to the MY 2014 fleet shows improved fuel economy (FE) of approximately 28% using the same FE estimating method mandated for CAFE regulations. Future predictions by EPA and NHTSA concerning ensemble fleet fuel economy are examined as an indicator of needed vehicle rate-of-change. A set of 40 same-model vehicle pairs for MY 2005 and MY 2015 is compared to examine changes in energy use and related technological change over the 10 year period. Powertrain improvements measured as increased vehicle efficiency, and vehicle mass-glider improvements measured as decreased tractive work requirements are quantified. The focus is first on conventional gasoline powertrain vehicles which currently dominate the market, with hybrids also examined due to their high potential importance for CAFE compliance. Most hybrid vehicles with significant sales in 2014 were represented in the study. Results show 10 years of progress for the studied vehicle set includes lowered tractive effort of about 5.6% and improved powertrain efficiency of about 16.5%. Further analysis shows that this high rate of past progress must increase by about 50% in order to meet the 2025 CAFE standards. Examination of where certain MY 2015 vehicle compare to CAFE regulations is offered as well as some simple conjecture on what is needed to meet regulations under reasonable assumptions.« less

  10. Improving Vehicle Efficiency, Reducing Dependence on Foreign Oil (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet provides an overview of the U.S. Department of Energy's Vehicle Technologies Program. Today, the United States spends about $400 billion each year on imported oil. To realize a secure energy future, America must break its dependence on imported oil and its volatile costs. The transportation sector accounts for about 70% of U.S. oil demand and holds tremendous opportunity to increase America's energy security by reducing oil consumption. That's why the U.S. Department of Energy (DOE) conducts research and development (R and D) on vehicle technologies which can stem America's dependence on oil, strengthen the economy, and protect the environment. Hybrid-electric and plug-in hybrid-electric vehicles can significantly improve fuel economy, displacing petroleum. Researchers are making batteries more affordable and recyclable, while enhancing battery range, performance, and life. This research supports President Obama's goal of putting 1 million electric vehicles on the road by 2015. The program is also working with businesses to develop domestic battery and electric-drive component plants to improve America's economic competitiveness globally. The program facilitates deployment of alternative fuels (ethanol, biodiesel, hydrogen, electricity, propane, and natural gas) and fuel infrastructures by partnering with state and local governments, universities, and industry. Reducing vehicle weight directly improves vehicle efficiency and fuel economy, and can potentially reduce vehicle operating costs. Cost-effective, lightweight, high-strength materials can significantly reduce vehicle weight without compromising safety. Improved combustion technologies and optimized fuel systems can improve near-and mid-term fuel economy by 25% for passenger vehicles and 20% for commercial vehicles by 2015, compared to 2009 vehicles. Reducing the use of oil-based fuels and lubricants in vehicles has more potential to improve the nation's energy security than any other action; even a 1% improvement in vehicle fuel efficiency would save consumers more than $4 billion annually.

  11. Evaluation of the Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii...

  13. Ethanol Basics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  14. Ethanol Myths Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    Ethanol is a clean, renewable fuel that is helping to reduce our nation’s dependence on oil and can offer additional economic and environmental benefits in the future. This fact sheet is intended to address some common misconceptions about this important alternative fuel.

  15. Fact #775: April 15, 2013 Top Ten Urban Areas for Fuel Wasted due to Traffic Congestion, 2011

    Broader source: Energy.gov [DOE]

    The top ten urban areas across the U.S. accounted for nearly 40% of the total fuel wasted due to traffic congestion in 2011. Highway congestion caused vehicles in the combined urban areas of New...

  16. Fact #814: January 27, 2014 More Choices when Buying Vehicles that Use Advanced Technology and Alternative Fuels

    Broader source: Energy.gov [DOE]

    The number of models and types of alternative fuel vehicles produced by manufacturers has varied considerably over the last 22 years. In 1991, there were a total of 19 models available that did not...

  17. Straight Vegetable Oil as a Vehicle Fuel? (Fact Sheet), Energy Efficiency & Renewable Energy (EERE), Vehicle Technologies Office (VTO)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Performance of SVO Research has shown that there are sev- eral technical barriers to widespread use of SVO as a vehicle fuel. The published engineering literature strongly indicates that the use of SVO leads to reduced engine life, 1 caused by the buildup of carbon deposits inside the engine and the buildup of SVO in the engine lubricant. These issues are attributable to SVO's high viscosity and high boiling point relative to the required boiling range for diesel fuel. The carbon buildup doesn't

  18. Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle Production

    Energy Savers [EERE]

    in 2014 - Dataset | Department of Energy 7: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014 - Dataset Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014 - Dataset Excel file with dataset for Fact #847: November 17, 2014 Cars were Over 50% of Light Vehicle Production in 2014 File fotw#847_web.xlsx More Documents & Publications Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

  19. Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheets /newsroom/_assets/images/legacy-icon-short.jpg Fact Sheets LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Present Facilities Laboratory Overview Los Alamos National Laboratory Overview Fact Sheet (pdf)

  20. Hydrogen Storage Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. PDF icon Hydrogen Storage More Documents & Publications US DRIVE Hydrogen Storage Technical Team Roadmap Hydrogen & Our Energy Future

  1. Tiger Teams Provide Coalitions Technical and Market Assistance. Clean Cities Alternative Fuel Information Series, Tiger Teams Technical Assistance Fact Sheet.

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities Technical Assistance Teams (Tiger Teams) were formed in 2001 to work directly with Clean Cities coordinators, stakeholders, and partners to tackle difficult technical and market challenges that might otherwise stall alternative fuel vehicle (AFV) implementation projects. The Tiger Team project, managed by the National Renewable Energy Laboratory (NREL), was established by the U.S. Department of Energy (DOE) to provide technical expertise to the 80 Clean Cities coalitions operating

  2. Fuel Synthesis Catalysis Laboratory: Catalytic Testing for Thermochemical Transformations of Molecules (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis Catalysis Laboratory Catalytic testing for thermochemical transformations of molecules NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL's Fuel Synthesis Catalysis Laboratory (FSCL) provides a wide range of capabilities in heterogeneous catalyst testing. Current research areas of emphasis include the transformation of biomass pyrolysis and gasification products to

  3. National Clean Fleets Partnership Fact Sheet and Progress Update...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The National Clean Fleets Partnership is helping America's largest commercial fleets speed the adoption of alternative fuels, electric vehicles, and fuel economy improvements. PDF ...

  4. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect (OSTI)

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  5. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  6. As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    November 2004 Structural Studies of Catalytically Stabilized Industrial Hydrotreating Catalysts Myriam Perez De la Rosa 1 , Gilles Berhault 2 , Apurva Mehta 3 , Russell R. Chianelli 1 1 University of Texas at El Paso, Materials Research Technology Institute, El Paso, TX 2 Institut de Recherches sur la Catalyse, CNRS, Villeurbanne cedex, France 3 Stanford Synchrotron Radiation Laboratory, Menlo Park, CA Figure 1: MoS 2 layered structure. As the world economy continues to expand the demand for

  7. Framework for the International Partnership for the Hydrogen Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Framework for the International Partnership for the Hydrogen Economy Framework for the International Partnership for the Hydrogen Economy Framework for the International Partnership for the Hydrogen Economy PDF icon iphe_framework_final.pdf More Documents & Publications International Partnerships for the Hydrogen Economy Fact Sheet International Partnerships for the Hydrogen Economy Fact Sheet Terms of Reference for the International Partnership for the Hydrogen

  8. Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... that provides the scientific community with intense proton and neutron sources. ... Center for Integrated Nanotechnologies Fact Sheet (pdf) National High Magnetic Field ...

  9. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

    Broader source: Energy.gov [DOE]

    For the 2014 model year, midsize hybrid cars averaged 43.4 miles per gallon (mpg) while midsize non-hybrid cars averaged 28.7 mpg; the difference between the two has narrowed due to the rising...

  10. Simulating the Impact of Premixed Charge Compression Ignition on Light-Duty Diesel Fuel Economy and Emissions of Particulates and NOx

    SciTech Connect (OSTI)

    Gao, Zhiming; Daw, C Stuart; Wagner, Robert M; Edwards, Kevin Dean; Smith, David E

    2013-01-01

    We utilize the Powertrain Systems Analysis Toolkit (PSAT) combined with transient engine and aftertreatment component models implemented in Matlab/Simulink to simulate the effect of premixed charge compression ignition (PCCI) on the fuel economy and emissions of light-duty diesel-powered conventional and hybrid electric vehicles (HEVs). Our simulated engine is capable of both conventional diesel combustion (CDC) and premixed charge compression ignition (PCCI) over real transient driving cycles. Our simulated aftertreatment train consists of a diesel oxidation catalyst (DOC), lean NOx trap (LNT), and catalyzed diesel particulate filter (DPF). The results demonstrate that, in the simulated conventional vehicle, PCCI can significantly reduce fuel consumption and emissions by reducing the need for LNT and DPF regeneration. However, the opportunity for PCCI operation in the simulated HEV is limited because the engine typically experiences higher loads and multiple stop-start transients that are outside the allowable PCCI operating range. Thus developing ways of extending the PCCI operating range combined with improved control strategies for engine and emissions control management will be especially important for realizing the potential benefits of PCCI in HEVs.

  11. Technology Validation Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation Fact Sheet Technology Validation Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen and fuel cell technology validation efforts (September 2013). PDF icon Technology Validation More Documents & Publications Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite Materials Meetings Fuel Cell Technologies Program Overview: 2012 IEA HIA

  12. Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - July 2015 BPA partners with Idaho to secure more than 4600 acres to benefit fish - July 2015 Conservation billing credits - January 2015 Fueling the energy efficiency...

  13. Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Imports while Exports are Mostly Petroleum Products - Dataset | Department of Energy Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products - Dataset Fact #863 March 9, 2015 Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum Products - Dataset Excel file and dataset for Crude Oil Accounts for the Majority of Primary Energy Imports while Exports are Mostly Petroleum

  14. Quick Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quick Facts Quick Facts Print The Advanced Light Source (ALS) is located in Berkeley, California. The original building, situated in the East Bay hills overlooking San Francisco Bay, was completed in 1942. Designed by Arthur Brown, Jr. (designer of the Coit Tower in San Francisco), the domed structure was built to house Berkeley Lab's namesake E. O. Lawrence's 184-inch cyclotron, an advanced version of his first cyclotron for which he received the Nobel Prize in Physics in 1939. Today, the

  15. Nano Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nano Facts The concept of the extremely small world of nano is difficult to comprehend. Here are some facts to help put this incredible world into perspective! * If we met for one nanosecond every day (7 days / week, 365 1/4 days / year) it would take about 28,519 years to accrue a total meeting time of fifteen minutes. * If we made a scale model of the solar system, and chose to make our earth one nanometer across, it would be about .01 (One hundredth) of a millimeter away from the sun in our

  16. Facts, Figures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Figures /about/_assets/images/icon-70th.jpg Facts, Figures The Lab's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. LANL Facts, Figures for 2016 People Total employees: 10,507 Los Alamos National Security, LLC: 6,828 Centerra-LA: 300 Contractors: 342 Students: 1,001 Unionized craft workers: 748 Post doctoral researchers:

  17. Vehicle Data for Alternative Fuel Vehicles (AFVs) and Hybrid Fuel Vehicles (HEVs) from the Alternative Fuels and Advanced Vehicles Data Center (AFCD)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The AFDC provides search capabilities for many different models of both light-duty and heavy-duty vehicles. Engine and transmission type, fuel and class, fuel economy and emission certification are some of the facts available. The search will also help users locate dealers in their areas and do cost analyses. Information on alternative fuel vehicles and on advanced technology vehicles, along with calculators, resale and conversion information, links to incentives and programs such as Clean Cities, and dozens of fact sheets and publications make this section of the AFDC a valuable resource for car buyers.

  18. Fact Sheet: Accelerating the Development and Deployment of Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: Accelerating the Development and Deployment of Advanced Technology Vehicles, including Battery Electric and Fuel Cell Electric Vehicles Fact Sheet: Accelerating the ...

  19. Fact Sheet

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet The two adjoining non-operating landfills are centrally located within the 600 Area of the Hanford Site. NRDWL, which covers approximately ten acres, received containerized nonradioactive, dangerous waste chemicals and asbestos- containing waste material until it ceased operation in 1988. SWL covers approximately 68 acres and received asbestos-containing material, as well as non-dangerous and nonradioactive solid waste until 1996 when operations ceased. After operations ended, both

  20. Fact Sheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheets Fact Sheets Public Outreach Fact Sheet

  1. International Partnership for Hydrogen and Fuel Cells in the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells in the Economy International Partnership for Hydrogen and Fuel Cells in the Economy The United States is a founding member of the International Partnership for Hydrogen ...

  2. Fact #805: November 25, 2013 Vehicle Technology Penetration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 37 75% 99% 78% 38 99% 83% Source: Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2012, ...

  3. Fact #658: January 17, 2011 Increasing Use of Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Source: Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2010. Supporting Information Leases as a ...

  4. Transportation Fact of the Week - 2014 Archive | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transmissions have closed the Fuel Economy Gap with Manual Transmissions December 8, 2014 ... in 2013 September 15, 2014 837 Gap between Net Imports and Total Imports of ...

  5. Energy Economy

    U.S. Energy Information Administration (EIA) Indexed Site

    Adam Sieminski (202) 662-1624 April 2010 Energy and the Economy US EIA & JHU SAIS 2010 Energy Conference April 6, 2010 All prices are those current at the end of the previous trading session unless otherwise indicated. Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. Adam Sieminski, CFA Chief Energy Economist adam.sieminski@db.com +1 202

  6. Northeast States' Hydrogen Economy Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy Webinar Northeast States' Hydrogen Economy Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Northeast States' Hydrogen Economy" held on December 1, 2015. PDF icon Northeast States' Hydrogen Economy Webinar Slides More Documents & Publications Connecticut Fuel Cell Activities: Markets, Programs, and Models 2009 DOE Hydrogen Program Review Presentation Transportation and Stationary

  7. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii Hydrogen Economy" held on July 29, 2014. PDF icon Supporting a Hawaii Hydrogen Economy Webinar Slides More Documents & Publications 2010 Smart Grid Peer Review Day One Morning Presentations 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update Hawaii Hydrogen Energy Park

  8. ?Que es el Centro de Datos de Combustibles Alternativos y Vehiculos Avanzados? (What Is the Alternative Fuels and Advanced Vehicles Data Center - AFDC?) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Document gives an overview of the material and tools on the Alternative Fuels and Advanced Vehicles Data Center Web site.

  9. Making Fuel Cells Cleaner, Better, and Cheaper(Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    helps reduce contaminants in fuel cells, enabling the industry to cut costs and commercialize state-of-the-art technologies. As fuel cell systems become more commercially com- petitive, and as automo- tive fuel cell research and development trend toward decreased catalyst loadings and thinner membranes, fuel cell operation becomes even more susceptible to contaminants. Therefore, the National Renewable Energy Laboratory (NREL) and its partners have performed research on contaminants derived from

  10. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Find alternative fuel vehicle resources. Alternative Fuels Data Center FuelEconomy.gov-Gas Mileage, Emissions, Air Pollution Ratings, and Safety Data National Renewable Energy ...

  11. Hydrogen Production Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet Hydrogen Production Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen production. PDF icon Hydrogen Production More Documents & Publications Hydrogen Production Technical Team Roadmap US DRIVE Hydrogen Production Technical Team Roadmap FTA - SunLine Transit Agency - Final Report

  12. Fact Sheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheets Fact Sheets Appliance Standards Fact Sheet Building Energy Codes Fact Sheet Building America Fact Sheet

  13. NREL Develops High Speed Scanner to Monitor Fuel Cell Material Defects (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell scanner could provide effective in-line quality control in a high-volume manufacturing facility. NREL scientists have developed and built a high-throughput, high-resolution, in-line fuel cell scanner to monitor quality and detect critical defects in polymer electrolyte membrane fuel cell (PEMFC) materials. The fuel cell scanner uses a visible light diffuse reflectance imaging technique to gener- ate high-resolution images of PEMFC materials as they are transported along a roll-to-roll

  14. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies

  15. Jet Fuel from Microalgal Lipids

    SciTech Connect (OSTI)

    Not Available

    2006-07-01

    A fact sheet on production of jet fuel or multi-purpose military fuel from lipids produced by microalgae.

  16. DOE Research and Development Accomplishments: Fast Facts

    Office of Scientific and Technical Information (OSTI)

    Fast Facts

  17. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes UPS second generation hybrid-electric delivery vehicles as compared to conventional delivery vehicles. Medium-duty commercial vehicles such as moving trucks, beverage-delivery trucks, and package-delivery vans consume almost 2,000 gal of fuel per year on average. United Parcel Service (UPS) operates hybrid-electric package-delivery vans to reduce the fuel use and emissions of its fleet. In 2008, the National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluation Team evaluated the first generation of UPS' hybrid delivery vans. These hybrid vans demonstrated 29%-37% higher fuel economy than comparable conventional diesel vans, which contributed to UPS' decision to add second-generation hybrid vans to its fleet. The Fleet Test and Evaluation Team is now evaluating the 18-month, in-service performance of 11 second-generation hybrid vans and 11 comparable conventional diesel vans operated by UPS in Minneapolis, Minnesota. The evaluation also includes testing fuel economy and emissions at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory and comparing diesel particulate filter (DPF) regeneration. In addition, a followup evaluation of UPS' first-generation hybrid vans will show how those vehicles performed over three years of operation. One goal of this project is to provide a consistent comparison of fuel economy and operating costs between the second-generation hybrid vans and comparable conventional vans. Additional goals include quantifying the effects of hybridization on DPF regeneration and helping UPS select delivery routes for its hybrid vans that maximize the benefits of hybrid technology. This document introduces the UPS second-generation hybrid evaluation project. Final results will be available in mid-2012.

  19. Fact #832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel

    Broader source: Energy.gov [DOE]

    A 2014 survey of over 110,000 refueling stations in the U.S. and Canada shows that over half of all refueling stations sell diesel fuel. The survey results are shown for five different regions of...

  20. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  1. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  2. Fuel Oil Use in Manufacturing

    U.S. Energy Information Administration (EIA) Indexed Site

    logo Return to: Manufacturing Home Page Fuel Oil Facts Oil Price Effect Fuel Switching Actual Fuel Switching Storage Capacity Fuel Oil Use in Manufacturing Why Look at Fuel Oil?...

  3. NREL Uses Fuel Cells to Increase the Range of Battery Electric Vehicles (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL analysis identifies potential cost-effective scenarios for using small fuel cell power units to increase the range of medium-duty battery electric vehicles. Battery electric vehicles (BEVs) offer great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Charac- terized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations such as parcel delivery are well

  4. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions Statistical models developed from designed esperiments (varying fuel properties and ...

  5. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  6. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  7. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Environmental Management (EM)

    vehicle could cut your fuel costs and help the environment. See FuelEconomy.gov's Find a Car tool for more information on buying a new fuel-efficient car or truck. Learn more about...

  8. The Clean Energy Economy is Creating Jobs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and organizations are creating clean energy jobs across this great land. The clean energy economy is here, and creating jobs all across the country. In fact, some may even...

  9. Fact #896: October 26, 2015 More than 80% of Transportation Energy...

    Office of Environmental Management (EM)

    Fact 834: August 18, 2014 About Two-Thirds of Transportation Energy Use is Gasoline for Light Vehicles - Dataset Fact 905: December 28, 2015 Alternative Fuels Account for ...

  10. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  11. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program (VTP) (Fact Sheet) | Department of Energy Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel vehicles are able to operate using more than one type of fuel. FFVs can be fueled with unleaded gasoline, E85, or any combination of the two. Today more than 7 million vehicles on U.S. highways are

  12. International waste management fact book

    SciTech Connect (OSTI)

    Amaya, J.P.; LaMarche, M.N.; Upton, J.F.

    1997-10-01

    Many countries around the world are faced with nuclear and environmental management problems similar to those being addressed by the US Department of Energy. The purpose of this Fact Book is to provide the latest information on US and international organizations, programs, activities and key personnel to promote mutual cooperation to solve these problems. Areas addressed include all aspects of closing the commercial and nuclear fuel cycle and managing the wastes and sites from defense-related, nuclear materials production programs.

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduced Registration Fee for Fuel-Efficient Vehicles A new motor vehicle with a U.S. Environmental Protection Agency estimated average city fuel economy of at least 40 miles per ...

  14. Fuel FX International Inc | Open Energy Information

    Open Energy Info (EERE)

    on development and distribution of proprietary products focused on improving fuel economy and reducing environmental emissions in diesel and gasoline engines. References: Fuel...

  15. Dynamometer Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes the dynamometer and its testing capabilities at the National Wind Technology Center.

  16. Fact #753: November 12, 2012 Sources of Electricity by State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 753: November 12, 2012 Sources of Electricity by State Electric vehicles do not create emissions from a tailpipe like conventional vehicles do. The electricity used to fuel ...

  17. Fact #920: April 11, 2016 Electric Charging Stations are the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 920: April 11, 2016 Electric Charging Stations are the Fastest Growing Type of Alternative Fueling Station - Dataset Excel file and dataset for Electric Charging Stations are ...

  18. Fact #814: January 27, 2014 More Choices when Buying Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27, 2014 More Choices when Buying Vehicles that Use Advanced Technology and Alternative Fuels Fact 814: January 27, 2014 More Choices when Buying Vehicles that Use Advanced ...

  19. Fact #755: November 26, 2012 Chargepoint, Blink and Nissan Take...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 755: November 26, 2012 Chargepoint, Blink and Nissan Take the Lead in Public Electric Vehicle Chargers According to the Department of Energy's Alternative Fuels Data Center, ...

  20. Fact #725: April 30, 2012 Cylinder Deactivation is More Prevalent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    17% Truck SUV 17% Pickup 38% All 11% U.S. Environmental Protection Agency, Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 Through 2011

  1. Renewable Fuels and Lubricants (ReFUEL) Laboratory

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    Fact sheet describing NREL's Renewable Fuels and Lubricants Laboratory (ReFUEL). ReFUEL is a world-class research and testing facility dedicated to future fuels and advanced heavy-duty vehicle research, located in Denver, Colorado.

  2. Fact #571: May 18, 2009 Light Truck CAFE Standards – 2006 Reformation

    Broader source: Energy.gov [DOE]

    In 2006 the National Highway Traffic Safety Administration (NHTSA) established new requirements for the light truck Corporate Average Fuel Economy (CAFE) standards. In the new rule, there are...

  3. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  4. Market Transformation Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption of fuel cells in emerging markets expands the growth of green jobs, with new opportunities in manufacturing, fuel cell maintenance and support systems, and domestic ...

  5. Sustainable Transportation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies.

  6. Fact Sheet LANS PNOV

    Broader source: Energy.gov [DOE]

    Fact sheet for NNSA issuing Preliminary Notice of Violation to Los Alamos National Security, LLC, for Radiation Protection Violations

  7. Gasoline Biodesulfurization Fact Sheet

    Broader source: Energy.gov [DOE]

    This petroleum industry fact sheet describes how biodesulfurization can yield lower sulfur gasoline at lower production costs.

  8. Hydrothermal Resources Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-08-31

    This two-page fact sheet provides an overview of hydrothermal resources and hydrothermal reservoir creation and operation.

  9. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  10. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-06-27

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  11. Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  12. Clean, Efficient, and Reliable Power for the 21st Century (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides an overview of the U.S. Department of Energy's Fuel Cell Technologies Program.

  13. Fact #852 December 22, 2014 Turbocharged Engines Account for 64.7% of all Four-Cylinder Gasoline Car Engines in 2014

    Broader source: Energy.gov [DOE]

    As auto manufacturers pursue greater fuel economy, models are increasingly being offered with smaller displacement engines that consume less fuel. In order to meet performance expectations,...

  14. Webinar December 1: Northeast States’ Hydrogen Economy

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. EST. The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles in the Northeast United States.

  15. The Booming App Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Booming App Economy The Booming App Economy March 30, 2012 - 11:35am Addthis Apps for Energy offers $100,000 in cash prizes to the developers with the best energy-focused apps. Design by Hantz Leger. Apps for Energy offers $100,000 in cash prizes to the developers with the best energy-focused apps. Design by Hantz Leger. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs What are the key facts? The Energy Department taps into the creativity and

  16. The Methanol Economy Project

    SciTech Connect (OSTI)

    Olah, George; Prakash, G.K.

    2013-12-31

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields.  Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application.  Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm).  CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching.  CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer.  Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts.  Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nation’s energy independence.

  17. Hydrogen Distribution and Delivery Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distribution and Delivery Fact Sheet Hydrogen Distribution and Delivery Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen distribution and delivery infrastructure. PDF icon Hydrogen Distribution and Delivery More Documents & Publications Hydrogen Delivery Roadmap US DRIVE Hydrogen Delivery Technical Team Roadmap Hydrogen Transmission and Distribution Workshop

  18. Fuel Cells for Backup Power in Telecommunications Facilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet) Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet) Telecommunications providers ...

  19. Fact #801: October 28, 2013 Gasoline Direct Injection Continues to Grow

    Broader source: Energy.gov [DOE]

    Gasoline Direct Injection (GDI) is an engine technology that improves fuel economy and engine performance by injecting fuel directly into the combustion chamber, allowing for a more complete and...

  20. SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons ...

  1. Fuel Cell Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Bus Lands at Hickam AFB: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Project (Fact Sheet) Fuel Cell Hybrid Bus Lands at Hickam AFB: ...

  2. Fact Sheets - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ©bobpaz.com0171_v2.jpg Fact Sheets Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  3. Energy Empowers Fact Sheet

    SciTech Connect (OSTI)

    Stephen Graff

    2010-03-30

    This fact sheet provides information about the Energy Empowers clean energy newswire, including a couple of stories on the reverse side.

  4. Cancer Facts & Figures - 2010

    National Nuclear Security Administration (NNSA)

    ... among smokers), certain metals (chromium, cadmium, arsenic), 16 Cancer Facts & Figures 2010 some organic chemicals, radiation, air pollution, and a history of tuberculosis. ...

  5. ARM - Program Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MaterialsProgram Fact Sheets Publications Journal Articles Conference Documents Program Documents Technical Reports Publications Database Public Information Materials Image Library...

  6. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  7. ARM - Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for ISDAC (pdf, 525K) ISDAC Flight Planning Document (PDF, 216K) Collaborations Logistics Measurements & Platforms Contacts News News & Press Fact Sheets Images ARM flickr...

  8. Public Outreach Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet provides information about the U.S. Department of Energy Office of Legacy Management public outreach principles and approaches.

  9. Fuel Cell Technologies Program: Delivery Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of transmission and distribu- tion pipelines, bulk storage vessels, and refueling ... as well as other elements. gas pipelines, the current hydrogen pipeline ...

  10. Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Gas Turbines - Fact Sheet, May 2014 | Department of Energy Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 Development of Fuel-Flexible Combustion Systems Utilizing Opportunity Fuels in Gas Turbines - Fact Sheet, May 2014 GE Global Research developed and tested new fuel-flexible gas turbine nozzle technology concepts that will enable end users to efficiently generate power and heat from industrial off-gases and gasified industrial,

  11. Hydrogen & Fuel Cells - Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    29% Share of Energy Consumed by Major Sectors of the Economy, 2010 Fuel Cells can apply to diverse sectors 3 Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth ...

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  13. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cells Fact Sheets Research Team Members Key Contacts Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per 1000 hours over a

  14. Fact Sheet: Protecting Intelligent Distributed Power Grids Against Cyber Attacks

    Energy Savers [EERE]

    Energy Multilateral Solar and Wind Working Group Fact Sheet: Multilateral Solar and Wind Working Group A fact sheet detailling the development of a Multilateral Solar and Wind Working Group to promote accelerated deployment of solar and wind technologies by implementing recommendations from the MEF Technology Action Plan on Solar and Wind Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The Multilateral Solar and Wind Working Group will focus

  15. Photobiology Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  16. Variance Fact Sheet

    Broader source: Energy.gov [DOE]

    Variance Fact Sheet. A variance is an exception to compliance with some part of a safety and health standard granted by the Department of Energy (DOE) to a contractor

  17. EC Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ... SubTER Carbon Sequestration Program Leadership EnergyWater Nexus EnergyWater History ...

  18. Fact Sheets | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Supply National Population, Economic, and Infrastructure Impacts of Pandemic Influenza with Strategic Recommendations Western Gulf Coast Analysis Hurricane Irene Analysis...

  19. Fuel Economy Coach | Open Energy Information

    Open Energy Info (EERE)

    driving performance - green means you are doing well, yellow means you are average and red means you are being inefficient. An audible tone will be played by the app when you are...

  20. Fueling the Economy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    : Asphalt and road oil consumption, price, and expenditure estimates, 2014 State Asphalt and road oil a Consumption Prices Expenditures Thousand barrels Trillion Btu Dollars per million Btu Million dollars Alabama 2,484 16.5 15.69 258.6 Alaska 1,859 12.3 16.33 201.4 Arizona 2,454 16.3 14.69 239.1 Arkansas 1,884 12.5 15.29 191.2 California 8,646 57.4 15.97 916.3 Colorado 2,398 15.9 15.57 247.8 Connecticut 1,580 10.5 15.69 164.6 Delaware 424 2.8 15.89 44.7 Dist. of Col. 636 4.2 15.93 67.2 Florida

  1. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Average Fuel Economy (CAFE) program and EPA's light-duty vehicle GHG emissions program set standards for passenger cars, light-duty trucks, and medium-duty passenger vehicles. ...

  2. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel economy of 22 miles per gallon (as listed at www.fueleconomy.gov) and may not be a sport utility vehicle. Exemptions apply to security, emergency rescue, snow removal, and...

  3. Hydrogen Fueling - Coming Soon to a Station Near You (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Fact sheet providing information useful to local permitting officials facing hydrogen fueling station proposals.

  4. International nuclear waste management fact book

    SciTech Connect (OSTI)

    Abrahms, C W; Patridge, M D; Widrig, J E

    1995-11-01

    The International Nuclear Waste Management Fact Book has been compiled to provide current data on fuel cycle and waste management facilities, R and D programs, and key personnel in 24 countries, including the US; four multinational agencies; and 20 nuclear societies. This document, which is in its second year of publication supersedes the previously issued International Nuclear Fuel Cycle Fact Book (PNL-3594), which appeared annually for 12 years. The content has been updated to reflect current information. The Fact Book is organized as follows: National summaries--a section for each country that summarizes nuclear policy, describes organizational relationships, and provides addresses and names of key personnel and information on facilities. International agencies--a section for each of the international agencies that has significant fuel cycle involvement and a list of nuclear societies. Glossary--a list of abbreviations/acronyms of organizations, facilities, and technical and other terms. The national summaries, in addition to the data described above, feature a small map for each country and some general information that is presented from the perspective of the Fact Book user in the US.

  5. Making America's Buildings Better (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Building Technologies program. Buildings use more energy than any other sector of the U.S. economy? In fact, buildings consume more than 70% of the electricity and more than 50% of the natural gas Americans use. That's why the U.S. Department of Energy's (DOE's) Building Technologies Program (BTP) is working to improve building energy performance through high-impact research, out-reach, and regulatory efforts. These efforts will result in affordable, high-performance homes and commercial buildings. These grid-connected buildings will be more energy efficient than today's typical buildings, with renewable energy providing a portion of the power needs. They will combine energy-smart 'whole building' design and construction, appliances and equipment that minimize plug loads, and cost-effective photovoltaics or other on-site energy systems.

  6. Fact #880: July 6, 2015 Conventional Vehicle Energy Use: Where...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: July 6, 2015 Conventional Vehicle Energy Use: Where Does the Energy Go? Fact 880: July 6, 2015 Conventional Vehicle Energy Use: Where Does the Energy Go? Not all of the fuel ...

  7. Energy Facts, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-29

    Energy Facts, organized by energy source, is a compilation of energy data providing a reference to a broad range of domestic and international energy data, for the general public as well as the technical community. This report is designed especially for the business person, government worker, or student who needs a quick reference to major facts about energy. Each table of statistics appears on the opposite page from a corresponding graphic. The graphic has a point of interest rather than a title across the top.

  8. Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy, U.S. Department of Energy (DOE) | Department of Energy Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Sustainable Transportation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in transportation technologies, alternative fuels, and fuel cell technologies. PDF

  9. Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Minimize Nuclear Waste Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste GNEP will increase the efficiency in the management of used nuclear fuel, also known as spent fuel, and defer the need for additional geologic nuclear waste repositories until the next century. PDF icon Global Nuclear Energy Partnership Fact Sheet - Minimize Nuclear Waste More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy

  10. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    also power our trans- portation, including personal vehicles, trucks, buses, marine vessels, and other specialty vehicles such as lift trucks and ground support equipment, as...

  11. Fact Sheet: Soft Costs

    Broader source: Energy.gov [DOE]

    Soft costs can vary significantly as a result of a fragmented energy marketplace. In the U.S., there are 18,000 jurisdictions and 3,000 utilities with different rules and regulations for how to go solar. The same solar equipment may vary widely in its final installation price due to process and market variations across jurisdictions, creating barriers to rapid industry growth. SunShot supports the development of innovative solutions that enable communities to build their local economies and establish clean energy initiatives that meet their needs, while at the same time creating sustainable solar market conditions.

  12. Algal Biofuels Fact Sheet

    SciTech Connect (OSTI)

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  13. NREL: Hydrogen and Fuel Cells Research - Evaluation Results Show Continued

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improvements in Fuel Cell Electric Vehicle Durability, Fuel Economy, Driving Range Evaluation Results Show Continued Improvements in Fuel Cell Electric Vehicle Durability, Fuel Economy, Driving Range Project Technology Validation: Fuel Cell Electric Vehicle Evaluation Contact Jennifer Kurtz Related Publications FCEV Composite Data Products New composite data products (CDPs) published by NREL's National Fuel Cell Technology Evaluation Center (NFCTEC) show that fuel cell durability has

  14. Biomass IBR Fact Sheet: Amyris, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Amyris, Inc. Biomass IBR Fact Sheet: Amyris, Inc. Demonstrating the conversion of sweet sorgum biomass to hydrocarbon fuel and chemicals. PDF icon ibr_arra_amyris.pdf More Documents & Publications Biomass IBR Fact Sheet: Amyris, Inc. Growing the Future Bioeconomy NABC Webinar

  15. Integrated Waste Treatment Facility Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Management » Tank Waste and Waste Processing » Integrated Waste Treatment Facility Fact Sheet Integrated Waste Treatment Facility Fact Sheet The Integrated Waste Treatment Unit is a newly constructed facility that is designed to treat 900,000 gallons of radioactive liquid waste stored in underground tanks at a former Cold War spent nuclear fuel reprocessing facility located at DOE's Idaho Site. PDF icon IWTU at Idaho Fact Sheet More Documents & Publications Audit Report: OAS-L-10-03

  16. Turning Sun and Water Into Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  17. Manhattan Project: Facts About Fallout

    Office of Scientific and Technical Information (OSTI)

    FACTS ABOUT FALLOUT Federal Civil Defense Administration, National Archives (1955) Resources > Library Below is Facts About Fallout, an eight-page civil defense pamphlet on fallout ...

  18. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Energy Economy The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. <a href="/node/385315">Learn more</a> about the growth of America's clean energy economy. | Infographic by Sarah Gerrity, Energy Department. The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. Learn more about the growth of America's clean energy economy. |

  19. [SITE NAME] Fact Sheet

    Energy Savers [EERE]

    Morgantown, WV Grand Junction, CO Fernald, OH Westminster, CO Washington, DC This fact sheet provides information about the U.S. Department of Energy Office of Legacy Management public outreach principles and approaches. What Is the Office of Legacy Management? The U.S. Department of Energy (DOE) established the Offce of Legacy Management (LM) in December 2003 to manage DOE's post-closure responsibilities and to ensure the future protection of human health and the environment at more than 100

  20. Biomolecular Science (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    A brief fact sheet about NREL Photobiology and Biomolecular Science. The research goal of NREL's Biomolecular Science is to enable cost-competitive advanced lignocellulosic biofuels production by understanding the science critical for overcoming biomass recalcitrance and developing new product and product intermediate pathways. NREL's Photobiology focuses on understanding the capture of solar energy in photosynthetic systems and its use in converting carbon dioxide and water directly into hydrogen and advanced biofuels.

  1. [SITE NAME] Fact Sheet

    Office of Legacy Management (LM)

    Shiprock, New Mexico, Disposal Site This fact sheet provides information about the Shiprock, New Mexico, Disposal Site. These sites are managed by the U.S. Department of Energy Office of Legacy Management under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Shiprock Disposal Site Site Description and History The Shiprock site is the location of a former uranium- and vanadium-ore processing facility within the Navajo Nation in the northwest corner of New

  2. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet describes the DOE Water Power Program's conventional hydropower research and development efforts.

  3. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  4. State Fact Sheets

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy provides joint funding to university, national laboratory, and industrial partners at the state level to research, develop, and demonstrate sustainable bio-based fuels and products. Learn how these states are expanding promising bioenergy research into commercial production.

  5. Tiger Teams Assist Coalitions with AFV Challenges: Clean Cities Technical Assistance (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    Fact sheet describes alternative fuel technical activities performed by Clean Cities Technical Assistance Teams (Tiger Teams), to be distributed at the 2004 Clean Cities Conference.

  6. Clean Economy Network Foundation | Open Energy Information

    Open Energy Info (EERE)

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Vehicle Acquisition Requirements When purchasing new state vehicles, the North Carolina Department of Administration must give purchase preference to vehicles with fuel economy ratings that rank among the top 15% of comparable vehicles in their class. (Reference North Carolina General Statutes 143-341(8)(i)

  8. Fact #896: October 26, 2015 More than 80% of Transportation Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residual fuel oil is heavier oil which can be used in vessel bunkering. Fact 896 Dataset ... Type, 2013 Fuel Type Light Vehicles MedHeavy Trucks & Buses Air Water Rail Pipeline ...

  9. Fact #832: August 4, 2014 Over Half of the Refueling Stations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Refueling Stations in the U.S. and Canada Sell Diesel Fuel Fact 832: August 4, 2014 Over Half of the Refueling Stations in the U.S. and Canada Sell Diesel Fuel A 2014 survey of ...

  10. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Trend of transportation and residential energy expenditures from 1970-2010 Last update ... between fuel economy and lifetime fuel consumption for LDVs from 8mpg to 120mpg Last ...

  11. Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles have a 27 percent lower fuel economy running on E85. Fortunately, designing flexible fuel vehicles to run specifically on E85 rather than gasoline can help close that gap. ...

  12. PNNL: About - Business Facts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fast Facts, Fiscal Year 2015 For more than 50 years-proudly operated by Battelle Economic Devolpment Chart Business Volume, Employment, and Sponsors $955 million at the end of our 2015 fiscal year in September in R&D expenditures 4,400+ scientists, engineers and professionals Sponsors include the U.S. Department of Energy; other federal, state and local agencies; universities; and industry sponsors. Patents 78 in FY15, 2,410 U.S. and foreign since 1965 Peer-Reviewed Publications

  13. Fact Sheet | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet FEL FEL 11x17 Tech Transfer Tech Transfer 11x17 CEBAF CEBAF 11x17 12 GeV Panel 12 GeV Panel ARRA Infrastructure ARRA Infrastructure ARRA at JLab ARRA at JLab JLab at a Glance JLab at a Glance FEL Panel FEL Panel ILC Panel ILC Panel Medical Imaging Medical Imaging SRF Panel SRF Panel Science Education Science Education TEDF TEDF 12Gev Slick 12Gev Slick JLab Factsheet Slick JLab Factsheet Slick Terahertz Slick Terahertz Slick BROCHURES JLab General Brochure JLab Brochure 12GeV Upgrade

  14. Insulation fact sheet

    SciTech Connect (OSTI)

    1997-08-01

    Electricity bills, oil bills, gas bills - all homeowners pay for one or more of these utilities, and wish they paid less. Often many of us do not really know how to control or reduce our utility bills. We resign ourselves to high bills because we think that is the price we have to pay for a comfortable home. We encourage our children to turn off the lights and appliances, but may not recognize the benefits of insulating the attic. This publication provides facts relative to home insulation. It discusses where to insulate, what products to use, the decision making process, installation options, and sources of additional information.

  15. Fact #631: July 12, 2010 Top 10 All-Time EPA Rated Vehicles

    Broader source: Energy.gov [DOE]

    Fueleconomy.gov is the official source for light vehicle fuel economy ratings. The Web site has data extending back to 1984 and has recently published a list showing the highest-rated vehicles over...

  16. Fact #821: May 19, 2014 Best Selling Vehicle by State, 2013 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by state for 2013. The Ford F-Series pickup truck, shown in blue, dominates the map. ... 13-19 mpg Wyoming Ford F-Series 13-19 mpg Note: Combined fuel economy range shown is the ...

  17. Fact #851 December 15, 2014 The Average Number of Gears used in Transmissions Continues to Rise

    Broader source: Energy.gov [DOE]

    The number of gears in a transmission affects a vehicle's fuel economy and performance. The more gears a vehicle has, the more time the engine spends within an optimal operating range while the...

  18. Fact #572: May 25, 2009 CAFE Standards for Model Year 2011

    Broader source: Energy.gov [DOE]

    On March 30, 2009, the National Highway Traffic Safety Administration (NHTSA) published the final rule for model year (MY) 2011 car and light truck Corporate Average Fuel Economy (CAFE) standards....

  19. Fact #623: May 17, 2010 Classification Changes in the CAFE Standards

    Broader source: Energy.gov [DOE]

    Beginning with model year (MY) 2011, the classification of cars or light trucks has changed for the purposes of the Corporate Average Fuel Economy (CAFE) Standards. Two-wheel-drive (2wd) sport...

  20. Fact #731: June 11, 2012 Cost-Effectiveness of a Hybrid Vehicle is Highly Conditional

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy and U.S. Environmental Protection Agency's Fuel Economy website at www.fueleconomy.gov has a hybrid vehicle comparison calculator that allows users to compare a...

  1. Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    According to the Federal Highway Administration, the average fuel economy for all light vehicles on the road today is 21.4 miles per gallon (mpg). A person owning a gasoline ...

  2. A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics

    Broader source: Energy.gov [DOE]

    Results indicate a strong tradeoff between maximum rate of cylinder pressure rise (which also correlates to NOx and peak cylinder pressure) and fuel economy for 21 tested fuels.

  3. Fuel Cell Technologies Educational Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Fuel Cell Technologies Educational Publications Fuel Cell Technologies Educational Publications Access easy-to-understand fact sheets and other information designed to introduce hydrogen and fuel cell technologies to non-technical audiences. DOE Hydrogen and Fuel Cells Program Fact Sheets Fuel Cell Technologies Office Fact Sheet Progress and Accomplishments in Hydrogen and Fuel Cells Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects World's

  4. FY 2017 Department of Energy Budget Request Fact Sheet | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FY 2017 Department of Energy Budget Request Fact Sheet FY 2017 Department of Energy Budget Request Fact Sheet Editors Note: For full FY17 budget request materials, click here. For the Department's FY17 budget request press release, click here. For the White House's Mission Innovation fact sheet, click here. Under the President's leadership, we have turned our economy around and created 14 million jobs. Our unemployment rate is below five percent for the first time in almost eight

  5. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  6. Alternative Fuels Data Center

    SciTech Connect (OSTI)

    2013-06-01

    Fact sheet describes the Alternative Fuels Data Center, which provides information, data, and tools to help fleets and other transportation decision makers find ways to reduce petroleum consumption through the use of alternative and renewable fuels, advanced vehicles, and other fuel-saving measures.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Green Fleets Policy and Fleet Management Program Development The Alabama Green Fleets Review Committee (Committee) is establishing a Green Fleets Policy (Policy) outlining a procedure for procuring state vehicles based on criteria that includes fuel economy and life cycle costing. State fleet managers must classify their vehicle inventory for compliance with the Policy and submit annual plans for procuring fuel-efficient vehicles. These plans must reflect a 4% annual increase in

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental security of the United States by supporting local initiatives to adopt practices that reduce the use of petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly 100 volunteer coalitions, which develop public/private partnerships to promote alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean

  9. Clean Domestic Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    This two-page fact sheet describes the priorities and activities of the EERE Geothermal Technologies Program.

  10. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact ...

  11. Fact Sheet: Clean Energy Technology Announcements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Energy Technology Announcements Fact Sheet: Clean Energy Technology Announcements December 14, 2009 - 12:00am Addthis Today at the Copenhagen climate conference, on behalf of President Obama, Energy Secretary Steven Chu announced the launch of a new initiative to promote clean energy technologies in developing countries. Secretary Chu also welcomed progress under the Major Economies Forum on Energy and Climate (MEF) and invited his counterparts in MEF and other countries to a first-ever

  12. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement All gasoline-powered vehicles purchased with state funds must be flexible fuel vehicles (FFVs) or fuel-efficient hybrid electric vehicles (HEVs). Fuel-efficient HEVs are defined as automobiles or light trucks that use a gasoline or diesel engine and an electric motor to provide power and that gain at least a 20% increase in combined U.S. Environmental Protection Agency city-highway fuel economy over the equivalent or most-similar

  13. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    SciTech Connect (OSTI)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  14. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  15. EERE Success Story-California and Connecticut: National Fuel Cell Bus

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs Drive Fuel Economy Higher | Department of Energy Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher EERE Success Story-California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August 21, 2013 - 12:00am Addthis In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses. During this

  16. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  17. FACT SHEET: The Path Forward on Nuclear Waste Disposal | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FACT SHEET: The Path Forward on Nuclear Waste Disposal FACT SHEET: The Path Forward on Nuclear Waste Disposal PDF icon FACT SHEET: The Path Forward on Nuclear Waste Disposal More Documents & Publications Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Integrated Waste Management and Consent-Based Siting Booklet

  18. DOE-DOD Emergency Backup Power Fuel Cell Installations | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE-DOD Emergency Backup Power Fuel Cell Installations DOE-DOD Emergency Backup Power Fuel Cell Installations Ths fact sheet describes a collaboration between the departments of ...

  19. Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to develop a unique, fuel-flexible catalytic combustor capable of enabling ultra-low emission, lean premixed combustion of a wide range of gaseous opportunity fuels. Fact...

  20. CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus CTTRANSIT Operates New England's First Fuel Cell Hybrid Bus DOE Hydrogen Program (Fact Sheet) PDF icon 42407.pdf More ...