National Library of Energy BETA

Sample records for fuel economy driving

  1. We Can't Wait: Driving Forward with New Fuel Economy Standards |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Can't Wait: Driving Forward with New Fuel Economy Standards We Can't Wait: Driving Forward with New Fuel Economy Standards November 16, 2011 - 4:04pm Addthis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis. The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car

  2. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  3. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  4. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates

    Broader source: Energy.gov [DOE]

    Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

  5. The Effect of Driving Intensity and Incomplete Charging on the Fuel Economy of a Hymotion Prius PHEV

    SciTech Connect (OSTI)

    Richard Barney Carlson

    2009-10-01

    On-road testing was conducted on a Hymotion Prius plug-in hybrid electric vehicle (PHEV) at the Electric Transportation Engineering Corporation in Phoenix, Arizona. The tests were comprised of on-road urban and highway driving during charge-depleting and charge-sustaining operation. Determining real-world effectiveness of PHEVs at reducing petroleum consumption in real world driving was the main focus of the study. Throughout testing, several factors that affect fuel consumption of PHEVs were identified. This report discusses two of these factors: driving intensity (i.e., driving aggressiveness) and battery charging completeness. These two factors are unrelated, yet both significantly impact the vehicles fuel economy. Driving intensity was shown to decrease fuel economy by up to half. Charging completeness, which was affected by human factors and ambient temperature conditions, also showed to have great impact on fuel economy for the Hymotion Prius. These tests were performed for the U.S. Department of Energys Advanced Vehicle Testing Activity. The Advanced Vehicle Testing Activity, part of the U.S. Department of Energys Vehicle Technology Program, is conducted by the Idaho National Laboratory and the Electric Transportation Engineering Corporation.

  6. Simulated fuel economy and emissions performance during city and interstate driving for a heavy-duty hybrid truck

    SciTech Connect (OSTI)

    Daw, C Stuart; Gao, Zhiming; Smith, David E; LaClair, Tim J; Pihl, Josh A; Edwards, Kevin Dean

    2013-01-01

    We compare simulated fuel economy and emissions for both conventional and hybrid class 8 heavy-duty diesel trucks operating over multiple urban and highway driving cycles. Both light and heavy freight loads were considered, and all simulations included full aftertreatment for NOx and particulate emissions controls. The aftertreatment components included a diesel oxidation catalyst (DOC), urea-selective catalytic NOx reduction (SCR), and a catalyzed diesel particulate filter (DPF). Our simulated hybrid powertrain was configured with a pre-transmission parallel drive, with a single electric motor between the clutch and gearbox. A conventional HD truck with equivalent diesel engine and aftertreatment was also simulated for comparison. Our results indicate that hybridization can significantly increase HD fuel economy and improve emissions control in city driving. However, there is less potential hybridization benefit for HD highway driving. A major factor behind the reduced hybridization benefit for highway driving is that there are fewer opportunities to utilize regenerative breaking. Our aftertreatment simulations indicate that opportunities for passive DPF regeneration are much greater for both hybrid and conventional trucks during highway driving due to higher sustained exhaust temperatures. When passive DPF regeneration is extensively utilized, the fuel penalty for particulate control is virtually eliminated, except for the 0.4%-0.9% fuel penalty associated with the slightly higher exhaust backpressure.

  7. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    SciTech Connect (OSTI)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  8. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-01-2049 Measured Laboratory and In-Use Fuel Economy Published Observed over Targeted Drive Cycles for 09/24/2012 Comparable Hybrid and Conventional Package Delivery Vehicles Michael P. Lammert, Kevin Walkowicz, Adam Duran and Petr Sindler National Renewable Energy Laboratory ABSTRACT This research project compares the in-use and laboratory- derived fuel economy of a medium-duty hybrid electric drivetrain with "engine off at idle" capability to a conventional drivetrain in a typical

  9. Predicting Individual Fuel Economy

    SciTech Connect (OSTI)

    Lin, Zhenhong; Greene, David L

    2011-01-01

    To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

  10. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid drivetrains have shown signifcant promise as part of an overall petroleum reduction feet strategy [1, 2, 3, 4, 5, 6]. Hybrid drivetrains consist of an energy storage device and a motor integrated into a traditional powertrain and offer the potential fuel savings by capturing energy normally lost during deceleration through the application of regenerative braking. Because hybrid technologies, especially hydraulic hybrids, have low adoption rates in the medium-duty vehicle segment and

  11. California and Connecticut: National Fuel Cell Bus Programs Drive Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Higher | Department of Energy Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August 21, 2013 - 12:00am Addthis In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional buses. During this study-€the National Fuel Cell Bus

  12. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  13. Fuel Economy Valentines | Department of Energy

    Energy Savers [EERE]

    Valentines Fuel Economy Valentines February 14, 2012 - 10:05am Addthis Amanda McAlpin What's more romantic this Valentine's Day than taking a drive with your sweetheart? In fact, for most people this holiday, the plans will include some kind of travel, to a restaurant, show, or weekend getaway. Anytime spent on the road can be a great time to track your vehicle's fuel economy, and fueleconomy.gov has a tool to help you do just that! Once you enter the Your MPG tool and select the make and model

  14. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  15. Fuel Economy Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Fuel Economy Ltd. Place: United Kingdom Product: Fuel Economy Ltd is perhaps better known by their core product 'Savastat', the highly...

  16. Model Year 2011 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2010-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  17. Model Year 2012 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2011-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  18. Model Year 2013 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2012-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

  19. Real-World PHEV Fuel Economy Prediction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEV Fuel Economy Prediction Real-World PHEV Fuel Economy Prediction 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss047_gonder_2011_o.pdf More Documents & Publications Light Duty Plug-in Hybrid Vehicle Systems Analysis Defining Real World Drive Cycles to Support APRF Technology Evaluations Analysis of maximizing the Synergy between PHEVs/EVs and PV

  20. Model Year 2016 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2015-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  1. Model Year 2007 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  2. Model Year 2010 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2009-10-14

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  3. Model Year 2009 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2008-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  4. Model Year 2005 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2004-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  5. Model Year 2008 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2007-10-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  6. Model Year 2006 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2005-11-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  7. Model Year 2015 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2014-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  8. Model Year 2014 Fuel Economy Guide: EPA Fuel Economy Estimates

    SciTech Connect (OSTI)

    2013-12-01

    The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles. The vehicles listed have been divided into three classes of cars, three classes of light duty trucks, and three classes of special purpose vehicles.

  9. 2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy

    Energy Savers [EERE]

    2009 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than

  10. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helping Drive Economy: Clean Energy, Clean Sites More Documents & Publications SmallBusinessMemoMar2010.pdf Federal Incentives for Wind Power Deployment Remarks by David...

  11. Fact #818: April 21, 2014 The Effect of Winter Weather on Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: April 21, 2014 The Effect of Winter Weather on Fuel Economy Fact #818: April 21, 2014 The Effect of Winter Weather on Fuel Economy Winter driving conditions and cold temperatures can have a significant effect on a vehicle's fuel economy. For a conventional gasoline-powered vehicle, fuel economy at 20°F is about 12% lower than at 77°F for short-trip city driving. For very short trips of just 3 to 4 miles, fuel economy can drop by as much as 22%. For more information

  12. Fuel economy and emissions reduction of HD hybrid truck over transient

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    driving cycles and interstate roads | Department of Energy economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and interstate roads Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks PDF icon p-12_gao.pdf More Documents & Publications Advanced HD Engine Systems and Emissions Control Modeling and Analysis

  13. Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet ...

    Open Energy Info (EERE)

    Efficiency ToolSet Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Fuel Economy Initiative Auto Fuel Efficiency ToolSet AgencyCompany Organization: FIA...

  14. Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Reduction over Transient Driving Cycles | Department of Energy Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles Effect of Premixed Charge Compression Ignition on Vehicle Fuel Economy and Emissions Reduction over Transient Driving Cycles In conventional vehicles, most engine operating points over a UDDS driving cycle stay within PCCI operation limits but PCCI in HEVs is limited because of higher loads and many

  15. Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Efficient Driving Behaviors to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Efficient Driving Behaviors to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Efficient

  16. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

  17. Fueling the Economy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Economy Argonne helps make the United States a front-runner in the production of materials for advanced lithium-ion batteries used in plug-in hybrid electric vehicles and other applications. PDF icon fueling_the_economy

  18. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in fuel economy with increasing restriction. However, the level of restriction required to cause a substantial (10-15%) decrease in fuel economy (such as that cited in the literature) was so severe that the vehicle was almost undrivable. Acceleration performance on all vehicles was improved with a clean air filter. Once it was determined how severe the restriction had to be to affect the carbureted vehicle fuel economy, the 2007 Buick Lucerne was retested in a similar manner. We were not able to achieve the level of restriction that was achieved with the 1972 Pontiac with the Lucerne. The Lucerne's air filter box would not hold the filter in place under such severe conditions. (It is believed that this testing exceeded the design limits of the air box.) Tests were conducted at a lower restriction level (although still considerably more severe than the initial clogged filter testing), allowing the air filter to stay seated in the air box, and no significant change was observed in the Lucerne's fuel economy or the AFR over the HFET cycle. Closed-loop control in modern fuel injected vehicle applications is sophisticated enough to keep a clogged air filter from affecting the vehicle fuel economy. However for older, open-loop, carbureted vehicles, a clogged air filter can affect the fuel economy. For the vehicle tested, the fuel economy with a new air filter improved as much as 14% over that with a severely clogged filter (in which the filter was so clogged that drivability was impacted). Under a more typical state of clog, the improvement with a new filter ranged from 2 to 6%.

  19. 2004 FUEL ECONOMY GUIDE BEST IN CLASS | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A chart describing the 2004 fuel economy best in class vehicles. 2004 FUEL ECONOMY GUIDE BEST IN CLASS More Documents & Publications Microsoft Word - Document1 2010 Vehicle...

  20. The Road to Improved Heavy Duty Fuel Economy | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Road to Improved Heavy Duty Fuel Economy Heavy duty diesel engine fuel economy is improved by lowering the viscosity of engine lubricant, especially when engine speed is ...

  1. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    EPA-Fuel Economy Guide Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy Guide AgencyCompany Organization: United States Environmental Protection Agency...

  2. Global Fuel Economy Initiative: 50by50 Prospects and Progress...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentglobal-fuel-economy-initiative-50by50 Language: English Policies: Regulations Regulations: "Fuel Efficiency Standards,Mandates...

  3. CleanFleet. Final report: Volume 4, fuel economy

    SciTech Connect (OSTI)

    1995-12-01

    Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

  4. Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Electricity & Fuel » Vehicles & Fuels » Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Tips: Buying and Driving Fuel Efficient and Alternative Fuel Vehicles Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or alternative fuel vehicles. | Photo courtesy of

  5. Analysis of In-Use Fuel Economy Shortfall Based on Voluntarily Reported MPG Estimates

    SciTech Connect (OSTI)

    Greene, David L; Goeltz, Rick; Hopson, Dr Janet L; Tworek, Elzbieta

    2007-01-01

    The usefulness of the Environmental Protection Agency's (EPA) passenger car and light truck fuel economy estimates has been the subject of debate for the past three decades. For the labels on new vehicles and the fuel economy information given to the public, the EPA adjusts dynamometer test results downward by 10% for the city cycle and 22% for the highway cycle to better reflect real world driving conditions. These adjustment factors were developed in 1984 and their continued validity has repeatedly been questioned. In March of 2005 the U.S. Department of Energy (DOE) and EPA's fuel economy information website, www.fueleconomy.gov, began allowing users to voluntarily share fuel economy estimates. This paper presents an initial statistical analysis of more than 3,000 estimates submitted by website users. The analysis suggests two potentially important results: (1) adjusted, combined EPA fuel economy estimates appear to be approximately unbiased estimators of the average fuel economy consumers will experience in actual driving, and (2) the EPA estimates are highly imprecise predictors of any given individual's in-use fuel economy, an approximate 95% confidence interval being +/-7 MPG. These results imply that what is needed is not less biased adjustment factors for the EPA estimates but rather more precise methods of predicting the fuel economy individual consumers will achieve in their own driving.

  6. Prospects on fuel economy improvements for hydrogen powered vehicles.

    SciTech Connect (OSTI)

    Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H.

    2008-01-01

    Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

  7. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Office of Environmental Management (EM)

    vehicle could cut your fuel costs and help the environment. See FuelEconomy.gov's Find a Car tool for more information on buying a new fuel-efficient car or truck. Learn more about...

  8. Fuel Economy.gov - Mobile | Open Energy Information

    Open Energy Info (EERE)

    Economy.gov - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Fuel Economy.gov - Mobile AgencyCompany Organization: United States Department of Energy Sector:...

  9. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fuel efficiency in the 2010 model year. Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes, 2010 model year Graph showing the fuel economy and annual fuel cost...

  10. 2010 Annual Fuel Economy Guide Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their

  11. NREL: Transportation Research - Emissions and Fuel Economy Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emissions and Fuel Economy Analysis Photo of a man hooking up test instruments to an engine mounted on an engine dynamometer. An NREL engineer maintains an engine fuel economy and...

  12. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms. | Photo...

  13. Improving Fuel Economy When the Weather's Cold | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Fuel Economy When the Weather's Cold Improving Fuel Economy When the Weather's Cold February 25, 2014 - 9:49am Addthis Make sure your car is ready for spring snowstorms....

  14. 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles | Department of

    Energy Savers [EERE]

    Energy 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles 2016 Fuel Economy Guide Highlights Fuel-Efficient Vehicles November 5, 2015 - 1:07am Addthis Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Photo by Kristy Keel-Blackmon of East Tennessee Clean Fuels Shannon Brescher Shea Communications Manager, Clean Cities Program The 2016 Fuel Economy Guide is now available. It provides fuel economy, greenhouse gas emission, and projected fuel cost information on model year

  15. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact 659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The Environmental Protection Agency has developed a new methodology for determining how fuel ...

  16. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  17. SEP Success Story: Fueling South Carolina's Clean Energy Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling South Carolina's Clean Energy Economy SEP Success Story: Fueling South Carolina's ... SEP Success Story: "Idle Free Systems" Does Not Stand Idly by Carolers sing in front of ...

  18. Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders Fact #696: October 10, 2011 Top Ten "Real World" Fuel Economy Leaders The Environmental Protection Agency (EPA) fuel economy ratings on the window stickers of new cars are based on strict test cycles conducted in a controlled laboratory setting. These official EPA estimates do not reflect all the varied conditions encountered in real world driving such as congestion, terrain, weather,

  19. Small Businesses Helping Drive Economy: Clean Energy, Clean Sites

    Energy Savers [EERE]

    1 Small Businesses Helping Drive Economy: Clean Energy, Clean Sites "We should start where most new jobs do - in small businesses, companies that begin when an entrepreneur takes a chance on a dream, or a worker decides its time she became her own boss." --- President Obama, State of the Union Address, January 27, 2010 "Jobs will be our number one focus in 2010. And we're going to start where most new jobs do - with small businesses." --- President Obama, Nashua, New

  20. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-ElectricDiesel Powertrain in a Class 4...

  1. Impact of Driving Behavior on PHEV Fuel Consumption for Different...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, ...

  2. Airlines & Aviation Alternative Fuels: Our Drive to Be Early...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Plenary III: Early Market ...

  3. How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  4. Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The US | Department of Energy Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged Spark Ignited Direct Injection - A Fuel Economy Solution for The US Turbocharged SIDI is the most promising advanced gasoline technology; combines existing & proven technologies in a synergistic manner, offers double digit fuel economy benefits, much lower cost than diesel or hybrid. PDF icon deer09_whitaker.pdf More Documents & Publications E85 Optimized Engine

  5. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1978-2014 | Department of Energy 70: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress, 1978-2014 The Corporate Average Fuel Economy (CAFE) is the sales-weighted harmonic mean fuel economy of a manufacturer's fleet of new cars or light trucks in a certain model year (MY). First enacted by Congress in 1975, the standards for cars began in MY 1978 and for light trucks in MY 1979. In general, the average of all

  6. Annual Fuel Economy Guide with 2014 Models Released

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) and the Energy Department released the 2014 Fuel Economy Guide that provides consumers with a resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles.

  7. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Classes | Department of Energy 4: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes The graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the two-seater model with the lowest fuel economy gets 10 miles per gallon (MPG) with an estimated annual fuel

  8. Predicting Light-Duty Vehicle Fuel Economy as a Function of Highway Speed

    SciTech Connect (OSTI)

    Thomas, John F; Hwang, Ho-Ling; West, Brian H; Huff, Shean P

    2013-01-01

    The www.fueleconomy.gov website offers information such as window label fuel economy for city, highway, and combined driving for all U.S.-legal light-duty vehicles from 1984 to the present. The site is jointly maintained by the U.S. Department of Energy and the U.S. Environmental Protection Agency (EPA), and also offers a considerable amount of consumer information and advice pertaining to vehicle fuel economy and energy related issues. Included with advice pertaining to driving styles and habits is information concerning the trend that as highway cruising speed is increased, fuel economy will degrade. An effort was undertaken to quantify this conventional wisdom through analysis of dynamometer testing results for 74 vehicles at steady state speeds from 50 to 80 mph. Using this experimental data, several simple models were developed to predict individual vehicle fuel economy and its rate of change over the 50-80 mph speed range interval. The models presented require a minimal number of vehicle attributes. The simplest model requires only the EPA window label highway mpg value (based on the EPA specified estimation method for 2008 and beyond). The most complex of these simple model uses vehicle coast-down test coefficients (from testing prescribed by SAE Standard J2263) known as the vehicle Target Coefficients, and the raw fuel economy result from the federal highway test. Statistical comparisons of these models and discussions of their expected usefulness and limitations are offered.

  9. iDriving (Intelligent Driving)

    Energy Science and Technology Software Center (OSTI)

    2012-09-17

    iDriving identifies the driving style factors that have a major impact on fuel economy. An optimization framework is used with the aim of optimizing a driving style with respect to these driving factors. A set of polynomial metamodels is constructed to reflect the responses produced in fuel economy by changing the driving factors. The optimization framework is used to develop a real-time feedback system, including visual instructions, to enable drivers to alter their driving stylesmore »in responses to actual driving conditions to improve fuel efficiency.« less

  10. Advanced Aerodynamic Technologies for Improving Fuel Economy in Ground

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles | Department of Energy Aerodynamic Technologies for Improving Fuel Economy in Ground Vehicles Advanced Aerodynamic Technologies for Improving Fuel Economy in Ground Vehicles Low-Cost Aerodynamic Drag Reduction Devices for Tractor-Trailer Trucks Reduce Fuel Consumption Heavy vehicles lose a tremendous amount of energy from wind resistance, braking, and rolling resistance. Such non-engine losses can account for about a 45% decrease in efficiency. The need for technologies to reduce

  11. Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_crane.pdf More Documents & Publications Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency Gains in Vehicle Applications Automotive Waste Heat Conversion to Electric Power using Skutterudites, TAGS, PbTe

  12. Energy Department and Environmental Protection Agency Release Fuel Economy

    Office of Environmental Management (EM)

    Tool for Used Vehicles | Department of Energy Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles Energy Department and Environmental Protection Agency Release Fuel Economy Tool for Used Vehicles September 12, 2013 - 9:00am Addthis News Media Contact DOE: (202) 586-4940 EPA: (202) 564-4355 WASHINGTON - As part of the Obama Administration's ongoing efforts to increase fuel efficiency, reduce carbon pollution and address climate change, the U.S. Energy Department and

  13. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation |

    Office of Environmental Management (EM)

    Department of Energy Vehicle Fuel Economy Standards Will Continue to Inspire Innovation New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation July 29, 2011 - 1:48pm Addthis President Barack Obama delivers remarks on fuel efficiency standards for 2017-2025 model year cars and light-duty trucks during an event at the Washington Convention Center in Washington, D.C., July 29, 2011. Seated behind the President are at left are auto industry executives and Transportation Secretary

  14. Fuel Economy and Emissions of a Vehicle Equipped with an Aftermarket Flexible-Fuel Conversion Kit

    SciTech Connect (OSTI)

    Thomas, John F; Huff, Shean P; West, Brian H

    2012-04-01

    The U.S. Environmental Protection Agency (EPA) grants Certificates of Conformity for alternative fuel conversion systems and also offers other forms of premarket registration of conversion kits for use in vehicles more than two model years old. Use of alternative fuels such as ethanol, natural gas, and propane are encouraged by the Energy Policy Act of 1992. Several original equipment manufacturers (OEMs) produce emissions-certified vehicles capable of using alternative fuels, and several alternative fuel conversion system manufacturers produce EPA-approved conversion systems for a variety of alternative fuels and vehicle types. To date, only one manufacturer (Flex Fuel U.S.) has received EPA certifications for ethanol fuel (E85) conversion kits. This report details an independent evaluation of a vehicle with a legal installation of a Flex Fuel U.S. conversion kit. A 2006 Dodge Charger was baseline tested with ethanol-free certification gasoline (E0) and E20 (gasoline with 20 vol % ethanol), converted to flex-fuel operation via installation of a Flex Box Smart Kit from Flex Fuel U.S., and retested with E0, E20, E50, and E81. Test cycles included the Federal Test Procedure (FTP or city cycle), the highway fuel economy test (HFET), and the US06 test (aggressive driving test). Averaged test results show that the vehicle was emissions compliant on E0 in the OEM condition (before conversion) and compliant on all test fuels after conversion. Average nitrogen oxide (NOx) emissions exceeded the Tier 2/Bin 5 intermediate life NO{sub X} standard with E20 fuel in the OEM condition due to two of three test results exceeding this standard [note that E20 is not a legal fuel for non-flexible-fuel vehicles (non-FFVs)]. In addition, one E0 test result before conversion and one E20 test result after conversion exceeded the NOX standard, although the average result in these two cases was below the standard. Emissions of ethanol and acetaldehyde increased with increasing ethanol, while nonmethane organic gas and CO emissions remained relatively unchanged for all fuels and cycles. Higher fraction ethanol blends appeared to decrease NO{sub X} emissions on the FTP and HFET (after conversion). As expected, fuel economy (miles per gallon) decreased with increasing ethanol content in all cases.

  15. New Find-a-Car App Brings Fuel Economy Right to Your Phone | Department of

    Office of Environmental Management (EM)

    Energy Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone February 12, 2016 - 2:45pm Addthis New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right to Your Phone New Find-a-Car App Brings Fuel Economy Right

  16. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient

    Energy Savers [EERE]

    Vehicle | Department of Energy The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel-Efficient Vehicle January 8, 2014 - 1:10pm Addthis Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Read the 2014 Fuel Economy Guide to inform your new car purchase this year. | Photo courtesy of ©iStockphoto.com/Thomas_EyeDesign Jason

  17. Fueling South Carolina's Clean Energy Economy | Department of Energy

    Energy Savers [EERE]

    Fueling South Carolina's Clean Energy Economy Fueling South Carolina's Clean Energy Economy June 6, 2012 - 4:15pm Addthis Pure Power, LLC makes products that allow truck engines to reduce emissions and improve fuel economy. The company has increased their energy efficiency and hired new employees. | Photo courtesy of <a href="http://www.flickr.com/photos/clatiek/47587765/">Flickr user ClatieK</a>. Pure Power, LLC makes products that allow truck engines to reduce emissions

  18. Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: July 18, 2011 Fuel Economy versus Fuel Savings Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings An increase in fuel economy by 5 miles per gallon (mpg) does not translate to a constant fuel savings amount. Thus, trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. For example, trading a truck that gets 15 mpg for a new one that gets 20 mpg will save 16.7 gallons of fuel

  19. Simulations of the Fuel Economy and Emissions of Hybrid Transit Buses over Planned Local Routes

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E; Franzese, Oscar

    2014-01-01

    We present simulated fuel economy and emissions city transit buses powered by conventional diesel engines and diesel-hybrid electric powertrains of varying size. Six representative city drive cycles were included in the study. In addition, we included previously published aftertreatment device models for control of CO, HC, NOx, and particulate matter (PM) emissions. Our results reveal that bus hybridization can significantly enhance fuel economy by reducing engine idling time, reducing demands for accessory loads, exploiting regenerative braking, and shifting engine operation to speeds and loads with higher fuel efficiency. Increased hybridization also tends to monotonically reduce engine-out emissions, but trends in the tailpipe (post-aftertreatment) emissions involve more complex interactions that significantly depend on motor size and drive cycle details.

  20. The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Mid-Load Conditions | Department of Energy The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions Statistical models developed from designed esperiments (varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints. PDF icon deer08_kumar.pdf More Documents &

  1. Biomass Fueling America’s Growing Clean Energy Economy

    Broader source: Energy.gov [DOE]

    Biomass is the most abundant biological material on the planet. It is renewable; it grows almost everywhere; and it provides fuel, power, chemicals, and many other products. Find out how biomass is helping grow America's clean energy economy.

  2. "Table 11. Fuel Economy, Selected Survey Years (Miles Per Gallon...

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Economy, Selected Survey Years (Miles Per Gallon)" ,"Survey Years" ,1983,1985,1988,1991,1994,2001 "Total",15.1,16.1,18.3,19.3,19.8,20.2 "Household Characteristics" "Census...

  3. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Standards, Model Years 2012-2016 The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model...

  4. 2012 Fuel Economy of New Vehicles Sets Record High: EPA

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) reported that model year 2012 vehicles achieved an all-time high fuel economy average of 23.6 miles per gallon.

  5. Fuel economy and emissions reduction of HD hybrid truck over...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compares simulated fuel economy and emissions fro conventional and hybrid Class 8 heavy trucks PDF icon p-12gao.pdf More Documents & Publications Advanced HD Engine Systems and ...

  6. 2011 Fuel Economy Guide Now Available | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will provide additional fuel economy information online as more 2011 vehicles, including electric and plug-in hybrid cars, become available. You can view the guide either on the...

  7. New Vehicle Fuel Economy Standards Will Continue to Inspire Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sets aggressive new fuel-economy standards for cars and light-duty trucks. A number of Energy Department projects and investments are unleashing innovation that will create jobs...

  8. Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Research Shows Ventilated Auto Seats Improve Fuel Economy, Comfort March 2, 2006 Golden, Colo. - The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has demonstrated that ventilated automotive seats not only can improve passenger comfort but also a vehicle's fuel economy. That's because ventilated seats keep drivers and passengers cooler, so they need less air conditioning to be comfortable. NREL's Vehicle Ancillary Loads Reduction team has been

  9. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel ...

  10. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  11. Fuel Economy Improvement Potential of a Heavy Duty Truck using V2x Communication

    SciTech Connect (OSTI)

    LaClair, Tim J; Verma, Rajeev; Norris, Sarah; Cochran, Robert

    2014-01-01

    In this paper, we introduce an intelligent driver assistance system to reduce fuel consumption in heavy duty vehicles irrespective of the driving style of the driver. We specifically study the potential of V2I and V2V communications to reduce fuel consumption in heavy duty trucks. Most ITS communications today are oriented towards vehicle safety, with communications strategies and hardware that tend to focus on low latency. This has resulted in technologies emerging with a relatively limited range for the communications. For fuel economy, it is expected that most benefits will be derived with greater communications distances, at the scale of many hundred meters or several kilometers, due to the large inertia of heavy duty vehicles. It may therefore be necessary to employ different communications strategies for ITS applications aimed at fuel economy and other environmental benefits than what is used for safety applications in order to achieve the greatest benefits.

  12. Fuel Economy on the Fly | Department of Energy

    Energy Savers [EERE]

    on the Fly Fuel Economy on the Fly January 18, 2011 - 1:45pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With the North American International Auto Show in Detroit kicking off the auto-show circuit last week, manufacturers are unveiling their future models. If you're inspired and in the market for a new car, FuelEconomy.gov can help you pick the most fuel-efficient vehicle for your needs. Although most people don't bring their computer with them to the dealership,

  13. Fuel Economy Sticker Revs Up Used Car Sales | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Economy Sticker Revs Up Used Car Sales Fuel Economy Sticker Revs Up Used Car Sales May 1, 2014 - 2:29pm Addthis FuelEconomy.gov’s newest tool -- the Used Car Fuel Economy Label -- makes it easier for consumers to compare used cars, select the most fuel-efficient model and save money at the pump. | Photo by the Energy Department. FuelEconomy.gov's newest tool -- the Used Car Fuel Economy Label -- makes it easier for consumers to compare used cars, select the most fuel-efficient model

  14. Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel A recent study by Oak Ridge National Laboratory shows that the fuel economy of cars and light trucks in the study decreases rapidly at speeds above 50 miles per hour (mph). The study of 74 light vehicles included two-seaters, sedans, station wagons, sport utility vehicles, pickup trucks, and minivans for model years (MY) ranging from

  15. Fuel Economy Coach | Open Energy Information

    Open Energy Info (EERE)

    driving performance - green means you are doing well, yellow means you are average and red means you are being inefficient. An audible tone will be played by the app when you are...

  16. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  17. Global Fuel Economy Initiative | Open Energy Information

    Open Energy Info (EERE)

    & North America, Europe, Latin America & Caribbean, Africa & Middle East Related Tools Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences Turn Down the...

  18. Comparison of Different Load Road Implementation Strategies on Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of USPS Step Vans | Department of Energy Different Load Road Implementation Strategies on Fuel Economy of USPS Step Vans Comparison of Different Load Road Implementation Strategies on Fuel Economy of USPS Step Vans An alternative form of measuring road loads, instead of using a chassis dynamometer and a method described in 40 CFR section 86.1229-85, was conducted on on-road coastdowns, and regression analysis was used to determine the characteristics of the two U.S. Postal Service step vans,

  19. Fuel Economy Fact and Fiction | Department of Energy

    Energy Savers [EERE]

    Fact and Fiction Fuel Economy Fact and Fiction April 4, 2011 - 1:01pm Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With gas prices soaring higher than ever, there's a lot of information-true and false-floating around about fuel economy. From well-intentioned friends to salespeople trying to make a buck, everyone has an opinion on how you can use less gas. Thankfully, the Department of Energy has solid facts based on data that will help you sort out the reality from

  20. US DRIVE Fuel Pathway Integration Technical Team Roadmap | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Pathway Integration Technical Team Roadmap US DRIVE Fuel Pathway Integration Technical Team Roadmap The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term. PDF icon fpitt_roadmap_june2013.pdf More

  1. Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: June 28, 2010 Top Ten Misconceptions about Fuel Economy Fact #629: June 28, 2010 Top Ten Misconceptions about Fuel Economy The Fuel Economy Guide Web site, sponsored by the U. S. Department of Energy and the U.S. Environmental Protection Agency, displays a list of misconceptions about fuel economy. Knowing the facts on fuel economy can help reduce oil consumption and save money at the pump. Top Ten Misconceptions about Fuel Economy Misconception The Facts 1. You have

  2. Chapter 11. Fuel Economy: The Case for Market Failure

    SciTech Connect (OSTI)

    Greene, David L; German, John; Delucchi, Mark A

    2009-01-01

    The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

  3. New Methodology for Estimating Fuel Economy by Vehicle Class

    SciTech Connect (OSTI)

    Chin, Shih-Miao; Dabbs, Kathryn; Hwang, Ho-Ling

    2011-01-01

    Office of Highway Policy Information to develop a new methodology to generate annual estimates of average fuel efficiency and number of motor vehicles registered by vehicle class for Table VM-1 of the Highway Statistics annual publication. This paper describes the new methodology developed under this effort and compares the results of the existing manual method and the new systematic approach. The methodology developed under this study takes a two-step approach. First, the preliminary fuel efficiency rates are estimated based on vehicle stock models for different classes of vehicles. Then, a reconciliation model is used to adjust the initial fuel consumption rates from the vehicle stock models and match the VMT information for each vehicle class and the reported total fuel consumption. This reconciliation model utilizes a systematic approach that produces documentable and reproducible results. The basic framework utilizes a mathematical programming formulation to minimize the deviations between the fuel economy estimates published in the previous year s Highway Statistics and the results from the vehicle stock models, subject to the constraint that fuel consumptions for different vehicle classes must sum to the total fuel consumption estimate published in Table MF-21 of the current year Highway Statistics. The results generated from this new approach provide a smoother time series for the fuel economies by vehicle class. It also utilizes the most up-to-date and best available data with sound econometric models to generate MPG estimates by vehicle class.

  4. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel ...

  5. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy...

    Broader source: Energy.gov (indexed) [DOE]

    track your own fuel economy and compare it to that of other users and to the test ratings. ... How does your fuel economy compare to the test ratings on Fueleconomy.gov? Each Thursday, ...

  6. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the...

  7. Diesel NOx-PM Reduction with Fuel Economy Increase by IMET-OBC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOx-PM Reduction with Fuel Economy Increase by IMET-OBC-DPF + Hydrated-EGR System for Retrofit of In-Use Trucks Diesel NOx-PM Reduction with Fuel Economy Increase by...

  8. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February ...

  9. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight...

  10. 2012 Fuel Economy of New Vehicles Sets Record High: EPA | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 Fuel Economy of New Vehicles Sets Record High: EPA 2012 Fuel Economy of New Vehicles Sets Record High: EPA December 18, 2013 - 12:00am Addthis The U.S. Environmental...

  11. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed

    Broader source: Energy.gov [DOE]

    Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed of 55 miles per...

  12. DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy

    Energy Savers [EERE]

    1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency

  13. Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improvement | Department of Energy 7: September 7, 2009 Cash for Clunkers Program - Fuel Economy Improvement Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel Economy Improvement The Car Allowance Rebate System (CARS), also known as the Cash for Clunkers Program, provided Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18 miles per gallon or less for brand new vehicles with improved fuel economy. The program was active from July 1

  14. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity | Department of Energy 9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity. The fuel economy will be displayed in miles per gallon equivalent (MPGequivalent), so that

  15. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting raw fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such raw PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  16. Examining new fuel economy standards for the United States.

    SciTech Connect (OSTI)

    Plotkin, S. E.; Energy Systems

    2007-01-01

    After decades of futile attempts to increase U.S. fuel economy standards for passenger cars, which have remained unchanged since enactment of the Corporate Average Fuel Economy (CAFE) Standards in Title V of the 1975 Energy Policy Conservation Act, it seems increasingly likely that new and tougher standards will be enacted in the near future - especially after the Senate's 21 June passage of energy efficiency bill H.R. 6. As this magazine went to press, the bill, which calls for a 40 percent increase in vehicle fuel economy by 2020 among other efficiency and alternative energy goals, was headed to the House of Representatives for more debate. Congress has seen proposals like this since the 1980s, but this is the first time that one of them has passed in the Senate. The Bush administration has also weighed in with a proposal to increase new vehicle fuel economy by 4 percent per year from 2011 to 2017, and the administrator of the National Highway Traffic Safety Administration (NHTSA) has asked Congress to grant the Secretary of Transportation the authority to restructure and increase CAFE standards for cars, a power denied by the original CAFE legislation. A confluence of events has led to this change of political climate, including: the failure of world oil production and refining capacity to keep pace with rapidly growing demand, especially from China and other emerging economies, which has led to the highest oil prices since the 1980s and growing fears that world production of conventional oil may be close to its peak and rapid decline; the escalating influence of oil resources on geopolitics as China seeks to guarantee its future access to supplies, enhanced revenues from the higher prices, which prop up authoritarian regimes in Iran, Venezuela, Russia, and elsewhere and allow them increasing freedom of action; the enhancement of the role of climate change in political decision making by new reports from the Intergovernmental Panel on Climate Change (IPCC), with much strengthened language about the probability and severity of climate change and man's influence on it, and a recent Supreme Court decision rejecting the Environmental Protection Agency's assertion that it has no authority to regulate greenhouse gas emissions. New fuel economy standards will represent an ambitious and expensive undertaking on the part of the automobile industry and the nation, and proposals for new standards deserve careful congressional and public scrutiny.

  17. Vehicle Mass Impact on Vehicle Losses and Fuel Economy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mass Impact on Vehicle Losses and Fuel Economy Vehicle Mass Impact on Vehicle Losses and Fuel Economy 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss074_francfort_2012_o.pdf More Documents & Publications Vehicle Mass Impact on Vehicle Losses and Fuel Economy Vehicle Mass and Fuel Efficiency Impact Testing Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

  18. Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Trucks | Department of Energy 2: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks Fact #692: September 12, 2011 Fuel Economy Distribution for New Cars and Light Trucks Nearly 64% of new cars sold in model year (MY) 1975 had combined highway/city fuel economy of 15 miles per gallon (mpg) or less [blue shading]. By 2010, 63% of cars had fuel economy of 25 mpg or higher [green shading and up]. Light trucks, which typically have lower fuel economy than cars, show

  19. US DRIVE Fuel Cell Technical Team Roadmap | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Technical Team Roadmap US DRIVE Fuel Cell Technical Team Roadmap The Fuel Cell Technical Team (FCTT) conducts the following activities: (1) Reviews and evaluates materials and systems research regarding fuel cells for light-duty vehicles and provides feedback to the U.S. Department of Energy (DOE) and Partnership stakeholders, (2) Generates goals and performance targets for fuel cells for automotive applications, (3) Collaborates with other technical teams and assists the Partnership

  20. Vehicle Technologies Office Merit Review 2015: Fuel Economy Information Project- Research, Data Validation, and Technical Assistance Related to Collecting, Analyzing, and Disseminating Accurate Fuel Economy Information

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel economy...

  1. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or...

  2. Leveraging Intelligent Vehicle Technologies to Maximize Fuel Economy (Presentation)

    SciTech Connect (OSTI)

    Gonder, J.

    2011-11-01

    Advancements in vehicle electronics, along with communication and sensing technologies, have led to a growing number of intelligent vehicle applications. Example systems include those for advanced driver information, route planning and prediction, driver assistance, and crash avoidance. The National Renewable Energy Laboratory is exploring ways to leverage intelligent vehicle systems to achieve fuel savings. This presentation discusses several potential applications, such as providing intelligent feedback to drivers on specific ways to improve their driving efficiency, and using information about upcoming driving to optimize electrified vehicle control strategies for maximum energy efficiency and battery life. The talk also covers the potential of Advanced Driver Assistance Systems (ADAS) and related technologies to deliver significant fuel savings in addition to providing safety and convenience benefits.

  3. Impact of Driving Behavior on PHEV Fuel Consumption for Different

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain, Component Sizes and Control | Department of Energy Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control Impact of Driving Behavior on PHEV Fuel Consumption for Different Powertrain, Component Sizes and Control 2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. PDF icon vss011_rousseau_2010_o.pdf More Documents & Publications PHEV Control Strategy

  4. Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 8: September 14, 2009 Fuel Economy Changes Due to Ethanol Content Fact #588: September 14, 2009 Fuel Economy Changes Due to Ethanol Content The fuel economy of a vehicle is dependent on many things, one of which is the fuel used in the vehicle. Two National Laboratories recently studied the effects that ethanol blends have on the fuel economy of light vehicles. The results are not surprising, since a gallon of ethanol does not have as much energy as a gallon of gasoline.

  5. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rise | Department of Energy 3: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues to Rise The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2013 was 1.6 miles per gallon (mpg) higher than MY 2011. This increase brings the new light vehicle fuel economy average to 24 mpg for the first time since the Environmental Protection Agency (EPA) began recording new vehicle fuel

  6. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicles Yield the Greatest Fuel Savings | Department of Energy 3: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel savings amount. Trading a low-mpg car

  7. NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL NREL Shows Heavy Duty Hybrid Trucks Deliver on Fuel Economy September 11, 2012 A performance evaluation of Class 8 hybrid electric tractor trailers compared with similar conventional vehicles by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) shows significant improvements in fuel economy. "During our 13-month study, the hybrid tractors demonstrated 13.7 percent higher fuel economy than the conventional tractors, resulting in a 12 percent

  8. NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Study: Hybrid Delivery Vans Show Nearly 20 Percent Higher Fuel Economy September 28, 2012 The U.S. Department of Energy's (DOE)'s National Renewable Energy Laboratory (NREL) recently completed a performance evaluation report that showed significant fuel economy benefits of hybrid electric delivery vans compared to similar conventional vans. "During the on-road portion of our study, the hybrid vans demonstrated a 13 to 20 percent higher fuel economy than the

  9. Fuel economy and emissions evaluation of BMW hydrogen 7 mono-fuel demonstration vehicles.

    SciTech Connect (OSTI)

    Wallner, T.; Lohse-Busch, H.; Gurski, S.; Duoba, M.; Thiel, W.; Martin, D.; Korn, T.; Energy Systems; BMW Group Munich Germany; BMW Group Oxnard USA

    2008-12-01

    This article summarizes the testing of two BMW Hydrogen 7 Mono-Fuel demonstration vehicles at Argonne National Laboratory's Advanced Powertrain Research Facility (APRF). The BMW Hydrogen 7 Mono-Fuel demonstration vehicles are derived from the BMW Hydrogen 7 bi-fuel vehicles and based on a BMW 760iL. The mono-fuel as well as the bi-fuel vehicle(s) is equipped with cryogenic hydrogen on-board storage and a gaseous hydrogen port fuel injection system. The BMW Hydrogen 7 Mono-Fuel demonstration vehicles were tested for fuel economy as well as emissions on the Federal Test Procedure FTP-75 cold-start test as well as the highway test. The results show that these vehicles achieve emissions levels that are only a fraction of the Super Ultra Low Emissions Vehicle (SULEV) standard for nitric oxide (NO{sub x}) and carbon monoxide (CO) emissions. For non-methane hydrocarbon (NMHC) emissions the cycle-averaged emissions are actually 0 g/mile, which require the car to actively reduce emissions compared to the ambient concentration. The fuel economy numbers on the FTP-75 test were 3.7 kg of hydrogen per 100 km, which, on an energy basis, is equivalent to a gasoline fuel consumption of 17 miles per gallon (mpg). Fuel economy numbers for the highway cycle were determined to be 2.1 kg of hydrogen per 100 km or 30 miles per gallon of gasoline equivalent (GGE). In addition to cycle-averaged emissions and fuel economy numbers, time-resolved (modal) emissions as well as air/fuel ratio data is analyzed to further investigate the root causes of the remaining emissions traces. The BMW Hydrogen 7 vehicles employ a switching strategy with lean engine operation at low engine loads and stoichiometric operation at high engine loads that avoids the NO{sub x} emissions critical operating regime with relative air/fuel ratios between 1 < {lambda} < 2. The switching between these operating modes was found to be a major source of the remaining NO{sub x} emissions. The emissions results collected during this period lead to the conclusion that the BMW Hydrogen 7 Mono-Fuel demonstration vehicles are likely the cleanest combustion engine vehicles ever tested at Argonne's APRF.

  10. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David; Gibson, Robert

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  11. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  12. Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type Fact #586: August 31, 2009 New Vehicle Fuel Economies by Vehicle Type The average fuel economy for new cars climbed to over 30 miles per gallon (mpg) in 2008 while the average for new pickup trucks stayed around 20 mpg. For new vans and sport utility vehicles (SUVs) the average fuel economy has noticeably increased in the last few years. These data are weighted by the number of vehicles sold. New Vehicle

  13. Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 7, 2010 Fuel Economy for Light and Heavy Vehicles Fact #626: June 7, 2010 Fuel Economy for Light and Heavy Vehicles In the next few years it is expected that fuel economy standards will be imposed on new medium and heavy trucks sold in the U.S. Currently, the estimates of the medium and heavy truck population range from a high of 15 miles per gallon (mpg) for class 2b trucks to a low of 2.5 mpg for class 8a trucks. The chart below shows the range of fuel economy

  14. Fact #773: April 1, 2013 Fuel Economy Penalty at Higher Speeds | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 3: April 1, 2013 Fuel Economy Penalty at Higher Speeds Fact #773: April 1, 2013 Fuel Economy Penalty at Higher Speeds Each vehicle reaches an optimal fuel economy at a different speed or range of speeds. A recent study by Oak Ridge National Laboratory illustrates that point with a wide range of data collected on 74 light vehicles. The figure below shows that from 50 to 60 miles per hour (mph) 26 of the vehicles experienced an 11-13% decrease in fuel economy, but one vehicle only

  15. How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov?

    Office of Environmental Management (EM)

    | Department of Energy Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? How Does Your Fuel Economy Compare to the Test Ratings on Fueleconomy.gov? November 12, 2009 - 8:36am Addthis On Monday, you read about the resources on Fueleconomy.gov and how they can help you compare the fuel economy of vehicles. Fueleconomy.gov also offers a tool called Your MPG, where you can track your own fuel economy and compare it to that of other users and to the test ratings. Many factors

  16. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  17. Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower

    SciTech Connect (OSTI)

    West, Brian H; Lopez Vega, Alberto; Theiss, Timothy J; Graves, Ronald L; Storey, John Morse; Lewis Sr, Samuel Arthur

    2007-01-01

    Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

  18. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel...

  19. Vehicle Technologies Office Merit Review 2015: Improve Fuel Economy through Formulation Design and Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Ashland Inc. at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about improve fuel economy through...

  20. Fact #624: May 24, 2010 Corporate Average Fuel Economy Standards, Model Years 2012-2016

    Broader source: Energy.gov [DOE]

    The final rule for the Corporate Average Fuel Economy (CAFE) Standards was published in March 2010. Under this rule, each light vehicle model produced for sale in the United States will have a fuel...

  1. DOE and EPA Release 2012 Annual Fuel Economy Guide | Department of Energy

    Energy Savers [EERE]

    2 Annual Fuel Economy Guide DOE and EPA Release 2012 Annual Fuel Economy Guide November 16, 2011 - 2:37pm Addthis WASHINGTON, D.C. - The Department of Energy (DOE) and the U.S. Environmental Protection Agency (EPA) are releasing the 2012 Fuel Economy Guide, providing consumers with information that can help them choose a more efficient new vehicle that saves them money and reduces greenhouse gas emissions. While fuel efficient vehicles come in a variety of fuel types, classes, and sizes, many

  2. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower This page contains information on the recently released BioPower engines. PDF icon analysis_saab2007.pdf More Documents & Publications Enabling High Efficiency Ethanol Engines Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) The Impact of Low Octane Hydrocarbon Blending

  3. Examining the potential for voluntary fuel economy standards in the United States and Canada.

    SciTech Connect (OSTI)

    Plotkin, S.; Greene, D.; Duleep, K.

    2003-03-19

    This report is designed to assist the U.S. Department of Energy, the U.S. government in general, and Natural Resources Canada with understanding the potential for voluntary fuel economy standards designed to increase the fuel economy of the North American fleet of light-duty vehicles (LDVs-passenger cars and light trucks) within a 10-15-year timeframe. The approach of this study has been: First, to examine and evaluate recent fuel economy initiatives taken in Japan and Europe; Second, to review the technologies available to improve fuel economy in the U.S. (and Canadian) fleets, focusing on their costs and fuel economy improvement potential; Third, to identify and broadly evaluate some alternatives to the current U.S. and Canadian Corporate Average Fuel Economy system of specifying uniform fuel economy targets (27.5 mpg for cars, 20.7 mpg for light trucks) for individual companies; and Fourth, to try to determine an approximate level of fuel economy increase and form of company agreements that would be conducive to a voluntary agreement, based on the assumption that an acceptable voluntary standard would impose an equitable burden on each manufacturer and would be approximately cost-effective from consumers' private perspectives.

  4. EERE Success Story-California and Connecticut: National Fuel Cell Bus

    Office of Environmental Management (EM)

    Programs Drive Fuel Economy Higher | Department of Energy California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher EERE Success Story-California and Connecticut: National Fuel Cell Bus Programs Drive Fuel Economy Higher August 21, 2013 - 12:00am Addthis In an EERE-supported study with the Federal Transit Administration, the National Renewable Energy Laboratory has found the fuel economy of fuel cell powered buses to be up to 2.4 times higher than conventional

  5. DOE and EPA Release Annual Fuel Economy Guide with 2013 Models | Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy and EPA Release Annual Fuel Economy Guide with 2013 Models DOE and EPA Release Annual Fuel Economy Guide with 2013 Models December 6, 2012 - 5:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2013 Fuel Economy Guide, giving consumers clear and easy-to-read information to help them choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their

  6. EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department

    Office of Environmental Management (EM)

    of Energy Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas emitting vehicles that meet their needs. The 2014

  7. EPA and DOE Release Annual Fuel Economy Guide with 2014 Models | Department

    Office of Environmental Management (EM)

    of Energy EPA and DOE Release Annual Fuel Economy Guide with 2014 Models EPA and DOE Release Annual Fuel Economy Guide with 2014 Models December 3, 2013 - 12:00am Addthis The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) are releasing the 2014 Fuel Economy Guide, providing consumers with a valuable resource to identify and choose the most fuel efficient and low greenhouse gas-emitting vehicles that meet their needs. The 2014 models include efficient and

  8. EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers | Department of

    Office of Environmental Management (EM)

    Energy EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers EPA, DOE Release 2015 Fuel Economy Guide for Car Buyers November 6, 2014 - 12:07pm Addthis NEWS MEDIA CONTACT 202-586-4940 The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2015 Fuel Economy Guide, providing consumers with a valuable resource to help them choose the most fuel-efficient and low greenhouse gas emitting vehicles that meet their needs. In comparison to previous

  9. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  10. Animal Spirits: How Human Psychology Drives the Economy, and Why it Matters for Global Capitalism

    SciTech Connect (OSTI)

    Shiller, Robert J.

    2010-03-02

    In his lecture, Shiller will discuss the premise of his 2009 book, coauthored with the Nobel Prize-winning economist George A. Akerlof. Winner of the getAbstract International Book Award and the 2009 TIAA-CREF Paul A. Samuelson Award for Outstanding Scholarly Writing on Lifelong Financial Security, the book, which has the same title as Shiller's lecture, discusses how "animal spirits," or human emotions such as confidence, fear, and a concern for fairness, drive financial events, including today's global financial crisis. John Maynard Keynes coined the phrase "animal spirits" to describe the changing psychology that led to the Great Depression and the recovery from it. Like Keynes, Shiller and Akerlof believe that government intervention is necessary to overcome the adverse effects on the economy brought about by unruly and irrational human emotions. In his talk, Shiller will explain how "animal spirits" lead to adverse economic effects, and he will outline his insights on how the global economy can recover from its recent setbacks.

  11. Fact #868: April 13, 2015 Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Automotive Technology Has Improved Performance and Fuel Economy of New Light Vehicles

  12. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for HEVs and PHEVs | Department of Energy Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss065_lohsebusch_2012_o.pdf More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation Advanced Technology Vehicle Lab

  13. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Light-Duty Advanced Technology Powertrain | Department of Energy FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story-FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain March 7, 2016 - 10:57am Addthis EERE Success Story—FCA and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain EERE Success Story—FCA and Partners Achieve 25%

  14. Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 0: July 5, 2010 Fuel Economy vs. Weight and Performance Fact #630: July 5, 2010 Fuel Economy vs. Weight and Performance From 1980 to 2009, there have been significant gains made in automotive technology, but those advancements have been applied toward improved performance and safety rather than fuel economy. Horsepower has more than doubled, top speed has climbed from 107 miles per hour to 139 miles per hour, and "0-to-60" times have dropped from 14.3 seconds

  15. Fact #730: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1980 to 2011 | Department of Energy 0: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from 1980 to 2011 Fact #730: June 4, 2012 Fuel Economy of New Light Vehicles is Up 19% from 1980 to 2011 In addition to a 120% increase in horsepower and 35% decrease in 0-60 time from 1980 to 2011, the fuel economy of vehicles improved nearly 19%. All of these data series are sales-weighted averages that have been indexed to 1980, showing the relative relationship among the years since 1980. In

  16. Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 6: June 23, 2014 The Effect of Tire Pressure on Fuel Economy Fact #826: June 23, 2014 The Effect of Tire Pressure on Fuel Economy Researchers at Oak Ridge National Laboratory recently conducted a study that measured the effect of tire pressure on fuel economy at speeds ranging from 40 to 80 miles per hour. The figure below shows the results of a 2009 Toyota Corolla tested with all four tires at the recommended pressure (Black line), then at 75% of the recommended

  17. Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Attribute | Department of Energy 3: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute Fact #833: August 11, 2014 Fuel Economy Rated Second Most Important Vehicle Attribute A 2014 survey asked a sample of the U.S. population the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low price, quality, and safety. This same question was asked in

  18. Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Diesel Engines | Department of Energy Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February 26, 2015 - 11:47am Addthis Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a recent study performed by a team at Oak Ridge National

  19. 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Materials Lighten the Load for Fuel Economy 54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy December 4, 2012 - 12:06pm Addthis Lightweight materials, such as high-strength steel, aluminum, magnesium and carbon fiber can help improve fuel economy in future vehicles. This is a carbon fiber from microwave-assisted plasma unit -- a unit that is part of the process to transform precursor fibers into carbon fibers that can be used in vehicles. | Photo courtesy

  20. Quantifying the Effects of Idle-Stop Systems on Fuel Economy in Light-Duty Passenger Vehicles

    SciTech Connect (OSTI)

    Jeff Wishart; Matthew Shirk

    2012-12-01

    Vehicles equipped with idle-stop (IS) systems are capable of engine shut down when the vehicle is stopped and rapid engine re-start for the vehicle launch. This capability reduces fuel consumption and emissions during periods when the engine is not being utilized to provide propulsion or to power accessories. IS systems are a low-cost and fast-growing technology in the industry-wide pursuit of increased vehicle efficiency, possibly becoming standard features in European vehicles in the near future. In contrast, currently there are only three non-hybrid vehicle models for sale in North America with IS systems and these models are distinctly low-volume models. As part of the United States Department of Energys Advanced Vehicle Testing Activity, ECOtality North America has tested the real-world effect of IS systems on fuel consumption in three vehicle models imported from Europe. These vehicles were chosen to represent three types of systems: (1) spark ignition with 12-V belt alternator starter; (2) compression ignition with 12-V belt alternator starter; and (3) direct-injection spark ignition, with 12-V belt alternator starter/combustion restart. The vehicles have undergone both dynamometer and on-road testing; the test results show somewhat conflicting data. The laboratory data and the portion of the on-road data in which driving is conducted on a prescribed route with trained drivers produced significant fuel economy improvement. However, the fleet data do not corroborate improvement, even though the data show significant engine-off time. It is possible that the effects of the varying driving styles and routes in the fleet testing overshadowed the fuel economy improvements. More testing with the same driver over routes that are similar with the IS system-enabled and disabled is recommended. There is anecdotal evidence that current Environmental Protection Agency fuel economy test procedures do not capture the fuel economy gains that IS systems produce in real-world driving. The program test results provide information on the veracity of these claims.

  1. NREL Driving Research on Hydrogen Fuel Cells - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Driving Research on Hydrogen Fuel Cells March 24, 2014 In this photo, the hose of a hydrogen refueling device forms an arc above two men. In the foreground to the right is the side of a car, with the device plugged into what looks like a standard gasoline fuel tank. To the left in the foreground is a large sign that says Enlarge image Andrew Bermingham, left, fills up his Mercedes-Benz B-Class F-CELL car with hydrogen with the help of NREL's Mike Peters at NREL's National Wind Technology

  2. Fuel Economy Standards for New Light Trucks (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    In March 2006, the National Highway Traffic Safety Administration (NHTSA) finalized Corporate Average Fuel Economy (CAFE) standards requiring higher fuel economy performance for light-duty trucks in model year (MY) 2008 through 2011. Unlike the proposed CAFE standards discussed in Annual Energy Outlook 2006, which would have established minimum fuel economy requirements by six footprint size classes, the final reformed CAFE standards specify a continuous mathematical function that determines minimum fuel economy requirements by vehicle footprint, defined as the wheelbase (the distance from the front axle to the center of the rear axle) times the average track width (the distance between the center lines of the tires) of the vehicle in square feet.

  3. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect (OSTI)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  4. Policy Discussion - Heavy-Duty Truck Fuel Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy Discussion - Heavy-Duty Truck Fuel Economy Policy Discussion - Heavy-Duty Truck Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER) Conference Presesntation: National Commission on Energy Policy PDF icon 2004_deer_kodjak.pdf More Documents & Publications 21st Century Truck Partnership Roadmap Roadmap and Technical White Papers - 21CTP-0003, December 2006 The Energy Efficiency Potential of Global Transport to 2050 Vehicle Technologies Office Merit Review 2014: DOE's Effort to

  5. Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Cummins Inc. Heavy-Duty Truck Engine Program PDF icon 2004_deer_nelson.pdf More Documents & Publications High Engine Efficiency at 2010 Emissions Achieving High Efficiency at 2010 Emissions Technology Development for High Efficiency Clean Diesel Engines and a Pathway to 50%

  6. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Standards | Department of Energy 9: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse Gas Emissions Standards On September 15, the U.S. Environmental Protection Agency (EPA) and U.S. Department of Transportation's National Highway Traffic Safety Administration (NHTSA) jointly announced a proposal to establish national standards for greenhouse gas (GHG) emissions and Corporate Average

  7. DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy

    Office of Environmental Management (EM)

    Resources, and More | Department of Energy H-Prize Safety Guidelines, Fuel Economy Resources, and More DOE Announces Webinars on H-Prize Safety Guidelines, Fuel Economy Resources, and More August 6, 2015 - 8:30am Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch

  8. Feebates and Fuel Economy Standards: Impacts on Fuel Use in Light-Duty Vehicles and Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Greene, David L

    2011-01-01

    This study evaluates the potential impacts of a national feebate system, a market-based policy that consists of graduated fees on low-fuel-economy (or high-emitting) vehicles and rebates for high-fuel-economy (or lowemitting) vehicles. In their simplest form, feebate systems operate under three conditions: a benchmark divides all vehicles into two categories-those charged fees and those eligible for rebates; the sizes of the fees and rebates are a function of a vehicle's deviation from its benchmark; and placement of the benchmark ensures revenue neutrality or a desired level of subsidy or revenue. A model developed by the University of California for the California Air Resources Board was revised and used to estimate the effects of six feebate structures on fuel economy and sales of new light-duty vehicles, given existing and anticipated future fuel economy and emission standards. These estimates for new vehicles were then entered into a vehicle stock model that simulated the evolution of the entire vehicle stock. The results indicate that feebates could produce large, additional reductions in emissions and fuel consumption, in large part by encouraging market acceptance of technologies with advanced fuel economy, such as hybrid electric vehicles.

  9. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. | Department of Energy Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet. Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from

  10. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  11. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  12. U.S. Department of the Navy: Driving Alternative Fuels Adoption |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Department of the Navy: Driving Alternative Fuels Adoption U.S. Department of the Navy: Driving Alternative Fuels Adoption Plenary III: Early Market Adopters U.S. Department of the Navy: Driving Alternative Fuels Adoption Chris Tindal, Director for Operational Energy, Office of the Deputy Assistant Secretary of the Navy for Energy PDF icon tindal_bioenergy_2015.pdf More Documents & Publications US Navy Tactical Fuels From Renewable Sources Program Department of the

  13. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. High Fuel Economy Heavy-Duty Truck Engine

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  15. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  16. Turbocharged Spark Ignited Direct Injection - A Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E85 Optimized Engine Two-Stage Variable Compression Ratio (VCR) System to Increase Efficiency in Gasoline Powertrains Cold-Start Performance and Emissions Behavior of Alcohol Fuels ...

  17. EERE Success Story- Chrysler and Partners Achieve 25% Fuel Economy Improvement in Light-Duty Advanced Technology Powertrain

    Broader source: Energy.gov [DOE]

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel economy by more...

  18. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions

  19. Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    No matter what type of fuel is used, however, fuel mileage is affected by driving habits, weather, and other factors. Standard test results for fuel economy of FFVs and their ...

  20. Review of alternate automotive engine fuel economy. Final report January-October 78

    SciTech Connect (OSTI)

    Cole, D.; Bolt, J.A.; Huber, P.; Taylor, T. Jr.

    1980-11-01

    This study assessed the potential of alternate automotive engines to meet the fuel economy goals and emission levels of the 1980-1990 period. As part of NHTSA's continuing research in support of the Department of Transportation fuel economy activities, this study reviewed those developments offering viable substitutes for the current spark ignition engine systems. Categories assessed included stratified charge, diesels, turbo charging, rotary/Wankel engines, and the developmental gas turbine and Stirling cycle engines. Results of past and on-going research through 1978 were reviewed along with the development and production status of various alternate engine technologies proposed for automobiles and light trucks through the 1980s. Assessment was then made of the potential fuel economy improvement as a percentage of 1978 baseline data.

  1. Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adopters | Department of Energy Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Plenary III: Early Market Adopters Airlines & Aviation Alternative Fuels: Our Drive to Be Early Market Adopters Nancy N. Young, Vice President, Environmental Affairs, Airlines for America PDF icon young_bioenergy_2015.pdf More Documents & Publications CAAFI Progress Update QER - Comment of

  2. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  3. What Steps Do You Take to Improve Your Fuel Economy? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Shannon told you some facts about fuel economy and how you can use less gas and save money at the pump. What steps do you take to improve your fuel economy? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please e-mail your responses to the Energy Saver team at consumer.webmaster@nrel.gov. Addthis Related Articles How Do You Save Energy at Home While on Vacation? How Do You Make Greener Transportation Choices?

  4. Heel and toe driving on fuel cell vehicle

    DOE Patents [OSTI]

    Choi, Tayoung; Chen, Dongmei

    2012-12-11

    A system and method for providing nearly instantaneous power in a fuel cell vehicle. The method includes monitoring the brake pedal angle and the accelerator pedal angle of the vehicle, and if the vehicle driver is pressing both the brake pedal and the accelerator pedal at the same time and the vehicle is in a drive gear, activating a heel and toe mode. When the heel and toe mode is activated, the speed of a cathode compressor is increased to a predetermined speed set-point, which is higher than the normal compressor speed for the pedal position. Thus, when the vehicle brake is removed, the compressor speed is high enough to provide enough air to the cathode, so that the stack can generate nearly immediate power.

  5. National Labs Work to Settle PHEV Fuel Economy Conundrum - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL National Labs Work to Settle PHEV Fuel Economy Conundrum NREL-developed methodology shows promise for estimating real-world energy use September 28, 2009 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) recently joined forces with researchers from Idaho National Laboratory (INL) and Argonne National Laboratory (ANL) to take the lead in developing and testing a new method for predicting the real-world fuel and electricity consumption of plug-in hybrid

  6. Fact #813: January 20, 2014 New Light Vehicle Fuel Economy Continues...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Light Vehicle Fuel Economy, 1975-2013 Model Year Miles per Gallon 1975 13.1 1976 14.2 1977 15.1 1978 15.8 1979 15.9 1980 19.2 1981 20.5 1982 21.1 1983 21.0 1984 21.0 1985 21.3 ...

  7. ETA-HITP03 - Implementation of SAE J1634 May93 Fuel Economy Testing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Revision 0 Effective November 1, 2004 Implementation of SAE J1634 May93 Fuel Economy Testing Prepared by Electric Transportation Applications Prepared by: _______________________________ Date: ________ Garrett Beauregard Approved by: _________________________________________________ Date: ____________ Donald Karner ETA-HITP03 Revision 0 i ©2004 Electric Transportation Application All rights Reserved TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation Support 1 4. Initial

  8. ETA-HITP04 - HICE Vehicle Constant Speed Fuel Economy Tests

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Revision 0 Effective November 1, 2004 HICE Vehicle Constant Speed Fuel Economy Tests Prepared by Electric Transportation Applications Prepared by: _______________________________ Date:_________ Garrett Beauregard Approved by: _________________________________________________ Date: _______________ Donald Karner Procedure ETA-HITP04 Revision 0 © 2004 Electric Transportation Applications All Rights Reserved i TABLE OF CONTENTS 1. Objectives 1 2. Purpose 1 3. Documentation 1 4. Initial Conditions

  9. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect (OSTI)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuels characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the projects objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project goals. Several flex-fuel demonstration vehicles were designed and built for carrying out calibration development and final testing to quantify the technology merits. Based on the extensive test results collected from dynamometer and vehicle testing, the fuel economy benefits of cooled EGR from the intended level of turbocharger technology were quantified. When combined with turbo downsizing, the FE benefits are considered large enough for E0 fuel as well as for E85 fuel to warrant further development of the technology beyond the current proof-of-concept level to a level that can meet production driveability quality and durability requirements in order to meet customers expectations. Cold-start cart test results from the emissions segment of the project were positive, confirming the assumption of faster thermal response of turbo exhaust system for emissions reductions for both E0 and E85 fuels. Vehicle emissions test results directionally correlated to the cold-start cart findings. The limited number of test runs did demonstrate the potentials of meeting stringent emission standards, however, they did not comprehend the factors such as hardware variability and long-term durability, 3 which are essential for mass production to satisfy customers expectations. It is therefore recommended, moving forward, durability concerns over turbocharger, EGR system and aftertreatment system, which would likely impact production viability, should be addressed. The data moreover suggested that further FE increase is likely with turbocharger technology advancement.

  10. Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Class 4 Parcel Delivery Vehicle | Department of Energy Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle Fuel Economy Improvements from a Hybrid-Electric/Diesel Powertrain in a Class 4 Parcel Delivery Vehicle The goal of this project is to provide data to help bridge the gap between R&D and the commercial availability of advanced vehicle technologies that reduce petroleum use in the U.S. and improve air quality. PDF icon p-13_thornton.pdf

  11. Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism

    ScienceCinema (OSTI)

    Shiller, Robert J [Yale University

    2010-09-01

    In his lecture, Shiller discusses the premise of his 2009 book, coauthored with the Nobel Prize-winning economist George A. Akerlof. The book discusses how ?animal spirits,? or human emotions such as confidence, fear, and a concern for fairness, drive financial events, including today?s global financial crisis.

  12. Fact #680: June 20, 2011 Fuel Economy is "Most Important" When Buying a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle | Department of Energy 0: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle Fact #680: June 20, 2011 Fuel Economy is "Most Important" When Buying a Vehicle A June 2011 survey asked the question "Which one of the following attributes would be MOST important to you in your choice of your next vehicle?" The choices were fuel economy, dependability, low price, quality, and safety. This same question was asked in previous surveys and the

  13. Proposed Revisions to Light Truck Fuel Economy Standard (released in AEO2006)

    Reports and Publications (EIA)

    2006-01-01

    In August 2005, the National Highway Traffic Safety Administration (NHTSA) published proposed reforms to the structure of CAFE standards for light trucks and increases in light truck Corporate Average Fuel Economy (CAFE) standards for model years 2008 through 201. Under the proposed new structure, NHTSA would establish minimum fuel economy levels for six size categories defined by the vehicle footprint (wheelbase multiplied by track width), as summarized in Table 3. For model years 2008 through 2010, the new CAFE standards would provide manufacturers the option of complying with either the standards defined for each individual footprint category or a proposed average light truck fleet standard of 22.5 miles per gallon in 2008, 23.1 miles per gallon in 2009, and 23.5 miles per gallon in 2010. All light truck manufacturers would be required to meet an overall standard based on sales within each individual footprint category after model year 2010.

  14. Fuel Economy and Emmissions of the Ethanol-Optimized Saab 9-5 Biopower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    07-01-3994 Fuel Economy and Emissions of the Ethanol- Optimized Saab 9-5 Biopower Brian H. West, Alberto J. López, Timothy J. Theiss, Ronald L. Graves, John M. Storey and Samuel A. Lewis Oak Ridge National Laboratory ABSTRACT Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp (112 kW) on

  15. The Drive for Energy Independence and Fuels of the Future | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Independence and Fuels of the Future The Drive for Energy Independence and Fuels of the Future Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_warnecke.pdf More Documents & Publications The Drive for Energy Independence and Fuels of the Future Automotive Fuels - The

  16. Take a Test Drive in the World's First Commercial Fuel Cell SUV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Take a Test Drive in the World's First Commercial Fuel Cell SUV Take a Test Drive in the World's First Commercial Fuel Cell SUV October 23, 2015 - 2:25pm Addthis Sunita Satyapal Sunita Satyapal Director, Fuel Cell Technologies Office The Department of Energy hosted an exciting and unique visitor last week: the world's first commercially available, zero emissions fuel cell electric SUV. The first-of-its-kind vehicle was brought to Washington, D.C. by Hyundai executives

  17. 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com...

    Open Energy Info (EERE)

    2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review Home > Groups > OpenEI Community Central Dc's picture Submitted by Dc(266) Contributor 19 February, 2015 - 15:08...

  18. Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of maximizing the Synergy between PHEVsEVs and PV Defining Real World Drive Cycles to Support APRF Technology Evaluations Real-World PHEV Fuel Economy Prediction

  19. California and Connecticut: National Fuel Cell Bus Programs Drive...

    Energy Savers [EERE]

    Office (FCTO) conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. ...

  20. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  1. Airlines and Aviation Alternative Fuels: Our Drive to Be Early...

    Energy Savers [EERE]

    N. Young, VP-Environment; CAAFI Environment Team Co-Lead June 23, 2015 Why Airlines Want Alternative Fuels airlines.org 2 New Supply Chain * Energy SecuritySupply Reliability...

  2. US Department of the Navy Driving Alternative Fuels Adoption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 years (anything beyond 1 year is challenging) - Offtakes before facility is producing fuel - Another major capital infusion FA-18E , Pacific Ocean USS Nimitz (CVN-68) THANK YOU...

  3. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Relative to the baseline school bus, the PHEV fuel savings in charge-depleting (CD) mode ... PHEV school bus would initially operate in CD mode for some distance, then in a ...

  4. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared to current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.

  5. The Evaluation of Developing Vehicle Technologies on the Fuel Economy of Long-Haul Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Smith, David E.; Daw, C. Stuart; Edwards, Kevin Dean; Kaul, Brian C.; Domingo, Norberto; Parks, II, James E.; Jones, Perry T.

    2015-12-01

    We present fuel savings estimates resulting from the combined implementation of multiple advanced energy management technologies in both conventional and parallel hybrid class 8 diesel trucks. The energy management technologies considered here have been specifically targeted by the 21st Century Truck Partnership (21 CTP) between the U.S. Department of Energy and U.S. industry and include advanced combustion engines, waste heat recovery, and reductions in auxiliary loads, rolling resistance, aerodynamic drag, and gross vehicle weight. Furthermore, we estimated that combined use of all these technologies in hybrid trucks has the potential to improve fuel economy by more than 60% compared tomore » current conventional trucks, but this requires careful system integration to avoid non-optimal interactions. Major factors to be considered in system integration are discussed.« less

  6. The 2014 Fuel Economy Guide Can Help You Choose Your Next Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of vehicle. Looking for the most fuel-efficient 2014 family sedan hybrid? The 2014 Toyota Prius tops the online guide at 50 combined cityhighway MPG. Need something larger,...

  7. Driving "Back to the Future": Flex-Fuel Vehicle Awareness | Department of

    Office of Environmental Management (EM)

    Energy "Back to the Future": Flex-Fuel Vehicle Awareness Driving "Back to the Future": Flex-Fuel Vehicle Awareness March 18, 2011 - 9:41am Addthis Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy The 1908 Model-T Ford was the first vehicle designed to run on ethanol-which Henry Ford termed "the fuel of the future." Today, about 8 million Flexible Fuel Vehicles (FFVs) on our roads are capable of running on either gasoline or

  8. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon

  9. Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014- Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #849: December 1, 2014 Midsize Hybrid Cars Averaged 51% Better Fuel Economy than Midsize Non-Hybrid Cars in 2014

  10. EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle |

    Office of Environmental Management (EM)

    Department of Energy You Can Now Drive a Fuel Cell Electric Vehicle EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle April 10, 2015 - 11:45am Addthis Toyota Mirai FCEV (top left), Hyundai Tucson FCEV (top right), and Honda’s concept of its FCEV (bottom)—all showcased during the 2015 Washington Auto Show. | Photos by Sarah Gerrity, Energy Department Toyota Mirai FCEV (top left), Hyundai Tucson FCEV (top right), and Honda's concept of its FCEV (bottom)-all

  11. Engineering-economic analyses of automotive fuel economy potential in the United States

    SciTech Connect (OSTI)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  12. High-Areal-Density Fuel Assembly in Direct-Drive Cryogenic Implosions

    SciTech Connect (OSTI)

    Sangster, T.C.; Goncharov, V.N.; Radha, P.B.; Smalyuk, V.A.; Betti, R.; Craxton, R.S.; Delettrez, J.A.; Edgell, D.H.; Glebov, V.Yu.; Harding, D.R.; Jacobs-Perkins, D.; Knauer, J.P.; Marshall, F.J.; McCrory, R.L.; McKenty, P.W.; Meyerhofer, D.D.; Regan, S.P.; Seka, W.; Short, R.W.; Skupsky, S.; Soures, J.M.; Stoeckl, C.; Yaakobi, B.

    2008-05-27

    The first observation of ignition-relevant areal-density deuterium from implosions of capsules with cryogenic fuel layers at ignition-relevant adiabats is reported. The experiments were performed on the 60-beam, 30-kJUV OMEGA Laser System [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)]. Neutron-averaged areal densities of 202+-7 mg/cm^2 and 182+-7 mg/cm^2 (corresponding to estimated peak fuel densities in excess of 100 g/cm^3) were inferred using an 18-kJ direct-drive pulse designed to put the converging fuel on an adiabat of 2.5. These areal densities are in good agreement with the predictions of hydrodynamic simulations indicating that the fuel adiabat can be accurately controlled under ignition-relevant conditions.

  13. Effect of Weight and Roadway Grade on the Fuel Economy of Class-8 Frieght Trucks

    SciTech Connect (OSTI)

    Franzese, Oscar; Davidson, Diane

    2011-11-01

    In 2006-08, the Oak Ridge National Laboratory, in collaboration with several industry partners, collected real-world performance and situational data for long-haul operations of Class-8 trucks from a fleet engaged in normal freight operations. Such data and information are useful to support Class-8 modeling of combination truck performance, technology evaluation efforts for energy efficiency, and to provide a means of accounting for real-world driving performance within combination truck research and analyses. The present study used the real-world information collected in that project to analyze the effects that vehicle speed and vehicle weight have on the fuel efficiency of Class-8 trucks. The analysis focused on two type of terrains, flat (roadway grades ranging from -1% to 1%) and mild uphill terrains (roadway grades ranging from 1% to 3%), which together covered more than 70% of the miles logged in the 2006-08 project (note: almost 2/3 of the distance traveled on mild uphill terrains was on terrains with 1% to 2% grades). In the flat-terrain case, the results of the study showed that for light and medium loads, fuel efficiency decreases considerably as speed increases. For medium-heavy and heavy loads (total vehicle weight larger than 65,000 lb), fuel efficiency tends to increase as the vehicle speed increases from 55 mph up to about 58-60 mph. For speeds higher than 60 mph, fuel efficiency decreases at an almost constant rate with increasing speed. At any given speed, fuel efficiency decreases and vehicle weight increases, although the relationship between fuel efficiency and vehicle weight is not linear, especially for vehicle weights above 65,000 lb. The analysis of the information collected while the vehicles were traveling on mild upslope terrains showed that the fuel efficiency of Class-8 trucks decreases abruptly with vehicle weight ranging from light loads up to medium-heavy loads. After that, increases in the vehicle weight only decrease fuel efficiency slightly. Fuel efficiency also decreases significantly with speed, but only for light and medium loads. For medium-heavy and heavy, FE is almost constant for speeds ranging from 57 to about 66 mph. For speeds higher than 66 mph, the FE decreases with speed, but at a lower rate than for light and medium loads. Statistical analyses that compared the fuel efficiencies obtained when the vehicles were traveling at 59 mph vs. those achieved when they were traveling at 65 mph or 70 mph indicated that the former were, on average, higher than the latter. This result was statistically significant at the 99.9% confidence level (note: the Type II error i.e., the probability of failing to reject the null hypothesis when the alternative hypothesis is true was 18% and 6%, respectively).

  14. Overview of the Safety Issues Associated with the Compressed Natural Gas Fuel System and Electric Drive System in a Heavy Hybrid Electric Vehicle

    SciTech Connect (OSTI)

    Nelson, S.C.

    2002-11-14

    This report evaluates the hazards that are unique to a compressed-natural-gas (CNG)-fueled heavy hybrid electric vehicle (HEV) design compared with a conventional heavy vehicle. The unique design features of the heavy HEV are the CNG fuel system for the internal-combustion engine (ICE) and the electric drive system. This report addresses safety issues with the CNG fuel system and the electric drive system. Vehicles on U. S. highways have been propelled by ICEs for several decades. Heavy-duty vehicles have typically been fueled by diesel fuel, and light-duty vehicles have been fueled by gasoline. The hazards and risks posed by ICE vehicles are well understood and have been generally accepted by the public. The economy, durability, and safety of ICE vehicles have established a standard for other types of vehicles. Heavy-duty (i.e., heavy) HEVs have recently been introduced to U. S. roadways, and the hazards posed by these heavy HEVs can be compared with the hazards posed by ICE vehicles. The benefits of heavy HEV technology are based on their potential for reduced fuel consumption and lower exhaust emissions, while the disadvantages are the higher acquisition cost and the expected higher maintenance costs (i.e., battery packs). The heavy HEV is more suited for an urban drive cycle with stop-and-go driving conditions than for steady expressway speeds. With increasing highway congestion and the resulting increased idle time, the fuel consumption advantage for heavy HEVs (compared with conventional heavy vehicles) is enhanced by the HEVs' ability to shut down. Any increase in fuel cost obviously improves the economics of a heavy HEV. The propulsion system for a heavy HEV is more complex than the propulsion system for a conventional heavy vehicle. The heavy HEV evaluated in this study has in effect two propulsion systems: an ICE fueled by CNG and an electric drive system with additional complexity and failure modes. This additional equipment will result in a less reliable vehicle with a lower availability than a conventional heavy vehicle. Experience with heavy HEVs to date supports this observation. The key safety concern for the electric drive system is the higher voltages and currents that are required in the electric drive system. Faults that could expose personnel to these electric hazards must be considered, addressed, and minimized. The key issue for the CNG-fueled ICE is containment of the high-pressure natural gas. Events that can result in a release of natural gas with the possibility of subsequent ignition are of concern. These safety issues are discussed. The heavy HEV has the potential to have a safety record that is comparable to that of the conventional vehicle, but adequate attention to detail will be required.

  15. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    driving-behavior Go Generated_thumb20130810-31804-1jtc9qa Fuel Economy at Various Driving Speeds Generated_thumb20130810-31804-1jtc9qa Trend of fuel efficiency at different speeds, grouped by vehicle age Last update April 2013 View Graph Graph Download Data Generated_thumb20140811-21276-p5mcbz Average Fuel Economy at Different Road Grades Generated_thumb20140811-21276-p5mcbz Trend of Fuel Economy and Consumption at different road grades, for various vehicle types Last update August 2014 View

  16. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    SciTech Connect (OSTI)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  17. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus Preprint Robb Barnitt and Jeff Gonder To be presented at the SAE 2011 World Congress Detroit, Michigan April 12-14, 2011 Conference Paper NREL/CP-5400-50251 April 2011 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain

  18. Vehicle Technologies Office Merit Review 2015: Fuel Economy Guide and fueleconomy.gov Website

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the fuel...

  19. Navistar-Driving efficiency with integrated technology | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Navistar-Driving efficiency with integrated technology Navistar-Driving efficiency with integrated technology Navistar global approach to deliver better fuel economy is centered around some of the main themes of the greenhouse gas (GHG) regulations PDF icon deer11_mooney.pdf More Documents & Publications The Business of Near Zero Emissions SuperTruck … Development and Demonstration of a Fuel-Efficient Class 8 Tractor & Trailer SuperTruck … Development and Demonstration of a

  20. Vehicle Technologies Office Merit Review 2015: Integrated Boosting and Hybridization for Extreme Fuel Economy and Downsizing

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about integrated boosting and hybridization...

  1. EERE Success Story-FCA and Partners Achieve 25% Fuel Economy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Internal combustion engines have the potential to become substantially more efficient, with laboratory tests indicating that new technologies could increase passenger vehicle fuel ...

  2. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

    2009-08-01

    Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

  3. Hybrid Taxis Give Fuel Economy a Lift -Clean Cities Fleet Experiences -

    SciTech Connect (OSTI)

    2009-04-01

    The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids.

  4. Hybrid Taxis Give Fuel Economy a Lift, Clean Cities, Fleet Experiences, April 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Clean Cities helped Boston, San Antonio, and Cambridge create hybrid taxi programs. The hybrid taxis are able to achieve about twice the gas mileage of a conventional taxi while helping cut gasoline use and fuel costs. Tax credits and other incentives are helping both company owners and drivers make the switch to hybrids. Program leaders have learned some important lessons other cities can benefit from including learning a city's taxi structure, relaying benefits to drivers, and understanding the needs of owners.

  5. Microsoft PowerPoint - 2013_summer_fuels.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S F l O tl k 2013 Summer Fuels Outlook April 9, 2013 www.eia.gov U.S. Energy Information Administration Independent Statistics & Analysis Key factors driving the short-term outlook * World liquid fuels consumption growth driven by emerging economies, with continuing consumption declines in OECD economies, with continuing consumption declines in OECD countries. * Non-OPEC supply growth, particularly in North America, pp y g , p y , expected to keep pace with world liquid fuels consumption

  6. Driving it home: choosing the right path for fueling North America's transportation future

    SciTech Connect (OSTI)

    Ann Bordetsky; Susan Casey-Lefkowitz; Deron Lovaas; Elizabeth Martin-Perera; Melanie Nakagawa; Bob Randall; Dan Woynillowicz

    2007-06-15

    North America faces an energy crossroads. With the world fast approaching the end of cheap, plentiful conventional oil, we must choose between developing ever-dirtier sources of fossil fuels -- at great cost to our health and environment -- or setting a course for a more sustainable energy future of clean, renewable fuels. This report explores the full scale of the damage done by attempts to extract oil from liquid coal, oil shale, and tar sands; examines the risks for investors of gambling on these dirty fuel sources; and lays out solutions for guiding us toward a cleaner fuel future. Table of contents: Executive Summary; Chapter 1: Transportation Fuel at a Crossroads; Chapter 2: Canadian Tar Sands: Scraping the Bottom of the Barrel in Endangered Forests; Chapter 3: Oil Shale Extraction: Drilling Through the American West; Chapter 4: Liquid Coal: A 'Clean Fuel' Mirage; Chapter 5: The Investment Landscape: Dirty Fuels Are Risky Business; Chapter 6: The Clean Path for Transportation and Conclusion.

  7. H2FIRST: A partnership to advance hydrogen fueling station technology driving an optimal consumer experience.

    SciTech Connect (OSTI)

    Moen, Christopher D.; Dedrick, Daniel E.; Pratt, Joseph William; Balfour, Bruce; Noma, Edwin Yoichi; Somerday, Brian P.; San Marchi, Christopher W.; K. Wipke; J. Kurtz; D. Terlip; K. Harrison; S. Sprik

    2014-03-01

    The US Department of Energy (DOE) Energy Efficiency and Renewable Energy (EERE) Office of Fuel Cell Technologies Office (FCTO) is establishing the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) partnership, led by the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (SNL). FCTO is establishing this partnership and the associated capabilities in support of H2USA, the public/private partnership launched in 2013. The H2FIRST partnership provides the research and technology acceleration support to enable the widespread deployment of hydrogen infrastructure for the robust fueling of light-duty fuel cell electric vehicles (FCEV). H2FIRST will focus on improving private-sector economics, safety, availability and reliability, and consumer confidence for hydrogen fueling. This whitepaper outlines the goals, scope, activities associated with the H2FIRST partnership.

  8. Fuel Cell R&D Pre-Solicitiation Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D Pre-Solicitiation Workshop Fuel Cell R&D Pre-Solicitiation Workshop Presentation on upcoming fuel cell solicitation presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA. PDF icon pre_sol_wrkshp_valri.pdf More Documents & Publications Draft Funding Opportunity Announcement for Research and Development of Polymer Electrolyte Membrane (PEM) Fuel Cells for the Hydrogen Economy US DRIVE Fuel Cell Technical Team Roadmap PEM Fuel Cell

  9. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii...

  10. Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Saving Opportunities through Driver Feedback Mechanisms Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss007_gonder_2011_p.pdf More Documents & Publications Analysis of maximizing the Synergy between PHEVs/EVs and PV Defining Real World Drive Cycles to Support APRF Technology Evaluations Real-World PHEV Fuel Economy

  11. Evaluation of the Fuel Economy Impacts of Low Temperature Combustion (LTC) using Engine-in-the-Loop

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  13. Supporting a Hawaii Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Pete Devlin U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Supporting a Hawaii Hydrogen Economy Mitch Ewan Hawaii Natural Energy Institute University of Hawaii at Manoa 29 July 2014 CHALLENGES Hawaii is Most Petroleum-Dependent State in US Highest/Most Volatile Electricity Rates in US Import 90% of Energy $11Billion leaves Hawaii economy* * Based

  14. Emissions and fuel economy of a vehicle with a spark-ignition, direct-injection engine : Mitsubishi Legnum GDI{trademark}.

    SciTech Connect (OSTI)

    Cole, R. L.; Poola, R. B.; Sekar, R.

    1999-04-08

    A 1997 Mitsubishi Legnum station wagon with a 150-hp, 1.8-L, spark-ignition, direct-injection (SIDI) engine was tested for emissions by using the FTP-75, HWFET, SC03, and US06 test cycles and four different fuels. The purpose of the tests was to obtain fuel-economy and emissions data on SIDI vehicles and to compare the measurements obtained with those of a port-fuel-injection (PFI) vehicle. The PFI vehicle chosen for the comparison was a 1995 Dodge Neon, which meets the Partnership for a New Generation of Vehicles (PNGV) emissions goals of nonmethane hydrocarbons (NMHC) less than 0.125 g/mi, carbon monoxide (CO) less than 1.7 g/mi, nitrogen oxides (NO{sub x} ) less than 0.2 g/mi, and particulate matter (PM) less than 0.01 g/mi. The Mitsubishi was manufactured for sale in Japan and was not certified to meet current US emissions regulations. Results show that the SIDI vehicle can provide up to 24% better fuel economy than the PFI vehicle does, with correspondingly lower greenhouse gas emissions. The SIDI vehicle as designed does not meet the PNGV goals for NMHC or NO{sub x} emissions, but it does meet the goal for CO emissions. Meeting the goal for PM emissions appears to be contingent upon using low-sulfur fuel and an oxidation catalyst. One reason for the difficulty in meeting the NMHC and NO{sub x} goals is the slow (200 s) warm-up of the catalyst. Catalyst warm-up time is primarily a matter of design. The SIDI engine produces more NMHC and NO{sub x} than the PFI engine does, which puts a greater burden on the catalyst to meet the emissions goals than is the case with the PFI engine. Oxidation of NMHC is aided by unconsumed oxygen in the exhaust when the SIDI engine operates in stratified-charge mode, but the same unconsumed oxygen inhibits chemical reduction of NO{sub x} . Thus, meeting the NO{sub x} emissions goal is likely to be the greatest challenge for the SIDI engine.

  15. Emissions and fuel economy of a Comprex pressure wave supercharged diesel. Report EPA-AA-TEB-81-1

    SciTech Connect (OSTI)

    Barth, E.A.; Burgenson, R.N.

    1980-10-01

    In order to increase public interest in vehicles equipped with diesel engines, methods of improving diesel-fueled engine performance, as compared to current gasoline-fueled counterparts, are being investigated. One method to increase performance is to supercharge or turbocharge the engine. This report details an EPA assessment of a supercharging technique previously evaluated, however, since that evaluation, specific areas of operation have been refined.

  16. Driving Demand for Home Energy Improvements: Motivating residential customers to invest in comprehensive upgrades that eliminate energy waste, avoid high utility bills, and spur the economy

    SciTech Connect (OSTI)

    Fuller, Merrian C.

    2010-09-20

    Policy makers and program designers in the U.S. and abroad are deeply concerned with the question of how to scale up energy efficiency to a level that is commensurate both to the scale of the energy and climate challenges we face, and to the potential for energy savings that has been touted for decades. When policy makers ask what energy efficiency can do, the answers usually revolve around the technical and economic potential of energy efficiency - they rarely hone in on the element of energy demand that matters most for changing energy usage in existing homes: the consumer. A growing literature is concerned with the behavioral underpinnings of energy consumption. We examine a narrower, related subject: How can millions of Americans be persuaded to divert valued time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills, and spur the economy? With hundreds of millions of public dollars flowing into incentives, workforce training, and other initiatives to support comprehensive home energy improvements, it makes sense to review the history of these programs and begin gleaning best practices for encouraging comprehensive home energy improvements. Looking across 30 years of energy efficiency programs that targeted the residential market, many of the same issues that confronted past program administrators are relevant today: How do we cost-effectively motivate customers to take action? Who can we partner with to increase program participation? How do we get residential efficiency programs to scale? While there is no proven formula - and only limited success to date with reliably motivating large numbers of Americans to invest in comprehensive home energy improvements, especially if they are being asked to pay for a majority of the improvement costs - there is a rich and varied history of experiences that new programs can draw upon. Our primary audiences are policy makers and program designers - especially those that are relatively new to the field, such as the over 2,000 towns, cities, states, and regions who are recipients of American Reinvestment and Recovery Act funds for clean energy programs. This report synthesizes lessons from first generation programs, highlights emerging best practices, and suggests methods and approaches to use in designing, implementing, and evaluating these programs. We examined 14 residential energy efficiency programs, conducted an extensive literature review, interviewed industry experts, and surveyed residential contractors to draw out these lessons.

  17. Optimally Controlled Flexible Fuel Powertrain System

    SciTech Connect (OSTI)

    Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

    2011-06-30

    A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

  18. Electric and Gasoline Vehicle Fuel Efficiency Analysis

    Energy Science and Technology Software Center (OSTI)

    1995-05-24

    EAGLES1.1 is PC-based interactive software for analyzing performance (e.g., maximum range) of electric vehicles (EVs) or fuel economy (e.g., miles/gallon) of gasoline vehicles (GVs). The EV model provides a second by second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. It takes into account the effects of battery depth-of-discharge (DOD) and regenerative braking. The GV fuel economy model which relates fuel economy, vehicle parameters, and driving cycle characteristics, canmore »be used to investigate the effects of changes in vehicle parameters and driving patterns on fuel economy. For both types of vehicles, effects of heating/cooling loads on vehicle performance can be studied. Alternatively, the software can be used to determine the size of battery needed to satisfy given vehicle mission requirements (e.g., maximum range and driving patterns). Options are available to estimate the time necessary for a vehicle to reach a certain speed with the application of a specified constant power and to compute the fraction of time and/or distance in a drivng cycle for speeds exceeding a given value.« less

  19. NREL: Transportation Research - Fuel Combustion and Engine Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test & Evaluation Fuels Performance Combustion & Engines Fuel Chemistry Emissions & Fuel Economy Power Electronics & Electric Machines Sustainable Mobility Systems Analysis &...

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Fuel Economy and Greenhouse Gas Emissions Standards Vehicle manufacturers must meet fuel economy and greenhouse gas (GHG) emissions standards for vehicles sold in the United States. The U.S. Department of Transportation's (DOT) National Highway Traffic Safety Administration (NHTSA) regulates fuel economy standards, while the U.S. Environmental Protection Agency (EPA) regulates GHG emissions. NHTSA's Corporate Average Fuel Economy (CAFE) program and EPA's light-duty vehicle GHG emissions

  1. #LabChat: Innovations Driving More Efficient Vehicles, Dec. 13 at 2 pm ET

    Broader source: Energy.gov [DOE]

    Our vehicle experts can answer your questions about technologies that are helping improve vehicle fuel economy.

  2. Distribution Drive | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Distribution Drive Place: Dallas, Texas Zip: 75205 Product: Biodiesel fuel distributor. Coordinates: 32.778155, -96.795404 Show Map Loading map......

  3. Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation

    SciTech Connect (OSTI)

    Wenzel, Thomas P.

    2010-03-02

    This report analyzes the relationship between vehicle weight, size (wheelbase, track width, and their product, footprint), and safety, for individual vehicle makes and models. Vehicle weight and footprint are correlated with a correlation coefficient (R{sup 2}) of about 0.62. The relationship is stronger for cars (0.69) than for light trucks (0.42); light trucks include minivans, fullsize vans, truck-based SUVs, crossover SUVs, and pickup trucks. The correlation between wheelbase and track width, the components of footprint, is about 0.61 for all light vehicles, 0.62 for cars and 0.48 for light trucks. However, the footprint data used in this analysis does not vary for different versions of the same vehicle model, as curb weight does; the analysis could be improved with more precise data on footprint for different versions of the same vehicle model. Although US fatality risk to drivers (driver fatalities per million registered vehicles) decreases as vehicle footprint increases, there is very little correlation either for all light vehicles (0.01), or cars (0.07) or trucks (0.11). The correlation between footprint and fatality risks cars impose on drivers of other vehicles is also very low (0.01); for trucks the correlation is higher (0.30), with risk to others increasing as truck footprint increases. Fatality risks reported here do not account for differences in annual miles driven, driver age or gender, or crash location by vehicle type or model. It is difficult to account for these factors using data on national fatal crashes because the number of vehicles registered to, for instance, young males in urban areas is not readily available by vehicle type or model. State data on all police-reported crashes can be used to estimate casualty risks that account for miles driven, driver age and gender, and crash location. The number of vehicles involved in a crash can act as a proxy of the number of miles a given vehicle type, or model, is driven per year, and is a preferable unit of exposure to a serious crash than the number of registered vehicles. However, because there are relatively few fatalities in the states providing crash data, we calculate casualty risks, which are the sum of fatalities and serious or incapacitating injuries, per vehicle involved in a crash reported to the police. We can account for driver age/gender and driving location effects by excluding from analysis crashes (and casualties) involving young males and the elderly, and occurring in very rural or very urban counties. Using state data on all police-reported crashes in five states, we find that excluding crashes involving young male and elderly drivers has little effect on casualty risk; however, excluding crashes that occurred in the most rural and most urban counties (based on population density) increases casualty risk for all vehicle types except pickups. This suggests that risks for pickups are overstated unless they account for the population density of the county in which the crashes occur. After removing crashes involving young males and elderly drivers, and those occurring in the most rural and most urban counties, we find that casualty risk in all light-duty vehicles tends to increase with increasing weight or footprint; however, the correlation (R{sup 2}) between casualty risk and vehicle weight is 0.31, while the correlation with footprint is 0.23. These relationships are stronger for cars than for light trucks. The correlation between casualty risk in frontal crashes and light-duty vehicle wheelbase is 0.12, while the correlation between casualty risk in left side crashes and track width is 0.36. We calculated separately the casualty risks vehicles impose on drivers of the other vehicles with which they crash. The correlation between casualty risk imposed by light trucks on drivers of other vehicles and light truck footprint is 0.15, while the correlation with light truck footprint is 0.33; risk imposed on others increases as light truck weight or footprint increases. Our analysis indicates that, after excluding crashes involving young m

  4. NRELs Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isothermal Battery Calorimeters are Crucial Tools for Advancing Electric-Drive Vehicles With average U.S. gasoline prices hovering in the $3 to $4 per gallon range and higher fuel economy standards taking effect, drivers and automakers are thinking more about electric vehicles, hybrid electric vehicles, and plug-in hybrids. But before more Americans switch to electric-drive vehicles, automakers need batteries that can deliver the range, performance, reliability, price, and safety that drivers

  5. #LabChat Recap: Innovations Driving More Efficient Vehicles

    Broader source: Energy.gov [DOE]

    The #LabChat on Dec. 13 sparked an engaging discussion about technologies that are improving vehicle fuel economy.

  6. Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    hybrid vehicle, had the greatest fuel economy decline (30%) from 55 to 75 mph, but the Toyota RAV4 had the greatest fuel economy decline from 55 to 65 mph (15%). Fuel Economy by...

  7. Energy Economy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sieminski (202) 662-1624 April 2010 Energy and the Economy US EIA & JHU SAIS 2010 Energy Conference April 6, 2010 All prices are those current at the end of the previous trading session unless otherwise indicated. Prices are sourced from local exchanges via Reuters, Bloomberg and other vendors. Data is sourced from Deutsche Bank and subject companies. DISCLOSURES AND ANALYST CERTIFICATIONS ARE LOCATED IN APPENDIX 1. Adam Sieminski, CFA Chief Energy Economist adam.sieminski@db.com +1 202 662

  8. Northeast States' Hydrogen Economy Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy Webinar Northeast States' Hydrogen Economy Webinar Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Northeast States' Hydrogen Economy" held on December 1, 2015. PDF icon Northeast States' Hydrogen Economy Webinar Slides More Documents & Publications Connecticut Fuel Cell Activities: Markets, Programs, and Models 2009 DOE Hydrogen Program Review Presentation Transportation and Stationary

  9. Supporting a Hawaii Hydrogen Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting a Hawaii Hydrogen Economy Supporting a Hawaii Hydrogen Economy Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Supporting a Hawaii Hydrogen Economy" held on July 29, 2014. PDF icon Supporting a Hawaii Hydrogen Economy Webinar Slides More Documents & Publications 2010 Hydrogen and Fuel Cell Global Commercialization & Development Update 2010 Smart Grid Peer Review Day One Morning Presentations Hawaii Hydrogen Energy Park

  10. Drive5 | Open Energy Information

    Open Energy Info (EERE)

    trip metrics (it doesn't include the realtime mpg). The color of the wedges turn from red to blue to green, with green being the best combined fuel economy rank. Shoot for green...

  11. What Eco-Driving Techniques Do You Use on the Road? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    On Tuesday, you read about eco-driving and how it can improve fuel economy and reduce your greenhouse gas emissions. Simple measures such as observing the speed limit, planning your trips, and keeping your tires properly inflated can make a big difference in your savings. What eco-driving techniques do you use on the road? Each Thursday, you have the chance to share your thoughts on a question about energy efficiency or renewable energy for consumers. Please comment with your answers, and also

  12. Driving Green: Spring has Sprung, but don't 'Spring Ahead' | Department of

    Office of Environmental Management (EM)

    Energy Green: Spring has Sprung, but don't 'Spring Ahead' Driving Green: Spring has Sprung, but don't 'Spring Ahead' March 14, 2012 - 2:32pm Addthis Stephanie Price Communicator, National Renewable Energy Laboratory With gas prices skyrocketing, it may be time to evaluate your driving habits. No, I'm not talking about "hypermilling" (going to extreme lengths to get the best fuel economy possible), which can involve some dangerous techniques. (There actually is a Hypermiling Safety

  13. Northeast States Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy U.S. Department of Energy Fuel Cell Technologies Office December 1 st , 2015 Presenter: Joel Rinebold - Connecticut Center for Advanced Technology, Inc. DOE Host: Peter Devlin- DOE Fuel Cell Technologies Office Question and Answer * Please type your questions into the question box 2 Northeast States' Hydrogen Economy Economic Development, Environmental Performance, Energy Reliability Joel M. Rinebold Connecticut Center for Advanced Technology, Inc. December 1,

  14. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  15. The Effect of Diesel Fuel Properties on Emissions-Restrained...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at...

  16. The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Driving/Idling Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Driving/Idling Resources Driving/Idling Resources While transportation efficiency policies are often implemented under local governments, national and state programs can play supportive roles in reducing vehicle miles traveled. Find driving/idling resources below. Alternative Fuels Data Center: Idle Reduction Alternative Fuels Data Center: Idle Reduction Requirements. Back to Transportation

  18. New Analysis Methods Estimate a Critical Property of Ethanol Fuel Blends (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods developed at NREL disclose the impact of ethanol on gasoline blend heat of vaporization with potential for improved efficiency of spark-ignition engines. More stringent standards for fuel economy, regulation of greenhouse gas emissions, and the mandated increase in the use of renew- able fuel are driving research to improve the efficiency of spark ignition engines. When fuel properties such as octane number and evaporative cooling (heat of vaporization or HOV) are insufficient, they

  19. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    SciTech Connect (OSTI)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

  20. Center for Electric Drive Transportation at the University of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Drive Transportation at the University of Michigan - Dearborn Center for Electric Drive Transportation at the University of Michigan - Dearborn 2012 DOE Hydrogen and Fuel ...

  1. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and ...

  2. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  3. Defining Real World Drive Cycles to Support APRF Technology Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Real World Drive Cycles to Support APRF Technology Evaluations Defining Real World Drive Cycles to Support APRF Technology Evaluations 2012 DOE Hydrogen and Fuel Cells Program and...

  4. Suitability of Synthetic Driving Profiles from Traffic Micro-Simulation for Real-World Energy Analysis: Preprint

    SciTech Connect (OSTI)

    Hou, Yunfei; Wood, Eric; Burton, Evan; Gonder, Jeffrey

    2015-10-14

    A shift towards increased levels of driving automation is generally expected to result in improved safety and traffic congestion outcomes. However, little empirical data exists to estimate the impact that automated driving could have on energy consumption and greenhouse gas emissions. In the absence of empirical data on differences between drive cycles from present day vehicles (primarily operated by humans) and future vehicles (partially or fully operated by computers) one approach is to model both situations over identical traffic conditions. Such an exercise requires traffic micro-simulation to not only accurately model vehicle operation under high levels of automation, but also (and potentially more challenging) vehicle operation under present day human drivers. This work seeks to quantify the ability of a commercial traffic micro-simulation program to accurately model real-world drive cycles in vehicles operated primarily by humans in terms of driving speed, acceleration, and simulated fuel economy. Synthetic profiles from models of freeway and arterial facilities near Atlanta, Georgia, are compared to empirical data collected from real-world drivers on the same facilities. Empirical and synthetic drive cycles are then simulated in a powertrain efficiency model to enable comparison on the basis of fuel economy. Synthetic profiles from traffic micro-simulation were found to exhibit low levels of transient behavior relative to the empirical data. Even with these differences, the synthetic and empirical data in this study agree well in terms of driving speed and simulated fuel economy. The differences in transient behavior between simulated and empirical data suggest that larger stochastic contributions in traffic micro-simulation (relative to those present in the traffic micro-simulation tool used in this study) are required to fully capture the arbitrary elements of human driving. Interestingly, the lack of stochastic contributions from models of human drivers in this study did not result in a significant discrepancy between fuel economy simulations based on synthetic and empirical data; a finding with implications on the potential energy efficiency gains of automated vehicle technology.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own vehicles and report the results to EPA. EPA reviews the results and confirms a portion of them using their own testing facilities. To aid consumers shopping for new vehicles, EPA redesigned the fuel economy window sticker posted on all new cars and light trucks starting with Model Year 2013 vehicles to be easier to read and

  6. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    model using measured fuel consumption by drive cycle * Simulate fuel consumption 4. Analysis * Sweep range of designs, usage patterns, costs NATIONAL RENEWABLE ENERGY...

  7. The Drive for Energy Diversity and Sustainability: The Impact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and...

  8. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  9. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  10. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Research Team Members Key Contacts Fuels Gasification will likely be the cornerstone of future energy and chemical processes due to its flexibility to accommodate numerous feedstocks such as coal, biomass, and natural gas, and to produce a variety of products, including heat and specialty chemicals. Advanced integrated gasification combined cycle schemes require the production of clean hydrogen to fuel innovative combustion turbines and fuel cells. This research will focus on development

  11. MASSACHUSETTS DRIVES PERFORMANCE MEASUREMENT | Department of Energy

    Energy Savers [EERE]

    MASSACHUSETTS DRIVES PERFORMANCE MEASUREMENT MASSACHUSETTS DRIVES PERFORMANCE MEASUREMENT MASSACHUSETTS DRIVES PERFORMANCE MEASUREMENT Massachusetts' longstanding statewide Mass Save energy efficiency program, supported by ratepayer funds and sponsored by utilities, has resulted in the state being named first in energy efficiency by the American Council for an Energy Efficient Economy for the past four years. Even with this accolade, the state wanted to test strategies to achieve more-and

  12. Fuel FX International Inc | Open Energy Information

    Open Energy Info (EERE)

    on development and distribution of proprietary products focused on improving fuel economy and reducing environmental emissions in diesel and gasoline engines. References: Fuel...

  13. Fuel Cycle Technologies | Department of Energy

    Office of Environmental Management (EM)

    Initiatives Fuel Cycle Technologies Fuel Cycle Technologies Fuel Cycle Technologies Preparing for Tomorrow's Energy Demands Powerful imperatives drive the continued need for...

  14. DRIVING DIRECTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DRIVING DIRECTIONS HILTON PALACIO DEL RIO 200 South Alamo Street San Antonio, Texas 78205 (210) 222-1400 San Antonio International Airport DIRECTIONS Take Interstate 281 south to Commerce Street. Continue west on Commerce Street to Losoya Street, turn left. Losoya becomes Alamo. The Hilton Palacio del Rio is located at 200 South Alamo Street. Distance from Hotel: 8 mi. Drive Time: 20 min. From the South: -I 37 North and take Commerce Street exit -Turn left at Commerce Street -Follow Commerce

  15. Very High Fuel Economy, Heavy Duty, Constant Speed, Truck Engine Optimized Via Unique Energy Recovery Turbines and Facilitated High Efficiency Continuously Variable Drivetrain

    SciTech Connect (OSTI)

    Bahman Habibzadeh

    2010-01-31

    The project began under a corporative agreement between Mack Trucks, Inc and the Department of Energy starting from September 1, 2005. The major objective of the four year project is to demonstrate a 10% efficiency gain by operating a Volvo 13 Litre heavy-duty diesel engine at a constant or narrow speed and coupled to a continuously variable transmission. The simulation work on the Constant Speed Engine started on October 1st. The initial simulations are aimed to give a basic engine model for the VTEC vehicle simulations. Compressor and turbine maps are based upon existing maps and/or qualified, realistic estimations. The reference engine is a MD 13 US07 475 Hp. Phase I was completed in May 2006 which determined that an increase in fuel efficiency for the engine of 10.5% over the OICA cycle, and 8.2% over a road cycle was possible. The net increase in fuel efficiency would be 5% when coupled to a CVT and operated over simulated highway conditions. In Phase II an economic analysis was performed on the engine with turbocompound (TC) and a Continuously Variable Transmission (CVT). The system was analyzed to determine the payback time needed for the added cost of the TC and CVT system. The analysis was performed by considering two different production scenarios of 10,000 and 60,000 units annually. The cost estimate includes the turbocharger, the turbocompound unit, the interstage duct diffuser and installation details, the modifications necessary on the engine and the CVT. Even with the cheapest fuel and the lowest improvement, the pay back time is only slightly more than 12 months. A gear train is necessary between the engine crankshaft and turbocompound unit. This is considered to be relatively straight forward with no design problems.

  16. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  17. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  18. The Methanol Economy Project

    SciTech Connect (OSTI)

    Olah, George; Prakash, G.K.

    2013-12-31

    The Methanol Economy Project is based on the concept of replacing fossil fuels with methanol generated either from renewable resources or abundant natural (shale) gas. The full methanol cycle was investigated in this project, from production of methanol through bromination of methane, bireforming of methane to syngas, CO{sub 2} capture using supported amines, co-electrolysis of CO{sub 2} and water to formate and syngas, decomposition of formate to CO{sub 2} and H{sub 2}, and use of formic acid in a direct formic acid fuel cell. Each of these projects achieved milestones and provided new insights into their respective fields. ? Direct electrophilic bromination of methane to methyl bromide followed by hydrolysis to yield methanol was investigated on a wide variety of catalyst systems, but hydrolysis proved impractical for large-scale industrial application. ? Bireforming the correct ratio of methane, CO{sub 2}, and water on a NiO / MgO catalyst yielded the right proportion of H{sub 2}:CO (2:1) and proved to be stable for at least 250 hours of operation at 400 psi (28 atm). ? CO{sub 2} capture utilizing supported polyethyleneimines yielded a system capable of adsorbing CO{sub 2} from the air and release at nominal temperatures with negligible amine leaching. ? CO{sub 2} electrolysis to formate and syngas showed considerable increases in rate and selectivity by performing the reaction in a high pressure flow electrolyzer. ? Formic acid was shown to decompose selectively to CO{sub 2} and H{sub 2} using either Ru or Ir based homogeneous catalysts. ? Direct formic acid fuel cells were also investigated and showed higher than 40% voltage efficiency using reduced loadings of precious metals. A technoeconomic analysis was conducted to assess the viability of taking each of these processes to the industrial scale by applying the data gathered during the experiments to approximations based on currently used industrial processes. Several of these processes show significant promise for industrial scale up and use towards improving our nations energy independence.

  19. Fuel Cell Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Fuel Cell Technical Team promotes the development of a fuel cell power system for an automotive powertrain that meets the U.S. DRIVE Partnership (United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability) goals.

  20. Fact #587: September 7, 2009 Cash for Clunkers Program - Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal rebate money for consumers who traded old vehicles with an EPA combined fuel economy of 18 miles per gallon or less for brand new vehicles with improved fuel economy. ...

  1. HybriDrive Propulsion System | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HybriDrive Propulsion System HybriDrive Propulsion System Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, Washington DC, June 7, 2010 PDF icon buswksp10_mancini.pdf More Documents & Publications Joint Fuel Cell Bus Workshop Summary Report Vehicle Technologies Office Merit Review 2015: Zero Emission Cargo Transport II Fuel Cell Bus Workshop

  2. Test Driving the Toyota Mirai | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Driving the Toyota Mirai Test Driving the Toyota Mirai Watch Secretary Ernest Moniz take a spin in the Toyota Mirai, the first fuel cell electric vehicle available for sale.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Independence and Security Act of 2007 Enacted December 19, 2007 The Energy Independence and Security Act (EISA) of 2007 (Public Law 110-140) aims to improve vehicle fuel economy and reduce U.S. dependence on petroleum. EISA includes provisions to increase the supply of renewable alternative fuel sources by setting a mandatory Renewable Fuel Standard, which requires transportation fuel sold in the United States to contain a minimum of 36 billion gallons of renewable fuels annually by 2022. In

  4. Hybrid Braking System for Non-Drive Axles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Braking System for Non-Drive Axles A hybrid braking system is designed to conserve diesel fuel (or alternative fuels) by using regenerative braking, which extends hybrid ...

  5. GIZ Sourcebook Module 4f: Eco Driving | Open Energy Information

    Open Energy Info (EERE)

    is not the only one in the chain of actors involved in transport to influence fuel consumption. Manufacturers, legislators, driving schools and vehicle holders- they all can...

  6. Consider Steam Turbine Drives for Rotating Equipment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Turbine Drives for Rotating Equipment Consider Steam Turbine Drives for Rotating Equipment This tip sheet outlines the benefits of steam turbine drives for rotating equipment as part of optimized steam systems. STEAM TIP SHEET #21 PDF icon Consider Steam Turbine Drives for Rotating Equipment (January 2012) More Documents & Publications Improving Steam System Performance: A Sourcebook for Industry, Second Edition Adjustable Speed Drive Part-Load Efficiency Benchmark the Fuel Cost of

  7. Natural Gas Utilities Options Analysis for the Hydrogen Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Objectives: Identify business opportunities and valuation of strategic options for the natural gas industry as hydrogen energy systems evolve. PDF icon hpwgw_natgas_ultanalysis_richards.pdf More Documents & Publications Natural Gas Utilities Options Analysis for the Hydrogen Economy Fuel Cell Technologies Overview: March 2012 State Energy Advisory Board Meeting Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo

  8. Innovation Unleashed: Sportscar Racing Takes Next Step toward Driving

    Office of Environmental Management (EM)

    Technology and Renewable Fuel Development | Department of Energy Innovation Unleashed: Sportscar Racing Takes Next Step toward Driving Technology and Renewable Fuel Development Innovation Unleashed: Sportscar Racing Takes Next Step toward Driving Technology and Renewable Fuel Development March 24, 2015 - 1:35pm Addthis All cars competing in the TUDOR Championship utilize alternative fuels including E10, cellulosic E85 and renewable synthetic clean diesel. The Department of Energy supports

  9. Fuel Cells News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Photos by Sarah Gerrity, Energy Department EERE Energy Impacts: You Can Now Drive a Fuel Cell Electric Vehicle Fuel cell electric vehicles (FCEVs) are now commercially...

  10. Promoting a Green Economy through Clean Transportation Alternatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt052_ti_ebert_2012_o.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives Town of Hempstead: Project Energy, From Project Execution to Outreach & Education

  11. Promoting a Green Economy through Clean Transportation Alternatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt052_ti_ebert_2011_p.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean Transportation Alternatives EV Community Readiness projects: Center for Transportation and the Environment (GA, AL, SC); Centralina Council of Governments (NC)

  12. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  13. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  14. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOE Patents [OSTI]

    Cortright, Randy D. (Madison, WI); Dumesic, James A. (Verona, WI)

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  15. Energy Economy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Energy Economy The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. <a href="/node/385315">Learn more</a> about the growth of America's clean energy economy. | Infographic by Sarah Gerrity, Energy Department. The clean energy economy continues to grow, creating new job opportunities for tens of thousands of Americans along the way. Learn more about the growth of America's clean energy economy. |

  16. National Template: Stationary & Portable Fuel Cell Systems (Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Standards (Fact Sheet), NREL (National Renewable Energy Laboratory) US DRIVE Hydrogen Codes and Standards Technical Team Roadmap CODES & STANDARDS FOR THE HYDROGEN ECONOMY...

  17. Turning Sun and Water Into Hydrogen Fuel

    Broader source: Energy.gov [DOE]

    In a key step towards advancing a clean energy economy, scientists have engineered a cheap, abundant way to make hydrogen fuel from sunlight and water.

  18. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels & Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 54 results Fuel Trends -

  19. Electric Drive and Advanced Battery and Components Testbed (EDAB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon vss033_carlson_2011_o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery

  20. Roadmap on Manufacturing R&D for the Hydrogen Economy | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy on Manufacturing R&D for the Hydrogen Economy Roadmap on Manufacturing R&D for the Hydrogen Economy Draft Roadmap on Manufacturing R&D for the Hydrogen Economy prepared for public comment. PDF icon roadmap_manufacturing_hydrogen_economy.pdf More Documents & Publications Manufacturing R&D of PEM Fuel Cells Manufacturing R&D for the Hydrogen Economy Workshop Summary Manufacturing R&D for systems that will produce and distribute hydrogen

  1. Clean Economy Network Foundation | Open Energy Information

    Open Energy Info (EERE)

    Clean Economy Network Foundation Jump to: navigation, search Logo: Clean Economy Network Foundation Name: Clean Economy Network Foundation Address: 1301 Pennsylvania Ave NW, Suite...

  2. Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy | Department of Energy 7: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy Fact #657: January 10, 2011 Record Increase for New Light Vehicle Fuel Economy The sales-weighted fuel economy average of all light vehicles sold in model year (MY) 2009 was 1.4 miles per gallon (mpg) higher than MY2008. This is the largest annual increase in fuel economy since the Environmental Protection Agency (EPA) began recording new car fuel economy data in 1975. In addition, the 22.4

  3. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Food Drive Holiday Food Drive Laboratory employees helped donate 300 boxes of nonperishable food items and 360 frozen turkeys during the 2015 annual food drive. September 16, 2013 LANL employees organize food for the Holiday Food Drive. Contacts Annual Food & Holiday Gift Drives Mike Martinez (505) 699-3388 Community Relations & Partnerships (505) 665-4400 Email Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract workers

  4. Automotive Fuels - The Challenge for Sustainable Mobility | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuels - The Challenge for Sustainable Mobility Automotive Fuels - The Challenge for Sustainable Mobility Overview of challenges and future fuel options PDF icon deer12_warnecke.pdf More Documents & Publications The Drive for Energy Independence and Fuels of the Future The Drive for Energy Independence and Fuels of the Future Verification of Shell GTL Fuel as CARB Alternative Diesel

  5. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect (OSTI)

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.

  6. Air-Cooled Traction Drive Inverter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air-Cooled Traction Drive Inverter Air-Cooled Traction Drive Inverter 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape042_chinthavali_2012_o.pdf More Documents & Publications High-Temperature, Air-Cooled Traction Drive Inverter Packaging Wide Bandgap Power Electronics Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduced Registration Fee for Fuel-Efficient Vehicles A new motor vehicle with a U.S. Environmental Protection Agency estimated average city fuel economy of at least 40 miles per gallon (as listed at Department of Motor Vehicles website. (Reference District of Columbia Code 50-1501.03

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Vehicle Acquisition Requirements When purchasing new state vehicles, the North Carolina Department of Administration must give purchase preference to vehicles with fuel economy ratings that rank among the top 15% of comparable vehicles in their class. (Reference North Carolina General Statutes 143-341(8)(i)

  9. Test Driving the Toyota Mirai | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Driving the Toyota Mirai Test Driving the Toyota Mirai Watch Secretary Ernest Moniz take a spin in the Toyota Mirai, the first fuel cell electric vehicle available for sale. FCTO Home About the Fuel Cell Technologies Office Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Safety, Codes & Standards Education Market Transformation Systems Analysis Information Resources Financial Opportunities News Events Contact Us

  10. A Correlation of Diesel Engine Performance with Measured NIR Fuel Characteristics

    Broader source: Energy.gov [DOE]

    Results indicate a strong tradeoff between maximum rate of cylinder pressure rise (which also correlates to NOx and peak cylinder pressure) and fuel economy for 21 tested fuels.

  11. Videos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel...

  12. Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel...

  13. Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2015-10-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy

  14. Manufacturing R&D for the Hydrogen Economy Roadmap Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Roadmap Workshop Manufacturing R&D for the Hydrogen Economy Roadmap Workshop Agenda for the 2005 Manufactuirng R&D for the Hydrogen Economy Roadmap Workshop PDF icon mfg_wkshp_agenda.pdf More Documents & Publications Manufacturing R&D for the Hydrogen Economy Workshop Summary President's Hydrogen Fuel Initiative Proceedings of the National Hydrogen Energy Roadmap Workshop: Washington, DC; April 2-3, 2002

  15. Driving Economic Growth: Advanced Technology Vehicles Manufacturing |

    Office of Environmental Management (EM)

    Department of Energy Driving Economic Growth: Advanced Technology Vehicles Manufacturing Driving Economic Growth: Advanced Technology Vehicles Manufacturing With $8 billion in loans and commitments to projects that have supported the production of more than 4 million fuel-efficient cars and more than 35,000 direct jobs across eight states, the Advanced Technology Vehicles Manufacturing (ATVM) loan program has played a key role in helping the American auto industry propel the resurgence of

  16. fuel cell | OpenEI Community

    Open Energy Info (EERE)

    fuel cell Home Dc's picture Submitted by Dc(266) Contributor 19 February, 2015 - 15:08 2016 Toyota Mirai Fuel Cell Car First Drive - HybridCars.com Review 2016 car fuel cell hybrid...

  17. Clean Cities Tools: Tools to Help You Drive Smarter, Use Less Petroleum, and Reduce Emissions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Clean Cities' Alternative Fuels and Advanced Vehicles Data Center (AFDC) features a wide range of Web-based tools to help vehicle fleets and individual consumers reduce their petroleum use. This brochure lists and describes Clean Cities online tools related to vehicles, alternative fueling stations, electric vehicle charging stations, fuel conservation, emissions reduction, fuel economy, and more.

  18. System-of-Systems Framework for the Future Hydrogen-Based Transportation Economy: Preprint

    SciTech Connect (OSTI)

    Duffy, M.; Sandor, D.

    2008-06-01

    From a supply chain view, this paper traces the flow of transportation fuels through required systems and addresses the current petroleum-based economy, DOE's vision for a future hydrogen-based transportation economy, and the challenges of a massive market and infrastructure transformation.

  19. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State & Alt Fuel Providers All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 6 results

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities The mission of Clean Cities is to advance the energy, economic, and environmental security of the United States by supporting local initiatives to adopt practices that reduce the use of petroleum in the transportation sector. Clean Cities carries out this mission through a network of nearly 100 volunteer coalitions, which develop public/private partnerships to promote alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction. Clean

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel-Efficient Green Fleets Policy and Fleet Management Program Development The Alabama Green Fleets Review Committee (Committee) is establishing a Green Fleets Policy (Policy) outlining a procedure for procuring state vehicles based on criteria that includes fuel economy and life cycle costing. State fleet managers must classify their vehicle inventory for compliance with the Policy and submit annual plans for procuring fuel-efficient vehicles. These plans must reflect a 4% annual increase in

  2. Evaluating Energy Efficiency Policies with Energy-Economy Models

    SciTech Connect (OSTI)

    Mundaca, Luis; Neij, Lena; Worrell, Ernst; McNeil, Michael A.

    2010-08-01

    The growing complexities of energy systems, environmental problems and technology markets are driving and testing most energy-economy models to their limits. To further advance bottom-up models from a multidisciplinary energy efficiency policy evaluation perspective, we review and critically analyse bottom-up energy-economy models and corresponding evaluation studies on energy efficiency policies to induce technological change. We use the household sector as a case study. Our analysis focuses on decision frameworks for technology choice, type of evaluation being carried out, treatment of market and behavioural failures, evaluated policy instruments, and key determinants used to mimic policy instruments. Although the review confirms criticism related to energy-economy models (e.g. unrealistic representation of decision-making by consumers when choosing technologies), they provide valuable guidance for policy evaluation related to energy efficiency. Different areas to further advance models remain open, particularly related to modelling issues, techno-economic and environmental aspects, behavioural determinants, and policy considerations.

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Vehicle Acquisition and Biodiesel Fuel Use Requirement All gasoline-powered vehicles purchased with state funds must be flexible fuel vehicles (FFVs) or fuel-efficient hybrid electric vehicles (HEVs). Fuel-efficient HEVs are defined as automobiles or light trucks that use a gasoline or diesel engine and an electric motor to provide power and that gain at least a 20% increase in combined U.S. Environmental Protection Agency city-highway fuel economy over the equivalent or most-similar

  4. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  5. Fuel Cell Tech Team Accelerated Stress Test and Polarization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated stress test and polarization curve protocols developed by the U.S. DRIVE Fuel Cell Technical Team for polymer electrolyte membrane (PEM) fuel cells, revised January 14, ...

  6. California Fuel Cell Partnership CaFCP | Open Energy Information

    Open Energy Info (EERE)

    fuel cell vehicles under real driving conditions and to assist in the development of a hydrogen infrastructure. References: California Fuel Cell Partnership (CaFCP)1 This...

  7. Alternative Fuels Data Center: Telework

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Telework to someone by E-mail Share Alternative Fuels Data Center: Telework on Facebook Tweet about Alternative Fuels Data Center: Telework on Twitter Bookmark Alternative Fuels Data Center: Telework on Google Bookmark Alternative Fuels Data Center: Telework on Delicious Rank Alternative Fuels Data Center: Telework on Digg Find More places to share Alternative Fuels Data Center: Telework on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior

  8. Fuel pumping system and method

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL); Wang, Lifeng (Normal, IL) ,

    2006-12-19

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  9. Fuel Pumping System And Method

    DOE Patents [OSTI]

    Shafer, Scott F. (Morton, IL); Wang, Lifeng (Normal, IL)

    2005-12-13

    A fuel pumping system that includes a pump drive is provided. A first pumping element is operatively connected to the pump drive and is operable to generate a first flow of pressurized fuel. A second pumping element is operatively connected to the pump drive and is operable to generate a second flow of pressurized fuel. A first solenoid is operatively connected to the first pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the first flow of pressurized fuel. A second solenoid is operatively connected to the second pumping element and is operable to vary at least one of a fuel pressure and a fuel flow rate of the second flow of pressurized fuel.

  10. HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING ...

  11. Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Gap with Manual Transmissions | Department of Energy 0: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions Fact #850: December 8, 2014 Automatic Transmissions have closed the Fuel Economy Gap with Manual Transmissions Historically, manual transmissions have delivered better fuel economy than automatic transmissions. However, improvements in the efficiency of automatic transmissions have closed that gap in recent years. Improved designs

  12. Emission Performance of Modern Diesel Engines Fueled with Biodiesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This study presents full quantification of biodiesels impact on emissions and fuel economy with the inclusion of DPF regeneration events. PDF icon p-21williams.pdf More ...

  13. EERE Success Story-Advancing Hydrogen Infrastructure and Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles (FCEVs) by conducting coordinated technical and market analysis, and evaluating alternative fueling infrastructure that can enable cost reductions and economies of scale. ...

  14. NREL: Energy Analysis - Vehicles and Fuels Research Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis and Integration Evaluates advanced vehicle technologies to determine their impact on fuel economy, vehicle performance, exhaust emissions, and more. Transportation...

  15. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Energy Savers [EERE]

    The Road to Fuel Efficiency INFOGRAPHIC: The Road to Fuel Efficiency November 27, 2012 - 11:01am Addthis This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by <a href="/node/379579">Sarah Gerrity</a>. This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by

  16. Effects of Fuel Dilution with Biodiesel on Lubricant Acidity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon deer08watson.pdf More Documents & Publications Impact of Biodiesel on Ash Emissions and Lubricant Properties Affecting Fuel Economy and Engine Wear Reducing Lubricant Ash ...

  17. National labs team to develop better, cheaper fuel cells | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel cell technologies can significantly benefit the nation's energy security, the environment and economy - offering reduced oil consumption and highly reliable grid-support,...

  18. Watch Energy Secretary Moniz Test Drive the Toyota Mirai

    Broader source: Energy.gov [DOE]

    The Energy Department posted a video of ‪Secretary Ernest Moniz driving the Toyota Mirai, the first fuel cell electric vehicle (FCEV) for sale in the United States.

  19. Vehicles and Fuels | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Vehicles and Fuels Vehicles and Fuels You could be stuck in a traffic jam even while surrounded by beautiful wilderness. Make smart driving choices to reduce your environmental impact and reduce your fuel use and costs. | Photo courtesy of Melissa Howell/NREL. You could be stuck in a traffic jam even while surrounded by beautiful wilderness. Make smart driving choices to reduce your environmental impact and reduce your fuel use and costs. | Photo courtesy of Melissa

  20. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Driving Patterns All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 8 results Generated_thumb20150707-30390-mmwhbn

  1. On the Road to ANG Vehicles with Increased Driving Ranges

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On the Road to ANG Vehicles with Increased Driving Ranges On the Road to ANG Vehicles with Increased Driving Ranges Print Thursday, 21 January 2016 16:08 As a cleaner, cheaper, and more globally evenly distributed fuel, natural gas has considerable environmental, economic, and political advantages over petroleum as a source of energy for the transportation sector. But its low energy density at ambient temperature and pressure has posed a severe challenge for onboard fuel storage in cars in the

  2. Combined Electric Machine and Current Source Inverter Drive System - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Analysis Energy Analysis Advanced Materials Advanced Materials Find More Like This Return to Search Combined Electric Machine and Current Source Inverter Drive System Oak Ridge National Laboratory Contact ORNL About This Technology Publications: PDF Document Publication 11-G00249_ID2505.pdf (764 KB) Technology Marketing SummaryThis technology is a drive system that includes a permanent magnet-less (PM-L) electric motor

  3. Electrical Motor Drive Apparatus and Method - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Industrial Technologies Industrial Technologies Find More Like This Return to Search Electrical Motor Drive Apparatus and Method Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThis invention discloses an electrical motor drive topology that can significantly reduce the inverter dc bus ripple currents and thus the requirement of the dc bus capacitance. It enables the inverter to cost-effectively operate in

  4. Green Economy Toolbox | Open Energy Information

    Open Energy Info (EERE)

    Economy Toolbox Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Green Economy Toolbox AgencyCompany Organization: United Nations Economic Commission for Europe Sector:...

  5. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an...

  6. Where's the Hydrogen Economy? | Open Energy Information

    Open Energy Info (EERE)

    Where's the Hydrogen Economy? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Where's the Hydrogen Economy? AgencyCompany Organization: Canada Library of Parliament...

  7. The eGallon: How Much Cheaper Is It to Drive on Electricity?

    Broader source: Energy.gov [DOE]

    New eGallon tool provides a quick and simple way for consumers to compare the costs of fueling electric vehicles versus driving on gasoline.

  8. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es129_eitouni_2012_p.pdf More Documents & Publications High-Voltage Solid Polymer Batteries for Electric Drive Vehicles Vehicle Technologies Office Merit Review 2014: High-Voltage Solid Polymer Batteries for

  9. Electric Drive and Advanced Battery and Components Testbed (EDAB) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss033_carlson_2012_o.pdf More Documents & Publications Electric Drive and Advanced Battery and Components Testbed (EDAB) Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB) Electric Drive and Advanced Battery

  10. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Cities All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 9 results Petroleum Use Reduction -

  11. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Consumption and Efficiency All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 15 results

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Petroleum Use Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results

  13. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Regulated Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 7 results Federal Fleets -

  14. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt035_ti_ng_2011_p.pdf More Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Asia/ITS

  15. Electric Drive Semiconductor Manufacturing (EDSM) Center | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt030_ape_prusia_2012_p.pdf More Documents & Publications Electric Drive Semiconductor Manufacturing (EDSM) Center Electric Drive Semiconductor Manufacturing (EDSM) Center Advanced Li-Ion Polymer Battery Cell Manufacturing Plant in USA

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Cell Motor Vehicle Tax Credit NOTE: This incentive originally expired on December 31, 2014, but was retroactively extended through December 31, 2016, by H.R. 2029. A tax credit of up to $8,000 is available for the purchase of qualified light-duty fuel cell vehicles, depending on the vehicle's fuel economy. Tax credits are also available for medium- and heavy-duty fuel cell vehicles; credit amounts are based on vehicle weight. Vehicle manufacturers must follow the procedures as published in

  17. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Excise Tax Distributors who sell or use motor fuel, including special fuels, are subject to an excise tax of $0.26 per gallon. Motor fuels that are not commonly sold or measured by the gallon and are used in motor vehicles on public highways are taxed according to their gasoline gallon equivalent (GGE). The Georgia Department of Revenue may adjust tax rates annually based on vehicle fuel economy and the Consumer Price Index through July 1, 2018. A GGE of compressed natural gas (CNG) must be at

  18. Energy Economy | Department of Energy

    Office of Environmental Management (EM)

    Economy Energy Economy June 24, 2015 Energy Department Issues Remaining $1.8 Billion in Loan Guarantees for Vogtle Advanced Nuclear Energy Project To further support the construction of two advanced nuclear reactors at the Alvin W. Vogtle Electric Generating Plant, the Department of Energy announced today it will issue $1.8 billion in loan guarantees to three subsidiaries of the Municipal Electric Authority of Georgia (MEAG Power). May 1, 2015 Jon Weers (left), Debbie Brodt-Giles (center), and

  19. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr.

    1997-12-31

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  20. School Supply Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School Supply Drive School Supply Drive Each year, Laboratory employees donate school supplies and backpacks for Northern New Mexico students as they start the new school year. September 16, 2013 Del Norte Credit Union's Baxter Bear takes a moment to pose with some of the backpacks filled with school supplies that will help students start their school year off right. Contact Giving Drives Mike Martinez Community Relations & Partnerships (505) 699-3388 Email Providing students with good start

  1. Holiday Food Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community Programs Office (505) 665-4400 Email Get Expertise Helping feed Northern New Mexico families During the Laboratory's 2015 Annual Food Drive, employees and subcontract...

  2. Variable Frequency Drives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Marketing Toolkit The Benefits of Variable Frequency Drives (VFDs) VFDs help adjust motor speeds to match loads and improve efficiency while conserving energy. The benefits...

  3. Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy above 25 Miles per Gallon | Department of Energy 8: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon Fact #848: November 24, 2014 Nearly Three-Fourths of New Cars have Fuel Economy above 25 Miles per Gallon In 1975, only three percent of all new cars had a fuel economy above 25 miles per gallon (mpg), but by 2014, 73% did. Great improvements were made in the fuel economy of cars from 1975 to 1985, so that by 1985 most of the cars produced

  4. Energy Department Announces $19 Million to Drive Down Solar Soft Costs,

    Office of Environmental Management (EM)

    Increase Hardware Efficiency | Department of Energy 9 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency Energy Department Announces $19 Million to Drive Down Solar Soft Costs, Increase Hardware Efficiency November 20, 2013 - 2:17pm Addthis In support of the Obama Administration's effort to advance our clean energy economy and support American innovation, the Energy Department today announced $19 million to reduce both hardware and non-hardware costs of solar and to drive

  5. Vehicle Technologies Office: 2008-2009 Fuels Technologies R&D Progress Report

    Broader source: Energy.gov [DOE]

    The Fuels Technologies subprogram supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  6. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Vehicle Greenhouse Gas Emissions Regulations Box-type trailers that are at least 53 feet long and the heavy-duty tractors that pull these trailers must be equipped with fuel-efficient tires and aerodynamic trailer devices that improve fuel economy and lower greenhouse gas emissions. Tractors and trailers subject to the regulation must either use U.S. Environmental Protection Agency SmartWay certified tractors and trailers or retrofit existing equipment with SmartWay verified

  7. NREL: Transportation Research - DRIVE: Drive-Cycle Rapid Investigation,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visualization, and Evaluation Analysis Tool DRIVE: Drive-Cycle Rapid Investigation, Visualization, and Evaluation Analysis Tool The Drive-Cycle Rapid Investigation, Visualization, and Evaluation (DRIVE) analysis tool produces representative, testable drive cycles at record speed from large amounts of vehicle data gathered via onboard logging devices. Developed by NREL, DRIVE uses GPS and controller area network data to characterize vehicle operation and produce custom vehicle drive cycles

  8. International Partnership for a Hydrogen Economy

    Broader source: Energy.gov [DOE]

    "Presentation summarizing the vision, mission, goals and plans for DOE's International Partnership for a Hydrogen Economy "

  9. Impact of Policy on Fuels RD&D (Presentation)

    SciTech Connect (OSTI)

    Gearhart, C.

    2013-12-01

    This presentation provides an overview of fuel economy and emissions policy and its relationship with fuel research, development, and deployment (RD&D). Solutions explored include biofuels and increased engine efficiency.

  10. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, C.A. Jr.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes. 7 figs.

  11. Piezoelectric drive circuit

    DOE Patents [OSTI]

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  12. Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities

    Fuel Cell Technologies Publication and Product Library (EERE)

    Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

  13. U.S. DRIVE Partnership Releases Accomplishments Report

    Broader source: Energy.gov [DOE]

    The U.S. DRIVE Partnership has released its 2014 Accomplishments Report, which includes significant technical accomplishments in advanced combustion and emission control, electrical and electronics, electrochemical energy storage, fuel cells, materials, vehicle systems analysis, codes and standards, hydrogen storage, grid interaction, fuel pathway integration, hydrogen delivery, and hydrogen production.

  14. Traction Drive System Modeling

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Effect of B20 and Low Aromatic Diesel on Transit Bus NOx Emissions Over Driving Cycles with a Range of Kinetic Intensity

    SciTech Connect (OSTI)

    Lammert, M. P.; McCormick, R. L.; Sindler, P.; Williams, A.

    2012-10-01

    Oxides of nitrogen (NOx) emissions for transit buses for up to five different fuels and three standard transit duty cycles were compared to establish whether there is a real-world biodiesel NOx increase for transit bus duty cycles and engine calibrations. Six buses representing the majority of the current national transit fleet and including hybrid and selective catalyst reduction systems were tested on a heavy-duty chassis dynamometer with certification diesel, certification B20 blend, low aromatic (California Air Resources Board) diesel, low aromatic B20 blend, and B100 fuels over the Manhattan, Orange County and UDDS test cycles. Engine emissions certification level had the dominant effect on NOx; kinetic intensity was the secondary driving factor. The biodiesel effect on NOx emissions was not statistically significant for most buses and duty cycles for blends with certification diesel, except for a 2008 model year bus. CARB fuel had many more instances of a statistically significant effect of reducing NOx. SCR systems proved effective at reducing NOx to near the detection limit on all duty cycles and fuels, including B100. While offering a fuel economy benefit, a hybrid system significantly increased NOx emissions over a same year bus with a conventional drivetrain and the same engine.

  16. Partnerships Drive New Transportation Solutions - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Return to Search Partnerships Drive New Transportation Solutions National Renewable Energy Laboratory Success Story Details Partner Location Agreement Type Publication Date General Motors (GM), Chrysler, and Ford USA Other October 23, 2014 Summary Hybrid car sales have taken off in recent years, with a fuel-sipping combination of electric- and gas-powered technologies that simultaneously deliver energy efficiency, low emissions, and strong performance. The

  17. The Drive for Energy Diversity and Sustainability: The Impact on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Fuels and Propulsion System Portfolios | Department of Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios The Drive for Energy Diversity and Sustainability: The Impact on Transportation Fuels and Propulsion System Portfolios Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office

  18. Quantitative Effects of Vehicle Parameters on Fuel Consumption for Heavy-Duty Vehicle

    SciTech Connect (OSTI)

    Wang, Lijuan; Kelly, Kenneth; Walkowicz, Kevin; Duran, Adam

    2015-10-16

    The National Renewable Energy Laboratory's (NREL's) Fleet Test and Evaluations team recently conducted chassis dynamometer tests of a class 8 conventional regional delivery truck over the Heavy Heavy-Duty Diesel Truck (HHDDT), West Virginia University City (WVU City), and Composite International Truck Local and Commuter Cycle (CILCC) drive cycles. A quantitative study was conducted by analyzing the impacts of various factors on fuel consumption (FC) and fuel economy (FE) by modeling and simulating the truck using NREL's Future Automotive Systems Technology Simulator (FASTSim). Factors used in this study included vehicle weight, and the coefficients of rolling resistance and aerodynamic drag. The simulation results from a single parametric study revealed that FC was approximately a linear function of the weight, coefficient of aerodynamic drag, and rolling resistance over various drive cycles. Among these parameters, the truck weight had the largest effect on FC. The study of the impact of two technologies on FE suggested that, depending on the circumstances, it may be more cost effective to reduce one parameter (such as coefficient of aerodynamic drag) to increase fuel economy, or it may be more beneficial to reduce another (such as the coefficient of rolling resistance). It also provided a convenient way to estimate FE by interpolating within the parameter values and extrapolating outside of them. The simulation results indicated that the FC could be reduced from 38.70 L/100 km, 50.72 L/100 km, and 38.42 L/100 km in the baseline truck to 26.78 L/100 km, 43.14 L/100 km and 29.84 L/100 km over the HHDDT, WVU City and CILCC drive cycles, respectively, when the U.S. Department of Energy's three targeted new technologies were applied simultaneously.

  19. Manufacturing R&D for the Hydrogen Economy Workshop Summary | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Workshop Summary Manufacturing R&D for the Hydrogen Economy Workshop Summary This report summarizes the results of the Manufacturing R&D for the Hydrogen Economy Workshop held July 13-14, 2005 in Washington, D.C. PDF icon manufacturing_workshop_summary.pdf More Documents & Publications Manufacturing R&D of PEM Fuel Cells Breakout Group 2: Membrane Electrode Assemblies Breakout Group 3: Water Management

  20. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect (OSTI)

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are typically lower than those in real-world driving.

  1. Control rod drive

    DOE Patents [OSTI]

    Hawke, Basil C. (Solana Beach, CA)

    1986-01-01

    A control rod drive uses gravitational forces to insert one or more control rods upwardly into a reactor core from beneath the reactor core under emergency conditions. The preferred control rod drive includes a vertically movable weight and a mechanism operatively associating the weight with the control rod so that downward movement of the weight is translated into upward movement of the control rod. The preferred control rod drive further includes an electric motor for driving the control rods under normal conditions, an electrically actuated clutch which automatically disengages the motor during a power failure and a decelerator for bringing the control rod to a controlled stop when it is inserted under emergency conditions into a reactor core.

  2. US DRIVE Driving Research and Innovation for Vehicle Efficiency...

    Energy Savers [EERE]

    Vehicle Efficiency and Energy Sustainability Partnership Plan US DRIVE Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability Partnership Plan This ...

  3. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  4. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  5. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  6. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  7. Holiday Gift Drive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gift Drive Holiday Gift Drive Every year, Laboratory employees help fulfill the holiday wishes of children and seniors in our communities. In 2015, our employees donated more than 1,200 gifts to 23 nonprofit organizations to help Northern New Mexico children, senior citizens, and families have a brighter holiday season. May 7, 2015 Every holiday season, employees of Los Alamos National Laboratory donate and distribute gifts to families in need throughout Northern New Mexico. Contacts Annual Food

  8. DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack

    Office of Environmental Management (EM)

    Durability | Department of Energy Program Record, Record # 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel Cell Stack Durability Dated May 3, 2012, this program record from the U.S. Department of Energy focuses on fuel cell stack durability. PDF icon 11003_fuel_cell_stack_durability.pdf More Documents & Publications US DRIVE Fuel Cell Technical Team Roadmap Advanced Cathode Catalysts and Supports for PEM Fuel Cells Overview of DOE

  9. Sandia Energy - Electric Drive Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Drive Systems Home Transportation Energy Energy Storage Components and Systems Electric Drive Systems Electric Drive Systemscwdd2015-05-08T03:08:45+00:00 Reduce Size,...

  10. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  11. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fueling Stations All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Arra-thumb ARRA

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Production All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 16 results Biofuelsatlas BioFuels Atlas

  13. 2009 Fuel Cell Market Report

    SciTech Connect (OSTI)

    Vincent, Bill; Gangi, Jennifer; Curtin, Sandra; Delmont, Elizabeth

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  14. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-12-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Fuel additives: Excluding aviation fuels. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    1995-02-01

    The bibliography contains citations concerning compositions, applications and performance of additives in fuels. Evaluations and environmental testing of additives in automotive, diesel, and boiler fuels are discussed. Additive effects on air pollution control, combustion stability, fuel economy and fuel storage are presented. Aviation fuel additives are covered in a separate bibliography. (Contains a minimum of 231 citations and includes a subject term index and title list.)

  16. FY2013 Progress Report for Fuel & Lubricant Technologies

    SciTech Connect (OSTI)

    none,

    2014-02-01

    Annual progress report for Fuel & Lubricant Technologies. The Fuel & Lubricant Technologies Program supports fuels and lubricants research and development (R&D) to provide vehicle manufacturers and users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  17. Gasoline Ultra Fuel Efficient Vehicle Program Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Program Update Gasoline Ultra Fuel Efficient Vehicle Program Update Discusses hardware and system development activities to achieve in-vehicle fuel economy and emissions performance improvements compared to a production baseline vehicle. PDF icon deer12_confer.pdf More Documents & Publications Gasoline Ultra Fuel Efficient Vehicle Gasoline Ultra Fuel Efficient Vehicle

  18. Fuel Cell Tech Team Accelerated Stress Test and Polarization Curve Protocols for PEM Fuel Cells

    Broader source: Energy.gov [DOE]

    Accelerated stress test and polarization curve protocols developed by the U.S. DRIVE Fuel Cell Technical Team for polymer electrolyte membrane (PEM) fuel cells, revised January 14, 2013.

  19. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    system-efficiency Go Generated_thumb20140708-12454-1nsa79k U.S. Light-Duty Fuel Consumption and Vehicle Miles Traveled (VMT) Generated_thumb20140708-12454-1nsa79k Trend of per capita VMT and fuel use in U.S. light-duty vehicles from 1970-2012 Last update July 2014 View Graph Graph Download Data Generated_thumb20141209-960-hxf1gg Clean Cities Petroleum Savings by Fuel Economy and VMT Reductions Generated_thumb20141209-960-hxf1gg Trend of displacement by fuel economy improvement and VMT reduction

  20. Azerbaijan-UNEP Green Economy Advisory Services | Open Energy...

    Open Energy Info (EERE)

    Azerbaijan-UNEP Green Economy Advisory Services Jump to: navigation, search Logo: Azerbaijan-UNEP Green Economy Advisory Services Name Azerbaijan-UNEP Green Economy Advisory...

  1. China-UNEP Green Economy Advisory Services | Open Energy Information

    Open Energy Info (EERE)

    UNEP Green Economy Advisory Services Jump to: navigation, search Logo: China-UNEP Green Economy Advisory Services Name China-UNEP Green Economy Advisory Services AgencyCompany...

  2. Constructing a Cleaner Economy Info Graphic

    Broader source: Energy.gov [DOE]

    An overview of the impact that the clean energy economy is having on the U.S. construction industry.

  3. LNG: new driving force

    SciTech Connect (OSTI)

    Adkins, R.E.

    1981-11-01

    Spurred by recent legislation promoting the use of methane as a motor fuel, Beech Aircraft is gearing up for market production of a complete vehicular conversion kit and ground support equipment for a liquefied-methane fuel system that is suitable for the use of conventional LNG or methane collected from coalbeds, sewage plants, or landfills and liquefied on site. As demonstrated in field tests of prototype fuel systems, liquefied methane stores conveniently and is safe in motor vehicles. Compared with compressed methane, the liquefied form provides more horsepower and longer mileage between fuelings. Fully fueled, the Beech system weighs less than a gasoline or diesel tank of the same size. The system features electronic-capacitance gaging for direct dashboard quantity reading, a standby time of 14 days (from filling time until the time it reaches the maximum allowable vapor pressure of 60 psi), and the choice of vapor or liquid withdrawal.

  4. Evaluation of Range Estimates for Toyota FCHV-adv Under Open Road Driving

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conditions | Department of Energy Range Estimates for Toyota FCHV-adv Under Open Road Driving Conditions Evaluation of Range Estimates for Toyota FCHV-adv Under Open Road Driving Conditions An evaluation to independently and objectively verify driving ranges of >400 miles announced by Toyota for its new advanced Fuel Cell Hybrid Vehicle (FCHV-adv) utilizing 70 MPa compressed hydrogen. PDF icon Evaluation of Range Estimates for Toyota FCHV-adv Under Open Road Driving Conditions More

  5. Ceramic vane drive joint

    DOE Patents [OSTI]

    Smale, Charles H. (Indianapolis, IN)

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  6. U.S. DRIVE

    SciTech Connect (OSTI)

    2012-03-16

    U.S. DRIVE, which stands for United States Driving Research and Innovation for Vehicle efficiency and Energy sustainability, is an expanded government-industry partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company and General Motors; Tesla Motors; five energy companies BP America, Chevron Corporation, ConocoPhillips, ExxonMobil Corporation, and Shell Oil Products US; two utilities Southern California Edison and Michigan-based DTE Energy; and the Electric Power Research Institute (EPRI). The U.S. DRIVE mission is to accelerate the development of pre-competitive and innovative technologies to enable a full range of affordable and clean advanced light-duty vehicles, as well as related energy infrastructure.

  7. Market Implications of Synergism Between Low Drag Area and Electric Drive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Savings | Department of Energy Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon market_implications_synergism.pdf More Documents & Publications Battery Pack Requirements and Targets Validation FY 2009 DOE Vehicle Technologies Program Argonne

  8. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, R.H.; Ayers, C.W.; Chiasson, J.N.; Burress, B.A.; Marlino, L.D.

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE)-Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  9. Evaluation of 2004 Toyota Prius Hybrid Electric Drive System

    SciTech Connect (OSTI)

    Staunton, Robert H; Ayers, Curtis William; Chiasson, J. N.; Burress, Timothy A; Marlino, Laura D

    2006-05-01

    The 2004 Toyota Prius is a hybrid automobile equipped with a gasoline engine and a battery- and generator-powered electric motor. Both of these motive-power sources are capable of providing mechanical-drive power for the vehicle. The engine can deliver a peak-power output of 57 kilowatts (kW) at 5000 revolutions per minute (rpm) while the motor can deliver a peak-power output of 50 kW over the speed range of 1200-1540 rpm. Together, this engine-motor combination has a specified peak-power output of 82 kW at a vehicle speed of 85 kilometers per hour (km/h). In operation, the 2004 Prius exhibits superior fuel economy compared to conventionally powered automobiles. To acquire knowledge and thereby improve understanding of the propulsion technology used in the 2004 Prius, a full range of design characterization studies were conducted to evaluate the electrical and mechanical characteristics of the 2004 Prius and its hybrid electric drive system. These characterization studies included (1) a design review, (2) a packaging and fabrication assessment, (3) bench-top electrical tests, (4) back-electromotive force (emf) and locked rotor tests, (5) loss tests, (6) thermal tests at elevated temperatures, and most recently (7) full-design-range performance testing in a controlled laboratory environment. This final test effectively mapped the electrical and thermal results for motor/inverter operation over the full range of speeds and shaft loads that these assemblies are designed for in the Prius vehicle operations. This testing was undertaken by the Oak Ridge National Laboratory (ORNL) as part of the U.S. Department of Energy (DOE) - Energy Efficiency and Renewable Energy (EERE) FreedomCAR and Vehicle Technologies (FCVT) program through its vehicle systems technologies subprogram. The thermal tests at elevated temperatures were conducted late in 2004, and this report does not discuss this testing in detail. The thermal tests explored the derating of the Prius motor design if operated at temperatures as high as is normally encountered in a vehicle engine. The continuous ratings at base speed (1200 rpm) with different coolant temperatures are projected from test data at 900 rpm. A separate, comprehensive report on this thermal control study is available [1].

  10. Fuel Cell Technical Team Roadmap

    Energy Savers [EERE]

    Hydrogen Storage Technologies Roadmap Fuel Cell Technical Team Roadmap June 2013 This roadmap is a document of the U.S. DRIVE Partnership. U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability) is a voluntary, non-binding, and nonlegal partnership among the U.S. Department of Energy; USCAR, representing Chrysler Group LLC, Ford Motor Company, and General Motors; Tesla Motors; five energy companies - BP America, Chevron Corporation, Phillips 66 Company,

  11. fuels and lubricants | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels and Lubricants The DOE Vehicle Technologies Office supports fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement. Transportation fuels are anticipated to be produced from future refinery feedstocks that may increasingly be from non-conventional sources including, but not milted to, heavy crude, oil sands, shale oil, and coal, as well as

  12. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Outreach Program | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt034_ti_ferdowsi_2012_o.pdf More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program US-India S&T Agreement

  13. Advanced Electric Drive Vehicles … A Comprehensive Education, Training,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Outreach Program | Department of Energy 1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt034_ti_ferdowsi_2011_p.pdf More Documents & Publications Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program Advanced Electric Drive Vehicles … A Comprehensive Education, Training, and Outreach Program EcoCAR 2 Plugging into the Future

  14. NYC Taxi Drive Cycle Development and Simulation Study | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy NYC Taxi Drive Cycle Development and Simulation Study NYC Taxi Drive Cycle Development and Simulation Study 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss073_jones_2012_o.pdf More Documents & Publications Dynamometer Testing of USPS EV Conversions Vehicle Technologies Office Merit Review 2014: Dynamic Feasibility Study Technical Cost Modeling - Life Cycle Analysis Basis for Program Focus

  15. Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon es099_pesaran_2011_p.pdf More Documents & Publications Overview of Computer-Aided Engineering of Batteries (CAEBAT) and Introduction to Multi-Scale, Multi-Dimensional (MSMD) Modeling of Lithium-Ion

  16. Defining Real World Drive Cycles to Support APRF Technology Evaluations |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Real World Drive Cycles to Support APRF Technology Evaluations Defining Real World Drive Cycles to Support APRF Technology Evaluations 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss091_rask_2012_p.pdf More Documents & Publications Data Collection for Improved Cold Temperature Thermal Modeling Data Collection for Improved Cold Temperature Thermal Modeling and Strategy Development

  17. Development and Implementation of Degree Programs in Electric Drive Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon arravt035_ti_ng_2012_o.pdf More Documents & Publications Development and Implementation of Degree Programs in Electric Drive Vehicle Technology Development and Implementation of Degree Programs in Electric Drive Vehicle Technology GATE: Energy Efficient Vehicles for Sustainable Mobility

  18. Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive

    Energy Savers [EERE]

    America | Department of Energy Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America Advanced Biofuels: How Scientists are Engineering Bacteria to Help Drive America December 6, 2011 - 2:12pm Addthis Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars into gasoline, diesel and jet fuel. | Image courtesy of Berkeley Lab. Strains of E. coli bacteria were engineered to digest switchgrass biomass and synthesize its sugars

  19. Sustainable Transportation Day Drives Innovation Forward | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sustainable Transportation Day Drives Innovation Forward Sustainable Transportation Day Drives Innovation Forward June 24, 2015 - 3:29pm Addthis Sustainable Trucking 1 of 13 Sustainable Trucking The Freightliner SuperTruck stopped by Energy Department headquarters as part of Sustainable Transportation Day on Monday, June 22, 2015. The Energy Department-supported truck has achieved a fuel efficiency of 12.2 miles per gallon, more than double that of the baseline vehicle. Image: Matt

  20. Adiabat-shaping in indirect drive inertial confinement fusion

    SciTech Connect (OSTI)

    Baker, K. L.; Robey, H. F.; Milovich, J. L.; Jones, O. S.; Smalyuk, V. A.; Casey, D. T.; MacPhee, A. G.; Pak, A.; Celliers, P. M.; Clark, D. S.; Landen, O. L.; Peterson, J. L.; Berzak-Hopkins, L. F.; Weber, C. R.; Haan, S. W.; Dppner, T. D.; Dixit, S.; Hamza, A. V.; Jancaitis, K. S.; Kroll, J. J.; and others

    2015-05-15

    Adiabat-shaping techniques were investigated in indirect drive inertial confinement fusion experiments on the National Ignition Facility as a means to improve implosion stability, while still maintaining a low adiabat in the fuel. Adiabat-shaping was accomplished in these indirect drive experiments by altering the ratio of the picket and trough energies in the laser pulse shape, thus driving a decaying first shock in the ablator. This decaying first shock is designed to place the ablation front on a high adiabat while keeping the fuel on a low adiabat. These experiments were conducted using the keyhole experimental platform for both three and four shock laser pulses. This platform enabled direct measurement of the shock velocities driven in the glow-discharge polymer capsule and in the liquid deuterium, the surrogate fuel for a DT ignition target. The measured shock velocities and radiation drive histories are compared to previous three and four shock laser pulses. This comparison indicates that in the case of adiabat shaping the ablation front initially drives a high shock velocity, and therefore, a high shock pressure and adiabat. The shock then decays as it travels through the ablator to pressures similar to the original low-adiabat pulses when it reaches the fuel. This approach takes advantage of initial high ablation velocity, which favors stability, and high-compression, which favors high stagnation pressures.

  1. Joint Fuel Cell Bus Workshop Summary Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Bus Workshop Summary Report Joint Fuel Cell Bus Workshop Summary Report Presentation at DOE & DOT Joint Fuel Cell Bus Workshop, June 7, 2010 PDF icon buswksp10_summary.pdf More Documents & Publications Fuel Cell Bus Workshop HybriDrive Propulsion System Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current Status

  2. The Clean Energy Economy in Three Charts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts January 6, 2014 - 5:55pm Addthis The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts America's cleantech industry has a bright -- and growing -- future. America's cleantech industry has a bright -- and growing -- future. The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts The Clean Energy Economy in Three Charts

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel and Advanced Vehicle Rebate - San Joaquin Valley The San Joaquin Valley Air Pollution Control District (SJVAPCD) administers the Drive Clean! Rebate Program, which provides rebates for the purchase or lease of eligible new vehicles, including qualified natural gas, hydrogen fuel cell, propane, zero emission motorcycles, battery electric, neighborhood electric, and plug-in electric vehicles. The program offers rebates of up to $3,000, which are available on a first-come,

  4. Driving for $1.14 Per Gallon | Department of Energy

    Energy Savers [EERE]

    Driving for $1.14 Per Gallon Driving for $1.14 Per Gallon June 11, 2013 - 7:30am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department today launched the eGallon - a quick and simple way for consumers to compare the costs of fueling electric vehicles vs. driving on gasoline. Today's national average eGallon price is about $1.14, meaning that a typical electric vehicle could travel as far on $1.14 worth of electricity as a similar vehicle could travel on a gallon of

  5. Webinar December 1: Northeast States' Hydrogen Economy | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Energy Department will present a live webinar titled "Northeast States' Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. Eastern Standard Time (EST). The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles (FCEV) in the Northeast United States. The presentation will identify strategies, methods, and policies being employed in the Northeast states, from Maine to

  6. Webinar: Northeast States' Hydrogen Economy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    , 2015 12:00PM to 1:00PM EST The Energy Department will present a live webinar titled "Northeast States' Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. Eastern Standard Time (EST). The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles (FCEV) in the Northeast United States. The presentation will identify strategies, methods, and policies being employed in the Northeast

  7. eGallon: Understanding the Cost of Driving EVs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    eGallon: Understanding the Cost of Driving EVs eGallon: Understanding the Cost of Driving EVs For most drivers, a trip to the fuel pump is an easy reminder of the day-to-day cost of gasoline or diesel fuel. But for electric vehicle (EV) drivers, who typically charge their car at home, there isn't a similar measurement to determine the cost of driving on electricity. To help both current and potential EV drivers better understand the cost of driving an EV, the Energy Department created the

  8. Fuel Cell Case Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Case Study Fuel Cell Case Study Presented at the Clean Energy States Alliance and U.S. Department of Energy Webinar: Fuel Cells for Supermarkets, April 4, 2011. PDF icon infocallapr11_loftus.pdf More Documents & Publications The Business Case for Fuel Cells 2011: Energizing America's Top Companies The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today DOE Zero Energy Ready Home Case Study: Glastonbury Housesmith, Hickory Drive, South Glastonbury, CT

  9. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFVs and HEVs All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 20 results Generated_thumb20140804-20533-1loi25i AFV

  10. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results Generated_thumb20130810-31804-53z5da Carbon

  11. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Federal Fleets All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 1 result Generated_thumb20140804-6137-1paywcu AFV

  12. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Trends All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 13 results Generated_thumb20150812-20436-7eyqju Average

  13. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Idle Reduction All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 2 results Generated_thumb20150813-22546-19hiukh

  14. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Laws & Incentives All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 10 results - Biodiesel_li_by_state Biodiesel

  15. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Program All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 2 results Ccities_map Clean Cities Coalition Locations

  16. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Transportation Infrastructure All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 5 results Freight_tons_thumbnail

  17. Alternative Fuels Data Center: Maps and Data

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Market All Categories Vehicles AFVs and HEVs Fuel Consumption and Efficiency Vehicle Market Driving Patterns Fuels & Infrastructure Fuel Trends Emissions Alternative Fueling Stations Idle Reduction Transportation Infrastructure Biofuels Production Laws & Incentives Regulated Fleets Federal Fleets State & Alt Fuel Providers Clean Cities Vehicles Petroleum Use Reduction Program OR Go Sort by: Category Most Recent Most Popular 7 results Generated_thumb20150623-24606-9p4e26 AFV

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Advanced Technology Vehicle (ATV) Manufacturing Incentives Through the Advanced Technology Vehicles Manufacturing Loan Program, ATV and ATV components manufacturers may be eligible for direct loans for up to 30% of the cost of re-equipping, expanding, or establishing manufacturing facilities in the United States used to produce qualified ATVs or ATV components. Qualified ATVs are light-duty or ultra-efficient vehicles that meet specified federal emission standards and fuel economy requirements.

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Passenger Vehicle Procurement Requirements All passenger vehicles the District of Columbia government purchases or leases must have a minimum U.S. Environmental Protection Agency estimated average fuel economy of 22 miles per gallon (as listed at www.fueleconomy.gov) and may not be a sport utility vehicle. Exemptions apply to security, emergency rescue, snow removal, and armored vehicles. (Reference District of Columbia Code 50-203)

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    In Electric Vehicle (PEV) Annual Fee Beginning July 1, 2015, PEV owners are required to pay an annual license fee of $200 for non-commercial PEVs and $300 for commercial PEVs. The Georgia Department of Revenue may adjust fees annually based on vehicle fuel economy and the Consumer Price Index through July 1, 2018. (Reference House Bill 170, 2015, and Georgia Code 40-2-15

  1. Driving R&D for the Next Generation Work Truck; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Melendez, M.

    2015-03-04

    Improvements in medium- and heavy-duty work truck energy efficiency can dramatically reduce the use of petroleum-based fuels and the emissions of greenhouse gases. The National Renewable Energy Laboratory (NREL) is working with industry partners to develop fuel-saving, high-performance vehicle technologies, while examining fleet operational practices that can simulateneously improve fuel economy, decrease emissions, and support bottom-line goals.

  2. Fuel Cell Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Overview Richard Farmer Acting Program Manager 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010)  Double Renewable Energy Capacity by 2012  Invest $150 billion over ten years in energy R&D to transition to a clean energy economy  Reduce GHG emissions 83% by 2050 The Administration's Clean Energy Goals 2 3 Fuel Cells Address Our Key Energy Challenges Increasing Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use

  3. High Octane Fuels Can Make Better use of Renewable Transportation Fuels

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wagner, 062111 High Octane Fuels Can Make Better Use of Renewable Transportation Fuels Presented by Brian West Fuels, Engines, and Emissions Research Center Oak Ridge National Laboratory Biomass 2014 Washington, DC July 29-30, 2014 Work supported by DOE Biomass Energy Technology Office and Vehicle Technologies Office 2 Managed by UT-Battelle for the U.S. Department of Energy Three Major Challenges Facing the Transportation Industry Over the Next Decade Transportation Industry Fuel Economy

  4. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications HEV, PHEV, EV Test Standard Development and Validation SAE Standards Development Advanced Technology Vehicle Lab Benchmarking - Level 1

  5. Fact #870: April 27, 2015 Corporate Average Fuel Economy Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1980 20 16 24.3 18.5 1981 22 16.7 25.9 20.1 1982 24 17.5 26.6 20.5 1983 26 19 26.4 20.7 1984 27 20 26.9 20.6 1985 27.5 19.5 27.6 20.7 1986 26 20 28.2 21.5 1987 26 20.5 28.5 21.7 ...

  6. Fact #692: September 12, 2011 Fuel Economy Distribution for New...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0.3% 33.6% 29.5% 24.8% 9.5% 1.9% 0.4% 0.0% 1984 0.0% 0.1% 26.9% 33.1% 30.8% 5.6% 3.0% 0.4% ... 0.6% 1983 20.8% 41.4% 27.1% 9.7% 0.9% 0.2% 1984 0.1% 23.9% 42.8% 25.4% 7.0% 0.7% 0.1% 1985 ...

  7. Fact #589: September 21, 2009 Proposed Fuel Economy and Greenhouse...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Note: Greenhouse gases other than carbon dioxide are dealt with separately in the proposed rules. Supporting Information Projected Fleet-Wide Emissions Compliance Levels under the ...

  8. EPA-Fuel Economy Guide | Open Energy Information

    Open Energy Info (EERE)

    Organization: United States Environmental Protection Agency Focus Area: Energy Efficiency, Transportation Resource Type: Guidemanual User Interface: Website Website:...

  9. Natural Gas Pathways and Fuel Economy Guide Comparison

    Broader source: Energy.gov [DOE]

    Presentation by Bob Wimmer, Toyota, at the Natural Gas and Hydrogen Infrastructure Opportunities Workshop held October 18-19, 2011, in Lemont, Illinois.

  10. Fuel Economy on the Fly | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    You don't even need to download an app Once you go to the mobile site, select a vehicle's model year and make (brand). If there are options for the transmission and engine, click ...

  11. EHRS Impact on Engine Warm-up and Fuel Economy

    Broader source: Energy.gov [DOE]

    Presents an investigation performed on a Toyota Prius III with the objective to quantify and demonstrate the benefits of current exhaust heat recovery technologies

  12. Energy Information Administration - Table 2. End Uses of Fuel...

    Gasoline and Diesel Fuel Update (EIA)

    -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry...

  13. 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fueling Energy-Efficient Vehicles 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles November 27, 2012 - 11:08am Addthis This infographic looks how new fuel economy standards will save Americans money at the pump, reduce our dependence on foreign oil and grow the U.S. economy. <a href="/articles/road-fuel-efficiency">Click here</a> to view the full infographic. | Infographic by Sarah Gerrity. This infographic looks how new fuel economy standards will save

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Volume Rebate Program - Propel Fuels Propel Fuels offers a rebate to qualified fleet customers for monthly purchases of more than 500 gallons of biodiesel blends and E85. Fleet customers must purchase the fuel directly from Propel public retail locations using the Propel CleanDrive WEX fleet card. The program offers a rebate of $0.05 per gallon for purchases of more than 500 gallons of biofuel per month. The rebate is applied at the end of each monthly billing cycle. For more

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Volume Rebate Program - Propel Fuels Propel Fuels offers a rebate to qualified fleet customers for monthly purchases of more than 500 gallons of biodiesel blends and E85. Fleet customers must purchase the fuel directly from Propel public retail locations using the Propel CleanDrive Fleet Card. The program offers a rebate of $0.03 per gallon for purchases of less than 1,000 gallons of biofuel per month, and $0.05 per gallon for purchases of 1,000 gallons or more per month. The rebate is

  16. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect (OSTI)

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  17. Share Your Clean Energy Economy Story

    Broader source: Energy.gov [DOE]

    How did you get involved in the Clean Energy Economy? Help other people learn the opportunities available in the clean energy sector by sharing your own story below.

  18. Clean Economy Network | Open Energy Information

    Open Energy Info (EERE)

    Network Jump to: navigation, search Name: Clean Economy Network Place: Washington, Washington, DC Zip: 20004 Product: Washingt (DC-based advocacy group focused on clean energy and...

  19. Drive Diagnostic Filter Wheel Control

    Energy Science and Technology Software Center (OSTI)

    2007-07-17

    DrD Filter Wheel Control is National Instrument's Labview software that drives a Drive Diagnostic filter wheel. The software can drive the filter wheel between each end limit, detect the positive and negative limit and each home position and post the stepper motot values to an Excel spreadsheet. The software can also be used to cycle the assembly between the end limits.

  20. Drive alignment pays maintenance dividends

    SciTech Connect (OSTI)

    Fedder, R.

    2008-12-15

    Proper alignment of the motor and gear drive on conveying and processing equipment will result in longer bearing and coupling life, along with lower maintenance costs. Selecting an alignment free drive package instead of a traditional foot mounted drive and motor is a major advancement toward these goals. 4 photos.

  1. Fuel Pathway Integration Technical Team Roadmap

    SciTech Connect (OSTI)

    2013-06-01

    The Fuel Pathway Integration Technical Team (FPITT) supports the U.S. DRIVE Partnership (the Partnership) in the identification and evaluation of implementation scenarios for fuel cell technology pathways, including hydrogen and fuel cell electric vehicles in the transportation sector, both during a transition period and in the long term.

  2. Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels |

    Office of Environmental Management (EM)

    Department of Energy 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Chapter 7 - Advancing Systems and Technologies to Produce Cleaner Fuels Fuels play a critical role throughout our economy. In 2013, fuels directly supplied about 99% of the energy needed by our national transportation system, 66% of that needed to generate our electricity, 68% of that needed by our industry, and 27% of that needed by our

  3. Base drive circuit

    DOE Patents [OSTI]

    Lange, Arnold C. (Livermore, CA)

    1995-01-01

    An improved base drive circuit (10) having a level shifter (24) for providing bistable input signals to a pair of non-linear delays (30, 32). The non-linear delays (30, 32) provide gate control to a corresponding pair of field effect transistors (100, 106) through a corresponding pair of buffer components (88, 94). The non-linear delays (30, 32) provide delayed turn-on for each of the field effect transistors (100, 106) while an associated pair of transistors (72, 80) shunt the non-linear delays (30, 32) during turn-off of the associated field effect transistor (100, 106).

  4. Base drive circuit

    DOE Patents [OSTI]

    Lange, A.C.

    1995-04-04

    An improved base drive circuit having a level shifter for providing bistable input signals to a pair of non-linear delays. The non-linear delays provide gate control to a corresponding pair of field effect transistors through a corresponding pair of buffer components. The non-linear delays provide delayed turn-on for each of the field effect transistors while an associated pair of transistors shunt the non-linear delays during turn-off of the associated field effect transistor. 2 figures.

  5. Stop/Start: Driving

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    highlighted Braking button subbanner graphic: gray bar PULLING OUT & DRIVING PART 1 The gasoline engine does not run when the vehicle is at rest. When pulling out, the electric starter/generator uses electricity from the battery to instantly start the gasoline engine---the sole source of propulsion for the vehicle. Go to next… stage graphic: vertical blue rule Main stage: See through car with battery, engine, and electric starter/generator visible. The car is stopped at an intersection.

  6. High Power Density Integrated Traction Machine Drive | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon ape024_wang_2011_o.pdf More Documents & Publications High Power Density Integrated Traction Machine Drive Power Device Packaging Current Source Inverters for HEVs and FCVs

  7. Electric Drive Vehicle Infrastructure Deployment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation PDF icon arravt073_vss_carleson_2011_o.pdf More Documents & Publications ChargePoint America ChargePoint America Grid Connectivity Research, Development & Demonstration Projects

  8. FY 2012 Progress Report for Fuel & Lubricant Technologies

    SciTech Connect (OSTI)

    Stork, Kevin

    2013-06-28

    Annual progress report of the Fuel & Lubricant Technologies subprogram supporting fuels and lubricants research and development (R&D) to provide vehicle users with cost-competitive options that enable high fuel economy with low emissions, and contribute to petroleum displacement.

  9. EERE Success Story-Multi-Mode RCCI Has Great Potential to Improve Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economy in Light-Duty Diesel Engines | Department of Energy Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines EERE Success Story-Multi-Mode RCCI Has Great Potential to Improve Fuel Economy in Light-Duty Diesel Engines February 26, 2015 - 11:47am Addthis Multi-mode RCCI (Reactivity-Controlled Compression Ignition), a promising advanced combustion process, has the potential to improve fuel economy of passenger cars by at least 15%, according to a recent

  10. Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy | Department of Energy 4: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy Fact #724: April 23, 2012 Gas Guzzler Tax Levied on New Cars with Low Fuel Economy The "Gas Guzzler Tax" is collected from the public for each new car purchased with fuel economy less than 22.5 miles per gallon (mpg). The Gas Guzzler Tax does not apply to light trucks, only cars. Most of the vehicles on the model year 2011 Gas Guzzler list are high-end performance or luxury

  11. Fact #804: November 18, 2013 Tool Available to Print Used Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Window Stickers | Department of Energy 4: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers Fact #804: November 18, 2013 Tool Available to Print Used Vehicle Fuel Economy Window Stickers Because used vehicle sales outnumber new vehicle sales by about three to one, a new tool has been developed that allows those selling used vehicles to produce a fuel economy label for the vehicle. The labels are optional and can be printed and affixed directly on a

  12. Vehicle Technologies Office Merit Review 2015: E-drive Vehicle Sales Analyses

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about E-drive Vehicle...

  13. Vehicle Technologies Office Merit Review 2014: Electric Drive and Advanced Battery and Components Testbed (EDAB)

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Electric Drive and...

  14. Vehicle Technologies Office Merit Review 2015: Traction Drive Systems with Integrated Wireless Charging

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about traction drive...

  15. Vehicle Technologies Office Merit Review 2014: E-drive Vehicle Sales Analyses

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the E-drive...

  16. Web Portal Makes Finding Ways to Drive Green Even Easier - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Web Portal Makes Finding Ways to Drive Green Even Easier From vehicle searches to interactive fuel maps, this Web page delivers October 13, 2009 The U.S. Department of Energy's ...

  17. Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economy, Prepare for Advanced Vehicles | Department of Energy Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local

  18. Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy | Department of Energy OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_thornton.pdf More Documents & Publications

  19. Impacts of ethanol fuel level on emissions of regulated and unregulated pollutants from a fleet of gasoline light-duty vehicles

    SciTech Connect (OSTI)

    Karavalakis, Georgios; Durbin, Thomas; Shrivastava, ManishKumar B.; Zheng, Zhongqing; Villella, Phillip M.; Jung, Hee-Jung

    2012-03-30

    The study investigated the impact of ethanol blends on criteria emissions (THC, NMHC, CO, NOx), greenhouse gas (CO2), and a suite of unregulated pollutants in a fleet of gasoline-powered light-duty vehicles. The vehicles ranged in model year from 1984 to 2007 and included one Flexible Fuel Vehicle (FFV). Emission and fuel consumption measurements were performed in duplicate or triplicate over the Federal Test Procedure (FTP) driving cycle using a chassis dynamometer for four fuels in each of seven vehicles. The test fuels included a CARB phase 2 certification fuel with 11% MTBE content, a CARB phase 3 certification fuel with a 5.7% ethanol content, and E10, E20, E50, and E85 fuels. In most cases, THC and NMHC emissions were lower with the ethanol blends, while the use of E85 resulted in increases of THC and NMHC for the FFV. CO emissions were lower with ethanol blends for all vehicles and significantly decreased for earlier model vehicles. Results for NOx emissions were mixed, with some older vehicles showing increases with increasing ethanol level, while other vehicles showed either no impact or a slight, but not statistically significant, decrease. CO2 emissions did not show any significant trends. Fuel economy showed decreasing trends with increasing ethanol content in later model vehicles. There was also a consistent trend of increasing acetaldehyde emissions with increasing ethanol level, but other carbonyls did not show strong trends. The use of E85 resulted in significantly higher formaldehyde and acetaldehyde emissions than the specification fuels or other ethanol blends. BTEX and 1,3-butadiene emissions were lower with ethanol blends compared to the CARB 2 fuel, and were almost undetectable from the E85 fuel. The largest contribution to total carbonyls and other toxics was during the cold-start phase of FTP.

  20. Rotary drive mechanism

    SciTech Connect (OSTI)

    Kenderdine, E.W.

    1991-10-08

    This patent describes a rotary drive mechanism which includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de- energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti- overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  1. Rotary drive mechanism

    DOE Patents [OSTI]

    Kenderdine, Eugene W. (Albuquerque, NM)

    1991-01-01

    A rotary drive mechanism includes a rotary solenoid having a stator and multi-poled rotor. A moving member rotates with the rotor and is biased by a biasing device. The biasing device causes a further rotational movement after rotation by the rotary solenoid. Thus, energization of the rotary solenoid moves the member in one direction to one position and biases the biasing device against the member. Subsequently, de-energization of the rotary solenoid causes the biasing device to move the member in the same direction to another position from where the moving member is again movable by energization and de-energization of the rotary solenoid. Preferably, the moving member is a multi-lobed cam having the same number of lobes as the rotor has poles. An anti-overdrive device is also preferably provided for preventing overdrive in the forward direction or a reverse rotation of the moving member and for precisely aligning the moving member.

  2. Science on the Hill: Driving toward an algae-powered future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on the Hill: Driving toward an algae-powered future Science on the Hill: Driving toward an algae-powered future A new research project led by Los Alamos National Laboratory seeks to drive algal biofuels to marketability, decreasing our nation's dependence on fossil fuels and putting the brakes on global warming. December 24, 2015 LANL scientist Richard Sayre Los Alamos National Laboratory scientist David Fox holds a vial of blue-green algae that is part of the Laboratory's research into

  3. Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Electric Drive Inverter R&D Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric drive inverter R&D. PDF icon edt053_chinthavali_2015_o.pdf More Documents & Publications Wide Bandgap Power Electronics Vehicle Technologies Office Merit Review

  4. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis |

    Office of Environmental Management (EM)

    Department of Energy Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss043_gonder_2012_o.pdf More Documents & Publications Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Battery Pack Requirements and Targets Validation FY 2009 DOE Vehicle

  5. INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    money at the pump, all while reducing our dependence on foreign oil and growing the U.S. economy. Learn more in the 54.5 MPG and Beyond: Fueling Energy-Efficient Vehicles blog...

  6. Study Reveals Fuel Injection Timing Impact on Particle Number...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expected to account for 60% of the U.S. market by 2016, and the technology offers fuel economy and CO 2 reduction benefits, it can have higher particulate matter (PM) mass and...

  7. Corrugated Membrane Fuel Cell Structures | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Corrugated Membrane Fuel Cell Structures Corrugated Membrane Fuel Cell Structures These slides were presented at the 2010 New Fuel Cell Projects Meeting on September 28, 2010. PDF icon 4_ion_power_grot.pdf More Documents & Publications Breakout Group 3: Water Management US DRIVE Fuel Cell Technical Team Roadmap Automotive Perspective on PEM Evaluation

  8. Sequenced drive for rotary valves

    DOE Patents [OSTI]

    Mittell, Larry C. (Palos Verdes Estates, CA)

    1981-01-01

    A sequenced drive for rotary valves which provides the benefits of applying rotary and linear motions to the movable sealing element of the valve. The sequenced drive provides a close approximation of linear motion while engaging or disengaging the movable element with the seat minimizing wear and damage due to scrubbing action. The rotary motion of the drive swings the movable element out of the flowpath thus eliminating obstruction to flow through the valve.

  9. US Navy Tactical Fuels From Renewable Sources Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy US Navy Tactical Fuels From Renewable Sources Program US Navy Tactical Fuels From Renewable Sources Program Rick Kamin, Navy Fuels Lead, on US Navy Tactical Fuels From Renewable Sources Program. PDF icon 5_kamin_roundtable.pdf More Documents & Publications U.S. Department of the Navy: Driving Alternative Fuels Adoption Department of the Navy Bioeconomy Activity HEFA and Fischer-Tropsch Jet Fuel Cost Analyses

  10. 2009 Fuel Cell Market Report, November 2010

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

  11. Alternative Fuels Data Center: Corporate Fleets Set the Pace for a Green

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Driving Future Corporate Fleets Set the Pace for a Green Driving Future to someone by E-mail Share Alternative Fuels Data Center: Corporate Fleets Set the Pace for a Green Driving Future on Facebook Tweet about Alternative Fuels Data Center: Corporate Fleets Set the Pace for a Green Driving Future on Twitter Bookmark Alternative Fuels Data Center: Corporate Fleets Set the Pace for a Green Driving Future on Google Bookmark Alternative Fuels Data Center: Corporate Fleets Set the Pace for a

  12. Test Drive: Honda FCX Clarity

    Broader source: Energy.gov [DOE]

    A member of the Energy Empowers team takes the Honda FCX Clarity for a drive outside the U.S. Department of Energy in Washington, D.C.

  13. Traction Drive Systems Breakout Group

    Broader source: Energy.gov (indexed) [DOE]

    TRACTION DRIVE SYSTEM BREAKOUT GROUP EV Everywhere Workshop July 24, 2012 Breakout Session 1 - Discussion of Performance Targets and Barriers Comments on the Achievability of the...

  14. Hydrogen and Fuel Cells | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cells Hydrogen and Fuel Cells EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. EERE leads U.S. researchers and other partners in making transportation cleaner and more efficient through solutions that put electric drive vehicles on the road and replace oil with clean domestic fuels. The U.S. Department of Energy (DOE) is the

  15. Low Carbon Economy Index 2010 | Open Energy Information

    Open Energy Info (EERE)

    Economy Index 2010 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Low Carbon Economy Index 2010 AgencyCompany Organization: PricewaterhouseCoopers Sector: Energy,...

  16. Recent Trends in Car Usage in Advanced Economies - Slower Growth...

    Open Energy Info (EERE)

    Trends in Car Usage in Advanced Economies - Slower Growth Ahead? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Recent Trends in Car Usage in Advanced Economies -...

  17. Promoting a Green Economy through Clean Transportation Alternatives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt052tiebert2011p.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean...

  18. Promoting a Green Economy through Clean Transportation Alternatives...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon arravt052tiebert2012o.pdf More Documents & Publications Promoting a Green Economy through Clean Transportation Alternatives Promoting a Green Economy through Clean...

  19. Hunan Yongzhou Hengli Economy Trade Investment Co Ltd | Open...

    Open Energy Info (EERE)

    Yongzhou Hengli Economy Trade Investment Co Ltd Jump to: navigation, search Name: Hunan Yongzhou Hengli Economy&Trade Investment Co.,Ltd Place: Yongzhou, Hunan Province, China Zip:...

  20. Clean Economy Network-Rockies | Open Energy Information

    Open Energy Info (EERE)

    Economy Network-Rockies Jump to: navigation, search Name: Clean Economy Network-Rockies Place: Denver, CO Region: Rockies Area Website: rockies.cleaneconomynetwork.or Coordinates:...