Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA model documentation: Electricity market module - electricity fuel dispatch  

SciTech Connect (OSTI)

This report documents the National Energy Modeling System Electricity Fuel Dispatch Submodule (EFD), a submodule of the Electricity Market Module (EMM) as it was used for EIA`s Annual Energy Outlook 1997. It replaces previous documentation dated March 1994 and subsequent yearly update revisions. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves four purposes. First, it is a reference document providing a detailed description of the model for reviewers and potential users of the EFD including energy experts at the Energy Information Administration (EIA), other Federal agencies, state energy agencies, private firms such as utilities and consulting firms, and non-profit groups such as consumer and environmental groups. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation which details model enhancements that were undertaken for AE097 and since the previous documentation. Last, because the major use of the EFD is to develop forecasts, this documentation explains the calculations, major inputs and assumptions which were used to generate the AE097.

NONE

1997-01-01T23:59:59.000Z

2

Adaptive load control of microgrids with non-dispatchable generation  

E-Print Network [OSTI]

Intelligent appliances have a great potential to provide energy storage and load shedding for power grids. Microgrids are simulated with high levels of wind energy penetration. Frequency-adaptive intelligent appliances are ...

Brokish, Kevin Martin

2009-01-01T23:59:59.000Z

3

Building load analysis of dispatchable peak-shaving photovoltaic systems: A regional analysis of technical and economic potential  

SciTech Connect (OSTI)

Roof-mounted photovoltaic (PV) systems, including a modest amount of battery storage, can provide firm peak-demand reductions for commercial buildings. The cost-effectiveness of a dispatchable peak-shaving PV system is determined by the demand reduction, which is a function of the solar resource and the building`s load profile, and electric utility rates. The analysis presented in this paper identifies building types and regions, from a database of eleven electric utility service territories distributed throughout the country, for which the economics of dispatchable peak-shaving PV are most favorable.

Byrne, J.; Letendre, S.; Wang, Y.D. [Univ. of Delaware, Newark, DE (United States). Center for Energy and Environmental Policy; Nigro, R. [Applied Energy Group, Hockessin, DE (United States); Ferguson, B. [Delmarva Power and Light, Wilmington, DE (United States)

1997-12-31T23:59:59.000Z

4

Automated fuel pin loading system  

DOE Patents [OSTI]

An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inserted as a batch prior to welding of end caps by one of two disclosed welding systems.

Christiansen, David W. (Kennewick, WA); Brown, William F. (West Richland, WA); Steffen, Jim M. (Richland, WA)

1985-01-01T23:59:59.000Z

5

High loading uranium fuel plate  

DOE Patents [OSTI]

Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.

Wiencek, Thomas C. (Bolingbrook, IL); Domagala, Robert F. (Indian Head Park, IL); Thresh, Henry R. (Palos Heights, IL)

1990-01-01T23:59:59.000Z

6

Fuel loading and homogeneity analysis of HFIR design fuel plates loaded with uranium silicide fuel  

SciTech Connect (OSTI)

Twelve nuclear reactor fuel plates were analyzed for fuel loading and fuel loading homogeneity by measuring the attenuation of a collimated X-ray beam as it passed through the plates. The plates were identical to those used by the High Flux Isotope Reactor (HFIR) but were loaded with uranium silicide rather than with HFIR`s uranium oxide fuel. Systematic deviations from nominal fuel loading were observed as higher loading near the center of the plates and underloading near the radial edges. These deviations were within those allowed by HFIR specifications. The report begins with a brief background on the thermal-hydraulic uncertainty analysis for the Advanced Neutron Source (ANS) Reactor that motivated a statistical description of fuel loading and homogeneity. The body of the report addresses the homogeneity measurement techniques employed, the numerical correction required to account for a difference in fuel types, and the statistical analysis of the resulting data. This statistical analysis pertains to local variation in fuel loading, as well as to ``hot segment`` analysis of narrow axial regions along the plate and ``hot streak`` analysis, the cumulative effect of hot segment loading variation. The data for all twelve plates were compiled and divided into 20 regions for analysis, with each region represented by a mean and a standard deviation to report percent deviation from nominal fuel loading. The central regions of the plates showed mean values of about +3% deviation, while the edge regions showed mean values of about {minus}7% deviation. The data within these regions roughly approximated random samplings from normal distributions, although the chi-square ({chi}{sup 2}) test for goodness of fit to normal distributions was not satisfied.

Blumenfeld, P.E.

1995-08-01T23:59:59.000Z

7

Demand Side Dispatching, Part 1: A Novel Approach for Industrial Load Shaping Applications  

E-Print Network [OSTI]

) systems fo commercial HVAC applications. Load co trol generally involves scheduling the use of electrotechnologies (e.g. air compression, pumping) during off-peak periods only, an shutting them off during on-peak periods. In order to provide... incentives to the custom r to modulate his demand, most DSM progranis combine the foregoing technologies with l1ime of-Use rate structures, capital cost subsidies (rebates), and technical support services. 317 ESL-IE-93-03-45 Proceedings from...

Kumana, J. D.; Nath, R.

8

Valve for fuel pin loading system  

DOE Patents [OSTI]

A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

Christiansen, D.W.

1984-01-01T23:59:59.000Z

9

Valve for fuel pin loading system  

DOE Patents [OSTI]

A cyclone valve surrounds a wall opening through which cladding is projected. An axial valve inlet surrounds the cladding. Air is drawn through the inlet by a cyclone stream within the valve. An inflatable seal is included to physically engage a fuel pin subassembly during loading of fuel pellets.

Christiansen, David W. (Kennewick, WA)

1985-01-01T23:59:59.000Z

10

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Energy Savers [EERE]

Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Demonstration of Approach and Results of Used Fuel Performance Characterization Used...

11

Integrated Energy System Dispatch Optimization  

E-Print Network [OSTI]

Energy System Dispatch Optimization Ryan Firestone, MichaelEnergy System Dispatch Optimization Ryan Firestone - Studentthe real-time dispatch optimization problem for a generic

Firestone, Ryan; Stadler, Michael; Marnay, Chris

2006-01-01T23:59:59.000Z

12

A mixed integer programming approach to reduce fuel load ...  

E-Print Network [OSTI]

Feb 12, 2015 ... A mixed integer programming approach to reduce fuel load accumulation for prescribed burn planning. Ramya Rachmawati(ramya.rachmawati...

Ramya Rachmawati

2015-02-12T23:59:59.000Z

13

ECONOMIC DISPATCH  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct,Final9: DraftPlant, Amarillo,Department ofAlexanderECONOMIC

14

Economic Dispatch  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, SeptemberofEbony MeeksMuscle CarThe

15

Hybrid robust predictive optimization method of power system dispatch  

DOE Patents [OSTI]

A method of power system dispatch control solves power system dispatch problems by integrating a larger variety of generation, load and storage assets, including without limitation, combined heat and power (CHP) units, renewable generation with forecasting, controllable loads, electric, thermal and water energy storage. The method employs a predictive algorithm to dynamically schedule different assets in order to achieve global optimization and maintain the system normal operation.

Chandra, Ramu Sharat (Niskayuna, NY); Liu, Yan (Ballston Lake, NY); Bose, Sumit (Niskayuna, NY); de Bedout, Juan Manuel (West Glenville, NY)

2011-08-02T23:59:59.000Z

16

Engine combustion control at low loads via fuel reactivity stratification  

DOE Patents [OSTI]

A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

2014-10-07T23:59:59.000Z

17

Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR  

SciTech Connect (OSTI)

One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

G. S. Chang; Hongbin Zhang

2009-09-01T23:59:59.000Z

18

Dose Rates for Various Loading Patterns of Spent Fuel Assemblies in a Dry Cask  

SciTech Connect (OSTI)

Shielding calculations were performed to assess the impact of loading various combinations of spent fuel on dose rates and fuel temperature in a dry storage cask.

Jenquin, Urban P. (BATTELLE (PACIFIC NW LAB))

2001-01-01T23:59:59.000Z

19

DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS  

E-Print Network [OSTI]

a seasonal mismatch exists between the wind resource and the conventional electric load. The heating system1 DESIGN AND MODELING OF DISPATCHABLE HEAT STORAGE IN WIND/DIESEL SYSTEMS Clint Johnson, Utama consists of dispatchable electric space heating units, with integrated thermal storage, functioning

Massachusetts at Amherst, University of

20

High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings  

E-Print Network [OSTI]

to be reached between 2010 and 2015 are clear: the catalyst of a fuel cell can cost no more than 4 per kilowatt1 High Performance Plasma Sputtered Fuel Cell Electrodes with Ultra Low catalytic metal Loadings C in plasma fuel cell deposition devices. Pt loadings lower than 0.01 mg cm-2 have been realized. The Pt

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Simulations of Lithium-Based Neutron Coincidence Counter for Gd-Loaded Fuel  

SciTech Connect (OSTI)

The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Lithium-Based Alternative Neutron Detection Technology Coincidence Counting for Gd-loaded Fuels at Pacific Northwest National Laboratory for the development of a lithium-based neutron coincidence counter for nondestructively assaying Gd loaded nuclear fuel. This report provides results from MCNP simulations of a lithium-based coincidence counter for the possible measurement of Gd-loaded nuclear fuel. A comparison of lithium-based simulations and UNCL-II simulations with and without Gd loaded fuel is provided. A lithium-based model, referred to as PLNS3A-R1, showed strong promise for assaying Gd loaded fuel.

Cowles, Christian C.; Kouzes, Richard T.; Siciliano, Edward R.

2014-10-31T23:59:59.000Z

22

A mixed integer programming approach to reduce fuel load ...  

E-Print Network [OSTI]

Fuel management is the process of altering the amount and structure of fuels ... area (treatment unit), the land ownership (public or private), vegetation type and vegetation age, each attributes as critical ..... New York Springer. Minas, J., J.

2015-02-13T23:59:59.000Z

23

Comparison of Different Load Road Implementation Strategies on Fuel Economy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheat TwoDepartment ofComparison of Cleanof USPS

24

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track|SolarDepartment of Energy Use ofPlan

25

Used Nuclear Fuel Loading and Structural Performance Under Normal  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ......Uranium LeaseThroughAugust

26

High Performance Plasma Sputtered PdPt Fuel Cell Electrodes with Ultra Low Loading  

E-Print Network [OSTI]

: the catalyst of a fuel cell can cost no more than 5/3 per kilowatt [1]. If the catalyst is platinum (~40 g-1High Performance Plasma Sputtered PdPt Fuel Cell Electrodes with Ultra Low Loading M. Mougenot1, 2 potential for the fuel cell technology to overcome the upcoming energy and resources issues in our society

Paris-Sud XI, Université de

27

PEM fuel cellstack development based on membrane-electrode assemblies of ultra-low platinum loadings  

SciTech Connect (OSTI)

Attempt is made to scale-up single cell technology, based on ultra-low platinum loadings, to develop a polymer electrolyte membrane fuel cell stack for stationary power generation.

Zawodzinski, C.; Wilson, M.S.; Gottesfeld, S.

1995-09-01T23:59:59.000Z

28

Fuel Governor Augmented Control of Recompression HCCI Combustion During Large Load Transients  

E-Print Network [OSTI]

Fuel Governor Augmented Control of Recompression HCCI Combustion During Large Load Transients Shyam desired com- bustion phasing for a homogeneous charge compression ignition (HCCI) engine during large load strategy that can track combustion phasing in a recompression homogeneous charge compression ignition (HCCI

Stefanopoulou, Anna

29

Used Nuclear Fuel Loading and Structural Performance Under Normal...  

Broader source: Energy.gov (indexed) [DOE]

Used nuclear fuel (UNF) must maintain its integrity during the storage period in such a way that it can withstand the physical forces of handling and transportation associated with...

30

Fire loading calculations for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect (OSTI)

Fire loading analyses were provided for the N Reactor Fuel Supply Buildings 3712, 3716, 303A, 303B, 303E, 303G, and 303K. Fire loading calculations, maximum temperatures, and fire durations were provided to support the safety analyses documentation. The ``combustibles`` for this document include: wood, cardboard, cloth, and plastic, and does not include the uranium and fuel assembly loading. The information in this document will also be used to support the fire hazard analysis for the same buildings, therefore, it is assumed that sprinkler systems do not work, or the maximum possible fire loss is assumed.

Myott, C.F.

1994-01-24T23:59:59.000Z

31

Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel Stratification with Conventional Gasoline  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023DepartmentResultsEfficiency and Load Range

32

Loading margin Stable operating  

E-Print Network [OSTI]

Linear approximation at p1 Actual loading margin Loadingmargin Parameter p p1 p2 p3 IEEE Transactions collapse. Linear and quadratic estimates to the variation of the loading margin with respect to any sys power support, wheeling, load model param- eters, line susceptance, and generator dispatch. The accuracy

33

Analysis of high-burnup fuel performance during load-follow operation  

SciTech Connect (OSTI)

In Japan, an objective of the burnup extension of nuclear fuel is to raise the licensing limit of burnup from 39 to 48 GWd/t for pressurized water reactors (PWRs) in the near future. Because of an increasing ratio of nuclear power generation, the necessity of the load-follow operation, which responds flexibly to changing power demands, is more apparent. To evaluate accurately the mechanical integrity of PWR fuel at high burnup during a load-follow operation, the FEMAXI-III code, originally developed for analyses of fuel experiments, was modified, improving submodels to evaluate PWR fuel; the new code was named IRON. The results of verification work on the code using data on PWR fuel covering wide ranges of burnup and linear heat rate show that it has good predictability and, therefore, that the improvement was confirmed as effective.

Matsui, T.; Fukuya, K.; Kinoshita, M.

1987-01-01T23:59:59.000Z

34

Improved Load Plan Design Through Integer Programming Based ...  

E-Print Network [OSTI]

The fundamental building block in load planning is a direct trailer, or a direct. ... of shipment and trailer dispatching; (2) integrated consideration of the movement...

2011-12-21T23:59:59.000Z

35

Use of Integrated Decay Heat Limits to Facilitate Spent Nuclear Fuel Loading to Yucca Mountain  

SciTech Connect (OSTI)

As an alternative to the use of the linear loading or areal power density (APD) concept, using integrated decay heat limits based on the use of mountain-scale heat transfer analysis is considered to represent the thermal impact from the deposited spent nuclear fuel (SNF) to the Yucca Mountain repository. Two different integrated decay heat limits were derived to represent both the short-term (up to 50 years from the time of repository closure) and the long-term decay heat effect (up to 1500 years from the time of repository closure). The derived limits were found to appropriately represent the drift wall temperature limit (200 deg. C) and the midway between adjacent drifts temperature limit (96 deg. C) as long as used fuel is uniformly loaded into the mountain. These limits can be a useful practical guide to facilitate the loading of used fuel into Yucca Mountain. (authors)

Li, Jun; Yim, Man-Sung; McNelis, David [Department of Nuclear Engineering, North Carolina State University (United States); Piet, Steven [Idaho National Laboratory (United States)

2007-07-01T23:59:59.000Z

36

Platinum-Loading Reduction in PEM Fuel Cells - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory andVelocityPlatinum-Loading Reduction in PEM

37

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemand

38

Steady-sate and load-follow characteristics of various BWR fuel designs  

SciTech Connect (OSTI)

This paper describes the results of an irradiation study carried out in the Halden boiling water reactor (HBWR). The objective of this irradiation was to clarify the performance of various BWR fuel designs - helium prepressurization (0.3 MPa), pellet shape modification (annular and short-length annular) and barrier cladding (copper and zirconium) - under steady-state and load-follow operations.

Takei, K.; Kogai, T.; Matsumoto, T.; Umehara, H.; Uchida, M.

1986-01-01T23:59:59.000Z

39

Sandia National Laboratories: dispatch solar energy night or day  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-water multiple-megawattdirector Announcing Dr.dispatch

40

contingency Nominal loading margin  

E-Print Network [OSTI]

is estimated. First a nose curve is computed by continuation to obtain a nominal loading margin. Then linear and the very fast computation of the linear estimates. Keywords: Power system security, contingency analy- sis formulas derived in [4]. The computations are summarized: 1 A pattern of load increase, generator dispatch

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Overview of Gridscale Rampable Intermittent Dispatchable Storage...  

Broader source: Energy.gov (indexed) [DOE]

Rampable Intermittent Dispatchable Storage (GRIDS) Program Presentation by Mark Johnson, Advanced Research Projects Agency - Energy, at the Flow Cells for Energy Storage...

42

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

LBNL-54447. Distributed Generation Dispatch OptimizationA Business Case for On-Site Generation: The BD Biosciencesrelated work. Distributed Generation Dispatch Optimization

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

43

Testing and analyses of the TN-24P PWR spent-fuel dry storage cask loaded with consolidated fuel  

SciTech Connect (OSTI)

A performance test of a Transnuclear, Inc. TN-24P storage cask configured for pressurized water reactor (PWR) spent fuel was performed. The work was performed by the Pacific Northwest Laboratory (PNL) and Idaho National Engineering Laboratory (INEL) for the US Department of Energy Office of Civilian Radioactive Waste Management (OCRWM) and the Electric Power Research Institute. The performance test consisted of loading the TN-24P cask with 24 canisters of consolidated PWR spent fuel from Virginia Power's Surry and Florida Power and Light's Turkey Point reactors. Cask surface and fuel canister guide tube temperatures were measured, as were cask surface gamma and neutron dose rates. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Transnuclear, Inc., arranged to have a partially insulated run added to the end of the test to simulate impact limiters. Limited spent fuel integrity data were also obtained. From both heat transfer and shielding perspectives, the TN-24P cask with minor refinements can be effectively implemented at reactor sites and central storage facilities for safe storage of unconsolidated and consolidated spent fuel. 35 refs., 93 figs., 17 tabs.

McKinnon, M A; Michener, T E; Jensen, M F; Rodman, G R

1989-02-01T23:59:59.000Z

44

Evaluation of Effect of Fuel Assembly Loading Patterns on Thermal and Shielding Performance of a Spent Fuel Storage/Transportation Cask  

SciTech Connect (OSTI)

The licensing of spent fuel storage casks is generally based on conservative analyses that assume a storage system being uniformly loaded with design basis fuel. The design basis fuel typically assumes a maximum assembly enrichment, maximum burn up, and minimum cooling time. These conditions set the maximum decay heat loads and radioactive source terms for the design. Recognizing that reactor spent fuel pools hold spent fuel with an array of initial enrichments, burners, and cooling times, this study was performed to evaluate the effect of load pattern on peak cladding temperature and cask surface dose rate. Based on the analysis, the authors concluded that load patterns could be used to reduce peak cladding temperatures in a cask without adversely impacting the surface dose rates.

Cuta, Judith M.; Jenquin, Urban P.; McKinnon, Mikal A.

2001-11-20T23:59:59.000Z

45

Optimal Power Dispatch via Multistage Stochastic Programming  

E-Print Network [OSTI]

Mathematical models for cost-optimal power scheduling in hydro-thermal systems often combine several di cultiesOptimal Power Dispatch via Multistage Stochastic Programming M.P. Nowak1 and W. Romisch1 Abstract. The short-term cost-optimal dispatch of electric power in a generation sys- tem under uncertain electricity

Rmisch, Werner

46

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. XX, NO. XX, MONTH 20XX 1 Decentralized Economic Dispatch in Microgrids via  

E-Print Network [OSTI]

small time scale, e.g., every five minutes for California Independent System Operator (CAISO) with wind/solar of estimating the capacity of DG units and loads is limited, the economic dispatch is performed in a relatively

Zhuang, Weihua

47

The potential impacts of a competitive wholesale market in the midwest: A preliminary examination of centralized dispatch  

SciTech Connect (OSTI)

In March 2005, the Midwest Independent System Operator (MISO) will begin operating the first-ever wholesale market for electricity in the central and upper Midwestern portion of the United States. Region-wide, centralized, security-constrained, bid-based dispatch will replace the current system of decentralized dispatch by individual utilities and control areas. This report focuses on how the operation of generators may change under centralized dispatch. We analyze a stylized example of these changes by comparing a base case dispatch based on a ''snapshot'' taken from MISO's state estimator for an actual, historical dispatch (4 p.m., July 7, 2003) to a hypothetical, centralized dispatch that seeks to minimize the total system cost of production, using estimated cost data collected by the EIA. Based on these changes in dispatch, we calculate locational marginal prices, which in turn reveals the location of congestion within MISO's footprint, as well as the distribution of congestion revenues. We also consider two sensitivity scenarios that examine (1) the effect of changes in MISO membership (2003 vs. 2004 membership lists), and (2) different load and electrical data, based on a snapshot from a different date and time (1 p.m., Feb. 18, 2004). Although our analysis offers important insights into how the MISO market could operate when it opens, we do not address the question of the total benefits or costs of creating a wholesale market in the Midwest.

Lesieutre, Bernard C.; Bartholomew, Emily; Eto, Joseph H.; Hale, Douglas; Luong, Thanh

2004-07-01T23:59:59.000Z

48

AN INVESTIGATION TO RESOLVE THE INTERACTION BETWEEN FUEL CELL, POWER CONDITIONING SYSTEM AND APPLICATION LOADS  

SciTech Connect (OSTI)

Solid-Oxide Fuel Cell (SOFC) stacks respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry. However, this is not true for the thermal, mechanical, and chemical balance-of-plant subsystem (BOPS), where load-following time constants are, typically, several orders of magnitude higher. This dichotomy diminishes the reliability and performance of the electrode with increasing demand of load. Because these unwanted phenomena are not well understood, the manufacturers of SOFC use conservative schemes (such as, delayed load-following to compensate for slow BOPS response or expensive inductor filtering) to control stack responses to load variations. This limits the applicability of SOFC systems for load-varying stationary and transportation applications from a cost standpoint. Thus, a need exists for the synthesis of component- and system-level models of SOFC power-conditioning systems and the development of methodologies for investigating the system-interaction issues (which reduce the lifetime and efficiency of a SOFC) and optimizing the responses of each subsystem, leading to optimal designs of power-conditioning electronics and optimal control strategies, which mitigate the electrical-feedback effects. Equally important are ''multiresolution'' finite-element modeling and simulation studies, which can predict the impact of changes in system-level variables (e.g., current ripple and load-transients) on the local current densities, voltages, and temperature (these parameters are very difficult or cumbersome, if not impossible to obtain) within a SOFC cell. Towards that end, for phase I of this project, sponsored by the U.S. DOE (NETL), we investigate the interactions among fuel cell, power-conditioning system, and application loads and their effects on SOFC reliability (durability) and performance. A number of methodologies have been used in Phase I to develop the steady-state and transient nonlinear models of the SOFC stack subsystem (SOFCSS), the power-electronics subsystem (PES), and the BOPS. Such an approach leads to robust and comprehensive electrical, electrochemical, thermodynamic, kinetic, chemical, and geometric models of the SOFSS, PES and application loads, and BOPS. A comprehensive methodology to resolve interactions among SOFCSS, PES and application loads and to investigate the impacts of the fast- and slow-scale dynamics of the power-conditioning system (PCS) on the SOFCSS has been developed by this team. Parametric studies on SOFCSS have been performed and the effects of current ripple and load transients on SOFC material properties are investigated. These results are used to gain insights into the long-term performance and reliability of the SOFCSS. Based on this analysis, a novel, efficient, and reliable PES for SOFC has been developed. Impacts of SOFC PCS control techniques on the transient responses, flow parameters, and current densities have also been studied and a novel nonlinear hybrid controller for single/parallel DC-DC converter has been developed.

Sudip K. Mazumder; Chuck McKintyre; Dan Herbison; Doug Nelson; Comas Haynes; Michael von Spakovsky; Joseph Hartvigsen; S. Elangovan

2003-11-03T23:59:59.000Z

49

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

time of use United States Postal Service v Distributed Generation Dispatch Optimization Under Various Electricity Tariffs

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

50

Performance and cost of automotive fuel cell systems with ultra-low platinum loadings.  

SciTech Connect (OSTI)

An automotive polymer-electrolyte fuel cell (PEFC) system with ultra-low platinum loading (0.15 mg-Pt cm{sup -2}) has been analyzed to determine the relationship between its design-point efficiency and the system efficiency at part loads, efficiency over drive cycles, stack and system costs, and heat rejection. The membrane electrode assemblies in the reference PEFC stack use nanostructured, thin-film ternary catalysts supported on organic whiskers and a modified perfluorosulfonic acid membrane. The analyses show that the stack Pt content can be reduced by 50% and the projected high-volume manufacturing cost by >45% for the stack and by 25% for the system, if the design-point system efficiency is lowered from 50% to 40%. The resulting penalties in performance are a <1% reduction in the system peak efficiency; a 2-4% decrease in the system efficiency on the urban, highway, and LA92 drive cycles; and a 6.3% decrease in the fuel economy of the modeled hybrid fuel-cell vehicle on the combined cycle used by EPA for emission and fuel economy certification. The stack heat load, however, increases by 50% at full power (80 kW{sub e}) but by only 23% at the continuous power (61.5 kW{sub e}) needed to propel the vehicle on a 6.5% grade at 55 mph. The reduced platinum and system cost advantages of further lowering the design-point efficiency from 40% to 35% are marginal. The analyses indicate that thermal management in the lower efficiency systems is very challenging and that the radiator becomes bulky if the stack temperature cannot be allowed to increase to 90-95 C under driving conditions where heat rejection is difficult.

Ahluwalia, R.; Wang, X.; Kwon, K.; Rousseau, A.; Kalinoski, J.; James, B.; Marcinkoski, J. (Energy Systems); ( NE); (Directed Technologies Inc.); (ED)

2011-05-15T23:59:59.000Z

51

Fuel loading of PeBR for a long operation life on the lunar surface  

SciTech Connect (OSTI)

The Pellet Bed Reactor (PeBR) power system could provide 99.3 kW e to a lunar outpost for 66 full power years and is designed for no single point failures. The core of this fast energy spectrum reactor consists of three sectors that are neutronically and thermally coupled, but hydraulically independent. Each sector has a separate Closed Brayton Cycle (CBC) loop for energy conversion and separate water heat-pipes radiator panels for heat rejection. He-Xe (40 g/mole) binary gas mixture serves as the reactor coolant and CBC working fluid. On the lunar surface, the emplaced PeBR below grade is loaded with spherical fuel pellets (1-cm in dia.). It is launched unfueled and the pellets are launched in separate subcritical canisters, one for each core sector. This paper numerically simulates the transient loading of a core sector with fuel pellets on the Moon. The simulation accounts for the dynamic interaction of the pellets during loading and calculates the axial and radial distributions of the volume porosity in the sector. The pellets pack randomly with a volume porosity of 0.39 - 0.41 throughout most of the sector, except near the walls the local porosity is higher. (authors)

Schriener, T. M. [Inst. for Space and Nuclear Power Studies, Univ. of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States); El-Genk, M. S. [Inst. for Space and Nuclear Power Studies, Univ. of New Mexico, Albuquerque, NM (United States); Chemical and Nuclear Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States); Mechanical Engineering Dept., Univ. of New Mexico, Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

52

An Investigation to Resolve the Interaction Between Fuel Cell, Power Conditioning System and Application Loads  

SciTech Connect (OSTI)

Development of high-performance and durable solidoxide fuel cells (SOFCs) and a SOFC power-generating system requires knowledge of the feedback effects from the power-conditioning electronics and from application-electrical-power circuits that may pass through or excite the power-electronics subsystem (PES). Therefore, it is important to develop analytical models and methodologies, which can be used to investigate and mitigate the effects of the electrical feedbacks from the PES and the application loads (ALs) on the reliability and performance of SOFC systems for stationary and non-stationary applications. However, any such attempt to resolve the electrical impacts of the PES on the SOFC would be incomplete unless one utilizes a comprehensive analysis, which takes into account the interactions of SOFC, PES, balance-of-plant system (BOPS), and ALs as a whole. SOFCs respond quickly to changes in load and exhibit high part- and full-load efficiencies due to its rapid electrochemistry, which is not true for the thermal and mechanical time constants of the BOPS, where load-following time constants are, typically, several orders of magnitude higher. This dichotomy can affect the lifetime and durability of the SOFCSs and limit the applicability of SOFC systems for load-varying stationary and transportation applications. Furthermore, without validated analytical models and investigative design and optimization methodologies, realizations of cost-effective, reliable, and optimal PESs (and power-management controls), in particular, and SOFC systems, in general, are difficult. On the whole, the research effort can lead to (a) cost-constrained optimal PES design for high-performance SOFCS and high energy efficiency and power density, (b) effective SOFC power-system design, analyses, and optimization, and (c) controllers and modulation schemes for mitigation of electrical impacts and wider-stability margin and enhanced system efficiency.

Sudip K. Mazumder

2005-12-31T23:59:59.000Z

53

Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels  

SciTech Connect (OSTI)

The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C. [Joint Inst. for Power and Nuclear Research-Sosny, 99 Academician A.K.Krasin Str, Minsk 220109 (Belarus)

2012-07-01T23:59:59.000Z

54

Session K--Fuel Loadings in Forests, Woodlands, and Savannas--Ffolliott, Gottfried, DeBano USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 271  

E-Print Network [OSTI]

Session K--Fuel Loadings in Forests, Woodlands, and Savannas--Ffolliott, Gottfried, DeBano USDA Forest Service Gen. Tech. Rep. PSW-GTR-189. 2008. 271 Fuel Loadings in Forests, Woodlands, and Savannas to increase the loadings of downed woody fuels. Ecologists and land managers are reintroducing fire

Standiford, Richard B.

55

The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy  

E-Print Network [OSTI]

THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

Love, Michael Lee

1982-01-01T23:59:59.000Z

56

Core loading pattern optimization of thorium fueled heavy water breeder reactor using genetic algorithm  

SciTech Connect (OSTI)

In this work genetic algorithm was proposed to solve fuel loading pattern optimization problem in thorium fueled heavy water reactor. The objective function of optimization was to maximize the conversion ratio and minimize power peaking factor. Those objectives were simultaneously optimized using non-dominated Pareto-based population ranking optimal method. Members of non-dominated population were assigned selection probabilities based on their rankings in a manner similar to Baker's single criterion ranking selection procedure. A selected non-dominated member was bred through simple mutation or one-point crossover process to produce a new member. The genetic algorithm program was developed in FORTRAN 90 while neutronic calculation and analysis was done by COREBN code, a module of core burn-up calculation for SRAC. (authors)

Soewono, C. N.; Takaki, N. [Dept. of Applied Science Engineering, Faculty Tokai Univ., Kanagawa-ken, Hiratsuka-shi Kitakaname 4-1-1 (Japan)

2012-07-01T23:59:59.000Z

57

Dispatch: distributed peer-to-peer simulations  

E-Print Network [OSTI]

per second on one machine. We also test Dispatch over a wide-area network where it is deployed on machines that are geographically apart and belong to different domains....

Patel, Kunal S.

2009-05-15T23:59:59.000Z

58

Computer-aided dispatching system design specification  

SciTech Connect (OSTI)

This document defines the performance requirements for a graphic display dispatching system to support Hanford Patrol Operations Center. This document reflects the as-built requirements for the system that was delivered by GTE Northwest, Inc. This system provided a commercial off-the-shelf computer-aided dispatching system and alarm monitoring system currently in operations at the Hanford Patrol Operations Center, Building 2721E. This system also provides alarm back-up capability for the Plutonium Finishing Plant (PFP).

Briggs, M.G.

1997-12-16T23:59:59.000Z

59

Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers  

SciTech Connect (OSTI)

The cathode catalyst layer within a proton-exchange-membrane fuel cell is the most complex and critical, yet least understood, layer within the cell. The exact method and equations for modeling this layer are still being revised and will be discussed in this paper, including a 0.8 reaction order, existence of Pt oxides, possible non-isopotential agglomerates, and the impact of a film resistance towards oxygen transport. While the former assumptions are relatively straightforward to understand and implement, the latter film resistance is shown to be critically important in explaining increased mass-transport limitations with low Pt-loading catalyst layers. Model results demonstrate agreement with experimental data that the increased oxygen flux and/or diffusion pathway through the film can substantially decrease performance. Also, some scale-up concepts from the agglomerate scale to the more macroscopic porous-electrode scale are discussed and the resulting optimization scenarios investigated.

Yoon, Wonseok; Weber, Adam Z.

2011-01-20T23:59:59.000Z

60

THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT...  

Broader source: Energy.gov (indexed) [DOE]

THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION 1234 OF THE ENERGY POLICY ACT OF 2005 THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO...

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Gasoline-like Fuel Effects on High-load, Boosted HCCI Combustion Employing Negative Valve Overlap Strategy  

SciTech Connect (OSTI)

In recent years a number of studies have demonstrated that boosted operation combined with external EGR is a path forward for expanding the high load limit of homogeneous charge compression ignition (HCCI) operation with the negative valve overlap (NVO) valve strategy. However, the effects of fuel composition with this strategy have not been fully explored. In this study boosted HCCI combustion is investigated in a single-cylinder research engine equipped with direct injection (DI) fueling, cooled external exhaust gas recirculation (EGR), laboratory pressurized intake air, and a fully-variable hydraulic valve actuation (HVA) valve train. Three fuels with significant compositional differences are investigated: regular grade gasoline (RON = 90.2), 30% ethanol-gasoline blend (E30, RON = 100.3), and 24% iso-butanol-gasoline blend (IB24, RON = 96.6). Results include engine loads from 350 to 800 kPa IMEPg for all fuels at three engine speeds 1600, 2000, and 2500 rpm. All operating conditions achieved thermal efficiency (gross indicated efficiency) between 38 and 47%, low NOX emissions ( 0.1 g/kWh), and high combustion efficiency ( 96.5%). Detailed sweeps of intake manifold pressure (atmospheric to 250 kPaa), EGR (0 25% EGR), and injection timing are conducted to identify fuel-specific effects. The major finding of this study is that while significant fuel compositional differences exist, in boosted HCCI operation only minor changes in operational conditions are required to achieve comparable operation for all fuels. In boosted HCCI operation all fuels were able to achieve matched load-speed operation, whereas in conventional SI operation the fuel-specific knock differences resulted in significant differences in the operable load-speed space. Although all fuels were operable in boosted HCCI, the respective air handling requirements are also discussed, including an analysis of the demanded turbocharger efficiency.

Kalaskar, Vickey B [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL; Splitter, Derek A [ORNL] [ORNL

2014-01-01T23:59:59.000Z

62

Performance of Transuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Final Report, Including Void Reactivity Evaluation  

SciTech Connect (OSTI)

The current focus of the Deep Burn Project is on once-through burning of transuranics (TRU) in light-water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles are pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell and assembly calculations have been performed using the DRAGON-4 code to assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells and assemblies containing typical UO2 and mixed oxide (MOX) fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Then, assembly calculations were performed evaluating the performance of heterogeneous arrangements of TRU-only FCM fuel pins along with UO2 pins.

Michael A. Pope; R. Sonat Sen; Brian Boer; Abderrafi M. Ougouag; Gilles Youinou

2011-09-01T23:59:59.000Z

63

Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration  

E-Print Network [OSTI]

Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

He, Miao; Zhang, Junshan

2010-01-01T23:59:59.000Z

64

Computer-Aided dispatching system design specification  

SciTech Connect (OSTI)

This document defines the performance requirements for a graphic display dispatching system to support Hanford Patrol emergency response. This document outlines the negotiated requirements as agreed to by GTE Northwest during technical contract discussions. This system defines a commercial off-the-shelf computer dispatching system providing both test and graphic display information while interfacing with diverse alarm reporting system within the Hanford Site. This system provided expansion capability to integrate Hanford Fire and the Occurrence Notification Center. The system also provided back-up capability for the Plutonium Processing Facility (PFP).

Briggs, M.G.

1996-09-27T23:59:59.000Z

65

Performance of Trasuranic-Loaded Fully Ceramic Micro-Encapsulated Fuel in LWRs Interim Report, Including Void Reactivity Evaluation  

SciTech Connect (OSTI)

The current focus of the Deep Burn Project is on once-through burning of transuranice (TRU) in light water reactors (LWRs). The fuel form is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the tri-isotropic (TRISO) fuel particle design from high-temperature reactor technology. In the Deep Burn LWR (DB-LWR) concept, these fuel particles would be pressed into compacts using SiC matrix material and loaded into fuel pins for use in conventional LWRs. The TRU loading comes from the spent fuel of a conventional LWR after 5 years of cooling. Unit cell calculations have been performed using the DRAGON-4 code in order assess the physics attributes of TRU-only FCM fuel in an LWR lattice. Depletion calculations assuming an infinite lattice condition were performed with calculations of various reactivity coefficients performed at each step. Unit cells containing typical UO2 and MOX fuel were analyzed in the same way to provide a baseline against which to compare the TRU-only FCM fuel. Loading of TRU-only FCM fuel into a pin without significant quantities of uranium challenges the design from the standpoint of several key reactivity parameters, particularly void reactivity, and to some degree, the Doppler coefficient. These unit cells, while providing an indication of how a whole core of similar fuel would behave, also provide information of how individual pins of TRU-only FCM fuel would influence the reactivity behavior of a heterogeneous assembly. If these FCM fuel pins are included in a heterogeneous assembly with LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance of the TRU-only FCM fuel pins may be preserved. A configuration such as this would be similar to CONFU assemblies analyzed in previous studies. Analogous to the plutonium content limits imposed on MOX fuel, some amount of TRU-only FCM pins in an otherwise-uranium fuel assembly may give acceptable reactivity performance. Assembly calculations will be performed in future work to explore the design options for heterogeneous assemblies of this type and their impact on reactivity coefficients.

Michael A. Pope; Brian Boer; Gilles Youinou; Abderrafi M. Ougouag

2011-03-01T23:59:59.000Z

66

Augmented air supply for fuel cell power plant during transient load increases  

SciTech Connect (OSTI)

In a fuel cell power plant, a system for supplying air to an oxygen side of the cells in the plant is described comprising: (a) conduit means for feeding air to the oxygen side of the plant; (b) a constant speed blower connected to the conduit means for blowing an air stream into the conduit means at a constant velocity; (c) a motorized control valve in the conduit means between the blower and the oxygen side, the control valve being adjustable to vary the amount of air flowing to the oxygen side; (d) branch conduit means opening into the conduit means for providing an air flow path from the blower to the oxygen side which bypasses the control valve; (e) fast acting valve means in the branch conduit means, the fast acting valve means being relatively instantly transformable from a closed condition to an open condition and return, and the fast acting valve means being normally in the closed condition; (f) flow meter means in the conduit means for measuring amounts of oxygen flowing from the control valve from the control valve and the fast acting valve means to the oxygen side; (g) current monitoring means connected to a loaf line from the power plant for monitoring load changes imposed upon the cells in the power plant; and (h) microprocessor means for controlling operation of the system, the microprocessor means being operably connected to the current monitoring means, to the flow meter means, to the fast acting valve means and to the control valve.

Beal, D.W.; Scheffer, G.W.

1988-03-08T23:59:59.000Z

67

Fuel channel analysis for a large-break loss-of-coolant accident in a Canada deuterium uranium reactor loaded with CANFLEX fuel bundles  

SciTech Connect (OSTI)

The CATHENA ``slave`` channel model is used for fuel channel analysis of a 30% reactor inlet header break in a Canada deuterium uranium (CANDU)-6 reactor loaded with 43-element bundles of advanced CANDU [CANDU flexible fueling (CANFLEX)] fuel. The predicted results are compared with those for the reactor loaded with standard 37-element bundles. The maximum fuel centerline and sheath temperatures for the CANFLEX bundle are lower by 388 and 128C, respectively, than those for the standard bundle because of the lower maximum linear power of the CANFLEX bundle. The pressure tube (PT)/calandria tube (CT) contact for the CANFLEX bundle occurs 2 s later than that for the standard bundle. The PT/CT contact temperature for the CANFLEX bundle is 7C lower than that for the standard bundle. These provide the CANFLEX bundle with a slightly enhanced safety margin for fuel channel integrity in the CANDU-6 reactor, compared with the standard bundle. The effect of bearing pad (BP)/PT contact on the PT temperature predictions is assessed. A BP/PT contact conductance of 3 kW/m{sup 2} {center_dot} K after PT ballooning does not create any hot spot because it gives the contacted PT sector approximately the same heat transfer as convective heating by the hot coolant for the adjacent sector. The assumed BP/PT contact conductance does not threaten the fuel channel integrity.

Oh, D.J.; Lim, H.S.; Ohn, M.Y.; Lee, K.M.; Suk, H.C. [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of)

1996-06-01T23:59:59.000Z

68

Dispatcher Reliability Analysis : SPICA-RAIL Experiments  

E-Print Network [OSTI]

Dispatcher Reliability Analysis : SPICA-RAIL Experiments Fabien Belmonte, Jean-Louis Boulanger of scenarios and evaluate the behaviour of human operators. A state of the art in human reliability is pre coupled to a traffic simulator. It allows to gather data for human reliability evaluation and man

Paris-Sud XI, Université de

69

The Molokai Dispatch COMMUNITY DEVELOPMENT, ENERGY, ENVIRONMENT  

E-Print Network [OSTI]

fifth of Molokai's electricity comes from photovoltaic (PV) energy from business and residential solar of problems, according to Richard Rocheleau, director of the University of Hawaii's Hawaii Natural EnergyThe Molokai Dispatch COMMUNITY DEVELOPMENT, ENERGY, ENVIRONMENT Thursday, November 14th, 2013

70

272 Dispatch Protein folding: Chaperones get Hip  

E-Print Network [OSTI]

272 Dispatch Protein folding: Chaperones get Hip Thomas Ziegelhoffer, Jill L. Johnson and Elizabeth the complexity of the Hsp70 `chaperone machine' that mediates early steps of protein folding in cells. Address of protein folding and translocation through their ability to recognize non-native conformations of proteins

Craig, Elizabeth A

71

www.frontiersinecology.org The Ecological Society of America DISPATCHES DISPATCHES DISPATCHES  

E-Print Network [OSTI]

quality, but.... Dinesh C Sharma The use of compressed natural gas (CNG) to fuel public transport has

Pedersen, Tom

72

Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly...  

Broader source: Energy.gov (indexed) [DOE]

current approach of long-term storage at its nuclear power plants and independent spent fuel storage installation, and deferred transportation of used nuclear fuel (UNF), along...

73

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-TypeWelcome6ResidentialEnergy

74

Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly under  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen Telescope Looks to Ends

75

NOx Dispatching in Plant Utility Systems Using Existing Tools  

E-Print Network [OSTI]

NO x DISPATCHING IN PLANT UTILITY SYSTEMS - USING EXISTING TOOLS Ravi Nath and Jimmy D. Kumana Linnhoff March ABSTRACT Localized NO x reduction during Ozone Alerts is a problem of increasing importance to process industries in and around.... Economic dispatching of plant utility systems is commonly done by the gas and electric power companies and software tools for such dispatching already exist even at the industrial plant level [2]. The purpose of this paper is to show...

Nath, R.; Kumana, J. D.

76

Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers  

E-Print Network [OSTI]

Energy, Office of Hydrogen, Fuel Cell, and Infrastructureof fuel cell reaction with respect to hydrogen referencefuel-cell conditions and CL structures, the ORR oxygen reaction order is around 0.8 (referenced to an imaginary hydrogen

Yoon, Wonseok

2013-01-01T23:59:59.000Z

77

Optimization Online - Real-Time Dispatchability of Bulk Power ...  

E-Print Network [OSTI]

Mar 16, 2015 ... Real-Time Dispatchability of Bulk Power Systems with Volatile Renewable Generations. Wei Wei (wei-wei04 ***at*** mails.tsinghua.edu.cn)

Wei Wei

2015-03-16T23:59:59.000Z

78

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

the Optimization of Cogeneration Dispatch in a Deregulatedheat and power (CHP), or cogeneration, systems make use ofheat and power (CHP), or cogeneration, systems make use of

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

79

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network [OSTI]

the optimization of cogeneration dispatch in a deregulatedcomprised of on-site cogeneration of heat and electricity,of optimal control to a cogeneration system over current,

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

80

Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of EnergyDepartment ofRemarksNuclear Fuel

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Criticality Analysis for Proposed Maximum Fuel Loading in a Standardized SNF Canister with Type 1a Baskets  

SciTech Connect (OSTI)

This document represents a summary version of the criticality analysis done to support loading SNF in a Type 1a basket/standard canister combination. Specifically, this engineering design file (EDF) captures the information pertinent to the intact condition of four fuel types with different fissile loads and their calculated reactivities. These fuels are then degraded into various configurations inside a canister without the presence of significant moderation. The important aspect of this study is the portrayal of the fuel degradation and its effect on the reactivity of a single canister given the supposition there will be continued moderation exclusion from the canister. Subsequent analyses also investigate the most reactive dry canister in a nine canister array inside a hypothetical transport cask, both dry and partial to complete flooding inside the transport cask. The analyses also includes a comparison of the most reactive configuration to other benchmarked fuels using a software package called TSUNAMI, which is part of the SCALE 5.0 suite of software.

Chad Pope; Larry L. Taylor; Soon Sam Kim

2007-02-01T23:59:59.000Z

82

A Study of the Pre-Programmed Thermostat Timer as a Load Control Device  

E-Print Network [OSTI]

. The purpose of this research was to determine if a pre-programs3 thmstat timing device can operate similarly to a dispatcher controlled load managanent device to rehce peak generation dmds without adversely affecting energy kwh) sales. SCOPE: The scope... of this research is: (1) to detennine if the device can be used as a viable means of load reduction, (2) to determine the parameters for equiprent and programing for more extensive research involving dispatcher control of dis- tribution load, and (3...

Wallace, M. L.; Thedford, M.

1985-01-01T23:59:59.000Z

83

Improving Efficiency and Load Range of Boosted HCCI using Partial Fuel  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment of EnergyDepartment ofPhoto ofDepartment

84

54.5 MPG and Beyond: Materials Lighten the Load for Fuel Economy |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley ResponsibleSubmissionof Energy 5 QuestionsDepartment of

85

Load Preheating Using Flue Gases from a Fuel-Fired Heating System |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJuneWhenJuly 28,TheEnergy LintgramSME33Department

86

The role of fuel in determining the high load limit of controlled auto-ignition engines  

E-Print Network [OSTI]

Controlled Auto-Ignition (CAI) engines have the potential to increase fuel economy while lowering nitrogen oxide and soot emissions. One hurdle that is currently being faced is the engine's inability to operate at high ...

Maria, Amir Gamal

2009-01-01T23:59:59.000Z

87

Low platinum loading electrospun electrodes for proton exchange membrane fuel cells  

E-Print Network [OSTI]

An experimental study was performed to evaluate the utility of electrospun carbon nanofiber supports for sputtered platinum catalyst in proton exchange membrane fuel cells. The performance of the sputtered nanofiber supports ...

Singer, Simcha Lev

2006-01-01T23:59:59.000Z

88

Fuel Effects on Combustion and Emissions of a Direct-Inection Diesel Engine Operating at Moderate to High Engine Speed and Load  

SciTech Connect (OSTI)

It is advantageous to increase the specific power output of diesel engines and to operate them at higher load for a greater portion of a driving cycle to achieve better thermal efficiency and thus reduce vehicle fuel consumption. Such operation is limited by excessive smoke formation at retarded injection timing and high rates of cylinder pressure rise at more advanced timing. Given this window of operation, it is desired to understand the influence of fuel properties such that optimum combustion performance and emissions can be retained over the range of fuels commonly available in the marketplace. It has been shown in previous studies that varying cetane number (CN) of diesel fuel has little effect on ignition delay at high engine load due to the domination of high cylinder temperature on ignition kinetics. The work here experimentally confirms that finding but also shows that emissions and combustion performance vary according to fuel reactivity. Data are examined from a direct-injection single cylinder research engine for eight common diesel fuels including soy-based biodiesel blends at two high load operating points with no exhaust gas recirculation (EGR) and at a moderate load with four levels of EGR. It is shown in the work that at high engine load where combustion is controlled by mixing processes, CN and other fuel properties have little effect on engine performance, although lower CN fuels produce a small increase in noise, smoke and CO emissions. Biodiesel blends increase NOX emissions and decreases CO and smoke emissions at high load, but otherwise have little effect on performance. At moderate load, higher CN fuels are more tolerant to EGR due to their better chemical reactivity at retarded injection timing, but all fuels produce comparable thermal efficiency at advanced combustion phasing regardless of EGR. In contrast to the high load conditions, there was no increase in NOX emissions for biodiesel at the moderate load condition. It is concluded that although higher CN does not significantly alter ignition delay at moderate to high loads it has a dominant influence on the acceptable injection timing range. Apart from CN effects, fuel oxygen content plays an independent role in reducing some emissions. It is therefore recommended that compensation for fuel ignitability and oxygen content be included in combustion control strategies to optimize emissions and performance of future diesel engines.

Szybist, James P [ORNL; Szymkowicz, Patrick G. [General Motors Corporation; Northrop, William F [General Motors Corporation

2012-01-01T23:59:59.000Z

89

Electronic copy available at: http://ssrn.com/abstract=2014739 Published as: Amir Nosrat and Joshua M. Pearce, "Dispatch Strategy and Model for Hybrid Photovoltaic and Combined Heating,  

E-Print Network [OSTI]

combined heat and power (CHP) systems has provided the opportunity for in- house power backup. In a novel hybrid system is proposed here of PV-trigeneration. In order to reduce waste from excess heat that accounts for electric, domestic hot water, space heating, and space cooling load categories. The dispatch

Paris-Sud XI, Université de

90

Optimizing Process Loads in Industrial Cogeneration Energy Systems  

E-Print Network [OSTI]

applied to power generation and industrial cogeneration are extended to solving this trigeneration problem where the optimum dispatch of the final load devices (i.e. compressors, fans, pumps, etc.) are an integral part of the total energy system...-04-29 Proceedings from the Seventeenth Industrial Energy Technology Conference, Houston, TX, April 5-6, 1995 optimum dispatch solutions, and an iterative simultaneous solution of the integrated system is required. The solution dependency arises when the end use...

Ahner, D. J.; Babson, P. E.

91

Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch  

E-Print Network [OSTI]

Transmission Pricing of Distributed Multilateral Energy Transactions to Ensure System Security and Guide Economic Dispatch...

Ilic, Marija; Hsieh, Eric; Remanan, Prasad

2004-06-16T23:59:59.000Z

92

NV Energy Large-Scale Photovoltaic Integration Study: Intra-Hour Dispatch and AGC Simulation  

SciTech Connect (OSTI)

The uncertainty and variability with photovoltaic (PV) generation make it very challenging to balance power system generation and load, especially under high penetration cases. Higher reserve requirements and more cycling of conventional generators are generally anticipated for large-scale PV integration. However, whether the existing generation fleet is flexible enough to handle the variations and how well the system can maintain its control performance are difficult to predict. The goal of this project is to develop a software program that can perform intra-hour dispatch and automatic generation control (AGC) simulation, by which the balancing operations of a system can be simulated to answer the questions posed above. The simulator, named Electric System Intra-Hour Operation Simulator (ESIOS), uses the NV Energy southern system as a study case, and models the systems generator configurations, AGC functions, and operator actions to balance system generation and load. Actual dispatch of AGC generators and control performance under various PV penetration levels can be predicted by running ESIOS. With data about the load, generation, and generator characteristics, ESIOS can perform similar simulations and assess variable generation integration impacts for other systems as well. This report describes the design of the simulator and presents the study results showing the PV impacts on NV Energy real-time operations.

Lu, Shuai; Etingov, Pavel V.; Meng, Da; Guo, Xinxin; Jin, Chunlian; Samaan, Nader A.

2013-01-02T23:59:59.000Z

93

Distributed Generation Dispatch Optimization under VariousElectricity Tariffs  

SciTech Connect (OSTI)

The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

94

CASTOR cask with high loading capacity for transport and storage of VVER 440 spent fuel  

SciTech Connect (OSTI)

GNB has developed a CASTOR transport and storage cask with a capacity of 84 spent fuel assemblies from reactors of the type VVER 440. The safety analyses are performed with the help of modern, benchmarked calculation programs. The results show that the cask design is able to fulfill both the Type B test conditions on basis of IAEA Regulations-1985 edition and the requirements for interim storage sites in Germany.

Diersch, R.; Methling, D.; Milde, G. [Gesellschaft fuer Nuklear-Behaelter mbH Essen (Germany)

1993-12-31T23:59:59.000Z

95

Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel  

SciTech Connect (OSTI)

It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

Sonat Sen; Gilles Youinou

2013-02-01T23:59:59.000Z

96

Depletion Analysis of Modular High Temperature Gas-cooled Reactor Loaded with LEU/Thorium Fuel  

SciTech Connect (OSTI)

Thorium based fuel has been considered as an option to uranium-based fuel, based on considerations of resource utilization (Thorium is more widely available when compared to Uranium). The fertile isotope of Thorium (Th-232) can be converted to fissile isotope U-233 by neutron capture during the operation of a suitable nuclear reactor such as High Temperature Gas-cooled Reactor (HTGR). However, the fertile Thorium needs a fissile supporter to start and maintain the conversion process such as U-235 or Pu-239. This report presents the results of a study that analyzed the thorium utilization in a prismatic HTGR, namely Modular High Temperature Gas-Cooled Reactor (MHTGR) that was designed by General Atomics (GA). The collected for the modeling of this design come from Chapter 4 of MHTGR Preliminary Safety Information Document that GA sent to Department of Energy (DOE) on 1995. Both full core and unit cell models were used to perform this analysis using SCALE 6.1 and Serpent 1.1.18. Because of the long mean free paths (and migration lengths) of neutrons in HTRs, using a unit cell to represent a whole core can be non-trivial. The sizes of these cells were set to match the spectral index between unit cell and full core domains. It was found that for the purposes of this study an adjusted unit cell model is adequate. Discharge isotopics and one-group cross-sections were delivered to the transmutation analysis team. This report provides documentation for these calculations

Sonat Sen; Gilles Youinou

2013-02-01T23:59:59.000Z

97

Demand Side Dispatching, Part 2: An Industrial Application  

E-Print Network [OSTI]

DEMAND SIDE DISPATCHING, Part 2: AN INDUSTRIAL APPUCATION Ravi Nath Donald A. Cerget Edward T. Henderson Sr. Consultant Sr. Account Executive Sr. Engineer Linnhoff March, Inc. Detroit Edison Detroit Edison Houston, TX Detroit, M1 Detroit, M1...

Nath, R.; Cerget, D. A.; Henderson, E. T.

98

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic  

E-Print Network [OSTI]

IEEE JOURNAL OF PHOTOVOLTAICS 1 Optimal Dispatch of Residential Photovoltaic Inverters Under of existing low- voltage distribution systems with high photovoltaic (PV) gen- eration have focused relaxation techniques. Index Terms--Distribution networks, microgrids, photovoltaic systems, inverter control

Giannakis, Georgios

99

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

purchase abs. cooling offset electric supply (kW) hourTariffs electric supply (kW) abs. cooling offset purchasecooling offset Distributed Generation Dispatch Optimization Under Various Electricity Tariffs electric supply (

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

100

Analytical models to evaluate system performance measures for vehicle based material-handling systems under various dispatching policies  

E-Print Network [OSTI]

are considered. Those are workcenter-initiated vehicle dispatching rules and vehicle-initiated vehicle dispatching rules. For the workcenterinitiated vehicle dispatching rule, the Closest Transporter Allocation Rule (CTAR) was used to assign empty transporters...

Lee, Moonsu

2005-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Plug Load  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006Photovoltaic Theory andVelocityPlatinum-LoadingPlug-Load Sign In

102

Development of a dispatchable PV peak shaving system. Final report on PV:BONUS Phase 2 activities  

SciTech Connect (OSTI)

In July 1993, the Delmarva Power and Light Company (now Conectiv, Inc.) was awarded a contract for the development of a Dispatchable Photovoltaic Peak Shaving System under the US Department of Energy PV:BONUS Program. The rationale for the dispatchable PV peak shaving system is based on the coincidence between the solar resource and the electrical load in question. Where poor coincidence exists, a PV array by itself does little to offset peak demands. However, with the addition of a relatively small amount of energy storage, the energy from the PV array can be managed and the value of the PV system increases substantially. In Phase 2, Delmarva Power continued the refinement of the system deployed in Phase 1. Four additional dispatchable PV peak shaving systems were installed for extended testing and evaluation at sites in Delaware, Maryland, Wisconsin and North Carolina. A second type of system that can be used to provide back-up power as well as peak shaving was also developed in Phase 2. This PV-UPS system used a packaging approach nearly identical to the PV peak shaving system, although there were significant differences in the design of the power electronics and control systems. Conceptually, the PV-UPS system builds upon the idea of adding value to PV systems by increasing functionality. A prototype of the PV-UPS system was installed in Delaware for evaluation near the end of the contract period.

Ferguson, W.D. [Conectiv, Inc., Wilmington, DE (United States); Nigro, R.M. [Applied Energy Group, Inc., Hauppauge, NY (United States)

1999-01-20T23:59:59.000Z

103

A Hierarchical Task Model for Dispatching in Computer-Assisted Demand-Responsive Paratransit Operation  

E-Print Network [OSTI]

A Hierarchical Task Model for Dispatching in Computer- Assisted Demand-Responsive Paratransit Model for Dispatching in Computer-Assisted Demand-Responsive Paratransit Operation ABSTRACT, Dispatch Training #12;1 INTRODUCTION Demand-responsive paratransit service is on the rise. For example

Dessouky, Maged

104

Power System Security in Market Clearing and Dispatch Mechanisms  

E-Print Network [OSTI]

congestion" levels, which have a direct effect on market transactions and energy prices. Thus, when result in curtailment of power transactions and increased prices for most market participants. System1 Power System Security in Market Clearing and Dispatch Mechanisms Claudio A. Ca~nizares, Senior

Cañizares, Claudio A.

105

R326 Dispatch Nuclear migration: Cortical anchors for cytoplasmic dynein  

E-Print Network [OSTI]

dynein, and provide a critical link in understanding the basis of nuclear migration in yeast. The nuclearR326 Dispatch Nuclear migration: Cortical anchors for cytoplasmic dynein Kerry Bloom Nuclear body that rolls around at random inside the sack of a eukaryotic cell. Controlled nuclear movements

106

Modeling Transit Trip Time Using Archived Bus Dispatch System Data  

E-Print Network [OSTI]

Transportation District of Oregon TriMet provides transit service in the three-county Portland metropolitan area that are automatically collected and archived for each bus, route, and stop every day. The Tri-County Metropolitan. TriMet has implemented a Bus Dispatch System BDS as a part of its overall service control

Bertini, Robert L.

107

Optimal Power Dispatch via Multistage Stochastic Programming \\Lambda  

E-Print Network [OSTI]

are reported. 1 Introduction Mathematical models for costoptimal power scheduling in hydrothermal systems a shortterm optimization model for the dis patch of electric power in a hydrothermal generation systemOptimal Power Dispatch via Multistage Stochastic Programming \\Lambda M.P. Nowak 1 and W. Romisch 1

Rmisch, Werner

108

Center for Energy and Environmental Policy Dispatch Strategies for  

E-Print Network [OSTI]

& Electric Energy Storage (EES) Hybrid System Lado Kurdgelashvili Research Assistant Professor University Schematic of a Building-integrated (distributed) PV-EES System #12;Center for Energy and Environmental charging mode #12;Center for Energy and Environmental Policy BPS DISPATCH STRATEGY Mode "PV System Charging

Firestone, Jeremy

109

A neutronic feasibility study of the AP1000 design loaded with fully ceramic micro-encapsulated fuel  

SciTech Connect (OSTI)

A neutronic feasibility study is performed to evaluate the utilization of fully ceramic microencapsulated (FCM) fuel in the AP1000 reactor design. The widely used Monte Carlo code MCNP is employed to perform the full core analysis at the beginning of cycle (BOC). Both the original AP1000 design and the modified design with the replacement of uranium dioxide fuel pellets with FCM fuel compacts are modeled and simulated for comparison. To retain the original excess reactivity, ranges of fuel particle packing fraction and fuel enrichment in the FCM fuel design are first determined. Within the determined ranges, the reactor control mechanism employed by the original design is directly used in the modified design and the utilization feasibility is evaluated. The worth of control of each type of fuel burnable absorber (discrete/integral fuel burnable absorbers and soluble boron in primary coolant) is calculated for each design and significant differences between the two designs are observed. Those differences are interpreted by the fundamental difference of the fuel form used in each design. Due to the usage of silicon carbide as the matrix material and the fuel particles fuel form in FCM fuel design, neutron slowing down capability is increased in the new design, leading to a much higher thermal spectrum than the original design. This results in different reactivity and fission power density distributions in each design. We conclude that a direct replacement of fuel pellets by the FCM fuel in the AP1000 cannot retain the original optimum reactor core performance. Necessary modifications of the core design should be done and the original control mechanism needs to be re-designed. (authors)

Liang, C.; Ji, W. [Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer, Polytechnic Institute, 110 8th Street, Troy, NY 12180 (United States)

2013-07-01T23:59:59.000Z

110

Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem  

SciTech Connect (OSTI)

We consider a virtual power plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the discrete virtual power plant dispatch problem (DVPPDP). First, the nondeterministic polynomial time (NP)-completeness of the discrete virtual power plant dispatch problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms hill climber and greedy randomized adaptive search procedure (GRASP). The algorithms are tuned and tested on portfolios of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 105 units) at computation times on the scale of just 10 s, which is far beyond the capabilities of the optimal algorithms we have tested. In particular, GRASP sorted shows with the most promising performance, as it is able to find solutions that are both agile (sorted) and well balanced, and consistently yields the best numerical performance among the developed algorithms.

Petersen, Mette K.; Hansen, Lars H.; Bendtsen, Jan; Edlund, Kristian; Stoustrup, Jakob

2014-10-17T23:59:59.000Z

111

From Packet to Power Switching: Digital Direct Load Scheduling  

E-Print Network [OSTI]

At present, the power grid has tight control over its dispatchable generation capacity but a very coarse control on the demand. Energy consumers are shielded from making price-aware decisions, which degrades the efficiency of the market. This state of affairs tends to favor fossil fuel generation over renewable sources. Because of the technological difficulties of storing electric energy, the quest for mechanisms that would make the demand for electricity controllable on a day-to-day basis is gaining prominence. The goal of this paper is to provide one such mechanisms, which we call Digital Direct Load Scheduling (DDLS). DDLS is a direct load control mechanism in which we unbundle individual requests for energy and digitize them so that they can be automatically scheduled in a cellular architecture. Specifically, rather than storing energy or interrupting the job of appliances, we choose to hold requests for energy in queues and optimize the service time of individual appliances belonging to a broad class whi...

Alizadeh, Mahnoosh; Thomas, Robert J

2012-01-01T23:59:59.000Z

112

CO? abatement by multi-fueled electric utilities: an analysis based on Japanese data  

E-Print Network [OSTI]

Multi-fueled electric utilities are commonly seen as offering relatively greater opportunities for reasonably priced carbon abatement through changes in the dispatch of generating units from capacity using high emission ...

Ellerman, A. Denny.; Tsukada, Natsuki.

113

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network [OSTI]

approximately to heat- or load-follow. Where there was awas approximately to heat- or load-follow. As in Baltimore,and performance. no DG load-follow heat-follow optimal load-

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

114

MIDWEST ISO CO-OPTIMIZATION BASED REAL-TIME DISPATCH AND PRICING OF ENERGY AND ANCILLARY SERVICES  

E-Print Network [OSTI]

day-ahead counterpart, real-time locational marginal prices (LMP) are calculated every fiveMIDWEST ISO CO-OPTIMIZATION BASED REAL-TIME DISPATCH AND PRICING OF ENERGY AND ANCILLARY SERVICES-time dispatch and pricing. The RT SCED formulation at the core of the real-time dispatch and pricing market

Tesfatsion, Leigh

115

Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus  

E-Print Network [OSTI]

Re-Dispatching Generation to Increase Power System Security Margin and Support Low Voltage Bus by re-dispatching generator outputs, using a normal vector found at a voltage collapse boundary or a low voltage boundary (LVB). This method uses the normal vector as an indicator to change the generation

116

Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems  

E-Print Network [OSTI]

Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems with Variable Resources Electric Energy System #12;#12;Quantifying Benefits of Demand Response and Look-ahead Dispatch in Systems benefits correspond to a real-world power system, as we use actual data on demand-response and wind

117

Informatica Economic vol. 16, no 2/2012 45 Firefly Algorithm for Economic Power Dispatching  

E-Print Network [OSTI]

Informatica Economic vol. 16, no 2/2012 45 Firefly Algorithm for Economic Power Dispatching. For evaluation, we adapt the particle swarm optimization to the problem in the same way as the firefly algorithm, Economic Power Dispatching, Particle Swarm Optimization, Pollutant Emissions Introduction Currently, a set

Paris-Sud XI, Universit de

118

Vehicle Dispatching Problem at the Container Terminal with Tandem Lift Quay Cranes  

E-Print Network [OSTI]

, the tandem lift operations bring new challenges to the vehicle dispatching at terminals and this has become a big issue in the application of tandem lift QCs. The vehicle dispatching at terminals is to enhance the QCs productivities by coordinating the QCs...

Xing, Yao

2013-07-09T23:59:59.000Z

119

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

control strategies (load-follow, no-DG, and heat-follow),are nearly identical to the load-follow results; i.e. , theare lower than under either load-follow or no-DG, suggesting

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

120

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network [OSTI]

was approximately to heat- or load-follow. As in Baltimore,reviews of CHP cost and performance. no DG load-follow heat-follow optimal load-follow heat-follow optimal TOU CPP year

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

are nearly identical to the load-follow results; i.e. , theare lower than under either load-follow or no-DG, suggestingcost (k$/month) no DG load follow optimal month Figure 7.

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

122

Optimal Real-time Dispatch for Integrated Energy Systems  

E-Print Network [OSTI]

The CHP system uses a load-following control i.e. , thexl efficiency of this load-following control strategy byenergy costs from a load-following strategy to those from an

Firestone, Ryan Michael

2007-01-01T23:59:59.000Z

123

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

CPP tariffs is simply load-following. Optimal control underThe system uses a load-following control; i.e. , theefficiency of this load-following control strategy by

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

124

Estimation of average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors by using the {sup 134}Cs/{sup 137}Cs ratio method  

SciTech Connect (OSTI)

Average burnup of damaged fuels loaded in Fukushima Dai-ichi reactors is estimated, using the {sup 134}Cs/{sup 137}Cs ratio method for measured radioactivities of {sup 134}Cs and {sup 137}Cs in contaminated soils within the range of 100 km from the Fukushima Dai-ichi nuclear power plants. As a result, the measured {sup 134}Cs/{sup 137}Cs ratio from the contaminated soil is 0.996{+-}0.07 as of March 11, 2011. Based on the {sup 134}Cs/{sup 137}Cs ratio method, the estimated burnup of damaged fuels is approximately 17.2{+-}1.5 [GWd/tHM]. It is noted that the numerical results of various calculation codes (SRAC2006/PIJ, SCALE6.0/TRITON, and MVP-BURN) are almost the same evaluation values of {sup 134}Cs/ {sup 137}Cs ratio with same evaluated nuclear data library (ENDF-B/VII.0). The void fraction effect in depletion calculation has a major impact on {sup 134}Cs/{sup 137}Cs ratio compared with the differences between JENDL-4.0 and ENDF-B/VII.0. (authors)

Endo, T.; Sato, S.; Yamamoto, A. [Dept. of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya Univ., Furo-cho, Chikusa-ku, Nagoya-shi, 464-8603 (Japan)

2012-07-01T23:59:59.000Z

125

An Evaluation of the HVAC Load Potential for Providing Load Balancing Service  

SciTech Connect (OSTI)

This paper investigates the potential of providing aggregated intra-hour load balancing services using heating, ventilating, and air-conditioning (HVAC) systems. A direct-load control algorithm is presented. A temperature-priority-list method is used to dispatch the HVAC loads optimally to maintain consumer-desired indoor temperatures and load diversity. Realistic intra-hour load balancing signals were used to evaluate the operational characteristics of the HVAC load under different outdoor temperature profiles and different indoor temperature settings. The number of HVAC units needed is also investigated. Modeling results suggest that the number of HVACs needed to provide a {+-}1-MW load balancing service 24 hours a day varies significantly with baseline settings, high and low temperature settings, and the outdoor temperatures. The results demonstrate that the intra-hour load balancing service provided by HVAC loads meet the performance requirements and can become a major source of revenue for load-serving entities where the smart grid infrastructure enables direct load control over the HAVC loads.

Lu, Ning

2012-09-30T23:59:59.000Z

126

Deployment of a dispatchable photovoltaic system: Technical and economic results  

SciTech Connect (OSTI)

This paper discusses the incorporation of PV as a demand-side management (DSM) tool. The valuation of the benefits provided by PV in a DSM role indicates that it is much closer to commercial viability than was thought from economic analyses focusing exclusively on this technology as a supply-side option. However, in order to realize PV`s potential, this technology must be deployed in high-value DSM applications; in particular, applications that promise dispatchable peak-shaving capability. This analysis of the performance of a prototype system installed by Delmarva Power, indicates that small-scale, commercial customer-sited DSM systems incorporating this technology are approaching competitive cost levels.

Byrne, J.; Wang, Y.D.; Letendre, S.; Govindarajalu, C. [Univ. of Delaware, Newark, DE (United States). Center for Energy and Environmental Policy; Nigro, R. [Delmarva Power and Light Co., Wilmington, DE (United States); Bottenberg, W. [Delaware Solar Electric Power, Newark, DE (United States)

1994-12-31T23:59:59.000Z

127

Computer-Aided Dispatch System as a Decision Making Tool in Public and Private Sectors  

E-Print Network [OSTI]

We describe in detail seven distinct areas in both public and private sectors in which a real-time computer-aided dispatch system is applicable to the allocation of scarce resources. Characteristics of a real-time ...

Lee, I-Jen

128

Industry-Utility Collaborative Efforts to Address Environmental Concerns- Dispatching for Localized NOx Reduction  

E-Print Network [OSTI]

these objectives. The approach involves dispatching NOx-producing equipment (e.g., boilers and gas turbines) to achieve minimum NOx production during ozone alert periods and purchasing supplemental power under a special tariff to replace any loss in self...

Hamilton, D. E.; Helmick, R. W.; Lambert, W. J.

129

Research on a Heat-supply Network Dispatching System Based on Geographical Information System (GIS)  

E-Print Network [OSTI]

-supply Network Dispatching System (HNDS). The system, based on Oracle database and Mapgis 6.5, compiles with Visual C++ software. With computer and communication techniques, the system dynamic inspects parameters and information of a heat-supply network, achieves...

Zhou, Z.; Zou, P.; Tang, H.; Fang, X.; Wang, W.

2006-01-01T23:59:59.000Z

130

Experimental Investigation of Spark-Ignited Combustion with High-Octane Biofuels and EGR. 2. Fuel and EGR Effects on Knock-Limited Load and Speed  

SciTech Connect (OSTI)

The present study experimentally investigates spark-ignited combustion with 87 AKI E0 gasoline in its neat form and in midlevel alcohol gasoline blends with 24% vol/vol isobutanol gasoline (IB24) and 30% vol/vol ethanol gasoline (E30). A single-cylinder research engine is used with an 11.85:1 compression ratio, hydraulically actuated valves, laboratory intake air, and was capable of external exhaust gas recirculation (EGR). Experiments were conducted with all fuels to full-load conditions with = 1, using both 0% and 15% external-cooled EGR. Higher octane number biofuel blends exhibited increased stoichiometric torque capability at this compression ratio, where the unique properties of ethanol enabled a doubling of the stoichiometric torque capability with E30 as compared to that of 87AKI, up to 20 bar IMEPg (indicating mean effective pressure gross) at = 1. The results demonstrate that for all fuels, EGR is a key enabler for increasing engine efficiency but is less useful for knock mitigation with E30 than for 87AKI gasoline or IB24. Under knocking conditions, 15% EGR is found to offer 1 CA of CA50 timing advance with E30, whereas up to 5 CA of CA50 advance is possible with knock-limited 87AKI gasoline. Compared to 87AKI, both E30 and IB24 are found to have reduced adiabatic flame temperature and shorter combustion durations, which reduce knocking propensity beyond that indicated by the octane number. However, E30+0% EGR is found to exhibit the better antiknock properties than either 87AKI+15% EGR or IB24+15% EGR, expanding the knock limited operating range and engine stoichiometric torque capability at high compression ratio. Furthermore, the fuel sensitivity (S) of E30 was attributed to reduced speed sensitivity of E30, expanding the low-speed stoichiometric torque capability at high compression ratio. The results illustrate that intermediate alcohol gasoline blends exhibit exceptional antiknock properties and performance beyond that indicated by the octane number tests, particularly E30.

Splitter, Derek A [ORNL] [ORNL; Szybist, James P [ORNL] [ORNL

2013-01-01T23:59:59.000Z

131

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

a Direct-Hydrogen, Load-Following Fuel 13. S. Gelfi, A.G.versus a Direct-Hydrogen Load-Following Fuel Cell te d M 22.vehicle model of a load-following direct hydrogen fuel cell

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

132

Effects of Village Power Quality on Fuel Consumption and Operating Expenses  

SciTech Connect (OSTI)

Alaska's rural village electric utilities are isolated from the Alaska railbelt electrical grid intertie and from each other. Different strategies have been developed for providing power to meet demand in each of these rural communities. Many of these communities rely on diesel electric generators (DEGs) for power. Some villages have also installed renewable power sources and automated generation systems for controlling the DEGs and other sources of power. For example, Lime Village has installed a diesel battery photovoltaic hybrid system, Kotzebue and Wales have wind-diesel hybrid systems, and McGrath has installed a highly automated system for controlling diesel generators. Poor power quality and diesel engine efficiency in village power systems increases the cost of meeting the load. Power quality problems may consist of poor power factor (PF) or waveform disturbances, while diesel engine efficiency depends primarily on loading, the fuel type, the engine temperature, and the use of waste heat for nearby buildings. These costs take the form of increased fuel use, increased generator maintenance, and decreased reliability. With the cost of bulk fuel in some villages approaching $1.32/liter ($5.00/gallon) a modest 5% decrease in fuel use can result in substantial savings with short payback periods depending on the village's load profile and the cost of corrective measures. This project over its five year history has investigated approaches to improving power quality and implementing fuel savings measures through the use of performance assessment software tools developed in MATLAB{reg_sign} Simulink{reg_sign} and the implementation of remote monitoring, automated generation control, and the addition of renewable energy sources in select villages. The results have shown how many of these communities would benefit from the use of automated generation control by implementing a simple economic dispatch scheme and the integration of renewable energy sources such as wind generation.

Richard Wies; Ron Johnson

2008-12-31T23:59:59.000Z

133

Abstract--This paper proposes a reactive power dispatch model that takes into account both the technical and economical  

E-Print Network [OSTI]

the reactive power and voltage control practices in all North American Electric Reliability Council (NERC and transformers taps deviations [12]. In the context of deregulated electricity markets, reactive power dispatch1 Abstract--This paper proposes a reactive power dispatch model that takes into account both

Cañizares, Claudio A.

134

A Queueing Based Scheduling Approach to Plug-In Electric Vehicle Dispatch in Distribution Systems  

E-Print Network [OSTI]

Large-scale integration of plug-in electric vehicles (PEV) in power systems can cause severe issues to the existing distribution system, such as branch congestions and significant voltage drops. As a consequence, smart charging strategies are crucial for the secure and reliable operation of the power system. This paper tries to achieve high penetration level of PEVs with the existing distribution system infrastructure by proposing a smart charging algorithm that can optimally utilize the distribution system capacity. Specifically, the paper proposes a max-weight PEV dispatch algorithm to control the PEV charging rates, subject to power system physical limits. The proposed max-weight PEV dispatch algorithm is proved to be throughput optimal under very mild assumptions on the stochastic dynamics in the system. This suggests that the costly distribution system infrastructure upgrade can be avoided, or failing that, at least successfully deferred. The proposed PEV dispatch algorithm is particularly attractive in ...

Li, Qiao; Ilic, Marija D

2012-01-01T23:59:59.000Z

135

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

Optimization Common DG devices are reciprocating engines, gas turbines, microturbines, and fuel cells.

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

136

2013 Economic Dispatch and Technological Change - Report to Congress (March  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker Registry Summary 2013Evaluation Report Posted2014) |

137

Load Preheating Using Flue Gases from a Fuel-Fired Heating System; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #9 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310 DOE

138

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network [OSTI]

27 Table 3. carbon intensity of electric load offset fromconsumption. The carbon intensity of natural gas is 0.052Table 3 summarizes the carbon intensities of various energy

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

139

Sandia National Laboratories: dynamically managing solar energy dispatch  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-water multiple-megawattdirectordomesticdown

140

The effect of the composition of plutonium loaded on the reactivity change and the isotopic composition of fuel produced in a fast reactor  

SciTech Connect (OSTI)

This paper presents the results of a numerical investigation into burnup and breeding of nuclides in metallic fuel consisting of a mixture of plutonium and depleted uranium in a fast reactor with sodium coolant. The feasibility of using plutonium contained in spent nuclear fuel from domestic thermal reactors and weapons-grade plutonium is discussed. It is shown that the largest production of secondary fuel and the least change in the reactivity over the reactor lifetime can be achieved when employing plutonium contained in spent nuclear fuel from a reactor of the RBMK-1000 type.

Blandinskiy, V. Yu., E-mail: blandinsky@mail.ru [National Research Center Kurchatov Institute (Russian Federation)

2014-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

with the simple load following strategy (non-hybridizeda Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAE

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

142

Microsoft Word - Economic Dispatch final Nov 18.doc  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal LeaderDE-OE0000660Mr.Ms. Galanti -

143

Overview of Gridscale Rampable Intermittent Dispatchable Storage (GRIDS)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009Energy FrictionProgram |

144

Economic Dispatch of Electric Generation Capacity | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ ContractConsumerofofDepartmentEcoCAR 2:

145

On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch  

E-Print Network [OSTI]

On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic;On Coordinating Electricity Markets: Smart Power Scheduling for Demand Side Management and Economic Dispatch Abstract Information asymmetry in retail electricity markets is one of the largest sources of inef

Chen, Yiling

146

Application of linear programming methods to determine the best location of concrete dispatch plants  

E-Print Network [OSTI]

Application of linear programming methods to determine the best location of concrete dispatch cement and concrete industry; "anybody can make concrete..... you just need cement, stone, sand, water the labor cost is so low, that for construction companies is cheaper to "handmade" their own concrete

Yong, Alexander

147

REAL-TIME DISPATCHING OF GUIDED AND UNGUIDED AUTOMOBILE SERVICE UNITS WITH SOFT TIME WINDOWS  

E-Print Network [OSTI]

REAL-TIME DISPATCHING OF GUIDED AND UNGUIDED AUTOMOBILE SERVICE UNITS WITH SOFT TIME WINDOWS SVEN O that are no worse than 1% from optimum on state-of-the-art personal computers. 1. INTRODUCTION The German Automobile Association ADAC (Allgemeiner Deutscher Automobil- Club), the second largest automobile club worldwide

Krumke, Sven O.

148

REALTIME DISPATCHING OF GUIDED AND UNGUIDED AUTOMOBILE SERVICE UNITS WITH SOFT TIME WINDOWS  

E-Print Network [OSTI]

REAL­TIME DISPATCHING OF GUIDED AND UNGUIDED AUTOMOBILE SERVICE UNITS WITH SOFT TIME WINDOWS SVEN O that are no worse than 1% from optimum on state­of­the­art personal computers. 1. INTRODUCTION The German Automobile Association ADAC (Allgemeiner Deutscher Automobil­ Club), the second largest automobile club worldwide

Krumke, Sven O.

149

Optimal Reactive Power Dispatch in Real-Time S. Salamat Sharif1  

E-Print Network [OSTI]

) an improvement in the volt- age profile and voltage stability, and 2) a savings in ac- tive power loss of view. A reduction in active power loss gained from ORPD can save a significant amount of money reactive power dispatch, power loss minimization, optimization methods 1 Introduction Optimal power

Taylor, James H.

150

A New Multiobjective Evolutionary Algorithm for Environmental/Economic Power Dispatch  

E-Print Network [OSTI]

or operational strategies to reduce pollution and atmospheric emissions of the thermal power plants. SeveratA New Multiobjective Evolutionary Algorithm for Environmental/Economic Power Dispatch M. A. Abido Abstrack In this paper, a new multiobjective evohrtionary algorithm for EnvironmentaUEconomic power

Coello, Carlos A. Coello

151

An Optimal Approximate Dynamic Programming Algorithm for the Energy Dispatch Problem with Grid-  

E-Print Network [OSTI]

There is a long history of modeling energy dispatch using deterministic optimization models to capture energy sources such as wind and solar. However, it is well known (Lamont (2008)) that intermittent energy adjustments to other sources of energy in anticipation of future fluctuations in wind and solar

Powell, Warren B.

152

Abstract--The variability and non-dispatchable nature of wind and solar energy production presents  

E-Print Network [OSTI]

1 Abstract--The variability and non-dispatchable nature of wind and solar energy production needed for a variety of energy storage applications can be found in [6]. Wind and solar power variations, energy storage can be a viable solution to balance energy production against its consumption. This paper

153

HOW TO DISPATCH OBSERVERS TO TRACK AN EVOLVING BOUNDARY Tingting Jiang and Carlo Tomasi  

E-Print Network [OSTI]

boundary of a large phenomenon such as an oil spill, a fire, a hurricane, air or water pollution, or EL Ni it necessary to dispatch a limited number of observers (ships, vehicles, or air- planes with cameras; field~no. This pa- per develops a new framework for controlling the movements of the observers to maximize

Tomasi, Carlo

154

A Neutronic Analysis of TRU Recycling in PWRs Loaded with MOX-UE Fuel (MOX with U-235 Enriched U Support)  

SciTech Connect (OSTI)

This report presents the results of a study dealing with the homogeneous recycling of either Pu or Pu+Np or Pu+Np+Am or Pu+Np+Am+Cm in PWRs using MOX-UE fuel, i.e. standard MOX fuel with a U235 enriched uranium support instead of the standard tail uranium (0.25%) for standard MOX fuel. This approach allows to multirecycle Pu or TRU (Pu+MA) as long as U235 is available, by keeping the Pu or TRU content in the fuel constant and at a value ensuring a negative moderator void coefficient (i.e. the loss of the coolant brings imperatively the reactor to a subcritical state). Once this value is determined, the U235 enrichment of the MOX-UE fuel is adjusted in order to reach the target burnup (51 GWd/t in this study).

G. Youinou; S. Bays

2009-05-01T23:59:59.000Z

155

LMFBR fuel component costs  

SciTech Connect (OSTI)

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

156

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network [OSTI]

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

157

Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint  

SciTech Connect (OSTI)

Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

Hodge, B. M.; Lew, D.; Milligan, M.

2013-01-01T23:59:59.000Z

158

Novel Controls for Time-Dependent Economic Dispatch of Combined Cooling Heating and Power (CCHP)  

SciTech Connect (OSTI)

The research and development effort detailed in this report directly addresses the challenge of reducing U.S. industrial energy and carbon intensity by contributing to an increased understanding of potential CCHP technology, the CCHP market and the challenges of widespread adoption. This study developed a number of new tools, models, and approaches for the design, control, and optimal dispatch of various CCHP technologies. The UC Irvine campus served as a living laboratory of new CCHP technologies and enabled the design and demonstration of several novel control methods. In particular, the integration of large scale thermal energy storage capable of shifting an entire day of cooling demand required a novel approach to the CCHP dispatch optimization. The thermal energy storage proved an economically viable resource which reduced both costs and emissions by enabling generators and chillers to operate under steady high efficiency conditions at all times of the day.

Samuelsen, Scott; Brouwer, Jack

2013-08-31T23:59:59.000Z

159

To appear in IET Generation, Transmission and Distribution, special issue on "Markets and Economics in Power Systems" 1 Abstract: This paper proposes a novel reactive power dispatch model that takes into account both the technical and  

E-Print Network [OSTI]

-Defining the Reactive Power Dispatch Problem in the Context of Competitive Electricity Markets C. A. Cañizares K in Power Systems" 1 Abstract: This paper proposes a novel reactive power dispatch model that takes into account both the technical and economical aspects associated with reactive power dispatch in the context

Cañizares, Claudio A.

160

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

a Direct-Hydrogen, Load-Following Fuel Cell Vehicle, SAEversus a Direct-Hydrogen Load-Following Fuel Cell Vehicle,vehicle model of a load-following direct hydrogen fuel cell

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Load Management for Industry  

E-Print Network [OSTI]

In the electric utility industry, load management provides the opportunity to control customer loads to beneficially alter a utility's load curve Load management alternatives are covered. Load management methods can be broadly classified into four...

Konsevick, W. J., Jr.

1982-01-01T23:59:59.000Z

162

Nuclear-Renewable Hybrid System Economic Basis for Electricity, Fuel, and Hydrogen  

SciTech Connect (OSTI)

Concerns about climate change and altering the ocean chemistry are likely to limit the use of fossil fuels. That implies a transition to a low-carbon nuclear-renewable electricity grid. Historically variable electricity demand was met using fossil plants with low capital costs, high operating costs, and substantial greenhouse gas emissions. However, the most easily scalable very-low-emissions generating options, nuclear and non-dispatchable renewables (solar and wind), are capital-intensive technologies with low operating costs that should operate at full capacities to minimize costs. No combination of fully-utilized nuclear and renewables can meet the variable electricity demand. This implies large quantities of expensive excess generating capacity much of the time. In a free market this results in near-zero electricity prices at times of high nuclear renewables output and low electricity demand with electricity revenue collapse. Capital deployment efficiencythe economic benefit derived from energy systems capital investment at a societal levelstrongly favors high utilization of these capital-intensive systems, especially if low-carbon nuclear renewables are to replace fossil fuels. Hybrid energy systems are one option for better utilization of these systems that consumes excess energy at times of low prices to make some useful product.The economic basis for development of hybrid energy systems is described for a low-carbon nuclear renewable world where much of the time there are massivequantities of excess energy available from the electric sector.Examples include (1) high-temperature electrolysis to generate hydrogen for non-fossil liquid fuels, direct use as a transport fuel, metal reduction, etc. and (2) biorefineries.Nuclear energy with its concentrated constant heat output may become the enabling technology for economically-viable low-carbon electricity grids because hybrid nuclear systems may provide an economic way to produce dispatachable variable electricity with economic base-load operation of the reactor.

Charles Forsberg; Steven Aumeier

2014-04-01T23:59:59.000Z

163

Abstract--This paper proposes a multi-hour thermal load dispatch model (24-hour time horizon) controlling NOx emission  

E-Print Network [OSTI]

and the Netherlands are among the most advanced countries in relation to environmental pollution control. USA pioneered the Clean Air Act (CAA) in 1963 which established a criteria pollutants list considered dangerous of this pollutant, damage and control, can be obtained from [12]. These developments in US environmental regulations

Catholic University of Chile (Universidad Católica de Chile)

164

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network [OSTI]

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

165

IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 29, NO. 4, DECEMBER 2014 957 Decentralized Optimal Dispatch of Photovoltaic  

E-Print Network [OSTI]

Dispatch of Photovoltaic Inverters in Residential Distribution Systems Emiliano Dall'Anese, Member, IEEE photovoltaic (PV) in- verters are developed in this paper. It is known that conventional PV inverter), photovoltaic systems, sparsity, voltage regulation. I. INTRODUCTION THE PROLIFERATION of residential

Giannakis, Georgios

166

arXiv:1008.3932v2[cs.SY]13Sep2010 Multiple Timescale Dispatch and Scheduling for  

E-Print Network [OSTI]

Reliability in Smart Grids with Wind Generation Integration Miao He and Sugumar Murugesan and Junshan Zhang with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider information on wind generation and energy demands, we char- acterize the optimal procurement of the energy

Zhang, Junshan

167

Funnel for fuel pin loading system  

DOE Patents [OSTI]

An enlarged funnel is releasably mounted at the open end of a length of cladding by an encircling length of shrink tubing which securely engages outer surfaces of both the funnel and cladding. The shrink tubing overlaps an annular shoulder against which pulling force can be exerted to remove the tubing from the cladding. The shoulder can be provided on a separate collar or ring, or on the funnel itself.

Christiansen, David W. (Kennewick, WA); Steffen, Jim M. (Richland, WA); Brown, William F. (West Richland, WA)

1985-01-01T23:59:59.000Z

168

A University of Alabama Fuel Cell Electronic Integration  

E-Print Network [OSTI]

the ability of hydrogen fuel cells to H2 tank Loads ­ Study the ability of hydrogen fuel cells to respondCAVT A University of Alabama Fuel Cell Electronic Integration y Research Center OBJECTIVE ­ Study to rapid load changes MOTIVATION Fuel cell ­ Automotive cycles include rapid load changes (passing

Carver, Jeffrey C.

169

Fuel transfer system  

DOE Patents [OSTI]

A nuclear fuel bundle fuel transfer system includes a transfer pool containing water at a level above a reactor core. A fuel transfer machine therein includes a carriage disposed in the transfer pool and under the water for transporting fuel bundles. The carriage is selectively movable through the water in the transfer pool and individual fuel bundles are carried vertically in the carriage. In a preferred embodiment, a first movable bridge is disposed over an upper pool containing the reactor core, and a second movable bridge is disposed over a fuel storage pool, with the transfer pool being disposed therebetween. A fuel bundle may be moved by the first bridge from the reactor core and loaded into the carriage which transports the fuel bundle to the second bridge which picks up the fuel bundle and carries it to the fuel storage pool. 6 figures.

Townsend, H.E.; Barbanti, G.

1994-03-01T23:59:59.000Z

170

Innovation Fuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation Fuels Jump to: navigation, search

171

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

SciTech Connect (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

172

Using market-based dispatching with environmental price signals to reduce emissions and water use at power plants in the Texas grid  

E-Print Network [OSTI]

The possibility of using electricity dispatching strategies to achieve a 50% nitrogen oxide (NOx) emission reduction from electricity generating units was examined using the grid of the Electricity Reliability Council of ...

Alhajeri, Nawaf S.

173

Automatic load follow control system for PWR plants  

SciTech Connect (OSTI)

In Japan, load follow operation (daily load follow, automatic frequency control (AFC) operation, and governor free (GF) operation) of nuclear plants will be required in the near future to control grid frequency, as the ratio of nuclear plant electrical production to total grid production will increase. The AFC operation regulated power by demand from the central load dispatcher to control mainly the fringe component of the grid frequency fluctuation, and GF operation regulates power by turbine revolution or grid frequency to control mainly the cyclic component of grid frequency fluctuation. This paper deals with the automatic power distribution control system, which is important to load follow operation and possibly will be applied to pressurized water reactor (PWR) nuclear plants. The reactor control systems noted below are conventional design with some improvements for AFC/GF operation, so that the reactor operates the turbine as before: (1) rod control system (reactor power control); (2) pressurizer pressure control system; (3) pressurizer level control system; and (4) steam generator level control system.

Nakakura, H.; Ishiguro, A.

1987-01-01T23:59:59.000Z

174

Commercial Building Loads Providing Ancillary Services in PJM  

SciTech Connect (OSTI)

The adoption of low carbon energy technologies such as variable renewable energy and electric vehicles, coupled with the efficacy of energy efficiency to reduce traditional base load has increased the uncertainty inherent in the net load shape. Handling this variability with slower, traditional resources leads to inefficient system dispatch, and in some cases may compromise reliability. Grid operators are looking to future energy technologies, such as automated demand response (DR), to provide capacity-based reliability services as the need for these services increase. While DR resources are expected to have the flexibility characteristics operators are looking for, demonstrations are necessary to build confidence in their capabilities. Additionally, building owners are uncertain of the monetary value and operational burden of providing these services. To address this, the present study demonstrates the ability of demand response resources providing two ancillary services in the PJM territory, synchronous reserve and regulation, using an OpenADR 2.0b signaling architecture. The loads under control include HVAC and lighting at a big box retail store and variable frequency fan loads. The study examines performance characteristics of the resource: the speed of response, communications latencies in the architecture, and accuracy of response. It also examines the frequency and duration of events and the value in the marketplace which can be used to examine if the opportunity is sufficient to entice building owners to participate.

MacDonald, Jason; Kiliccote, Sila; Boch, Jim; Chen, Jonathan; Nawy, Robert

2014-06-27T23:59:59.000Z

175

Technical Assistance to ISO's and Grid Operators For Loads Providing...  

Broader source: Energy.gov (indexed) [DOE]

Ancillary Services: Review of International Experience Increasing Renewable Energy with Hydrogen Storage and Fuel Cell Technologies 2012 Load as a Resource Program Peer Review...

176

HCCI Combustion: the Sources of Emissions at Low Loads and the...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion: the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection HCCI Combustion: the Sources of Emissions at Low Loads and the Effects of GDI Fuel Injection...

177

The Effect of Diesel Fuel Properties on Emissions-Restrained...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at Mid-Load Conditions The Effect of Diesel Fuel Properties on Emissions-Restrained Fuel Economy at...

178

Organic fuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan:OregonTransmissionHeader.png Roadmap AgencyOrford,Organic

179

Platte Valley Fuel Ethanol | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump81647° LoadingPlainPlano,PlattePlatte County

180

Planet Fuels | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierceJump81647° LoadingPlain City,Plaistow,Ltd Jump to:

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Evaluation of the megawatt demand setter for load-follow operation of C-E's SYSTEM 80+  

SciTech Connect (OSTI)

The Megawatt Demand Setter (MDS) is a digital supervisory control system that automatically assures that the turbine load is consistent with plant operating limits for critical parameters. The MDS is designed to avert plant trips by limiting the load demand during load transients and by reducing the turbine load if plant operating limits are approached or violated. The MDS, devised and patented by Combustion Engineering, Inc., in the 1970s for automatic load dispatching, has been installed at two plants. Those plants have since been operated in a base-load capacity, however, and have not needed to implement the load-follow capabilities of the MDS. As the percentage of electricity generated by nuclear units increases, the need to implement such load-follow capabilities will also increase. Combustion Engineering intends to incorporate improved load-follow capability in its SYSTEM 80+ nuclear steam supply system (NSSS) design. One aspect of this will be incorporation of the MDS in the design of the NUPLEX 80+ advanced control complex for system 80+. This paper presents an evaluation of two major design features of the MDS for load-follow operation based on simulation of SYSTEM 80+ plant responses.

Choi, J.I.; Scarola, K.

1989-01-01T23:59:59.000Z

182

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

May 13 - 16, Appendix I Fuel cell hybrid vehicles with load510 cm 2 ) Appendix II Fuel cell vehicles with power assistcm 2 ) Appendix III Fuel cell vehicles with load leveling

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

183

Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1  

SciTech Connect (OSTI)

This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

None

1995-10-01T23:59:59.000Z

184

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network [OSTI]

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

185

2011/2012 Economic Dispatch and Technological Change - Report to Congress  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) |the Fuel Cell(September 2012) |

186

Fossil fuels -- future fuels  

SciTech Connect (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

187

Reliability of islanded microgrids with stochastic generation and prioritized load  

E-Print Network [OSTI]

The potential to improve distribution system reliability is a primary motivation behind the development and deployment of microgrids. Previous studies have illustrated substantial reliability benefits of dispatchable ...

Marden, Mirjana Milosevic

188

Solar resource: Utility load-matching assessment. Interim subcontract report, 20 September 1991--19 December 1993  

SciTech Connect (OSTI)

This report describes work performed to estimate the load-matching capability of photovoltaics (PV) for a selected group of utilities in the continental United States. The report provides an initial quantitative estimate of this capability for 20 utilities. This characteristic is important because it may indicate that the effective capacity, hence the value, of PV is higher than is traditionally assigned to such non-controllable, non-dispatchable resources. Load-matching capability is determined experimentally by analyzing the interaction between the load requirements of each utility and the output of locally sited PV systems. This type of investigation requires site- and time-specific insolation data that are not commonly available. Here, the needed data were inferred from geostationary satellite remote sensing of the Earth`s cloud cover. A secondary objective of this study was to evaluate the suitability of this approach. The results of this investigation are presented in this report.

Perez, R.; Seals, R.; Stewart, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1994-03-01T23:59:59.000Z

189

MCO loading and cask loadout technical manual  

SciTech Connect (OSTI)

A compilation of the technical basis for loading a multi-canister overpack (MCO) with spent nuclear fuel and then placing the MCO into a cask for shipment to the Cold Vacuum Drying Facility. The technical basis includes a description of the process, process technology that forms the basis for loading alternatives, process control considerations, safety considerations, equipment description, and a brief facility structure description.

PRAGA, A.N.

1998-10-01T23:59:59.000Z

190

1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program  

E-Print Network [OSTI]

, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power1 | Fuel Cell Technologies Program eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies

191

THE VALUE OF ECONOMIC DISPATCH A REPORT TO CONGRESS PURSUANT TO SECTION  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof theRestoration at YoungSuspect|

192

Load sensing system  

DOE Patents [OSTI]

A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast

Sohns, Carl W. (Oak Ridge, TN); Nodine, Robert N. (Knoxville, TN); Wallace, Steven Allen (Knoxville, TN)

1999-01-01T23:59:59.000Z

193

Fuel Cell Stack Components BipolarPlate  

E-Print Network [OSTI]

Fuel Cell Stack Components Fuel Processor BipolarPlate Cathode+ Anode- Electrolyte H+ H+ HYDROGEN · Low-Platinum and Platinum-Free Catalysts for Oxygen Reduction at PEM Fuel Cell Cathodes · Low-Platinum-Loading Catalysts for Fuel Cells · Scale-Up of Carbon/Carbon Composite Bipolar Plates #12;Stack Component Projects

194

Property:Geothermal/LoadFactor | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug

195

Nuvera Fuel Cells | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska:Nutley, New Jersey: EnergyNuvera Fuel

196

Parasitic load control system for exhaust temperature control  

DOE Patents [OSTI]

A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

Strauser, Aaron D. (Washington, IL); Coleman, Gerald N. (Peterborough, GB); Coldren, Dana R. (Fairbury, IL)

2009-04-28T23:59:59.000Z

197

Load regulating expansion fixture  

DOE Patents [OSTI]

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

Wagner, L.M.; Strum, M.J.

1998-12-15T23:59:59.000Z

198

Load regulating expansion fixture  

DOE Patents [OSTI]

A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

Wagner, Lawrence M. (San Jose, CA); Strum, Michael J. (San Jose, CA)

1998-01-01T23:59:59.000Z

199

Load sensing system  

DOE Patents [OSTI]

A load sensing system inexpensively monitors the weight and temperature of stored nuclear material for long periods of time in widely variable environments. The system can include an electrostatic load cell that encodes weight and temperature into a digital signal which is sent to a remote monitor via a coaxial cable. The same cable is used to supply the load cell with power. When multiple load cells are used, vast inventories of stored nuclear material can be continuously monitored and inventoried of minimal cost. 4 figs.

Sohns, C.W.; Nodine, R.N.; Wallace, S.A.

1999-05-04T23:59:59.000Z

200

Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA  

E-Print Network [OSTI]

Forest fuel mapping and evaluation of LANDFIRE fuel maps in Boulder County, Colorado, USA Kevin fuels to accumulate where previously frequent fires prevailed (Covington and Moore, 1994; Caprio management and mitigation is quantifying the fuel load and spatial arrangement of combustible material across

Stephens, Scott L.

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

WIPP radiological assistance team dispatched to Los Alamos as precautionary measure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory30, 2014 WIPP3,2,Radiological

202

Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment511Laws & Requirements

203

Jefferson Lab gets stimulus money (Richmond Times-Dispatch) | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJefferson Lab

204

16 Load Data Cleansing and Bus Load  

E-Print Network [OSTI]

-to-day operations, system analysis in smart grids, system visualization, system performance reliability, energy..............................................................................................................397 #12;376 Smart Grids The load forecast generally provides annual peak values for the whole system saving, and accuracy in system planning [14]. * This work is partly supported by a collaborative

Wang, Ke

205

Nuvera Fuel Cells Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska:Nutley, New Jersey: Energy

206

Other Alternative Fuel Vehicles | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont: EnergyThisOthello, Washington:

207

MassBioFuel | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a townLoading map...(Redirected25. It

208

Pacific Fuel Cell Corporation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP EquipmentPartners LLC Jump to:

209

Patriot Renewable Fuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,OrleansPassadumkeag, Maine: Energy Resources

210

Fuel pin  

DOE Patents [OSTI]

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

211

Short-Term Load Forecasting This paper discusses the state of the art in short-term load fore-  

E-Print Network [OSTI]

spectrum of time intervals. In therange of seconds, when load variationsare small and random, the automatic by a number of generation control functions such as hydro scheduling, unit commitment, hydro-ther- mal present, functions such as fuel, hydro, and maintenance scheduling are performed to ensure that the load

Gross, George

212

Scalable Load Distribution and Load Balancing for Dynamic Parallel Programs  

E-Print Network [OSTI]

shown that the algorithm scales according to the definition of scalability given following. LoadScalable Load Distribution and Load Balancing for Dynamic Parallel Programs E. Berger and J. C of an integrated load distribution-load balancing algorithm which was targeted to be both efficient and scalable

Berger, Emery

213

E-Print Network 3.0 - alternate hold loading Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 16-18, 2011, Pueblo, Colorado, USA JRC2011-56049 REVIEW OF INTERMODAL TRAIN LOADING METRICS... in significant fuel expenditures, and opportunities exist to reduce the...

214

Performance Characterization of a Medium-Duty Diesel Engine with Bio-Diesel and Petroleum Diesel Fuels  

E-Print Network [OSTI]

Torque Performance Curve. ...............35 Figure 9: Torque versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads....................................................................................36 Figure 10: Cycle fuel flow... versus engine speed for conventional diesel fuel for 20%, 60%, and 75% loads...........................................................................38 Figure 11: BSFC versus engine speed for conventional diesel fuel for 20%, 60%, and 75% load...

Esquivel, Jason

2010-01-16T23:59:59.000Z

215

Dual fueling of a Caterpillar 3406 diesel engine  

SciTech Connect (OSTI)

A Caterpillar 3406 turbocharged diesel engine was converted to operate in a dual-fuel mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full load power was achieved with dual fueling without knock. Similar fuel efficiencies were obtained with dual fueling a high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50% with dual fueling for all cases investigated. NO{sub x} emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for dual fueling while CO{sub 2} concentrations in the exhaust were reduced for dual fueling.

Bell, S.R.; Midkiff, K.C.; Doughty, G.; Brett, C.E. [Univ. of Alabama, Tuscaloosa, AL (United States)

1996-05-01T23:59:59.000Z

216

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network [OSTI]

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationsand performance. Hybrid vehicles utilizing a load leveling

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

217

advanced mox fuel: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to verify the burnup of plutonium loaded in the reactor as a Mixed Oxide (MOX) fuel. It examines the magnitude and temporal variation in the antineutrino signals expected...

218

Spent fuel storage system for LMFBR fuel experiments  

SciTech Connect (OSTI)

Fuel that had been irradiated in the Argonne National Laboratory Experimental Breeder Reactor II (EBR-II) at Idaho Falls, Idaho, and examined at the Hanford Engineering Development Laboratory at Richland, Washington, was placed in long term retrievable storage utilizing a system designed at Hanford. The Spent Fuel Storage Cask system was designed for transport and storage of a large quantity of spent fuel at the Hanford 200 Area transuranic (TRU) asphalt storage pad. The entire system is designed for long term retrievable storage to allow future reprocessing of the fuel. The system was designed to meet the criticality, shielding, and thermal requirements for a maximum fuel load of four kilograms fissile. The Spent Fuel Storage Cask was built to transport and store the fuel from EBR-II on the TRU asphalt storage pad.

Seay, J.M.; Gruber, W.J.

1983-01-01T23:59:59.000Z

219

Load research manual. Volume 3. Load research for advanced technologies  

SciTech Connect (OSTI)

This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

None

1980-11-01T23:59:59.000Z

220

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015 7:00FuelFuelFuel

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

LWR fuel assembly designs for the transmutation of LWR Spent Fuel TRU with FCM and UO{sub 2}-ThO{sub 2} Fuels  

SciTech Connect (OSTI)

In this paper, transmutation of transuranic (TRU) nuclides from LWR spent fuels is studied by using LWR fuel assemblies which consist of UO{sub 2}-ThO{sub 2} fuel pins and FCM (Fully Ceramic Microencapsulated) fuel pins. TRU from LWR spent fuel is loaded in the kernels of the TRISO particle fuels of FCM fuel pins. In the FCM fuel pins, the TRISO particle fuels are distributed in SiC matrix having high thermal conductivity. The loading patterns of fuel pins and the fuel compositions are searched to have high transmutation rate and feasible neutronic parameters including pin power peaking, temperature reactivity coefficients, and cycle length. All studies are done only in fuel assembly calculation level. The results show that our fuel assembly designs have good transmutation performances without multi-recycling and without degradation of the safety-related neutronic parameters. (authors)

Bae, G.; Hong, S. G. [Department of Nuclear Engineering, KyungHee University, 1732 Deokyoungdaero, Giheung-gu, Yongin, Gyeonggi-do, 446-701 (Korea, Republic of)

2013-07-01T23:59:59.000Z

222

Load Monitoring CEC/LMTF Load Research Program  

SciTech Connect (OSTI)

This white paper addresses the needs, options, current practices of load monitoring. Recommendations on load monitoring applications and future directions are also presented.

Huang, Zhenyu; Lesieutre, B.; Yang, Steve; Ellis, A.; Meklin, A.; Wong, B.; Gaikwad, A.; Brooks, D.; Hammerstrom, Donald J.; Phillips, John; Kosterev, Dmitry; Hoffman, M.; Ciniglio, O.; Hartwell, R.; Pourbeik, P.; Maitra, A.; Lu, Ning

2007-11-30T23:59:59.000Z

223

Wind Energy Management System Integration Project Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations  

SciTech Connect (OSTI)

The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation) and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. In order to improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively, by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. In this report, a new methodology to predict the uncertainty ranges for the required balancing capacity, ramping capability and ramp duration is presented. Uncertainties created by system load forecast errors, wind and solar forecast errors, generation forced outages are taken into account. The uncertainty ranges are evaluated for different confidence levels of having the actual generation requirements within the corresponding limits. The methodology helps to identify system balancing reserve requirement based on a desired system performance levels, identify system breaking points, where the generation system becomes unable to follow the generation requirement curve with the user-specified probability level, and determine the time remaining to these potential events. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (California ISO) real life data have shown the effectiveness of the proposed approach. A tool developed based on the new methodology described in this report will be integrated with the California ISO systems. Contractual work is currently in place to integrate the tool with the AREVA EMS system.

Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

2010-09-01T23:59:59.000Z

224

Composite Load Model Evaluation  

SciTech Connect (OSTI)

The WECC load modeling task force has dedicated its effort in the past few years to develop a composite load model that can represent behaviors of different end-user components. The modeling structure of the composite load model is recommended by the WECC load modeling task force. GE Energy has implemented this composite load model with a new function CMPLDW in its power system simulation software package, PSLF. For the last several years, Bonneville Power Administration (BPA) has taken the lead and collaborated with GE Energy to develop the new composite load model. Pacific Northwest National Laboratory (PNNL) and BPA joint force and conducted the evaluation of the CMPLDW and test its parameter settings to make sure that: the model initializes properly, all the parameter settings are functioning, and the simulation results are as expected. The PNNL effort focused on testing the CMPLDW in a 4-bus system. An exhaustive testing on each parameter setting has been performed to guarantee each setting works. This report is a summary of the PNNL testing results and conclusions.

Lu, Ning; Qiao, Hong (Amy)

2007-09-30T23:59:59.000Z

225

Spinning Reserve From Hotel Load Response: Initial Progress  

SciTech Connect (OSTI)

This project was motivated by the fundamental match between hotel space conditioning load response capability and power system contingency response needs. As power system costs rise and capacity is strained demand response can provide a significant system reliability benefit at a potentially attractive cost. At ORNL s suggestion, Digital Solutions Inc. adapted its hotel air conditioning control technology to supply power system spinning reserve. This energy saving technology is primarily designed to provide the hotel operator with the ability to control individual room temperature set-points based upon occupancy (25% to 50% energy savings based on an earlier study [Kirby and Ally, 2002]). DSI added instantaneous local load shedding capability in response to power system frequency and centrally dispatched load shedding capability in response to power system operator command. The 162 room Music Road Hotel in Pigeon Forge Tennessee agreed to host the spinning reserve test. The Tennessee Valley Authority supplied real-time metering equipment in the form of an internet connected Dranetz-BMI power quality meter and monitoring expertise to record total hotel load during both normal operations and test results. The Sevier County Electric System installed the metering. Preliminary testing showed that hotel load can be curtailed by 22% to 37% depending on the outdoor temperature and the time of day. These results are prior to implementing control over the common area air conditioning loads. Testing was also not at times of highest system or hotel loading. Full response occurred in 12 to 60 seconds from when the system operator s command to shed load was issued. The load drop was very rapid, essentially as fast as the 2 second metering could detect, with all units responding essentially simultaneously. Load restoration was ramped back in over several minutes. The restoration ramp can be adjusted to the power system needs. Frequency response testing was not completed. Initial testing showed that the units respond very quickly. Problems with local power quality generated false low frequency signals which required testing to be stopped. This should not be a problem in actual operation since the frequency trip points will be staggered to generate a droop curve which mimics generator governor response. The actual trip frequencies will also be low enough to avoid power quality problems. The actual trip frequencies are too low to generate test events with sufficient regularity to complete testing in a reasonable amount of time. Frequency response testing will resume once the local power quality problem is fully understood and reasonable test frequency settings can be determined. Overall the preliminary testing was extremely successful. The hotel response capability matches the power system reliability need, being faster than generation response and inherently available when the power system is under the most stress (times of high system and hotel load). Periodic testing is scheduled throughout the winter and spring to characterize hotel response capability under a full range of conditions. More extensive testing will resume when summer outdoor temperatures are again high enough to fully test hotel response.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL

2008-11-01T23:59:59.000Z

226

Integrated Fuel Cell Technologies IFCT | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) ErrorEnergyInnovation FuelsIntegrated Fuel Cell

227

Fuel assembly transfer basket for pool type nuclear reactor vessels  

DOE Patents [OSTI]

A fuel assembly transfer basket for a pool type, liquid metal cooled nuclear reactor having a side access loading and unloading port for receiving and relinquishing fuel assemblies during transfer.

Fanning, Alan W. (San Jose, CA); Ramsour, Nicholas L. (San Jose, CA)

1991-01-01T23:59:59.000Z

228

Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.  

SciTech Connect (OSTI)

The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

Ahluwalia, R.; Doss, E.D.; Kumar, R.

1998-10-19T23:59:59.000Z

229

1 | Fuel Cell Technologies Program Source: US DOE 12/19/2013 eere.energy.gov Fuel Cell Technologies Office  

E-Print Network [OSTI]

% Canada 2% Taiwan 2% France 2% Germany 6% Korea 7% Japan 33% Fuel Cell Patents Geographic Distribution and Biogas New World Trade Center will use 12 fuel cells totaling 4.8MW Critical Loads- e.g. banks, hospitals

230

Natural gas fueling of a Catepillar 3406 diesel engine  

SciTech Connect (OSTI)

This paper reports on a Caterpillar 3406 turbocharged diesel engine which was converted to operate in a natural gas with diesel pilot ignition mode and was evaluated for performance and emission characteristics for both diesel and natural gas operation. Full-load power was achieved with natural gas fueling without knock. Similar fuel efficiencies were obtained with natural gas fueling at high loads, but efficiencies were lower for low loads. Bosch smoke numbers were reduced by over 50 percent with natural gas fueling for all cases investigated. NO[sub x] emissions were found to be lower at low loads and at high speeds under high load. CO emissions were significantly increased for natural gas fueling while CO[sub 2] concentrations in the exhaust were reduced for natural gas fueling.

Doughty, G.E.; Bell, S.R.; Midkiff, K.C. (Dept. of Mechanical Engineering, Univ. of Alabama, Tuscaloosa, AL (United States))

1992-07-01T23:59:59.000Z

231

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

232

Assessment of uranium-free nitride fuels for spent fuel transmutation in fast reactor systems  

E-Print Network [OSTI]

. ....................................................................................... 18 Fig. 4. Standard PWR core model with fresh, once- and twice-burned fuel, and the location of MOX fuel assemblies with respect to original layout, 32% MOX loading................................................................................................................ 21 Fig. 5. Control rod locations......................................................................................... 21 Fig. 6. Net change of U, Pu and Am for PWR and 1/3 MOX fueled whole cores, 360 day burn...

Szakaly, Frank Joseph

2004-09-30T23:59:59.000Z

233

Fuel Economy  

Broader source: Energy.gov [DOE]

The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

234

Thermomechanical Loading Applied on the Cladding Tube During the Pellet Cladding  

E-Print Network [OSTI]

Thermomechanical Loading Applied on the Cladding Tube During the Pellet Cladding Mechanical the evolution of the ther- momechanical loading applied on the cladding tube during the Pellet- Cladding fuel pellets [1]. As a conse- quence, the pellets from the surrounding fuel rods expand suddenly, which

235

HLW Glass Waste Loadings  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoingGuidelines forofHCHEFA andHI

236

Transportation Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatusButler TinaContact-Information-TransmissionLaboratoryFuels

237

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing | ArgonnechallengingFryFuel

238

Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design  

SciTech Connect (OSTI)

The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.

Forsberg, C. [Massachusetts Institute of Technology, 77 Massachusetts Ave., Room 24-207A Cambridge, MA 02139 (United States); Miller, W.F. [Texas A.M. University System, MS 3133 College Station, TX 77843-3133 (United States)

2013-07-01T23:59:59.000Z

239

Preliminary study on direct recycling of spent PWR fuel in PWR system  

SciTech Connect (OSTI)

Preliminary study on direct recycling of PWR spent fuel to support SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario has been conducted. Several spent PWR fuel compositions in loaded PWR fuel has been evaluated to obtain the criticality of reactor. The reactor can achieve it criticality for U-235 enrichment in the loaded fresh fuel is at least 4.0 a% with the minimum fraction of the spent fuel in the core is 15.0 %. The neutron spectra become harder with the escalating of U-235 enrichment in the loaded fresh fuel as well as the amount of the spent fuel in the core.

Waris, Abdul; Nuha; Novitriana; Kurniadi, Rizal; Su'ud, Zaki [Nuclear Physics and Biophysics Research Division, Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa 10 Bandung 40132 (Indonesia)

2012-06-06T23:59:59.000Z

240

Load Management Made Simple  

E-Print Network [OSTI]

Company have moved to a demand side or load management mode which seeks to influence customers to change electric usage patterns to more efficiently use available generating capacity. Since 1970, the TUEC system peak demand has more than doubled from about...

Schneider, K.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cooling load estimation methods  

SciTech Connect (OSTI)

Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

McFarland, R.D.

1984-01-01T23:59:59.000Z

242

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

May 13 - 16, Appendix I Fuel cell hybrid vehicles with loadarea: 510 cm 2 ) Appendix II Fuel cell vehicles with powerarea: 510 cm 2 ) Appendix III Fuel cell vehicles with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

243

Assessment of innovative fuel designs for high performance light water reactors  

E-Print Network [OSTI]

To increase the power density and maximum allowable fuel burnup in light water reactors, new fuel rod designs are investigated. Such fuel is desirable for improving the economic performance light water reactors loaded with ...

Carpenter, David Michael

2006-01-01T23:59:59.000Z

244

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect (OSTI)

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K. NNL

2011-01-13T23:59:59.000Z

245

An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle  

SciTech Connect (OSTI)

Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

Evans, Louise G [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, S. J. [Los Alamos National Laboratory; Boyer, B. D. [Los Alamos National Laboratory; Menlove, H. O. [Los Alamos National Laboratory; Schear, M. A. [Los Alamos National Laboratory; Worrall, Andrew [U.K., NNL

2010-11-24T23:59:59.000Z

246

Biodiesel Fuel  

E-Print Network [OSTI]

publication 442-880 There are broad and increasing interests across the nation in using domestic, renewable bioenergy. Virginia farmers and transportation fleets use considerable amounts of diesel fuel in their operations. Biodiesel is an excellent alternative fuel for the diesel engines. Biodiesel can be produced from crops commonly grown in Virginia, such as soybean and canola, and has almost the same performance as petrodiesel. The purpose of this publication is to introduce the basics of biodiesel fuel and address some myths and answer some questions about biodiesel fuel before farmers and fleet owners use this type of fuel. ASTM standard for biodiesel (ASTM D6751) Biodiesel fuel, hereafter referred to as simply biodiesel,

unknown authors

247

Fuel Cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityFieldMinds"OfficeTourFrom3, 2015

248

Incorporating Wind Generation Forecast Uncertainty into Power System Operation, Dispatch, and Unit Commitment Procedures  

SciTech Connect (OSTI)

In this paper, an approach to evaluate the uncertainties of the balancing capacity, ramping capability, and ramp duration requirements is proposed. The approach includes three steps: forecast data acquisition, statistical analysis of retrospective information, and prediction of grid balancing requirements for a specified time horizon and a given confidence level. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on histogram analysis, incorporating sources of uncertainty of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the "flying-brick" technique is developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation process is used to validate the accuracy of the confidence intervals. To demonstrate the validity of the developed uncertainty assessment methods and its impact on grid operation, a framework for integrating the proposed methods with an EMS system is developed. Demonstration through integration with an EMS system illustrates the applicability of the proposed methodology and the developed tool for actual grid operation and paves the road for integration with EMS systems from other vendors.

Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Subbarao, Krishnappa

2010-10-19T23:59:59.000Z

249

Utilization of alternative fuels in diesel engines  

SciTech Connect (OSTI)

The important findings for a 41-month research grant entitled The Utilization of Alternate Fuels in Diesel Engines are summarized. The procedure followed was to collect performance and emission data for various candidate alternate fuels and compare these data to that for a certified petroleum-based number two Diesel fuel oil. The method of test-fuel introduction was either via fumigation or to use the engine stock injection system. Results for methanol, ethanol, four vegetable oils, two shale-derived oils, and two coal-derived oils are reported. Based upon this study, alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. The reasons being, the need for a complex fuel management system and a narrow operating range bounded by wet misfire on the low load end and by severe knock at medium to high loads. Also, it was misfire on the low load end and by severe knock at medium to high loads. Also, it was found that alcohol fumigation enhances the bioactivity of the emitted exhaust particles. Finally, this study showed that while it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum-based Diesel oil.

Lestz, S.S.

1984-05-01T23:59:59.000Z

250

FUEL ASSEMBLY SHAKER TEST SIMULATION  

SciTech Connect (OSTI)

This report describes the modeling of a PWR fuel assembly under dynamic shock loading in support of the Sandia National Laboratories (SNL) shaker test campaign. The focus of the test campaign is on evaluating the response of used fuel to shock and vibration loads that a can occur during highway transport. Modeling began in 2012 using an LS-DYNA fuel assembly model that was first created for modeling impact scenarios. SNLs proposed test scenario was simulated through analysis and the calculated results helped guide the instrumentation and other aspects of the testing. During FY 2013, the fuel assembly model was refined to better represent the test surrogate. Analysis of the proposed loads suggested the frequency band needed to be lowered to attempt to excite the lower natural frequencies of the fuel assembly. Despite SNLs expansion of lower frequency components in their five shock realizations, pretest predictions suggested a very mild dynamic response to the test loading. After testing was completed, one specific shock case was modeled, using recorded accelerometer data to excite the model. Direct comparison of predicted strain in the cladding was made to the recorded strain gauge data. The magnitude of both sets of strain (calculated and recorded) are very low, compared to the expected yield strength of the Zircaloy-4 material. The model was accurate enough to predict that no yielding of the cladding was expected, but its precision at predicting micro strains is questionable. The SNL test data offers some opportunity for validation of the finite element model, but the specific loading conditions of the testing only excite the fuel assembly to respond in a limited manner. For example, the test accelerations were not strong enough to substantially drive the fuel assembly out of contact with the basket. Under this test scenario, the fuel assembly model does a reasonable job of approximating actual fuel assembly response, a claim that can be verified through direct comparison of model results to recorded test results. This does not offer validation for the fuel assembly model in all conceivable cases, such as high kinetic energy shock cases where the fuel assembly might lift off the basket floor to strike to basket ceiling. This type of nonlinear behavior was not witnessed in testing, so the model does not have test data to be validated against.a basis for validation in cases that substantially alter the fuel assembly response range. This leads to a gap in knowledge that is identified through this modeling study. The SNL shaker testing loaded a surrogate fuel assembly with a certain set of artificially-generated time histories. One thing all the shock cases had in common was an elimination of low frequency components, which reduces the rigid body dynamic response of the system. It is not known if the SNL test cases effectively bound all highway transportation scenarios, or if significantly greater rigid body motion than was tested is credible. This knowledge gap could be filled through modeling the vehicle dynamics of a used fuel conveyance, or by collecting acceleration time history data from an actual conveyance under highway conditions.

Klymyshyn, Nicholas A.; Sanborn, Scott E.; Adkins, Harold E.; Hanson, Brady D.

2013-05-30T23:59:59.000Z

251

Load Management: Opportunity or Calamity?  

E-Print Network [OSTI]

larger now than prior to 1973. Utilities are examining two options which can be termed load management. One option is to control discretionary loads during peak periods. Cycling of residential water heaters or shutting off industrial electric furnaces...

Males, R.; Hassig, N.

1981-01-01T23:59:59.000Z

252

Load responsive multilayer insulation performance testing  

SciTech Connect (OSTI)

Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

2014-01-29T23:59:59.000Z

253

Heat Load Experiments at CAMD and CLS D. Yemane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL SecretaryHazmat work opens upDistributionLoad

254

Load-Based (LB) CRAC (rates/adjustments)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and Interfaces Sample6, 2011LiisaInnovationorganizationLiz HartmanLoad-Based

255

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

256

Method of combustion for dual fuel engine  

DOE Patents [OSTI]

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

257

Power Ecalene Fuels Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOskiPhilips ColorLoading map...ClimatePowderOpenEcalene

258

SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS  

SciTech Connect (OSTI)

The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plant and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.

GEUTHER J; CONRAD EA; RHOADARMER D

2009-08-24T23:59:59.000Z

259

INTRODUCTION TEA 21 (Transportation Equity Act 21) of 1998 allows heavy sugarcane truck loads on Louisiana interstate highways.These heavier loads are currently being  

E-Print Network [OSTI]

, are significant parameters of highway traffic.TEA 21 is allowing sugarcane trucks to haul loads up to 100,000 lb that the study include vehicles hauling sugarcane biomass for alternative fuel and electricity generation. DuringINTRODUCTION TEA 21 (Transportation Equity Act 21) of 1998 allows heavy sugarcane truck loads

Harms, Kyle E.

260

Palmetto Fuel Cell Analysis and Design | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP EquipmentPartnersPalisadesPalmco PowerPalmetto

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Phillips BioFuel Supply Co | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: Energy Resources2003) |Facility | OpenPhilips SolarPhillips

262

PrairieFire BioFuels Cooperative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowder River EnergyCubePracticalPower,Wind

263

Infinity Fuel Cell and Hydrogen | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load) Error 429IndianaProfessional Jump to:InergeticInfinity

264

International WoodFuels LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)International AssociationServicesfor Conservation

265

Iowa Renewable Fuels Association IRFA | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (bot load)InternationalRenewableIowa Department ofTexas:

266

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 6, JULY 2012 1061 Decentralized Economic Dispatch in Microgrids via  

E-Print Network [OSTI]

for California Independent System Operator (CAISO) with wind/solar integration [2], and a communications-dependent nature of renewable energy sources. As the accuracy of estimating the capacity of DG units and loads

Shen, Xuemin "Sherman"

267

Intermodal transportation of spent fuel  

SciTech Connect (OSTI)

Concepts for transportation of spent fuel in rail casks from nuclear power plant sites with no rail service are under consideration by the US Department of Energy in the Commercial Spent Fuel Management program at the Pacific Northwest Laboratory. This report identifies and evaluates three alternative systems for intermodal transfer of spent fuel: heavy-haul truck to rail, barge to rail, and barge to heavy-haul truck. This report concludes that, with some modifications and provisions for new equipment, existing rail and marine systems can provide a transportation base for the intermodal transfer of spent fuel to federal interim storage facilities. Some needed land transportation support and loading and unloading equipment does not currently exist. There are insufficient shipping casks available at this time, but the industrial capability to meet projected needs appears adequate.

Elder, H.K.

1983-09-01T23:59:59.000Z

268

Unconventional fuel: Tire derived fuel  

SciTech Connect (OSTI)

Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

Hope, M.W. [Waste Recovery, Inc., Portland, OR (United States)

1995-09-01T23:59:59.000Z

269

Corrosion Minimization for Research Reactor Fuel  

SciTech Connect (OSTI)

Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

Eric Shaber; Gerard Hofman

2005-06-01T23:59:59.000Z

270

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly  

National Nuclear Security Administration (NNSA)

BWR Fuel Assembly BWR Fuel Assembly PWR Fuel Assembly PWR Fuel Assembly The PWR 17x17 assembly is approximately 160 inches long (13.3 feet), 8 inches across, and weighs 1,500 lbs....

271

AMO Industrial Distributed Energy: Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EERE Blog Posts of(Revision 2) |6.pdfALIGNMENT: A CHIEVING MClean

272

Online Load Balancing for Related Machines  

E-Print Network [OSTI]

of entire schedule s as follows: load(s; i) = 1 v i X s(j)=i p j ; Load(s) = max i load(s; i) It is easyOn­line Load Balancing for Related Machines Piotr Berman \\Lambda Moses Charikar y Marek Karpinski z­line load balancing was studied extensively over the years (cf., e.g., [7], [3], [4], and [2

Karpinski, Marek

273

FINAL PROJECT REPORT LOAD MODELING TRANSMISSION RESEARCH  

E-Print Network [OSTI]

componentssuchaspowersources,loads, transformersandcomponentssuchaspowersources,loads, transformersand

Lesieutre, Bernard

2013-01-01T23:59:59.000Z

274

An effective loading method of americium targets in fast reactors  

SciTech Connect (OSTI)

Recently, the development of target fuel with high americium (Am) content has been launched for the reduction of the overall fuel fabrication cost of the minor actinide (MA) recycling. In the framework of the development, this study proposes an effective loading method of Am targets in fast reactors. As a result of parametric survey calculations, we have found the ring-shaped target loading pattern between inner and outer core regions. This loading method is satisfactory both in core characteristics and in MA transmutation property. It should be noted that the Am targets can contribute to the suppression of the core power distribution change due to burnup. The major drawback of Am target is the production of helium gas. A target design modification by increasing the cladding thickness is found to be the most feasible measure to cope with the helium production. (authors)

Ohki, Shigeo; Sato, Isamu; Mizuno, Tomoyasu; Hayashi, Hideyuki; Tanaka, Kenya [Japan Atomic Energy Agency, 4002, Narita-cho, O-arai-machi, Higashi-Ibaraki-gun, Ibaraki 311-1393 (Japan)

2007-07-01T23:59:59.000Z

275

Sandia's research spans generation, storage, and load management at  

E-Print Network [OSTI]

Sandia's research spans generation, storage, and load management at the component and systems kW diesel genset, fuel cells, and additional interchangeable generators. Storage capabilities include a 500 kWh lead-acid battery bank, along with several additional batteries of smaller size. Over

276

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct-Injection Flex-Fuel Engines  

E-Print Network [OSTI]

Modeling the Effect of Fuel Ethanol Concentration on Cylinder Pressure Evolution in Direct the fuel vaporization pro- cess for ethanol-gasoline fuel blends and the associated charge cooling effect experimental cylinder pressure for different gasoline-ethanol blends and various speeds and loads on a 2.0 L

Stefanopoulou, Anna

277

Dynamic load balancing of applications  

DOE Patents [OSTI]

An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated.

Wheat, Stephen R. (Albuquerque, NM)

1997-01-01T23:59:59.000Z

278

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

279

Dynamic load balancing of applications  

DOE Patents [OSTI]

An application-level method for dynamically maintaining global load balance on a parallel computer, particularly on massively parallel MIMD computers is disclosed. Global load balancing is achieved by overlapping neighborhoods of processors, where each neighborhood performs local load balancing. The method supports a large class of finite element and finite difference based applications and provides an automatic element management system to which applications are easily integrated. 13 figs.

Wheat, S.R.

1997-05-13T23:59:59.000Z

280

Fossil Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuels A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Abu-Khamsin, Sidqi - Department of Petroleum Engineering, King Fahd University of Petroleum and Minerals...

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

High-Power Rf Load  

DOE Patents [OSTI]

A compact high-power RF load comprises a series of very low Q resonators, or chokes [16], in a circular waveguide [10]. The sequence of chokes absorb the RF power gradually in a short distance while keeping the bandwidth relatively wide. A polarizer [12] at the input end of the load is provided to convert incoming TE.sub.10 mode signals to circularly polarized TE.sub.11 mode signals. Because the load operates in the circularly polarized mode, the energy is uniformly and efficiently absorbed and the load is more compact than a rectangular load. Using these techniques, a load having a bandwidth of 500 MHz can be produced with an average power dissipation level of 1.5 kW at X-band, and a peak power dissipation of 100 MW. The load can be made from common lossy materials, such as stainless steel, and is less than 15 cm in length. These techniques can also produce loads for use as an alternative to ordinary waveguide loads in small and medium RF accelerators, in radar systems, and in other microwave applications. The design is easily scalable to other RF frequencies and adaptable to the use of other lossy materials.

Tantawi, Sami G. (San Mateo, CA); Vlieks, Arnold E. (Livermore, CA)

1998-09-01T23:59:59.000Z

282

Partial fuel stratification to control HCCI heat release rates : fuel composition and other factors affecting pre-ignition reactions of two-stage ignition fuels.  

SciTech Connect (OSTI)

Homogeneous charge compression ignition (HCCI) combustion with fully premixed charge is severely limited at high-load operation due to the rapid pressure-rise rates (PRR) which can lead to engine knock and potential engine damage. Recent studies have shown that two-stage ignition fuels possess a significant potential to reduce the combustion heat release rate, thus enabling higher load without knock.

Dec, John E.; Sjoberg, Carl-Magnus G.; Cannella, William (Chevron USA Inc.); Yang, Yi; Dronniou, Nicolas

2010-11-01T23:59:59.000Z

283

Corrugated Membrane Fuel Cell Structures  

SciTech Connect (OSTI)

One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

Grot, Stephen [President, Ion Power Inc.] President, Ion Power Inc.

2013-09-30T23:59:59.000Z

284

Dry Transfer Systems for Used Nuclear Fuel  

SciTech Connect (OSTI)

The potential need for a dry transfer system (DTS) to enable retrieval of used nuclear fuel (UNF) for inspection or repackaging will increase as the duration and quantity of fuel in dry storage increases. This report explores the uses for a DTS, identifies associated general functional requirements, and reviews existing and proposed systems that currently perform dry fuel transfers. The focus of this paper is on the need for a DTS to enable transfer of bare fuel assemblies. Dry transfer systems for UNF canisters are currently available and in use for transferring loaded canisters between the drying station and storage and transportation casks.

Brett W. Carlsen; Michaele BradyRaap

2012-05-01T23:59:59.000Z

285

Fuel cell-fuel cell hybrid system  

DOE Patents [OSTI]

A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

Geisbrecht, Rodney A.; Williams, Mark C.

2003-09-23T23:59:59.000Z

286

44-BWR WASTE PACKAGE LOADING CURVE EVALUATION  

SciTech Connect (OSTI)

The objective of this calculation is to evaluate the required minimum burnup as a function of initial boiling water reactor (BWR) assembly enrichment that would permit loading of spent nuclear fuel into the 44 BWR waste package configuration as provided in Attachment IV. This calculation is an application of the methodology presented in ''Disposal Criticality Analysis Methodology Topical Report'' (YMP 2003). The scope of this calculation covers a range of enrichments from 0 through 5.0 weight percent (wt%) U-235, and a burnup range of 0 through 40 GWd/MTU. This activity supports the validation of the use of burnup credit for commercial spent nuclear fuel applications. The intended use of these results will be in establishing BWR waste package configuration loading specifications. Limitations of this evaluation are as follows: (1) The results are based on burnup credit for actinides and selected fission products as proposed in YMP (2003, Table 3-1) and referred to as the ''Principal Isotopes''. Any change to the isotope listing will have a direct impact on the results of this report. (2) The results of 100 percent of the current BWR projected waste stream being able to be disposed of in the 44-BWR waste package with Ni-Gd Alloy absorber plates is contingent upon the referenced waste stream being sufficiently similar to the waste stream received for disposal. (3) The results are based on 1.5 wt% Gd in the Ni-Gd Alloy material and having no tuff inside the waste package. If the Gd loading is reduced or a process to introduce tuff inside the waste package is defined, then this report would need to be reevaluated based on the alternative materials.

J.M. Scaglione

2004-08-25T23:59:59.000Z

287

Gain-scheduled controller design for load-following in static space nuclear power systems  

E-Print Network [OSTI]

of variations in the fuel temperature reactivity feedback coeficient on the load-following capabilities of the SNPS. Robustness analysis results of the gain-scheduled compensator demonstrate that the proposed control concept exhibits a significant degree...

Onbasioglu, Fetiye Ozlem

1993-01-01T23:59:59.000Z

288

Spring loaded locator pin assembly  

DOE Patents [OSTI]

This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece.

Groll, Todd A. (Idaho Falls, ID); White, James P. (Pocatelo, ID)

1998-01-01T23:59:59.000Z

289

Spring loaded locator pin assembly  

DOE Patents [OSTI]

This invention deals with spring loaded locator pins. Locator pins are sometimes referred to as captured pins. This is a mechanism which locks two items together with the pin that is spring loaded so that it drops into a locator hole on the work piece. 5 figs.

Groll, T.A.; White, J.P.

1998-03-03T23:59:59.000Z

290

Load Forecasting of Supermarket Refrigeration  

E-Print Network [OSTI]

energy system. Observed refrigeration load and local ambient temperature from a Danish su- permarket renewable energy, is increasing, therefore a flexible energy system is needed. In the present ThesisLoad Forecasting of Supermarket Refrigeration Lisa Buth Rasmussen Kongens Lyngby 2013 M.Sc.-2013

291

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network [OSTI]

collectors. In a Polymer Electrolyte Membrane (PEM) fuel cell, which is widely regarded as the most promisingFUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fuel Cells -- is the key to making it happen. Stationary fuel cells can be used for backup power, power for remote loca

292

Update on US High Density Fuel Fabrication Development  

SciTech Connect (OSTI)

Second generation uranium molybdenum fuel has shown excellent in-reactor irradiation performance. This metallic fuel type is capable of being fabricated at much higher loadings than any presently used research reactor fuel. Due to the broad range of fuel types this alloy system encompassesfuel powder to monolithic foil and binary fuel systems to multiple element additionssignificant amounts of research and development have been conducted on the fabrication of these fuels. This paper presents an update of the US RERTR effort to develop fabrication techniques and the fabrication methods used for the RERTR-9A miniplate test.

C.R. Clark; G.A. Moore; J.F. Jue; B.H. Park; N.P. Hallinan; D.M. Wachs; D.E. Burkes

2007-03-01T23:59:59.000Z

293

Wind load reduction for heliostats  

SciTech Connect (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

1986-05-01T23:59:59.000Z

294

adopt our eco-driving top tips to reduce fuel costs  

E-Print Network [OSTI]

air conditioning sparingly · All ancillary loads, particularly air conditioning, add to fuel air resistance and fuel consumption at higher speeds. · Keep windows shut at high speed. Lose weight

Harman, Neal.A.

295

ROBUST CONTROL ANALYSIS USING REAL-TIME IMPLEMENTATION OF A HYBRID FUEL CELL POWER GENERATION SYSTEM  

E-Print Network [OSTI]

is performed for a hybrid Fuel Cell/Supercapacitor generation system with power management, realized through converters interfacing the Fuel Cell (FC) and the Supercapacitor (SC) with the system electrical load

Paris-Sud XI, Université de

296

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results  

E-Print Network [OSTI]

supercapacitors. Fuel cell/Li-ion battery hybrids achievedFUDS and US06 cycles Li-ion Battery Coupled to FC DC-Link16 Comparison of fuel cell/Li-ion battery hybrids with load

Zhao, Hengbing; Burke, Andy

2010-01-01T23:59:59.000Z

297

Improving Fuel Economy via Management of Auxiliary Loads in Fuel-Cell Electric Vehicles.  

E-Print Network [OSTI]

??The automotive industry is in a state of flux at the moment. Traditional combustion engine technologies are becoming challenged by newer, more efficient and environmentally (more)

Lawrence, Christopher Paul

2007-01-01T23:59:59.000Z

298

Dwell on Design [Dispatches  

E-Print Network [OSTI]

inno- vation and social innovation. Places like CED areinnovation, reduces CO2 emissions, and effec- tively manages the other social,

Sullivan, Lisa

2007-01-01T23:59:59.000Z

299

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Efficiency EIA Energy Information Administration EMS Energy Management Systems ERCOT Electric Reliability Council of Texas EV Electric Vehicle FERC Federal Energy Regulatory...

300

Power System Dispatcher  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, (J4800) Transmission Scheduling and...

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Apparatus for inspecting fuel elements  

DOE Patents [OSTI]

This disclosure describes an alpha monitor usable in an automated nuclear fuel pin loading and processing unit. Fuel pins or other elongated pins are fed laterally into the alpha monitor in a singular fashion and are translated by a first roller assembly into a weld flare machining and decontamination substation not forming a part of the invention. Pins return and are lifted upwardly and transferred across to a combined pin lifting and electrode operating means which lifts the pins upwardly into a clamshell electrode assembly which is spread open by a combined pin lifting and electrode operating means. Once inserted the clamshell type electrode arrangement closes around the fuel pins so that inspection can occur. Fuel pins are inspected by charging electrodes to a negative potential and measuring the change in charge occurring when positively charged alpha particles strike the negatively charged electrodes. After inspection, the fuel pins are lowered by the pin lifting and electrode operating means into a second roller assembly which longitudinally conveys approved pins from the airtight enclosure in which the alpha monitor is mounted. If the fuel pins are rejected then they are moved laterally by a second transfer means and onto another system for further processing.

Kaiser, B.J.; Oakley, D.J.; Groves, O.J.

1984-12-21T23:59:59.000Z

302

Electrical and Production Load Factors  

E-Print Network [OSTI]

, Texas Abstract Load factors and operating hours of small and medium-sized industrial plants are analyzed to classify shift-work patterns and develop energy conservation diagnostic tools. This paper discusses two types of electric load factors... for each shift classification within major industry groups. The load factor based on billing hours (ELF) increases with operating hours from about 0.4 for a nominal one shift operation, to about 0.7 for around-the-clock operation. On the other hand...

Sen, T.; Heffington, W. M.

303

Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China  

E-Print Network [OSTI]

Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest, Columbia, MO 65211, USA H I G H L I G H T S Focusing on fuel load may ignore effects of other spatial controls on fire. We used burn probability to combine effects of fuel load and other spatial controls

He, Hong S.

304

Transportation Electrification Load Development For A Renewable Future Analysis: Preprint  

SciTech Connect (OSTI)

The transition to electricity as a transportation fuel will create a new load for electricity generation. A set of regional hourly load profiles for electrified vehicles was developed for the 2010 to 2050 timeframe. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market saturation scenarios of 30% and 50% of sales of PEVs consuming on average approx. 6 kWh per day were considered. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across four daily time slices under optimal control from the utility?s perspective. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios.

Markel, T.; Mai, T.; Kintner-Meyer, M.

2010-12-01T23:59:59.000Z

305

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-07-17T23:59:59.000Z

306

Mox fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion. characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

2001-05-15T23:59:59.000Z

307

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly. 38 figs.

Kantrowitz, M.L.; Rosenstein, R.G.

1998-10-13T23:59:59.000Z

308

MOX fuel arrangement for nuclear core  

DOE Patents [OSTI]

In order to use up a stockpile of weapons-grade plutonium, the plutonium is converted into a mixed oxide (MOX) fuel form wherein it can be disposed in a plurality of different fuel assembly types. Depending on the equilibrium cycle that is required, a predetermined number of one or more of the fuel assembly types are selected and arranged in the core of the reactor in accordance with a selected loading schedule. Each of the fuel assemblies is designed to produce different combustion characteristics whereby the appropriate selection and disposition in the core enables the resulting equilibrium cycle to closely resemble that which is produced using urania fuel. The arrangement of the MOX rods and burnable absorber rods within each of the fuel assemblies, in combination with a selective control of the amount of plutonium which is contained in each of the MOX rods, is used to tailor the combustion characteristics of the assembly.

Kantrowitz, Mark L. (Portland, CT); Rosenstein, Richard G. (Windsor, CT)

1998-01-01T23:59:59.000Z

309

Sandia Wind Turbine Loads Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: Decades of Wind Turbine Loads Simulations, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

310

Building load control and optimization  

E-Print Network [OSTI]

Researchers and practitioners have proposed a variety of solutions to reduce electricity consumption and curtail peak demand. This research focuses on load control by improving the operations in existing building HVAC ...

Xing, Hai-Yun Helen, 1976-

2004-01-01T23:59:59.000Z

311

Fuel cell end plate structure  

DOE Patents [OSTI]

The end plates (16) of a fuel cell stack (12) are formed of a thin membrane. Pressure plates (20) exert compressive load through insulation layers (22, 26) to the membrane. Electrical contact between the end plates (16) and electrodes (50, 58) is maintained without deleterious making and breaking of electrical contacts during thermal transients. The thin end plate (16) under compressive load will not distort with a temperature difference across its thickness. Pressure plate (20) experiences a low thermal transient because it is insulated from the cell. The impact on the end plate of any slight deflection created in the pressure plate by temperature difference is minimized by the resilient pressure pad, in the form of insulation, therebetween.

Guthrie, Robin J. (East Hartford, CT); Katz, Murray (Newington, CT); Schroll, Craig R. (Glastonbury, CT)

1991-04-23T23:59:59.000Z

312

Sandia National Laboratories: hydrodynamic loading  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfullhigher-performance spar caphydrocarbonloading

313

NextGen Fuel Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) Jump to:Newmarket,3034505°NextGen Fuel Inc Jump

314

Fuel Processing Valri Lightner  

E-Print Network [OSTI]

of Hydrogen · Fuel Processors for PEM Fuel Cells Nuvera Fuel Cells, Inc. GE Catalytica ANL PNNL University-Board Fuel Processing Barriers $35/kW Fuel Processor $10/kW Fuel Cell Power Systems $45/kW by 2010 BARRIERS · Fuel processor start-up/ transient operation · Durability · Cost · Emissions and environmental issues

315

Cooling load design tool for UFAD systems.  

E-Print Network [OSTI]

Underfloor Air Distribution (UFAD) Design Guide. Atlanta:Load Design Tool for Underfloor Air Distribution Systems. for design cooling loads in underfloor air distribution (

Bauman, Fred; Schiavon, Stefano; Webster, Tom; Lee, Kwang Ho

2010-01-01T23:59:59.000Z

316

Self-aligning biaxial load frame  

DOE Patents [OSTI]

An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed crosshead, and by alignment and linear motion elements of one load assembly relative to the load frame.

Ward, Michael B. (Idaho Falls, ID); Epstein, Jonathan S. (Idaho Falls, ID); Lloyd, W. Randolph (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

317

Self-aligning biaxial load frame  

DOE Patents [OSTI]

An self-aligning biaxial loading apparatus for use in testing the strength of specimens while maintaining a constant specimen centroid during the loading operation. The self-aligning biaxial loading apparatus consists of a load frame and two load assemblies for imparting two independent perpendicular forces upon a test specimen. The constant test specimen centroid is maintained by providing elements for linear motion of the load frame relative to a fixed cross head, and by alignment and linear motion elements of one load assembly relative to the load frame. 3 figures.

Ward, M.B.; Epstein, J.S.; Lloyd, W.R.

1994-01-18T23:59:59.000Z

318

Light Water Breeder Reactor fuel rod design and performance characteristics (LWBR Development Program)  

SciTech Connect (OSTI)

Light Water Breeder Reactor (LWBR) fuel rods were designed to provide a reliable fuel system utilizing thorium/uranium-233 mixed-oxide fuel while simultaneously minimizing structural material to enhance fuel breeding. The fuel system was designed to be capable of operating successfully under both load follow and base load conditions. The breeding objective required thin-walled, low hafnium content Zircaloy cladding, tightly spaced fuel rods with a minimum number of support grid levels, and movable fuel rod bundles to supplant control rods. Specific fuel rod design considerations and their effects on performance capability are described. Successful completion of power operations to over 160 percent of design lifetime including over 200 daily load follow cycles has proven the performance capability of the fuel system. 68 refs., 19 figs., 44 tabs.

Campbell, W.R.; Giovengo, J.F.

1987-10-01T23:59:59.000Z

319

Fuel reforming for fuel cell application.  

E-Print Network [OSTI]

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

320

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Grants and Rebates The Arkansas Alternative Fuels Development Program (Program) provides grants to alternative fuel producers, feedstock processors, and...

322

Alternative Fuel Implementation Toolkit  

E-Print Network [OSTI]

? Alternative Fuels, the Smart Choice: Alternative fuels ­ biodiesel, electricity, ethanol (E85), natural gas...........................................................................................................................................................................6 Trends and Fleet Examples: Alternative Fuel Decision Table

323

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

324

Low Carbon Fuel Standards  

E-Print Network [OSTI]

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

325

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

Delucchi, Mark

1992-01-01T23:59:59.000Z

326

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

327

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

328

Influence of loading rate on axially loaded piles in clay  

E-Print Network [OSTI]

. Coyle (Member) ave u ofs (Member) . Hsrsc (Head of Department) May 1984 ABSTRACT Influence of Loading Rate on Axially Loaded Piles in Clay. (May 1984) Enrique Eduardo Garland Ponce, B. S. , Texas A8M University Chairman of Committee: Dr. Jean... and support during all phases of this study. The author also wishes to acknowledge Drs. Harry M. Coyle and David Dubofski who served as members of the advisory committee. Special notes of gratitude to Dr . Wayne A. Dunlap for his aid in the design...

Garland Ponce, Enrique Eduardo

1984-01-01T23:59:59.000Z

329

{Control of Residential Load Management Networks Using Real Time Pricing  

E-Print Network [OSTI]

loads to deliver load following and regulation, withproducts like load following and spinning reserve.following of constant power references. Chapter 7 Implications of Load

Burke, William Jerome

2010-01-01T23:59:59.000Z

330

Strategy for Used Fuel Acquisition  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Nuclear Energy (DOE-NE), Office of Fuel Cycle Technology, has established the Used Fuel Disposition Campaign (UFDC) to conduct the research and development activities related to storage, transportation, and disposal of used nuclear fuel and high-level radioactive waste. The mission of the UFDC is to identify alternatives and conduct scientific research and technology development to enable storage, transportation and disposal of used nuclear fuel (UNF) and wastes generated by existing and future nuclear fuel cycles. The Storage and Transportation staffs within the UFDC are responsible for addressing issues regarding the extended or long-term storage of UNF and its subsequent transportation. The near-term objectives of the Storage and Transportation task are to use a science-based approach to develop the technical bases to support the continued safe and secure storage of UNF for extended periods, subsequent retrieval, and transportation. While both wet and dry storage have been shown to be safe options for storing UNF, the focus of the program is on dry storage at reactor or centralized locations. Because limited information is available on the properties of high burnup fuel (exceeding 45 gigawatt-days per metric tonne of uranium [GWd/MTU]), and because much of the fuel currently discharged from todays reactors exceeds this burnup threshold, a particular emphasis of this program is on high burnup fuels. Since high burnup used fuels have only been loaded into dry storage systems in the past decade or so, these materials are available to the UFDC for testing in only very limited quantities. Much of what is available has come via NRC testing programs. Some of these fuels may have achieved "high burnup," but that does not mean they were designed for high burnup use (e.g. lower enrichments, smaller plenum spaces, extra reactor cycles). The handling and transfer of these materials from utility to laboratory has not always been prototypical of how used nuclear fuel is prepared for dry storage; these fuels are not subjected to the same vacuum drying conditions that can lead to changes in hydride morphology that will affect the mechanical properties of the fuel. It is recognized that sources of used high burnup fuel that can be handled in a manner consistent with how fuel is readied for dry storage is essential to the mission of the UFDC. This report documents what types of fuel are of interest to the campaign, and how those fuels could be acquired and shipped to the Idaho National Laboratory (INL) for incorporation into the campaign R&D mission. It also identifies any gaps in INL capabilities that might preclude working with one fuel type or another.

Steven C. Marschman; Chris Rusch

2013-09-01T23:59:59.000Z

331

DIESEL FUEL TANK FOUNDATIONS  

SciTech Connect (OSTI)

The purpose of this analysis is to design structural foundations for the Diesel Fuel Tank and Fuel Pumps.

M. Gomez

1995-01-18T23:59:59.000Z

332

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-EfficientAlternative Fuel

333

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle (AFV)Fuel

334

Alternative Fuel Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & Fueling Infrastructure

335

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDo alternative

336

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDo

337

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDoAnnual Electric

338

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle & FuelingDoAnnual

339

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,Alternative Fuel Vehicle

340

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,Alternative Fuel

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternative Fueling

342

Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems  

E-Print Network [OSTI]

associated with volatile utility pricing and potentially high system capital costs. Energy technology and boilers), and/or thermal energy storage (e.g., hot water). For some markets, volatile utility pricing heat and power Fuel cells Building energy a b s t r a c t The distributed generation (DG) of combined

343

Self locking coupling mechanism for engaging and moving a load  

DOE Patents [OSTI]

Coupling mechanism (11) for engaging and lifting a load (12) has a housing (19) with a guide passage (18) for receiving a knob (13) which is secured to the load (12) through a neck (15) of smaller diameter. A hollow ball (23) in the housing (19) has an opening (27) which receives the knob (13) and the ball (23) is then turned to displace the opening (27) from the housing passage (18) and to cause the neck (15) to enter a slot (29) in the ball (23) thereby securing the load (12) to the coupling mechanism (11) as elements (49) of the housing (19) block travel of the neck (15) back into the opening (27) when the ball (23) is turned to the load holding orientation. As engagement of the load (12) and locking of the coupling mechanism are accomplished simultaneously by the same ball (23) motion, operation is simplified and reliability is greatly increased. The ball (23) is preferably turned by a motor (32) through worm gearing (36) and the coupling mechanism (11) may be controlled from a remote location. Among other uses, the coupling mechanism (11) is adaptable to the handling of spent nuclear reactor fuel elements (12).

Wood, Richard L. (Livermore, CA); Casamajor, Alan B. (Pleasanton, CA); Parsons, Richard E. (Orinda, CA)

1982-01-01T23:59:59.000Z

344

Self locking coupling mechanism for engaging and moving a load  

DOE Patents [OSTI]

A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

1980-09-12T23:59:59.000Z

345

MODELING AND CONTROL OF THERMOSTATICALLY CONTROLLED LOADS  

E-Print Network [OSTI]

controlled loads (TCLs) has demonstrated that such load following is feasible, but analyt- ical models) is well matched to the role of load following. Re- search into the behavior of TCLs began with the work was then employed in a minimum variance control law to demonstrate the load following capability of a population

Hiskens, Ian A.

346

Flow Duration Curve Load Duration Curve  

E-Print Network [OSTI]

#12;Flow Duration Curve Load Duration Curve #12;1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve #12;What are they? How do you make one? #12;Describes

347

Flow Duration Curve Load Duration Curve  

E-Print Network [OSTI]

Flow Duration Curve Load Duration Curve 1. Develop Flow Duration Curve 2. Estimate load given flow and concentration data--select appropriate conversion factors 3. Develop Load Duration Curve 4. Plot observed data with Load Duration Curve What are they? How do you make one? Describes the percent of time a flow rate

348

peak_load_2010.xls  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30NaturalThousandExtensions473.6 W 54,849.062 210 50trillion .November 20112.

349

Desired PU Loading During Vitrification  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThree Biorefineries to ProduceNuclearDerrick Ramos

350

Transportation Electrification Load Development For a Renewable Future Analysis  

SciTech Connect (OSTI)

Electrification of the transportation sector offers the opportunity to significantly reduce petroleum consumption. The transportation sector accounts for 70% of US petroleum consumption. The transition to electricity as a transportation fuel will create a new load for electricity generation. In support of a recent US Department of Energy funded activity that analyzed a future generation scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles were developed for the 2010 to 2050 timeframe. These load profiles with their underlying assumptions will be presented in this paper. The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Two market saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average {approx}6 kWh per day were considered. Results were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for the use NREL's's regional generation planning analysis tool ReEDS. PEV aggregate load profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the transportation energy demands could be delivered across 4 daily time slices under optimal control from the utility perspective. No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on a regional basis that may evolve under two PEV market penetration scenarios. EVS25 Copyright.

Markel, Tony; Mai, Trieu; Kintner-Meyer, Michael CW

2010-09-30T23:59:59.000Z

351

Method and apparatus for controlling combustor temperature during transient load changes  

DOE Patents [OSTI]

A method and apparatus for controlling the temperature of a combustor in a fuel cell apparatus includes a fast acting air bypass valve connected in parallel with an air inlet to the combustor. A predetermined excess quantity of air is supplied from an air source to a series connected fuel cell and combustor. The predetermined excess quantity of air is provided in a sufficient amount to control the temperature of the combustor during start-up of the fuel processor when the load on the fuel cell is zero and to accommodate any temperature transients during operation of the fuel cell.

Clingerman, Bruce J. (Palmyra, NY); Chalfant, Robert W. (West Henrietta, NY)

2002-01-01T23:59:59.000Z

352

2014 Load as a Resource Program Peer Review | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3 Beryllium-Associated Worker2014 House Nuclear Cleanup Caucus Oak RidgeLoad as a

353

Self-regulating fuel staging port for turbine combustor  

DOE Patents [OSTI]

A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to engine load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).

Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven

2014-07-08T23:59:59.000Z

354

APPLICATION OF CERAMICS TO HIGH PRESSURE FUEL SYSTEMS  

SciTech Connect (OSTI)

Diesel fuel systems are facing increased demands as engines with reduced emissions are developed. Injection pressures have increased to provide finer atomization of fuel for more efficient combustion, Figure 1. This increases the mechanical loads on the system and requires tighter clearances between plungers and bores to prevent leakage. At the same time, fuel lubricity has decreased as a byproduct of reducing the sulfur levels in fuel. Contamination of fuel by water and debris is an ever-present problem. For oil-lubricated fuel system components, increased soot loading in the oil results in increased wear rates. Additionally, engine manufacturers are lengthening warranty periods for engines and systems. This combination of factors requires the development of new materials to counteract the harsher tribological environment.

Mandler, Jr., William F.

2000-08-20T23:59:59.000Z

355

Surrogate Spent Nuclear Fuel Vibration Integrity Investigation  

SciTech Connect (OSTI)

Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Bevard, Bruce Balkcom [ORNL; Howard, Rob L [ORNL

2014-01-01T23:59:59.000Z

356

EPRI Cogeneration Models -- DEUS and COPE  

E-Print Network [OSTI]

process thermal requirement; under the user-specified-megawatt size, capacity matches both the specified electrical output and the maximum process needs. The third phase matches the steam and energy load profiles by dispatching the required... cogeneration units for both a thermal matched dispatch and an economic dispatch. A thermal dispatch is performed for therrnal-match size plants and an economic dispatch is performed for user-specified-MW-size plants. Under a thermal dispatch, the plant...

Mauro, R.; Hu, S. D.

1983-01-01T23:59:59.000Z

357

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

358

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

359

FUEL CASK IMPACT LIMITER VULNERABILITIES  

SciTech Connect (OSTI)

Cylindrical fuel casks often have impact limiters surrounding just the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and maintaining lower peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following Normal Conditions of Transport (NCT) and Hypothetical Accident Conditions (HAC) impacts. Large casks are often certified by analysis only because of the costs associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 Spent Fuel Containment Cask found problems with the design of the impact limiter attachment system. Assumptions in the original Safety Analysis for Packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.

Leduc, D; Jeffery England, J; Roy Rothermel, R

2009-02-09T23:59:59.000Z

360

Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2 DOE Hydrogen andEnzymeAdvancedDepartment

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

California Fuel Cell Partnership: Alternative Fuels Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 20154: CategoricalDepartmentFuel Cell Partnership -

362

Alternative Fuels Data Center: Ethanol Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics to someone byEthanolFueling

363

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAreSmartWayElectricity Fuel Basics toWithHybridHydrogenFueling

364

Alternative Fuels Data Center: Propane Fueling Stations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone by E-mail Share Alternative Fuels Data Center:Basics toFueling

365

VISION Model for Vehicle Technologies and Alternative Fuels | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401UpsonUtah StateLoadingGrantEnergy

366

Southeast Renewable Fuels LLC SRF | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551° LoadingSoutheastSRF Jump to: navigation,

367

Pacific Fuel Cell Corp PFCE | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County,PPP EquipmentPartners LLC Jump to: navigation,Corp

368

Production Costs of Alternative Transportation Fuels | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimateMeadows, NewPriorOpenis a town

369

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel Inefficient Vehicle

370

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel Inefficient

371

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuel

372

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticut joined

373

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticut

374

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailer LicenseVehicleFuelConnecticutNew

375

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisianaRetailerVoluntaryElectricNatural Gas Fueling

376

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirement All AFVs,HybridAlternative Fuel

377

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirement AllFleet UserAlternative Fuel

378

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-Efficient Vehicle Tax

379

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-Efficient Vehicle

380

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-Efficient VehicleProvision

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-Efficient

382

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test Requirementand Fuel-EfficientAlternative

383

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions Test RequirementandAnnualEthanolAlternative Fuel

384

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel Use The Missouri

385

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel Use The

386

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel Use

387

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel UseTax

388

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel UseTaxand

389

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel Fuel

390

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel FuelTax Rates

391

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel FuelTax

392

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestState Fleet Biodiesel FuelTaxLicense

393

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestStateBiofuels Tax Deduction AAlternative Fuel

394

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissions TestStateBiofuelsProduction TaxAlternative Fuel

395

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle (AFV) and

396

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle (AFV)

397

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel Vehicle

398

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel VehicleImmunity for

399

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel VehicleImmunity

400

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel VehicleImmunityRetail

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative Fuel

402

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative FuelDefinition Biodiesel is

403

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative FuelDefinition Biodiesel

404

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative FuelDefinition

405

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropane BoardAlternative FuelDefinitionRenewable

406

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropaneState EnergyIdle ReductionFuel Exclusivity

407

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropaneState EnergyIdle ReductionFuel

408

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNewEmissionsPropaneStateLow-Speedand Methanol Tax EthylFuel

409

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The Hawaii Department ofAlternative Fuel

410

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and Fuel Cell

411

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and Fuel

412

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program The HawaiiDistributionHydrogen and FuelClean

413

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative Fuel and

414

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative Fuel

415

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock Program TheProduction TaxAlternative FuelBiodiesel

416

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublic AccessStateRenewable Fuels Mandate One

417

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublic AccessStateRenewable Fuels Mandate

418

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublic AccessStateRenewable Fuels

419

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublic AccessStateRenewable FuelsAlternative

420

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy Feedstock ProgramPublicSchool BusInfrastructureBiofuelandFuel

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy FeedstockAuthorization forCompressed NaturalAlternative Fuel

422

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergy FeedstockAuthorizationExcisePlug-InSchoolBiodieselIdleFuel

423

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorization for Plug-InHeavy-DutyAftermarketAlternative Fuel

424

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &

425

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-in Electric Vehicle

426

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-in Electric

427

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-in

428

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-inIncentives

429

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle &Plug-inIncentivesElectric

430

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel Vehicle

431

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas and Propane Tax

432

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas and Propane

433

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas and

434

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas andZero

435

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas

436

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas(AFV) and

437

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas(AFV)

438

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternative Fuel VehicleNatural Gas(AFV)Loans

439

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000 hisAlternative Fuel and

440

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000 hisAlternative Fuel

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low Carbon Fuels Standard

442

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low Carbon Fuels

443

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low Carbon FuelsLow

444

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low CarbonFuel School

445

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low CarbonFuel

446

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1, 2000Low CarbonFuelNatural

447

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1,Plug-InAlternative Fuel School

448

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation November 1,Plug-InAlternative Fuel

449

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNation NovemberU.S.Commercial Alternative Fuel

450

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer License Beginning January

451

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer License Beginning

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer License

453

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer LicenseSupply Equipment

454

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer LicenseSupply

455

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer LicenseSupplyKentucky

456

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer

457

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1, New Mexico joined

458

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1, New Mexico

459

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1, New Mexico3,

460

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1, New

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,

462

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,Alternative

463

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel Dealer1,AlternativeVehicle

464

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuel

465

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In Electric Vehicle (PEV)

466

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In Electric Vehicle

467

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In Electric

468

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In ElectricAlternative

469

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-In

470

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-InLow-Speed Vehicle

471

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-InLow-Speed

472

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageEmergingNationPlug-InFuelPlug-InLow-SpeedIllinois

473

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York Vehicle Inspection ProgramIn ElectricHighFuel

474

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption and Refund State

475

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption and Refund

476

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption and

477

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption andEthanol

478

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax Exemption

479

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax ExemptionState Energy

480

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax ExemptionState

Note: This page contains sample records for the topic "fuel dispatching load" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax ExemptionStateAlternative

482

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels Tax

483

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternative

484

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternativeSustainable

485

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels TaxAlternativeSustainableTax

486

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative Fuels

487

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanol Infrastructure Grants

488

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanol Infrastructure

489

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanol InfrastructureHybrid

490

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanol

491

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectric Vehicle Supply

492

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectric Vehicle

493

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectric

494

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectricBiodiesel and

495

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectricBiodiesel

496

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectricBiodieselHigh

497

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew York VehicleAlternative FuelsEthanolElectricBiodieselHighand

498

Spent Nuclear Fuel (SNF) Storage Project Fuel Basket Handling Grapple Design Development Test Report  

SciTech Connect (OSTI)

Acceptance testing of the SNF Fuel Basket Lift Grapple was accomplished to verify the design adequacy. This report shows the results affirming the design. The test was successful in demonstrating the adequacy of the grapple assembly's inconel actuator shaft and engagement balls for in loads excess of design basis loads (3200 pounds), 3X design basis loads (9600 pounds), and 5X design basis loads (16,000 pounds). The test data showed that no appreciable yielding for the inconel actuator shaft and engagement balls at loads in excess of 5X Design Basis loads. The test data also showed the grapple assembly and components to be fully functional after loads in excess of 5X Design Basis were applied and maintained for over 10 minutes. Following testing, each actuator shaft (Item 7) was liquid penetrant inspected per ASME Section 111, Division 1 1989 and accepted per requirements of NF-5350. This examination was performed to insure that no cracking had occurred. The test indicated that no cracking had occurred. The examination reports are included as Appendix C to this document. From this test, it is concluded that the design configuration meets or exceeds the requirements specified in ANSI N 14 6 for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.

CHENAULT, D.M.

2000-01-06T23:59:59.000Z

499

Online Load Balancing for Related Machines 1 Piotr Berman  

E-Print Network [OSTI]

), the load of a machine i in schedule s and Load(s), the load of entire schedule s as follows: load(s; i) = 1On­line Load Balancing for Related Machines 1 Piotr Berman The Pennsylvania State University of randomized algorithms for this problem. Key Words: on­line algorithm, load balancing, related machines

Charikar, Moses

500

Fuel processor for fuel cell power system  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z