Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Chicago Area Alternative Fuels Deployment Project (CAAFDP) |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Meeting arravt061tibingham2012o.pdf More Documents & Publications Chicago Area Alternative Fuels Deployment Project (CAAFDP) Chicago Area Alternative Fuels Deployment Project...

2

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Partners in April 2010 * NEPAs Submitted - 100% of OEM Vehicles - 100% of Vehicle Conversions - 100% of Infrastructure * Detailed Project Plan Established for each Project...

3

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partners Patson-Exel-Diageo City of Chicago Richard M. Daley Mayor Vehicles -12 CNG conversions Infrastructure -1 new public CNG station Project Partners Peoples Gas ...

4

Project Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel Vehicles for  

E-Print Network (OSTI)

agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract Number DTRT13-GProject Information Form Project Title Routing Strategies for Efficient Deployment of Alt. Fuel-UTC29 Start and End Dates May 16, 2014 to May 31, 2015 Brief Description of Research Project

California at Davis, University of

5

Fuel Cell-Powered Lift Truck Fleet Deployment Projects Final Technical Report May 2014  

SciTech Connect

The overall objectives of this project were to evaluate the performance, operability and safety of fork lift trucks powered by fuel cells in large distribution centers. This was accomplished by replacing the batteries in over 350 lift trucks with fuel cells at five distribution centers operated by GENCO. The annual cost savings of lift trucks powered by fuel cell power units was between $2,400 and $5,300 per truck compared to battery powered lift trucks, excluding DOE contributions. The greatest savings were in fueling labor costs where a fuel cell powered lift truck could be fueled in a few minutes per day compared to over an hour for battery powered lift trucks which required removal and replacement of batteries. Lift truck operators where generally very satisfied with the performance of the fuel cell power units, primarily because there was no reduction in power over the duration of a shift as experienced with battery powered lift trucks. The operators also appreciated the fast and easy fueling compared to the effort and potential risk of injury associated with switching heavy batteries in and out of lift trucks. There were no safety issues with the fueling or operation of the fuel cells. Although maintenance costs for the fuel cells were higher than for batteries, these costs are expected to decrease significantly in the next generation of fuel cells, making them even more cost effective.

Klingler, James J [GENCO Infrastructure Solutions, Inc.] [GENCO Infrastructure Solutions, Inc.

2014-05-06T23:59:59.000Z

6

Alternative Fuels Data Center: Alternative Fuel Development and Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Development and Deployment Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Development and Deployment Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

7

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

8

Large-scale Demonstration and Deployment Project for D&D of Fuel Storage Canals and Associated Facilities at INEEL  

SciTech Connect

The Department of Energy (DOE) Office of Science and Technology (OST), Deactivation and Decommissioning Focus Area (DDFA), sponsored a Large Scale Demonstration and Deployment Project (LSDDP) at the Idaho National Engineering and Environmental Laboratory (INEEL) under management of the DOE National Energy Technology Laboratory (NETL). The INEEL LSDDP is one of several LSDDPs sponsored by DOE. The LSDDP process integrates field demonstrations into actual decontamination and decommissioning (D&D) operations by comparing new or improved technologies against existing baseline technologies using a side-by-side comparison. The goals are (a) to identify technologies that are cheaper, safer, faster, and cleaner (produce less waste), and (b) to incorporate those technologies into D&D baseline operations. The INEEL LSDDP reviewed more than 300 technologies, screened 141, and demonstrated 17. These 17 technologies have been deployed a total of 70 times at facilities other than those where the technology was demonstrated, and 10 have become baseline at the INEEL. Fifteen INEEL D&D needs have been modified or removed from the Needs Management System as a direct result of using these new technologies. Conservatively, the ten-year projected cost savings at the INEEL resulting from use of the technologies demonstrated in this INEEL LSDDP exceeds $39 million dollars.

Whitmill, Larry Joseph

2001-12-01T23:59:59.000Z

9

NREL: Technology Deployment - Alternative Fuels Data Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuels Data Center Alternative Fuels Data Center NREL developed and manages the Alternative Fuels Data Center (AFDC), the U.S. Department of Energy's comprehensive clearinghouse of information and data related to the deployment of alternative fuels, advanced vehicles, and energy efficiency in transportation for fleets, fuel providers, policymakers, and other stakeholders working to reduce petroleum use in transportation. Interactive Transportation Deployment Tools NREL's large suite of free online tools assist fleets and drivers in selecting and deploying the technologies and strategies that will best help them meet their environmental and energy goals. Fleets and drivers can use calculators, interactive maps, and data searches to evaluate, select, and deploy alternative fuels and advanced vehicles as

10

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE...

11

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

12

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

13

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues This presentation by Bill Elrick...

14

NREL: Technology Deployment - Project Development Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Development Model Project Development Model NREL developed the Project Development Model to evaluate the risks and investment decisions required for successful renewable energy project development. The two-phase iterative model includes elements in project fundamentals and project development based off commercial project development practices supported by tools such as pro formas and checklists. Project Fundamentals or BEPTC(tm) Renewable Energy Project Development Tool For help with the BEPTC phase of your project, check out the Renewable Energy Project Development Tool, developed by NREL for U.S. Department of Energy's Community Renewable Energy Deployment effort. The tool helps you quickly establish the key motivators and feasibility of your project. Strong project fundamentals and an understanding of how a project fits

15

Greensburg, Kansas, Deployment Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greensburg, Kansas, Deployment Project Greensburg, Kansas, Deployment Project Greensburg, Kansas, Deployment Project November 13, 2013 - 10:40am Addthis The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) have helped Greensburg, Kansas, rebuild as a model green community. On May 4, 2007, a tornado destroyed or damaged 95% of the town's homes and businesses. Greensburg turned disaster into opportunity and created a plan to rebuild as a sustainable community with the help of a diverse group of experts, including DOE and NREL. To help make Greensburg's vision of rebuilding green a reality, DOE and NREL focused on the specific areas listed below. You can also read more in the fact sheet: A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities.

16

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the DOE Hydrogen and Fuel Cells Program focuses on deployments of fuel cell powered lift trucks.

17

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

18

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

19

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

20

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

22

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

23

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

24

Fuel Cell Technologies Office Record 14010 ? Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Powered Lift Trucks Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

25

NREL: Technology Deployment - Project Success Stories  

NLE Websites -- All DOE Office Websites (Extended Search)

Project Success Stories Project Success Stories NREL's technology deployment best practices, project support, and technical assistance, and technology acceleration activities are resulting in successful renewable energy and energy efficiency implementation in numerous locations. View success stories highlighting NREL's work with: Cities and Communities Greensburg, Kansas Greensburg: Photo of wind turbines in a green field. An International Inspiration for Green Disaster Recovery For 3 years after a devastating tornado struck Greensburg, Kansas, NREL technical experts helped the town rebuild as a model green community completely powered by a 12.5 megawatt wind farm and surrounded by the highest per-capita concentration of LEED-certified buildings in the United States-13 of which are saving $200,000 annually. Learn more.

26

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); November 2011 Composite Data Products - Deployment (Presentation)  

SciTech Connect

This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). November 2011 Composite Data Products - Deployment November 30, 2011.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-06-01T23:59:59.000Z

27

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 1 2012 Composite Data Products - Deployment (Presentation)  

SciTech Connect

This presentation is about the Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA). Quarter 1 2012 Composite Data Products - Deployment March 8, 2012.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-06-01T23:59:59.000Z

28

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP)  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell backup power deployed by industry.

29

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about fuel cell powered lift trucks deployed by industry.

30

More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet)  

SciTech Connect

This NREL Hydrogen and Fuel Cell Technical Highlight describes how early market end users are operating 1,111 fuel cell units at 301 sites in 20 states with funding from the U.S. Department of Energy Fuel Cell Technologies Program and analysis by NREL. The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and validates the technology in real-world applications, reports on the technology status, and facilitates the development of fuel cell technologies, manufacturing, and operations in strategic markets-including material handling equipment, backup power, and stationary power-where fuel cells can compete with conventional technologies. NREL is validating hydrogen and fuel cell systems in real-world settings through data collection, analysis, and reporting. The fuel cell and infrastructure analysis provides an independent, third-party assessment that focuses on fuel cell system and hydrogen infrastructure performance, operation, maintenance, use, and safety. An objective of the ARRA fuel cell project-to deploy approximately 1,000 fuel cell systems in key early markets - has been met in two years. By the end of 2011, 504 material handling equipment (MHE) fuel cell units were operating at 8 facilities and 607 backup power fuel cell units were operating at 293 sites. MHE and backup power are two markets where fuel cells are capable of meeting the operating demands, and deployments can be leveraged to accelerate fuel cell commercialization.

Not Available

2012-07-01T23:59:59.000Z

31

Community Renewable Energy Deployment Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Projects Deployment Projects Community Renewable Energy Deployment Projects The selected DOE Community Renewable Energy Deployment (CommRE) projects receive technical assistance from DOE's National Renewable Energy Laboratory in the areas of concepts, best practices, planning, financial approaches, and policy guidance to help achieve specific goals. More than $20.5 million in total Recovery Act funding will be leveraged with approximately $167 million in local government and private industry funding to complete the following projects. City of Montpelier, Montpelier, Vermont Forest County Potawatomi Community, Milwaukee, Wisconsin Haxtun Wind, Phillips County, Colorado Sacramento Municipal Utility District, Sacramento, California University of California at Davis, Davis, California

32

NREL: Technology Deployment - Fuels, Vehicles, and Transportation...  

NLE Websites -- All DOE Office Websites (Extended Search)

technical experts, policymakers, and other transportation stakeholders in the public and private sectors Providing technical expertise on alternative fuel vehicles and fueling...

33

Fuel Cell Technologies Office Record 14009 ? Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 (Rev. 1) Date: 08122014 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Kristian Kiuru Approved by: Sunita Satyapal and Rick Farmer Date: 08...

34

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

China-International Industrial Energy Efficiency Deployment Project China-International Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China Eastern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

35

International Industrial Energy Efficiency Deployment Project | Open Energy  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China, India Eastern Asia, Southern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

36

Houston Zero Emission Delivery Vehicle Deployment Project  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

37

Community Renewable Energy Deployment: City of Montpelier Project | Open  

Open Energy Info (EERE)

Montpelier Project Montpelier Project Jump to: navigation, search Name Community Renewable Energy Deployment: City of Montpelier Project Agency/Company /Organization Department of Energy Focus Area Buildings, Energy Efficiency - Central Plant, Energy Efficiency - Utility, Energy Efficiency, Greenhouse Gas, Renewable Energy, Biomass Phase Evaluate Options, Get Feedback, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly Available Publication Date 1/1/2011 Website http://www1.eere.energy.gov/co Locality Montpelier, Vermont References Community Renewable Energy Deployment: City of Montpelier Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References Overview This case study describes Montpelier, Vermont's efforts under the

38

Project Information Form Project Title Assessment of Critical Barriers to Alternative and Renewable Fuel and  

E-Print Network (OSTI)

Project Information Form Project Title Assessment of Critical Barriers to Alternative and Renewable Fuel and Vehicle Deployment University UC Davis Principal Investigator Amy Jaffe Andrew Burke PI models are necessary to promote adequate investment in promising alternative vehicle technologies

California at Davis, University of

39

Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Smith Dairy Deploys Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest to someone by E-mail Share Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Facebook Tweet about Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Twitter Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Google Bookmark Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Delicious Rank Alternative Fuels Data Center: Smith Dairy Deploys Natural Gas Vehicles and Fueling Infrastructure in the Midwest on Digg

40

U.S. Fuel Cell Market Production and Deployment Continues Strong...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. Fuel Cell Market Production and Deployment Continues Strong Growth U.S. Fuel Cell Market Production and Deployment Continues Strong Growth January 8, 2014 - 12:00am Addthis...

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Community Renewable Energy Deployment: Haxtun Wind Project | Open Energy  

Open Energy Info (EERE)

Haxtun Wind Project Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project Agency/Company /Organization US Department of Energy Focus Area Economic Development, Renewable Energy, Wind Phase Evaluate Options, Get Feedback, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly Available--Free Publication Date 2/7/2011 Website http://www1.eere.energy.gov/co Locality Phillips County, Colorado References Community Renewable Energy Deployment: Haxtun Wind Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 Related Tools 5 References Overview This short case study describes Phillips County's Haxtun Wind Project efforts through the Department of Energy's Community Renewable Energy

42

New Orleans, Louisiana, Deployment Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Orleans, Louisiana, Deployment Project New Orleans, Louisiana, Deployment Project New Orleans, Louisiana, Deployment Project November 13, 2013 - 10:45am Addthis The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) are helping New Orleans, Louisiana, incorporate energy efficiency into rebuilding efforts after being devastated by Hurricanes Katrina and Rita. On August 29, 2005, Hurricane Katrina, the single largest catastrophe in U.S. history, struck the Gulf Coast, flooding 80% of New Orleans and causing $89.6 billion in damages. Three weeks later, the city was hit again by Hurricane Rita. DOE and NREL focused their assistance efforts to New Orleans in the specific areas listed below. You can also read more in the fact sheet Rising Above the Water: New Orleans Implements Energy Efficiency and

43

New Orleans, Louisiana, Deployment Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Orleans, Louisiana, Deployment Project Orleans, Louisiana, Deployment Project New Orleans, Louisiana, Deployment Project November 13, 2013 - 10:45am Addthis The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) are helping New Orleans, Louisiana, incorporate energy efficiency into rebuilding efforts after being devastated by Hurricanes Katrina and Rita. On August 29, 2005, Hurricane Katrina, the single largest catastrophe in U.S. history, struck the Gulf Coast, flooding 80% of New Orleans and causing $89.6 billion in damages. Three weeks later, the city was hit again by Hurricane Rita. DOE and NREL focused their assistance efforts to New Orleans in the specific areas listed below. You can also read more in the fact sheet Rising Above the Water: New Orleans Implements Energy Efficiency and

44

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel Cell Backup Power (BuP)  

Energy.gov (U.S. Department of Energy (DOE))

This record from the DOE Hydrogen and Fuel Cells Program describes the number of current and planned fuel cell deployments for backup power applications.

45

Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deployment of Hybrid Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

46

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA): Quarter 4 2013 Composite Data Products  

SciTech Connect

This report includes the composite data products (CDPs) for early fuel cell market deployments in quarter 4 of 2013. Results are presented for ARRA (projects funded by the American Recovery and Reinvestment Act of 2009 [ARRA]) and Combined (projects funded by DOE Interagency Agreements [IAA], Department of Defense Defense Logistics Agency [DLA], and ARRA).

Kurtz, J.; Sprik, S.

2014-06-01T23:59:59.000Z

47

Chicago Area Alternative Fuels Deployment Project (CAAFDP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

risks - Unforeseen permitting issues - Construction delays - Availability of equipment * Gas Technology Institute (GTI) * Chicago Area Clean Cities Coalition * State of Illinois,...

48

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Vehicles and Hydrogen Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues Bill Elrick California Fuel Cell Partnership 3/19/2013 The cars are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017 launch of affordable FCEV 1/28/13 Toyota partnership with BMW 1/24/2013 Toyota announces sedan-type FCEV launch in 2015 9/24/12 The buses are coming HyundaiTucson ix35 FCEV production launch 2/26/13 Daimler/Nissan/Ford joint development announces 2017 launch of affordable FCEV 1/28/13 Toyota partnership with BMW 1/24/2013 Toyota announces sedan-type FCEV launch in 2015 9/24/12 Fuel Cell Buses too! * CA Roadmap * National Strategy paper CaFCP 2013 Zero emission vehicles in California ZEV Regulation - (www.arb.ca.gov/msprog/zevprog/zevprog.htm)

49

Early Fuel Cell Market Deployments: ARRA and Combined (IAA, DLA, ARRA); Quarter 3 2012 Composite Data Products  

SciTech Connect

This report from the U.S. Department of Energy's National Renewable Energy Laboratory includes early fuel cell market composite data products for the third quarter of 2012 for American Recovery and Reinvestment Act (ARRA) and combined (IAA, DLA, ARRA) deployment projects.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.; Post, M.

2013-01-01T23:59:59.000Z

50

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This fact sheets highlights U.S. Department of Energy fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). More than 1,000 fuel cell systems have been deploy

51

Fleet assessment for opportunities to effectively deploy light duty alternative fuel vehicles  

SciTech Connect

The City of Detroit conducted an initial program to assess the potential for substitution of vehicles currently in operation with alternative fuel vehicles. A key task involved the development of an operating profile of the participant light truck and van fleets involved in the study. To do this a survey of operators of light duty trucks and vans within the project participant fleets was conducted. These survey results were analyzed to define the potential for substitution of conventional vehicles with alternate fuel vehicles with alternate fuel vehicles and to identify candidates for participation in the Mini-Demonstration portion of the project. The test program involved the deployment of an electric van (two GM Griffon Electric Vans provided by Detroit Edison) at seven Mini-Demonstration sites for a period of four weeks each for test and evaluation. The Technical Work Group then analyzed vehicle performance data and used a questionnaire to obtain impressions and attitudes of the users toward the acceptability of the electric van. The Technical Work Group (TWG) and Management Assessment Group (MAG) then prepared recommendations and an implementation plan to develop further information aimed toward eventual expanded deployment of alternative fuel vehicles within project participant light duty fleets. The MAG concluded that the study had been beneficial in collecting and developing important quantitative information, introducing a set of public fleet managers to alternative fuel vehicle opportunities and features, and had provided specific experience with the Griffon van which provided some indications of requirements in such vehicles if they are to be a normal part of public fleet operations. These included the need for some increase of the mileage range of the Griffon, an improvement in the ride and handling of the Griffon, and several minor'' difficulties experienced with malfunctioning or inconvenient characteristics of the Griffon equipment. 25 figs., 1 tab.

Not Available

1990-05-01T23:59:59.000Z

52

New Fuel Cell Projects Meeting  

Energy.gov (U.S. Department of Energy (DOE))

On February 13-14, 2007, the U.S. Department of Energy (DOE) held a kick-off meeting for fuel cell projects awarded under a hydrogen R&D solicitation. Principal investigators presented project...

53

Challenges with SMUDs Community Renewable Energy Project Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges with SMUD's Community Challenges with SMUD's Community Renewable Energy Project Deployment Elaine Sison-Lebrilla Webinar August 21, 2012 Powering forward. Together. Overview 2  SMUD  Policy Drivers  Renewable Mix  Project Description  Challenges & Status  Lessons Learned 3 Sacramento Municipal Utility District  Publicly Owned Utility, elected Board of Directors  Sacramento County (and Placer County), almost 600,000 customers, 1.4 million population  Aggressive 23.9% Renewable supply by 2010; 37% by 2020  GHG Reductions by 2050 (10% of 1990 levels, <350,000 metric tonnes/year)  California Solar Initiative-125 MW  Feed-In Tariff (100MW in Contracts) 4 Renewable Goals  Aggressive renewable energy goals 4 Program 2010

54

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project √ Identify manufacturing cost drivers to achieve affordability √ Identify best practices in fuel cell manufacturing technology √ Identify manufacturing technology gaps √ Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

55

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...  

Energy Savers (EERE)

U.S. Fuel Cell Market Production and Deployment Continues Strong Growth December 19, 2013 - 12:00am Addthis The Energy Department released three new reports today showcasing...

56

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects:  

Open Energy Info (EERE)

Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Agency/Company /Organization: International Energy Agency (IEA) Sector: Energy Focus Area: Renewable Energy Topics: Finance, Implementation, Policies/deployment programs Resource Type: Publications Website: iea-retd.org/archives/publications/finance-re Cost: Free Language: English Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach Screenshot References: Strategies to Finance Large-Scale Deployment of Renewable Energy Projects: An Economic Development and Infrastructure Approach[1]

57

Connecticut Fuel Cell Programs- From Demonstration to Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by the Connecticut Clean Energy Fund on Connecticut fuel cell programs. Presented September 12, 2007.

58

DOE Supports Renewable Energy Deployment Projects for Forest...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(FCPC) has significantly reduced greenhouse gas emissions through the deployment of a biogas generation facility and solar photovoltaic system. In 2011, the Community completed...

59

EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Reedsport PB150 Deployment and Ocean Test Project, Oregon 0: Reedsport PB150 Deployment and Ocean Test Project, Oregon EA-1890: Reedsport PB150 Deployment and Ocean Test Project, Oregon Overview The U.S. Department of Energy has selected Ocean Power Technologies (OPT) for approximately $2.4 million in financial assistance and proposes to authorize the expenditure of federal funding to OPT for the construction, deployment, and ocean testing of a single, full scale 150kW PB150 PowerBuoy. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download August 24, 2011 EA-1890: Finding of No Significant Impact Reedsport PB150 Deployment and Ocean Test Project, Oregon August 24, 2011 EA-1890: DOE Notice of Availability of the Finding of No Significant Impact Ocean Power Technologies, Inc. (OPT), Reedsport PB150 Deployment and Ocean

60

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

NLE Websites -- All DOE Office Websites (Extended Search)

Leading the Nation in Clean Energy Deployment Leading the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Nation in Clean Energy Deployment the Nation in Clean Energy Deployment The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agen- cies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions. Disaster Recovery DOE and NREL technical experts have helped communities like Greensburg, Kansas, and New Orleans, Louisiana, successfully rebuild following disaster by providing assistance with sustainable community planning, forward-thinking policy development, and

62

Vehicle Technologies Office: Alternative Fuels Research and Deployment  

Energy.gov (U.S. Department of Energy (DOE))

As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to...

63

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel Cell Backup Power (BuP)  

NLE Websites -- All DOE Office Websites (Extended Search)

7 Date: 09/05/2013 7 Date: 09/05/2013 Title: Industry Deployed Fuel Cell Backup Power (BuP) Originators: Pete Devlin, Jim Alkire, Sara Dillich, Dimitrios Papageorgopoulos Approved by: Rick Farmer and Sunita Satyapal Date: 09/09/13 Item: Table 1: Number of fuel cells deployments (current and planned) for applications in backup power. The funding of 903 Department of Energy (DOE) fuel cell backup power systems has led to over 3,500 industry installations and on-order backup power units with no DOE funding. Data/Assumptions/Calculations: The manufacturers providing the fuel cells for the deployments (current and planned) mentioned in Table 1 above are: Altergy Ballard / Ida Tech Hydrogenics ReliOn, Inc. Total DOE American Recovery and Reinvestment Act (ARRA) investment for these fuel cell

64

NREL: Technology Deployment - NREL's Federal Fueling Station Data Supports  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery NREL's Federal Fueling Station Data Supports Superstorm Sandy Recovery January 22, 2013 In the aftermath of Superstorm Sandy, millions of Americans remained without electricity as emergency responders, security officials, and regular citizens all experienced a lack of access to vehicle fuels. As fuel shortages spread and lines grew at the few fueling stations that had electricity, officials from General Services Administration (GSA) Fleet and the U.S. Department of Homeland Security's (DHS) National Protection and Programs Directorate contacted the U.S. Department of Energy's (DOE) Federal Energy Management Program (FEMP) hoping to locate additional fuel provisions from private and federal facilities. FEMP then tapped NREL to provide data on the locations of federally owned fueling infrastructure in

65

Fuel Cell Electric Vehicles and Hydrogen Infrastructure: Deployment and Issues  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Bill Elrick of the California Fuel Cell Partnership was given at the DOE Hydrogen Compression, Storage, and Dispensing Workshop on March 19, 2013.

66

DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE  

SciTech Connect

This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

2012-06-04T23:59:59.000Z

67

NREL: Technology Deployment - Integrated Deployment Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Model Integrated Deployment Model NREL's integrated deployment model provides a framework to focus on the national goal of accelerating market adoption of clean energy technologies through local efforts. With support from the U.S. Department of Energy (DOE), NREL developed and applies the integrated deployment model to select projects including disaster recovery, statewide activities, federal agency support, island activities, and community renewable energy deployment. How the Model Works To address the complex challenges of multi-technology, multi-stakeholder, and multi-fuel deployment, NREL created the integrated deployment model to support each technology area separately but also consider the integration points between the technologies. NREL also identifies the cross-cutting

68

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dept. Reports: U.S. Fuel Cell Market Production and Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth December 19, 2013 - 11:36am Addthis News Media Contact (202) 586-4940 WASHINGTON - The Energy Department released three new reports today showcasing strong growth across the U.S. fuel cell and hydrogen technologies market - continuing America's leadership in clean energy innovation and providing U.S. businesses more affordable, cleaner transportation and power options. According to these reports, the United States continues to be one of the world's largest and fastest growing markets for fuel cell and hydrogen technologies. In 2012, nearly 80 percent of total investment in the global fuel cell industry was made in U.S.

69

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

70

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Project Takes Historic Step Forward in U.S. Tidal Energy Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment Maine Project Takes Historic Step Forward in U.S. Tidal Energy Deployment May 4, 2012 - 12:11pm Addthis Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Cobscook Bay, Maine, is the site of a tidal energy pilot project led by Ocean Renewable Power Company. | Photo courtesy of Ocean Renewable Power Company. Hoyt Battey Water Power Market Acceleration and Deployment Team Lead, Wind and Water Power Program What does this project do? ORPC will deploy cross flow turbine devices in Cobscook Bay, at the mouth of the Bay of Fundy. These devices are designed to generate electricity over a range of

71

Vehicle Technologies Office: Alternative Fuels Research and Deployment...  

Energy Savers (EERE)

VTO's goals will help the country meet the Renewable Fuel Standard's goals for use of biofuels in the Energy Policy Act of 2005 and the Energy Independence and Security Act of...

72

NREL: Technology Deployment - Fossil Fuel Dependency Falls from...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel Dependency Falls from 100% to 56% on Alcatraz Island News Solar Cells Light Up Prison Cells on 'The Rock' Sponsors U.S. National Park Service American Recovery and...

73

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project Maine Deploys First U.S. Commercial, Grid-Connected Tidal Energy Project July 24, 2012 - 1:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Today, Energy Secretary Steven Chu recognized the nation's first commercial, grid-connected tidal energy project off the coast of Eastport, Maine. Leveraging a $10 million investment from the Energy Department, Ocean Renewable Power Company (ORPC) will deploy its first commercial tidal energy device into Cobscook Bay this summer. The project, which injected $14 million into the local economy and has supported more than 100 local and supply chain jobs, represents the first tidal energy project in the United States with long-term contracts to sell electricity

74

Alternative Fuels Data Center: Project Assistance  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

About About Printable Version Share this resource Send a link to Alternative Fuels Data Center: Project Assistance to someone by E-mail Share Alternative Fuels Data Center: Project Assistance on Facebook Tweet about Alternative Fuels Data Center: Project Assistance on Twitter Bookmark Alternative Fuels Data Center: Project Assistance on Google Bookmark Alternative Fuels Data Center: Project Assistance on Delicious Rank Alternative Fuels Data Center: Project Assistance on Digg Find More places to share Alternative Fuels Data Center: Project Assistance on AddThis.com... More in this section... Project Assistance News & Features Spanish Resources Contacts Project Assistance Through a nationwide network of local coalitions, Clean Cities provides project assistance to help stakeholders in the public and private sectors

75

NREL: Vehicles and Fuels Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's vehicles and fuels projects focus on developing, evaluating, and demonstrating innovative technologies that reduce the nation's dependence on imported petroleum and improve air quality. We work in partnership with vehicle manufacturers, equipment suppliers, fuel providers, and others to develop and commercialize vehicle and fuel technologies that meet our nation's energy and environmental goals. Advanced Combustion and Fuels Biofuels Electric Vehicle Grid Integration Energy Storage Fleet Test and Evaluation Power Electronics ReFUEL Laboratory Secure Transportation Data Vehicle Ancillary Loads Reduction Vehicle Systems Analysis Printable Version Vehicles & Fuels Research Home Projects Advanced Combustion & Fuels Biofuels Electric Vehicle Grid Integration

76

Fuel Cell Applied Research Project  

SciTech Connect

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

77

Nuclear Fuel Storage and Transportation Planning Project Overview...  

Office of Environmental Management (EM)

Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project Overview Nuclear Fuel Storage and Transportation Planning Project...

78

Fuel Cell Projects Kickoff Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting Presentation by Nancy Garland at a meeting on fuel cell projects on February 13 - 14, 2007....

79

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

transportation, stationary, and portable applications. Learn about our projects: Fuel cells Hydrogen production and delivery Hydrogen storage Manufacturing Market transformation...

80

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

Energy.gov (U.S. Department of Energy (DOE))

This report by Oak Ridge National Laboratory assesses the current status of automotive fuel cell technology and the plans for the deployment of refueling infrastructure.

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

359 * July 2012 359 * July 2012 More Than 1,000 Fuel Cell Units Deployed Through DOE ARRA Funding Team: Jennifer Kurtz, Keith Wipke, Sam Sprik, Todd Ramsden, Chris Ainscough Accomplishment: Early market end users are operating 1,111 fuel cell units at 301 sites in 20 states funded by the U.S. Department of Energy (DOE) Fuel Cell Technologies (FCT) Program and with analysis by the National Renewable Energy Laboratory (NREL). Context: The American Recovery and Reinvestment Act (ARRA) funded the deployment of approximately 1,000 fuel cell systems in key early markets to accelerate the commercialization and deployment of fuel cells and fuel cell manufacturing, installation, maintenance, and support services. In support of the ARRA fuel cell deployment objectives, NREL analyzes and

82

NAREL Quality Assurance Project Plan Deployment of Air Monitors to the WIPP Site  

E-Print Network (OSTI)

Requirements for Quality Assurance Project Plans," United States Environmental Protection Agency, OfficeNAREL Quality Assurance Project Plan Deployment of Air Monitors to the WIPP Site Effective Date April 5, 2014 WIPP/QAPP-1 National Analytical Radiation Environmental Laboratory Office of Radiation

83

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheets highlights fuel cell projects funded by the American Recovery and Reinvestment Act of 2009 (Recovery Act). A total of $41.6 million in Recovery Act funding supported the deployment of over 1,000 fuel cell systems.

84

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation (Presentation)  

SciTech Connect

This presentation discusses analysis results for American Recovery and Reinvestment Act early market fuel cell deployments and describes the objective of the project and its relevance to the Department of Energy Hydrogen and Fuel Cells Program; NREL's analysis approach; technical accomplishments including publication of a fourth set of composite data products; and collaborations and future work.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.; Saur, G.

2012-06-01T23:59:59.000Z

85

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

AGENDA AGENDA U. S. Department of Transportation and U.S. Department of Energy Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 10-11, 2009 - Washington, DC A workshop to promote exchange of information among experts on compressed natural gas and hydrogen fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. Workshop Objectives: * To coordinate lessons learned by identifying similarities and critical differences between compressed natural gas and hydrogen properties, including CNG-H2 blends, and their industries and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

86

Kickoff Meeting for New Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Reg Tyler of the DOE Golden Field Office was given at a meeting on new fuel cell projects in February 2007.

87

GridStat Cyber Security and Regional Deployment Project Report  

SciTech Connect

GridStat is a developing communication technology to provide real-time data delivery services to the electric power grid. It is being developed in a collaborative effort between the Electrical Power Engineering and Distributed Computing Science Departments at Washington State University. Improving the cyber security of GridStat was the principle focus of this project. A regional network was established to test GridStats cyber security mechanisms in a realistic environment. The network consists of nodes at Pacific Northwest National Laboratory, Idaho National Laboratory, and Washington State University. Idaho National Laboratory (INL) was tasked with performing the security assessment, the results of which detailed a number or easily resolvable and previously unknown issues, as well as a number of difficult and previously known issues. Going forward we recommend additional development prior to commercialization of GridStat. The development plan is structured into three domains: Core Development, Cyber Security and Pilot Projects. Each domain contains a number of phased subtasks that build upon each other to increase the robustness and maturity of GridStat.

Clements, Samuel L.

2009-02-18T23:59:59.000Z

88

2010 New Fuel Cell Projects Meeting  

Energy.gov (U.S. Department of Energy (DOE))

On September 28, 2010, the U.S. Department of Energy (DOE) held a kick-off meeting for new projects awarded under a fuel cell solicitation. Principal investigators presented project overviews,...

89

Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act  

Energy.gov (U.S. Department of Energy (DOE))

This report presents estimates of economic impacts associated with expenditures under the ARRA, also known as the Recovery Act, by the USDOE for the deployment of fuel cells in forklift and backup power applications.

90

Deployment evaluation methodology for the electrometallurgical treatment of DOE-EM spent nuclear fuel  

SciTech Connect

Part of the Department of Energy (DOE) spent nuclear fuel (SNF) inventory may require some type of treatment to meet acceptance criteria at various disposition sites. The current focus for much of this spent nuclear fuel is the electrometallurgical treatment process under development at Argonne National Laboratory. Potential flowsheets for this treatment process are presented. Deployment of the process for the treatment of the spent nuclear fuel requires evaluation to determine the spent nuclear fuel program need for treatment and compatibility of the spent nuclear fuel with the process. The evaluation of need includes considerations of cost, technical feasibility, process material disposition, and schedule to treat a proposed fuel. A siting evaluation methodology has been developed to account for these variables. A work breakdown structure is proposed to gather life-cycle cost information to allow evaluation of alternative siting strategies on a similar basis. The evaluation methodology, while created specifically for the electrometallurgical evaluation, has been written such that it could be applied to any potential treatment process that is a disposition option for spent nuclear fuel. Future work to complete the evaluation of the process for electrometallurgical treatment is discussed.

Dahl, C.A.; Adams, J.P.; Ramer, R.J.

1998-07-01T23:59:59.000Z

91

The Boeing Company Project Fuel Tank Design Project Recap  

E-Print Network (OSTI)

The Boeing Company Project Fuel Tank Design Project Recap The Boeing Company came. Using solid baffles helps to separate the tank into separate and smaller sub tanks which helps to distribute and minimize the force of the slosh on the fuel tank. The problem in using solid baffles

Demirel, Melik C.

92

NREL: Vehicles and Fuels Research - Biofuels Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Biofuels Projects Biofuels Projects NREL biofuels projects help overcome technical barriers and expand markets for renewable, biodegradable vehicle fuels. These new liquid fuels include higher-level ethanol blends, butanol, biodiesel, renewable diesel, and other biomass-derived fuels. NREL's biofuels research and development helps improve engine efficiency, reduce polluting emissions, and improve U.S. energy security by reducing petroleum dependency. Biofuels for Diesel Engines NREL's diesel biofuels research and development focuses on developing fuel quality standards and demonstrating compatibility with engines and emission control systems. Highly efficient heavy-duty diesel truck engines are the primary power source for global transportation of freight. Light-duty diesel-fueled passenger vehicles have much higher fuel economy than

93

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

94

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Office of Environmental Management (EM)

Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Nuclear Fuels Storage and Transportation Planning Project (NFST) Program Status Presentation made by...

95

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity Download the presentation slides...

96

DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOEBoeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia DOEBoeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Presentation by Lennie Klebanoff...

97

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

D.C. tiarravt056gilbert2010p.pdf More Documents & Publications Midwest Region Alternative Fuels Project Midwest Region Alternative Fuels Project Chicago Area Alternative...

98

Financial Incentives for Hydrogen and Fuel Cell Projects | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Market Transformation Financial Incentives for Hydrogen and Fuel Cell Projects Financial Incentives for Hydrogen and Fuel Cell Projects Federal Incentives The Emergency Economic...

99

Projection of world fossil fuels by country  

Science Journals Connector (OSTI)

Abstract Detailed projections of world fossil fuel production including unconventional sources were created by country and fuel type to estimate possible future fossil fuel production. Four critical countries (China, USA, Canada and Australia) were examined in detail with projections made on the state/province level. Ultimately Recoverable Resources (URR) for fossil fuels were estimated for three scenarios: Low=48.4 ZJ, Best Guess (BG)=75.7 ZJ, High=121.5 ZJ. The scenarios were developed using Geologic Resources Supply-Demand Model (GeRS-DeMo). The Low and Best Guess (BG) scenarios suggest that world fossil fuel production may peak before 2025 and decline rapidly thereafter. The High scenario indicates that fossil fuels may have a strong growth till 2025 followed by a plateau lasting approximately 50years before declining. All three scenarios suggest that world coal production may peak before 2025 due to peaking Chinese production and that only natural gas could have strong growth in the future. In addition, by converting the fossil fuel projections to greenhouse gas emissions, the projections were compared to IPCC scenarios which indicated that based on current estimates of URR there are insufficient fossil fuels to deliver the higher emission IPCC scenarios \\{A1Fl\\} and RCP8.5.

S.H. Mohr; J. Wang; G. Ellem; J. Ward; D. Giurco

2015-01-01T23:59:59.000Z

100

Spent Nuclear Fuel (SNF) Project Execution Plan  

SciTech Connect

The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

LEROY, P.G.

2000-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Kick-Off Meeting for New Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 October 1, 2009

102

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting Presentation by DOE's Patrick Davis at a meeting on new fuel...

103

Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

A. M Smith; G. E. Matthern; R. H. Meservey

1998-11-01T23:59:59.000Z

104

Fuel Cell Projects Kickoff Meeting | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Kickoff Meeting Fuel Cell Projects Kickoff Meeting Agenda for the Fuel Cell Projects Kickoff Meeting on September 30 - October 1, 2009 fcagenda10-09.pdf More Documents &...

105

TARZAN: A REMOTE TOOL DEPLOYMENT SYSTEM FOR THE WEST VALLEY DEVELOPMENT PROJECT  

SciTech Connect

RedZone Robotics, Inc. undertook a development project to build Tarzan, a Remote Tool Delivery system to work inside nuclear waste storage tanks 8D-1 and 8D-2 at the West Valley Demonstration Project (WVDP). The removal of waste deposits from large storage tanks poses significant challenges during tank operations and closure. Limited access, the presence of chemical, radiological, and /or explosive hazards, and the need to deliver retrieval equipment to all regions of the tank exceed the capabilities of most conventional methods and equipment. Remotely operated devices for mobilizing and retrieving waste materials are needed. Some recent developments have been made in this area. However, none of these developments completely and cost-effectively address tanks that are congested with internal structures (e.g., support columns, cooling coils, fixed piping, etc.). The Tarzan system consists of the following parts: Locomotor which is deployed in the tank for inspection and cleanup; Hydraulic power unit providing system power for the locomotor and deployment unit; and Control system providing the man machine interface to control, coordinate and monitor the system. This document presents the final report on the Tarzan project.

Bruce R. Thompson; James Veri

1999-09-30T23:59:59.000Z

106

WINDExchange: Deployment Activities  

Wind Powering America (EERE)

Development Siting Deployment Activities Recent years have seen major growth in wind energy, and deployment projections indicate this trend will continue for all parts of the...

107

Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania's Ethanol Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons to someone by E-mail Share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Facebook Tweet about Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Twitter Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Google Bookmark Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Delicious Rank Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on Digg Find More places to share Alternative Fuels Data Center: Pennsylvania's Ethanol Corridor Project Surpasses 1 Million Gallons on

108

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Development and Deployment Grants The Pennsylvania Energy Development Authority (PEDA) provides grants of up to 1,000,000 for alternative energy projects and...

109

Safety Planning Guidance for Hydrogen and Fuel Cell Projects  

Fuel Cell Technologies Publication and Product Library (EERE)

This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

110

Diesel fueled ship propulsion fuel cell demonstration project  

SciTech Connect

The paper describes the work underway to adapt a former US Navy diesel electric drive ship as a 2.4 Megawatt fuel cell powered, US Coast Guard operated, demonstrator. The Project will design the new configuration, and then remove the four 600 kW diesel electric generators and auxiliaries. It will design, build and install fourteen or more nominal 180 kW diesel fueled molten carbonate internal reforming direct fuel cells (DFCs). The USCG cutter VINDICATOR has been chosen. The adaptation will be carried out at the USCG shipyard at Curtis Bay, MD. A multi-agency (state and federal) cooperative project is now underway. The USCG prime contractor, AEL, is performing the work under a Phase III Small Business Innovation Research (SBIR) award. This follows their successful completion of Phases I and II under contract to the US Naval Sea Systems (NAVSEA) from 1989 through 1993 which successfully demonstrated the feasibility of diesel fueled DFCs. The demonstrated marine propulsion of a USCG cutter will lead to commercial, naval ship and submarine applications as well as on-land applications such as diesel fueled locomotives.

Kumm, W.H. [Arctic Energies Ltd., Severna Park, MD (United States)

1996-12-31T23:59:59.000Z

111

FOOD SECURITY FUEL INDEPENDENCE These projects represent  

E-Print Network (OSTI)

FOOD SECURITY FUEL INDEPENDENCE These projects represent a huge effort to determine and improve pressing challenges. ASH 1% ASH 1% ASH 1% OTHERS 6% OTHERS 6% OTHERS 6% OIL 2% OIL 10% OIL 20% SUCROSE 45% LIPID CANE Produce and store oil in the stem in place of sugar During photosynthesis, sugarcane

Bashir, Rashid

112

Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Highlights from U.S. Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects specialty vehicle applications (i.e., lift trucks). This fund- ing has supported the deployment of over 1,000 fuel cell systems. These efforts are accelerating the potential of fuel cells to provide power in stationary, portable, and specialty vehicle applications; and to cut carbon emissions, create jobs, and broaden our nation's clean energy technology portfolio. Recovery Act and Market Transformation Activities DOE supported projects have spurred companies to order >3,000 fuel cell powered lift trucks with no DOE funding. Approximately 200 jobs were created or retained as a result of these Recovery Act projects.* *Includes supply chain and other indirect jobs. Recovery.gov reports that

113

Fuel Cell Forklift Project Final Report  

SciTech Connect

This project addresses the DOEs priorities related to acquiring data from real-world fuel cell operation, eliminating non-technical barriers, and increasing opportunities for market expansion of hydrogen fuel cell technologies. The project involves replacing the batteries in a complete fleet of class-1 electric lift trucks at FedEx Freights Springfield, MO parcel distribution center with 35 Plug Power GenDrive fuel cell power units. Fuel for the power units involves on-site hydrogen handling and dispensing equipment and liquid hydrogen delivery by Air Products. The project builds on FedEx Freights previous field trial experience with a handful of Plug Powers GenDrive power units. Those trials demonstrated productivity gains and improved performance compared to battery-powered lift trucks. Full lift truck conversion at our Springfield location allows us to improve the competitiveness of our operations and helps the environment by reducing greenhouse gas emissions and toxic battery material use. Success at this distribution center may lead to further fleet conversions at some of our distribution centers.

Cummings, Clifton C

2013-10-23T23:59:59.000Z

114

Awareness Program Fuels Energy Savings Projects  

E-Print Network (OSTI)

AWARENESS PROGRAM FUELS ENERGY SAVINGS PROJECTS ALEKS M. KLIDZEJS Senior Mechanical Engineer 3M Company Saint Paul, Minnesota ABSTRACT Energy awareness concepts were incorporated as part of a plant energy survey and played a major part... in the followup program. Plant manager support was received and multi-disciplinary task group was established to review and recommend energy saving potentials. Beyond instilling traditional benefits of an awareness program, capital expenditure energy savings...

Klidzejs, A. M.

115

Alternative Fuels Data Center: Advanced Energy Research Project Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Advanced Energy Advanced Energy Research Project Grants to someone by E-mail Share Alternative Fuels Data Center: Advanced Energy Research Project Grants on Facebook Tweet about Alternative Fuels Data Center: Advanced Energy Research Project Grants on Twitter Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Google Bookmark Alternative Fuels Data Center: Advanced Energy Research Project Grants on Delicious Rank Alternative Fuels Data Center: Advanced Energy Research Project Grants on Digg Find More places to share Alternative Fuels Data Center: Advanced Energy Research Project Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Advanced Energy Research Project Grants The Advanced Research Projects Agency - Energy (ARPA-E) was established

116

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

117

Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas Compressed Natural Gas (CNG) Project Loans to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Delicious Rank Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on Digg Find More places to share Alternative Fuels Data Center: Compressed Natural Gas (CNG) Project Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Compressed Natural Gas (CNG) Project Loans

118

Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects  

Office of Energy Efficiency and Renewable Energy (EERE)

Describes the DOE Community Renewable Energy Deployment program, which used funding from the American Recovery and Reinvestment Act of 2009 to promote investment in clean energy solutions and...

119

Project Sponsors:National Fuel Cell Research Center  

E-Print Network (OSTI)

Project Sponsors:National Fuel Cell Research Center www.nfcrc.uci.edu RESULTS · PEM fuel cell the results of subjecting a hydrogen-anode, air-breathing cathode Proton Exchange Membrane (PEM) fuel cell., and Samuelsen, G. S. (2003). "Experimental Evaluation and Computer Simulation of an Air-Breathing PEM Fuel Cell

Mease, Kenneth D.

120

Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions  

SciTech Connect

The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The ReEDS model was used to simulate utility PV and CSP deployment for this present study, based on several market and performance assumptions - electricity demand, natural gas prices, coal retirements, cost and performance of non-solar renewable technologies, PV resource variability, distributed PV deployment, and solar market supply growth - in addition to the SunShot solar price projections. This study finds that utility-scale solar deployment is highly sensitive to solar prices. Other factors can have significant impacts, particularly electricity demand and natural gas prices.

Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Nuclear Fuels Storage & Transportation Planning Project Documents |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cycle Technologies » Nuclear Fuels Storage & Fuel Cycle Technologies » Nuclear Fuels Storage & Transportation Planning Project » Nuclear Fuels Storage & Transportation Planning Project Documents Nuclear Fuels Storage & Transportation Planning Project Documents September 30, 2013 Preliminary Evaluation of Removing Used Nuclear Fuel From Shutdown Sites In January 2013, the Department of Energy issued the Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste. Among the elements contained in this strategy is an initial focus on accepting used nuclear fuel from shutdown reactor sites. February 22, 2013 Public Preferences Related to Consent-Based Siting of Radioactive Waste Management Facilities for Storage and Disposal This report provides findings from a set of social science studies

122

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Mobile Light Project -- A DOE Market Transformation Activity-- Lennie Klebanoff Sandia National Laboratories Chris Radley Altergy Systems Torsten Erbel Multiquip Inc. DOE...

123

Demonstration Project for Fuel Cell Bus Commercialisation in...  

Open Energy Info (EERE)

Commercialisation in China Jump to: navigation, search Name: Demonstration Project for Fuel Cell Bus Commercialisation in China Place: Beijing and Shanghai, China Sector:...

124

FY 2014 Solid Oxide Fuel Cell Project Selections | Department...  

Office of Environmental Management (EM)

Effects and Degradation in Solid Oxide Fuel Cells: Understanding Transport and Thermodynamics." The goals of this project are to: 1) understand the detailed mechanisms of...

125

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Site Map Printable Version Share this resource Send a link to Vehicle Technologies Office: Deployment to someone by E-mail Share Vehicle Technologies Office: Deployment on Facebook Tweet about Vehicle Technologies Office: Deployment on Twitter Bookmark Vehicle Technologies Office: Deployment on Google Bookmark Vehicle Technologies Office: Deployment on Delicious Rank Vehicle Technologies Office: Deployment on Digg Find More places to share Vehicle Technologies Office: Deployment on AddThis.com... Energy Policy Act (EPAct) Clean Cities Educational Activities Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home

126

DOE Supports Renewable Energy Deployment Projects for Forest County Potawatomi Community  

Office of Energy Efficiency and Renewable Energy (EERE)

The Forest County Potawatomi Community has implemented an integrated renewable energy deployment plan to provide electricity for its government buildings, reducing greenhouse gas emissions by an estimated 20,000 tons.

127

Mobile/Modular Deployment Project-Enhancing Efficiencies within the National Transuranic Waste Program.  

SciTech Connect

In 1999, the National Transuranic (TRU) Waste Program (NTP) achieved two significant milestones. First, the Waste Isolation Plant (WIPP) opened in March for the permanent disposal of TRU waste generated by, and temporarily stored at, various sites supporting the nation's defense programs. Second, the Hazardous Waste Facility Permit, issued by the New Mexico Environment Department, for WIPP became effective in November. While the opening of WIPP brought to closure a number of scientific, engineering, regulatory, and political challenges, achieving this major milestone led to a new set of challenges-how to achieve the Department of Energy's (DOE's) NTP end-state vision: All TRU waste from DOE sites scheduled for closure is removed All legacy TRU waste from DOE sites with an ongoing nuclear mission is disposed 0 All newly generated TRU waste is disposed as it is generated The goal is to operate the national TRU waste program safely, cost effectively, in compliance with applicable regulations and agreements, and at full capacity in a fully integrated mode. The existing schedule for TRU waste disposition would achieve the NTP vision in 2034 at an estimated life-cycle cost of $16B. The DOE's Carlsbad Field Office (CBFO) seeks to achieve this vision early-by at least 10 years- while saving the nation an estimated $48 to $6B. CBFO's approach is to optimize, or to make as functional as possible, TRU waste disposition. That is, to remove barriers that impede waste disposition, and increase the rate and cost efficiency of waste disposal at WIPP, while maintaining safety. The Mobile/Modular Deployment Project (MMDP) is the principal vehicle for implementing DOE's new commercial model of using best business practices of national authorization basis, standardization, and economies of scale to accelerate the completion of WIPP's mission. The MMDP is one of the cornerstones of the National TRU Waste System Optimization Project (1). The objective of the MMDP is to increase TRU waste shipment and disposal rates from currently certified sites as well as to provide a means to remove TRU waste from sites that have no characterization capability.

Triay, I. R. (Ines R.); Basabilvazo, G. B. (George B.); Countiss, S. (Sue); Moody, D. C. (David C.); Behrens, R. G. (Robert G.); Lott, S. A. (Sheila A.)

2002-01-01T23:59:59.000Z

128

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department released three new reports showcasing strong growth across the U.S. fuel cell and hydrogen technologies market.

129

U.S. Fuel Cell Market Production and Deployment Continues Strong Growth  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department has released three new reports showcasing strong growth across the U.S. fuel cell and hydrogen technologies market.

130

ITC Role in U.S. Fuel Cell Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITC Case Study 1 ITC Role in US Fuel Cell Projects Case Study With a DOD Facility Samuel Logan February 19, 2009 MCB Camp Pendleton, CA ITC Case Study 2 Key Project Objectives *...

131

NETL: News Release - Fuel Cell Projects Address Barriers to  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1, 2006 June 1, 2006 Fuel Cell Projects Address Barriers to Commercialization Six Projects Focus on Improvements to Materials, Key Components WASHINGTON, DC - The Department of Energy today announced the selection of six research and development (R&D) projects expected to further enhance solid-oxide fuel cell (SOFC) technology, moving it one step closer to commercialization. These projects, part of DOE's Solid State Energy Conversion Alliance (SECA), build upon earlier Phase I research to support the development of efficient, low-cost and near-zero emissions SOFC power systems. "The projects selected reflect yet another step forward in the President's Hydrogen and Climate Initiatives, which envision a key role for fuel cells," said Jeffrey Jarrett, Assistant Secretary for Fossil Energy. "These projects are expected to further push fuel cell technology toward the ultimate application of fuel cells in FutureGen, the zero-emissions coal-fired plant of the future."

132

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel Production and  

E-Print Network (OSTI)

Project Information Form Project Title The Development of Lifecycle Data for Hydrogen Fuel will be technologies and fuels related to renewable hydrogen. The literature review will produce a set of hydrogen hydrogen or hydrogen produced with technologies or fuels not currently in the LCFS. The study will assess

California at Davis, University of

133

Project Sponsors:National Fuel Cell Research Center  

E-Print Network (OSTI)

Project Sponsors:National Fuel Cell Research Center www.nfcrc.uci.edu SOLID OXIDE SIEMENS WESTINGHOUSE: 25 KW TUBULAR SOLID OXIDE FUEL CELL FIRST SOFC PRE-COMMERCIAL PROTOTYPE AND RESEARCH PLATFORM data on the tubular Solid Oxide Fuel Cell (SOFC) design. · Test component designs including inverters

Mease, Kenneth D.

134

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

SciTech Connect

This fact sheet describes the National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth.

Not Available

2014-11-01T23:59:59.000Z

135

Nuclear Fuels Storage & Transportation Planning Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Fuels Storage & Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel assemblies [412.3 metric ton heavy metal (MTHM)] and 3 canisters of greater-than-class-C (GTCC) low-level radioactive waste. Photo courtesy of Connecticut Yankee (http://www.connyankee.com/html/fuel_storage.html). Independent Spent Fuel Storage Installation (ISFSI) at the shutdown Connecticut Yankee site. The ISFSI includes 40 multi-purpose canisters, within vertical concrete storage casks, containing 1019 used nuclear fuel

136

Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

For example, San Diego has installed 2.4 megawatts of fuel cells and is using purified biogas from the Point Loma wastewater treatment plant to generate clean electricity for the...

137

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

This agenda provides information about the Compressed Natural Gas and Hydrogen Fuels workshop hosted by the U.S. departments of Energy and Transportation on December 10-11, 2009 in Washington, D.C.

138

Coastal Ohio Wind Project for Reduced Barriers to Deployment of Offshore Wind Energy  

SciTech Connect

The Coastal Ohio Wind Project was created to establish the viability of wind turbines on the coastal and offshore regions of Northern Ohio. The projects main goal was to improve operational unit strategies used for environmental impact assessment of offshore turbines on lake wildlife by optimizing and fusing data from the multi-instrument surveillance system and providing an engineering analysis of potential design/operational alternatives for offshore wind turbines. The project also developed a general economic model for offshore WTG deployment to quantify potential revenue losses due to wind turbine shutdown related to ice and avian issues. In a previous phase of this project (Award Number: DE-FG36-06GO86096), we developed a surveillance system that was used to collect different parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species, movements of birds and bats, and bird calls for assessing patterns and peak passage rates during migration. To derive such parameters we used thermal IR imaging cameras, acoustic recorders, and marine radar Furuno (XANK250), which was coupled with a XIR3000B digitizing card from Russell Technologies and open source radR processing software. The integration yielded a development of different computational techniques and methods, which we further developed and optimized as a combined surveillance system. To accomplish this task we implemented marine radar calibration, optimization of processing parameters, and fusion of the multi-sensor data in order to make inferences about the potential avian targets. The main goal of the data fusion from the multi-sensor environment was aimed at reduction of uncertainties while providing acceptable confidence levels with detailed information about the migration patterns. Another component comprised of an assessment of wind resources in a near lake environment and an investigation of the effectiveness of ice coating materials to mitigate adverse effects of ice formation on wind turbine structures. Firstly, a Zephir LiDAR system was acquired and installed at Woodlands School in Huron, Ohio, which is located near Lake Erie. Wind resource data were obtained at ten measurement heights, 200m, 150m, 100m, 80m, 60m, 40m, 38m, 30m, 20m, and 10m. The Woodlands Schools wind turbine anemometer also measured the wind speed at the hub height. These data were collected for approximately one year. The hub anemometer data correlated well with the LiDAR wind speed measurements at the same height. The data also showed that on several days different power levels were recorded by the turbine at the same wind speed as indicated by the hub anemometer. The corresponding LiDAR data showed that this difference can be attributed to variability in the wind over the turbine rotor swept area, which the hub anemometer could not detect. The observation suggests that single point hub wind velocity measurements are inadequate to accurately estimate the power generated by a turbine at all times since the hub wind speed is not a good indicator of the wind speed over the turbine rotor swept area when winds are changing rapidly. To assess the effectiveness of ice coatings to mitigate the impact of ice on turbine structures, a closed-loop icing research tunnel (IRT) was designed and constructed. By controlling the temperature, air speed, water content and liquid droplet size, the tunnel enabled consistent and repeatable ice accretion under a variety of conditions with temperatures between approximately 0C and -20C and wind speeds up to 40 miles per hour in the tunnels test section. The tunnels cooling unit maintained the tunnel temperature within 0.2C. The coatings evaluated in the study were Boyd Coatings Research Companys CRC6040R3, MicroPhase Coatings Inc.s PhaseBreak TP, ESL and Flex coatings. Similar overall performance was observed in all coatings tested in that water droplets form on the test articles beginning at the stagnation region and spreading in the downstream direction in time. When compari

Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Carroll, Michael

2014-04-09T23:59:59.000Z

139

Title of Project: Systemwide Information for Transportation Assessment: Economic Impacts and ITS Deployment Planning  

E-Print Network (OSTI)

in the Northeastern Illinois area are to improve safety, improve service level (efficiency), reduce energy Deployment Planning Sponsors: Illinois Department of Transportation (IDOT) and Federal Highway Administration plans with a complete economic impact. Using this tool, the six-county Northeastern Illinois region

Illinois at Chicago, University of

140

USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fund Genomics Projects For Bioenergy Fuels Research Fund Genomics Projects For Bioenergy Fuels Research USDA and DOE Fund Genomics Projects For Bioenergy Fuels Research August 9, 2006 - 8:43am Addthis WASHINGTON, DC - Aug. 9, 2006 - Energy Secretary Samuel Bodman and Agriculture Secretary Mike Johanns today announced that the Department of Agriculture and the Department of Energy (DOE) have jointly awarded nine grants totaling $5.7 million for biobased fuels research that will accelerate the development of alternative fuel resources. Bodman commented, "These research projects build upon DOE's strategic investments in genomics, to accelerate scientific discovery and promote the development of alternative energy sources vital to America's energy and economic security." "To be a reliable renewable energy source, farmers and ranchers will need

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL-13/09 ANL-13/09 Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:

142

Kick Off Meeting for New Fuel Cell Projects  

E-Print Network (OSTI)

) is EERE's Project Management Center (PMC) · GO serves as the "Project" office while the DC office (HQ for EERE Programs ­ Fuel Cell Technologies ­ Biomass ­ S lSolar ­ Wind/Water ­ Geothermal ­ Industrial Technologies ­ State EnergState Energy · GO provides technical field project management in support of EERE HQ

143

Argonne project turns methane to liquid fuel for hybrid fuel cells  

Science Journals Connector (OSTI)

Researchers from the US Department of Energy's Argonne National Laboratory in Illinois and the Illinois Institute of Technology (IIT) have been awarded $2 million from the Advanced Research Projects AgencyEnergy (ARPA-E), for a two-year project on hybrid fuel cells, specifically on converting methane to liquid fuel.

2014-01-01T23:59:59.000Z

144

Data Collection & Analysis for ARRA Fuel Cell Projects (Presentation)  

SciTech Connect

The data analysis objectives are: (1) Independent assessment of technology, focused on fuel cell system and hydrogen infrastructure:performance, operation, and safety; (2) Leverage data processing and analysis capabilities from the fuel cell vehicle Learning Demonstration project and DoD Forklift Demo; (3) Establish a baseline of real-world fuel cell operation and maintenance data and identify technical/market barriers; (4) Support market growth of fuel cell technologies by reporting on technology features relevant to the business case; and (5) Report on technology to fuel cell and hydrogen communities and stakeholders.

Kurtz, J.; Ramsden, T.; Wipke, K.; Sprik, S.

2009-08-21T23:59:59.000Z

145

Financing Alternatives for Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

Presentation prepared by Lee White of George K. Baum and Co. for the State and Regional Hydrogen and Fuel Cell Conference Call

146

Electric Drive Vehicle Infrastructure Deployment | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Infrastructure Deployment Electric Drive Vehicle Infrastructure Deployment 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

147

Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels  

E-Print Network (OSTI)

or organization) US DOT $38,942 Total Project Cost $38,942 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Designing and Analyzing Policies for Renewable Fuels and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Federal and state

California at Davis, University of

148

Project Information Form Project Title Designing and Analyzing Policies for Renewable Fuels  

E-Print Network (OSTI)

or organization) US DOT $38,925 Total Project Cost $38,925 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Designing and Analyzing Policies for Renewable Fuels and End Dates September 1, 2014 to August 31, 2015 Brief Description of Research Project Federal and state

California at Davis, University of

149

Project Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy via ITS  

E-Print Network (OSTI)

each agency or organization) US DOT $90,000 Total Project Cost $90,000 Agency ID or Contract NumberProject Information Form Project Title Reducing Truck Emissions and Improving Truck Fuel Economy Project Currently trucks are viewed as any other vehicle in traffic management Currently trucks are viewed

California at Davis, University of

150

FY 2014 Solid Oxide Fuel Cell Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

In FY 2014, nine research projects focused on advancing the reliability, robustness, and endurance of solid oxide fuel cells (SOFC) have been selected for funding by Office of Fossil Energys...

151

NREL: Hydrogen and Fuel Cells Research - Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

advances can be realized in the marketplace. Projects focus on deploying hydrogen and fuel cells in key early markets-specialty vehicles, backup and remote power, portable power,...

152

NETL: News Release - SECA Fuel Cell Program Selects Two Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

9, 2008 9, 2008 SECA Fuel Cell Program Selects Two Projects Low-Cost Fuel Cell Systems to Address Energy Security, Climate and Water Challenges WASHINGTON, DC - The U.S. Department of Energy (DOE) has selected two projects for the Department's Solid State Energy Conversion Alliance (SECA) Program portfolio. The projects, focused on enhancing energy security through zero-emission applications, will be led by UTC Power, a United Technologies Corporation, in partnership with Delphi Corporation, and Rolls-Royce Fuel Cell Systems (U.S.) Inc. The Rolls-Royce project will include work at Ohio's Stark State College Fuel Cell Prototyping Center, which is also supported through a National Science Foundation grant. From an environmental perspective, fuel cells are one of the most attractive technologies for generating electricity. Solid oxide fuel cells operate by separating and transferring oxygen across a solid electrolyte membrane, where it reacts with a fuel - such as synthesis gas derived from coal, biofuels or natural gas - to produce steam and carbon dioxide (CO2). Condensing the steam results in a pure stream of CO2 gas; this can be readily captured for storage or other use in a central location. This feature, coupled with the well-known fact that fuel cell efficiency does not depend on high temperatures, results in near-zero emissions (e.g., NOx < 0.5ppm) at equivalent or reduced cost-of-electricity compared to today's power generation.

153

Sysco Deploys Hydrogen Powered Pallet Trucks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks Sysco Deploys Hydrogen Powered Pallet Trucks July 12, 2010 - 2:50pm Addthis Food service distribution company Sysco celebrated the grand opening of its highly efficient distribution center in June in Houston. As part of Sysco's efforts to reduce its carbon footprint, the company deployed almost 100 pallet trucks powered by fuel cells that create only water and heat as by-products. The hydrogen fuel cell project's cost was partially covered by funding from a $1.2 million grant provided by the American Recovery and Reinvestment Act through the U.S. Department of Energy's Fuel Cell Technologies Program. The total project cost was $3.3 million. The 98 new Raymond Corporation pallet lifts are powered by Plug Power

154

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

155

DOE funds projects on hydrogen storage, fuel cell manufacturing  

Science Journals Connector (OSTI)

Three hydrogen and fuel cell projects in Colorado, California, and New Jersey are to receive funding from the US Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE). The projects are among the recently announced FY 2012 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 3 awards.

2013-01-01T23:59:59.000Z

156

FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

Stephen P. Bergin

2003-04-23T23:59:59.000Z

157

The Fleet DNA Project (Fact Sheet), NREL (National Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fleet DNA Project aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel...

158

Deploying Innovation  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Deploying Innovation FCI deploys Laboratory technology for enhanced economic impact regionally and nationally. We offer both negotiable and non-negotiable license...

159

California Fleets and Workplace Alternative Fuels Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

information. 2014 DOE Vehicle Technologies Office Review Presentation Damian Breen Deputy Air Pollution Control Officer Bay Area Air Quality Management District Project ID: TI035...

160

Quality Function Deployment Analysis for the Selection of four Utility-scale Solar Energy Projects in Northern Chile  

Science Journals Connector (OSTI)

Abstract A Quality Function Deployment (QFD) analysis [1] has been performed to select four solar energy applications for the medium and large size mining industry in Chile. The northern Chilean economy revolves around the mining industry, which demands large volumes of electricity, heat and water to carry out their processes. The selection was made among eleven applications of solar energy intended to cover the aforementioned demands. Production simulations financial and economic analyses were performed using solar resource data of three different locations. Then, all the combinations were evaluated using indicators grouped in the following categories: Technology, Social, Risk, Resource, Market, Economy, and Environment. QFD methodology allowed to transform technical evaluation into customer oriented results. By setting the Chilean society as the customer, the projects were consequently ranked regarding their potential attractiveness to the country.

J. Servert; A. Labanda; E. Fuentealba; M. Cortes; R. Prez

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Integrated Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Deployment Integrated Deployment Integrated Deployment Integrated technology deployment uses a comprehensive approach to implement a variety of efficiency and renewable energy technology solutions in communities and cities, federal agencies, international locations, and states and territories. need_alt Community Renewable Energy Deployment Webinars Hear about successful community renewable energy projects, including the challenges and barriers faced during development. Learn more Integrated Deployment Projects The following projects provide examples of how the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory have used an integrated approach to address various location-specific energy challenges that is both scalable and replicable around the world:

162

Clean Fuel Advanced Technology Awarded Projects Organization Project Descriptions  

E-Print Network (OSTI)

Mountains National Park Biodiesel (B50) Tanks1,3 $33,681 $13,204 $46,885 -16 18 110 11 Duke Energy 2 Hybrid 555 3634 332 2007 CFAT Projects(12 projects) City of Hickory 1 Natural Gas Vehicle - Honda Civic GX6 with Crankcase Filtration System2 $24,671 $6,168 $30,839 0 115 828 85 Holmes Oil Co. ** E85 infrastructure1,7 $42

163

TMI defueling project fuel debris removal system  

SciTech Connect

The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

Burdge, B.

1992-01-01T23:59:59.000Z

164

TMI defueling project fuel debris removal system  

SciTech Connect

The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

Burdge, B.

1992-08-01T23:59:59.000Z

165

Fuel Cell-Powered Lift Truck Sysco Houston Fleet Deployment - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Scott Kliever Sysco Houston 10710 Greens Crossing Boulevard Houston, TX 77038 Phone: (713) 679-5574 Email: kliever.scott@hou.sysco.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463; Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE0000485 Subcontractors: * Plug Power Inc., Latham, NY * Air Products, Allentown, PA * Big-D Construction, Salt Lake City, UT Project Start Date: October 1, 2009 Project End Date: September 30, 2013 Objectives The objectives of this project are to: Convert a fleet of 79 class-3 electric lift trucks to *

166

SNF fuel retrieval sub project safety analysis document  

SciTech Connect

This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

BERGMANN, D.W.

1999-02-24T23:59:59.000Z

167

ITC Role in U.S. Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

ITC Case Study ITC Case Study 1 ITC Role in US Fuel Cell Projects Case Study With a DOD Facility Samuel Logan February 19, 2009 MCB Camp Pendleton, CA ITC Case Study 2 Key Project Objectives * Turn-key fixed price contract * Furnish, install & integrate 750kW CHP MCFC system with customer facilities * Provide base load power and heat with environmental & energy security benefits * Demonstrate reliability & interoperability with built environment ITC Case Study 3 Project Background * Initial contract amount: $4,150,000 * Fuel cell manufacturer: FuelCell Energy Danbury, CT * Product: 3 DFC300MA 250kW MCFC power plants * Camp Pendleton contract award: 9/30/05 * Contracting agency: Naval Air Warfare Weapons Division, China Lake * Contract terms: 3 year O&M services, 1 year warranty, best efforts

168

Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project  

SciTech Connect

The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

2009-11-14T23:59:59.000Z

169

Workshop Notes from "Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles" Workshop, December 10-11, 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Department of Energy and S. Department of Energy and U.S. Department of Transportation Workshop Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles Workshop Notes December 10-11, 2009 The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted a workshop to exchange information among experts from China, India, and the U.S. on compressed natural gas (CNG) and hydrogen (H 2 ) fuels for vehicles and to share lessons learned from deployment of these vehicles in public transit, fleets, and consumer transportation throughout the world. The workshop had five major objectives, and the success of the workshop in addressing these objectives is summarized below. 1. Coordinate lessons learned by identifying similarities and critical

170

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Industry Partnership Projects to Increase 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and eventually lead to a day when our children and grandchildren will call the

171

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $14 Million Industry Partnership Projects to Increase DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and

172

Community Renewable Energy Deployment Provides Replicable Examples...  

Office of Environmental Management (EM)

Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy...

173

Dual Fuel Conversion System for Diesel Engines: Inventions and Innovation Project Fact Sheet  

SciTech Connect

Project fact sheet written for the Inventions and Innovation Program about a new dual fuel conversion system allows diesel fuel switching with clean burning natural gas.

Wogsland, J.

2001-01-25T23:59:59.000Z

174

Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1983, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated over the next 37 years and characteristics of these materials are also presented, consistent with the latest DOE/Energy Information Administration (EIA) or projection of US commercial nuclear power growth and expected defense-related and private industrial and institutional activities. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, airborne waste, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions. 48 figures, 107 tables.

Not Available

1984-09-01T23:59:59.000Z

175

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

SciTech Connect

This fact sheet describes National Renewable Energy Laboratory's (NREL's) Fuel Cell Technology Status Analysis Project. NREL is seeking fuel cell industry partners from the United States and abroad to participate in an objective and credible analysis of commercially available fuel cell products to benchmark the current state of the technology and support industry growth. Participating fuel cell developers share price information about their fuel cell products and/or raw fuel cell test data related to operations, maintenance, and safety with NREL via the Hydrogen Secure Data Center (HSDC). The limited-access, off-network HSDC houses the data and analysis tools to protect proprietary information. NREL shares individualized data analysis results as detailed data products (DDPs) with the partners who supplied the data. Aggregated results are published as composite data products (CDPs), which show the technology status without identifying individual companies. The CDPs are a primary benchmarking tool for the U.S. Department of Energy and other stakeholders interested in tracking the status of fuel cell technologies. They highlight durability advancements, identify areas for continued development, and help set realistic price expectations at small-volume production.

Not Available

2013-06-01T23:59:59.000Z

176

Data Analysis for ARRA Early Fuel Cell Market Demonstrations (Presentation)  

SciTech Connect

Presentation about ARRA Early Fuel Cell Market Demonstrations, including an overview of the ARRE Fuel Cell Project, the National Renewable Energy Laboratory's data analysis objectives, deployment composite data products, and planned analyses.

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.

2010-05-01T23:59:59.000Z

177

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Houston-Galvelston Area Council at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about hydrogen fuel...

178

Spent nuclear fuel project - criteria document spent nuclear fuel final safety analysis report  

SciTech Connect

The criteria document provides the criteria and planning guidance for developing the Spent Nuclear Fuel (SNF) Final Safety Analysis Report (FSAR). This FSAR will support the US Department of Energy, Richland Operations Office decision to authorize the procurement, installation, installation acceptance testing, startup, and operation of the SNF Project facilities (K Basins, Cold Vacuum Drying Facility, and Canister Storage Building).

MORGAN, R.G.

1999-02-23T23:59:59.000Z

179

TECHNOLOGY DEVELOPMENT AND DEPLOYMENT OF SYSTEMS FOR THE RETRIEVAL AND PROCESSING OF REMOTE-HANDLED SLUDGE FROM HANFORD K-WEST FUEL STORAGE BASIN  

SciTech Connect

In 2011, significant progress was made in developing and deploying technologies to remove, transport, and interim store remote-handled sludge from the 105-K West Fuel Storage Basin on the Hanford Site in south-central Washington State. The sludge in the 105-K West Basin is an accumulation of degraded spent nuclear fuel and other debris that collected during long-term underwater storage of the spent fuel. In 2010, an innovative, remotely operated retrieval system was used to successfully retrieve over 99.7% of the radioactive sludge from 10 submerged temporary storage containers in the K West Basin. In 2011, a full-scale prototype facility was completed for use in technology development, design qualification testing, and operator training on systems used to retrieve, transport, and store highly radioactive K Basin sludge. In this facility, three separate systems for characterizing, retrieving, pretreating, and processing remote-handled sludge were developed. Two of these systems were successfully deployed in 2011. One of these systems was used to pretreat knockout pot sludge as part of the 105-K West Basin cleanup. Knockout pot sludge contains pieces of degraded uranium fuel ranging in size from 600 {mu}m to 6350 {mu}m mixed with pieces of inert material, such as aluminum wire and graphite, in the same size range. The 2011 pretreatment campaign successfully removed most of the inert material from the sludge stream and significantly reduced the remaining volume of knockout pot product material. Removing the inert material significantly minimized the waste stream and reduced costs by reducing the number of transportation and storage containers. Removing the inert material also improved worker safety by reducing the number of remote-handled shipments. Also in 2011, technology development and final design were completed on the system to remove knockout pot material from the basin and transport the material to an onsite facility for interim storage. This system is scheduled for deployment in 2012. The prototype facility also was used to develop technology for systems to retrieve remote-handled transuranic sludge smaller than 6350 {mu}m being stored in underwater containers. After retrieving the sludge, the system will be used to load and transport the sludge for interim storage. During 2011, full-scale prototype systems were developed and tested to a Technology Readiness Level 6 as defined by U.S. Department of Energy standards. This system is scheduled for deployment in 2013. Operations also are scheduled for completion in 2014.

RAYMOND RE

2011-12-27T23:59:59.000Z

180

Energy Department Invests Over $7 Million to Deploy Tribal Clean...  

Energy Savers (EERE)

Energy Department Invests Over 7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over 7 Million to Deploy Tribal Clean Energy Projects November 14, 2013...

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

SciTech Connect

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

182

Page 1 of 2 MECH461 2013 micro fuel cell project photos rev2.doc  

E-Print Network (OSTI)

applications for fuel cells (FCs) are being investigated all the time. Some see them replacing batteries battery-powered devices in which FCs could offer benefits. For example Fig. 1. Fuel cell powered MechPage 1 of 2 MECH461 2013 micro fuel cell project photos rev2.doc MECH 461 Project Proposal

Surgenor, Brian W.

183

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

annual generation by fuel type. .of total annual generation by fuel type. Other Renewablesof annual estimates of total generation by fuel type and

Coughlin, Katie

2013-01-01T23:59:59.000Z

184

State Level Incentives for Biogas-Fuel Cell Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

LEVEL INCENTIVES LEVEL INCENTIVES FOR BIOGAS-FUEL CELL PROJECTS Norma McDonald Vice Chair, American Biogas Council North American Sales Manager, Organic Waste Systems, Inc. www.americanbiogascouncil.org FIGURES * FOUNDED IN 1988 * SALES: $25-35 MILLION * 75 EMPLOYEES ACTIVITIES * BIOGAS CONSULTANCY & SUPPORT * BIODEGRADATION TESTING AND WASTE MANAGEMENT CONSULTANCY * DESIGN & CONSTRUCTION OF ANAEROBIC DIGESTION PLANTS FOR ORGANIC WASTE AND RESIDUALS * NO FORMAL STATE CHAPTERS - YET * MEMBER DRIVEN EFFORTS * LOCAL "TOUCH" IS ESSENTIAL * REAPPLY BEST PRACTICES/POLICIES * PROMOTE/ADVOCATE FOR POLICY PARITY FOR BIOGAS www.americanbiogascouncil.org DYNAMICS SHAPING STATE INCENTIVES * BUDGET WOES, ARRA FUNDS NOW RUNNING OUT

185

Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind-to-Hydrogen Cost Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Google Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Delicious Rank Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on

186

NREL: Technology Deployment - Clean Cities  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Cities Clean Cities NREL assists the U.S. Department of Energy's Clean Cities program in supporting local actions to reduce petroleum use in transportation by providing technical assistance, educational and outreach publications, and coordinator support. Clean Cities is a national network of nearly 100 coalitions that bring together stakeholders in the public and private sectors to deploy alternative and renewable fuels, advanced vehicles, fuel economy improvements, idle-reduction measures, and new transportation technologies as they emerge. Technical Assistance NREL engineers and researchers provide hands-on technical assistance to help Clean Cities coalitions, stakeholders, manufacturers, and fuel providers overcome obstacles to deploying alternative fuels and advanced

187

The Council of Industrial Boiler Owners special project on non-utility fossil fuel ash classification  

SciTech Connect

Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.

Svendsen, R.L.

1996-12-31T23:59:59.000Z

188

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase SECA Fuel Cell Program Moves Two Key Projects Into Next Phase February 5, 2009 - 12:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. The projects--led by FuelCell Energy, in partnership with VersaPower Systems, and Siemens Energy--have successfully demonstrated solid oxide fuel cells (SOFCs) designed for aggregation and use in coal-fueled central power generation. Further development of these low-cost, near-zero emission fuel cell systems will substantially contribute to solving the Nation's energy security, climate, and water challenges.

189

Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery  

Energy.gov (U.S. Department of Energy (DOE))

Demonstration and Deployment Successes Jaime Moreno, Vice President of Projects, Sapphire Energy, Inc.

190

In situ investigation of tubular microbial fuel cells deployed in an aeration tank at a municipal wastewater treatment plant  

E-Print Network (OSTI)

wastewater treatment plant Fei Zhang a , Zheng Ge a , Julien Grimaud b , Jim Hurst b , Zhen He a: Microbial fuel cells Wastewater treatment Organic removal Aeration Activated sludge a b s t r a c of wastewater quality, and other operating conditions. Unlike prior lab stud- ies by others, the results

191

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pennsylvania Incentives and Laws Pennsylvania Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Project Grants Archived: 11/30/2013 Pennsylvania Energy Harvest Grant seeks to deploy cleaner energy sources by providing funding for alternative energy projects, including those involving clean, alternative fuels for transportation. Projects must address both energy and environmental concerns; projects that are primarily education, outreach, feasibility, assessment, planning, or research and development are not eligible. Eligible applicants include an incorporated 501(c)(3) non-profit organizations that is also registered with the

192

> ExplorACES projects attract potential students > Bioenergy grant fuels excitement  

E-Print Network (OSTI)

Inside: > ExplorACES projects attract potential students > Bioenergy grant fuels excitement. Our current technical emphases are in the areas of agricultural automation, bio-energy and bio

Gilbert, Matthew

193

DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost Projections 2013  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about past, current, and projected costs for delivering and dispensing hydrogen.

194

Fuel Cell Project Selected for First Ever Technology-to-Market...  

Energy Savers (EERE)

cell electric vehicles to enable significant reductions in greenhouse gas emissions and air pollution. In addition to this technology-to-market award, two fuel cell projects were...

195

Training implementation matrix, Spent Nuclear Fuel Project (SNFP)  

SciTech Connect

This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently.

EATON, G.L.

2000-06-08T23:59:59.000Z

196

Recovery Act Projects Funded for Fuel Cell Market Transformation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

SOFC technology by increasing net output power and fuel processing efficiency, decreasing heat loss and parasitic power loss, and establishing diesel fuel compatibility. The...

197

Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility.  

SciTech Connect

A barge-mounted hydrogen-fueled proton exchange membrane (PEM) fuel cell system has the potential to reduce emissions and fossil fuel use of maritime vessels in and around ports. This study determines the technical feasibility of this concept and examines specific options on the U.S. West Coast for deployment practicality and potential for commercialization.The conceptual design of the system is found to be straightforward and technically feasible in several configurations corresponding to various power levels and run times.The most technically viable and commercially attractive deployment options were found to be powering container ships at berth at the Port of Tacoma and/or Seattle, powering tugs at anchorage near the Port of Oakland, and powering refrigerated containers on-board Hawaiian inter-island transport barges. Other attractive demonstration options were found at the Port of Seattle, the Suisun Bay Reserve Fleet, the California Maritime Academy, and an excursion vessel on the Ohio River.

Pratt, Joseph William; Harris, Aaron P

2013-01-01T23:59:59.000Z

198

NREL: Technology Deployment - Solar Deployment and Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Deployment and Market Transformation Solar Deployment and Market Transformation NREL enables faster, easier, and less expensive solar installations by applying our expertise and knowledge to projects that addresses challenges, inefficiencies, and market barriers to solar technology deployment. Northeast Denver Housing Center Solarize Grassroots Movement Drives Down Solar Prices 30% in Portland, Oregon Solarize Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Our technical experts work with policymakers, program administrators, regulators, utilities, transmission organizations, technology developers, financial organizations, and insurance companies to help break down barriers to solar technology deployment by: Developing and delivering policy and market design trainings

199

Irradiated test fuel shipment plan for the LWR MOX fuel irradiation test project  

SciTech Connect

This document outlines the responsibilities of DOE, DOE contractors, the commercial carrier, and other organizations participating in a shipping campaign of irradiated test specimen capsules containing mixed-oxide (MOX) fuel from the Idaho National Engineering and Environmental Laboratory (INEEL) to the Oak Ridge National Laboratory (ORNL). The shipments described here will be conducted according to applicable regulations of the US Department of Transportation (DOT), US Nuclear Regulatory Commission (NRC), and all applicable DOE Orders. This Irradiated Test Fuel Shipment Plan for the LWR MOX Fuel Irradiation Test Project addresses the shipments of a small number of irradiated test specimen capsules and has been reviewed and agreed to by INEEL and ORNL (as participants in the shipment campaign). Minor refinements to data entries in this plan, such as actual shipment dates, exact quantities and characteristics of materials to be shipped, and final approved shipment routing, will be communicated between the shipper, receiver, and carrier, as needed, using faxes, e-mail, official shipping papers, or other backup documents (e.g., shipment safety evaluations). Any major changes in responsibilities or data beyond refinements of dates and quantities of material will be prepared as additional revisions to this document and will undergo a full review and approval cycle.

Shappert, L.B.; Dickerson, L.S.; Ludwig, S.B.

1998-10-16T23:59:59.000Z

200

Project Sponsors:National Fuel Cell Research Center  

E-Print Network (OSTI)

the 25 kW SOFC system are to: · Provide long-term operating data on the tubular Solid Oxide Fuel Cell landfill and digester gas. SOLID OXIDE INTEGRATED FUEL CELL SYSTEMS SolidOxide_IntegratedFuelCellSystems.ppt.pptx OVERVIEW The Siemens Westinghouse 25 kW Tubular Solid Oxide Fuel Cell (SOFC) is the first integrated SOFC

Mease, Kenneth D.

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Joint federal/state motor fuel tax compliance project. Fiscal year 1994 midyear report  

SciTech Connect

;Table of Contents: List of Exhibits; Executive Summary: History of the Joint Federal/State Motor Fuel Tax Compliance Project; Update on Motor Fuel Tax Procedures; Joint Project Results; Status of the Regional Task Forces; Future Program Activities; References; Glossary of Acronyms; List of Exhibits.

NONE

1994-11-02T23:59:59.000Z

202

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

203

Community Renewable Energy Deployment: University of California at at Davis  

Open Energy Info (EERE)

at at Davis at at Davis Project Jump to: navigation, search Name Community Renewable Energy Deployment: University of California at at Davis Project Agency/Company /Organization US Department of Energy Focus Area Energy Efficiency, Greenhouse Gas, Grid Assessment and Integration, Other, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Hydrogen and Fuel Cells, - Solar Pv, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality University of California at Davis References Community Renewable Energy Deployment: University of California at at Davis Project[1] Contents

204

Vehicle Technologies Office: Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Our nation's energy security depends on the efficiency of our transportation system and on which fuels we use. Transportation in the United States already consumes much more oil than we produce here at home and the situation is getting worse. Domestic oil production has been dropping steadily for over 20 years, and experts predict that by 2025, about 70% of our oil will be imported. The U.S. Department of Energy's (DOE's) Vehicle Technologies Office supports research and development (R&D) that will lead to new technologies that reduce our nation's dependence on imported oil, further decrease vehicle emissions, and serve as a bridge from today's conventional powertrains and fuels to tomorrow's hydrogen-powered hybrid fuel cell vehicles. The Vehicle Technologies Office also supports implementation programs that help to transition alternative fuels and vehicles into the marketplace, as well as collegiate educational activities to help encourage engineering and science students to pursue careers in the transportation sector. Following are some of the activities that complement the Vehicle Technologies Office's mission.

205

State Level Incentives for Biogas-Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

State policy and legislative outlook for biogas and fuel cells. Presented by Norma McDonald, Organic Waste Systems, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

206

City of Tulare Renewable Biogas Fuel Cell Project  

Energy.gov (U.S. Department of Energy (DOE))

Presented at the Technology Transition Corporation and U.S. Department of Energy Fuel Cell Technologies Program Webinar: Go Local: Maximizing Your Local Renewable Resources With Fuel Cells, August 16, 2011.

207

Multi-Function Fuel-Fired Heat Pump Research Project  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy is currently conducting research into multi-function fuel-fired heat pumps. Multi-function fuel-fired heat pump technology has the potential for a significant impact...

208

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Adam R. 2008. Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. In

Coughlin, Katie

2013-01-01T23:59:59.000Z

209

Fuel Cell Technology Status Analysis Project: Partnership Opportunities (Fact Sheet)  

SciTech Connect

This fact sheet describes opportunities for leading fuel cell industry partners from the United States and abroad to participate in an objective and credible fuel cell technology performance and durability analysis by sharing their raw fuel cell test data related to operations, maintenance, safety, and cost with the National Renewable Energy Laboratory via the Hydrogen Secure Data Center.

Not Available

2013-01-01T23:59:59.000Z

210

EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 - Gilberton Coal-to-Clean Fuels and Power Project in 7 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA EIS-0357 - Gilberton Coal-to-Clean Fuels and Power Project in Giberton, PA Summary This Environmental Impact Statement (EIS) assesses the potential environmental impacts that would result from a proposed Department of Energy (DOE) action to provide cost-shared funding for construction and operation of facilities near Gilberton, Pennsylvania, which have been proposed by WMPI PTY, LLC, for producing electricity, steam, and liquid fuels from anthracite coal waste (culm). The project was selected by DOE under the Clean Coal Power Initiative (CCPI) to demonstrate the integration of coal waste gasification and Fischer-Tropsch (F-T) synthesis of liquid hydrocarbon fuels at commercial scale. PUBLIC COMMENT OPPORTUNITIES

211

DOE Hydrogen and Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | Fuel Cell Technologies Program eere.energy.gov * Overview - Goals & Objectives - Technology Status & Key Challenges * Progress - Research & Development - Deployments - Recovery Act Projects * Budget * Key Publications Agenda: DOE Fuel Cell Technologies Program 3 | Fuel Cell Technologies Program eere.energy.gov Program Mission The mission of the Hydrogen and Fuel Cells Program is to enable the widespread commercialization of a portfolio of hydrogen and fuel cell technologies through basic and applied research, technology development and demonstration, and

212

Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Projects to Diversify U.S. Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles Energy Department Announces Clean Cities Projects to Diversify U.S. Fuel Economy, Prepare for Advanced Vehicles November 19, 2012 - 2:08pm Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced 20 new projects to help states and local governments cut red tape and develop the infrastructure, training and regional planning needed to help meet the demand for alternative fuel cars and trucks, including vehicles that run on natural gas, electricity and propane. These projects build on the important steps the Obama Administration has taken to expand the transportation options available for businesses and communities and improve the fuel

213

Cheyenne Light, Fuel and Power Company Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Light, Fuel and Power Company Smart Grid Project Light, Fuel and Power Company Smart Grid Project Jump to: navigation, search Project Lead Cheyenne Light, Fuel and Power Company Country United States Headquarters Location Cheyenne, Wyoming Recovery Act Funding $5,033,441.00 Total Project Value $10,066,882.00 Coverage Area Coverage Map: Cheyenne Light, Fuel and Power Company Smart Grid Project Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

214

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect

The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

Steve Bergin

2003-10-17T23:59:59.000Z

215

Opportunity, risk, and success recognizing, addressing, and balancing multiple factors crucial to the success of a project management system deployed to support multi-lateral decommissioning programs  

SciTech Connect

This paper addresses the factors involved in effectively implementing a world-class program/project management information system funded by multiple nations. Along with many other benefits, investing in and utilizing such systems improves delivery and drive accountability for major expenditures. However, there are an equally large number of impediments to developing and using such systems. To be successful, the process requires a dynamic combining of elements and strategic sequencing of initiatives. While program/project-management systems involve information technologies, software and hardware, they represent only one element of the overall system.. Technology, process, people and knowledge must all be integrated and working in concert with one another to assure a fully capable system. Major system implementations occur infrequently, and frequently miss established targets in relatively small organizations (with the risk increasing with greater complexity). The European Bank of Reconstruction (EBRD) is midway through just such an implementation. The EBRD is using funds from numerous donor countries to sponsor development of an overarching program management system. The system will provide the Russian Federation with the tools to effectively manage prioritizing, planning, and physically decommissioning assets{sub i}n northwest Russia to mitigate risks associated the Soviet era nuclear submarine program. Project-management delivery using world-class techniques supported by aligned systems has been proven to increase the probability of delivering on-time and on-budget, assuring those funding such programs optimum value for money. However, systems deployed to manage multi-laterally funded projects must be developed with appropriate levels of consideration given to unique aspects such as: accommodation of existing project management methods, consideration for differences is management structures and organizational behaviors, incorporation of unique strengths, and subtle adjustment to compensate weaknesses. This paper addresses the architecture and sequencing of implementation. (authors)

Funk, Greg; Longsworth, Paul [Fluor Cumbria, Unit 8, Galemire Court, Westlakes Science Park, Moor Row, CA24 3HY (United Kingdom)

2007-07-01T23:59:59.000Z

216

Community Renewable Energy Deployment: Sacramento Municipal Utility  

Open Energy Info (EERE)

Deployment: Sacramento Municipal Utility Deployment: Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects Agency/Company /Organization US Department of Energy Focus Area Agriculture, Economic Development, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Solar - Concentrating Solar Power, Solar, - Solar Pv, Biomass - Waste To Energy Phase Bring the Right People Together, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available--Free Publication Date 2/2/2011 Website http://www1.eere.energy.gov/co Locality Sacramento Municipal Utility District, CA References Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects[1]

217

Energy Department Awards $45 Million to Deploy Advanced Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awards $45 Million to Deploy Advanced Awards $45 Million to Deploy Advanced Transportation Technologies Energy Department Awards $45 Million to Deploy Advanced Transportation Technologies September 4, 2013 - 10:06am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- Building on President Obama's Climate Action Plan to build a 21st century transportation sector and reduce greenhouse gas emissions, the Energy Department announced today more than $45 million for thirty-eight new projects that accelerate the research and development of vehicle technologies to improve fuel efficiency, lower transportation costs and protect the environment in communities nationwide. "By partnering with universities, private industry and our national labs, the Energy Department is helping to build a strong 21st century

218

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

Adam R. 2008. Converting Oil Shale to Liquid Fuels: Energyshale gas, tight oil, oil shale, and tar (bitumen) sands. Inunconventional (tar sands or shale oil) being more energy

Coughlin, Katie

2013-01-01T23:59:59.000Z

219

DOE Hydrogen Program New Fuel Cell Projects Kickoff Meeting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

relevance, approach, progress & tech transfer FreedomCAR & Fuel Partnership Includes automobile and energy companies Technical Teams provide input on technical milestones & system...

220

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

from Conventional Oil Production and Oil Sands. Environ.6 Forecasts of Canadian oil production published in 2006 andPetroleum Fuels The oil production chain is similar to

Coughlin, Katie

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Used in Transportation: Science Projects in...  

Energy Savers (EERE)

with a hydroxyl radical (OH). Methanol can be produced from natural gas, coal, residual oil, or biomass. Although vehicles can operate on pure methanol fuel (M100), methanol...

222

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt056tigilbert2011p...

223

Midwest Region Alternative Fuels Project | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt056tigilbert2012o...

224

Fuel Cells (Project FC-041): DOE Hydrogen Program 2011 Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

approach for oxygen reduction reaction (ORR) catalysis is advantageous for both DMFC and hydrogen fuel cells. Question 1: Relevance to overall U.S. Department of Energy objectives...

225

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

function of the FFC energy intensity parameters. The FFCand c as the energy intensity of fuel production, defined asrepresenting the energy intensity and material losses at

Coughlin, Katie

2013-01-01T23:59:59.000Z

226

Blender Pump Fuel Survey: CRC Project E-95  

SciTech Connect

To increase the number of ethanol blends available in the United States, several states have 'blender pumps' that blend gasoline with flex-fuel vehicle (FFV) fuel. No specification governs the properties of these blended fuels, and little information is available about the fuels sold at blender pumps. No labeling conventions exist, and labeling on the blender pumps surveyed was inconsistent.; The survey samples, collected across the Midwestern United States, included the base gasoline and FFV fuel used in the blends as well as the two lowest blends offered at each station. The samples were tested against the applicable ASTM specifications and for critical operability parameters. Conventional gasoline fuels are limited to 10 vol% ethanol by the U.S. EPA. The ethanol content varied greatly in the samples. Half the gasoline samples contained some ethanol, while the other half contained none. The FFV fuel samples were all within the specification limits. No pattern was observed for the blend content of the higher ethanol content samples at the same station. Other properties tested were specific to higher-ethanol blends. This survey also tested the properties of fuels containing ethanol levels above conventional gasoline but below FFV fuels.

Alleman, T. L.

2011-07-01T23:59:59.000Z

227

Preoperational Environmental Survey for the Spent Nuclear Fuel (SNF) Project Facilities  

SciTech Connect

This document represents the report for environmental sampling of soil, vegetation, litter, cryptograms, and small mammals at the Spent Nuclear Fuel Project facilities located in 100 K and 200 East Areas in support of the preoperational environmental survey.

MITCHELL, R.M.

2000-09-28T23:59:59.000Z

228

Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project  

Energy.gov (U.S. Department of Energy (DOE))

Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

229

Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

230

Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

That Will Advance Solid Oxide Fuel Cell Research That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development Seven Projects That Will Advance Solid Oxide Fuel Cell Research Selected by DOE for Further Development July 27, 2012 - 1:00pm Addthis Washington, D.C. - Seven projects that will help develop low-cost solid oxide fuel cell (SOFC) technology for environmentally responsible central power generation from the Nation's abundant fossil energy resources have been selected for further research by the Department of Energy (DOE). The projects, managed by the Office of Fossil Energy's National Energy Technology Laboratory (NETL), are valued at a total of $4,391,570, with DOE contributing $3,499,250 and the remaining cost provided by the recipients. Four of the selected projects will pursue advances in cathode performance,

231

Property:Number of Devices Deployed | Open Energy Information  

Open Energy Info (EERE)

Devices Deployed Devices Deployed Jump to: navigation, search Property Name Number of Devices Deployed Property Type Number Pages using the property "Number of Devices Deployed" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 3 + 1 + MHK Projects/ADM 5 + 1 + MHK Projects/AW Energy EMEC + 1 + MHK Projects/AWS II + 2 + MHK Projects/Admirality Inlet Tidal Energy Project + 450 + MHK Projects/Agucadoura + 3 + MHK Projects/Alaska 18 + 100 + MHK Projects/Alaska 36 + 100 + MHK Projects/Algiers Cutoff Project + 40 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

232

Blender Pump Fuel Survey: CRC Project E-95-2  

SciTech Connect

With the increasing fuel diversity in the marketplace, the Coordinating Research Council and the U.S. Department of Energy's National Renewable Energy Laboratory conducted a survey of mid-level ethanol blends (MLEBs) in the market. A total of 73 fuel samples were collected from 20 retail stations. To target Class 4 volatility, the fuel samples were collected primarily in the midwestern United States in the month of February. Samples included the gasoline (E0), Flex Fuel, and every MLEB that was offered from each of the 20 stations. Photographs of each station were taken at the time of sample collection, detailing the pump labeling and configuration. The style and labeling of the pump, hose, and dispenser nozzle are all important features to prevent misfueling events. The physical location of the MLEB product relative to the gasoline product can also be important to prevent misfueling. In general, there were many differences in the style and labeling of the blender pumps surveyed in this study. All samples were analyzed for volatility and ethanol content. For the MLEB samples collected, the fuels tended to be lower in ethanol content than their indicated amount; however, the samples were all within 10 vol% of their indicated blend level. One of the 20 Flex Fuel samples was outside of the allowable limits for ethanol content. Four of the 20 Flex Fuel samples had volatility below the minimum requirement for Class 4.

Williams, A.; Alleman, T. L.

2014-05-01T23:59:59.000Z

233

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

234

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

energy and emissions intensity of unconventional production are at best a lower bound, and current projections of future

Coughlin, Katie

2013-01-01T23:59:59.000Z

235

Transportation Energy Futures Series: Projected Biomass Utilization for Fuels and Power in a Mature MarketProjected Biomass Utilization for Fuels and Power in a Mature Market  

NLE Websites -- All DOE Office Websites (Extended Search)

FUELS Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy 2013 Prepared by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or

236

BC Transit Fuel Cell Bus Project: Evaluation Results Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

energy: 47 kWh Accessories Electrical Fuel storage Eight roof mounted, Dynetek, type 3 tanks; 5,000 psi rated; 56 kg hydrogen (useful) Range 5 337-381 km (210-237 miles) Bus...

237

BC Transit Fuel Cell Bus Project Evaluation Results: Second Report  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

energy: 47 kWh Accessories Electrical Fuel storage Eight roof mounted, Dynetek, type 3 tanks; 5,000 psi rated; 56 kg hydrogen (useable) Range 7 337-381 km (210-237 miles) Bus...

238

Fuel Cell Research at DLR-Latest Results and current Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Research at DLR-Latest Results and current Projects Fuel Cell Research at DLR-Latest Results and current Projects Speaker(s): Werner Schnurnberger Date: March 27, 2008 - 12:00pm Location: 90-4133 Seminar Host/Point of Contact: Galen Barbose Fuel cell R&D at the German Aerospace Center is focussing on both Membrane Fuel Cells (PEFC and DMFC) and high temperature Solid Oxide Fuel Cells (SOFC). The status of advanced DLR Manufacturing Technologies based on dry powder coating of membranes and plasma spray concepts for metal supported SOFC will be reported shortly. Fundamental research activities actually are focussed on in situ diagnostics using segmented cells and short stacks. Some latest results will be given for locally resolved current density distribution and temperature for both PEFC and SOFC. In addition,

239

NETL: News Release - SECA Fuel Cell Program Moves Two Key Projects Into  

NLE Websites -- All DOE Office Websites (Extended Search)

5, 2009 5, 2009 SECA Fuel Cell Program Moves Two Key Projects Into Next Phase Projects Continue Push for Low-Cost, Environmentally Friendly Coal Power Washington, DC-The U.S. Department of Energy (DOE) has selected two projects for continuation within the Department's Solid State Energy Conversion Alliance (SECA) Program research portfolio. The projects-led by FuelCell Energy, in partnership with VersaPower Systems, and Siemens Energy-have successfully demonstrated solid oxide fuel cells (SOFCs) designed for aggregation and use in coal-fueled central power generation. Further development of these low-cost, near-zero emission fuel cell systems will substantially contribute to solving the Nation's energy security, climate, and water challenges. The selections were based upon an assessment of demonstrated progress in developing high-performance, low-cost SOFC technology. FuelCell Energy is testing two ~10kilowatt SOFC stacks incorporating planar cells; each has surpassed 4,700 hours of operation to date. Similarly, Siemens is testing a ~10kilowatt SOFC stack incorporating its new higher power Delta cells, with 2,500 hours of operation to date. With the continuation, these projects will pursue cell materials and design development to further improve performance, reduce cost, and integrate the cells into larger stacks for evaluation and incorporation into larger demonstrations beginning in 2012.

240

Spent Nuclear Fuel (SNF) Project Acceptance Criteria for Light Water Reactor Spent Fuel Storage System [OCRWM PER REV2  

SciTech Connect

As part of the decommissioning of the 324 Building Radiochemical Engineering Cells there is a need to remove commercial Light Water Reactor (LWR) spent nuclear fuel (SNF) presently stored in these hot cells. To enable fuel removal from the hot cells, the commercial LWR SNF will be packaged and shipped to the 200 Area Interim Storage Area (ISA) in a manner that satisfies site requirements for SNF interim storage. This document identifies the criteria that the 324 Building Radiochemical Engineering Cell Clean-out Project must satisfy for acceptance of the LWR SNF by the SNF Project at the 200 Area ISA. In addition to the acceptance criteria identified herein, acceptance is contingent on adherence to applicable Project Hanford Management Contract requirements and procedures in place at the time of work execution.

JOHNSON, D.M.

2000-12-20T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Synthesis of energy technology medium-term projections Alternative fuels for transport and low carbon electricity  

E-Print Network (OSTI)

carbon electricity generation: A technical note Robert Gross Ausilio Bauen ICEPT October 2005 #12;Alternative fuels for transport and electricity generation: A technical note on costs and cost projections ................................................................................................................. 3 Current and projected medium-term costs of electricity generating technologies....... 4 Biofuels

242

The TMI defueling project fuel debris removal system  

SciTech Connect

The Three Mile Island (TMI) unit 2 pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems. A plethora of techniques, systems, and tools have been employed for the recovery and packaging of the postaccident configuration of the reactor core. Of particular difficulty was the removal of the fuel debris located beneath the lower core support structure. Fuel debris located beneath the lower core support structure was the result of rapid cooling of the previously molten UO{sub 2} and ZrO{sub 2}, causing formation of a ceramic like rubble. Approximately 19,100 kg of this rubble settled beneath the lower core support structure and onto the lower head of the reactor containment vessel. The development and implementation of a debris collection system based on the air lift principle proved to be an effective method for gathering the fuel debris from beneath the lower core support structure.

Burge, B. (EG and G Idaho, Inc., Idaho Falls (United States))

1992-01-01T23:59:59.000Z

243

Development of custom fire behavior fuel models from FCCS fuelbeds for the Savannah River fuel assessment project.  

SciTech Connect

The purpose of this project is to create fire behavior fuel models that replicate the fire behavior characteristics (spread rate and fireline intensity) produced by 23 candidate FCCS fuelbeds developed for the Savannah River National Wildlife Refuge. These 23 fuelbeds were created by FERA staff in consultation with local fuel managers. The FCCS produces simulations of surface fire spread rate and flame length (and therefore fireline intensity) for each of these fuelbeds, but it does not produce maps of those fire behavior characteristics or simulate fire growththose tasks currently require the use of the FARSITE and/or FlamMap software systems. FARSITE and FlamMap do not directly use FCCS fuelbeds, but instead use standard or custom fire behavior fuel models to describe surface fuel characteristics for fire modeling. Therefore, replicating fire growth and fire behavior potential calculations using FCCS?simulated fire characteristics requires the development of custom fuel models that mimic, as closely as possible, the fire behavior characteristics produced by the FCCS for each fuelbed, over a range of fuel moisture and wind speeds.

Scott, Joe, H.

2009-07-23T23:59:59.000Z

244

SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project  

E-Print Network (OSTI)

In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

Betts, W. D.

1982-01-01T23:59:59.000Z

245

Rapid deployment intrusion detection system  

SciTech Connect

A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs.

Graham, R.H.

1997-08-01T23:59:59.000Z

246

AMF Deployment, Manacapuru, Brazil  

NLE Websites -- All DOE Office Websites (Extended Search)

Manacapuru, Brazil Manacapuru Deployment AMF Home Manacapuru Home GOAMAZON Website Experiment Planning Abstract and Related Campaigns Science Plan (PDF, 1.4MB) Deployment...

247

AMF Deployment, Hyytiala, Finland  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyytil, Finland Hyytil Deployment AMF Home Hyytil Home Experiment Planning Abstract and Related Campaigns Science Plan Deployment Operations Baseline Instruments and...

248

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

SciTech Connect

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

249

Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects  

SciTech Connect

To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

None

1981-08-07T23:59:59.000Z

250

Six Utah plants help fuel rise in geothermal projects | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States grew 20 percent since January. "These new projects will result in the infusion of roughly 15 billion in capital investment in the Western states and create 7,000...

251

Final Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL  

Office of Scientific and Technical Information (OSTI)

Project Report Project Report INERT-MATRIX FUEL: ACTINIDE "BURNING" AND DIRECT DISPOSAL Nuclear Engineering Education Research Program (grant # DE-FG07-99ID13767) Rodney C. Ewing (co-PI) Lumin Wang (co-PI) October 30,2002 For the Period of 07/01/1999 to 06/30/2002 Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 1 1. Background Excess actinides result from the dismantlement of nuclear weapons (239Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241Am, Cm and 237Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burn- up of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-

252

BC Transit Fuel Cell Bus Project: Evaluation Results Report  

SciTech Connect

This report evaluates a fuel cell electric bus demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. This evaluation report covers two years of revenue service data on the buses from April 2011 through March 2013.

Eudy, L.; Post, M.

2014-02-01T23:59:59.000Z

253

Project Information Form Project Title Accelerating Commercialization of Alternative and Renewable Fuels and  

E-Print Network (OSTI)

or organization) CEC $344,546 Total Project Cost $344,546 Agency ID or Contract Number DTRT13-G-UTC29 StartProject Information Form Project Title Accelerating Commercialization of Alternative and Renewable and End Dates June 30, 2014 to June 30, 2016 Brief Description of Research Project Alternative

California at Davis, University of

254

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

SciTech Connect

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

255

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

SciTech Connect

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

256

Application of the BISON Fuel Performance Code to the FUMEX-III Coordinated Research Project  

SciTech Connect

INL recently participated in FUMEX-III, an International Atomic Energy Agency sponsored fuel modeling Coordinated Research Project. A main purpose of FUMEX-III is to compare code predictions to reliable experimental data. During the same time period, the INL initiated development of a new multidimensional (2D and 3D) multiphysics nuclear fuel performance code called BISON. Interactions with international fuel modeling researchers via FUMEX-III played a significant and important role in the BISON evolution, particularly influencing the selection of material and behavioral models which are now included in the code. BISON's ability to model integral fuel rod behavior did not mature until 2011, thus the only FUMEX-III case considered was the Riso3-GE7 experiment, which includes measurements of rod outer diameter following pellet clad mechanical interaction (PCMI) resulting from a power ramp late in fuel life. BISON comparisons to the Riso3-GE7 final rod diameter measurements are quite reasonable. The INL is very interested in participation in the next Fuel Modeling Coordinated Research Project and would like to see the project initiated as soon as possible.

R. L. Williamson; S. R. Novascone

2012-04-01T23:59:59.000Z

257

Global Threat Reduction Initiative Fuel-Thermo-Physical Characterization Project Quality Assurance Plan  

SciTech Connect

The charter of the Fuel Thermo-Physical Characterization Project is to ready Pacific Northwest National Laboratory (PNNL) facilities and processes for the receipt of unirradiated and irradiated low enriched uranium (LEU) molybdenum (U-Mo) fuel element samples, and to perform analysis to support the Global Threat Reduction Initiative conversion program. PNNLs support for the program will include the establishment of post-irradiation examination processes, including thermo-physical properties, unique to the U.S. Department of Energy laboratories. These processes will ultimately support the submission of the base fuel qualification (BFQ) to the U.S. Nuclear Regulatory Commission (NRC) and revisions to High Performance Research Reactor Safety Analysis Reports to enable conversion from highly enriched uranium to LEU fuel. This quality assurance plan (QAP) provides the quality assurance requirements and processes that support the NRC BFQ. This QAP is designed to be used by project staff, and prescribes the required management control elements that are to be met and how they are implemented. Additional controls are captured in Fuel Thermo-Physical Characterization Project plans, existing procedures, and procedures to be developed that provide supplemental information on how work is conducted on the project.

Pereira, Mario M.; Slonecker, Bruce D.

2012-06-01T23:59:59.000Z

258

Spent Nuclear Fuel Project technical baseline document. Fiscal year 1995: Volume 1, Baseline description  

SciTech Connect

This document is a revision to WHC-SD-SNF-SD-002, and is issued to support the individual projects that make up the Spent Nuclear Fuel Project in the lower-tier functions, requirements, interfaces, and technical baseline items. It presents results of engineering analyses since Sept. 1994. The mission of the SNFP on the Hanford site is to provide safety, economic, environmentally sound management of Hanford SNF in a manner that stages it to final disposition. This particularly involves K Basin fuel, although other SNF is involved also.

Womack, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Cramond, R. [TRW (United States); Paedon, R.J. [SAIC (United States)] [and others

1995-03-13T23:59:59.000Z

259

ONSI-FUEL CELL PROJECT ''AEB BIRSFELDEN/BASEL  

SciTech Connect

AEB Alternativ-Energie Birsfelden AG is supplying several buildings, a public indoor pool and one school with electrical and thermal energy from 5 Kaplan turbines, 2 heat-pumps and conventional boilers. The hating station is called ''Heizzentrale Kirchmatt''. The total heat demand is 3.8 MW peak and 5.5 GWh/a. The Department of Energy of Switzerland supports this project. The FC combined heat and power plant is part of this project with priority in supply of domestic heat. The ONSI PC25C was installed by AEB on a school yard in Birsfelden a district of the Swiss city Basel.

Dipl.-Ing. Irina Reese; Dipl.-Ing. Andreas Bode

2002-04-01T23:59:59.000Z

260

BC Transit Fuel Cell Bus Project Evaluation Results: Second Report  

SciTech Connect

Second report evaluating a fuel cell electric bus (FCEB) demonstration led by British Columbia Transit (BC Transit) in Whistler, Canada. BC Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory to evaluate the buses in revenue service. NREL published its first report on the demonstration in February 2014. This report is an update to the previous report; it covers 3 full years of revenue service data on the buses from April 2011 through March 2014 and focuses on the final experiences and lessons learned.

Eudy, L.; Post, M.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Community Renewable Energy Deployment: University of California...  

Open Energy Info (EERE)

is using a combination of a solar photovoltaic array and fuel cells supplied with biogas from the campus waste to achieve the project goals. The project will demonstrate...

262

Final Technical Report for the Martin County Hydrogen Fuel Cell Development Project  

SciTech Connect

In September 2008, the U.S. Department of Energy and Martin County Economic Development Corporation entered into an agreement to further the advancement of a microtubular PEM fuel cell developed by Microcell Corporation. The overall focus of this project was on research and development related to high volume manufacturing of fuel cells and cost reduction in the fuel cell manufacturing process. The extrusion process used for the microfiber fuel cells in this project is inherently a low cost, high volume, high speed manufacturing process. In order to take advantage of the capabilities that the extrusion process provides, all subsequent manufacturing processes must be enhanced to meet the extrusion lines speed and output. Significant research and development was completed on these subsequent processes to ensure that power output and performance were not negatively impacted by the higher speeds, design changes and process improvements developed in this project. All tasks were successfully completed resulting in cost reductions, performance improvements and process enhancements in the areas of speed and quality. These results support the Department of Energys goal of fuel cell commercialization.

Eshraghi, Ray

2011-03-09T23:59:59.000Z

263

DOE/Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia  

NLE Websites -- All DOE Office Websites (Extended Search)

Boeing Sponsored Projects in Boeing Sponsored Projects in Aviation Fuel Cell Technology at Sandia Lennie Klebanoff and Joe Pratt Sandia National Laboratories Livermore CA 94551 September 30, 2010 "Exceptional Service in the National Interest" DOE-DOD Workshop on Uses of Fuel Cells in Aviation * ~ 8,300 employees * ~ 1,500 PhDs; ~2800 MS/MA * ~ 700 on-site contractors Sandia National Laboratories Sandia is a government-owned/contractor operated (GOCO) facility. Sandia Corporation, a Lockheed Martin company, manages Sandia for the U.S. Department of Energy's National Nuclear Security Administration. Website: www.sandia.gov Annual Budget ~ $2.2 Billion ($1.3 Billion DOE, $0.9 Billion work for others) 3 Origin: Boeing Interested in Bringing Fuel Cell Technology to Ground Support Equipment (GSE)

264

Spent fuel and radioactive waste inventories, projections, and characteristics. Revision 1  

SciTech Connect

Current inventories and characteristics of commercial spent fuels and both commercial and US Department of Energy (DOE) radioactive wastes were compiled through December 31, 1984, based on the most reliable information available from government sources and the open literature, technical reports, and direct contacts. Future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. Materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated, based on reported or calculated isotopic compositions.

Not Available

1985-12-01T23:59:59.000Z

265

Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges  

SciTech Connect

This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M&O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M&O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report summarizes the results of the 2002 Reference SNF Discharge Projection.

B. McLeod

2002-02-28T23:59:59.000Z

266

Deploying Emerging Technologies in ESPC  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deploying Emerging Technologies in Deploying Emerging Technologies in ESPC Charles Williams with Mike Holda and Anthony Radspieler Lawrence Berkeley National Laboratory For More Information * Would you like to know more about this presentation? * Charles Williams * Lawrence Berkeley National Laboratory * One Cyclotron Road, MS90R3111 Berkeley CA 94720 * CHWilliams@lbl.gov Deploying Emerging Technologies * Goals/Objective * Define emerging technologies * Examples of emerging technologies in ESPC projects - lessons learned * Describe actions taken to incorporate ET in ESPCs * Results to date * Feedback, suggestions Emerging Technologies in ESPCs Goal/Objective: -Tool to help reach Executive Order 13423, EPACT 2005 and EISA energy use reduction goals -Means to acquire energy savings otherwise not attainable, and build larger

267

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect

General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

Stottler, Gary

2012-02-08T23:59:59.000Z

268

Leading the Nation in Clean Energy Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world.

269

Deployment of Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the FUPWG Deployment of Emerging Technologies. Presented by Brad Gustafson, Department of Energy, held on November 1, 2006.

270

Integrated Data Base for 1989: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1988. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, commercial reactor and fuel cycle facility decommissioning waste, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 45 figs., 119 tabs.

Not Available

1989-11-01T23:59:59.000Z

271

Integrated data base for 1990: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1989. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 22 refs., 48 figs., 109 tabs.

Not Available

1990-10-01T23:59:59.000Z

272

NREL: Technology Deployment Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Decathlon 2013 Heading to California Solar Decathlon 2013 Heading to California U.S. Coast Guard Saves Energy, Money Training Results in Decreased Energy Use and Costs for Sector Guam Standard Work Specifications Tool Now Available Standard Work Specifications Tool Now Available Weatherization industry can save specifications online and streamline work NREL Federal Fueling Station Data Supports Sandy Recovery NREL Federal Fueling Station Data Supports Sandy Recovery Decision Makers Able to Coordinate Access to Fuel NREL works with federal, state, and local government and private industry and organizations to deploy commercially available energy efficiency and renewable energy technologies. Our experts help prepare the market for emerging technologies by removing barriers to adoption. Use our technology

273

ALIGNMENT, LEVELING AND DEPLOYMENT CONSTRAINTS  

E-Print Network (OSTI)

Thermoelectric Generator (RTG) Crew Deployment Description Passive Seismic Experiment (PSE) Crew Deployment and Alignment Central Station Antenna Crew Deployment Description Leveling, Alignment, and Pointing Radioisotope

Rathbun, Julie A.

274

International Atomic Energy Agency support of research reactor highly enriched uranium to low enriched uranium fuel conversion projects  

SciTech Connect

The IAEA has been involved for more than twenty years in supporting international nuclear non- proliferation efforts associated with reducing the amount of highly enriched uranium (HEU) in international commerce. IAEA projects and activities have directly supported the Reduced Enrichment for Research and Test Reactors (RERTR) programme, as well as directly assisted efforts to convert research reactors from HEU to LEU fuel. HEU to LEU fuel conversion projects differ significantly depending on several factors including the design of the reactor and fuel, technical needs of the member state, local nuclear infrastructure, and available resources. To support such diverse endeavours, the IAEA tailors each project to address the relevant constraints. This paper presents the different approaches taken by the IAEA to address the diverse challenges involved in research reactor HEU to LEU fuel conversion projects. Examples of conversion related projects in different Member States are fully detailed. (author)

Bradley, E.; Adelfang, P.; Goldman, I.N. [Research Reactors Unit, Division of Nuclear Fuel Cycle and Waste Technology, International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna (Austria)

2008-07-15T23:59:59.000Z

275

California Hydrogen Infrastructure Project - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Edward C. Heydorn Air Products and Chemicals, Inc. 7201 Hamilton Boulevard Allentown, PA 18195 Phone: (610) 481-7099 Email: heydorec@airproducts.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Jim Alkire Phone: (720) 356-1426 Email: James.Alkire@go.doe.gov Contract Number: DE-FC36-05GO85026 Working Partners/Subcontractors: * University of California Irvine (UCI), Irvine, CA * National Fuel Cell Research Center (NFCRC), Irvine, CA Project Start Date: August 1, 2005 Project End Date: December 31, 2011 Fiscal Year (FY) 2012 Objectives Demonstrate a cost-effective infrastructure model in

276

U.S. DEPARTMENT OF ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO  

NLE Websites -- All DOE Office Websites (Extended Search)

DEPARTMENT OF ENERGY DEPARTMENT OF ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO 2 THIS PAGE INTENTIONALLY LEFT BLANK OFFICE OF FOSSIL ENERGY SOLID OXIDE FUEL CELLS PROGRAM | 2013 PROJECT PORTFOLIO 3 Disclaimer DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not neces-

277

Spent Nuclear Fuel Project document control and Records Management Program Description  

SciTech Connect

The Spent Nuclear Fuel (SNF) Project document control and records management program, as defined within this document, is based on a broad spectrum of regulatory requirements, Department of Energy (DOE) and Project Hanford and SNF Project-specific direction and guidance. The SNF Project Execution Plan, HNF-3552, requires the control of documents and management of records under the auspices of configuration control, conduct of operations, training, quality assurance, work control, records management, data management, engineering and design control, operational readiness review, and project management and turnover. Implementation of the controls, systems, and processes necessary to ensure compliance with applicable requirements is facilitated through plans, directives, and procedures within the Project Hanford Management System (PHMS) and the SNF Project internal technical and administrative procedures systems. The documents cited within this document are those which directly establish or define the SNF Project document control and records management program. There are many peripheral documents that establish requirements and provide direction pertinent to managing specific types of documents that, for the sake of brevity and clarity, are not cited within this document.

MARTIN, B.M.

2000-05-18T23:59:59.000Z

278

Integrated data base for 1986: spent fuel and radioactive waste inventories, projections, and characteristics. Revision 2  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US Department of Energy (DOE) radioactive wastes through December 31, 1985, based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the expected defense-related and private industrial and institutional activities and the latest DOE/Energy Information Administration (EIA) projections of US commercial nuclear power growth. The materials considered, on a chapter-by-chapter basis, are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or calculated isotopic compositions.

Not Available

1986-09-01T23:59:59.000Z

279

Integrated data base for 1988: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1987. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis are: spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reportd for miscellaneous, highly radioactive materials that may require geologic disposal. 89 refs., 46 figs., 104 tabs.

Not Available

1988-09-01T23:59:59.000Z

280

Integrated data base for 1987: Spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1986. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. Current projections of future waste and spent fuel to be generated through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected defense-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, remedial action waste, and decommissioning waste. For each category, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous, highly radioactive materials that may require geologic disposal. 82 refs., 57 figs., 121 tabs.

Not Available

1987-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Spent Nuclear Fuel (SNF) Storage Project Fuel Basket Handling Grapple Design Development Test Report  

SciTech Connect

Acceptance testing of the SNF Fuel Basket Lift Grapple was accomplished to verify the design adequacy. This report shows the results affirming the design. The test was successful in demonstrating the adequacy of the grapple assembly's inconel actuator shaft and engagement balls for in loads excess of design basis loads (3200 pounds), 3X design basis loads (9600 pounds), and 5X design basis loads (16,000 pounds). The test data showed that no appreciable yielding for the inconel actuator shaft and engagement balls at loads in excess of 5X Design Basis loads. The test data also showed the grapple assembly and components to be fully functional after loads in excess of 5X Design Basis were applied and maintained for over 10 minutes. Following testing, each actuator shaft (Item 7) was liquid penetrant inspected per ASME Section 111, Division 1 1989 and accepted per requirements of NF-5350. This examination was performed to insure that no cracking had occurred. The test indicated that no cracking had occurred. The examination reports are included as Appendix C to this document. From this test, it is concluded that the design configuration meets or exceeds the requirements specified in ANSI N 14 6 for Special Lifting Devices for Shipping Containers Weighing 10,000 Pounds (4500 kg) or More.

CHENAULT, D.M.

2000-01-06T23:59:59.000Z

282

Examining the Process of Automation Development and Deployment.  

E-Print Network (OSTI)

??In order to develop a better understanding of the process of development and deployment of automated systems, this thesis examines aspects of project execution and (more)

Barsalou, Edward

2006-01-01T23:59:59.000Z

283

India Solar Resource Data: Enhanced Data for Accelerated Deployment...  

NLE Websites -- All DOE Office Websites (Extended Search)

India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires...

284

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Planning and Deployment Group Planning and Deployment Group (Redirected from Technology Planning and Deployment) Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1]

285

Solar Deployment and Policy  

Gasoline and Diesel Fuel Update (EIA)

Solar Deployment and Policy Justin Baca Director of Research Solar Energy Industries Association About SEIA * Founded in 1974 * U.S. National Trade Association for Solar Energy *...

286

Technology Deployment List  

Energy.gov (U.S. Department of Energy (DOE))

Spreadsheet details new and underutilized technologies ranked for Federal deployment by the Federal Energy Management Program. The list was last updated in 2012.

287

Integrated Technology Deployment  

Office of Energy Efficiency and Renewable Energy (EERE)

Integrated technology deployment is a comprehensive approach to implementing solutions that increase the use of energy efficiency and renewable energy technologies. Federal, state, and local...

288

Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

289

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems Projected Performance and Cost Parameters  

Energy.gov (U.S. Department of Energy (DOE))

This program record from the Department of Energy's Hydrogen and Fuel Cells Program provides information about the projected performance and cost parameters of on-board hydrogen storage systems.

290

Task 27 -- Alaskan low-rank coal-water fuel demonstration project  

SciTech Connect

Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

NONE

1995-10-01T23:59:59.000Z

291

Fuel Modelling at Extended Burnup: IAEA Coordinated Research Project FUMEX-II  

SciTech Connect

The International Atomic Energy Agency sponsored a Coordinated Research Project on Fuel Modelling at Extended Burnup (FUMEX-II). Eighteen fuel modelling groups participated with the intention of improving their capabilities to understand and predict the behaviour of water reactor fuel at high burnups. The exercise was carried out in coordination with the OECD/NEA. The participants used a mixture of data derived from actual irradiation histories of high burnup experimental fuel and commercial irradiations where post-irradiation examination measurements are available, combined with idealised power histories intended to represent possible future extended dwell commercial irradiations and test code capabilities at high burnup. All participants have been asked to model nine priority cases out of some 27 cases made available to them for the exercise from the IAEA/OECD International Fuel Performance Experimental Database. Calculations carried out by the participants, particularly for the idealised cases, have shown how varying modelling assumptions affect the high burnup predictions, and have led to an understanding of the requirements of future high burnup experimental data to help discriminate between modelling assumptions. This understanding is important in trying to model transient and fault behaviour at high burnup. It is important to recognise that the code predictions presented here should not be taken to indicate that some codes do not perform well. The codes have been designed for different applications and have differing assumptions and validation ranges; for example codes intended to predict Candu fuel operation with thin wall collapsible cladding do not need the clad creep and gap conductivity modelling found in PWR codes. Therefore, when a case is based on Candu technology or PWR technology, it is to be expected that the codes may not agree. However, it is the very differences in such behaviour that is useful in helping to understand the effects of such internal modelling. (authors)

Killeen, J.C. [International Atomic Energy Agency, Wagramerstrasse 5, PO Box 100, A-1400 Vienna (Austria); Turnbull, J.A. [Cherry-Lyn, Tockington, South Glos (United Kingdom); Sartori, E. [OECD/NEA, 12 Bd des Iles, 92130 Issy-les-Moulineaux (France)

2007-07-01T23:59:59.000Z

292

Drop In Fuels: Where the Road Leads  

Energy.gov (U.S. Department of Energy (DOE))

Reviews key fuel industry drivers, renewable fuel mandates and projected impact on hydrocarbon fuels

293

Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Not Available

1992-10-01T23:59:59.000Z

294

Remotely Deployed Virtual Sensors  

E-Print Network (OSTI)

Remotely Deployed Virtual Sensors TR-UTEDGE-2007-010 Sanem Kabadayi Christine Julien © Copyright 2007 The University of Texas at Austin #12;Remotely Deployed Virtual Sensors Sanem Kabadayi that run on mobile client devices connect to the sensors of a multihop sensor network. For emerging

Julien, Christine

295

ARM - News from the Steamboat Springs Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

ColoradoNews from the Steamboat Springs Deployment Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace News from the Steamboat Springs Deployment Releases WPSD (Paducah, KY) "STORMVEX Cloud Study" January 19, 2011 The Daily Sentinel, Grand Junction "Steamboat project gives scientists unique, grounded look at clouds" December 12, 2010 Steamboat Pilot & Today "Steamboat cloud study to help create better global climate models" Image Gallery December 12, 2010 Also picked up by:

296

Property:DeploymentPrograms | Open Energy Information  

Open Energy Info (EERE)

DeploymentPrograms DeploymentPrograms Jump to: navigation, search Property Name DeploymentPrograms Property Type String Description Depolyment programs as listed in cleanenergysolutions.org Allows the following values: Audit Programs Demonstration & Implementation Green Power/Voluntary RE Purchase High Performance Buildings Industry Codes & Standards Project Development Public Tenders, Procurement, & Lead Examples Public-Private Partnerships Retrofits Ride Share, Bike Share, etc. Technical Assistance Training & Education Voluntary Appliance & Equipment Labeling Voluntary Industry Agreements Subproperties This property has the following 2 subproperties: G Greenhouse Gas Regional Inventory Protocol (GRIP) Website M Methods for Climate Change Technology Transfer Needs Assessments and

297

Development and Deployment of Generation 3 Plug-In Hybrid Electric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Deployment of Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells...

298

Final Report of Project Nanometer Structures for Fuel Cells and Displays, etc.  

E-Print Network (OSTI)

Nanometer Structures for Fuel Cells and Displays, etc. Qingtechnologies (solar and fuel cells, lithium batteries). Intechnologies (solar and fuel cells, lithium batteries), and

Ji, Qing

2012-01-01T23:59:59.000Z

299

General-purpose heat source project and space nuclear safety fuels program. Progress report, February 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are: General-Purpose Heat Source Development and Space Nuclear Safety and Fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-05-01T23:59:59.000Z

300

NREL: Regional Energy Deployment System (ReEDS) Model - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Energy Deployment System (ReEDS) Model Energy Analysis ReEDS Regional Energy Deployment System Model Regional Energy Deployment System (ReEDS) Model Energy Analysis ReEDS Regional Energy Deployment System Model Search More Search Options Site Map Printable Version Publications The following are publications - including technical reports, journal articles, conference papers, and posters - focusing on the Wind Deployment System (WinDS) and Regional Energy Deployment System (ReEDS) models. Technical Reports Eurek, K.; Denholm, P.; Margolis, R.; Mowers, M. (2013). Sensitivity of Utility-Scale Solar Deployment Projections in the SunShot Vision Study to Market and Performance Assumptions. 55 pp.; NREL Report No. TP-6A20-55836. Martinez, A.; Eurek, K.; Mai, T.; Perry, A. (2013). Integrated Canada-U.S. Power Sector Modeling with the Regional Energy Deployment System (ReEDS).

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Technology Deployment - State and Local Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Deployment Deployment Search More Search Options Site Map NREL helps states and local communities throughout the United States achieve their clean energy goals by supporting renewable energy and energy-saving projects through a variety of technical assistance and technology deployment programs. Analyze Energy Policy Impacts Analyze Energy Policy Impacts Find data to help your state, locality, or region establish beneficial clean energy policies. Learn more. Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player. Technical Assistance Webcast Experts present information on state and local energy projects, financing, policy and more... Renewable Energy Data Book NREL's Cean Energy Policy Analyses Project State of the States 2010 The role of policy in clean energy market transformation

302

The Fuel Cell Mobile Light Project- A DOE Market Transformation Activity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Fuel Cell Technologies Program webinar, Fuel Cell Mobile Lighting, held on November 13, 2012.

303

Energy Department Launches Public-Private Partnership to Deploy Hydrogen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public-Private Partnership to Deploy Public-Private Partnership to Deploy Hydrogen Infrastructure Energy Department Launches Public-Private Partnership to Deploy Hydrogen Infrastructure May 13, 2013 - 1:37pm Addthis News Media Contact (202) 586-4940 WASHINGTON -- The Energy Department today launched H2USA -- a new public-private partnership focused on advancing hydrogen infrastructure to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles (FCEVs). The new partnership brings together automakers, government agencies, gas suppliers, and the hydrogen and fuel cell industries to coordinate research and identify cost-effective solutions to deploy infrastructure that can deliver affordable, clean hydrogen fuel in the United States. "Fuel cell technologies are an important part of an all-of-the-above

304

Deployable Swimming Pool Enclosures  

Science Journals Connector (OSTI)

Deployable enclosures for indoor swimming pools facilities are a common need nowadays. Swimming, a common sport activity concerning overall physical ... climate, especially in cold and windy weather. Swimming pool

E. Karni

2000-01-01T23:59:59.000Z

305

General-purpose heat source project and space nuclear safety and fuels program. Progress report  

SciTech Connect

Studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of LASL are presented. The three programs involved are: general-purpose heat source development; space nuclear safety; and fuels program. Three impact tests were conducted to evaluate the effects of a high temperature reentry pulse and the use of CBCF on impact performance. Additionally, two /sup 238/PuO/sub 2/ pellets were encapsulated in Ir-0.3% W for impact testing. Results of the clad development test and vent testing are noted. Results of the environmental tests are summarized. Progress on the Stirling isotope power systems test and the status of the improved MHW tests are indicated. The examination of the impact failure of the iridium shell of MHFT-65 at a fuel pass-through continued. A test plan was written for vibration testing of the assembled light-weight radioisotopic heater unit. Progress on fuel processing is reported.

Maraman, W.J.

1980-02-01T23:59:59.000Z

306

Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Leading the Nation in Clean Energy Deployment (Fact Sheet), Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID) Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID) This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. id_overview.pdf More Documents & Publications A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) Rising Above the Water: New Orleans Implements Energy Efficiency and Sustainability Practices Following Hurricanes Katrina and Rita (Fact

307

PNNL Technology Planning and Deployment Group | Open Energy Information  

Open Energy Info (EERE)

Deployment Group Deployment Group Jump to: navigation, search Logo: Technology Planning and Deployment Name Technology Planning and Deployment Agency/Company /Organization Pacific Northwest National Laboratory Sector Energy Website http://tpd.pnl.gov/ References Technology Planning and Development [1] "The Technology Planning & Deployment (TP&D) group is part of the Pacific Northwest National Laboratory's (PNNL's) Energy and Environment Directorate. TP&D staff provide customers with a unique combination of experience and expertise with capabilities in economics and regulatory analysis, systems engineering, marketing, technology adaptation and application, policy analysis, and project management."[1] Primary Services Building and facilities energy utilization assessments, audits,

308

Property:Number of Build Out Units Deployed | Open Energy Information  

Open Energy Info (EERE)

Build Out Units Deployed Build Out Units Deployed Jump to: navigation, search Property Name Number of Build Out Units Deployed Property Type String Pages using the property "Number of Build Out Units Deployed" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 50 + MHK Projects/AWS II + 20 + MHK Projects/Algiers Light Project + 500 + MHK Projects/Anconia Point Project + 500 + MHK Projects/Ashley Point Project + 3700 + MHK Projects/Avondale Bend Project + 450 + MHK Projects/Bar Field Bend + 2350 + MHK Projects/Barfield Point + 2851 + MHK Projects/Bayou Latenache + 1260 + MHK Projects/BioSTREAM Pilot Plant + 1 + MHK Projects/Bondurant Chute + 3802 + MHK Projects/Breeze Point + 4942 + MHK Projects/Brilliant Point Project + 1400 +

309

Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Deployment Technology Deployment October 8, 2013 - 2:43pm Addthis The Federal Energy Management Program's (FEMP) Technology Deployment program provides the Federal Government and commercial building sector with unbiased information and guidance about energy-efficient and renewable energy technologies available for deployment. Specifically, this program: Identifies technologies that have high potential energy savings and cost benefits and are ready for rapid deployment Develops and conducts deployment campaigns to raise awareness about energy technologies of the highest priority Educates Federal agencies and the commercial buildings sector about targeted energy-efficient technologies. Learn about: Technology Deployment List: Read about new and underutilized

310

Deployment Commitments | Department of Energy  

Energy Savers (EERE)

actions to advance solar energy deployment. These commitments represent more than 350 private and public sector commitments to deploy 885 megawatts of solar electricity....

311

Demonstration and Deployment Strategy Workshop | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration and Deployment Strategy Workshop Demonstration and Deployment Strategy Workshop The Bioenergy Technologies Office's (BETO's) Demonstration and Deployment Strategy...

312

Community Renewable Energy Deployment Webinars | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment Webinars Community Renewable Energy Deployment (CommRE) Webinars provide information on successful community renewable energy projects, including the challenges and barriers faced during development. Find past webinars, and download presentations and supporting materials below. Past Webinars April 16, 2013: Community-Scale Anaerobic Digesters This webinar provided information on San Jose, California's, commercial-scale, high solids dry fermentation anaerobic digestion system, and the Forest County Potawatomi Community's anaerobic digester project. March 19, 2013: Renewable Energy Parks This webinar provided information on how two cities in Washington and New York integrated multiple renewable energy technologies to create renewable

313

Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report Project A.5 and A.6  

SciTech Connect

This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01.

ARD, K.E.

2000-04-19T23:59:59.000Z

314

Vehicle Technologies Office Recognizes Leaders in Advanced Vehicle Research, Development and Deployment  

Energy.gov (U.S. Department of Energy (DOE))

The Vehicle Technologies Office recently recognized 10 leaders in research, development and deployment for their contributions to the DOE's efforts to improve advanced technology and alternative fuel vehicles.

315

AMF Deployment, Oliktok, Alaska  

NLE Websites -- All DOE Office Websites (Extended Search)

Alaska Alaska Oliktok Deployment AMF Home Oliktok Home Deployment Operations Baseline Instruments and Data Plots at the Archive Outreach News & Press New Sites Fact Sheet (PDF, 1.6MB) Images Contacts Fred Helsel, AMF Operations Lynne Roeder, Media Contact Hans Verlinde, Principal Investigator AMF Deployment, Oliktok Point, Alaska This view shows the location of the Oliktok, Alaska, ARM Mobile Facility. Located at the North Slope of Alaska on the coast of the Arctic Ocean, Oliktok Point is extremely isolated, accessible only by plane. From this remote spot researchers now have access to important data about Arctic climate processes at the intersection of land and sea ice. As of October 2013, Oliktok Point is the temporary home of ARM's third and newest ARM Mobile Facility, or AMF3.

316

Remote Systems Design & Deployment  

SciTech Connect

The Pacific Northwest National Laboratory (PNNL) was tasked by Washington River Protection Solutions, LLC (WRPS) to provide information and lessons learned relating to the design, development and deployment of remote systems, particularly remote arm/manipulator systems. This report reflects PNNLs experience with remote systems and lays out the most important activities that need to be completed to successfully design, build, deploy and operate remote systems in radioactive and chemically contaminated environments. It also contains lessons learned from PNNLs work experiences, and the work of others in the national laboratory complex.

Bailey, Sharon A.; Baker, Carl P.; Valdez, Patrick LJ

2009-08-28T23:59:59.000Z

317

SciTech Connect: DOE Project 18546, AOP Task 1.1, Fuel Effects...  

Office of Scientific and Technical Information (OSTI)

Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP,...

318

Fuel Cell Demonstration Program  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

319

Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility  

NLE Websites -- All DOE Office Websites (Extended Search)

3-0501 3-0501 Unlimited Release Printed February 2013 Vessel Cold-Ironing Using a Barge Mounted PEM Fuel Cell: Project Scoping and Feasibility Joseph W. Pratt and Aaron P. Harris Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. 2 Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the

320

Immediate Deployment of Waste Energy Recovery Technologies at Multi Sites  

SciTech Connect

Verso Paper Corp. implemented a portfolio of 13 commercially available proven industrial technologies each exceeding 30% minimum threshold efficiency and at least 25% efficiency increase. These sub-projects are a direct result of a grant received from the Department of Energy (DOE) through its FOA 0000044 (Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficient Industrial Equipment), which was funded by the American Recovery Act. These were installed at 3 sites in 2 states and are helping to reduce Verso costs, making the facilities more competitive. This created approximately 100 construction jobs (FTE's) and reduced impacted Verso facilities' expense budgets. These sub-projects were deployed at Verso paper mills located in Jay, Maine, Bucksport, Maine, and Sartell, Minnesota. The paper mills are the economic engines of the rural communities in which these mills are located. Reinvestment in waste energy recovery capital improvements is providing a stimulus to help maintain domestic jobs and to competitively position the US pulp and paper industry with rising energy costs. Energy efficiency improvements are also providing a positive environmental impact by reducing greenhouse gas emissions, the quantity of wastewater treated and discharged, and fossil fuel demand. As a result of these projects, when fully operating, Verso realized a total of approximately 1.5 TBtu/Year reduction in overall energy consumption, which is 119% of the project objectives. Note that three paper machines have since been permanently curtailed. However even with these shutdowns, the company still met its energy objectives. Note also that the Sartell mill's paper machine is down due to a recent fire which damaged the mill's electrical infrastructure (the company has not decided on the mill's future).

Dennis Castonguay

2012-06-29T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

SciTech Connect

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

none,

1992-07-01T23:59:59.000Z

322

NETL Publications: Generation, Fuels and Environment Membership Advisory  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation, Fuels and Environment Membership Advisory Group Generation, Fuels and Environment Membership Advisory Group June 15-16, 2010 Table of Contents Disclaimer Presentations PRESENTATIONS Welcome [PDF-1.1MB] Dan Cicero, Senior Management & Technical Advisor, Strategic Center for Coal, NETL Dale Bradshaw, Senior Program Manager, National Rural Electric Cooperative Association IGCC [PDF-3.1MB] Timeline [PDF-511KB] Jenny Tennant, Technology Manager, Gasification Status of Area 1 - ICCS [PDF-763KB] Nelson Rekos, Project Financing & Technology Deployment Division Status of Area 2 - ICCS [PDF-235KB] Elaine Everitt, Fuels Division Turbines [PDF-971KB] Robin Ames, Project Manager, Power Systems Division, Turbines Fuel Cells [PDF-2.4MB] Travis Shultz, Acting Technology Manager, Fuel Cells Coal to Synfuels Projects/Polygeneration Projects

323

Deployment & Market Transformation (Brochure)  

SciTech Connect

NREL's deployment and market transformation (D and MT) activities encompass the laboratory's full range of technologies, which span the energy efficiency and renewable energy spectrum. NREL staff educates partners on how they can advance sustainable energy applications and also provides clients with best practices for reducing barriers to innovation and market transformation.

Not Available

2012-04-01T23:59:59.000Z

324

Missile Deployments Roil Europe  

Science Journals Connector (OSTI)

...reductions in the nuclear arma-ments...Europe-an terrorism. In Europe...existing overall nuclear balance between...INATO's plant to deploy...preemptive attack in the midst...of a Soviet attack on Western...few Soviet nuclear weapons were...cities at risk in or-der...other superior power, but also...

R. JEFFREY SMITH

1984-01-27T23:59:59.000Z

325

Missile Deployments Roil Europe  

Science Journals Connector (OSTI)

...install new nuclear missiles in...reductions in the nuclear arma-ments...Europe-an terrorism. In Europe...existing overall nuclear balance between...INATO's plant to deploy...preemptive attack in the midst...international security affairs office...cities at risk in or-der...other superior power, but also...

R. JEFFREY SMITH

1984-01-27T23:59:59.000Z

326

Alternative Fuels Data Center: Provision for Alternative Fuels Corridor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Provision for Provision for Alternative Fuels Corridor Pilot Projects to someone by E-mail Share Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Facebook Tweet about Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Twitter Bookmark Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Google Bookmark Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Delicious Rank Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on Digg Find More places to share Alternative Fuels Data Center: Provision for Alternative Fuels Corridor Pilot Projects on AddThis.com... More in this section... Federal

327

Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

NONE

1997-12-01T23:59:59.000Z

328

Analysis Results for ARRA Projects: Enabling Fuel Cell Market Transformation - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Jennifer Kurtz (Primary Contact), Keith Wipke, Sam Sprik, Todd Ramsden, Genevieve Saur, and Chris Ainscough National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-4061 Email: jennifer.kurtz@nrel.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: Pacific Northwest National Laboratory, Richland, WA Project Start Date: August 2009 Project End Date: December 2012, with future evaluations covered under DOE's Technology Validation sub-program Objectives Perform an independent assessment of technology in * real-world operation conditions, focusing on fuel cell

329

Related Links on Community Renewable Energy Deployment | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Community Renewable Energy Deployment Related Links on Community Renewable Energy Deployment The following publications and websites provide helpful information for communities planning or implementing renewable energy and energy efficiency projects. Publications The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) publish numerous community guides, resources, and examples, as well as publications geared toward organizations that provide technical assistance to communities. Community Guides, Resources, and Examples These documents provide how-to information, steps, and resources for community-wide projects, as well as lessons learned from other communities. A Guide to Community Solar: Utility, Private, and Non-Profit Project

330

SBIR/STTR Phase I Release 1 Award Winners Announced, Includes Four Hydrogen and Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 award winners, including four hydrogen and fuel cell projects in Arizona, Massachusetts, and South Carolina.

331

SBIR/STTR Phase II Release 1 Award Winners Announced, Includes Two Hydrogen and Fuel Cell Projects  

Energy.gov (U.S. Department of Energy (DOE))

The US Department of Energy (DOE) recently announced the FY 2014 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase II Release 1 award winners, including two hydrogen and fuel cell projects in Colorado and New Jersey.

332

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems … Projected Performance and Cost Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned Stetson Approved by: Sunita Satyapal Date: August 10, 2010 This record summarizes the current technical assessments of hydrogen (H 2 ) storage system capacities and projected manufacturing costs for the scenario of high-volume production (i.e., 500,000 units/year) for various types of "on-board" vehicular storage systems. These analyses were performed within the Hydrogen Storage sub-program of the DOE Fuel Cell Technologies (FCT) program of the Office of Energy Efficiency and Renewable Energy. Item: It is important to note that all system capacities are "net useable capacities" able to be delivered to the

333

Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of...

334

SunLine Test Drives Hydrogen Bus: Hydrogen Fuel Cell & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects Fact Sheet.  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet describes the ThunderPower hydrogen fuel cell bus that was demonstrated at SunLine Transit Agency from November 2002 to February 2003. The bus was evaluated by DOEs Advanced Vehicle Testing Activity.

335

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

336

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

337

Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test Project Ocean Power Technologies (TRL 7 8 System) - Reedsport PB150 Deployment and Ocean Test...

338

Fuel cells at the crossroads : attitudes regarding the investment climate for the US fuel cell industry and a projection of industry job creation potential.  

SciTech Connect

Fuel Cells at the Crossroads examines financial community and fuel cell industry views on the investment climate for the fuel cell industry. It also explores the investment history of the US fuel cell industry and projects potential future job creation. The scope of the study included the transportation, stationary power generation and portable sectors. Interviews were conducted with industry and financial experts. The results of the interviews provide a snapshot of industry perspective just prior to President Bush's endorsement of a hydrogen economy in his 2003 State of the Union address. In April 2003, we conducted a spot check to test whether the State of the Union address had changed opinions. We found little change among the financial and investment communities, but some guarded new optimism among industry leaders. The general outlook of our sample was cautiously hopeful. There is no question, however, that the current climate is one of great uncertainty, particularly when compared with the enthusiasm that existed just a few years ago. Among other things: (1) Respondents generally believed that the energy industry will undergo profound change over the next few decades, resulting in some form of hydrogen economy. They acknowledged, however, that huge technology and cost hurdles must be overcome to achieve a hydrogen economy. (2) Respondents were worried about the future of the industry, including timeframes for market development, foreign competition, technical problems, and the current poor investment environment. (3) Respondents generally believed that the US federal government must provide strong leadership to ensure American leadership in the fuel cell industry. They believe that governments in Europe and Japan are highly committed to fuel cells, thus providing European and Japanese companies with significant advantages. (4) Respondents frequently mentioned several areas of concern, including the situation in Iraq, the increased commitment to fuel cells in Europe, and recent actions by Toyota and Honda.

NONE

2004-05-27T23:59:59.000Z

339

Biogas and Fuel Cells Workshop Agenda  

NLE Websites -- All DOE Office Websites (Extended Search)

BIOGAS AND FUEL CELLS WORKSHOP AGENDA BIOGAS AND FUEL CELLS WORKSHOP AGENDA National Renewable Energy Laboratory Research Support Facility, Beaver Creek Conference Room Golden, Colorado June 11-13, 2012 WORKSHOP OBJECTIVES: * Discuss current state-of-the art for biogas and waste-to-energy technologies for fuel cell applications. * Identify key challenges (both technical and non-technical) preventing or delaying the widespread near term deployment of biogas fuel cells projects. * Identify synergies and opportunities for biogas and fuel cell technologies. * Identify and prioritize opportunities to address the challenges, and determine roles and opportunities for both government and industry stakeholders. * Develop strategies for accelerating the use of biogas for stationary fuel cell power and/or

340

Deployment of Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment of Emerging Deployment of Emerging Technologies FUPWG November 1, 2006 Brad Gustafson Department of Energy Progress To Date: Federal Standard Buildings 80,000 85,000 90,000 95,000 100,000 105,000 110,000 115,000 120,000 125,000 130,000 135,000 140,000 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 FISCAL YEAR Btu per Gross Square Foot 10% Goal - 1995 (NECPA) 20% Goal - 2000 (EPACT 1992) 30% Goal - 2005 (EO 12902) 35% Goal - 2010 (EO 13123) 29.6% Reduction, 2005 (Preliminary Data) Actual Energy Use Annual Goals (EPACT 2005) Although the Federal Government narrowly missed the 2005 goal, it is on track to meet the 2010 goal * To identify promising emerging technologies and accelerate deployment in Federal sector - Meet the Federal Energy Goals - Lead by Example

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Publications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports National Renewable Energy Laboratory, Golden, Colorado The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge.Each year DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterizes the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this report.

342

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. [Contains glossary  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

343

Integrated Data Base for 1991: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 7  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1990. These data are based on the most reliable information available form government sources, the open literature, technical reports, and direct contacts. The current projections of future waste and spent fuel to be generated generally through the year 2020 and characteristics of these materials are also presented. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered are spent fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2020, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 160 refs., 61 figs., 142 tabs.

Not Available

1991-10-01T23:59:59.000Z

344

Deployment Models for Commercialized Carbon Capture and Storage  

Science Journals Connector (OSTI)

Deployment Models for Commercialized Carbon Capture and Storage ... Several proposed integrated gasification-combined cycle and postcombustion coal CO2 capture projects are teaming with oil companies for use of the captured CO2 in EOR. ...

Richard A. Esposito; Larry S. Monroe; Julio S. Friedman

2010-08-19T23:59:59.000Z

345

Vehicle Technologies Office Merit Review 2014: Central Texas Fuel Independence Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by City of Austin at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Central Texas Fuel...

346

EV Community Readiness projects: Clean Energy Coalition (MI); Clean Fuels Ohio  

Energy.gov (U.S. Department of Energy (DOE))

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

347

DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

348

DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

349

Soil remediation demonstration project: Biodegradation of heavy fuel oils. Special report  

SciTech Connect

Treatment of oil-contaminated soils is necessary to protect water supplies, human health, and environmental quality; but because of limited funds, cleanup costs are often prohibitive. High costs are exacerbated in cold regions such as Alaska, where spills are often in areas inaccessible to heavy equipment and where there is limited infrastructure. Owing to the lack of infrastructure, widespread fuel distribution systems, and the need for heating in the cold climate, there are numerous small-scale oil spills. Low-cost treatments applicable to small-scale spills are needed. The object of this CPAR project was to examine using cost-effective, on-site bioremediation techniques for heavy-oil-contaminated soil in cold regions. Both heavy-oil and diesel-contaminated soils were used to compare landfarming, a low-intensity treatment, to pile bioventing, a costlier treatment. For each soil-contaminant combination, we compared nutrient additions to a control with no nutrient additions. Under the conditions of this study, landfarming with nutrient additions was as effective for treating diesel-contaminated soil as was bioventing with nutrient additions. For heavy oils, landfarming with nutrients resulted in lower soil concentrations after one year, but differences among treatments were not statistically significant. Because landfarming does not require pumps, electricity, or plumbing, all costs are less than for bioventing. The minimal requirements for infrastructure also make landfarming attractive in remote sites typical of cold regions.

Reynolds, C.M.; Bhunia, P.; Koenen, B.A.

1997-08-01T23:59:59.000Z

350

Customer-Focused Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Customer-Focused Customer-Focused Deployment SAM RASHKIN Chief Architect Building Technologies Program February 29, 2012 Building America Meeting 2 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov 'Good Government' As-A-System IECC Code: Mandates technologies and practices proven reliable and cost- effective ENERGY STAR: Recognizes Builders Who Deliver Significantly Above Code Performance Builders Challenge: Recognizes Leading Builders Applying Proven Innovations and Best Practices Building America: Develops New Innovations and Best Practices 3 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market Buildings.Energy.gov Disseminating Research Results: Building America Resource Tool 4 | INNOVATION & INTEGRATION: Transforming the Energy Efficiency Market

351

Final Scientifc Report - Hydrogen Education State Partnership Project  

SciTech Connect

Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for states and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.

Leon, Warren

2012-02-03T23:59:59.000Z

352

Massively Deployed Sensors Final Project Report  

E-Print Network (OSTI)

Mahadasyam Piysak Poonpun Wichita State University O. Ikeako K. Malmedal P. K. Sen Colorado School of Mines for the support provided by PSERC's industrial members and by the National Science Foundation under grant NSF EEC with the advancement of communication and computer technology) that are currently being used and are also

353

NREL: Technology Deployment - Renewable Energy Project Helps...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Development in Indian Country Renewable Energy Development in Indian Country: A Handbook for Tribes Sponsors U.S. DOE Office of Energy Efficiency & Renewable Energy Key...

354

ARM - News from the Hyytil, Finland, Deployment  

NLE Websites -- All DOE Office Websites (Extended Search)

FinlandNews from the Hyytil, Finland, Deployment Hyytil Deployment AMF Home Hyytil Home Experiment Planning Abstract and Related Campaigns Science Plan Deployment...

355

Report on Synchrophasor Technologies and Their Deployment in Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report on Synchrophasor Technologies and Their Deployment in Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid operations. The report also includes an analysis of the costs and benefits of synchrophasors, based on data and initial results from Recovery Act-funded projects that are deploying the technologies. The report is available now for downloading. Addthis Related Articles Reports on the Impact of the Smart Grid Investment Grant Program Now

356

Report on Synchrophasor Technologies and Their Deployment in Recovery Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Synchrophasor Technologies and Their Deployment in on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available Report on Synchrophasor Technologies and Their Deployment in Recovery Act Projects Now Available August 15, 2013 - 10:48am Addthis The Office of Electricity Delivery and Energy Reliability has released a new report that explains synchrophasor technologies and how they can be used to improve the efficiency, reliability, and resiliency of grid operations. The report also includes an analysis of the costs and benefits of synchrophasors, based on data and initial results from Recovery Act-funded projects that are deploying the technologies. The report is available now for downloading. Addthis Related Articles Reports on the Impact of the Smart Grid Investment Grant Program Now

357

Photovoltaic deployment strategy in Japan and the USAan institutional appraisal  

Science Journals Connector (OSTI)

Photovoltaic (PV) is a renewable energy technology, along side with other modular energy generation technologies such as micro-turbines, fuel cells, etc., which will enable the alternative distributed generation paradigm compared to the incumbent fossil fuel based centralized generation paradigm. Distributed generation utilizing renewable energy resources offers opportunities for significant carbon dioxide and emissions reductions thus contributing solutions to broader climate change issues. Yet, renewable energy technologies like PV face various barriers for their widespread adoption. Aside from technical and cost issues, renewable technologies have to overcome the so-called carbon lock-in effects. This refers to the techno-institutional complex associated with the fossil-fuel based centralized generation regime that currently dominates energy production and use. Governmental interventions to address these issues usually can be seen as composed of research, development, demonstration and deployment or RD3 [PCAST, 1999. Panel on International Cooperation in Energy Research, Development, Demonstration, and Deployment]. This paper focused on comparing the deployment aspect of PV technology in Japan and the USA. While both governments promoted PV as part of their larger strategies to address various environmental and energy security issues, Japan has built a PV installation capacity three times that of the USA as of December 2003 with over 90% of PV installation in the grid-connected small residential system category. This is in marked contrast to the case in the USA in which the cumulative installation is spilt among different types of applications involving the grid and off the grid. We put forward two models to explain these differences in deployment strategies and their possible consequences. The first deployment model leverages upon PV as a manufactured technology with minimal customization to achieve massive deployment. The second deployment model leverages upon PV as an information technology-like technology focusing upon user oriented customization to achieve deployment. Different models have different implications to the system engineering aspect of solar PV. A focus upon the standard grid-connected distributed category in the residential setting avoids the heavy customized engineering associated with many off-grid and one-off type projects. Japanese PV deployment strategy of concentrating upon a dominant category or niche with mass market potential also well matches the institutional structure of production [Coase, 1991. The Institutional Structure of Production, in Essays on Economics and Economists. The University of Chicago Press, Chicago] within the local PV technology suppliers industry. Major vertical integrated firms can facilitate system-related learning easier than a fragmented industry within the PV value chain with minimal transaction cost. This highly suggests that deployment strategy of PV or other renewable energy technologies must address the issues of adopting a globally developed technology to local (national) conditions and has strong institutional underpinnings in addition to financial subsidies, learning investment thinking.

Kwok L. Shum; Chihiro Watanabe

2007-01-01T23:59:59.000Z

358

Projection of world fossil fuel production with supply and demand interactions.  

E-Print Network (OSTI)

??Research Doctorate - Doctor of Philosophy (PhD) Historically, fossil fuels have been vital for our global energy needs. However climate change is prompting renewed interest (more)

Mohr, Steve

2010-01-01T23:59:59.000Z

359

Joint federal/state motor fuel tax compliance project. Fiscal year 1993 status report. Final report  

SciTech Connect

This report is the next in a series of reports that describe motor fuel tax enforcement activities funded under this program.

NONE

1994-02-07T23:59:59.000Z

360

ITC Role in U.S. Fuel Cell Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cell Technical Advisory Committee in February 2009. It was posted on this Web site with permission from the author. mtloganhtacpresentation.pdf More Documents &...

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Advanced Petroleum-Based Fuels -- Diesel Emissions Control Project (APBF-DEC): Lubricants Project, Phase 2 Final Report  

SciTech Connect

This report summarizes the results of the second phase of a lubricants project, which investigated the impact of engine oil formulation on diesel vehicle emissions and the performance of a nitrogen oxide adsorber catalyst (NAC).

Not Available

2006-06-01T23:59:59.000Z

362

Community Renewable Energy Deployment Success Stories: Financing Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Community Renewable Energy Deployment Success Stories: Financing Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar Community Renewable Energy Deployment Success Stories: Financing Renewable Energy Projects Webinar August 21, 2012 3:00PM EDT Webinar This DOE webinar will cover the challenges and successes of financing mechanisms for a solar project in Knoxville, Tennessee, and a Sacramento Municipal Utility District (SMUD) project. More details about the projects are provided below. Renewables and Sector Partnerships: Leveraging Incentives to Work for You In September 2009, the City of Knoxville was awarded more than $2 million in DOE Energy Efficiency and Conservation Block Grant funding. The city obtained approval to use $250,000 of that funding for initial investment to

363

AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

364

Solar Photovoltaic Financing: Residential Sector Deployment ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Photovoltaic Financing: Residential Sector Deployment Solar Photovoltaic Financing: Residential Sector Deployment This report presents the information that homeowners and...

365

High Penetration Solar Deployment  

Energy.gov (U.S. Department of Energy (DOE))

In October 2009,DOE announced $24.7 million to fund six projects to increase the growth of grid-tied solar photovoltaic systems. Part of the SunShot Systems Integration efforts, the goal of the...

366

Research, Development, Demonstration, and Deployment  

Energy.gov (U.S. Department of Energy (DOE))

The Bioenergy Technologies Office's research, development, demonstration, and deployment (RDD&D) efforts are organized around five key technical and three cross-cutting elements. The first two...

367

Accelerating Combined Heat & Power Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

368

CHP Deployment | Department of Energy  

Office of Environmental Management (EM)

Business Solution - Increasing efficiency, reducing business costs, and creating green-collar jobs Local Energy Solution - Deployable throughout the United States...

369

DOE Hydrogen Analysis Repository: Evaluation of Energy Recovery Act Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of Energy Recovery Act Fuel Cell Initiative Evaluation of Energy Recovery Act Fuel Cell Initiative Project Summary Full Title: Evaluation of U.S. DOE Energy Recovery Act Fuel Cell (Technologies Program) Initiative (ARRA-FCI) Project ID: 284 Principal Investigator: Brian James Brief Description: An evaluation was conducted to assess the early stage "market change" impacts of the Fuel Cell (Technologies Program) Initiative of the American Recovery and Reinvestment Act (ARRA-FCI) to accelerate fuel cell deployment and commercialization. Performer Principal Investigator: Brian James Organization: Strategic Analysis, Inc. Address: 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Telephone: 703-778-7114 Email: bjames@sainc.com Sponsor(s) Name: Fred Joseck Organization: DOE/EERE/FCTO Telephone: 202-586-7932

370

Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9  

SciTech Connect

The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

Klein, J.A.; Storch, S.N.; Ashline, R.C. [and others

1994-03-01T23:59:59.000Z

371

Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10  

SciTech Connect

The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

Not Available

1994-12-01T23:59:59.000Z

372

Deployment Effects of Marin Renewable Energy Technologies  

SciTech Connect

Given proper care in siting, design, deployment, operation and maintenance, marine and hydrokinetic technologies could become one of the more environmentally benign sources of electricity generation. In order to accelerate the adoption of these emerging hydrokinetic and marine energy technologies, navigational and environmental concerns must be identified and addressed. All developing hydrokinetic projects involve a wide variety of stakeholders. One of the key issues that site developers face as they engage with this range of stakeholders is that many of the possible conflicts (e.g., shipping and fishing) and environmental issues are not well-understood, due to a lack of technical certainty. In September 2008, re vision consulting, LLC was selected by the Department of Energy (DoE) to apply a scenario-based approach to the emerging wave and tidal technology sectors in order to evaluate the impact of these technologies on the marine environment and potentially conflicting uses. The projects scope of work includes the establishment of baseline scenarios for wave and tidal power conversion at potential future deployment sites. The scenarios will capture variations in technical approaches and deployment scales to properly identify and characterize environmental impacts and navigational effects. The goal of the project is to provide all stakeholders with an improved understanding of the potential effects of these emerging technologies and focus all stakeholders onto the critical issues that need to be addressed. This groundwork will also help in streamlining siting and associated permitting processes, which are considered key hurdles for the industrys development in the U.S. today. Re vision is coordinating its efforts with two other project teams funded by DoE which are focused on regulatory and navigational issues. The results of this study are structured into three reports: 1. Wave power scenario description 2. Tidal power scenario description 3. Framework for Identifying Key Environmental Concerns This is the second report in the sequence and describes the results of conceptual feasibility studies of tidal power plants deployed in Tacoma Narrows, Washington. The Narrows contain many of the same competing stakeholder interactions identified at other tidal power sites and serves as a representative case study. Tidal power remains at an early stage of development. As such, a wide range of different technologies are being pursued by different manufacturers. In order to properly characterize impacts, it is useful to characterize the range of technologies that could be deployed at the site of interest. An industry survey informs the process of selecting representative tidal power devices. The selection criteria is that such devices are at an advanced stage of development to reduce technical uncertainties and that enough data are available from the manufacturers to inform the conceptual design process of this study. Further, an attempt is made to cover the range of different technologies under development to capture variations in potential environmental effects. A number of other developers are also at an advanced stage of development including Verdant Power, which has demonstrated an array of turbines in the East River of New York, Clean Current, which has demonstrated a device off Race Rocks, BC, and OpenHydro, which has demonstrated a device at the European Marine Energy Test Center and is on the verge of deploying a larger device in the Bay of Fundy. MCT demonstrated their device both at Devon (UK) and Strangford Narrows (Northern Ireland). Furthermore OpenHydro, CleanCurrent, and MCT are the three devices being installed at the Minas Passage (Canada). Environmental effects will largely scale with the size of tidal power development. In many cases, the effects of a single device may not be measurable, while larger scale device arrays may have cumulative impacts that differ significantly from smaller scale deployments. In order to characterize these effects, scenarios are established at three deployment scales which nom

Brian Polagye; Mirko Previsic

2010-06-17T23:59:59.000Z

373

DOE Hydrogen Analysis Repository: Stranded Biogas Decision Tool for Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Stranded Biogas Decision Tool for Fuel Cell Co-Production Stranded Biogas Decision Tool for Fuel Cell Co-Production Project Summary Full Title: Stranded Biogas Decision Tool for Fuel Cell Co-Production Project ID: 257 Principal Investigator: Michael Ulsh Brief Description: This project will explore the feasibility and utility of using stranded biogas resources in fuel cell co-production networks as well as lay the basis for development of analysis and decision-making tools for potential biogas sources and energy end-users to evaluate the economic feasibility of deploying these systems. Performer Principal Investigator: Michael Ulsh Organization: National Renewable Energy Laboratory (NREL) Address: 1617 Cole Blvd. Golden, CO 80401 Telephone: 303-275-3842 Email: michael.ulsh@nrel.gov Website: http://www.nrel.gov

374

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

375

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

376

Regional Effort to Deploy Clean Coal Technologies  

SciTech Connect

The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

2009-01-31T23:59:59.000Z

377

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels, Lesssons Learned for the Safe Deployment of Vehicles Workshop Agenda: Compressed Natural Gas and Hydrogen Fuels,...

378

NREL: Hydrogen and Fuel Cells Research - Hydrogen System Component...  

NLE Websites -- All DOE Office Websites (Extended Search)

other hydrogen system components. Reliable components are needed to ensure the success of hydrogen fueling stations and support the commercial deployment of fuel cell electric...

379

Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Research and Development Authority (NYSERDA) and partnered with NYSERDA as the contracting entity for this funding. "It's a common sense approach to partner with Clean Cities...

380

Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments  

SciTech Connect

The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

AFCI AFC-2A and AFC-2B Experiments Project Executi

2007-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Vehicle Technologies Office Merit Review 2014: California Fleets and Workplace Alternative Fuels Project  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

382

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

383

State and Territory Projects | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State and Territory Projects State and Territory Projects State and Territory Projects The U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) are using the integrated deployment approach to help implement clean energy solutions and reduce fossil fuel use in the states of Alaska and Hawaii and the U.S. Virgin Islands territory. Alaska DOE and NREL are joining forces with key stakeholders, including the state of Alaska, tribal and community leaders, utilities, and developers, to help reach clean energy goals throughout Alaska. The majority of the state's energy consumption is from diesel heating fuel, which is used to provide electricity and heat for homes and businesses. The fuel must be shipped in on barges or flown in on planes in bulk during the summer and stored in large tanks in the villages. When the price of oil

384

Metals Production Requirements for Rapid Photovoltaics Deployment  

E-Print Network (OSTI)

If global photovoltaics (PV) deployment grows rapidly, the required input materials need to be supplied at an increasing rate. In this paper, we quantify the effect of PV deployment levels on the scale of metals production. For example, we find that if cadmium telluride {copper indium gallium diselenide} PV accounts for more than 3% {10%} of electricity generation by 2030, the required growth rates for the production of indium and tellurium would exceed historically-observed production growth rates for a large set of metals. In contrast, even if crystalline silicon PV supplies all electricity in 2030, the required silicon production growth rate would fall within the historical range. More generally, this paper highlights possible constraints to the rate of scaling up metals production for some PV technologies, and outlines an approach to assessing projected metals growth requirements against an ensemble of past growth rates from across the metals production sector. The framework developed in this paper may be...

Kavlak, Goksin; Jaffe, Robert L; Trancik, Jessika E

2015-01-01T23:59:59.000Z

385

General-purpose heat source project and space nuclear safety and fuels program. Progress reportt, January 1980  

SciTech Connect

This formal monthly report covers the studies related to the use of /sup 238/PuO/sub 2/ in radioisotopic power systems carried out for the Advanced Nuclear Systems and Projects Division of the Los Alamos Scientific Laboratory. The two programs involved are the general-purpose heat source development and space nuclear safety and fuels. Most of the studies discussed here are of a continuing nature. Results and conclusions described may change as the work continues. Published reference to the results cited in this report should not be made without the explicit permission of the person in charge of the work.

Maraman, W.J. (comp.)

1980-04-01T23:59:59.000Z

386

2008 Annual Merit Review Results Summary - 15. Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

coalition support contracts. There are six Clean Cities regions and Project Management Center representatives. The team members collect data on fuel use through a subcontract...

387

NREL: Hydrogen and Fuel Cells Research - Wind-to-Hydrogen Project  

NLE Websites -- All DOE Office Websites (Extended Search)

with Xcel Energy, NREL's wind-to-hydrogen (Wind2H2) demonstration project links wind turbines and photovoltaic (PV) arrays to electrolyzer stacks, which pass the generated...

388

Synthetic Fuel from Biomass: The AVSA Dual Fluid Bed Combustor Gasifier Project  

Science Journals Connector (OSTI)

The AVSA project covers completely the generation of synthesis gas from wood waste: feed collection, sizing, drying and transportation as well as gasifier design.

A. Bary; H. A. Masson; P. Debaud

1982-01-01T23:59:59.000Z

389

Non-Economic Obstacles to Wind Deployment: Issues and Regional Differences (Presentation)  

SciTech Connect

This presentation provides an overview of national obstacles to wind deployment, with regional assessments. A special mention of offshore projects and distributed wind projects is provided. Detailed maps examine baseline capacity, military and flight radar, golden and bald eagle habitat, bat habitat, whooping crane habitat, and public lands. Regional deployment challenges are also discussed.

Baring-Gould, I.

2014-05-01T23:59:59.000Z

390

Renewable Energy and Energy Efficiency Partnership Ongoing Project Website  

Open Energy Info (EERE)

and Energy Efficiency Partnership Ongoing Project Website and Energy Efficiency Partnership Ongoing Project Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Partnership Ongoing Project Website Focus Area: Wind Topics: Deployment Data Website: www.reeep.org/16085/completed-projects.htm Equivalent URI: cleanenergysolutions.org/content/renewable-energy-and-energy-efficienc Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: "Fuel Efficiency Standards,Appliance & Equipment Standards and Required Labeling,Audit Requirements,Building Certification,Energy Standards,Feed-in Tariffs" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

391

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop: Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles December 11, 2009 John Garbak, Todd Ramsden Keith Wipke, Sam Sprik, Jennifer Kurtz Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project National Renewable Energy Laboratory 2 Innovation for Our Energy Future Fuel Cell Vehicle Learning Demonstration Project Objectives and Targets * Objectives - Validate H 2 FC Vehicles and Infrastructure in Parallel - Identify Current Status and Evolution of the Technology - Objectively Assess Progress Toward Technology Readiness - Provide Feedback to H 2 Research and Development Photo: NREL Solar Electrolysis Station, Sacramento, CA Performance Measure

392

Fuel Cell Demonstration Program - Central and Remote Sites 2003  

SciTech Connect

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies, the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 25 Lorax 4.5 units operated under this Award from April 2003 to December 2004. In parallel with the operation of the Farm, LIPA recruited government, commercial, and residential customers to demonstrate fuel cells as on-site distributed generation. The deployment of the 20 Lorax 4.5 units for the Remote Sites phase of the project began in October 2004. To date, 10 fuel cells have completed their demonstrations while 10 fuel cells are currently being monitored at various customer sites throughout Long Island. As of June 30, 2006 the 45 fuel cells operating under this Award produced a total of 1,585,093 kWh. As fuel cell technology became more mature, performance improvements included increases in system efficiency and availability. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

393

NREL: Transportation Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

of a wide range of vehicle technologies and applications. NREL's innovative transportation research, development, and deployment projects accelerate widespread adoption of...

394

Deploying Emerging Technologies in ESPC  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meetingdiscusses emerging technologies and how to deploy them using an energy savings performance contract (ESPC).

395

NREL: Technology Deployment - Building Energy Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Systems Building Energy Systems NREL experts develop comprehensive energy assessments, models, and tools to optimize building systems across energy efficiency and renewable energy while also improving occupant comfort, safety, and productivity. Northeast Denver Housing Center Northeast Denver Housing Center NREL Identifies PV for 28 Affordable Housing Units Boulder County Housing Authority Boulder County Housing Authority NREL Recommendations Lead to 153 Net Zero Energy Residences Expertise and Knowledge NREL offers technical assistance and project development support by working closely with industry partners to research, develop, and deploy advanced building technologies. Examples include: Building Energy Audits and Assessments NREL provides technical assistance, guidelines, checklists, and data

396

Outdoor Solid-State Lighting Technology Deployment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technologies » Technology Deployment » Outdoor Solid-State Technologies » Technology Deployment » Outdoor Solid-State Lighting Technology Deployment Outdoor Solid-State Lighting Technology Deployment October 7, 2013 - 9:10am Addthis Outdoor solid-state lighting (SSL) technology has the potential to reduce U.S. lighting energy usage by nearly one half and contribute significantly to our nation's climate change solutions. The U.S. Department of Energy's (DOE) Buildings Technologies Office offers a wealth of information on its Solid-State Lighting website. Visit the site to find: SSL Basics Studies and Reports CALiPER Summary Reports Tools SSL Webcasts. Also see: FEMP Outdoor SSL Initiative: Resources for Outdoor SSL Applications outlines resources available for outdoor solid-state lighting projects. Better Buildings Alliance: This DOE initiative is driven and managed

397

Guidance for Deployment of Mobile Technologies for Nuclear Power Plant  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidance for Deployment of Mobile Technologies for Nuclear Power Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers Guidance for Deployment of Mobile Technologies for Nuclear Power Plant Field Workers This report is a guidance document prepared for the benefit of commercial nuclear power plants' (NPPs) supporting organizations and personnel who are considering or undertaking deployment of mobile technology for the purpose of improving human performance and plant status control (PSC) for field workers in an NPP setting. This document especially is directed at NPP business managers, Electric Power Research Institute, Institute of Nuclear Power Operations, and other non-Information Technology personnel. This information is not intended to replace basic project management practices or reiterate these processes, but is to support decision-making,

398

Fuel Retrieval Sub (FRS) Project Decapping Station Performance Test Data Report  

SciTech Connect

This document is to provide the test data report for Decapping Station Performance Testing. These performance tests were full scale and viewed as a continuation of development testing performed earlier (SNF-2710). A prototype decapping station confinement box was tested, along with some special tools required for the process, providing assurance that the fuel handling equipment will operate as designed, allowing for release of the FRS equipment for installation.

THIELGES, J.R.

2000-01-13T23:59:59.000Z

399

Fuel quality issues in stationary fuel cell systems.  

SciTech Connect

Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough, component sizing, and utility needs. These data, along with process efficiency results from the model, were subsequently used to calculate the cost of electricity. Sensitivity analyses were conducted to correlate the concentrations of key impurities in the fuel gas feedstock to the cost of electricity.

Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

2012-02-07T23:59:59.000Z

400

NREL: Research Participant Program - Research and Deployment Disciplines  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Deployment Disciplines Research and Deployment Disciplines Participants in NREL programs are able to study a variety of disciplines within the Lab's research centers: National Bioenergy Center Biochemical engineering, microbiology, molecular biology, chemistry, and chemical engineering related to biomass and derived products. Energy Sciences Bioscience, chemical and materials science, computational science, physics, chemistry, and biological sciences. Electricity, Resources, and Building Systems Integration Physics, mechanical engineering (heat transfer emphasis), and architectural engineering. Hydrogen and Fuel Cells Research Hydrogen technologies and analysis. Materials and Computational Sciences Center Physics, materials science, chemistry, electrical engineering, and basic and applied research using high-performance computing and applied

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Conducted Electrical Weapon Deployed Probe Wounds  

Science Journals Connector (OSTI)

Deployment of probes is a common method of use for some handheld conducted electrical weapons (CEWs). Probe deployment allows for greater...

Donald M. Dawes M.D.; Jeffrey D. Ho M.D.

2012-01-01T23:59:59.000Z

402

Commercial Building Demonstration and Deployment Overview - 2014...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstration and Deployment Overview - 2014 BTO Peer Review Commercial Building Demonstration and Deployment Overview - 2014 BTO Peer Review Presentation: Kristen Taddonio, U.S....

403

Demonstrating and Deploying Integrated Retrofit Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014 BTO Peer Review Demonstrating and Deploying Integrated Retrofit Technologies and Solutions - 2014...

404

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information...

405

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Eligible projects include powertrains and energy storageconversion devices (e.g., fuel cells and batteries), and implementation of clean fuels (e.g., natural gas, propane, and...

406

An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

An Introduction to the 2010 Fuel Cell An Introduction to the 2010 Fuel Cell Pre-Solicitation Workshop Pre Solicitation Workshop Dr. Dimitrios Papageorgopoulos Team Lead Fuel Cells US DOE Fuel Cell Technologies Program Lakewood, Colorado Lakewood, Colorado March 16, 2010 March 16, 2010 e e t a eco o de a d t ade o a to educe Advancing Presidential Priorities Energy efficiency and renewable energy research, development, and deployment activities help the Nation meet its economic, energy security, and environmental challenges concurrently. Economic Energy Security * Create green jobs through * Deploy the cheapest, cleanest, Recovery Act energy projects fastest energy source - energy efficiency * Double renewable energy generation by 2012 * One million plug-in hybrid cars on the road by 2015 * Weatherize one million homes

407

DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3013 Date: September 26, 2013 3013 Date: September 26, 2013 Title: H 2 Delivery Cost Projections - 2013 Originator: E. Sutherland, A. Elgowainy and S. Dillich Approved by: R. Farmer and S. Satyapal Date: December 18, 2013 Item: Reported herein are past 2005 and 2011 estimates, current 2013 estimates, 2020 projected cost estimates and the 2015 and 2020 target costs for delivering and dispensing (untaxed) H 2 to 10%- 15% of vehicles within a city population of 1.2M from a centralized H 2 production plant located 100 km from the city gate. The 2011 volume cost estimates are based on the H2A Hydrogen Delivery Scenario Analysis Model (HDSAM) V2.3 projections and are employed as the basis for defining the cost and technical targets of delivery components in Table 3.2.4 in the 2012 Delivery

408

Fuel Cell Technologies Office: Past Financial Opportunities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment of Stationary Combined Heat and Power and Combined Cooling, Heating, and Electric Power Fuel Cell Systems for Small Commercial Applications Pacific Northwest National...

409

Hydrogen &amp; Fuel Cells News  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

news Office of Energy Efficiency news Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth http://energy.gov/articles/energy-dept-reports-us-fuel-cell-market-production-and-deployment-continues-strong-growth fuel-cell-market-production-and-deployment-continues-strong-growth" class="title-link">Energy Dept. Reports: U.S. Fuel Cell Market Production and Deployment Continues Strong Growth

410

Projecting full build-out environmental impacts and roll-out strategies associated with viable hydrogen fueling  

E-Print Network (OSTI)

2 August 2011 Available online 15 September 2011 Keywords: Hydrogen Infrastructure Fuel cell gasoline internal combustion engine vehicles to hydrogen fuel cell electric vehicles (FCEVs) is likely include hydrogen in fuel cell pow- e

Dabdub, Donald

411

Technical Cross-Cutting Issues for the Next Generation Safeguards Initiative's Spent Fuel Nondestructive Assay Project  

SciTech Connect

Ever since there has been spent fuel (SF), researchers have made nondestructive assay (NDA) measurements of that fuel to learn about its content. In general these measurements have focused on the simplest signatures (passive photon and total neutron emission) and the analysis has often focused on diversion detection and on determining properties such as burnup (BU) and cooling time (CT). Because of shortcomings in current analysis methods, inspectorates and policy makers are interested in improving the state-of-the-art in SF NDA. For this reason the U.S. Department of Energy, through the Next Generation Safeguards Initiative (NGSI), targeted the determination of elemental Pu mass in SF as a technical goal. As part of this research effort, 14 nondestructive assay techniques were studied . This wide range of techniques was selected to allow flexibility for the various needs of the safeguards inspectorates and to prepare for the likely integration of one or more techniques having complementary features. In the course of researching this broad range of NDA techniques, several cross-cutting issues were. This paper will describe some common issues and insights. In particular we will describe the following: (1) the role of neutron absorbers with emphasis on how these absorbers vary in SF as a function of initial enrichment, BU and CT; (2) the need to partition the measured signal among different isotopic sources; and (3) the importance of the first generation concept which indicates the spatial location from which the signal originates as well as the isotopic origins.

Tobin, S. J.; Menlove, H. O.; Swinhoe, Martyn T.; Blanc, P.; Burr, T.; Evans, L. G.; Favalli, A.; Fensin, M. L.; Freeman, C. R.; Galloway, J.; Gerhart, J.; Rajasingam, A.; Rauch, E.; Sandoval, N. P.; Trellue, H.; Ulrich, T. J.; Conlin, J. L.; Croft, S.; Hendricks, John; Henzl, V.; Henzlova, D.; Eigenbrodt, J. M.; Koehler, W. E.; Lee, D. W.; Lee, T. H.; Lafleur, A. M.; Schear, M. A.; Humphrey, M. A.; Smith, Leon E.; Anderson, Kevin K.; Campbell, Luke W.; Casella, Andrew M.; Gesh, Christopher J.; Shaver, Mark W.; Misner, Alex C.; Amber, S. D.; Ludewigt, Bernhard A.; Quiter, B.; Solodov, Alexander; Charlton, W.; Stafford, A.; Romano, C.; Cheatham, J.; Ehinger, Michael; Thompson, S. J.; Chichester, David; Sterbentz, James; Hu, Jianwei; Hunt, A.; Mozin, Vladimir V.; Richard, J. G.

2012-03-01T23:59:59.000Z

412

AMF Deployment, Black Forest, Germany  

NLE Websites -- All DOE Office Websites (Extended Search)

Germany Germany Black Forest Deployment AMF Home Black Forest Home Data Plots and Baseline Instruments CERA COPS Data University of Hohenheim COPS Website COPS Update, April 2009 Experiment Planning COPS Proposal Abstract and Related Campaigns Science Plan (PDF, 12.4M) Outreach COPS Backgrounder (PDF, 306K) Posters AMF Poster, German Vesion Researching Raindrops in the Black Forest News Campaign Images AMF Deployment, Black Forest, Germany Main Site: 48° 32' 24.18" N, 08° 23' 48.72" E Altitude: 511.43 meters In March 2007, the third deployment of the ARM Mobile Facility (AMF) will take place in the Black Forest region of Germany, where scientists will study rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. ARM

413

Rational Deployment of CSP Heuristics  

E-Print Network (OSTI)

Heuristics are crucial tools in decreasing search effort in varied fields of AI. In order to be effective, a heuristic must be efficient to compute, as well as provide useful information to the search algorithm. However, some well-known heuristics which do well in reducing backtracking are so heavy that the gain of deploying them in a search algorithm might be outweighed by their overhead. We propose a rational metareasoning approach to decide when to deploy heuristics, using CSP backtracking search as a case study. In particular, a value of information approach is taken to adaptive deployment of solution-count estimation heuristics for value ordering. Empirical results show that indeed the proposed mechanism successfully balances the tradeoff between decreasing backtracking and heuristic computational overhead, resulting in a significant overall search time reduction.

Tolpin, David

2011-01-01T23:59:59.000Z

414

R&D and deployment valuation of intelligent transportation systems : a case example of the intersection collision avoidance systems  

E-Print Network (OSTI)

Compared with investments in the conventional infrastructure, those in Intelligent Transportation Technology (ITS) include various uncertainties. Because deployment of ITS requires close public-private partnership, projects ...

Hodota, Kenichi

2006-01-01T23:59:59.000Z

415

Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System  

SciTech Connect

Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

Melendez, M.; Theis, K.; Johnson, C.

2007-08-01T23:59:59.000Z

416

DOE Hydrogen Analysis Repository: Hydrogen Modeling Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling Projects Modeling Projects Below are models grouped by topic. These models are used to analyze hydrogen technology, infrastructure, and other areas related to the development and use of hydrogen. Cross-Cutting Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM) Renewable Energy Power System Modular Simulator (RPM-Sim) Stranded Biogas Decision Tool for Fuel Cell Co-Production Energy Infrastructure All Modular Industry Growth Assessment (AMIGA) Model Building Energy Optimization (BEopt) Distributed Energy Resources Customer Adoption Model (DER_CAM) Hydrogen Deployment System (HyDS) Model and Analysis Hydrogen Technology Assessment and Selection Model (HyTASM)

417

Quarterly Nuclear Deployment Scorecard- January 2015  

Energy.gov (U.S. Department of Energy (DOE))

Includes news updates on nuclear power deployment including: vermont yankee closure, possible vogtle construction delay.

418

Technology Deployment List | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment » Technology Deployment List Deployment » Technology Deployment List Technology Deployment List October 8, 2013 - 2:44pm Addthis Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by: Federal Impact: Combination of energy savings potential and applicability in the Federal market (50% weighting) Cost Effectiveness: Relative cost of the implementation and average expected return typically reported in case studies as simple payback period (30% weighting) Probability of Success: Combination of the qualitative characteristics scored separately and averaged to determine probability of success. Criteria include strength of supply chain, knowledge base, implementation difficulty, and customer acceptance (20% weighting). The Federal Energy Management Program's (FEMP) Technology Deployment List

419

Integrated Field Testing of Fuel Cells and Micro-Turbines  

SciTech Connect

A technical and economic evaluation of the prospects for the deployment of distributed generation on Long Beach Island, New Jersey concluded that properly sited DG would defer upgrading of the electric power grid for 10 years. This included the deployment of fuel cells or microturbines as well as reciprocating engines. The implementation phase of this project focused on the installation of a 120 kW CHP microturbine system at the Harvey Cedars Bible Conference in Harvey Cedars, NJ. A 1.1 MW generator powered by a gas-fired reciprocating engine for additional grid support was also installed at a local substation. This report contains installation and operation issues as well as the utility perspective on DG deployment.

Jerome R. Temchin; Stephen J. Steffel

2005-11-01T23:59:59.000Z

420

Federal Energy Management Program: Technology Deployment List  

NLE Websites -- All DOE Office Websites (Extended Search)

List to someone by E-mail List to someone by E-mail Share Federal Energy Management Program: Technology Deployment List on Facebook Tweet about Federal Energy Management Program: Technology Deployment List on Twitter Bookmark Federal Energy Management Program: Technology Deployment List on Google Bookmark Federal Energy Management Program: Technology Deployment List on Delicious Rank Federal Energy Management Program: Technology Deployment List on Digg Find More places to share Federal Energy Management Program: Technology Deployment List on AddThis.com... Energy-Efficient Products Technology Deployment Technology Deployment List Solid-State Lighting Working Group Renewable Energy Technology Deployment List Technology Ranking Criteria Technologies featured in the Technology Deployment List were ranked by:

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation Corridor Project: 22 April 2004--31 August 2005  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

national laboratory of the U.S. Department of Energy national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Subcontract Report Strategy for the Integration of NREL/SR-540-38720� Hydrogen as a Vehicle Fuel into September 2005 � the Existing Natural Gas Vehicle � Fueling Infrastructure of the � Interstate Clean Transportation � Corridor Project � April 22, 2004 - August 31, 2005 Gladstein, Neandross & Associates � Santa Monica, California � NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Strategy for the Integration of Hydrogen as a Vehicle Fuel into the Existing Natural Gas Vehicle Fueling Infrastructure of the Interstate Clean Transportation

422

Federal Technology Deployment Pilot: Exterior Solid State Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingprovides an overview of the U.S. Department of Energy's Solid-State Lighting Program and an exterior solid-state lighting federal technology deployment pilot project.

423

Deploying American-Made Clean Energy Technologies in South Africa  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department works with American and international organizations to break down barriers to widely deploying U.S.-made clean energy technologies in countries throughout the world. Learn more about an Energy Department-supported project involving reflective cool roof surfaces, solar water heaters, and other technologies that are helping South Africa reduce energy use and carbon emissions.

424

Engineering Ralstonia eutropha for Production of Isobutanol (IBT) Motor Fuel from Carbon Dioxide, Hydrogen, and Oxygen Project Final Report  

SciTech Connect

This research project is a collaboration between the Sinskey laboratory at MIT and the Worden laboratory at Michigan State University. The goal of the project is to produce Isobutanol (IBT), a branched-chain alcohol that can serve as a drop-in transportation fuel, through the engineered microbial biosynthesis of Carbon Dioxide, Hydrogen, and Oxygen using a novel bioreactor. This final technical report presents the findings of both the biological engineering work at MIT that extended the native branched-chain amino acid pathway of the wild type Ralstonia eutropha H16 to perform this biosynthesis, as well as the unique design, modeling, and construction of a bioreactor for incompatible gasses at Michigan State that enabled the operational testing of the complete system. This 105 page technical report summarizing the three years of research includes 72 figures and 11 tables of findings. Ralstonia eutropha (also known as Cupriavidus necator) is a Gram-negative, facultatively chemolithoautotrophic bacteria. It has been the principle organism used for the study of polyhydroxybutyrate (PHB) polymer biosynthesis. The wild-type Ralstonia eutropha H16 produces PHB as an intracellular carbon storage material while under nutrient stress in the presence of excess carbon. Under this stress, it can accumulate approximately 80 % of its cell dry weight (CDW) as this intracellular polymer. With the restoration of the required nutrients, the cells are then able to catabolize this polymer. If extracted from the cell, this PHB polymer can be processed into biodegradable and biocompatible plastics, however for this research, it is the efficient metabolic pathway channeling the captured carbon that is of interest. R. eutropha is further unique in that it contains two carbon-fixation CalvinBensonBassham cycle operons, two oxygen-tolerant hydrogenases, and several formate dehydrogenases. It has also been much studied for its ability in the presence of oxygen, to fix carbon dioxide into complex cellular molecules using the energy from hydrogen. In this research project, engineered strains of R. eutropha redirected the excess carbon from PHB storage into the production of isobutanol and 3-methyl-1-butanol (branched-chain higher alcohols). These branched-chain higher alcohols can be used directly as substitutes for fossil-based fuels and are seen as alternative biofuels to ethanol and biodiesel. Importantly, these alcohols have approximately 98 % of the energy content of gasoline, 17 % higher than the current gasoline additive ethanol, without impacting corn market production for feed or food. Unlike ethanol, these branched-chain alcohols have low vapor pressure, hygroscopicity, and water solubility, which make them readily compatible with the existing pipelines, gasoline pumps, and engines in our transportation infrastructure. While the use of alternative energies from solar, wind, geothermal, and hydroelectric has spread for stationary power applications, these energy sources cannot be effectively or efficiently employed in current or future transportation systems. With the ongoing concerns of fossil fuel availability and price stability over the long term, alternative biofuels like branched-chain higher alcohols hold promise as a suitable transportation fuel in the future. We showed in our research that various mutant strains of R. eutropha with isobutyraldehyde dehydrogenase activity, in combination with the overexpression of plasmid-borne, native branched-chain amino acid biosynthesis pathway genes and the overexpression of heterologous ketoisovalerate decarboxylase gene, would produce isobutanol and 3-methyl-1-butanol when initiated during nitrogen or phosphorus limitation. Early on, we isolated one mutant R. eutropha strain which produced over 180 mg/L branched-chain alcohols in flask culture while being more tolerant of isobutanol toxicity. After the targeted elimination of genes encoding several potential carbon sinks (ilvE, bkdAB, and aceE), the production titer of the improved to 270 mg/L isobutanol and 40 mg/L 3-methyl-1-butanol.

Sinskey, Anthony J. [MIT] [MIT; Worden, Robert Mark [Michigan State University MSU] [Michigan State University MSU; Brigham, Christopher [MIT] [MIT; Lu, Jingnan [MIT] [MIT; Quimby, John Westlake [MIT] [MIT; Gai, Claudia [MIT] [MIT; Speth, Daan [MIT] [MIT; Elliott, Sean [Boston University] [Boston University; Fei, John Qiang [MIT] [MIT; Bernardi, Amanda [MIT] [MIT; Li, Sophia [MIT] [MIT; Grunwald, Stephan [MIT] [MIT; Grousseau, Estelle [MIT] [MIT; Maiti, Soumen [MSU] [MSU; Liu, Chole [MSU] [MSU

2013-12-16T23:59:59.000Z

425

HCPV deployment by Aerojet Rocketdyne  

Science Journals Connector (OSTI)

Aerojet Rocketdyne (AR) with essential support from HCPV module supplier Semprius is implementing a HCPV commercialization process by deploying HCPV systems of increasing scope and size. The process is designed to gather field data create learning opportunities and reduce risk while leading to large scale commercial field of HCPV systems. The process steps key lessons learned performance data and design decisions are presented.

2014-01-01T23:59:59.000Z

426

The Business Case for Fuel Cells 2010: Why Top Companies are Purchasing Fuel Cells Today  

Energy.gov (U.S. Department of Energy (DOE))

This report profiles companies and corporations that are deploying or demonstrating fuel cells for power in warehouses, stores, manufacturing facilities, hotels, and telecommunications sites.

427

Fuel Cell Technical Publications | Department of Energy  

Energy Savers (EERE)

for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling...

428

Rapid Deployment of Rich Catalytic Combustion  

SciTech Connect

The overall objective of this research under the Turbines Program is the deployment of fuel flexible rich catalytic combustion technology into high-pressure ratio industrial gas turbines. The resulting combustion systems will provide fuel flexibility for gas turbines to burn coal derived synthesis gas or natural gas and achieve NO{sub x} emissions of 2 ppmvd or less (at 15 percent O{sub 2}), cost effectively. This advance will signify a major step towards environmentally friendly electric power generation and coal-based energy independence for the United States. Under Phase 1 of the Program, Pratt & Whitney (P&W) performed a system integration study of rich catalytic combustion in a small high-pressure ratio industrial gas turbine with a silo combustion system that is easily scalable to a larger multi-chamber gas turbine system. An implementation plan for this technology also was studied. The principal achievement of the Phase 1 effort was the sizing of the catalytic module in a manner which allowed a single reactor (rather than multiple reactors) to be used by the combustion system, a conclusion regarding the amount of air that should be allocated to the reaction zone to achieve low emissions, definition of a combustion staging strategy to achieve low emissions, and mechanical integration of a Ceramic Matrix Composite (CMC) combustor liner with the catalytic module.

Richard S. Tuthill

2004-06-10T23:59:59.000Z

429

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

430

Deploying  

NLE Websites -- All DOE Office Websites (Extended Search)

2009. 2. perfSONAR Architecture 2.1. Overview perfSONAR is an example of a Service Oriented Architecture (SOA), which offers the ability for specialized, autonomous services to...

431

Community Renewable Energy Deployment: Forest County Potawatomi Tribe |  

Open Energy Info (EERE)

Potawatomi Tribe Potawatomi Tribe Jump to: navigation, search Name Community Renewable Energy Deployment: Forest County Potawatomi Tribe Agency/Company /Organization US Department of Energy Sector Energy Focus Area Energy Efficiency - Central Plant, Economic Development, Forestry, Greenhouse Gas, Renewable Energy, Biomass - Anaerobic Digestion, Biomass, Solar, - Solar Pv, Biomass - Waste To Energy Phase Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly available -- Free Publication Date 11/29/2010 Website http://www1.eere.energy.gov/co Locality Forest County Potawatomi Tribe References Community Renewable Energy Deployment: Forest County Potawatomi Tribe[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 References

432

The deployment of urban logistics solutions from research, development and pilot results  

E-Print Network (OSTI)

The deployment of urban logistics solutions from research, development and pilot results Lessons logistics solutions is one of the main pending questions in the field of urban goods transport research demonstration project, this paper presents the main issues related to the deployment of urban logistics

Paris-Sud XI, Université de

433

Puget Sound Clean Cities Petroleum Reduction Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

at Seattle-Tacoma (Sea-Tac) International Airport. Infrastructure Deployment: * Biogas fueling facility at dairy farm digester in Lynden, WA. * Two biodiesel and one ethanol...

434

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

SciTech Connect

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as MOX. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these minor actinides can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

435

PNNL Advances Hydrogen-Fueled Vehicle Technologies  

Energy.gov (U.S. Department of Energy (DOE))

EERE-funded PNNL projects are improving performance and decreasing production costs of hydrogen fuel and fuel cell technologies.

436

Nuclear Deployment Scorecards | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Initiatives » Nuclear Reactor Technologies » Nuclear Deployment Scorecards Nuclear Deployment Scorecards October 31, 2013 Quarterly Nuclear Deployment Scorecard - October 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. August 8, 2013 Quarterly Nuclear Deployment Scorecard - July 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, new plant construction progress, and expected operation dates. May 1, 2013 Quarterly Nuclear Power Deployment Scorecard - April 2013 The scorecard includes news updates, regulatory status, reactor design certification, early site permits, and new plant construction progress.

437

AMF Deployment, Steamboat Springs, Colorado  

NLE Websites -- All DOE Office Websites (Extended Search)

Colorado Colorado Steamboat Deployment AMF Home Steamboat Springs Home Storm Peak Lab Data Plots and Baseline Instruments Data Sets Experiment Planning STORMVEX Proposal Abstract and Related Campaigns Science Plan NWS Forecasting Plots STORMVEX Website Outreach STORMVEX Backgrounder (PDF, 1.6MB) News AMF2 STORMVEX Blog Images Contacts Gerald Mace AMF Deployment, Steamboat Springs, Colorado This view shows the instrument locations for the STORMVEX campaign. At the westernmost site is the Valley Floor. Heading east up the mountain is Christy Peak, Thunderhead, and Storm Peak Laboratory at the far east. Valley Floor: 40° 39' 43.92" N, 106° 49' 0.84" W Thunderhead: 40° 39' 15.12" N, 106° 46' 23.16" W Storm Peak: 40° 27' 18.36" N, 106° 44' 40.20" W

438

California Hydrogen Infrastructure Project  

SciTech Connect

Air Products and Chemicals, Inc. has completed a comprehensive, multiyear project to demonstrate a hydrogen infrastructure in California. The specific primary objective of the project was to demonstrate a model of a ???¢????????real-world???¢??????? retail hydrogen infrastructure and acquire sufficient data within the project to assess the feasibility of achieving the nation???¢????????s hydrogen infrastructure goals. The project helped to advance hydrogen station technology, including the vehicle-to-station fueling interface, through consumer experiences and feedback. By encompassing a variety of fuel cell vehicles, customer profiles and fueling experiences, this project was able to obtain a complete portrait of real market needs. The project also opened its stations to other qualified vehicle providers at the appropriate time to promote widespread use and gain even broader public understanding of a hydrogen infrastructure. The project engaged major energy companies to provide a fueling experience similar to traditional gasoline station sites to foster public acceptance of hydrogen. Work over the course of the project was focused in multiple areas. With respect to the equipment needed, technical design specifications (including both safety and operational considerations) were written, reviewed, and finalized. After finalizing individual equipment designs, complete station designs were started including process flow diagrams and systems safety reviews. Material quotes were obtained, and in some cases, depending on the project status and the lead time, equipment was placed on order and fabrication began. Consideration was given for expected vehicle usage and station capacity, standard features needed, and the ability to upgrade the station at a later date. In parallel with work on the equipment, discussions were started with various vehicle manufacturers to identify vehicle demand (short- and long-term needs). Discussions included identifying potential areas most suited for hydrogen fueling stations with a focus on safe, convenient, fast-fills. These potential areas were then compared to and overlaid with suitable sites from various energy companies and other potential station operators. Work continues to match vehicle needs with suitable fueling station locations. Once a specific site was identified, the necessary agreements could be completed with the station operator and expected station users. Detailed work could then begin on the site drawings, permits, safety procedures and training needs. Permanent stations were successfully installed in Irvine (delivered liquid hydrogen), Torrance (delivered pipeline hydrogen) and Fountain Valley (renewable hydrogen from anaerobic digester gas). Mobile fueling stations were also deployed to meet short-term fueling needs in Long Beach and Placerville. Once these stations were brought online, infrastructure data was collected and reported to DOE using Air Products???¢???????? Enterprise Remote Access Monitoring system. Feedback from station operators was incorporated to improve the station user???¢????????s fueling experience.

Edward C. Heydorn

2013-03-12T23:59:59.000Z

439

Microsoft PowerPoint - PARS II Deployment Discussion 20090416.ppt  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PARS II PARS II Deployment Discussion John Makepeace (OECM) Kai Mong (EES), Judith Bernsen (EES/PMC) April 16, 2009 2 Purpose * Review inclusion/exclusion of projects * Discuss the proposed schedule for transitioning projects PARS II Timeline 3 Target Dates * May 2009 - DOE-wide announcement * May 2009 - Contact Group 1 * Sep 2009 - Error free files from Group 1 * Dec 2009 - Group 1 repeatable process established * Feb 2010 - Groups 1-3 begin reporting * Sep 2010 - Group 9 begins reporting 4 5 Exclusion Criteria * Project was excluded if * Planned CD-4 date was on or before Sep 30 2010 * Project was at CD-0 or CD-1 with no planned CD-2 date on or before Sep 30 2010 * Project at CD-3 and more than 50% complete (schedule) * Project TPC < $20M 6 Grouping Criteria * Projects were grouped using the following

440

Quarterly Nuclear Power Deployment Scorecard - January 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - January 2013 Power Deployment Scorecard - January 2013 Quarterly Nuclear Power Deployment Scorecard - January 2013 News Updates On October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 QUARTERLY NUCLEAR DEPLOYMENT SCORECARD - JULY 2013 News Updates Dominion Resources, Inc. has informed the NRC that Dominion Virginia Power will amend its COL application (COLA) to reflect the ESBWR technology by the end of 2013. In 2009 Dominion dropped the ESBWR from its COLA after failing to reach a commercial agreement with General Electric-Hitachi (GEH). A COL is expected no earlier than late 2015. Dominion Virginia Power has not yet committed to building a new nuclear unit at North Anna. NRC has determined that the latest revision to the South Texas Project COLA does not alleviate foreign interest concerns; the staff found that despite having only a 10% ownership stake in Nuclear Innovation North America LLC (NINA), Toshiba American Nuclear Energy Corporation's

442

Quarterly Nuclear Power Deployment Scorecard - January 2013 | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Deployment Scorecard - January 2013 Power Deployment Scorecard - January 2013 Quarterly Nuclear Power Deployment Scorecard - January 2013 News Updates On October 22, 2012, Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a follow-on solicitation open to other companies and manufacturers, focused

443

Quarterly Nuclear Deployment Summary, January 2013 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deployment Summary, January 2013 Deployment Summary, January 2013 Quarterly Nuclear Deployment Summary, January 2013 January 30, 2013 - 5:59pm Addthis Quarterly Updates On October 22 Dominion Resources Inc. announced that it would close and decommission its Kewaunee Power Station located in Carlton, Wis. after failing to find a buyer for the plant. The company said that the plant closure was a purely economic decision resulting from low projected wholesale electricity prices. Power production will cease in the second quarter of 2013. On November 20, 2012, the Department of Energy announced that it had selected the Generation mPower team as a recipient for Government cost-shared funding as part of its Small Modular Reactor Licensing Technical Support program. The Department also announced plans to issue a

444

The Department of Energy's Hydrogen and Fuel Cells Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Energy's Hydrogen and Fuel Cells Program OAS-RA-13-31 September 2013 Department of Energy Washington, DC 20585 September 27, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Hydrogen and Fuel Cells Program" INTRODUCTION AND OBJECTIVE The Department of Energy spent approximately $1 billion over the last 5 years on Hydrogen and Fuel Cells Program activities implemented through various projects at Federal laboratories, universities, non-profit institutions, Government agencies and industry participants. The Department also provided an additional $42 million in American Recovery and Reinvestment Act of 2009 funding to accelerate the commercialization and deployment of fuel cells. As of

445

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Energy.gov (U.S. Department of Energy (DOE))

2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

446

Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project  

Energy.gov (U.S. Department of Energy (DOE))

2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

447

Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process  

SciTech Connect

HEATS Project: The University of Florida is developing a windowless high-temperature chemical reactor that converts concentrated solar thermal energy to syngas, which can be used to produce gasoline. The overarching project goal is lowering the cost of the solar thermochemical production of syngas for clean and synthetic hydrocarbon fuels like petroleum. The team will develop processes that rely on water and recycled CO2 as the sole feed-stock, and concentrated solar radiation as the sole energy source, to power the reactor to produce fuel efficiently. Successful large-scale deployment of this solar thermochemical fuel production could substantially improve our national and economic security by replacing imported oil with domestically produced solar fuels.

None

2011-12-19T23:59:59.000Z

448

WINDExchange: Wind for Schools Project  

Wind Powering America (EERE)

Resources Wind for Schools Project As the United States dramatically expands wind energy deployment, the industry is challenged with developing a highly-educated workforce...

449

Sustainability of Large Photovoltaic Deployment: Environmental Research  

E-Print Network (OSTI)

Sustainability of Large Photovoltaic Deployment: Environmental Research Sustainability of Large Photovoltaic Deployment: Environmental ResearchEnvironmental ResearchEnvironmental Research Vasilis Fthenakis and Te from Cadmium Telluride Photovoltaic Manufacturing Scrap, Progress in Photovoltaics: Research

Homes, Christopher C.

450

Investigation of deployable structures and their actuation  

E-Print Network (OSTI)

Deployable Structures had not been designed for use in the oil field industry, and additionally have not been designed as devices to perform mechanical work. By analyzing deployable structures a detailed understanding of ...

Munro, Logan

2007-01-01T23:59:59.000Z

451

Optimal Deployment of Direction-finding Systems  

E-Print Network (OSTI)

-finding system. The first part of this dissertation is to prescribe DF deployment to maximize the effectiveness with which transmitter positions are estimated in an area of interest (AOI). Three methods are presented to prescribe DF deployment. The first method...

Kim, Suhwan

2013-03-27T23:59:59.000Z

452

Deployment-Based security for grid applications  

Science Journals Connector (OSTI)

Increasing complexity of distributed applications and commodity of resources through grids are making harder the task of deploying those applications. There is a clear need for a versatile deployment of distributed applications. In the same time, a security ...

Isabelle Attali; Denis Caromel; Arnaud Contes

2005-05-01T23:59:59.000Z

453

Energy Efficiency Project Development  

SciTech Connect

The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1, 2001 through December 31, 2002. At the request of the DOE, we have also included in this report additional activities during the reporting period January, 1999 through January, 2001. This additional information had been reported earlier in the Final Technical Reports that summarized activities undertaken in those earlier periods.

IUEP

2004-03-01T23:59:59.000Z

454

Energy Department Invests Over $7 Million to Deploy Tribal Clean Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Over $7 Million to Deploy Tribal Clean Over $7 Million to Deploy Tribal Clean Energy Projects Energy Department Invests Over $7 Million to Deploy Tribal Clean Energy Projects November 14, 2013 - 10:00am Addthis News Media Contact (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitment to strengthening partnerships with Tribal nations and building stronger, more resilient communities that are better prepared for a changing climate, the Energy Department today announced nine tribal clean energy projects to receive more than $7 million. Highlighted during the 2013 White House Tribal Nations Conference, these awards will help American Indian and Alaska Native tribes deploy clean energy projects - saving these communities money, enhancing their energy security and creating new job and

455

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

SciTech Connect

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

456

Federal Incentives for Wind Power Deployment  

Energy.gov (U.S. Department of Energy (DOE))

This factsheet lists some of the major federal incentives for wind power deployment as of September 2014.

457

CALLA ENERGY BIOMASS COFIRING PROJECT  

SciTech Connect

This project is to be conducted in two phases. The objective of Phase I is to evaluate the technical and economic feasibility of cofiring biomass-based gasification fuel-gas in a power generation boiler. Waste coal fines are to be evaluated as the cofired fuel. The project is based on the use of commercially available technology for feeding and gas cleanup that would be suitable for deployment in municipal, large industrial and utility applications. Define a combustion system for the biomass gasification-based fuel-gas capable of stable, low-NOx combustion over the full range of gaseous fuel mixtures, with low carbon monoxide emissions and turndown capabilities suitable for large-scale power generation applications. The objective for Phase II is to Design, install and demonstrate the combined gasification and combustion system in a large-scale, long-term cofiring operation to promote acceptance and utilization of indirect biomass cofiring technology for large-scale power generation applications.

Unknown

2001-01-01T23:59:59.000Z

458

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

459

``White Land``...new Russian closed-cycle nuclear technology for global deployment  

SciTech Connect

A Russian technology called ``White Land`` is being pursued which is based on their heavy-metal-cooled fast spectrum reactor technology developed to power their super-fast Alpha Class submarines. These reactors have important safety advantages over the more conventional sodium-cooled fast breeder reactors but preserve some of the attractive operational features of the fast spectrum systems. Perhaps chief among these advantages in the current political milieu is their ability to generate energy from any nuclide heavier than thorium including HEU, weapons plutonium, commercial plutonium, neptunium, americium, and curium. While there are several scenarios for deployment of these systems, the most attractive perhaps is containment in submarine-like enclosures to be placed underwater near a coastal population center. A Russian organization named the Alphabet Company would build the reactors and maintain title to them. The company would be paid on the basis of kilowatt-hours delivered. The reactors would not require refueling for 10--15 years and no maintenance violating the radiation containment would be required or would be carried out at the deployment site. The host country need not develop any nuclear technology or accept any nuclear waste. When the fuel load has been burned, the entire unit would be towed to Archangel, Russia for refueling. The fission product would be removed from the fuel by ``dry`` molten salt technology to minimize the waste stream and the fissile material would be returned to the reactor for further burning. The fission product waste would be stored at New Land Island, their current nuclear test site in the Arctic. If concerns over fission product justify it, the long-lived species will be transmuted in an accelerator-driven system. Apparently this project is backed at the highest levels of MINATOM and the Alphabet Company has the funding to proceed.

Bowman, C.D.

1996-07-01T23:59:59.000Z

460

City of Montpelier Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

City of Montpelier Project City of Montpelier Project City of Montpelier Project November 13, 2013 - 10:45am Addthis The City of Montpelier, Vermont, together with the state of Vermont, is constructing a central district energy system fueled with locally-sourced renewable and sustainably-harvested wood chips. The U.S. Department of Energy provided $8 million in funding for this Community Renewable Energy Deployment (CommRE) project. Community District Energy System The central heat plant's 41 million British thermal unit (1,200 horsepower) will heat a complex of state buildings, several city buildings, a federal building and a number of private buildings in Montpelier, including the state capitol and city hall, a school and the post office. The system has the capacity to add additional downtown buildings.

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Incentives and Laws Connecticut Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Hydrogen and Fuel Cell Promotion Archived: 08/31/2013 The Connecticut Center for Advanced Technology (CCAT), with funding from the Department of Economic and Community Development (DECD), has established a Connecticut Hydrogen-Fuel Cell Coalition (Coalition). The Coalition works to enhance economic growth through the development, manufacture, and deployment of fuel cell and hydrogen technologies and associated fueling systems. Representatives from industry, government, academia, labor, and other stakeholders make up the Coalition. CCAT

462

RSG Deployment Case Testing Results  

SciTech Connect

The RSG deployment case design is centered on taking the RSG system and producing a transport case that houses the RSG in a safe and controlled manner for transport. The transport case was driven by two conflicting constraints, first that the case be as light as possible, and second that it meet a stringent list of Military Specified requirements. The design team worked to extract every bit of weight from the design while striving to meet the rigorous Mil-Spec constraints. In the end compromises were made primarily on the specification side to control the overall weight of the transport case. This report outlines the case testing results.

Owsley, Stanley L.; Dodson, Michael G.; Hatchell, Brian K.; Seim, Thomas A.; Alexander, David L.; Hawthorne, Woodrow T.

2005-09-01T23:59:59.000Z

463

Disposable telemetry cable deployment system  

DOE Patents (OSTI)

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

464

Development of Solid Oxide Fuel Cells Utilizing Alternative Fuels.  

E-Print Network (OSTI)

??This dissertation is a summary of four solid oxide fuel cell (SOFC) research projects which addressed a number of SOFC technologies to use alternative fuels (more)

Labarbera, Mark

2012-01-01T23:59:59.000Z

465

NREL: Energy Systems Integration - Integrated Deployment Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Workshop Integrated Deployment Workshop The Energy Systems Integration Facility workshop, Integrated Deployment, was held August 21 - 23, 2012 at the National Renewable Energy Laboratory in Golden, Colorado. Each day of the workshop, which included a tour of the Energy Systems Integration Facility, focused on a different topic: Day 1: Utility-Scale Renewable Integration Day 2: Distribution-Level Integration Day 3: Isolated and Islanded Grid Systems The agenda and presentations from the workshop are below. Agenda Energy Systems Integration Facility Overview ESIF Technology Partnerships Integrated Deployment Model Integrated Deployment and the Energy Systems Integration Facility: Workshop Proceedings Printable Version Energy Systems Integration Home Research & Development

466

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Technologies Deployment Building Technologies Deployment SHARE Building Technologies Deployment benchmarking commercial buildings Once building technologies emerge and become commercially available, only in exceptional cases does robust market uptake automatically follow. Additional efforts remain to ensure that emerging and under-utilized technologies are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use in residential, commercial, and industrial sectors through applications research, technical assistance, and a variety of deployment strategies. The team's comprehensive knowledge of buildings and energy use spans multi-building sites, whole-buildings, systems, components, and multi-level

467

Impacts from Deployment Barriers on the United States Wind Power Industry: Overview & Preliminary Findings (Presentation)  

SciTech Connect

Regardless of cost and performance some wind projects are unable to proceed to commissioning as a result of deployment barriers. Principal deployment barriers in the industry today include: wildlife, public acceptance, access to transmission, and radar. To date, methods for understanding these non-technical barriers have failed to accurately characterize the costs imposed by deployment barriers and the degree of impact to the industry. Analytical challenges include limited data and modeling capabilities. Changes in policy and regulation, among other factors, also add complexity to analysis of impacts from deployment barriers. This presentation details preliminary results from new NREL analysis focused on quantifying the impact of deployment barriers on the wind resource of the United States, the installed cost of wind projects, and the total electric power system cost of a 20% wind energy future. In terms of impacts to wind project costs and developable land, preliminary findings suggest that deployment barriers are secondary to market drivers such as demand. Nevertheless, impacts to wind project costs are on the order of $100/kW and a substantial share of the potentially developable windy land in the United States is indeed affected by deployment barriers.

Lantz, E.; Tegen, S.; Hand, M.; Heimiller, D.

2012-09-01T23:59:59.000Z

468

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

469

The Integrated Data Base program: An executive-level data base of spent fuel and radioactive waste inventories, projections, and characteristics  

SciTech Connect

The Integrated Data Base (IDB) is the official US Department of Energy (DOE) data base for spent fuel and radioactive waste inventories and projections. As such, it should be as convenient to utilize as is practical. Examples of summary-level tables and figures are presented, as well as more-detailed graphics describing waste-form distribution by site and line charts illustrating historical and projected volume (or mass) changes. This information is readily accessible through the annual IDB publication. Other presentation formats are also available to the DOE community through a simple request to the IDB Program.

Klein, J.A.

1987-01-01T23:59:59.000Z

470

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

471

Federal Incentives for Wind Power Deployment | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Incentives for Wind Power Deployment Federal Incentives for Wind Power Deployment Document that lists some of the major federal incentives for wind power deployment....

472

Chapter 9 - In-Home Deployments  

Science Journals Connector (OSTI)

Abstract In-home deployments can be used to study current behavior patterns or to evaluate prototype systems. Compared to other options such as lab studies, interviews, or surveys, in-home deployments offer unparalleled realism due to the in-situ nature of the deployment as part of the participants normal lives. However, in-home deployments require careful planning and considerable effort. This chapter will help in the planning and successful execution of home deployment studies by sharing insights drawn from our combined experience running many different studies in the home, and by using the deployment of the PreHeat prototype as a concrete example. Among the lessons we highlight are the importance of carefully considering the minimum viable prototype to build for deployment, the value of remote monitoring to catch problems, and the importance of flexibility and robustness in deployed systems to cope with unexpected issues in the home environment. By discussing the challenges we faced and the lessons we learned, we hope that others will be able to more easily conduct in-home deployments and gather the rich and informative data they provide. Our experiences have led us to develop and open source two platforms that strive to reduce the engineering effort required for deployments: .NET Gadgeteer (http://www.netmf.com/gadgeteer/), a prototyping platform for custom devices, and Lab of Things (http://www.lab-of-things.com/), an SDK (software development kit) that provides features such as remote monitoring and updates for home deployments.

A.J. Brush; Brian Meyers; James Scott

2015-01-01T23:59:59.000Z

473

SunLine Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expands Horizons with Fuel Cell Bus Demo. Hydrogen, Fuel Cells & Infrastructure Technologies Program, Fuel Cell Bus Demonstration Projects (Fact Sheet). SunLine Expands Horizons...

474

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

Energy.gov (U.S. Department of Energy (DOE))

To be Presented at 25th World Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition; Shenzhen, China; November 5-9, 2010

475

Community Renewable Energy Deployment Webinars  

Office of Energy Efficiency and Renewable Energy (EERE)

Watch these previously recorded webinars to learn about successful community renewable energy projects, including how challenges and barriers faced during development were addressed. Accompanying...

476

Clean coal technology deployment: From today into the next millennium  

SciTech Connect

The Department of Energy`s clean coal technology (CCT) program succeeded in developing more efficient, cleaner, coal-fired electricity options. The Department and its private partners succeeded in the demonstration of CCT -- a major feat that required more than a decade of commitment between them. As with many large-scale capital developments and changes, the market can shift dramatically over the course of the development process. The CCT program was undertaken in an era of unstable oil and gas prices, concern over acid rain, and guaranteed markets for power suppliers. Regulations, fuel prices, emergency of competing technologies, and institutional factors are all affecting the outlook for CCT deployment. The authors identify the major barriers to CCT deployment and then introduce some possible means to surmount the barriers.

Papay, L.T.; Trocki, L.K.; McKinsey, R.R. [Bechtel Technology and Consulting, San Francisco, CA (United States)

1997-12-31T23:59:59.000Z

477

Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Exploring the Standard Model Exploring the Standard Model       You've heard a lot about the Standard Model and the pieces are hopefully beginning to fall into place. However, even a thorough understanding of the Standard Model is not the end of the story but the beginning. By exploring the structure and details of the Standard Model we encounter new questions. Why do the most fundamental particles have the particular masses we observe? Why aren't they all symmetric? How is the mass of a particle related to the masses of its constituents? Is there any other way of organizing the Standard Model? The activities in this project will elucidate but not answer our questions. The Standard Model tells us how particles behave but not necessarily why they do so. The conversation is only beginning. . . .

478

European Smart Power Market Project Report Website | Open Energy  

Open Energy Info (EERE)

European Smart Power Market Project Report Website European Smart Power Market Project Report Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Smart Power Market Project Report Website Focus Area: Renewable Energy Topics: Market Analysis Website: climatepolicyinitiative.org/publication/smart-power-market-project/ Equivalent URI: cleanenergysolutions.org/content/european-smart-power-market-project-r Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: "Resource Integration Planning,Utility/Electricity Service Costs" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

479

Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Workshop Notes from ""Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles"" Workshop, December 10-11, 2009 Workshop Notes from...

480

The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings  

Energy.gov (U.S. Department of Energy (DOE))

This report profiles a select group of nationally recognizable companies and corporations that have purchased or deployed fuel cells since our last report (November 2012) through December 2013.

Note: This page contains sample records for the topic "fuel deployment project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Fuel Cell Technologies Program Multi-Year Research, Development...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

deployment of hydrogen and fuel cell technologies. o Facilitate development of safe, high-performance materials for hydrogen service. o Develop appropriate test methodologies for...

482

Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis  

Energy.gov (U.S. Department of Energy (DOE))

This feasibility report assesses the technical and economic feasibility of deploying a hydrogen fueling station at the Fort Armstrong site in Honolulu.

483

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel...  

Energy Savers (EERE)

Vehicle Technologies Office Merit Review 2014: Hydrogen Fuel-Cell Electric Hybrid Truck & Zero Emission Delivery Vehicle Deployment Vehicle Technologies Office Merit Review 2014:...

484

Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet  

SciTech Connect

The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GMs Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

No, author

2013-09-29T23:59:59.000Z

485

Project Title  

NLE Websites -- All DOE Office Websites (Extended Search)

Test and Evaluation of Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing wells Project Number: FE0009599 Robin Gerlach Al Cunningham, Lee H Spangler Montana State University U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Infrastructure for CCS August 20-22, 2013 Presentation Outline * Motivation & Benefit to the Program (required) * Benefit to the Program and Project Overview (required) * Background information - Project Concept (MICP) - Ureolytic Biomineralization, Biomineralization Sealing * Accomplishments to Date - Site Characterization - Site Preparation - Experimentation and Modeling - Field Deployable Injection Strategy Development * Summary

486

NREL: Vehicles and Fuels Research - Fuels Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. Facilities NREL conducts...

487

NREL: Vehicles and Fuels Research - Fuels Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

about related NREL biomass research projects that focus on converting renewable biomass feedstocks into transportation fuels, chemicals, and products. For more information, see...

488

Mobility chains analysis of technologies for passenger cars and light duty vehicles fueled with biofuels : application of the Greet model to project the role of biomass in America's energy future (RBAEF) project.  

SciTech Connect

The Role of Biomass in America's Energy Future (RBAEF) is a multi-institution, multiple-sponsor research project. The primary focus of the project is to analyze and assess the potential of transportation fuels derived from cellulosic biomass in the years 2015 to 2030. For this project, researchers at Dartmouth College and Princeton University designed and simulated an advanced fermentation process to produce fuel ethanol/protein, a thermochemical process to produce Fischer-Tropsch diesel (FTD) and dimethyl ether (DME), and a combined heat and power plant to co-produce steam and electricity using the ASPEN Plus{trademark} model. With support from the U.S. Department of Energy (DOE), Argonne National Laboratory (ANL) conducted, for the RBAEF project, a mobility chains or well-to-wheels (WTW) analysis using the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed at ANL. The mobility chains analysis was intended to estimate the energy consumption and emissions associated with the use of different production biofuels in light-duty vehicle technologies.

Wu, M.; Wu, Y.; Wang, M; Energy Systems

2008-01-31T23:59:59.000Z

489

Plutonium Consumption Program, CANDU Reactor Project: Feasibility of BNFP Site as MOX Fuel Supply Facility. Final report  

SciTech Connect

An evaluation was made of the technical feasibility, cost, and schedule for converting the existing unused Barnwell Nuclear Fuel Facility (BNFP) into a Mixed Oxide (MOX) CANDU fuel fabrication plant for disposition of excess weapons plutonium. This MOX fuel would be transported to Ontario where it would generate electricity in the Bruce CANDU reactors. Because CANDU MOX fuel operates at lower thermal load than natural uranium fuel, the MOX program can be licensed by AECB within 4.5 years, and actual Pu disposition in the Bruce reactors can begin in 2001. Ontario Hydro will have to be involved in the entire program. Cost is compared between BNFP and FMEF at Hanford for converting to a CANDU MOX facility.

NONE

1995-06-30T23:59:59.000Z

490

Transportation Energy Futures Series: Projected Biomass Utilization...  

Office of Scientific and Technical Information (OSTI)

Projected Biomass Utilization for Fuels and Power in a Mature Market TRANSPORTATION ENERGY FUTURES SERIES: Projected Biomass Utilization for Fuels and Power in a Mature Market A...

491

Technology Deployment List | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Technology Deployment List Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Deployment List Agency/Company /Organization: Federal Energy Management Program Sector: Energy Focus Area: Renewable Energy Phase: Create a Vision Topics: Implementation User Interface: Website Website: www1.eere.energy.gov/femp/technologies/newtechnologies_matrix.html#cat OpenEI Keyword(s): EERE tool, Technology Deployment List Language: English References: Technology Deployment List[1] Identify emerging-and underused-energy-saving technologies, including building envelope; heating, ventilation, and air conditioning; lighting; water heating; and refrigeration, computer power management, and vending

492

Buildings Technologies Deployment | Clean energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

are successfully deployed to the fullest extent possible. ORNL helps optimize the energy performance of buildings and industrial processes by moving technologies to full use...

493

Community Renewable Energy Deployment Provides Replicable Examples...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

million in funding from DOE for an integrated renewable energy deployment plan using a biogas generation