Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

2

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

3

Industrial Demand-Side Management in Texas  

E-Print Network [OSTI]

of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

Jaussaud, D.

4

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean CommunitiesEFRC seekschief-science-officer/ Joint

5

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

McKane, Aimee T.

2009-01-01T23:59:59.000Z

6

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

McKane, Aimee T.

2009-01-01T23:59:59.000Z

7

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

industrial demand response (DR) with energy efficiency (EE) to most effectively use electricity and natural gas

McKane, Aimee T.

2009-01-01T23:59:59.000Z

8

A dynamic model of industrial energy demand in Kenya  

SciTech Connect (OSTI)

This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

Haji, S.H.H. [Gothenburg Univ. (Sweden)

1994-12-31T23:59:59.000Z

9

Demand-Side Response from Industrial Loads  

SciTech Connect (OSTI)

Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

2013-01-01T23:59:59.000Z

10

Commercial Fleet Demand for Alternative-Fuel Vehicles in California  

E-Print Network [OSTI]

Precursors of demand for alternative-fuel vehicles: resultsFLEET DEMAND FOR ALTERNATIVE-FUEL VEHICLES IN CALIFORNIA*Abstract—Fleet demand for alternative-fuel vehicles (‘AFVs’

Golob, Thomas F; Torous, Jane; Bradley, Mark; Brownstone, David; Crane, Soheila Soltani; Bunch, David S

1996-01-01T23:59:59.000Z

11

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

demand response programs identifies three clusters of industries as the key participants: • petroleum, plastic,Demand Response Potential from Audit Database Top 25 Industries by Average kW Table 1 3344 Semiconductors & Electronics 3261 Plastic

McKane, Aimee T.

2009-01-01T23:59:59.000Z

12

Demand Controlled Filtration in an Industrial Cleanroom  

SciTech Connect (OSTI)

In an industrial cleanroom, significant energy savings were realized by implementing two types of demand controlled filtration (DCF) strategies, one based on particle counts and one on occupancy. With each strategy the speed of the recirculation fan filter units was reduced to save energy. When the control was based on particle counts, the energy use was 60% of the baseline configuration of continuous fan operation. With simple occupancy sensors, the energy usage was 63% of the baseline configuration. During the testing of DCF, no complaints were registered by the operator of the cleanroom concerning processes and products being affected by the DCF implementation.

Faulkner, David; DiBartolomeo, Dennis; Wang, Duo

2007-09-01T23:59:59.000Z

13

Industrial demand side management: A status report  

SciTech Connect (OSTI)

This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

1995-05-01T23:59:59.000Z

14

Demand Response Opportunities in Industrial Refrigerated Warehouses in  

E-Print Network [OSTI]

LBNL-4837E Demand Response Opportunities in Industrial Refrigerated Warehouses in California Sasank thereof or The Regents of the University of California. #12;Demand Response Opportunities in Industrial centralized control systems can be excellent candidates for Automated Demand Response (Auto- DR) due

15

Opportunities, Barriers and Actions for Industrial Demand Response in  

E-Print Network [OSTI]

LBNL-1335E Opportunities, Barriers and Actions for Industrial Demand Response in California A.T. Mc of Global Energy Partners. This work described in this report was coordinated by the Demand Response Demand Response in California. PIER Industrial/Agricultural/Water EndUse Energy Efficiency Program. CEC

16

Independent Demand Models Non Linear (Chemical Industry -take or pay)  

E-Print Network [OSTI]

casesshippedperweek #12;High Variability Between Forecast and Actual · Demand in relation to the forecast means almostIndependent Demand Models · Non Linear (Chemical Industry - take or pay) · Deterministic Simulation (make to stock - lumpy demand) · Mathematical Programming (family structure - near optimum) · Heuristic

Brock, David

17

Demand Side Dispatching, Part 2: An Industrial Application  

E-Print Network [OSTI]

DEMAND SIDE DISPATCHING, Part 2: AN INDUSTRIAL APPUCATION Ravi Nath Donald A. Cerget Edward T. Henderson Sr. Consultant Sr. Account Executive Sr. Engineer Linnhoff March, Inc. Detroit Edison Detroit Edison Houston, TX Detroit, M1 Detroit, M1...

Nath, R.; Cerget, D. A.; Henderson, E. T.

18

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

1 ENERGY AND DEMAND SAVINGS FROM IMPLEMENTATION COSTS IN INDUSTRIAL FACILITIES 1 Razinha, J.A. and Heffington, W.M. Industrial Assessment Center and Mechanical Engineering Department Texas A&M University, College Station, Texas 77843.... noted that a direct calculation of cost savings from the implementation cost could eliminate as much as 30% of the preparation time (and associated cost) for the LoanSTAR reports. The savings result from not having to calculate energy or demand...

Razinha, J. A.; Heffington, W. M.

19

Assessment of Industrial Load for Demand Response across Western Interconnect  

SciTech Connect (OSTI)

Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

2013-11-01T23:59:59.000Z

20

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy  

E-Print Network [OSTI]

Automobile Prices, Gasoline Prices, and Consumer Demand for Fuel Economy Ashley Langer University evidence that automobile manufacturers set vehicle prices as if consumers respond to gasoline prices. We consumer preferences for fuel efficiency. Keywords: automobile prices, gasoline prices, environmental

Sadoulet, Elisabeth

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

22

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

on the forecast of total energy demand. Based on this, weIndustrialization and Energy Demand Scenarios Nathaniel T.adjustment spurred energy demand for construction of new

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

23

MTBE demand as a oxygenated fuel additive  

SciTech Connect (OSTI)

The MTBE markets are in the state of flux. In the U.S. the demand has reached a plateau while in other parts of the world, it is increasing. The various factors why MTBE is experiencing a global shift will be examined and future volumes projected.

NONE

1996-10-01T23:59:59.000Z

24

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

eet demand for alternative-fuel vehicles in California.Britain MYTHS REGARDING ALTERNATIVE FUEL VEHICLE DEMAND BYinitial market for alternative fuel vehicles (AFVs). We

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

25

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

Scott, Doug

2014-01-01T23:59:59.000Z

26

Emerging Technologies for Industrial Demand-Side Management  

E-Print Network [OSTI]

as demand-side management strategies for industrial consumers of electricity. An alternative strategy to replacing aging electric motors with high efficiency or ASD motors is a turbine let-down. A turbine letdown is a turbine which uses pressure reduction...

Neely, J. E.; Kasprowicz, L. M.

27

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

28

Opportunities, Barriers and Actions for Industrial Demand Response in California  

SciTech Connect (OSTI)

In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.

McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

2008-01-31T23:59:59.000Z

29

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs  

E-Print Network [OSTI]

Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

Victoria, University of

30

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

Goli, Sasank

2012-01-01T23:59:59.000Z

31

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

Broader source: Energy.gov (indexed) [DOE]

Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks DOE Hydrogen and Fuel Cells Program Record, Record 13008: Industry Deployed Fuel Cell Powered Lift Trucks...

32

Myths Regarding Alternative Fuel Vehicle Demand by Light-Duty Vehicle Fleets  

E-Print Network [OSTI]

MythsRegarding Alternative Fuel Vehicte Demand Light-Dutyregulation Myths Regarding Alternative Fuel Vehicle DemandBy00006-6 MYTHS REGARDING ALTERNATIVE FUEL VEHICLE LIGHT-DUTY

Nesbitt, Kevin; Sperling, Daniel

1998-01-01T23:59:59.000Z

33

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

SciTech Connect (OSTI)

Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

Goli, Sasank; McKane, Aimee; Olsen, Daniel

2011-06-14T23:59:59.000Z

34

Power Plant and Industrial Fuel Use Act | Department of Energy  

Office of Environmental Management (EM)

Power Plant and Industrial Fuel Use Act Power Plant and Industrial Fuel Use Act Self Certifications Title II of the Powerplant and Industrial Fuel Use Act of 1978 (FUA), as amended...

35

Encouraging Industrial Demonstrations of Fuel Cell Applications  

E-Print Network [OSTI]

amounts of electricity and process heat; yet none of these have tested a fuel cell. THE HARKET A recent study performed by the Department of Energy (reference 1) stated, "It is possi ble that the on-site market for fuel cells may eventually become... as large worldwide as that for electric utility fuel cell systems." The study included the industrial sector as part of the on-site market. It went on to state, "The potential industrial cogenera tion market is at present unknown. It may be as much...

Anderson, J. M.

36

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

Site Industry Chem Repackaging Fruit Proc & Cold StorageCold storage Data centers and test labs for high tech industriesCold storage Data centers and test labs for high tech industries

McKane, Aimee T.

2009-01-01T23:59:59.000Z

37

CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY  

E-Print Network [OSTI]

varies across markets. In the presence of uncertain demand, capacity choices are shown theoreticallyCAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY Guy://www.economie.polytechnique.edu/ mailto:chantal.poujouly@polytechnique.edu #12;Capacity Investment under Demand Uncertainty: The Role

Paris-Sud XI, Université de

38

5/2/2005 Industry Seminar -April 2005 The Housing Market and Demand for  

E-Print Network [OSTI]

: Consensus forecast ­ NAHB, major banks) #12;Regional shifts in housing demand Graying population will keep5/2/2005 Industry Seminar - April 2005 The Housing Market and Demand for Building Materials Charlotte, NC April 27, 2005 #12;Changes that will impact demand for residential building materials

39

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

40

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed...  

Broader source: Energy.gov (indexed) [DOE]

13007: Industry Deployed Fuel Cell Backup Power (BuP) DOE Hydrogen and Fuel Cells Program Record 13007: Industry Deployed Fuel Cell Backup Power (BuP) This record from the DOE...

42

A Transaction Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tl’us is

Brownstone, David; Bunch, David S.; Golob, Thomas F.; Ren, Weiping

1996-01-01T23:59:59.000Z

43

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH  

E-Print Network [OSTI]

THE FUTURE DEMAND FOR ALTERNATIVE FUEL PASSENGER VEHICLES: A DIFFUSION OF INNOVATION APPROACH UC ....................................................................23 3 MARKET DEVELOPMENT OF ALTERNATIVE FUEL VEHICLES ............................ 26 3.1 SUPPLY OF ALTERNATIVE FUEL VEHICLES

Levinson, David M.

44

A Dynamic household Alternative-fuel Vehicle Demand Model Using Stated and Revealed Transaction Information  

E-Print Network [OSTI]

market share for alternative-fuel vehicles drop from thePreferences for Alternative-Fuel Vehicles”, Brownstone DavidA Dynamic Household Alternative-fuel Vehicle Demand Model

Sheng, Hongyan

1999-01-01T23:59:59.000Z

45

A Transactions Choice Model for Forecasting Demand for Alternative-Fuel Vehicles  

E-Print Network [OSTI]

Forecasting Demand Alternative-Fuel Vehicles for DavldNG DEMANDFOR ALTERNATIVE-FUEL VEHICLES DavidBrownstone,interested in promoting alternative-fuel vehicles. Tl’us is

Brownstone, David; Bunch, David S; Golob, Thomas F; Ren, Weiping

1996-01-01T23:59:59.000Z

46

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network [OSTI]

on the higher of either $500/MWH, or the wholesale electricity price in the customer?s area, during the time of the event. Exact payment arrangements differ by program provider. Day-Ahead Demand Response Program Day-Ahead Demand Response Program (DADRP...), offers retail electricity customers a chance to bid load reduction capability in New York State?s wholesale electricity market. To participate, companies bid their load reduction capability, on a day-ahead basis, into the wholesale electricity market...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

47

Demand management : a cross-industry analysis of supply-demand planning  

E-Print Network [OSTI]

Globalization increases product variety and shortens product life cycles. These lead to an increase in demand uncertainty and variability. Outsourcing to low-cost countries increases supply lead-time and supply uncertainty ...

Tan, Peng Kuan

2006-01-01T23:59:59.000Z

48

Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand  

E-Print Network [OSTI]

INDUSTRIAL-LOAD-SHAPI1IG: TIlE PRACTICE OF AND PROSPECTS FOR UTILITY/INDUSTRY COOPERATION TO MAUGE PEAK ELECTRICITY DEMAND Donald J. BuIes and David E. Rubin Consultants, Pacific Gas and Electric Company San Francisco, California Michael F.... Maniates Energy and Resources Group, University of California Berkeley, California ABSTRACT Load-management programs designed to reduce demand for electricity during peak periods are becoming increasingly important to electric utilities. For a gf...

Bules, D. J.; Rubin, D. E.; Maniates, M. F.

49

Assessing the Control Systems Capacity for Demand Response in California Industries  

SciTech Connect (OSTI)

California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

2012-01-18T23:59:59.000Z

50

Demand response medium sized industry consumers (Smart Grid Project) | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin JumpTexas ElecEnergy

51

A study of industrial equipment energy use and demand control  

E-Print Network [OSTI]

Technologies. A battery storage system, capable of providing up to 5, 000 kW was installed (Hunt 1999). The batterics allow the plant's demand peaks to be lowcrcd by using energy stored in the batteries during off-peak periods to provide a portion...

Dooley, Edward Scott

2001-01-01T23:59:59.000Z

52

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ORNLTM-2013222 Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Revised July...

53

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure Status and Prospects of the...

54

Air Force Achieves Fuel Efficiency through Industry Best Practices...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Air Force Achieves Fuel Efficiency through Industry Best Practices Air Force Achieves Fuel Efficiency through Industry Best Practices Fact sheet offers an overview of the U.S. Air...

55

Assumption to the Annual Energy Outlook 2014 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NA NA

56

EnerNOC Inc. Commercial & Industrial Demand Response  

E-Print Network [OSTI]

Valley Authority C&I DR: 560 MW Tucson Electric Power C&I DR: 40 MW Xcel Energy (Colorado) C&I DR: 44 MW Baltimore Gas & Electric C&I DR:120 MW Bonneville Power Administration C&I DR: Multiple Pilots Delmarva with 2010 revenues of $280 million 500+ full-time employees Energy Efficiency Industrial EE Program

57

A Feasibility Study of Fuel Cell Cogeneration in Industry  

E-Print Network [OSTI]

Up until now, most of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic analysis...

Phelps, S. B.; Kissock, J. K.

58

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity  

E-Print Network [OSTI]

Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

59

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

SciTech Connect (OSTI)

This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

2009-05-11T23:59:59.000Z

60

Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)  

Reports and Publications (EIA)

For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Miniature fuel-cell system complete with on-demand fuel and oxidant supply  

E-Print Network [OSTI]

scale direct methanol fuel cell development,” Energy, vol.flow-based microfluidic fuel cell," J. Am. Chem. Soc. , vol.electrolyte membrane fuel cell design," J. Power Sources,

Hur, JI; Kim, C-J

2015-01-01T23:59:59.000Z

62

Residual Fuel Oil Sales for Industrial Use  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia,(Million Barrels) Crude Oil Reserves in NonproducingAdditions to Capacity on CokersA2. ForJanuary 2013

63

Distillate Fuel Oil Sales for Industrial Use  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0

64

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY 2012 FYCustomer-Comments Sign In

65

Model documentation report: Industrial sector demand module of the national energy modeling system  

SciTech Connect (OSTI)

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1998-01-01T23:59:59.000Z

66

Analysis of fuel shares in the industrial sector  

SciTech Connect (OSTI)

These studies describe how fuel shares have changed over time; determine what factors are important in promoting fuel share changes; and project fuel shares to the year 1995 in the industrial sector. A general characterization of changes in fuel shares of four fuel types - coal, natural gas, oil and electricity - for the industrial sector is as follows. Coal as a major fuel source declined rapidly from 1958 to the early 1970s, with oil and natural gas substituting for coal. Coal's share of total fuels stabilized after the oil price shock of 1972-1973, and increased after the 1979 price shock. In the period since 1973, most industries and the industrial sector as a whole appear to freely substitute natural gas for oil, and vice versa. Throughout the period 1958-1981, the share of electricity as a fuel increased. These observations are derived from analyzing the fuel share patterns of more than 20 industries over the 24-year period 1958 to 1981.

Roop, J.M.; Belzer, D.B.

1986-06-01T23:59:59.000Z

67

Miniature fuel-cell system complete with on-demand fuel and oxidant supply  

E-Print Network [OSTI]

a cropped view focusing on the fuel channel and O 2 pocket.The fuel is seen being pumped by the CO 2 bubbles, and O 2micro-scale direct methanol fuel cell development,” Energy,

Hur, JI; Kim, C-J

2015-01-01T23:59:59.000Z

68

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

Lekov, Alex

2009-01-01T23:59:59.000Z

69

Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities  

E-Print Network [OSTI]

and Demand Response History Energy Management Activities o #and Demand Response History Energy Management Activities

Olsen, Daniel

2013-01-01T23:59:59.000Z

70

Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards  

E-Print Network [OSTI]

Automated  Demand  Response  in  Commercial  Buildings.  Demand  Response  Infrastructure  for   Commercial  Buildings.  

Ghatikar, Girish

2014-01-01T23:59:59.000Z

71

Reducing the demand forecast error due to the bullwhip effect in the computer processor industry  

E-Print Network [OSTI]

Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

Smith, Emily (Emily C.)

2010-01-01T23:59:59.000Z

72

World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-  

E-Print Network [OSTI]

395 World population growth, industrialization, energy demand, and environmental goals the average transport time is 2­3 weeks (Liu and Mauzerall 2005). Circumpolar trans- port of pollution around

Mauzerall, Denise

73

World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-  

E-Print Network [OSTI]

377 World population growth, industrialization, energy demand, and environmental goals the average transport time is 2­3 weeks (Liu and Mauzerall 2005). Circumpolar trans- port of pollution around

Mauzerall, Denise

74

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

of Program Participation Rates on Demand Response MarketTable 3-1. Methods of Estimating Demand Response PenetrationDemand Response

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

75

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

your Power. (2008). "Demand Response Programs." RetrievedS. (2008). Automated Demand Response Results from Multi-Yearusing Open Automated Demand Response, California Energy

Lekov, Alex

2009-01-01T23:59:59.000Z

76

Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards  

E-Print Network [OSTI]

to  Automated  Demand   Response  and  the  OpenADR  ®  Automated  Demand  Response  Program.   https://Data  for  Automated  Demand  Response  in  Commercial  

Ghatikar, Girish

2014-01-01T23:59:59.000Z

77

2008-2010 Research Summary: Analysis of Demand Response Opportunities in California Industry  

E-Print Network [OSTI]

K.C. Mares, D. Shroyer. 2010. Demand Response andOpen Automated Demand Response Opportunities for Dataand the Role of Automated Demand Response. Lawrence Berkeley

Goli, Sasank

2013-01-01T23:59:59.000Z

78

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

2001. “Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

79

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network [OSTI]

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

80

A Cooperative Demand Response Scheme Using Punishment Mechanism and Application to Industrial Refrigerated Warehouses  

E-Print Network [OSTI]

aggregated loads for demand response,” in Proceedings of TheS. H. Low, “Optimal demand response: Problem formulation andZ. Yang, and Y. Zhang, “Demand response man- agement with

Ma, Kai; Hu, Guoqiang; Spanos, Costas J

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

Japan‘s 2007 primary plastics demand of 107.95 kilograms perChina reaches a lower plastic demand level of 75 kilogramsper capita primary plastics demand was used to estimate per

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

82

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

SciTech Connect (OSTI)

This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

2010-12-22T23:59:59.000Z

83

A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making  

SciTech Connect (OSTI)

Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

2013-12-15T23:59:59.000Z

84

Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities  

E-Print Network [OSTI]

Capabilities due to Energy Management Improvement inSummary Introduction Energy Management Demand Responseand Processes Energy Management and Demand Response History

Olsen, Daniel

2013-01-01T23:59:59.000Z

85

Opportunities for Energy Efficiency and Demand Response in the California Cement Industry  

E-Print Network [OSTI]

Opportunities for Energy  Efficiency and Demand Response in Agricultural/Water End?Use Energy Efficiency Program.    i 1   4.0   Energy Efficiency and Demand Response 

Olsen, Daniel

2012-01-01T23:59:59.000Z

86

Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

Best Practices. Kiliccote, S. (2008). Automated Demand Responsebest operation practices and behaviors to enhance the impact of DR activities. 1.0 Introduction Background and Overview Demand Response (

Lekov, Alex

2009-01-01T23:59:59.000Z

87

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

demand response options, or benchmarking, are probably not all that meaningful. The “best practices”

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

88

Dynamics of Evolution in the Global Fuel-Ethanol Industry  

E-Print Network [OSTI]

and background in television receiver industry. The second driving force is security of supply. There are two important supply points along the value chain - supply of feedstock for ethanol production and supply of ethanol for gasoline blending... some evidence of increasing vertical integration. Table 1: Biofuel Policy and Blending Segments in Four Major Countries/Region 5 E denotes ethanol. E5 is a fuel with 5% ethanol content in gasoline...

Chan, Jin Hooi; Reiner, David

89

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

demand response, participation can imply: (1) customer enrollment in voluntary programs and tariffs, or (2) the retention

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

90

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

2007. 27 3.2.3 Energy Intensity and Fuel Mix As a result ofEnergy Intensity and Fuel Mix Energy Intensity and Fuel Mix

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

91

Advanced coal-fueled industrial cogeneration gas turbine system  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

92

Personnel supply and demand issues in the nuclear power industry. Final report of the Nuclear Manpower Study Committee  

SciTech Connect (OSTI)

The anticipated personnel needs of the nuclear power industry have varied widely in recent years, in response to both increasing regulatory requirements and declining orders for new plants. Recent employment patterns in the nuclear energy field, with their fluctuations, resemble those of defense industries more than those traditionally associated with electric utilities. Reactions to the accident at Three Mile Island Unit 2 by industry and regulators have increased the demand for trained and experienced personnel, causing salaries to rise. Industry, for example, has established several advisory organizations like the Institute for Nuclear Power Operations (INPO). At the same time, the US Nuclear Regulatory Commission (NRC) has imposed many new construction and operating requirements in an effort to take advantage of lessons learned from the Three Mile Island incident and to respond to the perceived public interest in better regulation of nuclear power. Thus, at present, utilities, architect-engineer firms, reactor vendors, and organizations in the nuclear development community have heavy workloads.

Not Available

1981-01-01T23:59:59.000Z

93

A critical review of single fuel and interfuel substitution residential energy demand models  

E-Print Network [OSTI]

The overall purpose of this paper is to formulate a model of residential energy demand that adequately analyzes all aspects of residential consumer energy demand behavior and properly treats the penetration of new technologies, ...

Hartman, Raymond Steve

1978-01-01T23:59:59.000Z

94

Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study  

E-Print Network [OSTI]

choices in the face of real options, or surveys can beoptions may differ from their actual behavior when faced with realReal-Time Demand Response (RTDR) program offers customers two advance-notice options:

Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

2007-01-01T23:59:59.000Z

95

Improving supply chain performance by implementing weekly demand planning processes in the consumer packaged goods industry  

E-Print Network [OSTI]

This thesis examines how simple weekly demand planning process can improve inventory levels and customers service levels at the Gillette Company. The processes designed by the project team has been tested and executed in ...

Rah, Myung-Hyun Elisa

2006-01-01T23:59:59.000Z

96

Developing a framework for dependable demand forecasts in the consumer packaged goods industry  

E-Print Network [OSTI]

As a consumer packaged goods company, "Company X" manufactures products "make-to-stock"; therefore, having reliable demand forecasts is fundamental for successful planning and execution. Not isolated to "Company X" or to ...

Uriarte, Daniel Antonio

2010-01-01T23:59:59.000Z

97

Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned  

E-Print Network [OSTI]

"To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

Skelton, J.

98

Modern Fuel Cladding in Demanding Operation - ZIRLO in Full Life High Lithium PWR Coolant  

SciTech Connect (OSTI)

There is an increasing demand to optimize the PWR water chemistry in order to minimize activity build-up in the plants and to avoid CIPS and other fuel related issues. Operation with a constant pH between 7.2 and 7.4 is generally considered an important part in achieving the optimized water chemistry. The extended long cycles currently used in most of the U.S. PWRs implies that the lithium concentration at BOC will be outside the general operating experience with such a coolant chemistry regime. With the purpose to extend the experience of high lithium coolant operation, such water chemistry has been used in a few PWRs, i.e. CPSES Unit 2 and Diablo Canyon Units 1 and 2, all with ZIRLO{sup TM} cladding. Operation with a lithium concentration up to 4.2 ppm does not show any impact of the elevated lithium, while operation with up to 6 ppm possibly produce some limited corrosion acceleration in the region of sub-nucleate boiling but has no detrimental impact under the conditions limited by current operating experience. (authors)

Kargol, Kenneth [Pacific Gas and Electric Company, Diablo Canyon Power Plant, Avila Beach, California (United States); Stevens, Jim [TXU Power, Comanche Peak Steam Electric Station, Glen Rose, Texas (United States); Bosma, John [Westinghouse Electric Company, Dallas, Texas (United States); Iyer, Jayashri; Wikmark, Gunnar [Westinghouse Electric Company, Columbia, South Carolina (United States)

2007-07-01T23:59:59.000Z

99

Challenges of Electric Power Industry Restructuring for Fuel Suppliers  

Reports and Publications (EIA)

Provides an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry.

1998-01-01T23:59:59.000Z

100

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock  

E-Print Network [OSTI]

A FEASIBILITY STUDY OF FUEL CELL COGENERATION IN INDUSTRY Scott B. Phelps and J. Kelly Kissock of the literature on fuel cell cogeneration describes cogeneration at commercial sites. In this study, a PC25C phosphoric acid fuel cell cogeneration system was designed for an industrial facility and an economic

Kissock, Kelly

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

21 Figure 13: Primary Energy Consumption byEffects on Industry Primary Energy Consumption, 1995-share of total primary energy consumption surged even higher

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

102

Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels  

E-Print Network [OSTI]

"Stone & Webster Engineering Corporation, under Department of Energy sponsorship, is developing a wet oxidation system to generate steam for industrial processes by burning industrial waste materials and low-grade fuels. The program involves...

Bettinger, J.; Koppel, P.; Margulies, A.

103

Automated Demand Response Benefits California Utilities and Commercial & Industrial Customers  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06 AuditAugust 5, 2010AutoDepartment U.S.

104

"Table A16. Components of Total Electricity Demand by Census Region, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0. Total1.6.

105

NEMS industrial module documentation report  

SciTech Connect (OSTI)

The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

Not Available

1994-01-01T23:59:59.000Z

106

Cheyenne Light, Fuel and Power (Gas)- Commercial and Industrial Efficiency Rebate Program (Wyoming)  

Broader source: Energy.gov [DOE]

Cheyenne Light, Fuel and Power (CLFP) offers incentives to commercial and industrial gas customers who install energy efficient equipment in existing buildings. Incentives are available for boilers...

107

Solid State Research CenterDOE Fuel Cell Portable Power Workshop End User Perspective Industrial  

E-Print Network [OSTI]

Usage :KU 19901980 :KU 2000 :KU 2010 :KU On Body Energy Solid State Research CenterDOE Fuel Cell · Notebook - ~20.0W ·High unit growth of Mobile phones driving energy demand ·Laptop computer power demands) Power(W) Energy & Power of Portable Devices Cellular Phone Laptop Computer Palm III Palm VII 2-way Radio

108

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

eliminated all vertical shaft kilns in cement production.cement industry is steadily transitioning from using less-efficient vertical-shaft- kilnvertical shaft kilns to rotary kilns and endogenous process improvements, the final intensity of cement

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

109

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

urban and rural total energy consumption per square meter ofas % Industry Total Energy Consumption Source: NBS 1.3.2its share of total primary energy consumption surged even

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

110

The Impacts of Utility-Sponsored Demand-Side Management Programs on Industrial Electricity Consumers  

E-Print Network [OSTI]

in this paper of the arguments and recommendations of DSM-advocates are general, particular attention is paid to the potentially damaging effects of these proposals on large commercial and industrial customers....

Rosenblum, J. I.

111

How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios  

E-Print Network [OSTI]

Figure 9: Per Capita Carbon Emissions for Residential Energy9: Per Capita Carbon Emissions for Residential Energy Useenergy content for each fuel, the estimated per capita carbon emissions

Aden, Nathaniel T.

2010-01-01T23:59:59.000Z

112

Demand Response is Focus of New Effort by Electricity Industry Leaders |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJuneEnergy This documentAct of 2005:

113

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises OptionDOE Hydrogen and Fuel

114

Challenges of electric power industry restructuring for fuel suppliers  

SciTech Connect (OSTI)

The purpose of this report is to provide an assessment of the changes in other energy industries that could occur as the result of restructuring in the electric power industry. This report is prepared for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public. 28 figs., 25 tabs.

NONE

1998-09-01T23:59:59.000Z

115

Demand Side Dispatching, Part 1: A Novel Approach for Industrial Load Shaping Applications  

E-Print Network [OSTI]

) systems fo commercial HVAC applications. Load co trol generally involves scheduling the use of electrotechnologies (e.g. air compression, pumping) during off-peak periods only, an shutting them off during on-peak periods. In order to provide... incentives to the custom r to modulate his demand, most DSM progranis combine the foregoing technologies with l1ime of-Use rate structures, capital cost subsidies (rebates), and technical support services. 317 ESL-IE-93-03-45 Proceedings from...

Kumana, J. D.; Nath, R.

116

Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards  

SciTech Connect (OSTI)

This report reviews the Open Automated Demand Response (OpenADR) deployments within the territories serviced by California?s investor-owned utilities (IOUs) and the transition from the OpenADR 1.0 specification to the formal standard?OpenADR 2.0. As demand response service providers and customers start adopting OpenADR 2.0, it is necessary to ensure that the existing Automated Demand Response (AutoDR) infrastructure investment continues to be useful and takes advantage of the formal standard and its many benefits. This study focused on OpenADR deployments and systems used by the California IOUs and included a summary of the OpenADR deployment from the U.S. Department of Energy-funded demonstration conducted by the Sacramento Municipal Utility District (SMUD). Lawrence Berkeley National Laboratory collected and analyzed data about OpenADR 1.0 deployments, categorized architectures, developed a data model mapping to understand the technical compatibility of each version, and compared the capabilities and features of the two specifications. The findings, for the first time, provided evidence of the total enabled load shed and average first cost for system enablement in the IOU and SMUD service territories. The OpenADR 2.0a profile specification semantically supports AutoDR system architectures and data propagation with a testing and certification program that promotes interoperability, scaled deployments by multiple vendors, and provides additional features that support future services.

Ghatikar, Girish; Riess, David; Piette, Mary Ann

2014-01-02T23:59:59.000Z

117

Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?  

SciTech Connect (OSTI)

The North American Proton Exchange Membrane (PEM) fuel cell industry may be at a critical juncture. A large-scale market for automotive fuel cells appears to be several years away and in any case will require a long-term, coordinated commitment by government and industry to insure the co-evolution of hydrogen infrastructure and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006). Cost targets are less demanding and manufacturers appear to be close, perhaps within a factor of two, of meeting them. Hydrogen supply is a significant obstacle to market acceptance but may not be as great a barrier as it is for hydrogen-powered vehicles due to the smaller quantities of hydrogen required. PEM fuel cells appear to be potentially competitive in two markets: (1) Backup power (BuP) supply, and (2) electrically-powered MHE (Mahadevan et al., 2007a, 2007b). There are several Original Equipment Manufacturers (OEMs) of PEM fuel cell systems for these applications but production levels have been quite low (on the order of 100-200 per year) and cumulative production experience is also limited (on the order of 1,000 units to date). As a consequence, costs remain above target levels and PEM fuel cell OEMs are not yet competitive in these markets. If cost targets can be reached and acceptable solutions to hydrogen supply found, a sustainable North American PEM fuel cell industry could be established. If not, the industry and its North American supply chain could disappear within a year or two. The Hydrogen Fuel Cell and Infrastructure Technologies (HFCIT) program of the U.S. Department of Energy (DOE) requested a rapid assessment of the potential for a government acquisition program to bootstrap the market for non-automotive PEM fuel cells by driving down costs via economies of scale and learning-by-doing. The six week study included in-depth interviews of three manufacturers, visits to two production facilities, review of the literature on potential markets in North America and potential federal government procurements, development of a cost model reflecting economies of scale and learning-by-doing, and estimation of the impact of federal PEM fuel cell procurements on fuel cell system costs and the evolution of private market demand. This report presents the findings of that study. Section 2 outlines the status of the industry and describes potential markets based on interviews of manufacturers and the existing literature. Section 3 describes the modeling methodology including key premises and assumptions, and presents estimates of market evolution under four scenarios: (1) Base Case with no federal government procurement program, (2) Scenario 1, an aggressive program beginning with less than 200 units procured in 2008 ramping up to more than 2,000 units in 2012, (3) Scenario 2 which is identical to Scenario 1 except that the private market is assumed to be twice as sensitive to price, and (4) Scenario 3, a delayed, smaller federal procurement program beginning in 2011 increasing to a maximum of just over 1,000 units per year in 2012. The analysis suggests that the aggressive program of Scenario 1 would likely stimulate a sustainable, competitive North American non-automotive PEM fuel cell industry. Given plausible assumptions about learning rates and scale economies, the procurements assumed in Scenario 1 appear to be sufficient to drive down costs to target levels. These findings are conditional on the evolution of acceptable hydrogen supply strategies, which were not explicitly analyzed in this study. Success is less certain under Scenarios 2 and 3, and there appears to be a strong probability that existing OEMs would not survive until 2011. In the Base Case, no program, a viable North American industry does not emerge before 2020.

Greene, David L [ORNL; Duleep, Dr. K. G. [Energy and Environmental Analysis, Inc., an ICF Company

2008-10-01T23:59:59.000Z

118

Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy

119

Job Creation Analysis in the Hydrogen and Fuel Cell Industry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOEWashington, DC 20585 April 2006JenniferJob Creation

120

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Bootstrapping a Sustainable North American PEM Fuel Cell Industry...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and fuel cell vehicles (Greene et al., 2008). The market for non-automotive PEM fuel cells, on the other hand, may be much closer to commercial viability (Stone, 2006)....

122

Outlook for Light-Duty-Vehicle Fuel Demand | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S.SolarMarket-Based Programs

123

Nebraska Company Expands to Meet Demand for Hydrogen Fuel | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNational ScienceEnergy -Energy2014Energy

124

Title: Strategic Investing for a Sustainable Future: A New Approach to the Campaign for Divestment in the Fossil Fuel Industry  

E-Print Network [OSTI]

in the Fossil Fuel Industry Host: Charles H. Greene, Director, Ocean Resources and Ecosystems Program to encourage university divestment in the fossil fuel industry is achieving national attention. Student groups to convince the fossil fuel industry that it must play a constructive role in the transition from fossil fuels

Angenent, Lars T.

125

A Microfluidic Microbial Fuel Cell as a Biochemical Oxygen Demand Sensor |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNGExperience hands-onASTROPHYSICSHe β-Research andAFishing forA MapThe Ames

126

Enhanced Oil Recovery to Fuel Future Oil Demands | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing Zirconia NanoparticlesSmartAffects the Future Energy Mix Click to email this

127

E-Print Network 3.0 - aviation fuel demand Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Aviation... ... Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel Cells and Infrastructure Technologies Program Collection: Energy Storage, Conversion...

128

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies  

E-Print Network [OSTI]

Industrial clusters and regional innovation based on hydrogen and fuel cell technologies-Westphalia (Germany): Fuel Cell and Hydrogen Network in North Rhine-Westphalia Regional authorities develops fully or regions in Europe with a potential to develop clusters based on hydrogen and fuel cell technologies? 3

129

Status and Prospects of the Global Automotive Fuel Cell Industry...  

Broader source: Energy.gov (indexed) [DOE]

leading the development of mass-market fuel cell vehicles in Japan, Korea, Germany, and the United States with data from the open literature and public meetings to...

130

Air Force Achieves Fuel Efficiency through Industry Best Practices |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReportingEnergyRetrospective Plan42.2 (AprilDepartment of

131

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent JuneEfficiency | Department

132

Power Plant and Industrial Fuel Use Act | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > Financial InfoPower

133

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network [OSTI]

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

134

Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization  

E-Print Network [OSTI]

This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

Hencey, S.; Hinkle, B.; Limaye, D. R.

1980-01-01T23:59:59.000Z

135

Decision-maker's guide to wood fuel for small industrial energy users. Final report. [Includes glossary  

SciTech Connect (OSTI)

The technology and economics of various wood energy systems available to the small industrial and commercial energy user are considered. This book is designed to help a plant manager, engineer, or others in a decision-making role to become more familiar with wood fuel systems and make informed decisions about switching to wood as a fuel. The following subjects are discussed: wood combustion, pelletized wood, fuel storage, fuel handling and preparation, combustion equipment, retrofitting fossil-fueled boilers, cogeneration, pollution abatement, and economic considerations of wood fuel use. (MHR)

Levi, M. P.; O'Grady, M. J.

1980-02-01T23:59:59.000Z

136

DOE Hydrogen and Fuel Cells Program Record #13007: Industry Deployed Fuel  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5QualityDOEDOEHonorsDOECell

137

U.S. Fuel Cell Council: The Voice of the Fuel Cell Industry | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy AmericanOfficein

138

SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project  

E-Print Network [OSTI]

In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

Betts, W. D.

1982-01-01T23:59:59.000Z

139

Fuel Cell Technologies Office Record 14009 Â… Industry Deployed Fuel Cell Backup Power (BuP)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 A N09 (Rev. 1)

140

Fuel Cell Technologies Office Record 14010 Â… Industry Deployed Fuel Cell Powered Lift Trucks  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional ElectricalEnergy Frozen TelescopeRenewable 0 0 A N09 (Rev.

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Honeywell Demonstrates Automated Demand Response Benefits for...  

Office of Environmental Management (EM)

Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

142

Carbonate fuel cell system development for industrial cogeneration. Final report Mar 80-Aug 81  

SciTech Connect (OSTI)

A survey of various industries was performed to investigate the feasibility of using natural gas-fueled carbonate fuel cell power plants as a cogeneration heat and power source. Two applications were selected: chlorine/caustic soda and aluminum. Three fuel processor technologies, conventional steam reforming, autothermal reforming and an advanced steam reformer concept were used to define three thermodynamic cycle concepts for each of the two applications. Performance and economic studies were conducted for the resulting systems. The advanced steam reformer was found among those studied to be most attractive and was evaluated further and compared to internally reforming the fuel within the fuel cell anodes. From the results of the studies it was concluded that the issues most affecting gas-fired carbonate fuel cell power plant commercial introduction are fuel cell and stack development, fuel reformer technology and the development of reliable, cost-effective heat transfer equipment.

Schnacke, A.W.; Reinstrom, R.M.; Najewicz, D.J.; Dawes, M.H.

1981-09-01T23:59:59.000Z

143

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

products (NAICS 3272) Wood products (NAICS 321) Cement and Lime (NAICS 32731, 32741) Plastic and rubber products (NAICS 326) Construction (NAICS 23) Iron and steel (NAICS 3311-...

144

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department ofDepartmentBackup

145

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department

146

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David Frederick

2012-02-01T23:59:59.000Z

147

2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

Mike Lewis

2014-02-01T23:59:59.000Z

148

2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

Mike Lewis

2013-02-01T23:59:59.000Z

149

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

150

Industry and Education Experts Work Together to Establish Alternative Fuel Vehicle (AFV) Technician Training Standards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO]Industry Group Learns About Lights

151

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

152

Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

No Name

2014-10-01T23:59:59.000Z

153

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

154

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

Energy Usage and Conservation Technologies Used in Fruit andThe Impact of Control Technology on the Demand ResponsePrepared By VaCom Technologies La Verne, California July 30,

Scott, Doug

2014-01-01T23:59:59.000Z

155

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite  

E-Print Network [OSTI]

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite materials for aerospace and transportation applications. Polymer composites are inherited lighter than their metallic counterparts resulting in significant weight reduction

Li, Mo

156

State Demand-Side Management Programs Funds are Exploding! How Industries Can Best Use These Programs to Maximize Their Benefits  

E-Print Network [OSTI]

Find out from an Industrial Program Manager that runs a successful state DSM/Energy Efficiency program for the industrial sector how to best find, use and benefit from these types of programs. The amount of money that states are investing in DSM...

Nicol, J.

2008-01-01T23:59:59.000Z

157

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 103. Relative Standard Errors for Table N8.3;"0.

158

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

159

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report  

SciTech Connect (OSTI)

This report encompasses the second year of a proposed three year project with emphasis focused on fundamental research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (1) direct diesel replacement with LNG fuel, and (2) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. The results of this work are expected to enhance utilization of LNG as a transportation fuel. The paper discusses the following topics: (A) Fueling Delivery to the Engine, Engine Considerations, and Emissions: (1) Atomization and/or vaporization of LNG for direct injection diesel-type natural gas engines; (2) Fundamentals of direct replacement of diesel fuel by LNG in simulated combustion; (3) Distribution of nitric oxide and emissions formation from natural gas injection; and (B) Short and long term storage: (1) Modification by partial direct conversion of natural gas composition for improved storage characteristics; (2) LNG vent gas adsorption and recovery using activate carbon and modified adsorbents; (3) LNG storage at moderate conditions.

Sutton, W.H.

1997-06-30T23:59:59.000Z

160

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Fuel Cell Technologies Publication and Product Library (EERE)

Non-Automotive Fuel Cell Industry, Government Policy and Future Opportunities. Fuel cells (FCs)are considered essential future energy technologies by developed and developing economies alike. Several

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Industry  

E-Print Network [OSTI]

both emis- sions from incineration and the demand for fossilyr (Okazaki et al. , 2004). Incineration of wastes (e.g. ,by reducing emissions from incineration and the demand for

Bernstein, Lenny

2008-01-01T23:59:59.000Z

162

Low Emissions Burner Technology for Metal Processing Industry using Byproducts and Biomass Derived Liquid Fuels  

SciTech Connect (OSTI)

This research and development efforts produced low-emission burner technology capable of operating on natural gas as well as crude glycerin and/or fatty acids generated in biodiesel plants. The research was conducted in three stages (1) Concept definition leading to the design and development of a small laboratory scale burner, (2) Scale-up to prototype burner design and development, and (3) Technology demonstration with field vefiication. The burner design relies upon the Flow Blurring (FB) fuel injection based on aerodynamically creating two-phase flow near the injector exit. The fuel tube and discharge orifice both of inside diameter D are separated by gap H. For H < 0.25D, the atomizing air bubbles into liquid fuel to create a two-phase flow near the tip of the fuel tube. Pressurized two-phase fuel-air mixture exits through the discharge orifice, which results in expansion and breakup of air bubbles yielding a spray with fine droplets. First, low-emission combustion of diesel, biodiesel and straight VO (soybean oil) was achieved by utilizing FB injector to yield fine sprays for these fuels with significantly different physical properties. Visual images for these baseline experiments conducted with heat release rate (HRR) of about 8 kW illustrate clean blue flames indicating premixed combustion for all three fuels. Radial profiles of the product gas temperature at the combustor exit overlap each other signifying that the combustion efficiency is independent of the fuel. At the combustor exit, the NOx emissions are within the measurement uncertainties, while CO emissions are slightly higher for straight VO as compared to diesel and biodiesel. Considering the large variations in physical and chemical properties of fuels considered, the small differences observed in CO and NOx emissions show promise for fuel-flexible, clean combustion systems. FB injector has proven to be very effective in atomizing fuels with very different physical properties, and it offers a path forward to utilize both fossil and alternative liquid fuels in the same combustion system. In particular, experiments show that straight VO can be cleanly combusted without the need for chemical processing or preheating steps, which can result in significant economic and environmental benefits. Next, low-emission combustion of glycerol/methane was achieved by utilizing FB injector to yield fine droplets of highly viscous glycerol. Heat released from methane combustion further improves glycerol pre-vaporization and thus its clean combustion. Methane addition results in an intensified reaction zone with locally high temperatures near the injector exit. Reduction in methane flow rate elongates the reaction zone, which leads to higher CO emissions and lower NOx emissions. Similarly, higher air to liquid (ALR) mass ratio improves atomization and fuel pre-vaporization and shifts the flame closer to the injector exit. In spite of these internal variations, all fuel mixes of glycerol with methane produced similar CO and NOx emissions at the combustor exit. Results show that FB concept provides low emissions with the flexibility to utilize gaseous and highly viscous liquid fuels, straight VO and glycerol, without preheating or preprocessing the fuels. Following these initial experiments in quartz combustor, we demonstrated that glycerol combustion can be stably sustained in a metal combustor. Phase Doppler Particle Analyzer (PDPA) measurements in glycerol/methane flames resulted in flow-weighted Sauter Mean Diameter (SMD) of 35 to 40 ?m, depending upon the methane percentage. This study verified that lab-scale dual-fuel burner using FB injector can successfully atomize and combust glycerol and presumably other highly viscous liquid fuels at relatively low HRR (<10 kW). For industrial applications, a scaled-up glycerol burner design thus seemed feasible.

Agrawal, Ajay; Taylor, Robert

2013-09-30T23:59:59.000Z

163

Climate policy implications for agricultural water demand  

SciTech Connect (OSTI)

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

2013-03-28T23:59:59.000Z

164

Advanced coal-fueled industrial cogeneration gas turbine system. Annual report, June 1991--June 1992  

SciTech Connect (OSTI)

This report covers the activity during the period from 2 June 1991 to 1 June 1992. The major areas of work include: the combustor sub-scale and full size testing, cleanup, coal fuel specification and processing, the Hot End Simulation rig and design of the engine parts required for use with the coal-fueled combustor island. To date Solar has demonstrated: Stable and efficient combustion burning coal-water mixtures using the Two Stage Slagging Combustor; Molten slag removal of over 97% using the slagging primary and the particulate removal impact separator; and on-site preparation of CWM is feasible. During the past year the following tasks were completed: The feasibility of on-site CWM preparation was demonstrated on the subscale TSSC. A water-cooled impactor was evaluated on the subscale TSSC; three tests were completed on the full size TSSC, the last one incorporating the PRIS; a total of 27 hours of operation on CWM at design temperature were accumulated using candle filters supplied by Refraction through Industrial Pump & Filter; a target fuel specification was established and a fuel cost model developed which can identify sensitivities of specification parameters; analyses of the effects of slag on refractory materials were conducted; and modifications continued on the Hot End Simulation Rig to allow extended test times.

LeCren, R.T.; Cowell, L.H.; Galica, M.A.; Stephenson, M.D.; When, C.S.

1992-06-01T23:59:59.000Z

165

Report Title: The Fossil Fuel Industry in New Mexico: A Comprehensive Impact Analysis Type of Report: Technical Report  

E-Print Network [OSTI]

Fuels 33 Summary Impacts 40 Works Cited 45 #12;3 List of Tables Table Title Page 1 Tax and Income Data0 Report Title: The Fossil Fuel Industry in New Mexico: A Comprehensive Impact Analysis Type AWARD Number: DE-NT0004397 Name and Address of Submitting Organization: Arrowhead Center New Mexico

Johnson, Eric E.

166

Industry  

E-Print Network [OSTI]

SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

Bernstein, Lenny

2008-01-01T23:59:59.000Z

167

As the world economy continues to expand the demand for petroleum based fuel increases and the price of these fuels rises  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2Argonne National4ArtificialAs summer

168

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

Not Available

2008-12-01T23:59:59.000Z

169

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

170

Industry  

E-Print Network [OSTI]

energy efficiency, fuel mix, carbon intensity of the fuelmix, and electricity carbon intensity. Energy Efficiency.mix, energy and carbon intensities of fuel and electricity,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

171

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

172

An Analysis of the Effects of Government Subsidies and the Renewable Fuels Standard on the Fuel Ethanol Industry: A  

E-Print Network [OSTI]

Ethanol Industry: A Structural Econometric Model By Fujin Yi, C.-Y. Cynthia Lin, Karen Thome This paper ethanol industry. Analyses that ignore the dynamic implications of these policies, including their effects on incumbent ethanol firms' investment, production, and exit decisions and on potential entrants' entry

Lin, C.-Y. Cynthia

173

Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors  

SciTech Connect (OSTI)

As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy security through more effective utilization of our country’s resources while simultaneously providing economic stability and growth (through predictable energy prices and high value jobs), in an environmentally sustainable and secure manner (through lower land and water use, and decreased byproduct emissions). The reduction in imported oil will also increase the retention of wealth within the U.S. economy while still supporting economic growth. Nuclear energy is the only non-fossil fuel that has been demonstrated to reliably supply energy for a growing industrial economy.

David Petti; J. Stephen Herring

2010-03-01T23:59:59.000Z

174

Industry  

E-Print Network [OSTI]

of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

Bernstein, Lenny

2008-01-01T23:59:59.000Z

175

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningto FuelIndependentProcedures29,503default

176

Response to several FOIA requests - Renewable Energy. Demand...  

Office of Environmental Management (EM)

Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA requests - Renewable Energy. Demand for Fossil Fuels Response to several FOIA...

177

U.S. electric utility demand-side management 1995  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

178

Working towards a future on alternative fuels : the role of the automotive industry  

E-Print Network [OSTI]

Complementarity of vehicles and fuels has posed significant barrier for increasing the use of alternative fuels in place of traditional ones. An initial positive number of either alternative fuel vehicle (AFV) users or ...

Chen, Cuicui

2012-01-01T23:59:59.000Z

179

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Circle of Measuring Automobile Fuel Use, Energy Policy 21. (M. , Dolan, K. , 1993b, Fuel Prices and Economy: Factors1994. New Car Test and Actual Fuel Economy: Yet Another Gap?

Schipper, Lee

2008-01-01T23:59:59.000Z

180

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

K. , 1993b, Fuel Prices and Economy: Factors Effecting LandCar Test and Actual Fuel Economy: Yet Another Gap? Transportof automobile fuel economy in Europe. Energy Policy 34 14.

Schipper, Lee

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

182

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

SciTech Connect (OSTI)

The purpose of this Steam Techcial Brief is to introduce heat-pump technology and its applicaiton in industrial processes.

Not Available

2003-06-01T23:59:59.000Z

183

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Circle of Measuring Automobile Fuel Use, Energy Policy 21. (1995. Determinants of Automobile Energy Use and Energythe baseline evolution of automobile fuel economy in Europe.

Schipper, Lee

2008-01-01T23:59:59.000Z

184

Industry  

E-Print Network [OSTI]

2003: The history of waste energy recovery in Germany sinceincreasing recovery of waste energy and process gases, andgeneration or non-energy uses, waste-derived fuels,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

185

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Name

186

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348ASSEMBLY [ICO] Nameindustrial Sign In About |

187

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David Frederick

2012-02-01T23:59:59.000Z

188

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike Lewis

2014-02-01T23:59:59.000Z

189

Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

David B. Frederick

2011-02-01T23:59:59.000Z

190

Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012  

SciTech Connect (OSTI)

This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike lewis

2013-02-01T23:59:59.000Z

191

Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014BiogasBoilerplate Settlement|Federal

192

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.EngineReport on

193

Industrial Heat Pumps for Steam and Fuel Savings: A BestPractices Steam Technical Brief  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College Provides TrainingEnergy

194

Coal-Based Oxy-Fuel System Evaluation and Combustor Development; Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications  

SciTech Connect (OSTI)

Clean Energy Systems, Inc. (CES) partnered with the U.S. Department of Energy’s National Energy Technology Laboratory in 2005 to study and develop a competing technology for use in future fossil-fueled power generation facilities that could operate with near zero emissions. CES’s background in oxy-fuel (O-F) rocket technology lead to the award of Cooperative Agreement DE-FC26-05NT42645, “Coal-Based Oxy-Fuel System Evaluation and Combustor Development,” where CES was to first evaluate the potential of these O-F power cycles, then develop the detailed design of a commercial-scale O-F combustor for use in these clean burning fossil-fueled plants. Throughout the studies, CES found that in order to operate at competitive cycle efficiencies a high-temperature intermediate pressure turbine was required. This led to an extension of the Agreement for, “Oxy-Fuel Turbomachinery Development for Energy Intensive Industrial Applications” where CES was to also develop an intermediate-pressure O-F turbine (OFT) that could be deployed in O-F industrial plants that capture and sequester >99% of produced CO2, at competitive cycle efficiencies using diverse fuels. The following report details CES’ activities from October 2005 through March 2013, to evaluate O-F power cycles, develop and validate detailed designs of O-F combustors (main and reheat), and to design, manufacture, and test a commercial-scale OFT, under the three-phase Cooperative Agreement.

Hollis, Rebecca

2013-03-31T23:59:59.000Z

195

Industry  

E-Print Network [OSTI]

and fuel used in the primary smelter. PFC emission includedto current state-of-the art smelter electricity use and 50%commonly been connected to smelter retrofit, conversion, or

Bernstein, Lenny

2008-01-01T23:59:59.000Z

196

Performance of an industrial type combustor burning simulated fuels of medium BTU content  

E-Print Network [OSTI]

studied fuels were those produced by coal gasification (1, 2, 3, 4, 5). Other widely studied fuels include petroleum distillates, alcohol type fuel, fuel made from tar sands, fuel made from oil shale (1), petro- chemical process plants "off-gases" (2...). Harmful emissions can be reduced by using steam injection (8, 2, 9). Also the amount of equipment needed to produce and refine fuels, such as coal gas, is large; whereas, in the case of steam, the amount of' equipment needed is relatively small. Also...

Goehring, Howard Lee

1983-01-01T23:59:59.000Z

197

Unlocking the Potential of Additive Manufacturing in the Fuel Cells Industry  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New12.'6/0.2 ...... 13:27 FAX 301O R EAutomotiveSolarFUEL

198

The Fuel Cell Industrial Vehicle Jobs Act (H.R. 1659)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy Department Feeds FamiliesDepartment ofTheMODEL

199

Job Creation Analysis in the Hydrogen and Fuel Cell Industry | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIanJennifer Somers About Us Jennifer Somers - TrainingJimJimof

200

The Fuel Cell Industrial Vehicle Jobs Act (H.R. 1659) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Energy TechnicalFlowNationThe Facts on GasThe FirstThe

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energyof the AmericasDOE-STD-3020-2005CodeErnestMacondo(September 2014) |of

202

ITP Industrial Distributed Energy: Combined Heat and Power Market Potential for Opportunity Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | The U.S. Power

203

Oak Ridge National Laboratory (ORNL): Industrial Collaborations with the Fuel Cell Technologies Program: Accelerating Widespread Commercialization  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC Order No. EA-178-A1ORAUSiteDepartmentFCTO T2M Event at

204

assessing workforce demand: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand...

205

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect (OSTI)

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

206

What China Can Learn from International Experiences in Developing a Demand Response Program  

E-Print Network [OSTI]

K.C. Mares, D. Shroyer. , 2010. Demand Response andOpen Automated Demand Response Opportunities for DataProcessing Industry Demand Response Participation: A Scoping

Shen, Bo

2013-01-01T23:59:59.000Z

207

Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Open Automated Demand Response Demonstration Project” LBNL-2009a). “Open Automated Demand Response Communications inand Actions for Industrial Demand Response in California. ”

Kiliccote, Sila

2010-01-01T23:59:59.000Z

208

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Before Senate Committee...

209

Industrial Heat Pumps for Steam and Fuel Savings | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofTheDepartment of2012PathwaysJobs | DepartmentThis

210

Air Force Achieves Fuel Efficiency through Industry Best Practices (Brochure), Federal Energy Management Program (FEMP)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval of Federally Fundedhighest

211

EIA Energy Efficiency-Table 1b. Fuel Consumption for Selected Industries,  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623Primary

212

Demand Dispatch-Intelligent  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemand

213

Development of a Low NOx Medium sized Industrial Gas Turbine Operating on Hydrogen-Rich Renewable and Opportunity Fuels  

SciTech Connect (OSTI)

This report presents the accomplishments at the completion of the DOE sponsored project (Contract # DE-FC26-09NT05873) undertaken by Solar Turbines Incorporated. The objective of this 54-month project was to develop a low NOx combustion system for a medium sized industrial gas turbine engine operating on Hydrogen-rich renewable and opportunity Fuels. The work in this project was focused on development of a combustion system sized for 15MW Titan 130 gas turbine engine based on design analysis and rig test results. Although detailed engine evaluation of the complete system is required prior to commercial application, those tasks were beyond the scope of this DOE sponsored project. The project tasks were organized in three stages, Stages 2 through 4. In Stage 2 of this project, Solar Turbines Incorporated characterized the low emission capability of current Titan 130 SoLoNOx fuel injector while operating on a matrix of fuel blends with varying Hydrogen concentration. The mapping in this phase was performed on a fuel injector designed for natural gas operation. Favorable test results were obtained in this phase on emissions and operability. However, the resulting fuel supply pressure needed to operate the engine with the lower Wobbe Index opportunity fuels would require additional gas compression, resulting in parasitic load and reduced thermal efficiency. In Stage 3, Solar characterized the pressure loss in the fuel injector and developed modifications to the fuel injection system through detailed network analysis. In this modification, only the fuel delivery flowpath was modified and the air-side of the injector and the premixing passages were not altered. The modified injector was fabricated and tested and verified to produce similar operability and emissions as the Stage 2 results. In parallel, Solar also fabricated a dual fuel capable injector with the same air-side flowpath to improve commercialization potential. This injector was also test verified to produce 15-ppm NOx capability on high Hydrogen fuels. In Stage 4, Solar fabricated a complete set of injectors and a combustor liner to test the system capability in a full-scale atmospheric rig. Extensive high-pressure single injector rig test results show that 15-ppm NOx guarantee is achievable from 50% to 100% Load with fuel blends containing up to 65% Hydrogen. Because of safety limitations in Solar Test Facility, the atmospheric rig tests were limited to methane-based fuel blends. Further work to validate the durability and installed engine capability would require long-term engine field test.

Srinivasan, Ram

2013-07-31T23:59:59.000Z

214

Climate policy and the airline industry : emissions trading and renewable jet fuel  

E-Print Network [OSTI]

In this thesis, I assess the impact of the current EU Emissions Trading Scheme and a hypothetical renewable jet fuel mandate on US airlines. I find that both the EU Scheme up until 2020 and a renewable jet fuel mandate of ...

McConnachie, D. (Dominic Alistair)

2012-01-01T23:59:59.000Z

215

Operational and environmental benefits of oxy-fuel combustion in the steel industry  

SciTech Connect (OSTI)

Due to the high flame temperature of conventional oxygen-fuel burners, these burners have typically not been used in reheat furnaces where temperature uniformity is critical. Praxair has developed a number of burners and associated control systems that have been successfully operated in a variety of reheat furnaces beginning in 1980. The burners have also recently been used for ladle preheating. All burners have been operated with 100% oxygen. The patented burners have designs that result in flame temperatures equivalent to conventional air-fuel burners. Flexible flame patterns are possible, resulting in uniform temperature distribution. In addition, the low flame temperature combined with minimal nitrogen in the furnace results in very low NO{sub x} emissions. The design of the control systems insure safe and reliable operation. In the following sections, oxygen-fuel combustion will be described, with a discussion of fuel savings and other benefits. Unique designs will be discussed along with the features which make them applicable to reheat applications and which result in lower emissions. Other equipment provided with the burners to complete the oxy-fuel combustion system will be described briefly. There will also be a short discussion of how both the fuel and oxygen price can affect the economics of fuel saving. Results from the commercial retrofit installations in continuous and batch reheat furnaces, soaking pits and ladle preheaters will be described. Finally, NO{sub x} emissions data will be discussed.

Farrell, L.M. [Praxair, Inc., Tarrytown, NY (United States); Pavlack, T.T. [Praxair, Inc., East Chicago, IN (United States); Rich, L. [North American Manufacturing Co., Coraopolis, PA (United States)

1995-03-01T23:59:59.000Z

216

Operational and environmental benefits of oxy-fuel combustion in the steel industry  

SciTech Connect (OSTI)

A number of patented, field-tested 100% oxy-fuel burner systems have been developed which provide fuel savings, reduced emissions (CO[sub 2] and NO[sub x]) and improved operational performances. These systems can be applied to high-temperature continuous and batch reheat furnaces, soaking pits and ladle preheaters. Fuel consumption and carbon dioxide and NO[sub x] emissions can be reduced by 40 to 60%. Burner design (including nonwater cooled models), commercial experience, measured and projected emissions reductions, and additional operating benefits associated with new and retrofitted applications are described.

Farrell, L.M. (Praxair, Inc., Tarrytown, NY (United States)); Pavlack, T.T. (Praxair, Inc., East Chicago, IN (United States). Linde Division); Rich, L. (North American Mfg. Co., Coraopolis, PA (United States))

1993-07-01T23:59:59.000Z

217

Maximum-Demand Rectangular Location Problem  

E-Print Network [OSTI]

Oct 1, 2014 ... Demand and service can be defined in the most general sense. ... Industrial and Systems Engineering, Texas A&M University, September 2014.

Manish Bansal

2014-10-01T23:59:59.000Z

218

Optimization of Demand Response Through Peak Shaving  

E-Print Network [OSTI]

Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

2013-06-19T23:59:59.000Z

219

Demand-Side Management and Energy Efficiency Revisited  

E-Print Network [OSTI]

EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

2007-01-01T23:59:59.000Z

220

Demand Control Utilizing Energy Management Systems - Report of Field Tests  

E-Print Network [OSTI]

Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

Russell, B. D.; Heller, R. P.; Perry, L. W.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Capitalize on Existing Assets with Demand Response  

E-Print Network [OSTI]

Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

Collins, J.

2008-01-01T23:59:59.000Z

222

The Universal Canister Strategy in Spent Fuel Reprocessing: UC-C a Real Industrial Improvement  

SciTech Connect (OSTI)

In commercial nuclear activities, spent fuel back end management is a key issue for nuclear countries as spent fuel represent most of national civil nuclear waste legacy. Ensuring public safety and protection of the environment, now and in the future has been and still remains a major commitment, it is still the subject of thorough development efforts and active public debates. Considerable benefits can be obtained from the Universal Canister strategy as implemented in France in spent fuel treatment and waste conditioning based on reprocessing. COGEMA developed sophisticated waste conditioning processes to simplify High Level and Long Lived Intermediate Level Waste storage and final disposal. Main benefits are: waste stabilization by immobilization and encapsulation; ultimate waste toxicity reduction; drastic ultimate waste volume reduction; and ultimate waste packages standardization.

Thomasson, J.; Barithel, S.; Cocaud, A.; Derycke, P.; Pierre, P.

2003-02-25T23:59:59.000Z

223

Status and Prospects of the Global Automotive Fuel Cell Industry and Plans for Deployment of Fuel Cell Vehicles and Hydrogen Refueling Infrastructure  

SciTech Connect (OSTI)

Automobile manufacturers leading the development of mass-market fuel cell vehicles (FCVs) were interviewed in Japan, Korea, Germany and the United States. There is general agreement that the performance of FCVs with respect to durability, cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015 will satisfy customer expectations. However, cost and the lack of refueling infrastructure remain significant barriers. Costs have been dramatically reduced over the past decade, yet are still about twice what appears to be needed for sustainable market success. While all four countries have plans for the early deployment of hydrogen refueling infrastructure, the roles of government, industry and the public in creating a viable hydrogen refueling infrastructure remain unresolved. The existence of an adequate refueling infrastructure and supporting government policies are likely to be the critical factors that determine when and where hydrogen FCVs are brought to market.

Greene, David L [ORNL; Duleep, Gopal [HD Systems

2013-06-01T23:59:59.000Z

224

An Operational Model for Optimal NonDispatchable Demand Response  

E-Print Network [OSTI]

FACTS, $ Demand Response Energy Storage HVDC Industrial Customer PEV Renewable Energy Source: U.S.-Canada Power

Grossmann, Ignacio E.

225

Demand Response  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of Energy | December 2012 Table of Contents

226

Demand for gasoline is more price-inelastic than commonly thought  

E-Print Network [OSTI]

demand and distillate fuel oil demand. ” Energy Economics 7(demand and consumer price expectations: An empirical investigation of the consequences from the recent oil

Havranek, Tomas; Irsova, Zuzana; Janda, Karel

2011-01-01T23:59:59.000Z

227

Demand Response | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone Modeling |Demand Response Demand

228

Demand Response and Ancillary Services September 2008  

E-Print Network [OSTI]

Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

229

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

230

Transportation Demand  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Annual VMT per vehicle by fleet type stays constant over the forecast period based on the Oak Ridge National Laboratory fleet data. Fleet fuel economy for both conventional and...

231

Compliance problems of small utility systems with the Powerplant and Industrial Fuel Use Act of 1978: volume II - appendices  

SciTech Connect (OSTI)

A study of the problems of compliance with the Powerplant and Industrial Fuel Use Act of 1978 experienced by electric utility systems which have a total generating capacity of less than 2000 MW is presented. This volume presents the following appendices: (A) case studies (Farmington, New Mexico; Lamar, Colorado; Dover, Delaware; Wolverine Electric Cooperative, Michigan; Central Telephone and Utilities, Kansas; Sierra Pacific Power Company, Nevada; Vero Beach, Florida; Lubbock, Texas; Western Farmers Cooperative, Oklahoma; and West Texas Utilities Company, Texas); (B) contacts and responses to study; (C) joint action legislation chart; (D) Texas Municipal Power Agency case study; (E) existing generating units jointly owned with small utilities; (F) future generating units jointly owned with small utilities; (G) Federal Register Notice of April 17, 1980, and letter of inquiry to utilities; (H) small utility responses; and (I) Section 744, PIFUA. (WHK)

None

1981-01-01T23:59:59.000Z

232

Geographically Based Hydrogen Demand and Infrastructure Analysis...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

233

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

234

2009 Fuel Cell Market Report, November 2010  

SciTech Connect (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

235

Transportation Energy: Supply, Demand and the Future  

E-Print Network [OSTI]

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

Saldin, Dilano

236

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

237

Supply and Demand of Helium-3| U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply and Demand of Helium-3 Nuclear

238

Assessing the Control Systems Capacity for Demand Response in  

E-Print Network [OSTI]

LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand Response Research Center and funded by the California Energy of the Demand Response Research Center Industrial Controls Experts Working Group: · Jim Filanc, Southern

239

Opportunities for Energy Efficiency and Demand Response in the California  

E-Print Network [OSTI]

LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

240

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

49 Table 13. Vehicle and fuel efficiency and electricity14. Timing profiles and vehicle and fuel pathways includedand generation, Table 18. Vehicle demand and system load

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternatives to traditional transportation fuels: An overview  

SciTech Connect (OSTI)

This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

Not Available

1994-06-01T23:59:59.000Z

242

Fuel Interchangeability Considerations for Gas Turbine Combustion  

SciTech Connect (OSTI)

In recent years domestic natural gas has experienced a considerable growth in demand particularly in the power generation industry. However, the desire for energy security, lower fuel costs and a reduction in carbon emissions has produced an increase in demand for alternative fuel sources. Current strategies for reducing the environmental impact of natural gas combustion in gas turbine engines used for power generation experience such hurdles as flashback, lean blow-off and combustion dynamics. These issues will continue as turbines are presented with coal syngas, gasified coal, biomass, LNG and high hydrogen content fuels. As it may be impractical to physically test a given turbine on all of the possible fuel blends it may experience over its life cycle, the need to predict fuel interchangeability becomes imperative. This study considers a number of historical parameters typically used to determine fuel interchangeability. Also addressed is the need for improved reaction mechanisms capable of accurately modeling the combustion of natural gas alternatives.

Ferguson, D.H.

2007-10-01T23:59:59.000Z

243

Partial Oxidation Gas Turbine for Power and Hydrogen Co-Production from Coal-Derived Fuel in Industrial Applications  

SciTech Connect (OSTI)

The report presents a feasibility study of a new type of gas turbine. A partial oxidation gas turbine (POGT) shows potential for really high efficiency power generation and ultra low emissions. There are two main features that distinguish a POGT from a conventional gas turbine. These are associated with the design arrangement and the thermodynamic processes used in operation. A primary design difference of the POGT is utilization of a non?catalytic partial oxidation reactor (POR) in place of a conventional combustor. Another important distinction is that a much smaller compressor is required, one that typically supplies less than half of the air flow required in a conventional gas turbine. From an operational and thermodynamic point of view a key distinguishing feature is that the working fluid, fuel gas provided by the OR, has a much higher specific heat than lean combustion products and more energy per unit mass of fluid can be extracted by the POGT expander than in the conventional systems. The POGT exhaust stream contains unreacted fuel that can be combusted in different bottoming ycle or used as syngas for hydrogen or other chemicals production. POGT studies include feasibility design for conversion a conventional turbine to POGT duty, and system analyses of POGT based units for production of power solely, and combined production of power and yngas/hydrogen for different applications. Retrofit design study was completed for three engines, SGT 800, SGT 400, and SGT 100, and includes: replacing the combustor with the POR, compressor downsizing for about 50% design flow rate, generator replacement with 60 90% ower output increase, and overall unit integration, and extensive testing. POGT performances for four turbines with power output up to 350 MW in POGT mode were calculated. With a POGT as the topping cycle for power generation systems, the power output from the POGT ould be increased up to 90% compared to conventional engine keeping hot section temperatures, pressures, and volumetric flows practically identical. In POGT mode, the turbine specific power (turbine net power per lb mass flow from expander exhaust) is twice the value of the onventional turbine. POGT based IGCC plant conceptual design was developed and major components have been identified. Fuel flexible fluid bed gasifier, and novel POGT unit are the key components of the 100 MW IGCC plant for co producing electricity, hydrogen and/or yngas. Plant performances were calculated for bituminous coal and oxygen blown versions. Various POGT based, natural gas fueled systems for production of electricity only, coproduction of electricity and hydrogen, and co production of electricity and syngas for gas to liquid and hemical processes were developed and evaluated. Performance calculations for several versions of these systems were conducted. 64.6 % LHV efficiency for fuel to electricity in combined cycle was achieved. Such a high efficiency arise from using of syngas from POGT exhaust s a fuel that can provide required temperature level for superheated steam generation in HRSG, as well as combustion air preheating. Studies of POGT materials and combustion instabilities in POR were conducted and results reported. Preliminary market assessment was performed, and recommendations for POGT systems applications in oil industry were defined. POGT technology is ready to proceed to the engineering prototype stage, which is recommended.

Joseph Rabovitser

2009-06-30T23:59:59.000Z

244

Climate Mitigation Policy Implications for Global Irrigation Water Demand  

SciTech Connect (OSTI)

Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

2013-08-22T23:59:59.000Z

245

Demographics and industry returns  

E-Print Network [OSTI]

Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

Pollet, Joshua A.; DellaVigna, Stefano

2007-01-01T23:59:59.000Z

246

Industry Analysis February 2013  

E-Print Network [OSTI]

technology ­ Clean tech/ clean technology #12;7 Industry Studies · IbisWorld ­ U.S. and global industry-Industries · Biodiesel ­ Biofuel ­ Alternate fuels ­ Green fuels ­ Renewable fuels/energy ­ Green energy ­ Green Canada, Census, Industry Canada, the OECD, European Union, IMF, World Bank, UN . . . Never pay for stats

Abolmaesumi, Purang

247

The impact of changes in electric transmission regulation on coal demand  

SciTech Connect (OSTI)

The likely impact of changes in regulation of electric transmission and the environmental impacts associated with those changes on the demand for coal by the electric utility industry are discussed. Since the electric utility industry is currently the largest user of coal (in 1992, 87% of coal consumed in the United States was used to generate electricity by electric utilities) any systematic change in the electric utility industry could ripple through the coal industry. What deregulation or changes in regulations in the electric industry is occurring or has occurred at the federal level and the expected impact on the demand for coal are discussed. From the point of view of the electric industry, at least, the primary variable driving demand for coal up or down is its price relative to alternate fuels, particularly natural gas. This is no surprise. Regardless of how the regulators increase or alter their scrutiny of the industry, fundamental economics will prevail. Indeed, with the changes in regulation moving toward more free and open competition, those forces will move even more to the forefront.

Finn, E.J.

1996-12-31T23:59:59.000Z

248

Understanding Industrial Energy Use through Sliding Regression Analysis Carl W. Eger III, City of Cleveland  

E-Print Network [OSTI]

% of the world's energy consumption (Boyle 2004). The use of fossil fuels is the primary contributor to global Due to rising energy costs and global climate change, many industries seek to improve their energy of a global marketplace has increased the demand for non-renewable fossil fuels and energy costs have

Kissock, Kelly

249

Quantifying the Variable Effects of Systems with Demand Response Resources  

E-Print Network [OSTI]

Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

Gross, George

250

Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings; Industrial Technologies Program (ITP) Save Energy Now (SEN) Case Study  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011Department of

251

Demand for NGL as olefin plant feedstock  

SciTech Connect (OSTI)

Olefin plant demand for natural gas liquids as feedstock constitutes a key market for the NGL industry. Feedstock flexibility and the price sensitive nature of petrochemical demand are described. Future trends are presented. The formation and objectives of the Petrochemical Feedstock Association of the Americas are discussed.

Dodds, A.R. [Quantum Chemical Corp., Houston, TX (United States)

1997-12-31T23:59:59.000Z

252

Weakened regulation and fuel choice  

SciTech Connect (OSTI)

The restructuring of the electric power industry will fundamentally affect every aspect of its relationship with the natural gas industry. The electric power industry is being restructered far more rapidly than most stategists expected even a year ago; competition at all levels of the electric power industry is here. Uncertainty itself is stifling strategic planning; long-term commitments are becoming extremely risky and therefore unattractive in the face of uncertainty concerning the electric utility industry`s future. For many electric power industry participants, the prospect of industry restructuring is frightening, because it is driven by irresistible forces that they can barely influence; for natural gas industry players, it is frightening because it means pervasive change in the industry`s best hope for growth. While working their way through the upheavals produced by restructuring, electric utilities and non-utility generators alike will be timid and tenative when it comes to making substantial new commitments to gas, particularly for new base- and intermediate load capacity. Competition is likely to force efficiencies that suppress overall demand for new generating capacity in many regions for quite some time, and change the nature of the challenges the gas industry must face in competing for market share with other power generation fuels. Concepts like {open_quotes}long term{close_quotes}, {open_quotes}fixed price{close_quotes} and {open_quotes}assured cost recovery{close_quotes} will become quaint memories, and once the dust has settled, gas will have its share of opportunities to fuel power generation resources, but will have to share far more of the risk facing power generators than it has thus far.

Bowe, J.F. Jr. [Dewey Ballantine, Washington, DC (United States)

1995-12-31T23:59:59.000Z

253

Industrial Plant Objectives and Cogeneration System Development  

E-Print Network [OSTI]

HEAT 15% 48% BOILER CONOENSER ASSOC. LOSSES LOSSES FIG. 2 - FUEL UTILIZATION EFFECTIVENESS The three types of topping cogeneration cycles usually encountered in industrial practice are steam turbine, gas turbine, and combined cycles... more power than that avail able due to plant he t demands may provide an economically viable option. Gas Turbine and Combined Cycles Gas turbine cycles provide the opportunity to generate a larger power output per unit of heat 39~ required...

Kovacik, J. M.

1983-01-01T23:59:59.000Z

254

Check Burner Air to Fuel Ratios; Industrial Technologies Program (ITP) Process Heating Tip Sheet #2 (Fact Sheet)  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Day withCharacterizationDiesel LosDepartment

255

Bootstrapping a Sustainable North American PEM Fuel Cell Industry: Could a Federal Acquisition Program Make a Difference?  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011Department ofBoltonEmissions

256

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

SciTech Connect (OSTI)

Fuel cells (FCs) are considered essential future energy technologies by developed and developing economies alike. Several countries, including the United States, Japan, Germany, and South Korea have established publicly funded R&D and market transformation programs to develop viable domestic FC industries for both automotive and non-automotive applications. Important non-automotive applications include large scale and small scale distributed combined heat and electrical power, backup and uninterruptible power, material handling and auxiliary power units. The U.S. FC industry is in the early stages of development, and is working to establish sustainable markets in all these areas. To be successful, manufacturers must reduce costs, improve performance, and overcome market barriers to new technologies. U.S. policies are assisting via research and development, tax credits and government-only and government-assisted procurements. Over the past three years, the industry has made remarkable progress, bringing both stack and system costs down by more than a factor of two while improving durability and efficiency, thanks in part to government support. Today, FCs are still not yet able to compete in these markets without continued policy support. However, continuation or enhancement of current policies, such as the investment tax credit and government procurements, together with continued progress by the industry, appears likely to establish a viable domestic industry within the next decade.

Greene, David L [ORNL; Duleep, K. G. [ICF International; Upreti, Girish [ORNL

2011-06-01T23:59:59.000Z

257

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

258

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

259

Advanced Demand Responsive Lighting  

E-Print Network [OSTI]

Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

260

Optimization of Demand Response Through Peak Shaving , D. Craigie  

E-Print Network [OSTI]

Optimization of Demand Response Through Peak Shaving G. Zakeri , D. Craigie , A. Philpott , M. Todd for the demand response of such a consumer. We will establish a monotonicity result that indicates fuel supply

Todd, Michael J.

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

262

E-Print Network 3.0 - automated demand response Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

75 Optimization and Control for Demand Management in Smart Grid Summary: Batteries, fuel cells, hydrogen, thermal storage, etc. UTILITIES Demand response, dynamic pricing,...

263

Winters fuels report  

SciTech Connect (OSTI)

The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

NONE

1995-10-27T23:59:59.000Z

264

Liquid natural gas as a transportation fuel in the heavy trucking industry. Final technical report, May 10, 1994--December 30, 1995  

SciTech Connect (OSTI)

This report encompasses the first year of a proposed three year project with emphasis focused on LNG research issues in Use of Liquid Natural Gas as a Transportation Fuel in the Heavy Trucking Industry. These issues may be categorized as (i) direct diesel replacement with LNG fuel, and (ii) long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. Since this work was for fundamental research in a number of related areas to the use of LNG as a transportation fuel for long haul trucking, many of those results have appeared in numerous refereed journal and conference papers, and significant graduate training experiences (including at least one M.S. thesis and one Ph.D. dissertation) in the first year of this project. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-12-31T23:59:59.000Z

265

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

266

ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY  

E-Print Network [OSTI]

each type of fuel. Gas and Oil Demand The California energyin the first scenario. Oil Demand and Supply For the firstfrom the CEReDe staff. Oil demand and supply forecasts for

Authors, Various

2010-01-01T23:59:59.000Z

267

Modeling the semiconductor industry dynamics  

E-Print Network [OSTI]

The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

Wu, Kailiang

2008-01-01T23:59:59.000Z

268

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

Shen, Bo

2013-01-01T23:59:59.000Z

269

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the Complex andIndustrial

270

Industry Economists  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickrinformation for planningtoA Journey Inside the ComplexIndustry

271

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area.Portaldefault Sign In AboutIn theIndustry @ ALS

272

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

Factors behind declining demand for oil include a shift fromfuel. In the industrial sector, oil demand will decrease dueto a falling demand for oil for chemical materials. In the

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

273

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

274

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

275

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

276

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy-2 Demand Forecast Disaggregation......................................................1-4 Statewide

277

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

278

DemandDirect | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,DeltaDemand

279

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network [OSTI]

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

280

Unconventional fuel: Tire derived fuel  

SciTech Connect (OSTI)

Material recovery of scrap tires for their fuel value has moved from a pioneering concept in the early 1980`s to a proven and continuous use in the United States` pulp and paper, utility, industrial, and cement industry. Pulp and paper`s use of tire derived fuel (TDF) is currently consuming tires at the rate of 35 million passenger tire equivalents (PTEs) per year. Twenty mills are known to be burning TDF on a continuous basis. The utility industry is currently consuming tires at the rate of 48 million PTEs per year. Thirteen utilities are known to be burning TDF on a continuous basis. The cement industry is currently consuming tires at the rate of 28 million PTEs per year. Twenty two cement plants are known to be burning TDF on a continuous basis. Other industrial boilers are currently consuming tires at the rate of 6.5 million PTEs per year. Four industrial boilers are known to be burning TDF on a continuous basis. In total, 59 facilities are currently burning over 117 million PTEs per year. Although 93% of these facilities were not engineered to burn TDF, it has become clear that TDF has found acceptance as a supplemental fuel when blending with conventional fuels in existing combustion devices designed for normal operating conditions. The issues of TDF as a supplemental fuel and its proper specifications are critical to the successful development of this fuel alternative. This paper will focus primarily on TDF`s use in a boiler type unit.

Hope, M.W. [Waste Recovery, Inc., Portland, OR (United States)

1995-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Senior Center Network Redesign Under Demand Uncertainty  

E-Print Network [OSTI]

Senior Center Network Redesign Under Demand Uncertainty Osman Y. ¨Ozaltin Department of Industrial of Massachusetts Boston, Boston, MA 02125-3393, USA, michael.johnson@umb.edu Andrew J. Schaefer Department. In response, we propose a two-echelon network of senior centers. We for- mulate a two-stage stochastic

Schaefer, Andrew

282

Uranium 2014 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

283

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

284

Demand models for U.S. domestic air passenger markets  

E-Print Network [OSTI]

The airline industry in recent years has suffered from the adverse effects of top level planning decisions based upon inaccurate demand forecasts. The air carriers have recognized the immediate need to develop their ...

Eriksen, Steven Edward

1978-01-01T23:59:59.000Z

285

U.S. electric utility demand-side management 1993  

SciTech Connect (OSTI)

This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

NONE

1995-07-01T23:59:59.000Z

286

Nuclear Industry Input to the Development of Concepts for the Consolidated Storage of Used Nuclear Fuel - 13411  

SciTech Connect (OSTI)

EnergySolutions and its team partners, NAC International, Exelon Nuclear Partners, Talisman International, TerranearPMC, Booz Allen Hamilton and Sargent and Lundy, have carried out a study to develop concepts for a Consolidated Storage Facility (CSF) for the USA's stocks of commercial Used Nuclear Fuel (UNF), and the packaging and transport provisions required to move the UNF to the CSF. The UNF is currently stored at all 65 operating nuclear reactor sites in the US, and at 10 shutdown sites. The study was funded by the US Department of Energy and followed the recommendations of the Blue Ribbon Commission on America's Nuclear Future (BRC), one of which was that the US should make prompt efforts to develop one or more consolidated storage facilities for commercial UNF. The study showed that viable schemes can be devised to move all UNF and store it at a CSF, but that a range of schemes is required to accommodate the present widely varying UNF storage arrangements. Although most UNF that is currently stored at operating reactor sites is in water-filled pools, a significant amount is now dry stored in concrete casks. At the shutdown sites, the UNF is dry stored at all but two of the ten sites. Various types of UNF dry storage configurations are used at the operating sites and shutdown sites that include vertical storage casks that are also licensed for transportation, vertical casks that are licensed for storage only, and horizontally orientated storage modules. The shutdown sites have limited to nonexistent UNF handling infrastructure and several no longer have railroad connections, complicating UNF handling and transport off the site. However four methods were identified that will satisfactorily retrieve the UNF canisters within the storage casks and transport them to the CSF. The study showed that all of the issues associated with the transportation and storage of UNF from all sites in the US can be accommodated by adopting a staged approach to the construction of the CSF. Stage 1 requires only a cask storage pad and railroad interface to be constructed, and the CSF can then receive the UNF that is in transportable storage casks. Stage 2 adds a canister handling facility, a storage cask fabrication facility and an expanded storage pad, and enables the receipt of all canistered UNF from both operating and shutdown sites. Stage 3 provides a repackaging facility with a water-filled pool that provides flexibility for a range of repackaging scenarios. This includes receiving and repackaging 'bare' UNF into suitable canisters that can be placed into interim storage at the CSF, and enables UNF that is being received, or already in storage onsite, to be repackaged into canisters that are suitable for disposal at a geologic repository. The study used the 'Total System Model' (TSM) to analyze a range of CSF capacities and operating scenarios with differing parameters covering UNF pickup orders, one or more CSF sites, CSF start dates, CSF receipt rates and geologic repository start dates. The TSM was originally developed to model movement of UNF to the Yucca Mountain repository and was modified for this study to enable the CSF to become the 'gateway' to a future geologic repository. The TSM analysis enabled costs to be estimated for each scenario and showed how these are influenced by each of the parameters. This information will provide essential underpinning for a future Conceptual Design preparation. (authors)

Phillips, Chris; Thomas, Ivan; McNiven, Steven [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States)] [EnergySolutions Federal EPC., 2345 Stevens Drive, Richland, WA, 99354 (United States); Lanthrum, Gary [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)] [NAC International, 3930 East Jones Bridge Road, Norcross, GA, 30092 (United States)

2013-07-01T23:59:59.000Z

287

Demand Response (transactional control) - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data FilesFeFe-HydrogenaseDemandEnergy Analysis

288

1136 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 4, JULY/AUGUST 2003 Simulation of Fuel-Cell Stacks Using a  

E-Print Network [OSTI]

1136 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 39, NO. 4, JULY/AUGUST 2003 Simulation. Those features allied to the low cost of this FC simulator con- tribute for market analysis and life TRANSACTIONS ON INDUSTRY APPLICATIONS by the Industrial Power Converter Committee of the IEEE Industry

Simões, Marcelo Godoy

289

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

290

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

291

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

H. , and James M. Gri¢ n. 1983. Gasoline demand in the OECDof dynamic demand for gasoline. Journal of Econometrics 77(An empirical analysis of gasoline demand in Denmark using

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

292

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

293

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

294

Current and future industrial energy service characterizations. Volume II. Energy data on the US manufacturing subsector  

SciTech Connect (OSTI)

In order to characterize industrial energy service, current energy demand, its end uses, and cost of typical energy applications and resultant services in the industrial sector were examined and a projection of state industrial energy demands and prices to 1990 was developed. Volume II presents in Section 2 data on the US manufacturing subsector energy demand, intensity, growth rates, and cost for 1971, 1974, and 1976. These energy data are disaggregated not only by fuel type but also by user classifications, including the 2-digit SIC industry groups, 3-digit subgroups, and 4-digit SIC individual industries. These data characterize typical energy applications and the resultant services in this subsector. The quantities of fuel and electric energy purchased by the US manufacturing subsector were converted to British thermal units and reported in billions of Btu. The conversion factors are presented in Table 4-1 of Volume I. To facilitate the descriptive analysis, all energy cost and intensity data were expressed in constant 1976 dollars. The specific US industrial energy service characteristics developed and used in the descriptive analysis are presented in Volume I. Section 3 presents the computer program used to produce the tabulated data.

Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

1980-10-01T23:59:59.000Z

295

Demand Responsive Lighting: A Scoping Study  

SciTech Connect (OSTI)

The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

Rubinstein, Francis; Kiliccote, Sila

2007-01-03T23:59:59.000Z

296

ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES  

E-Print Network [OSTI]

demand in the long run. Cogeneration of electricity and heatthe expan- sion of cogeneration, especially just now whencame from industrial cogeneration, 4% in l976 (a recession),

Schipper, L.

2012-01-01T23:59:59.000Z

297

Energy Demand (released in AEO2010)  

Reports and Publications (EIA)

Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

2010-01-01T23:59:59.000Z

298

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

Sterner. 1991. Analysing gasoline demand elasticities: A2011. Measuring global gasoline and diesel price and incomeMutairi. 1995. Demand for gasoline in Kuwait: An empirical

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

299

Reliability implications of price responsive demand : a study of New England's power system  

E-Print Network [OSTI]

With restructuring of the traditional, vertically integrated electricity industry come new opportunities for electricity demand to actively participate in electricity markets. Traditional definitions of power system ...

Whitaker, Andrew C. (Andrew Craig)

2011-01-01T23:59:59.000Z

300

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

302

Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03  

SciTech Connect (OSTI)

This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

Not Available

1980-06-01T23:59:59.000Z

303

Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/01  

SciTech Connect (OSTI)

This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985 and 2025. Residential, commercial, and industrial energy demands are forecast as well as the impacts of energy technology implementation and market penetration using a set of energy technology assumptions. (DMC)

Not Available

1980-06-01T23:59:59.000Z

304

Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/02  

SciTech Connect (OSTI)

This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions. (DMC)

Not Available

1980-06-01T23:59:59.000Z

305

Factors that will influence oil and gas supply and demand in the 21st century  

SciTech Connect (OSTI)

A recent report published by the National Petroleum Council (NPC) in the United States predicted a 50-60% growth in total global demand for energy by 2030. Because oil, gas, and coal will continue to be the primary energy sources during this time, the energy industry will have to continue increasing the supply of these fuels to meet this increasing demand. Achieving this goal will require the exploitation of both conventional and unconventional reservoirs of oil and gas in (including coalbed methane) an environmentally acceptable manner. Such efforts will, in turn, require advancements in materials science, particularly in the development of materials that can withstand high-pressure, high-temperature, and high-stress conditions.

Holditch, S.A.; Chianelli, R.R. [Texas A& amp; M University, College Station, TX (United States)

2008-04-15T23:59:59.000Z

306

Price dispersion in the airline industry: the effect of industry elasticity and cross-price elasticity  

E-Print Network [OSTI]

This dissertation analyzes the sources of price dispersion due to the price discrimination in the U.S. airline industry. Using the multi-stage budgeting approach with the almost ideal demand system (AIDS) specification, we estimate demand for air...

Kim, Jong Ho

2009-06-02T23:59:59.000Z

307

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

308

Tankless or Demand-Type Water Heaters | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless or Demand-Type Water Heaters Tankless or Demand-Type Water

309

Industrial Wastes as a Fuel  

E-Print Network [OSTI]

equipment for separating tramp iron. Ash Handling Ash is the incombustible mineral matter left be hind when some waste materials burn completely. Ash removal is practiced from two sources: the bottom of the furnace; and from collecting devices...

Richardson, G.; Hendrix, W.

1980-01-01T23:59:59.000Z

310

Residential Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared atEffectquestionnaires

311

Tankless Demand Water Heater Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment,Institutes and1 SpecialMaximizingResidential Buildings »Coil andDemand

312

Uranium 2005 resources, production and demand  

E-Print Network [OSTI]

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

Organisation for Economic Cooperation and Development. Paris

2006-01-01T23:59:59.000Z

313

Managing Increased Charging Demand  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of Energy Low-TemperatureEnergy Maine09 BalanceStorage and Managing

314

FIELD TO FUEL Bioenergy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TO FUEL Bioenergy Wheat straw, corn stover, prairie grasses, wood chips, and logging residues - all are left over mate- rial from various agricultural and industrial operations....

315

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

316

US electric utility demand-side management, 1994  

SciTech Connect (OSTI)

The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

NONE

1995-12-26T23:59:59.000Z

317

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

SciTech Connect (OSTI)

Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

2008-11-19T23:59:59.000Z

318

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

319

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network [OSTI]

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

320

Technical and economic feasibility of alternative fuel use in process heaters and small boilers  

SciTech Connect (OSTI)

The technical and economic feasibility of using alternate fuels - fuels other than oil and natural gas - in combustors not regulated by the Powerplant and Industrial Fuel Use Act of 1978 (FUA) was evaluated. FUA requires coal or alternate fuel use in most large new boilers and in some existing boilers. Section 747 of FUA authorizes a study of the potential for reduced oil and gas use in combustors not subject to the act: small industrial boilers with capacities less than 100 MMBtu/hr, and process heat applications. Alternative fuel use in combustors not regulated by FUA was examined and the impact of several measures to encourage the substitution of alternative fuels in these combustors was analyzed. The primary processes in which significant fuel savings can be achieved are identified. Since feedstock uses of oil and natural gas are considered raw materials, not fuels, feedstock applications are not examined in this analysis. The combustors evaluated in this study comprise approximately 45% of the fuel demand projected in 1990. These uses would account for more than 3.5 million barrels per day equivalent fuel demand in 1990.

Not Available

1980-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Driving change : evaluating strategies to control automotive energy demand growth in China  

E-Print Network [OSTI]

As the number of vehicles in China has relentlessly grown in the past decade, the energy demand, fuel demand and greenhouse gas emissions associated with these vehicles have kept pace. This thesis presents a model to project ...

Bonde Åkerlind, Ingrid Gudrun

2013-01-01T23:59:59.000Z

322

Nitride fuel performance  

E-Print Network [OSTI]

The purpose of this work was to assess the potential of nitride fuels in the current context of the nuclear industry. Nitride fuels systems have indeed been for the past decade the subject of new interest from the international community...

Reynaud, Sylvie Marie Aurel?ie

2002-01-01T23:59:59.000Z

323

Assessing Vehicle Electricity Demand Impacts on California Electricity Supply  

E-Print Network [OSTI]

Designing Markets for Electricity, Wiley-IEEE Press. CEC (in Major Drivers in U.S. Electricity Markets, NREL/CP-620-and fuel efficiency and electricity demand assumptions used

McCarthy, Ryan W.

2009-01-01T23:59:59.000Z

324

Transportation Demand This  

Gasoline and Diesel Fuel Update (EIA)

(VMT) per vehicle by fleet type stays constant over the forecast period based on the Oak Ridge National Laboratory fleet data. Fleet fuel economy for both conventional and...

325

Emerging Trends in US Vehicle Travel Demand  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0, 1997Environment > Voluntary826Industry forEmerging

326

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 5, OCTOBER 2004 1103 An Electrochemical-Based Fuel-Cell Model Suitable  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 51, NO. 5, OCTOBER 2004 1103 An Electrochemical, automotive, and stationary applications. In particular, proton exchange membrane FCs (PEMFCs) are considered

Simões, Marcelo Godoy

327

Utility Sector Impacts of Reduced Electricity Demand  

SciTech Connect (OSTI)

This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

Coughlin, Katie

2014-12-01T23:59:59.000Z

328

Pricing Data Center Demand Response Zhenhua Liu, Iris Liu, Steven Low, Adam Wierman  

E-Print Network [OSTI]

Pricing Data Center Demand Response Zhenhua Liu, Iris Liu, Steven Low, Adam Wierman California Institute of Technology Pasadena, CA, USA {zliu2,iliu,slow,adamw}@caltech.edu ABSTRACT Demand response- ularly promising industry for demand response: data centers. We use simulations to show that, not only

Wierman, Adam

329

Fueling America Through Renewable Resources Purdue extension  

E-Print Network [OSTI]

Fueling America Through Renewable Resources BioEnergy Purdue extension Meeting the ethanol demand to the anticipated market demand signals by planting more corn after corn. Livestock farmers have often had corn #12; Fueling America Through Renewable Crops BioEnergy Meeting the Ethanol Demand: Consequences

Holland, Jeffrey

330

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 10, OCTOBER 2010 3431 A Universal Grid-Connected Fuel-Cell Inverter for  

E-Print Network [OSTI]

. INTRODUCTION THE utilization of fuel cells for distributed power gen- eration requires the development of a low-cost-Connected Fuel-Cell Inverter for Residential Application Sudip K. Mazumder, Senior Member, IEEE, Rajni K. Burra--This paper describes a universal fuel-cell-based grid- connected inverter design with digital

Mazumder, Sudip K.

331

Industrial Retrofits are Possible  

E-Print Network [OSTI]

Ontario is the industrial heartland of Canada and more than 80% of its energy comes from Canadian sources with the remainder from the neighbouring U.S. states. Because of the ever increasing demand for energy relating to increased economic activity...

Stobart, E. W.

332

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

333

Load Preheating Using Flue Gases from a Fuel-Fired Heating System; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #9 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 LetterLight-Duty11.2.1310 DOE

334

Status and Outlook for the U.S. Non-Automotive Fuel Cell Industry: Impacts of Government Policies and Assessment of Future Opportunities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.EngineReport on Pathsand101

335

Install Waste Heat Recovery Systems for Fuel-Fired Furnaces; Industrial Technologies Program (ITP) Energy Tips - Process Heating Tip Sheet #8 (Fact Sheet).  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02 InspectionS10IS00719IG-17

336

Customer focused collaborative demand planning  

E-Print Network [OSTI]

Many firms worldwide have adopted the process of Sales & Operations Planning (S&OP) process where internal departments within a firm collaborate with each other to generate a demand forecast. In a collaborative demand ...

Jha, Ratan (Ratan Mohan)

2008-01-01T23:59:59.000Z

337

Supply Chain Management in the Computer Industry Katta G. Murty  

E-Print Network [OSTI]

management in manufacturing industries is to forecast the demand for each item and to determine when to place culties. Key words: Supplycontracts, demand distributionand its updating, forecast- ing demand, shortage systems depend heavily on good demand forecasts. The main aim of forecasting methods is to predict future

Murty, Katta G.

338

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

339

U.S. electric utility demand-side management 1996  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-12-01T23:59:59.000Z

340

TRAVEL DEMAND AND RELIABLE FORECASTS  

E-Print Network [OSTI]

TRAVEL DEMAND AND RELIABLE FORECASTS FOR TRANSIT MARK FILIPI, AICP PTP 23rd Annual Transportation transportation projects § Develop and maintain Regional Travel Demand Model § Develop forecast socio in cooperative review during all phases of travel demand forecasting 4 #12;Cooperative Review Should Include

Minnesota, University of

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 Gorin Principal Authors Lynn Marshall Project Manager Kae C. Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting

342

Demand Forecasting of New Products  

E-Print Network [OSTI]

Demand Forecasting of New Products Using Attribute Analysis Marina Kang A thesis submitted Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock upon currently employed new-SKU demand forecasting methods which involve the processing of large

Sun, Yu

343

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

344

Exploratory fuel-cell research: I. Direct-hydrocarbon polymer-electrolyte fuel cell. II. Mathematical modeling of fuel-cell cathodes  

SciTech Connect (OSTI)

A strong need exists today for more efficient energy-conversion systems. Our reliance on limited fuel resources, such as petroleum for the majority of our energy needs makes it imperative that we utilize these resources as efficiently as possible. Higher-efficiency energy conversion also means less pollution, since less fuel is consumed and less exhaust created for the same energy output. Additionally, for many industrialized nations, such as the United States which must rely on petroleum imports, it is also imperative from a national-security standpoint to reduce the consumption of these precious resources. A substantial reduction of U.S. oil imports would result in a significant reduction of our trade deficit, as well as costly military spending to protect overseas petroleum resources. Therefore, energy-conversion devices which may utilize alternative fuels are also in strong demand. This paper describes research on fuel cells for transportation.

Perry, M.L.; McLarnon, F.R.; Newman, J.S.; Cairns, E.J.

1996-12-01T23:59:59.000Z

345

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization  

E-Print Network [OSTI]

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization and establish a plausible link between consumption structure evolutions and industrial revolutions. In particular, we show that an industrial revolution starts with a "smithian growth process", which is demand

Boyer, Edmond

346

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

347

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect (OSTI)

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

348

Winter fuels report. Week ending, October 21, 1994  

SciTech Connect (OSTI)

Demand for distillate fuel oil is expected to show a slight decline this winter (October 1, 1994-March 31, 1995) from last, according to the Energy Information Administration`s (EIA) 4th Quarter 1994 Short-Term Energy Outlook (STEO) Mid-World Oil Price Case forecast. EIA projects winter demand to decline one percent to 3.3 million barrels per day, assuming normal weather conditions. The effects of expected moderate growth in the economy and industrial production will likely be offset by much warmer temperatures than those a year ago. EIA projects prices for both residential heating oil and diesel fuel to be moderately higher than prices last winter. Increases are likely, primarily because crude oil prices are expected to be higher than they were a year earlier (Table FE5).

Zitomer, M.; Griffith, A.; Zyren, J.

1994-10-01T23:59:59.000Z

349

act industrial site: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fossil fuels, high shipping costs could lead tothey in- crease the cost of fossil-fuel investments, theyfossil fuel industry, future jobs in energy efficiency or clean tech,...

350

act industrial sites: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fossil fuels, high shipping costs could lead tothey in- crease the cost of fossil-fuel investments, theyfossil fuel industry, future jobs in energy efficiency or clean tech,...

351

Combined cycle meets Thailand's growing power demands  

SciTech Connect (OSTI)

This article describes how an ample supply of natural gas led the Electricity Generating Authority of Thailand (EGAT) to choose gas-fired combustion turbines. Thailand's rapid industrialization, which began in the late 1980's, placed a great strain on the country's electricity supply system. The demand for electricity grew at an astonishing 14% annually. To deal with diminishing reserve capacity margins, the EGAT announced, in 1988, a power development program emphasizing gas-fired combined cycle power plants. Plans included six 320-MW combined cycle blocks at three sites, and an additional 600-MW gas- and oil-fired thermal plant at Bang Pakong. As electricity demand continued to increase, EGAT expanded its plans to include two additional 320-MW combined cycle blocks, a 600-MW combined cycle block, and a 650-MW gas- and oil-fired thermal plant. All are currently in various stages of design and construction.

Sheets, B.A. (Black and Veatch, Kansas City, MO (United States)); Takabut, K. (Electricity Generating Authority of Thailand, Nonthaburi (Thailand))

1993-08-01T23:59:59.000Z

352

Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation  

E-Print Network [OSTI]

sjstems (ITS) Electricity Sector Promoting nuclear useindustrial and electricity generation sectors (Table 4-2).In the industrial sector, electricity demand will increase,

Komiyama, Ryoichi

2010-01-01T23:59:59.000Z

353

Fuel processor for fuel cell power system  

DOE Patents [OSTI]

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

354

Public-policy responsibilities in a restructured electricity industry  

SciTech Connect (OSTI)

In this report, we identify and define the key public-policy values, objectives, and actions that the US electricity industry currently meets. We also discuss the opportunities for meeting these objectives in a restructured industry that relies primarily on market forces rather than on government mandates. And we discuss those functions that governments might undertake, presumably because they will not be fully met by a restructured industry on its own. These discussions are based on a variety of inputs. The most important inputs came from participants in an April 1995 workshop on Public-Policy Responsibilities and Electric Industry Restructuring: Shaping the Research Agenda. Other sources of information and insights include the reviews of a draft of this report by workshop participants and others and the rapidly growing literature on electric-industry restructuring and its implications. One of the major concerns about the future of the electricity industry is the fate of numerous social and environmental programs supported by today`s electric utilities. Many people worry that a market-driven industry may not meet the public-policy objectives that electric utilities have met in the past. Examples of potentially at-risk programs include demand-side management (DSM), renewable energy, low-income weatherization, and fuel diversity. Workshop participants represented electric utilities, public utility commissions (PUCs), state energy offices, public-interest groups, other energy providers, and the research community.

Tonn, B.; Hirst, E.; Bauer, D.

1995-06-01T23:59:59.000Z

355

Industrial Permit  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

356

Liquid natural gas as a transportation fuel in the heavy trucking industry. Fourth quarterly progress report, April 1, 1995--June 30, 1995  

SciTech Connect (OSTI)

This project encompasses the first year of a proposed three year project with emphasis focused on LNG research issues that may be categorized as direct diesel replacement with LNG fuel, and long term storage/utilization of LNG vent gases produced by tank storage and fueling/handling operation. In addition, a potential new utilization of LNG fuel has been found, as a part of this work on the fundamental nature of adsorption of LNG vent gases in higher hydrocarbons; follow on research for this and other related applications and transfer of technology are proceeding at this time.

Sutton, W.H.

1995-09-01T23:59:59.000Z

357

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

358

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

Levy, Roger

2014-01-01T23:59:59.000Z

359

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

360

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

for each day type for the demand response study - moderate8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

362

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

363

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

364

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

365

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

366

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

Levy, Roger

2014-01-01T23:59:59.000Z

367

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

368

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

369

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

370

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

371

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

372

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

Goldman, Charles

2010-01-01T23:59:59.000Z

373

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

374

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

Shen, Bo

2013-01-01T23:59:59.000Z

375

The bunkering industry and its effect on shipping tanker operations  

E-Print Network [OSTI]

The bunkering industry provides the shipping industry with the fuel oil that the vessels consume. The quality of the fuel oil provided will ensure the safe operation of vessels. Shipping companies under their fuel oil ...

Boutsikas, Angelos

2004-01-01T23:59:59.000Z

376

Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles  

E-Print Network [OSTI]

for forecasting demand for alternative-fuel vehicles. In:preferences for alternative-fuel vehicles David Brownstonespondents' preferences for alternative-fuel vehicles. The e€

Brownston, David; Bunch, David S.; Train, Kenneth

1999-01-01T23:59:59.000Z

377

Prospects on fuel economy improvements for hydrogen powered vehicles.  

SciTech Connect (OSTI)

Fuel cell vehicles are the subject of extensive research and development because of their potential for high efficiency and low emissions. Because fuel cell vehicles remain expensive and the demand for hydrogen is therefore limited, very few fueling stations are being built. To try to accelerate the development of a hydrogen economy, some original equipment manufacturers (OEM) in the automotive industry have been working on a hydrogen-fueled internal combustion engine (ICE) as an intermediate step. Despite its lower cost, the hydrogen-fueled ICE offers, for a similar amount of onboard hydrogen, a lower driving range because of its lower efficiency. This paper compares the fuel economy potential of hydrogen-fueled vehicles to their conventional gasoline counterparts. To take uncertainties into account, the current and future status of both technologies were considered. Although complete data related to port fuel injection were provided from engine testing, the map for the direct-injection engine was developed from single-cylinder data. The fuel cell system data represent the status of the current technology and the goals of FreedomCAR. For both port-injected and direct-injected hydrogen engine technologies, power split and series Hybrid Electric Vehicle (HEV) configurations were considered. For the fuel cell system, only a series HEV configuration was simulated.

Rousseau, A.; Wallner, T.; Pagerit, S.; Lohse-Bush, H. (Energy Systems)

2008-01-01T23:59:59.000Z

378

Installation and Commissioning Automated Demand Response Systems  

SciTech Connect (OSTI)

Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

2008-04-21T23:59:59.000Z

379

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

380

Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program  

Broader source: Energy.gov [DOE]

The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Fuel Cell...

382

Driving Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

383

Demand Response Technology Roadmap A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

384

Demand Response Technology Roadmap M  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

385

Demand Response Energy Consulting LLC | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,DeltaDemand Response

386

Hydrogen Demand and Resource Analysis (HyDRA) Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health and ProductivityEnergyEnergyHybridAnalysisContaminationDemand and

387

Sustainable Nanomaterials Industry Perspective  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy Strain Rate4SuperhardSuspect andCoaches Aim Industry Perspective

388

Industrial Technical Assistance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College ProvidesSteam Technical BriefINDUSTRIAL

389

New demands on manufacturing of composite materials  

SciTech Connect (OSTI)

Traditionally the field of advanced composites has been dominated by the needs of the aerospace industry. This has strongly influenced the materials and processes developed. However, during the last few years, a shift of emphasis into other engineering areas has been obvious. Branches such as the mechanical industry, ground transportation, the building industry and the leisure industry are today defining many of the new areas of application for these materials. In these applications fiber-reinforced composites are not just used in large structures but also in crucial small complex-shaped elements of larger machinery in order to improve overall performance. To satisfy these new demands, it is essential to develop innovative material systems and processing techniques which enable the production of composite parts with complex geometries at reasonable cost and with high precision. Most likely the solution to this task lies in the closely integrated development of the material system and the manufacturing method. Several different approaches are today taken in order to reach this goal for composite materials. Furthermore, it is nowadays important that the introduction of any new material or application, especially for high volume production, be accompanied by a thorough life-cycle and environmental plan.

Manson, J.A.E. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Technologie des Composites et Polymeres

1994-12-31T23:59:59.000Z

390

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand.Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product estimates. Margaret Sheridan provided the residential forecast. Mitch Tian prepared the peak demand

391

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand Robert P. Oglesby Executive Director #12;i ACKNOWLEDGEMENTS The demand forecast is the combined provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

392

Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)  

Reports and Publications (EIA)

Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

2007-01-01T23:59:59.000Z

393

CAPACITY DECISIONS WITH DEMAND FLUCTUATIONS AND CARBON LEAKAGE  

E-Print Network [OSTI]

Palaiseau, France April 2013 Abstract For carbon-intensive, internationally-traded industrial goods, a uni be partly oset by the increase of emissions in the rest of the world. The literature on carbon leakage hasCAPACITY DECISIONS WITH DEMAND FLUCTUATIONS AND CARBON LEAKAGE Guy MEUNIER Jean-Pierre PONSSARD

Paris-Sud XI, Université de

394

CAPACITY DECISIONS WITH DEMAND FLUCTUATIONS AND CARBON LEAKAGE  

E-Print Network [OSTI]

For carbon-intensive, internationally-traded industrial goods, a unilat- eral increase in the domestic CO2 be partly oset by the increase of emissions in the rest of the world. The literature on carbon leakage hasCAPACITY DECISIONS WITH DEMAND FLUCTUATIONS AND CARBON LEAKAGE Guy MEUNIER Jean-Pierre PONSSARD

Paris-Sud XI, Université de

395

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

396

Unlocking the Potential of Additive Manufacturing in the Fuel...  

Energy Savers [EERE]

Manufacturing in the Fuel Cells Industry Download presentation slides from the DOE Fuel Cell Technologies Office webinar "Additive Manufacturing for Fuel Cells" held on...

397

Maximum Fuel Utilization in Advanced Fast Reactors without Actinides Separation  

E-Print Network [OSTI]

Oxford ; New York ; Oxford University Press. Fuel- Trac,Spent Fuel / Reprocessing, in Nuclear Industry Statusto Burn Non-Fissile Fuels. 2008. GA. Energy Multiplier

Heidet, Florent

2010-01-01T23:59:59.000Z

398

Implications for decision making: Auto industry perspectives  

SciTech Connect (OSTI)

Implications for decision making in areas related to policy towards greenhouse gas emissions are discussed from the perspective of the auto industry. Two methods of reducing fuel use are discussed: increasing fuel efficiency of automobiles and reducing vehicle fuel use by other methods. Regulatory and market-driven control of fuel consumption are discussed. It is concluded that the automobile industry would prefer market-driven control of fuel consumption to regulatory control of fuel efficiency.

Leonard, S.A. [General Motors Technical Center, Warren, MI (United States)

1992-12-31T23:59:59.000Z

399

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network [OSTI]

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

Alexander, J.

400

China, India demand cushions prices  

SciTech Connect (OSTI)

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

402

IMHEX fuel cells progress toward commercialization  

SciTech Connect (OSTI)

As the gas industry emerges from deregulation with a greater understanding of market forces, they are positioned to become a major player as the electric industry begins its transition toward competition. Participants, which view themselves as integrated suppliers of a full-line of value-added energy services, will become the winners in today`s and tomorrow`s energy marketplace. The molten carbonate fuel cell is uniquely qualified to meet the demand for localized, efficient, and environmentally friendly power generation and will enable these players to offer on-site energy service. With its Team members-Stewart & Stevenson Services, Bechtel, and the Institute of Gas Technology-M-C Power is progressing toward the commercialization of a 1-MW IMHEX fuel cell power plant in 1999. The first of two proof-of-concept power plants began operation in 1995 and the second will operate during 1996. The Team projects the market entry product will achieve electrical generation efficiencies as high as 60% (LHV of natural gas) and electric energy costs in the range of 5 to 7 cents/kWh in typical energy service applications. This paper will review the status of the program and demonstration activities, introduce the characteristics of the market entry product, and evaluate the opportunities and benefits this product has for the new competitive power industry in the United States.

Woods, R.R. [M-C Power Corporation, Burr Ridge, IL (United States)

1995-12-31T23:59:59.000Z

403

Demand Response for Ancillary Services  

SciTech Connect (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

404

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

405

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Virginia’s 1999 electric industry restructuring law requires the state's electricity providers to disclose -- "to the extent feasible" -- fuel mix and emissions data regarding electric generation....

406

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Ohio's 1999 electric industry restructuring law requires the state's electricity suppliers to disclose details regarding their fuel mix and emissions to customers. Electric utilities and...

407

Air Liquide - Biogas & Fuel Cells  

Broader source: Energy.gov (indexed) [DOE]

Liquide - Biogas & Fuel Cells Hydrogen Energy Biogas Upgrading Technology 12 June 2012 Charlie.Anderson@airliquide.com 2 Air Liquide, world leader in gases for industry,...

408

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

Improve Lubrication Practices 0.91 4 na 3 na 0 24 16 487 Use Waste Heat from Hot Flue Gases to Preheat Combustion Air 0.29 483 na 2 0.31 449 25 11 464 Use Synthetic Lubricant 0.03 198 0.03 198 na 0 5 Table 3. National IAC... 2 25 11 Use Synthetic Lubricant 0.00 159 0.00 24 6 Table 4. Texas A&M University IAC Energy Conservation - Implementation Cost Correlations Rank No. TAMU Assessment Recommendation (AR) Total Energy Electrical Consumption Natural...

Razinha, J. A.; Heffington, W. M.

409

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

Client/Server service oriented architecture (SOA) and issecure Web Service Oriented Architecture (SOA) for platform-

McKane, Aimee T.

2009-01-01T23:59:59.000Z

410

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

plants without onsite generation could, under pre- determined conditions, free up electricityplants without any onsite generation capability could, under pre-determined conditions, automatically free up electricity

McKane, Aimee T.

2009-01-01T23:59:59.000Z

411

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

Hoods Pump System Motors Reverse Osmosis Storage Fan SystemMixers Fume Hoods Reverse Osmosis Transport System Packing

McKane, Aimee T.

2009-01-01T23:59:59.000Z

412

Industrial Rates and Demand-Side Management Programs  

E-Print Network [OSTI]

), Southwestern Public Service, Southwestern Electric Power, City of Austin, West Texas Utilities, EI Paso Electric, and Texas-New Mexico Power. Wholesale sales by major utilities included in "Others" category. Texas service areas only. Percentages based...,928,250 31.8% Texas Total 49,521 13,804 25.8% 93,847,494 36.9% wI Self-Gen 49,521 17,619 30.7% 119,841042 42.8% Note: Utilities are: TV Electric, Houston Lighting & Power, GulfStates Utilities, Central Power and Light, City Public Service (San Antonio...

Kasprowicz, L. M.; House, R.

413

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

of these sectors: Cold storage Data centers and test labspromising DR measures. Cold storage associated with fruitfacilities, adjustment of cold storage was the principal

McKane, Aimee T.

2009-01-01T23:59:59.000Z

414

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

Insulation Levels for Cold Storage Buildings. J. Arch.Livermore facility, a cold storage food distribution center

Goli, Sasank

2012-01-01T23:59:59.000Z

415

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

Sacramento, CA. P400-020016F EPRI (Electric Power ResearchWater (IAW) Energy Users by EPRI for the California Energyin more depth in Section 2.6. EPRI (Electric Power Research

McKane, Aimee T.

2009-01-01T23:59:59.000Z

416

"Greening" Industrial Steam Generation via On-demand Steam Systems  

E-Print Network [OSTI]

boiler technology currently in service in the U.S., it is critical to raise awareness and examine the role of emerging new technologies to address the energy and environmental challenges inherent with steam generation. In the same way that tank...

Smith, J. P.

2010-01-01T23:59:59.000Z

417

Coal-water slurry fuel combustion testing in an oil-fired industrial boiler. Semiannual technical progress report, February 15--August 15, 1996  

SciTech Connect (OSTI)

The project consists of four phases: (1) design, permitting, and test planning, (2) construction and start up, (3) demonstration and evaluation (1,000-hour demonstration), and (4) expanded demonstration and evaluation (installing a CWSF preparation circuit, performing baseline tests firing No. 6 fuel oil, and conducting additional CWSF testing). The boiler testing and evaluation will determine if the CWSF combustion characteristics, heat release rate, fouling and slagging behavior, corrosion and erosion tendencies, and fuel transport, storage, and handling characteristics can be accommodated in a boiler system designed to fire heavy fuel oil. In addition, the proof-of-concept demonstration will generate data to determine how the properties of a CWSF and its parent coal affect boiler performance. The economic factors associated with retrofitting boilers is also evaluated. The first three phases have been completed and the combustion performance of the burner that was provided with the boiler did not meet performance goals. A maximum coal combustion efficiency of 95% (compared to a target of 98%) was achieved and natural gas cofiring (15% of the total thermal input) was necessary to maintain a stable flame. Consequently, the first demonstration was terminated after 500 hours. The second CWSF demonstration (Phase 4) was conducted with a proven coal-designed burner. Prior to starting the second demonstration, a CWSF preparation circuit was constructed to provide flexibility in CWSF production. The circuit initially installed involved single-stage grinding. A regrind circuit was recently installed and was evaluated. A burner was installed from ABB Combustion Engineering (ABB/CE) and was used to generate baseline data firing No. 6 fuel oil and fire CWSF. A temporary storage system for No. 6 fuel oil was installed and modifications to the existing CWSF handling and preheating system were made to accommodate No. 6 oil.

Miller, B.G.; Scaroni, A.W.

1997-06-03T23:59:59.000Z

418

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

419

Demand growth to continue for oil, resume for gas this year in the U.S.  

SciTech Connect (OSTI)

Demand for petroleum products and natural gas in the US will move up again this year, stimulated by economic growth and falling prices. Economic growth, although slower than it was last year, will nevertheless remain strong. Worldwide petroleum supply will rise, suppressing oil prices. Natural gas prices are also expected to fall in response to the decline in oil prices and competitive pressure from other fuels. The paper discusses the economy, total energy consumption, energy sources, oil supply (including imports, stocks, refining, refining margins and prices), oil demand (motor gasoline, jet fuel, distillate fuel, residual fuel oil, and other petroleum products), natural gas demand, and natural gas supply.

Beck, R.J.

1998-01-26T23:59:59.000Z

420

Model of penetration of coal boilers and cogeneration in the paper industry  

SciTech Connect (OSTI)

A model has been developed to forecast the penetration of coal boilers and cogeneration of electricity in the paper industry. Given the demand for energy services (process steam and electricity) by the paper industry, the Penetration Model forecasts the demand for purchased fuel and electricity. The model splits the demand for energy service between energy carriers (coal, fuel oil/natural gas, bark, and spent liquor) on the basis of the installed capacity of 16 types of boilers (combinations of four types of energy carriers and four types of throttle conditions). Investment in new boilers is allocated by an empirical distribution function among the 16 types of boilers on the basis of life cycle cost. In the short run (5 years), the Penetration Model has a small price response. The model has a large price response in the long run (30 years). For constant fuel prices, the model forecasts a 19-percent share for coal and a 65-percent share for residual oil in the year 2000. If the real price of oil and gas doubles by the year 2000, the model forecasts a 68-percent share for coal and a 26-percent share for residual oil.

Reister, D.B.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Open Automated Demand Response Communications Specification (Version 1.0)  

SciTech Connect (OSTI)

The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

2009-02-28T23:59:59.000Z

422

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy Resources (Redirected from ECOWASBennington,Vermont:Benteler Industries

423

Evaluating Sites for Industrial Cogeneration in Chicago  

E-Print Network [OSTI]

and hospital complexes; and new, densely populated residential developments that have large thermal and electric demands. Potential sites have been evaluated as part of a project to encourage industrial cogeneration applications in Chicago. Energy...

Fowler, G. L.; Baugher, A. H.

1982-01-01T23:59:59.000Z

424

The dynamics and strategic analysis of wireless communications technology in the healthcare industry  

E-Print Network [OSTI]

The healthcare industry like other industry is on the cross roads as a result of rising demand for healthcare delivery and service, the industry is facing declining revenues and increasing cost. As a result, one of the ...

Eyemaro, John K. (John Kingsley)

2006-01-01T23:59:59.000Z

425

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

426

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

427

Societal demand for increasing mineral resources continue to affect societythrough aspects as varied as  

E-Print Network [OSTI]

Societal demand for increasing mineral resources continue to affect societythrough aspects in investment. The discovery of new mineral resources requires increasing risk, increasing costs, and to provide trained individuals to industry. Vancouver has long been a global leader in exploration

Handy, Todd C.

428

Program Strategies and Results for California’s Energy Efficiency and Demand Response Markets  

E-Print Network [OSTI]

Global Energy Partners provides a review of California’s strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC...

Ehrhard, R.; Hamilton, G.

2008-01-01T23:59:59.000Z

429

The role of demand uncertainty in materials selection : a case study on aluminum recycling  

E-Print Network [OSTI]

Aluminum is a versatile material that is used frequently in transportation and packaging, two industries with substantial recent growth. The increase in demand for aluminum, however, has outpaced the growth of primary ...

Dabbas, Hashem H

2007-01-01T23:59:59.000Z

430

Assumption to the Annual Energy Outlook 2014 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title: Telephone:shortOil and Natural8U.S.NA NAOil and GasDemand

431

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 10,998 9,933 10,998 10,643 10,998 10,643 10,998 10,998 10,64397 272 522 542Peru (MillionFood Industry

432

CASL - Industry Council  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis ofLink to Resources Industry

433

CASL - Industry Council Resources  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6Energy, science, andAnalysis ofLink to Resources IndustryCASL

434

Integration Strategy for DB-MHR TRISO Fuel production in conjunction with MOX Fuel production  

SciTech Connect (OSTI)

One of the nuclear power options for the future involves the evolution of gas cooled reactors to support the likely high temperature operations needed for commercial scale hydrogen production. One such proposed option is to use a Gas Turbine Modular Helium Reactor fueled with uranium based TRISO (coated particle) fuel. It has also been suggested that such a MHR could be operated in a ''Deep Burn'' manner fueled with TRISO fuel produced from recycle spent nuclear fuel. This concept known as a DBMHR must withstand significant development and fuel fabrication cost to be economically viable. The purpose of this report is to consider and propose a strategy where synergy with a parallel MOX fuel to LWR program provides economic or other advantage for either or both programs. A strategy involving three phases has been envisioned with potential for economic benefit relative to a stand-alone TRISO/DBMHR program. Such a strategy and related timing will ultimately be driven by economics, but is offered here for consideration of value to the total AFCI program. Phase I Near-term. Conventional spent fuel aqueous processing, MOX fuel fabrication, and use of present and future LWR/ALWR's with objective of a ''Continuous Recycle'' mode of fuel cycle management. Phase II Intermediate. Augmentation of LWR/ALWR industry with MHR deployment as justified by hydrogen economy and/or electrical demand. Phase III Long-term. Introduction of DBMHR's to offer alternative method for transuranic destruction and associated repository benefits, in addition to Phase II benefits. The basic philosophy of this strategy appears sound. However, the details of the technology plans and economic evaluations should receive additional detail and evaluation in the next fiscal year as funding can support.

MCGUIRE, DAVID

2005-09-30T23:59:59.000Z

435

Potential sites for joint venture biomass fueled power plants. Final report  

SciTech Connect (OSTI)

The US Army is investigating wood-fired boilers. One application is for wood fuels to fire fixed power plant installations where the technology is well proven. Approximately 170 Army bases were evaluated for their heating and electrical needs versus fuel availability from on-base forests. Approximately 20 bases met the minimum demand and resource criteria. Potential joint venture partner classes were identified as new Contractor Owned/Contractor Operated (COCO) entrepreneurs; existing utilities and industries in the vicinity of the bases; and existing Government Owned/Contractor Operated (GOCO) entrepreneurs.

Not Available

1980-01-02T23:59:59.000Z

436

A Fresh Look at Weather Impact on Peak Electricity Demand and  

E-Print Network [OSTI]

LBNL-6280E A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30-Year Actual Weather Data Road, Berkeley, CA 94720, USA 2 Green Energy and Environment Research Laboratories, Industrial

437

Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing  

E-Print Network [OSTI]

that is frequently accessed (hot data) is on fast storage compared to less-frequently accessed data (warm and cold like e- commerce and energy industry require both online and on- demand queries to be performed over to support scalable data storage and on-demand querying over large volumes of data. These systems usually

Prasanna, Viktor K.

438

THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION  

E-Print Network [OSTI]

1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand and supply in the world in general, and in the US, in particular. The electric power and energy industry

439

Full Rank Rational Demand Systems  

E-Print Network [OSTI]

as a nominal income full rank QES. R EFERENCES (A.84)S. G. Donald. “Inferring the Rank of a Matrix. ” Journal of97-102. . “A Demand System Rank Theorem. ” Econometrica 57 (

LaFrance, Jeffrey T; Pope, Rulon D.

2006-01-01T23:59:59.000Z

440

Marketing Demand-Side Management  

E-Print Network [OSTI]

Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Community Water Demand in Texas  

E-Print Network [OSTI]

Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

Griffin, Ronald C.; Chang, Chan

442

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

443

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

444

MODELING THE DEMAND FOR E85 IN THE UNITED STATES  

SciTech Connect (OSTI)

How demand for E85 might evolve in the future in response to changing economics and policies is an important subject to include in the National Energy Modeling System (NEMS). This report summarizes a study to develop an E85 choice model for NEMS. Using the most recent data from the states of Minnesota, North Dakota, and Iowa, this study estimates a logit model that represents E85 choice as a function of prices of E10 and E85, as well as fuel availability of E85 relative to gasoline. Using more recent data than previous studies allows a better estimation of non-fleet demand and indicates that the price elasticity of E85 choice appears to be higher than previously estimated. Based on the results of the econometric analysis, a model for projecting E85 demand at the regional level is specified. In testing, the model produced plausible predictions of US E85 demand to 2040.

Liu, Changzheng [ORNL; Greene, David L [ORNL

2013-10-01T23:59:59.000Z

445

Home Network Technologies and Automating Demand Response  

SciTech Connect (OSTI)

Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

McParland, Charles

2009-12-01T23:59:59.000Z

446

Uranium industry annual 1996  

SciTech Connect (OSTI)

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

447

renewable sources of power. Demand for fossil fuels surely will...  

Energy Savers [EERE]

to deem an oil and gas lease not to be a property interest, the impact of essential fish habitat designations, the fairness of an ocean policy act, sufficient appropriations...

448

BTU Accounting for Industry  

E-Print Network [OSTI]

, salesmen cars, over the highway trucks, facilities startup, waste used as fuel and fuels received for storage. This is a first step in the DOE's effort to establish usage guidelines for large industrial users and, we note, it requires BTU usage data...-generated electricity, heating, ventilating, air conditioning, in-plant transportation, ore hauling, raw material storage and finished product warehousing. Categories which are excluded are corporate and divisional offices, basic research, distribution centers...

Redd, R. O.

1979-01-01T23:59:59.000Z

449

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

Joseph, Eto

2014-01-01T23:59:59.000Z

450

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1 in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard. Margaret Sheridan contributed to the residential forecast. Mitch Tian prepared the peak demand

451

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 2 Director #12; i ACKNOWLEDGEMENTS The demand forecast is the combined product prepared the peak demand forecast. Ravinderpal Vaid provided the projections of commercial

452

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

453

Modeling supermarket refrigeration energy use and demand  

SciTech Connect (OSTI)

A computer model has been developed that can predict the performance of supermarket refrigeration equipment to within 3% of field test measurements. The Supermarket Refrigeration Energy Use and Demand Model has been used to simulate currently available refrigerants R-12, R-502 and R-22, and is being further developed to address alternative refrigerants. This paper reports that the model is expected to be important in the design, selection and operation of cost-effective, high-efficiency refrigeration systems. It can profile the operation and performance of different types of compressors, condensors, refrigerants and display cases. It can also simulate the effects of store humidity and temperature on display cases; the efficiency of various floating head pressure setpoints, defrost alternatives and subcooling methods; the efficiency and amount of heat reclaim from refrigeration systems; and the influence of other variables such as store lighting and building design. It can also be used to evaluate operational strategies such as variable-speed drive or cylinder unloading for capacity control. Development of the model began in 1986 as part of a major effort, sponsored by the U.S. electric utility industry, to evaluate energy performance of then conventional single compressor and state-of-the-art multiplex refrigeration systems, and to characterize the contribution of a variety of technology enhancement features on system energy use and demand.

Blatt, M.H.; Khattar, M.K. (Electric Power Research Inst., Palo Alto, CA (US)); Walker, D.H. (Foster Miller Inc., Waltham, MA (US))

1991-07-01T23:59:59.000Z

454

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

455

Supply chain planning decisions under demand uncertainty  

E-Print Network [OSTI]

Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

Huang, Yanfeng Anna

2008-01-01T23:59:59.000Z

456

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

457

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

458

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

Joseph, Eto

2014-01-01T23:59:59.000Z

459

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

sector, the demand response potential of California buildinga demand response event prohibit a building’s participationdemand response strategies in California buildings are

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

460

Property:OpenEI/UtilityRate/FlatDemandMonth8 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:FlatDemandMonth8 Jump to:

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Property:OpenEI/UtilityRate/FlatDemandMonth9 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:FlatDemandMonth8 Jump

462

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

463

Turkey's energy demand and supply  

SciTech Connect (OSTI)

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

464

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

465

Model for Analysis of Energy Demand (MAED-2) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbHMilo, Maine:Energy Information23.Energy Demand (MAED-2)

466

Property:OpenEI/UtilityRate/FixedDemandChargeMonth8 | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to: navigation,Information FixedDemandChargeMonth8

467

Property:OpenEI/UtilityRate/FlatDemandMonth4 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search This

468

Property:OpenEI/UtilityRate/FlatDemandMonth5 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation, search

469

Property:OpenEI/UtilityRate/FlatDemandMonth6 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to: navigation,

470

Property:OpenEI/UtilityRate/FlatDemandMonth7 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscotInformation Max Jump to:FlatDemandMonth3 Jump to:

471

Alternate Fuels: Is Your Waste Stream a Fuel Source?  

E-Print Network [OSTI]

. The advancement of programmable controls has also dramatically increased the capability and reliability of Alternate Fuel Systems. 148 ESL-IE-92-04-24 Proceedings from the 14th National Industrial Energy Technology Conference, Houston, TX, April 22-23, 1992... ALTERNATE FUELS: IS YOUR WASTE STREAM A FUEL SOURCE? PHn, COERPER. MANAGER ALTERNATE FUEL SYSTEMS. CLEAVER-BROOKS. Mn,WAUKEE. WI ABSTRACT Before the year 2000. more than one quarter of u.s. businesses will be firing Alternate Fuels...

Coerper, P.

472

Geography of Existing and Potential Alternative Fuel Markets in the United States  

SciTech Connect (OSTI)

When deploying alternative fuels, it is paramount to match the right fuel with the right location, in accordance with local market conditions. We used six market indicators to evaluate the existing and potential regional market health for each of the five most commonly deployed alternative fuels: electricity (used by plug-in electric vehicles), biodiesel (blends of B20 and higher), E85 ethanol, compressed natural gas (CNG), and propane. Each market indicator was mapped, combined, and evaluated by industry experts. This process revealed the weight the market indicators should be given, with the proximity of fueling stations being the most important indicator, followed by alternative fuel vehicle density, gasoline prices, state incentives, nearby resources, and finally, environmental benefit. Though markets vary among states, no state received 'weak' potential for all five fuels, indicating that all states have an opportunity to use at least one alternative fuel. California, Illinois, Indiana, Pennsylvania, and Washington appear to have the best potential markets for alternative fuels in general, with each sporting strong markets for four of the fuels. Wyoming showed the least potential, with weak markets for all alternative fuels except for CNG, for which it has a patchy market. Of all the fuels, CNG is promising in the greatest number of states--largely because freight traffic provides potential demand for many far-reaching corridor markets and because the sources of CNG are so widespread geographically.

Johnson, C.; Hettinger, D.

2014-11-01T23:59:59.000Z

473

Synthetic fuels handbook: properties, process and performance  

SciTech Connect (OSTI)

The handbook is a comprehensive guide to the benefits and trade-offs of numerous alternative fuels, presenting expert analyses of the different properties, processes, and performance characteristics of each fuel. It discusses the concept systems and technology involved in the production of fuels on both industrial and individual scales. Chapters 5 and 7 are of special interest to the coal industry. Contents: Chapter 1. Fuel Sources - Conventional and Non-conventional; Chapter 2. Natural Gas; Chapter 3. Fuels From Petroleum and Heavy Oil; Chapter 4. Fuels From Tar Sand Bitumen; Chapter 5. Fuels From Coal; Chapter 6. Fuels From Oil Shale; Chapter 7. Fuels From Synthesis Gas; Chapter 8. Fuels From Biomass; Chapter 9. Fuels From Crops; Chapter 10. Fuels From Wood; Chapter 11. Fuels From Domestic and Industrial Waste; Chapter 12. Landfill Gas. 3 apps.

Speight, J. [University of Utah, UT (United States)

2008-07-01T23:59:59.000Z

474

Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc  

E-Print Network [OSTI]

PENNSTATE Department of Industrial Engineering Spring 2011 Armstrong World Industries, Inc Overview The main objectives were the following: -To reduce wasted space and optimize the Armstrong Marietta plant generate? How did you analyse them? Outcomes Armstrong will save on forklift fuel costs as a result

Demirel, Melik C.

475

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park,Dell Prairie,Delta

476

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revisionWind,Soilsfilesystem socket.pngFigure 55 From

477

Economy key to 1992 U. S. oil, gas demand  

SciTech Connect (OSTI)

This paper provides a forecast US oil and gas markets and industry in 1992. An end to economic recession in the U.S. will boost petroleum demand modestly in 1992 after 2 years of decline. U.S. production will resume its slide after a fractional increase in 1991. Drilling in the U.S. will set a record low. Worldwide, the key questions are economic growth and export volumes from Iraq, Kuwait, and former Soviet republics.

Beck, R.J.

1992-01-27T23:59:59.000Z

478

Research Projects in Industrial Technology.  

SciTech Connect (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

479

Demand Response Programs for Oregon  

E-Print Network [OSTI]

wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

480

Projecting Electricity Demand in 2050  

SciTech Connect (OSTI)

This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

2014-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel demand industry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Water demand management in Kuwait  

E-Print Network [OSTI]

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

482

Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China  

E-Print Network [OSTI]

Wang, L. , 2008. Alternative fuel using and waste materialPolicy Research on Alternative Fuels for Cement Industry incement and using alternative fuels in the cement kiln. There

Price, Lynn

2010-01-01T23:59:59.000Z

483

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

484

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

485

Fossil fuels -- future fuels  

SciTech Connect (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

486

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

487

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work to the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

488

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work and expertise of numerous the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid provided the projections

489

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022  

E-Print Network [OSTI]

REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The staff demand forecast is the combined product of the hard work Sheridan provided the residential forecast. Mitch Tian prepared the peak demand forecast. Ravinderpal Vaid

490

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST Volume 2: Electricity Demand The demand forecast is the combined product of the hard work and expertise of numerous California Energy for demand response program impacts and contributed to the residential forecast. Mitch Tian prepared

491

CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST  

E-Print Network [OSTI]

CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand in this report. #12;i ACKNOWLEDGEMENTS The demand forecast is the combined product of the hard work provided estimates for demand response program impacts and contributed to the residential forecast. Mitch

492

Assessment of Demand Response and Advanced Metering  

E-Print Network [OSTI]

#12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

Tesfatsion, Leigh

493

E-Print Network 3.0 - aggregate electricity demand Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: for electricity based on aggregate data may in fact reflect the exit of coal-intensive firms (e.g. manufacturers... of fuel demand based on aggregate data, and...

494

Breeding nuclear fuels with accelerators: replacement for breeder reactors  

SciTech Connect (OSTI)

One application of high energy particle accelerators has been, and still is, the production of nuclear fuel for the nuclear energy industry; tantalizing because it would create a whole new industry. This approach to producing fissile from fertile material was first considered in the early 1950's in the context of the nuclear weapons program. A considerable development effort was expended before discovery of uranium ore in New Mexico put an end to the project. Later, US commitment to the Liquid Metal Fast Breeder Reactors (LMFBR) killed any further interest in pursuing accelerator breeder technology. Interest in the application of accelerators to breed nuclear fuels, and possibly burn nuclear wastes, revived in the late 1970's, when the LMFBR came under attack during the Carter administration. This period gave the opportunity to revisit the concept in view of the present state of the technology. This evaluation and the extensive calculational modeling of target designs that have been carried out are promising. In fact, a nuclear fuel cycle of Light Water Reactors and Accelerator Breeders is competitive to that of the LMFBR. At this time, however, the relative abundance of uranium reserves vs electricity demand and projected growth rate render this study purely academic. It will be for the next generation of accelerator builders to demonstate the competitiveness of this technology versus that of other nuclear fuel cycles, such as LMFBR's or Fusion Hybrid systems. 22 references, 1 figure, 5 tables.

Grand, P.; Takahashi, H.

1984-01-01T23:59:59.000Z

495

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

496

U.S. Pellet Industry Analysis  

SciTech Connect (OSTI)

This report is a survey of the U.S. Pellet Industry, its current capacity, economic drivers, and projected demand for biomass pellets to meet future energy consumption needs. Energy consumption in the US is projected to require an ever increasing portion of renewable energy sources including biofuels, among which are wood, and agrictulrual biomass. Goals set by federal agencies will drive an ever increasing demand for biomass. The EIA projections estimate that renewable energy produced by 2035 will be roughly 10% of all US energy consumption. Further analysis of the biofuels consumption in the US shows that of the renewable energy sources excluding biofuels, nearly 30% are wood or biomass waste. This equates to roughly 2% of the total energy consumption in the US coming from biomass in 2009, and the projections for 2035 show a strong increase in this amount. As of 2009, biomass energy production equates to roughly 2-2.5 quadrillion Btu. The EIA projections also show coal as providing 21% of energy consumed. If biomass is blended at 20% to co-fire coal plants, this will result in an additional 4 quadrillion Btu of biomass consumption. The EISA goals aim to produce 16 billion gal/year of cellulosic biofuels, and the US military has set goals for biofuels production. The Air Force has proposed to replace 50% of its domestic fuel requirements with alternative fuels from renewable sources by 2016. The Navy has likewise set a goal to provide 50% of its energy requirements from alternative sources. The Department of Energy has set similarly ambitious goals. The DOE goal is to replace 40% of 2004 gasoline use with biofuels. This equates to roughly 60 billion gal/year, of which, 45 billion gal/year would be produced from lignocellulosic resources. This would require 530 million dry tons of herbaceous and woody lignocellulosic biomass per year.

Corrie I. Nichol; Jacob J. Jacobsen; Richard D. Boardman

2011-06-01T23:59:59.000Z

497

Drivers of Future Energy Demand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9DrillingDrive

498

STEO December 2012 - coal demand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA REPORTSORNRecovery ActRSTEM Subscribe tocoal

499

Oxygenate Supply/Demand Balances  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecember 2005 (Thousand9,0,InformationU.S. Crude

500

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases on &gamma;-Al2O3.Winter (Part 2) |IOCriticalCross-Sector Sign