National Library of Energy BETA

Sample records for fuel cycle options

  1. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Nuclear Fuel Cycle Options Catalog ...

  2. Advanced Nuclear Fuel Cycle Options

    SciTech Connect (OSTI)

    Roald Wigeland; Temitope Taiwo; Michael Todosow; William Halsey; Jess Gehin

    2010-06-01

    A systematic evaluation has been conducted of the potential for advanced nuclear fuel cycle strategies and options to address the issues ascribed to the use of nuclear power. Issues included nuclear waste management, proliferation risk, safety, security, economics and affordability, and sustainability. The two basic strategies, once-through and recycle, and the range of possibilities within each strategy, are considered for all aspects of the fuel cycle including options for nuclear material irradiation, separations if needed, and disposal. Options range from incremental changes to today’s implementation to revolutionary concepts that would require the development of advanced nuclear technologies.

  3. Pilot Application to Nuclear Fuel Cycle Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    A Screening Method for Guiding R&D Decisions: Pilot Application to Screen Nuclear Fuel Cycle Options

  4. Nuclear Fuel Cycle Option Catalog SAND2015-2174 W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    benefits and challenges of nuclear fuel cycle options (i.e., the complete nuclear ... of Energy, Office of Nuclear Energy, Fuel Cycle Research and Development program. ...

  5. Assessment for advanced fuel cycle options in CANDU

    SciTech Connect (OSTI)

    Morreale, A.C.; Luxat, J.C.; Friedlander, Y.

    2013-07-01

    The possible options for advanced fuel cycles in CANDU reactors including actinide burning options and thorium cycles were explored and are feasible options to increase the efficiency of uranium utilization and help close the fuel cycle. The actinide burning TRUMOX approach uses a mixed oxide fuel of reprocessed transuranic actinides from PWR spent fuel blended with natural uranium in the CANDU-900 reactor. This system reduced actinide content by 35% and decreased natural uranium consumption by 24% over a PWR once through cycle. The thorium cycles evaluated used two CANDU-900 units, a generator and a burner unit along with a driver fuel feedstock. The driver fuels included plutonium reprocessed from PWR, from CANDU and low enriched uranium (LEU). All three cycles were effective options and reduced natural uranium consumption over a PWR once through cycle. The LEU driven system saw the largest reduction with a 94% savings while the plutonium driven cycles achieved 75% savings for PWR and 87% for CANDU. The high neutron economy, online fuelling and flexible compact fuel make the CANDU system an ideal reactor platform for many advanced fuel cycles.

  6. A review of nuclear fuel cycle options for developing nations

    SciTech Connect (OSTI)

    Harrison, R.K.; Scopatz, A.M.; Ernesti, M.

    2007-07-01

    A study of several nuclear reactor and fuel cycle options for developing nations was performed. All reactor choices were considered under a GNEP framework. Two advanced alternative reactor types, a nuclear battery-type reactor and a fuel reprocessing fast reactor were examined and compared with a conventional Generation III+ LWR reactor. The burn of nuclear fuel was simulated using ORIGEN 2.2 for each reactor type and the resulting information was used to compare the options in terms of waste produced, waste quality and repository impact. The ORIGEN data was also used to evaluate the economics of the fuel cycles using unit costs, discount rates and present value functions with the material balances. The comparison of the fuel cycles and reactors developed in this work provides a basis for the evaluation of subsidy programs and cost-benefit comparisons for various reactor parameters such as repository impact and proliferation risk versus economic considerations. (authors)

  7. RADIOACTIVE WASTE STREAMS FROM VARIOUS POTENTIAL NUCLEAR FUEL CYCLE OPTIONS

    SciTech Connect (OSTI)

    Nick Soelberg; Steve Piet

    2010-11-01

    Five fuel cycle options, about which little is known compared to more commonly known options, have been studied in the past year for the United States Department of Energy. These fuel cycle options, and their features relative to uranium-fueled light water reactor (LWR)-based fuel cycles, include: • Advanced once-through reactor concepts (Advanced Once-Through, or AOT) – intended for high uranium utilization and long reactor operating life, use depleted uranium in some cases, and avoid or minimize used fuel reprocessing • Fission-fusion hybrid (FFH) reactor concepts – potential variations are intended for high uranium or thorium utilization, produce fissile material for use in power generating reactors, or transmute transuranic (TRU) and some radioactive fission product (FP) isotopes • High temperature gas reactor (HTGR) concepts - intended for high uranium utilization, high reactor thermal efficiencies; they have unique fuel designs • Molten salt reactor (MSR) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, use on-line reprocessing of the used fuel, produce lesser amounts of long-lived, highly radiotoxic TRU elements, and avoid fuel assembly fabrication • Thorium/U-233 fueled LWR (Th/U-233) concepts – can breed fissile U-233 from Th fuel and avoid or minimize U fuel enrichment, and produce lesser amounts of long-lived, highly radiotoxic TRU elements. These fuel cycle options could result in widely different types and amounts of used or spent fuels, spent reactor core materials, and waste streams from used fuel reprocessing, such as: • Highly radioactive, high-burnup used metal, oxide, or inert matrix U and/or Th fuels, clad in Zr, steel, or composite non-metal cladding or coatings • Spent radioactive-contaminated graphite, SiC, carbon-carbon-composite, metal, and Be reactor core materials • Li-Be-F salts containing U, TRU, Th, and fission products • Ranges of separated or un-separated activation

  8. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  9. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Dixon, B.W.; Piet, S.J.

    2004-10-03

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository. There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected.

  10. Completion of Population of and Quality Assurance on the Nuclear Fuel Cycle Options Catalog.

    SciTech Connect (OSTI)

    Price, Laura L.; Barela, Amanda Crystal; Walkow, Walter M.; Schetnan, Richard Reed; Arnold, Matthew Brian

    2015-12-01

    An Evaluation and Screening team supporting the Fuel Cycle Technologies Program Office of the United States Department of Energy, Office of Nuclear Energy is conducting an evaluation and screening of a comprehensive set of fuel cycle options. These options have been assigned to one of 40 evaluation groups, each of which has a representative fuel cycle option [Todosow 2013]. A Fuel Cycle Data Package System Datasheet has been prepared for each representative fuel cycle option to ensure that the technical information used in the evaluation is high-quality and traceable [Kim, et al., 2013]. The information contained in the Fuel Cycle Data Packages has been entered into the Nuclear Fuel Cycle Options Catalog at Sandia National Laboratories so that it is accessible by the evaluation and screening team and other interested parties. In addition, an independent team at Savannah River National Laboratory has verified that the information has been entered into the catalog correctly. This report documents that the 40 representative fuel cycle options have been entered into the Catalog, and that the data entered into the catalog for the 40 representative options has been entered correctly.

  11. Impact of Nuclear Energy Futures on Advanced Fuel Cycle Options

    SciTech Connect (OSTI)

    Brent W. Dixon; Steven J. Piet

    2004-10-01

    The Nuclear Waste Policy Act requires the Secretary of Energy to inform Congress before 2010 on the need for a second geologic repository for spent nuclear fuel. By that time, the spent fuel discharged from current commercial reactors will exceed the statutory limit of the first repository (63,000 MTiHM commercial, 7,000 MT non-commercial). There are several approaches to eliminate the need for another repository in this century. This paper presents a high-level analysis of these spent fuel management options in the context of a full range of possible nuclear energy futures. The analysis indicates the best option to implement varies depending on the nuclear energy future selected. The first step in understanding the need for different spent fuel management approaches is to understand the size of potential spent fuel inventories. A full range of potential futures for domestic commercial nuclear energy is considered. These energy futures are as follows: 1. Existing License Completion - Based on existing spent fuel inventories plus extrapolation of future plant-by-plant discharges until the end of each operating license, including known license extensions. 2. Extended License Completion - Based on existing spent fuel inventories plus a plant-by-plant extrapolation of future discharges assuming on all operating plants having one 20-year extension. 3. Continuing Level Energy Generation - Based on extension of the current ~100 GWe installed commercial base and average spent fuel discharge of 2100 MT/yr through the year 2100. 4. Continuing Market Share Generation Based on a 1.8% compounded growth of the electricity market through the year 2100, matched by growing nuclear capacity and associated spent fuel discharge. 5. Growing Market Share Generation - Extension of current nuclear capacity and associated spent fuel discharge through 2100 with 3.2% growth representing 1.5% market growth (all energy, not just electricity) and 1.7% share growth. Share growth results in

  12. Nuclear Fuel Cycle Options Evaluation to Inform R&D Planning

    SciTech Connect (OSTI)

    R. Wigeland; T. Taiwo; M. Todosow; H. Ludewig; W. Halsey; J. Gehin; R. Jubin; J. Buelt; S. Stockinger; K. Jenni; B. Oakley

    2014-04-01

    An Evaluation and Screening (E&S) of nuclear fuel cycle options has been conducted in fulfilment of a Charter specified for the study by the U.S. Department of Energy (DOE) Office of Nuclear Energy. The E&S study used an objective and independently reviewed evaluation process to provide information about the potential benefits and challenges that could strengthen the basis and provide guidance for the research and development(R&D) activities undertaken by the DOE Fuel Cycle Technologies Program Office. Using the nine evaluation criteria specified in the Charter and associated evaluation metrics and processes developed during the E&S study, a screening was conducted of 40 nuclear fuel cycle evaluation groups to provide answers to the questions: (1) Which nuclear fuel cycle system options have the potential for substantial beneficial improvements in nuclear fuel cycle performance, and what aspects of the options make these improvements possible? (2)Which nuclear material management approaches can favorably impact the performance of fuel cycle options? (3)Where would R&D investment be needed to support the set of promising fuel cycle system options and nuclear material management approaches identified above, and what are the technical objectives of associated technologies?

  13. Parametric analyses of single-zone thorium-fueled molten salt reactor fuel cycle options

    SciTech Connect (OSTI)

    Powers, J.J.; Worrall, A.; Gehin, J.C.; Harrison, T.J.; Sunny, E.E.

    2013-07-01

    Analyses of fuel cycle options based on thorium-fueled Molten Salt Reactors (MSRs) have been performed in support of fuel cycle screening and evaluation activities for the United States Department of Energy. The MSR options considered are based on thermal spectrum MSRs with 3 different separations levels: full recycling, limited recycling, and 'once-through' operation without active separations. A single-fluid, single-zone 2250 MWth (1000 MWe) MSR concept consisting of a fuel-bearing molten salt with graphite moderator and reflectors was used as the basis for this study. Radiation transport and isotopic depletion calculations were performed using SCALE 6.1 with ENDF/B-VII nuclear data. New methodology developed at Oak Ridge National Laboratory (ORNL) enables MSR analysis using SCALE, modeling material feed and removal by taking user-specified parameters and performing multiple SCALE/TRITON simulations to determine the resulting equilibrium operating conditions. Parametric analyses examined the sensitivity of the performance of a thorium MSR to variations in the separations efficiency for protactinium and fission products. Results indicate that self-sustained operation is possible with full or limited recycling but once-through operation would require an external neutron source. (authors)

  14. Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options

    SciTech Connect (OSTI)

    Steven J. Piet

    2012-07-01

    The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historical survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.

  15. Promising Fuel Cycle Options for R&D – Results, Insights, and Future Directions

    SciTech Connect (OSTI)

    Wigeland, Roald Arnold

    2015-05-01

    The Fuel Cycle Options (FCO) campaign in the U.S. DOE Fuel Cycle Research & Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. The process for this study was described at the 2014 ICAPP meeting. This paper reports on detailed insights and questions from the results of the study. The comprehensive study identified continuous recycle in fast reactors as the most promising option, using either U/Pu or U/TRU recycle, and potentially in combination with thermal reactors, as reported at the ICAPP 2014 meeting. This paper describes the examination of the results in detail that indicated that there was essentially no difference in benefit between U/Pu and U/TRU recycle, prompting questions about the desirability of pursuing the more complex U/TRU approach given that the estimated greater challenges for development and deployment. The results will be reported from the current effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. The study also identified continuous recycle using thorium-based fuel cycles as potentially promising, in either fast or thermal systems, but with lesser benefit. Detailed examination of these results indicated that the lesser benefit was confined to only a few of the evaluation metrics, identifying the conditions under which thorium-based fuel cycles would be promising to pursue. For the most promising fuel cycles, the FCO is also conducting analyses on the potential transition to such fuel cycles to identify the issues, challenges, and the timing for critical decisions that would need to be made to avoid unnecessary delay in deployment, including investigation of issues such as the effects of a temporary lack of plutonium fuel resources or supporting infrastructure. These studies are placed in the context of an overall analysis approach designed to provide comprehensive information to

  16. Enhanced CANDU6: Reactor and fuel cycle options - Natural uranium and beyond

    SciTech Connect (OSTI)

    Ovanes, M.; Chan, P. S. W.; Mao, J.; Alderson, N.; Hopwood, J. M.

    2012-07-01

    The Enhanced CANDU 6{sup R} (ECo{sup R}) is the updated version of the well established CANDU 6 family of units incorporating improved safety characteristics designed to meet or exceed Generation III nuclear power plant expectations. The EC6 retains the excellent neutron economy and fuel cycle flexibility that are inherent in the CANDU reactor design. The reference design is based on natural uranium fuel, but the EC6 is also able to utilize additional fuel options, including the use of Recovered Uranium (RU) and Thorium based fuels, without requiring major hardware upgrades to the existing control and safety systems. This paper outlines the major changes in the EC6 core design from the existing C6 design that significantly enhance the safety characteristics and operating efficiency of the reactor. The use of RU fuel as a transparent replacement fuel for the standard 37-el NU fuel, and several RU based advanced fuel designs that give significant improvements in fuel burnup and inherent safety characteristics are also discussed in the paper. In addition, the suitability of the EC6 to use MOX and related Pu-based fuels will also be discussed. (authors)

  17. Promising Fuel Cycle Options for R&D - Results, Insights, and...

    Office of Scientific and Technical Information (OSTI)

    Development Program conducted a detailed evaluation and screening of nuclear fuel cycles. ... Resource Relation: Conference: International Congress on Advances in Nuclear Power Plants ...

  18. A Review of Thorium Utilization as an option for Advanced Fuel Cycle--Potential Option for Brazil in the Future

    SciTech Connect (OSTI)

    Maiorino, J.R.; Carluccio, T.

    2004-10-03

    Since the beginning of Nuclear Energy Development, Thorium was considered as a potential fuel, mainly due to the potential to produce fissile uranium 233. Several Th/U fuel cycles, using thermal and fast reactors were proposed, such as the Radkwoski once through fuel cycle for PWR and VVER, the thorium fuel cycles for CANDU Reactors, the utilization in Molten Salt Reactors, the utilization of thorium in thermal (AHWR), and fast reactors (FBTR) in India, and more recently in innovative reactors, mainly Accelerator Driven System, in a double strata fuel cycle. All these concepts besides the increase in natural nuclear resources are justified by non proliferation issues (plutonium constrain) and the waste radiological toxicity reduction. The paper intended to summarize these developments, with an emphasis in the Th/U double strata fuel cycle using ADS. Brazil has one of the biggest natural reserves of thorium, estimated in 1.2 millions of tons of ThO{sub 2}, as will be reviewed in this paper, and therefore R&D programs would be of strategically national interest. In fact, in the past there was some projects to utilize Thorium in Reactors, as the ''Instinto/Toruna'' Project, in cooperation with France, to utilize Thorium in Pressurized Heavy Water Reactor, in the mid of sixties to mid of seventies, and the thorium utilization in PWR, in cooperation with German, from 1979-1988. The paper will review these initiatives in Brazil, and will propose to continue in Brazil activities related with Th/U fuel cycle.

  19. Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    SciTech Connect (OSTI)

    Steinberg, M.

    1982-01-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high-energy (1 to 2 GeV) protons on a heavy-metal target. The neutrons are absorbed in a surrounding natural-uranium or thorium blanket in which fissile Pu-239 to U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high-beam-current continuous-wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a self-sufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of short-lived fission products external to the fuel cycle eliminates the need for long-term geological age shortage of fission-product waste.

  20. The Spallator and APEX nuclear fuel cycle: a new option for nuclear power

    SciTech Connect (OSTI)

    Steinberg, M.

    1983-02-01

    A new nuclear fuel cycle is described which provides a long term supply of nuclear fuel for the thermal LWR nuclear power reactors and eliminates the need for long-term storage of radioactive waste. Fissile fuel is produced by the Spallator which depends on the production of spallation neutrons by the interaction of high energy (1 to 2 GeV) protons on a heavy metal target. The neutrons are absorbed in a surrounding natural uranium or thorium blanket in which fissile Pu-239 or U-233 is produced. Advances in linear accelerator technology makes it possible to design and construct a high beam current continuous wave proton linac for production purposes. The target is similar to a sub-critical reactor and produces heat which is converted to electricity for supplying the linac. The Spallator is a selfsufficient fuel producer, which can compete with the fast breeder. The APEX fuel cycle depends on recycling the transuranics and long-lived fission products while extracting the stable and short-lived fission products when reprocessing the fuel. Transmutation and decay within the fuel cycle and decay of the short-lived fission products external to the fuel cycle eliminates the need for long-term geological age storage of fission product waste.

  1. Fuel Cycle Assessment: Evaluation and Analyses using ORION for...

    Office of Scientific and Technical Information (OSTI)

    Fuel Cycle Assessment: Evaluation and Analyses using ORION for US Fuel Cycle Options Citation Details In-Document Search Title: Fuel Cycle Assessment: Evaluation and Analyses using ...

  2. Fuel Cycle Research and Development Advanced Fuels Campaign

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    near-term accident tolerant LWR fuel technology n Perform research and development of long-term transmutation options 2 ATF AFC Fuel Development Life Cycle Irradiation ...

  3. Fuel Cell Financing Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTC Power Corporation 195 Governor's Highway South Windsor, CT Fuel Cell Financing Options (CESA/DOE Webinar - August 30, 2011) Paul J. Rescsanski, Manager, Business Finance Paul J. Rescsanski, Manager, Business Finance The UTC Power Advantage Strained Utility Grid, unreliable power * Significant Energy savings through: - 80 - 90% system efficiency - Combined heat and power * Payback in 3-5 years Sustainability and carbon reduction Rising energy costs * Assured power generated on-site: -

  4. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Research and Development Materials Recovery and Waste Form Development Campaign Overview Jim Bresee, DOE NE NEET Webinar September 17, 2014 Campaign Objectives  Develop advanced fuel cycle material recovery and waste management technologies that improve current fuel cycle performance and enable a sustainable fuel cycle, with minimal processing, waste generation, and potential for material diversion to provide options for future fuel cycle policy decisions  Campaign strategy is based

  5. Alternative Fuels Data Center: Biodiesel Equipment Options

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Delicious Rank Alternative Fuels Data Center: Biodiesel Equipment Options on Digg Find More places to share Alternative Fuels Data Center: Biodiesel

  6. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to NEAC Fuel Cycle Subcommittee Meeting of May 1, 2014 Washington, DC May 28, 2014 Al ... for the May 1, 2014 Fuel Cycle Subcommittee meeting and list of presenters is given below. ...

  7. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Piet, S.J.; Dixon, B.W.; Bennett, R.G.; Smith, J.D.; Hill, R.N.

    2004-10-03

    Given the range of fuel cycle goals and criteria, and the wide range of fuel cycle options, how can the set of options eventually be narrowed in a transparent and justifiable fashion? It is impractical to develop all options. We suggest an approach that starts by considering a range of goals for the Advanced Fuel Cycle Initiative (AFCI) and then posits seven questions, such as whether Cs and Sr isotopes should be separated from spent fuel and, if so, what should be done with them. For each question, we consider which of the goals may be relevant to eventually providing answers. The AFCI program has both ''outcome'' and ''process'' goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geologic repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are rea diness to proceed and adaptability and robustness in the face of uncertainties.

  8. Waste Stream Analyses for Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    N. R. Soelberg

    2010-08-01

    A high-level study was performed in Fiscal Year 2009 for the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) Advanced Fuel Cycle Initiative (AFCI) to provide information for a range of nuclear fuel cycle options (Wigeland 2009). At that time, some fuel cycle options could not be adequately evaluated since they were not well defined and lacked sufficient information. As a result, five families of these fuel cycle options are being studied during Fiscal Year 2010 by the Systems Analysis Campaign for the DOE NE Fuel Cycle Research and Development (FCRD) program. The quality and completeness of data available to date for the fuel cycle options is insufficient to perform quantitative radioactive waste analyses using recommended metrics. This study has been limited thus far to qualitative analyses of waste streams from the candidate fuel cycle options, because quantitative data for wastes from the front end, fuel fabrication, reactor core structure, and used fuel for these options is generally not yet available.

  9. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to NEAC Fuel Cycle Subcommittee Meeting of October 30, 2014 Washington, DC December 1, 2014 Al Sattelberger (Chair), Carol Burns, Margaret Chu, Raymond Juzaitis, Chris Kouts, Sekazi Mtingwa, Ronald Omberg, Joy Rempe, Dominique Warin I. Introduction 1 The agenda for the October 30, 2014 Fuel Cycle Subcommittee meeting is given below. The meeting provided members an overview of various research efforts funded by the Department of Energy Office of Nuclear Energy (DOE-NE) Fuel Cycle Technologies

  10. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report to NEAC Fuel Cycle Subcommittee Meeting of October 22, 2015 Washington, DC December 7, 2015 Al Sattelberger (Chair), Carol Burns, Margaret Chu, Raymond Juzaitis, Chris Kouts, Sekazi Mtingwa, Ronald Omberg, Joy Rempe, Dominique Warin 2 I. Introduction The agenda for the October 22, 2015 Fuel Cycle Subcommittee meeting is given below. The meeting provided members an overview of several research efforts funded by the DOE Office of Nuclear Energy's Fuel Cycle Technologies (FCT) program and

  11. Fuel Cycle Research & Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  12. Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle...

    Office of Scientific and Technical Information (OSTI)

    Title: Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle Studies Authors: Harrison, Thomas J 1 + Show Author Affiliations ORNL ORNL Publication Date: 2013-01-01 ...

  13. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  14. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  15. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  16. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  17. Answering Key Fuel Cycle Questions

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; J. Stephen Herring; David E. Shropshire; Mary Lou Dunzik-Gougar

    2003-10-01

    The Advanced Fuel Cycle Initiative (AFCI) program has both “outcome” and “process” goals because it must address both waste already accumulating as well as completing the fuel cycle in connection with advanced nuclear power plant concepts. The outcome objectives are waste geological repository capacity and cost, energy security and sustainability, proliferation resistance, fuel cycle economics, and safety. The process objectives are readiness to proceed and adaptability and robustness in the face of uncertainties. A classic decision-making approach to such a multi-attribute problem would be to weight individual quantified criteria and calculate an overall figure of merit. This is inappropriate for several reasons. First, the goals are not independent. Second, the importance of different goals varies among stakeholders. Third, the importance of different goals is likely to vary with time, especially the “energy future.” Fourth, some key considerations are not easily or meaningfully quantifiable at present. Instead, at this point, we have developed 16 questions the AFCI program should answer and suggest an approach of determining for each whether relevant options improve meeting each of the program goals. We find that it is not always clear which option is best for a specific question and specific goal; this helps identify key issues for future work. In general, we suggest attempting to create as many win-win decisions (options that are attractive or neutral to most goals) as possible. Thus, to help clarify why the program is exploring the options it is, and to set the stage for future narrowing of options, we have developed 16 questions, as follows: · What are the AFCI program goals? · Which potential waste disposition approaches do we plan for? · What are the major separations, transmutation, and fuel options? · How do we address proliferation resistance? · Which potential energy futures do we plan for? · What potential external triggers do we

  18. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Jones, R.; Carter, J.

    2010-10-13

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S; (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated; (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass; and (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  19. FUEL CYCLE POTENTIAL WASTE FOR DISPOSITION

    SciTech Connect (OSTI)

    Carter, J.

    2011-01-03

    The United States (U.S.) currently utilizes a once-through fuel cycle where used nuclear fuel (UNF) is stored on-site in either wet pools or in dry storage systems with ultimate disposal in a deep mined geologic repository envisioned. Within the Department of Energy's (DOE) Office of Nuclear Energy (DOE-NE), the Fuel Cycle Research and Development Program (FCR&D) develops options to the current commercial fuel cycle management strategy to enable the safe, secure, economic, and sustainable expansion of nuclear energy while minimizing proliferation risks by conducting research and development of advanced fuel cycles, including modified open and closed cycles. The safe management and disposition of used nuclear fuel and/or nuclear waste is a fundamental aspect of any nuclear fuel cycle. Yet, the routine disposal of used nuclear fuel and radioactive waste remains problematic. Advanced fuel cycles will generate different quantities and forms of waste than the current LWR fleet. This study analyzes the quantities and characteristics of potential waste forms including differing waste matrices, as a function of a variety of potential fuel cycle alternatives including: (1) Commercial UNF generated by uranium fuel light water reactors (LWR). Four once through fuel cycles analyzed in this study differ by varying the assumed expansion/contraction of nuclear power in the U.S. (2) Four alternative LWR used fuel recycling processes analyzed differ in the reprocessing method (aqueous vs. electro-chemical), complexity (Pu only or full transuranic (TRU) recovery) and waste forms generated. (3) Used Mixed Oxide (MOX) fuel derived from the recovered Pu utilizing a single reactor pass. (4) Potential waste forms generated by the reprocessing of fuels derived from recovered TRU utilizing multiple reactor passes.

  20. Nuclear Fuel Cycle Options Catalog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration | (NNSA) Nuclear Facility Risk Reduction project moves forward at Y-12 December 02, 2011 OAK RIDGE, Tenn. - The Y-12 National Security Complex has received final approval for a $76 million project that aims to maintain decades-old equipment - some dating to World War II - until the site constructs a new facility to ensure that the nation has essential uranium processing capability long-term. The Nuclear Facility Risk Reduction (NFRR) project includes two Y-12

  1. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; Feng, Bo; Greenberg, Harris R.; Hays, Ross D.; Passerini, Stefano; Todosow, Michael; Worrall, Andrew

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  2. Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Dale, Deborah J.

    2014-10-28

    These slides will be presented at the training course “International Training Course on Implementing State Systems of Accounting for and Control (SSAC) of Nuclear Material for States with Small Quantity Protocols (SQP),” on November 3-7, 2014 in Santa Fe, New Mexico. The slides provide a basic overview of the Nuclear Fuel Cycle. This is a joint training course provided by NNSA and IAEA.

  3. Fuel Cycle Technologies | Department of Energy

    Office of Environmental Management (EM)

    Initiatives Fuel Cycle Technologies Fuel Cycle Technologies Fuel Cycle Technologies Preparing for Tomorrow's Energy Demands Powerful imperatives drive the continued need for...

  4. Rapid Cycling Synchrotron Option for Project X (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Rapid Cycling Synchrotron Option for Project X Citation Details In-Document Search Title: Rapid Cycling Synchrotron Option for Project X This paper presents an 8 GeV Rapid Cycling ...

  5. Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Equipment Options for E85 Fueling Systems to someone by E-mail Share Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems on Facebook Tweet about Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems on Twitter Bookmark Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems on Google Bookmark Alternative Fuels Data Center: Equipment Options for E85 Fueling Systems on Delicious Rank Alternative Fuels Data Center: Equipment Options for E85

  6. Advanced nuclear fuel cycles - Main challenges and strategic choices

    SciTech Connect (OSTI)

    Le Biez, V.; Machiels, A.; Sowder, A.

    2013-07-01

    A graphical conceptual model of the uranium fuel cycles has been developed to capture the present, anticipated, and potential (future) nuclear fuel cycle elements. The once-through cycle and plutonium recycle in fast reactors represent two basic approaches that bound classical options for nuclear fuel cycles. Chief among these other options are mono-recycling of plutonium in thermal reactors and recycling of minor actinides in fast reactors. Mono-recycling of plutonium in thermal reactors offers modest savings in natural uranium, provides an alternative approach for present-day interim management of used fuel, and offers a potential bridging technology to development and deployment of future fuel cycles. In addition to breeder reactors' obvious fuel sustainability advantages, recycling of minor actinides in fast reactors offers an attractive concept for long-term management of the wastes, but its ultimate value is uncertain in view of the added complexity in doing so,. Ultimately, there are no simple choices for nuclear fuel cycle options, as the selection of a fuel cycle option must reflect strategic criteria and priorities that vary with national policy and market perspectives. For example, fuel cycle decision-making driven primarily by national strategic interests will likely favor energy security or proliferation resistance issues, whereas decisions driven primarily by commercial or market influences will focus on economic competitiveness.

  7. Fuel Cycle System Analysis Handbook

    SciTech Connect (OSTI)

    Steven J. Piet; Brent W. Dixon; Dirk Gombert; Edward A. Hoffman; Gretchen E. Matthern; Kent A. Williams

    2009-06-01

    This Handbook aims to improve understanding and communication regarding nuclear fuel cycle options. It is intended to assist DOE, Campaign Managers, and other presenters prepare presentations and reports. When looking for information, check here. The Handbook generally includes few details of how calculations were performed, which can be found by consulting references provided to the reader. The Handbook emphasizes results in the form of graphics and diagrams, with only enough text to explain the graphic, to ensure that the messages associated with the graphic is clear, and to explain key assumptions and methods that cause the graphed results. Some of the material is new and is not found in previous reports, for example: (1) Section 3 has system-level mass flow diagrams for 0-tier (once-through), 1-tier (UOX to CR=0.50 fast reactor), and 2-tier (UOX to MOX-Pu to CR=0.50 fast reactor) scenarios - at both static and dynamic equilibrium. (2) To help inform fast reactor transuranic (TRU) conversion ratio and uranium supply behavior, section 5 provides the sustainable fast reactor growth rate as a function of TRU conversion ratio. (3) To help clarify the difference in recycling Pu, NpPu, NpPuAm, and all-TRU, section 5 provides mass fraction, gamma, and neutron emission for those four cases for MOX, heterogeneous LWR IMF (assemblies mixing IMF and UOX pins), and a CR=0.50 fast reactor. There are data for the first 10 LWR recycle passes and equilibrium. (4) Section 6 provides information on the cycle length, planned and unplanned outages, and TRU enrichment as a function of fast reactor TRU conversion ratio, as well as the dilution of TRU feedstock by uranium in making fast reactor fuel. (The recovered uranium is considered to be more pure than recovered TRU.) The latter parameter impacts the required TRU impurity limits specified by the Fuels Campaign. (5) Section 7 provides flows for an 800-tonne UOX separation plant. (6) To complement 'tornado' economic uncertainty

  8. A Comparison Study of Various Nuclear Fuel Cycle Alternatives

    SciTech Connect (OSTI)

    Kwon, Eun-ha; Ko, Won-il

    2007-07-01

    As a nation develops its nuclear strategies, it must consider various aspects of nuclear energy such as sustainability, environmental-friendliness, proliferation-resistance, economics, technologies, and so on. Like all the policy decision, however, a nuclear fuel cycle option can not be superior in all aspects; the nation must identify its top priority and accordingly evaluate all the possible nuclear fuel cycle options. For such a purpose, this paper takes four different fuel cycle options that are likely adopted by the Korean government, considering the current status of nuclear power generation and the 3. Comprehensive Nuclear Energy Promotion Plan (CNEPP) - Once-through Cycle, DUPIC Recycle, Thermal Recycle and GEN-IV Recycle. The paper then evaluates each option in terms of resource utilization and waste generation. The analysis shows that the GEN-IV Recycle appears to be most competitive from these aspects. (authors)

  9. NEAC Fuel Cycle Technologies Subcommittee Report Presentation...

    Broader source: Energy.gov (indexed) [DOE]

    and Joint Fuel Cycle Study Accident Tolerant Fuel (ATF) Update ... EChem and Aqueous performance 4 Accident Tolerant Fuel (ATF) Update Comments ...

  10. Modeling the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jacob J. Jacobson; A. M. Yacout; G. E. Matthern; S. J. Piet; A. Moisseytsev

    2005-07-01

    The Advanced Fuel Cycle Initiative is developing a system dynamics model as part of their broad systems analysis of future nuclear energy in the United States. The model will be used to analyze and compare various proposed technology deployment scenarios. The model will also give a better understanding of the linkages between the various components of the nuclear fuel cycle that includes uranium resources, reactor number and mix, nuclear fuel type and waste management. Each of these components is tightly connected to the nuclear fuel cycle but usually analyzed in isolation of the other parts. This model will attempt to bridge these components into a single model for analysis. This work is part of a multi-national laboratory effort between Argonne National Laboratory, Idaho National Laboratory and United States Department of Energy. This paper summarizes the basics of the system dynamics model and looks at some results from the model.

  11. Assessment of transition fuel cycle performance with and without a modified-open fuel cycle

    SciTech Connect (OSTI)

    Feng, B.; Kim, T. K.; Taiwo, T. A.

    2012-07-01

    The impacts of a modified-open fuel cycle (MOC) option as a transition step from the current once-through cycle (OTC) to a full-recycle fuel cycle (FRC) were assessed using the nuclear systems analysis code DANESS. The MOC of interest for this study was mono-recycling of plutonium in light water reactors (LWR-MOX). Two fuel cycle scenarios were evaluated with and without the MOC option: a 2-stage scenario with a direct path from the current fleet to the final FRC, and a 3-stage scenario with the MOC option as a transition step. The FRC reactor (fast reactor) was assumed to deploy in 2050 for both scenarios, and the MOC reactor in the 3-stage scenario was assumed to deploy in 2025. The last LWRs (using either UOX or MOX fuels) come online in 2050 and are decommissioned by 2110. Thus, the FRC is achieved after 2110. The reprocessing facilities were assumed to be available 2 years prior to the deployment of the MOC and FRC reactors with maximum reprocessing capacities of 2000 tHM/yr and 500 tHM/t for LWR-UOX and LWR-MOX used nuclear fuels (UNFs), respectively. Under a 1% nuclear energy demand growth assumption, both scenarios were able to sustain a full transition to the FRC without delay. For the 3-stage scenario, the share of LWR-MOX reactors reaches a peak of 15% of installed capacity, which resulted in 10% lower cumulative uranium consumption and SWU requirements compared to the 2-stage scenario during the transition period. The peak UNF storage requirement decreases by 50% in the 3-stage scenario, largely due to the earlier deployment of the reprocessing plants to support the MOC fuel cycle. (authors)

  12. Financing Strategies for Nuclear Fuel Cycle Facility

    SciTech Connect (OSTI)

    David Shropshire; Sharon Chandler

    2005-12-01

    To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

  13. Future nuclear fuel cycles: prospects and challenges

    SciTech Connect (OSTI)

    Boullis, Bernard

    2008-07-01

    Solvent extraction has played, from the early steps, a major role in the development of nuclear fuel cycle technologies, both in the front end and back end. Today's stakes in the field of energy enhance further than before the need for a sustainable management of nuclear materials. Recycling actinides appears as a main guideline, as much for saving resources as for minimizing the final waste impact, and many options can be considered. Strengthened by the important and outstanding performance of recent PUREX processing plants, solvent-extraction processes seem a privileged route to meet the new and challenging requirements of sustainable future nuclear systems. (author)

  14. Fuel cycles for the 80's

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Papers presented at the American Nuclear Society's topical meeting on the fuel cycle are summarized. Present progress and goals in the areas of fuel fabrication, fuel reprocessing, spent fuel storage, accountability, and safeguards are reported. Present governmental policies which affect the fuel cycle are also discussed. Individual presentations are processed for inclusion in the Energy Data Base.(DMC)

  15. Spent fuel storage and waste management fuel cycle optimization using CAFCA

    SciTech Connect (OSTI)

    Brinton, S.; Kazimi, M.

    2013-07-01

    Spent fuel storage modeling is at the intersection of nuclear fuel cycle system dynamics and waste management policy. A model that captures the economic parameters affecting used nuclear fuel storage location options, which complements fuel cycle economic assessment has been created using CAFCA (Code for Advanced Fuel Cycles Assessment) of MIT. Research has also expanded to the study on dependency of used nuclear fuel storage economics, environmental impact, and proliferation risk. Three options of local, regional, and national storage were studied. The preliminary product of this research is the creation of a system dynamics tool known as the Waste Management Module which provides an easy to use interface for education on fuel cycle waste management economic impacts. Storage options costs can be compared to literature values with simple variation available for sensitivity study. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (authors)

  16. Fuel Cycle Research and Development Program

    Office of Environmental Management (EM)

    James C. Bresee, ScD, JD Advisory Board Member Office of Nuclear Energy July 29, 2009 July 29, 2009 Fuel Cycle Research and Development DM 195665 2 Outline Fuel Cycle R&D Mission ...

  17. Development Plan for the Fuel Cycle Simulator

    SciTech Connect (OSTI)

    Brent Dixon

    2011-09-01

    The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

  18. Sensitivity analysis and optimization of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Passerini, S.; Kazimi, M. S.; Shwageraus, E.

    2012-07-01

    A sensitivity study has been conducted to assess the robustness of the conclusions presented in the MIT Fuel Cycle Study. The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycles. The options include limited recycling in LWRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. The analysis allowed optimization of the fast reactor conversion ratio with respect to desired fuel cycle performance characteristics. The following parameters were found to significantly affect the performance of recycling technologies and their penetration over time: Capacity Factors of the fuel cycle facilities, Spent Fuel Cooling Time, Thermal Reprocessing Introduction Date, and in core and Out-of-core TRU Inventory Requirements for recycling technology. An optimization scheme of the nuclear fuel cycle is proposed. Optimization criteria and metrics of interest for different stakeholders in the fuel cycle (economics, waste management, environmental impact, etc.) are utilized for two different optimization techniques (linear and stochastic). Preliminary results covering single and multi-variable and single and multi-objective optimization demonstrate the viability of the optimization scheme. (authors)

  19. VISION: Verifiable Fuel Cycle Simulation Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Abdellatif M. Yacout; Gretchen E. Matthern; Steven J. Piet; David E. Shropshire

    2009-04-01

    The nuclear fuel cycle is a very complex system that includes considerable dynamic complexity as well as detail complexity. In the nuclear power realm, there are experts and considerable research and development in nuclear fuel development, separations technology, reactor physics and waste management. What is lacking is an overall understanding of the entire nuclear fuel cycle and how the deployment of new fuel cycle technologies affects the overall performance of the fuel cycle. The Advanced Fuel Cycle Initiatives systems analysis group is developing a dynamic simulation model, VISION, to capture the relationships, timing and delays in and among the fuel cycle components to help develop an understanding of how the overall fuel cycle works and can transition as technologies are changed. This paper is an overview of the philosophy and development strategy behind VISION. The paper includes some descriptions of the model and some examples of how to use VISION.

  20. Advanced Fuel Cycle Economic Sensitivity Analysis

    SciTech Connect (OSTI)

    David Shropshire; Kent Williams; J.D. Smith; Brent Boore

    2006-12-01

    A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

  1. Benefits and concerns of a closed nuclear fuel cycle

    SciTech Connect (OSTI)

    Widder, Sarah H.

    2010-11-17

    Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a “once-through” fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

  2. Coupling fuel cycles with repositories: how repository institutional choices may impact fuel cycle design

    SciTech Connect (OSTI)

    Forsberg, C.; Miller, W.F.

    2013-07-01

    The historical repository siting strategy in the United States has been a top-down approach driven by federal government decision making but it has been a failure. This policy has led to dispatching fuel cycle facilities in different states. The U.S. government is now considering an alternative repository siting strategy based on voluntary agreements with state governments. If that occurs, state governments become key decision makers. They have different priorities. Those priorities may change the characteristics of the repository and the fuel cycle. State government priorities, when considering hosting a repository, are safety, financial incentives and jobs. It follows that states will demand that a repository be the center of the back end of the fuel cycle as a condition of hosting it. For example, states will push for collocation of transportation services, safeguards training, and navy/private SNF (Spent Nuclear Fuel) inspection at the repository site. Such activities would more than double local employment relative to what was planned for the Yucca Mountain-type repository. States may demand (1) the right to take future title of the SNF so if recycle became economic the reprocessing plant would be built at the repository site and (2) the right of a certain fraction of the repository capacity for foreign SNF. That would open the future option of leasing of fuel to foreign utilities with disposal of the SNF in the repository but with the state-government condition that the front-end fuel-cycle enrichment and fuel fabrication facilities be located in that state.

  3. Filling Knowledge Gaps with Five Fuel Cycle Studies

    SciTech Connect (OSTI)

    Steven J. Piet; Jess Gehin; William Halsey; Temitope Taiwo

    2010-11-01

    During FY 2010, five studies were conducted of technology families’ applicability to various fuel cycle strategies to fill in knowledge gaps in option space and to better understand trends and patterns. Here, a “technology family” is considered to be defined by a type of reactor and by selection of which actinides provide fuel. This report summarizes the higher-level findings; the detailed analyses and results are documented in five individual reports, as follows: • Advanced once through with uranium fuel in fast reactors (SFR), • Advanced once through (uranium fuel) or single recycle (TRU fuel) in high temperature gas cooled reactors (HTGR), • Sustained recycle with Th/U-233 in light water reactors (LWRs), • Sustained recycle with Th/U-233 in molten salt reactors (MSR), and • Several fuel cycle missions with Fusion-Fission Hybrid (FFH). Each study examined how the designated technology family could serve one or more designated fuel cycle missions, filling in gaps in overall option space. Each study contains one or more illustrative cases that show how the technology family could be used to meet a fuel cycle mission, as well as broader information on the technology family such as other potential fuel cycle missions for which insufficient information was available to include with an illustrative case. None of the illustrative cases can be considered as a reference, baseline, or nominal set of parameters for judging performance; the assessments were designed to assess areas of option space and were not meant to be optimized. There is no implication that any of the cases or technology families are necessarily the best way to meet a given fuel cycle mission. The studies provide five examples of 1-year fuel cycle assessments of technology families. There is reasonable coverage in the five studies of the performance areas of waste management and uranium utilization. The coverage of economics, safety, and proliferation resistance and physical protection in

  4. Safeguards Considerations for Thorium Fuel Cycles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Worrall, Louise G.; Worrall, Andrew; Flanagan, George F.; Croft, Steven

    2016-04-21

    We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already building test reactors and the associated fuel cycle infrastructure. In the future, the potential exists for these emerging programs to sell, export, and deploy thorium fuel cycle technology in other states. Without technically adequate international safeguards protocols and measures in place, any future potential clandestine misuse of these fuel cycles could go undetected, compromising the deterrent value of these protocolsmore » and measures. The development of safeguards approaches for thorium-based fuel cycles is therefore a matter of some urgency. Yet, the focus of the international safeguards community remains mainly on safeguarding conventional 235U- and 239Pu-based fuel cycles while the safeguards challenges of thorium-uranium fuel cycles remain largely uninvestigated. This raises the following question: Is the International Atomic Energy Agency and international safeguards system ready for thorium fuel cycles? Furthermore, is the safeguards technology of today sufficiently mature to meet the verification challenges posed by thorium-based fuel cycles? In defining these and other related research questions, the objectives of this paper are to identify key safeguards considerations for thorium-based fuel cycles and to call for an early dialogue between the international safeguards and the nuclear fuel cycle communities to prepare for the potential safeguards challenges associated with these fuel cycles. In this paper, it is concluded that directed research and development programs are required to meet the identified safeguards challenges and to take timely action in preparation for the international deployment of thorium fuel cycles.« less

  5. Fuel Cell Financing Options | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Webinar: Financing Fuel Cell Installations, August 30, 2011. ... Case for Fuel Cells 2011: Energizing America's Top Companies PAFC Cost Challenges

  6. World nuclear fuel cycle requirements 1991

    SciTech Connect (OSTI)

    Not Available

    1991-10-10

    The nuclear fuel cycle consists of mining and milling uranium ore, processing the uranium into a form suitable for generating electricity, burning'' the fuel in nuclear reactors, and managing the resulting spent nuclear fuel. This report presents projections of domestic and foreign requirements for natural uranium and enrichment services as well as projections of discharges of spent nuclear fuel. These fuel cycle requirements are based on the forecasts of future commercial nuclear power capacity and generation published in a recent Energy Information Administration (EIA) report. Also included in this report are projections of the amount of spent fuel discharged at the end of each fuel cycle for each nuclear generating unit in the United States. The International Nuclear Model is used for calculating the projected nuclear fuel cycle requirements. 14 figs., 38 tabs.

  7. Performance improvement options for the supercritical carbon dioxide brayton cycle.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Sienicki, J. J.; Nuclear Engineering Division

    2008-07-17

    The supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle is under development at Argonne National Laboratory as an advanced power conversion technology for Sodium-Cooled Fast Reactors (SFRs) as well as other Generation IV advanced reactors as an alternative to the traditional Rankine steam cycle. For SFRs, the S-CO{sub 2} Brayton cycle eliminates the need to consider sodium-water reactions in the licensing and safety evaluation, reduces the capital cost of the SFR plant, and increases the SFR plant efficiency. Even though the S-CO{sub 2} cycle has been under development for some time and optimal sets of operating parameters have been determined, those earlier development and optimization studies have largely been directed at applications to other systems such as gas-cooled reactors which have higher operating temperatures than SFRs. In addition, little analysis has been carried out to investigate cycle configurations deviating from the selected 'recompression' S-CO{sub 2} cycle configuration. In this work, several possible ways to improve S-CO{sub 2} cycle performance for SFR applications have been identified and analyzed. One set of options incorporates optimization approaches investigated previously, such as variations in the maximum and minimum cycle pressure and minimum cycle temperature, as well as a tradeoff between the component sizes and the cycle performance. In addition, the present investigation also covers options which have received little or no attention in the previous studies. Specific options include a 'multiple-recompression' cycle configuration, intercooling and reheating, as well as liquid-phase CO{sub 2} compression (pumping) either by CO{sub 2} condensation or by a direct transition from the supercritical to the liquid phase. Some of the options considered did not improve the cycle efficiency as could be anticipated beforehand. Those options include: a double recompression cycle, intercooling between the compressor stages, and reheating

  8. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these

  9. Physics challenges for advanced fuel cycle assessment

    SciTech Connect (OSTI)

    Giuseppe Palmiotti; Massimo Salvatores; Gerardo Aliberti

    2014-06-01

    Advanced fuel cycles and associated optimized reactor designs will require substantial improvements in key research area to meet new and more challenging requirements. The present paper reviews challenges and issues in the field of reactor and fuel cycle physics. Typical examples are discussed with, in some cases, original results.

  10. Fuel Cycle Research and Development Presentation Title

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accident Tolerant LWR Fuels - Update and Status David Henderson, Acting Director, Fuel Cycle R&D Office of Nuclear Energy NEAC Meeting December 10, 2014 Presentation Overview  Background: Where does ATF fit in NE?  Status: Where is the ATF Program and where is it going?  Collaborations: University and International Partners  Funding  Questions Deputy Assistant Secretary for Fuel Cycle Technologies John Herczeg (Andrew Griffith, acting ADAS) NE-5 Office of Systems Engineering

  11. VISION -- A Dynamic Model of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    J. J. Jacobson; A. M. Yacout; S. J. Piet; D. E. Shropshire; G. E. Matthern

    2006-02-01

    The Advanced Fuel Cycle Initiative’s (AFCI) fundamental objective is to provide technology options that – if implemented – would enable long-term growth of nuclear power while improving sustainability and energy security. The AFCI organization structure consists of four areas; Systems Analysis, Fuels, Separations and Transmutations. The Systems Analysis Working Group is tasked with bridging the program technical areas and providing the models, tools, and analyses required to assess the feasibility of design and deploy¬ment options and inform key decision makers. An integral part of the Systems Analysis tool set is the development of a system level model that can be used to examine the implications of the different mixes of reactors, implications of fuel reprocessing, impact of deployment technologies, as well as potential “exit” or “off ramp” approaches to phase out technologies, waste management issues and long-term repository needs. The Verifiable Fuel Cycle Simulation Model (VISION) is a computer-based simulation model that allows performing dynamic simulations of fuel cycles to quantify infrastructure requirements and identify key trade-offs between alternatives. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  12. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.; Patridge, M.D.

    1991-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

  13. Report of the Fuel Cycle Research and Development Subcommittee...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear...

  14. Theory, modeling and evaluations for the fuel cycle (Conference...

    Office of Scientific and Technical Information (OSTI)

    Theory, modeling and evaluations for the fuel cycle Citation Details In-Document Search Title: Theory, modeling and evaluations for the fuel cycle Authors: Talou, Patrick 1 + ...

  15. Nuclear Fuel Cycle & Vulnerabilities (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Fuel Cycle & Vulnerabilities Citation Details In-Document Search Title: Nuclear Fuel Cycle & Vulnerabilities The objective of safeguards is the timely detection of ...

  16. Nuclear Fuel Cycle & Vulnerabilities (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Fuel Cycle & Vulnerabilities Citation Details In-Document Search Title: Nuclear Fuel Cycle & Vulnerabilities You are accessing a document from the ...

  17. Theory, modeling and evaluations for the fuel cycle (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Theory, modeling and evaluations for the fuel cycle Citation Details In-Document Search Title: Theory, modeling and evaluations for the fuel cycle You are accessing a ...

  18. NEAC Fuel Cycle Research and Development Subcommittee Report...

    Office of Environmental Management (EM)

    Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting NEAC Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting PDF ...

  19. Comprehensive Fuel Cycle Research Study - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRSCRO Completes Study of Region's Role in Nuclear Fuel Cycle In June 2012, the Savannah River Site Community Reuse Organization (SRSCRO) commissioned a study to provide leaders in the five county region in South Carolina and Georgia represented by the SRSCRO with information necessary to determine what resources the region has available to participate in a national solution for managing the back-end of the fuel nuclear cycle. The scope of the study was to help answer the following question:

  20. Multi-cycle boiling water reactor fuel cycle optimization

    SciTech Connect (OSTI)

    Ottinger, K.; Maldonado, G.I.

    2013-07-01

    In this work a new computer code, BWROPT (Boiling Water Reactor Optimization), is presented. BWROPT uses the Parallel Simulated Annealing (PSA) algorithm to solve the out-of-core optimization problem coupled with an in-core optimization that determines the optimum fuel loading pattern. However it uses a Haling power profile for the depletion instead of optimizing the operating strategy. The result of this optimization is the optimum new fuel inventory and the core loading pattern for the first cycle considered in the optimization. Several changes were made to the optimization algorithm with respect to other nuclear fuel cycle optimization codes that use PSA. Instead of using constant sampling probabilities for the solution perturbation types throughout the optimization as is usually done in PSA optimizations the sampling probabilities are varied to get a better solution and/or decrease runtime. The new fuel types available for use can be sorted into an array based on any number of parameters so that each parameter can be incremented or decremented, which allows for more precise fuel type selection compared to random sampling. Also, the results are sorted by the new fuel inventory of the first cycle for ease of comparing alternative solutions. (authors)

  1. An option making for nuclear fuel reprocessing by using supercritical carbon dioxide

    SciTech Connect (OSTI)

    Enokida, Youichi; Sawada, Kayo; Shimada, Takashi; Yamamoto, Ichiro

    2007-07-01

    A four-year-research has been completed as a collaborative work by Nagoya University Mitsubishi Heavy Industries Corporation and Japan Atomic Energy Agency (JAEA) in order to develop a super critical carbon dioxide (SF-CO{sub 2}) based technology, 'SUPER-DIREX process', for nuclear fuel reprocessing. As a result obtained in Phase II of the Japan's feasibility Studies on Commercialized Fast Reactor Cycle Systems, this technology was evaluated as one of the alternatives for the advanced Purex process for he future FBR fuel cycle. Although further investigation is required for a scaled-up demonstration of processing spent fuels by SUPER-DIREX process, we could conclude that an option has been made for nuclear fuel reprocessing by using supercritical carbon dioxide. (authors)

  2. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) (Conference...

    Office of Scientific and Technical Information (OSTI)

    Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Citation Details In-Document Search Title: Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0) Paul Alivisatos, LBNL Director...

  3. Dynamic Analysis of Fuel Cycle Transitioning

    SciTech Connect (OSTI)

    Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

    2009-09-01

    This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

  4. International nuclear fuel cycle fact book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1988-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  5. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I W; Mitchell, S J

    1990-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

  6. International Nuclear Fuel Cycle Fact Book

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  7. Life cycle assessment of bagasse waste management options

    SciTech Connect (OSTI)

    Kiatkittipong, Worapon; Wongsuchoto, Porntip; Pavasant, Prasert

    2009-05-15

    Bagasse is mostly utilized for steam and power production for domestic sugar mills. There have been a number of alternatives that could well be applied to manage bagasse, such as pulp production, conversion to biogas and electricity production. The selection of proper alternatives depends significantly on the appropriateness of the technology both from the technical and the environmental points of view. This work proposes a simple model based on the application of life cycle assessment (LCA) to evaluate the environmental impacts of various alternatives for dealing with bagasse waste. The environmental aspects of concern included global warming potential, acidification potential, eutrophication potential and photochemical oxidant creation. Four waste management scenarios for bagasse were evaluated: landfilling with utilization of landfill gas, anaerobic digestion with biogas production, incineration for power generation, and pulp production. In landfills, environmental impacts depended significantly on the biogas collection efficiency, whereas incineration of bagasse to electricity in the power plant showed better environmental performance than that of conventional low biogas collection efficiency landfills. Anaerobic digestion of bagasse in a control biogas reactor was superior to the other two energy generation options in all environmental aspects. Although the use of bagasse in pulp mills created relatively high environmental burdens, the results from the LCA revealed that other stages of the life cycle produced relatively small impacts and that this option might be the most environmentally benign alternative.

  8. Transition Analysis of Promising U.S. Future Fuel Cycles Using ORION

    SciTech Connect (OSTI)

    Sunny, Eva E.; Worrall, Andrew; Peterson, Joshua L.; Powers, Jeffrey J.; Gehin, Jess C.; Gregg, Robert

    2015-01-01

    The US Department of Energy Office of Fuel Cycle Technologies performed an evaluation and screening (E&S) study of nuclear fuel cycle options to help prioritize future research and development decisions. Previous work for this E&S study focused on establishing equilibrium conditions for analysis examples of 40 nuclear fuel cycle evaluation groups (EGs) and evaluating their performance according to a set of 22 standardized metrics. Following the E&S study, additional studies are being conducted to assess transitioning from the current US fuel cycle to future fuel cycle options identified by the E&S study as being most promising. These studies help inform decisions on how to effectively achieve full transition, estimate the length of time needed to undergo transition from the current fuel cycle, and evaluate performance of nuclear systems and facilities in place during the transition. These studies also help identify any barriers to achieve transition. Oak Ridge National Laboratory (ORNL) Fuel Cycle Options Campaign team used ORION to analyze the transition pathway from the existing US nuclear fuel cycle—the once-through use of low-enriched-uranium (LEU) fuel in thermal-spectrum light water reactors (LWRs) —to a new fuel cycle with continuous recycling of plutonium and uranium in sodium fast reactors (SFRs). This paper discusses the analysis of the transition from an LWR to an SFR fleet using ORION, highlights the role of lifetime extensions of existing LWRs to aid transition, and discusses how a slight delay in SFR deployment can actually reduce the time to achieve an equilibrium fuel cycle.

  9. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model This presentation by ...

  10. Fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Ananyev, S. S. Spitsyn, A. V. Kuteev, B. V.

    2015-12-15

    The concept of a tokamak-based stationary fusion neutron source (FNS) for scientific research (neutron diffraction, etc.), tests of structural materials for future fusion reactors, nuclear waste transmutation, fission reactor fuel production, and control of subcritical nuclear systems (fusion–fission hybrid reactor) is being developed in Russia. The fuel cycle system is one of the most important systems of FNS that provides circulation and reprocessing of the deuterium–tritium fuel mixture in all fusion reactor systems: the vacuum chamber, neutral injection system, cryogenic pumps, tritium purification system, separation system, storage system, and tritium-breeding blanket. The existing technologies need to be significantly upgraded since the engineering solutions adopted in the ITER project can be only partially used in the FNS (considering the capacity factor higher than 0.3, tritium flow up to 200 m{sup 3}Pa/s, and temperature of reactor elements up to 650°C). The deuterium–tritium fuel cycle of the stationary FNS is considered. The TC-FNS computer code developed for estimating the tritium distribution in the systems of FNS is described. The code calculates tritium flows and inventory in tokamak systems (vacuum chamber, cryogenic pumps, neutral injection system, fuel mixture purification system, isotope separation system, tritium storage system) and takes into account tritium loss in the fuel cycle due to thermonuclear burnup and β decay. For the two facility versions considered, FNS-ST and DEMO-FNS, the amount of fuel mixture needed for uninterrupted operation of all fuel cycle systems is 0.9 and 1.4 kg, consequently, and the tritium consumption is 0.3 and 1.8 kg per year, including 35 and 55 g/yr, respectively, due to tritium decay.

  11. Nuclear reactors and the nuclear fuel cycle

    SciTech Connect (OSTI)

    Pearlman, H

    1989-11-01

    According to the author, the first sustained nuclear fission chain reaction was not at the University of Chicago, but at the Oklo site in the African country of Gabon. Proof of this phenomenon is provided by mass spectrometric and analytical chemical measurements by French scientists. The U.S. experience in developing power-producing reactors and their related fuel and fuel cycles is discussed.

  12. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    SciTech Connect (OSTI)

    Ames, David E.

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  13. Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor

    SciTech Connect (OSTI)

    Stauff, N.E.; Klim, T.K.; Taiwo, T.A.; Fiorina, C.; Franceschini, F.

    2013-07-01

    A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueled cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic

  14. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Nick Soelberg

    2010-08-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication. Several issues are outside the scope of this report, including the following: thorium fuel cycles, gas-cooled fast reactors, the reliability of TRISO-coated particles (billions in a reactor), and how soon any new reactor or fuel type could be licensed and then deployed and therefore impact fuel cycle performance measures.

  15. Performance evaluation of two-stage fuel cycle from SFR to PWR

    SciTech Connect (OSTI)

    Fei, T.; Hoffman, E.A.; Kim, T.K.; Taiwo, T.A.

    2013-07-01

    One potential fuel cycle option being considered is a two-stage fuel cycle system involving the continuous recycle of transuranics in a fast reactor and the use of bred plutonium in a thermal reactor. The first stage is a Sodium-cooled Fast Reactor (SFR) fuel cycle with metallic U-TRU-Zr fuel. The SFRs need to have a breeding ratio greater than 1.0 in order to produce fissile material for use in the second stage. The second stage is a PWR fuel cycle with uranium and plutonium mixed oxide fuel based on the design and performance of the current state-of-the-art commercial PWRs with an average discharge burnup of 50 MWd/kgHM. This paper evaluates the possibility of this fuel cycle option and discusses its fuel cycle performance characteristics. The study focuses on an equilibrium stage of the fuel cycle. Results indicate that, in order to avoid a positive coolant void reactivity feedback in the stage-2 PWR, the reactor requires high quality of plutonium from the first stage and minor actinides in the discharge fuel of the PWR needs to be separated and sent back to the stage-1 SFR. The electricity-sharing ratio between the 2 stages is 87.0% (SFR) to 13.0% (PWR) for a TRU inventory ratio (the mass of TRU in the discharge fuel divided by the mass of TRU in the fresh fuel) of 1.06. A sensitivity study indicated that by increasing the TRU inventory ratio to 1.13, The electricity generation fraction of stage-2 PWR is increased to 28.9%. The two-stage fuel cycle system considered in this study was found to provide a high uranium utilization (>80%). (authors)

  16. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus ... Measurement of Emissions and Fuel Consumption of a PHEV School Bus Robb Barnitt and ...

  17. World nuclear fuel cycle requirements 1990

    SciTech Connect (OSTI)

    Not Available

    1990-10-26

    This analysis report presents the projected requirements for uranium concentrate and uranium enrichment services to fuel the nuclear power plants expected to be operating under three nuclear supply scenarios. Two of these scenarios, the Lower Reference and Upper Reference cases, apply to the United States, Canada, Europe, the Far East, and other countries with free market economies (FME countries). A No New Orders scenario is presented only for the United States. These nuclear supply scenarios are described in Commercial Nuclear Power 1990: Prospects for the United States and the World (DOE/EIA-0438(90)). This report contains an analysis of the sensitivities of the nuclear fuel cycle projections to different levels and types of projected nuclear capacity, different enrichment tails assays, higher and lower capacity factors, changes in nuclear fuel burnup levels, and other exogenous assumptions. The projections for the United States generally extend through the year 2020, and the FME projections, which include the United States, are provided through 2010. The report also presents annual projections of spent nuclear fuel discharges and inventories of spent fuel. Appendix D includes domestic spent fuel projections through the year 2030 for the Lower and Upper Reference cases and through 2040, the last year in which spent fuel is discharged, for the No New Orders case. These disaggregated projections are provided at the request of the Department of Energy's Office of Civilian Radioactive Waste Management.

  18. System Losses Study - FIT (Fuel-cycle Integration and Tradeoffs)

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Samuel E. Bays; Robert S. Cherry; Denia Djokic; Candido Pereira; Layne F. Pincock; Eric L. Shaber; Melissa C. Teague; Gregory M. Teske; Kurt G. Vedros

    2010-09-01

    This team aimed to understand the broad implications of changes of operating performance and parameters of a fuel cycle component on the entire system. In particular, this report documents the study of the impact of changing the loss of fission products into recycled fuel and the loss of actinides into waste. When the effort started in spring 2009, an over-simplified statement of the objective was “the number of nines” – how would the cost of separation, fuel fabrication, and waste management change as the number of nines of separation efficiency changed. The intent was to determine the optimum “losses” of TRU into waste for the single system that had been the focus of the Global Nuclear Energy Program (GNEP), namely sustained recycle in burner fast reactors, fed by transuranic (TRU) material recovered from used LWR UOX-51 fuel. That objective proved to be neither possible (insufficient details or attention to the former GNEP options, change in national waste management strategy from a Yucca Mountain focus) nor appropriate given the 2009-2010 change to a science-based program considering a wider range of options. Indeed, the definition of “losses” itself changed from the loss of TRU into waste to a generic definition that a “loss” is any material that ends up where it is undesired. All streams from either separation or fuel fabrication are products; fuel feed streams must lead to fuels with tolerable impurities and waste streams must meet waste acceptance criteria (WAC) for one or more disposal sites. And, these losses are linked in the sense that as the loss of TRU into waste is reduced, often the loss or carryover of waste into TRU or uranium is increased. The effort has provided a mechanism for connecting these three Campaigns at a technical level that had not previously occurred – asking smarter and smarter questions, sometimes answering them, discussing assumptions, identifying R&D needs, and gaining new insights. The FIT model has been a

  19. Back-end of the fuel cycle - Indian scenario

    SciTech Connect (OSTI)

    Wattal, P.K.

    2013-07-01

    Nuclear power has a key role in meeting the energy demands of India. This can be sustained by ensuring robust technology for the back end of the fuel cycle. Considering the modest indigenous resources of U and a huge Th reserve, India has adopted a three stage Nuclear Power Programme (NPP) based on 'closed fuel cycle' approach. This option on 'Recovery and Recycle' serves twin objectives of ensuring adequate supply of nuclear fuel and also reducing the long term radio-toxicity of the wastes. Reprocessing of the spent fuel by Purex process is currently employed. High Level Liquid Waste (HLW) generated during reprocessing is vitrified and undergoes interim storage. Back-end technologies are constantly modified to address waste volume minimization and radio-toxicity reduction. Long-term management of HLW in Indian context would involve partitioning of long lived minor actinides and recovery of valuable fission products specifically cesium. Recovery of minor actinides from HLW and its recycle is highly desirable for the sustained growth of India's NPPs. In this context, programme for developing and deploying partitioning technologies on industrial scale is pursued. The partitioned elements could be either transmuted in Fast Reactors (FRs)/Accelerated Driven Systems (ADS) as an integral part of sustainable Indian NPP. (authors)

  20. Plutonium transmutation in thorium fuel cycle

    SciTech Connect (OSTI)

    Necas, Vladimir; Breza, Juraj |; Darilek, Petr

    2007-07-01

    The HELIOS spectral code was used to study the application of the thorium fuel cycle with plutonium as a supporting fissile material in a once-through scenario of the light water reactors PWR and VVER-440 (Russian design). Our analysis was focused on the plutonium transmutation potential and the plutonium radiotoxicity course of hypothetical thorium-based cycles for current nuclear power reactors. The paper shows a possibility to transmute about 50% of plutonium in analysed reactors. Positive influence on radiotoxicity after 300 years and later was pointed out. (authors)

  1. Fuel Cycle Technologies 2014 Achievement Report

    SciTech Connect (OSTI)

    Hong, Bonnie C.

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.

  2. International nuclear fuel cycle fact book. Revision 6

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1986-01-01

    The International Fuel Cycle Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2.

  3. Safeguards Considerations for Thorium Fuel Cycles (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Safeguards Considerations for Thorium Fuel Cycles Citation Details In-Document Search This content will become publicly available on April 21, 2017 Title: Safeguards Considerations for Thorium Fuel Cycles We report that by around 2025, thorium-based fuel cycles are likely to be deployed internationally. States such as China and India are pursuing research, development, and deployment pathways toward a number of commercial-scale thorium fuel cycles, and they are already

  4. Current Comparison of Advanced Nuclear Fuel Cycles

    SciTech Connect (OSTI)

    Steven Piet; Trond Bjornard; Brent Dixon; Robert Hill; Gretchen Matthern; David Shropshire

    2007-04-01

    This paper compares potential nuclear fuel cycle strategies – once-through, recycling in thermal reactors, sustained recycle with a mix of thermal and fast reactors, and sustained recycle with fast reactors. Initiation of recycle starts the draw-down of weapons-usable material and starts accruing improvements for geologic repositories and energy sustainability. It reduces the motivation to search for potential second geologic repository sites. Recycle in thermal-spectru

  5. Proliferation prevention in the commercial fuel cycle

    SciTech Connect (OSTI)

    Sutcliffe, W G

    1999-04-09

    This website contains the papers presented on November 17, 1998 during the session, "Proliferation Prevention in the Commercial Fuel Cycle," at the American Nuclear Society meeting in Washington, DC. The abstracts are in a separate section; individual papers also contain the author's bio and e-mail address. In the session planning phase, it was suggested that the following questions and other relevant issues be addressed: * What are the difficulties and issues with defining and enforcing international standards for the physical protection of Pu and HEU (beyond the Convention on the Physical protection of Nuclear Material, which primarily addresses transportation)? * How do we (or can we) keep nuclear technology in general, and reprocessing and enrichment technologies in particular, from spreading to undesirable organizations (including governments), in light of Article IV of the NPT? Specifically, can we (should we) prevent the construction of light-water reactors in Iran; and should we support the construction of light-water reactors in North Korea? * Are there more proliferation-resistant fuel cycles that would be appropriate in developing countries? * Can the concept of "nonproliferation credentials" be defined in a useful way? * Is there historical evidence to indicate that reprocessing (or enrichment of HEU) in the US, Japan, or the EURATOM countries has impacted the acquisition (or attempted acquisition) of nuclear weapons by other nations or groups? * What is the impact of a fissile material cutoff treaty (FMCT) be on commercial nuclear fuel cycles? * Does MOX spent fuel present a greater proliferation risk than LEU spent fuel? Although the authors did not explicitly attempt to answer all these questions, they did enlighten us about a number of these and related issues.

  6. Fuel Cycle Scenario Definition, Evaluation, and Trade-offs

    SciTech Connect (OSTI)

    Steven J. Piet; Gretchen E. Matthern; Jacob J. Jacobson; Christopher T. Laws; Lee C. Cadwallader; Abdellatif M. Yacout; Robert N. Hill; J. D. Smith; Andrew S. Goldmann; George Bailey

    2006-08-01

    This report aims to clarify many of the issues being discussed within the AFCI program, including Inert Matrix Fuel (IMF) versus Mixed Oxide (MOX) fuel, single-pass versus multi-pass recycling, thermal versus fast reactors, potential need for transmutation of technetium and iodine, and the value of separating cesium and strontium. It documents most of the work produced by INL, ANL, and SNL personnel under their Simulation, Evaluation, and Trade Study (SETS) work packages during FY2005 and the first half of FY2006. This report represents the first attempt to calculate a full range of metrics, covering all four AFCI program objectives - waste management, proliferation resistance, energy recovery, and systematic management/economics/safety - using a combination of "static" calculations and a system dynamic model, DYMOND. In many cases, we examine the same issue both dynamically and statically to determine the robustness of the observations. All analyses are for the U.S. reactor fleet. This is a technical report, not aimed at a policy-level audience. A wide range of options are studied to provide the technical basis for identifying the most attractive options and potential improvements. Option improvement could be vital to accomplish before the AFCI program publishes definitive cost estimates. Information from this report will be extracted and summarized in future policy-level reports. Many dynamic simulations of deploying those options are included. There are few "control knobs" for flying or piloting the fuel cycle system into the future, even though it is dark (uncertain) and controls are sluggish with slow time response: what types of reactors are built, what types of fuels are used, and the capacity of separation and fabrication plants. Piloting responsibilities are distributed among utilities, government, and regulators, compounding the challenge of making the entire system work and respond to changing circumstances. We identify four approaches that would

  7. NEAC Fuel Cycle Research and Development Subcommittee Report for December

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11, 2015 Meeting | Department of Energy Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting NEAC Fuel Cycle Research and Development Subcommittee Report for December 11, 2015 Meeting Fuel Cycle Research and Development Subcommittee Report (146.05 KB) More Documents & Publications MEETING MATERIALS: DECEMBER 11, 2015 MEETING MATERIALS: JUNE 26, 2015 MEETING MATERIALS: DECEMBER 10, 2014

  8. W.T.; Rainey, R.H. 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS;...

    Office of Scientific and Technical Information (OSTI)

    thorium fuel reprocessing experience Brooksbank, R.E.; McDuffee, W.T.; Rainey, R.H. 11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS; NUCLEAR MATERIALS DIVERSION; SAFEGUARDS; SPENT FUELS;...

  9. Financing Strategies For A Nuclear Fuel Cycle Facility

    SciTech Connect (OSTI)

    David Shropshire; Sharon Chandler

    2006-07-01

    To help meet the nation’s energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for

  10. Transmutation, Burn-Up and Fuel Fabrication Trade-Offs in Reduced-Moderation Water Reactor Thorium Fuel Cycles - 13502

    SciTech Connect (OSTI)

    Lindley, Benjamin A.; Parks, Geoffrey T.; Franceschini, Fausto

    2013-07-01

    Multiple recycle of long-lived actinides has the potential to greatly reduce the required storage time for spent nuclear fuel or high level nuclear waste. This is generally thought to require fast reactors as most transuranic (TRU) isotopes have low fission probabilities in thermal reactors. Reduced-moderation LWRs are a potential alternative to fast reactors with reduced time to deployment as they are based on commercially mature LWR technology. Thorium (Th) fuel is neutronically advantageous for TRU multiple recycle in LWRs due to a large improvement in the void coefficient. If Th fuel is used in reduced-moderation LWRs, it appears neutronically feasible to achieve full actinide recycle while burning an external supply of TRU, with related potential improvements in waste management and fuel utilization. In this paper, the fuel cycle of TRU-bearing Th fuel is analysed for reduced-moderation PWRs and BWRs (RMPWRs and RBWRs). RMPWRs have the advantage of relatively rapid implementation and intrinsically low conversion ratios. However, it is challenging to simultaneously satisfy operational and fuel cycle constraints. An RBWR may potentially take longer to implement than an RMPWR due to more extensive changes from current BWR technology. However, the harder neutron spectrum can lead to favourable fuel cycle performance. A two-stage fuel cycle, where the first pass is Th-Pu MOX, is a technically reasonable implementation of either concept. The first stage of the fuel cycle can therefore be implemented at relatively low cost as a Pu disposal option, with a further policy option of full recycle in the medium term. (authors)

  11. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    SciTech Connect (OSTI)

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; Heidet, F.; Stauff, N.; Zhang, G.; Todosow, Michael; Worrall, Andrew; Gehin, Jess C.; Kim, T. K.; Taiwo, T. A.

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavy or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.

  12. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate and Fast Neutron Spectrum Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Nicholas R.; Powers, Jeffrey J.; Feng, B.; Heidet, F.; Stauff, N.; Zhang, G.; Todosow, Michael; Worrall, Andrew; Gehin, Jess C.; Kim, T. K.; et al

    2015-05-21

    This paper presents analyses of possible reactor representations of a nuclear fuel cycle with continuous recycling of thorium and produced uranium (mostly U-233) with thorium-only feed. The analysis was performed in the context of a U.S. Department of Energy effort to develop a compendium of informative nuclear fuel cycle performance data. The objective of this paper is to determine whether intermediate spectrum systems, having a majority of fission events occurring with incident neutron energies between 1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. The intermediate spectrum options analyzed include tight lattice heavymore » or light water-cooled reactors, continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. All options were modeled in reactor physics codes to calculate their lattice physics, spectrum characteristics, and fuel compositions over time. Based on these results, detailed metrics were calculated to compare the fuel cycle performance. These metrics include waste management and resource utilization, and are binned to accommodate uncertainties. The performance of the intermediate systems for this selfsustaining thorium fuel cycle was similar to a representative fast spectrum system. However, the number of fission neutrons emitted per neutron absorbed limits performance in intermediate spectrum systems.« less

  13. USED FUEL RAIL SHOCK AND VIBRATION TESTING OPTIONS ANALYSIS

    SciTech Connect (OSTI)

    Ross, Steven B.; Best, Ralph E.; Klymyshyn, Nicholas A.; Jensen, Philip J.; Maheras, Steven J.

    2014-09-29

    The objective of the rail shock and vibration tests is to complete the framework needed to quantify loads of fuel assembly components that are necessary to guide materials research and establish a technical basis for review organizations such as the U.S. Nuclear Regulatory Commission (NRC). A significant body of experimental and numerical modeling data exists to quantify loads and failure limits applicable to normal conditions of transport (NCT) rail transport, but the data are based on assumptions that can only be verified through experimental testing. The test options presented in this report represent possible paths for acquiring the data that are needed to confirm the assumptions of previous work, validate modeling methods that will be needed for evaluating transported fuel on a case-by-case basis, and inform material test campaigns on the anticipated range of fuel loading. The ultimate goal of this testing is to close all of the existing knowledge gaps related to the loading of used fuel under NCT conditions and inform the experiments and analysis program on specific endpoints for their research. The options include tests that would use an actual railcar, surrogate assemblies, and real or simulated rail transportation casks. The railcar carrying the cradle, cask, and surrogate fuel assembly payload would be moved in a train operating over rail track modified or selected to impart shock and vibration forces that occur during normal rail transportation. Computer modeling would be used to help design surrogates that may be needed for a rail cask, a cask’s internal basket, and a transport cradle. The objective of the design of surrogate components would be to provide a test platform that effectively simulates responses to rail shock and vibration loads that would be exhibited by state-of-the-art rail cask, basket, and/or cradle structures. The computer models would also be used to help determine the placement of instrumentation (accelerometers and strain gauges

  14. Closed Fuel Cycle Waste Treatment Strategy

    SciTech Connect (OSTI)

    Vienna, J. D.; Collins, E. D.; Crum, J. V.; Ebert, W. L.; Frank, S. M.; Garn, T. G.; Gombert, D.; Jones, R.; Jubin, R. T.; Maio, V. C.; Marra, J. C.; Matyas, J.; Nenoff, T. M.; Riley, B. J.; Sevigny, G. J.; Soelberg, N. R.; Strachan, D. M.; Thallapally, P. K.; Westsik, J. H.

    2015-02-01

    This study is aimed at evaluating the existing waste management approaches for nuclear fuel cycle facilities in comparison to the objectives of implementing an advanced fuel cycle in the U.S. under current legal, regulatory, and logistical constructs. The study begins with the Global Nuclear Energy Partnership (GNEP) Integrated Waste Management Strategy (IWMS) (Gombert et al. 2008) as a general strategy and associated Waste Treatment Baseline Study (WTBS) (Gombert et al. 2007). The tenets of the IWMS are equally valid to the current waste management study. However, the flowsheet details have changed significantly from those considered under GNEP. In addition, significant additional waste management technology development has occurred since the GNEP waste management studies were performed. This study updates the information found in the WTBS, summarizes the results of more recent technology development efforts, and describes waste management approaches as they apply to a representative full recycle reprocessing flowsheet. Many of the waste management technologies discussed also apply to other potential flowsheets that involve reprocessing. These applications are occasionally discussed where the data are more readily available. The report summarizes the waste arising from aqueous reprocessing of a typical light-water reactor (LWR) fuel to separate actinides for use in fabricating metal sodium fast reactor (SFR) fuel and from electrochemical reprocessing of the metal SFR fuel to separate actinides for recycle back into the SFR in the form of metal fuel. The primary streams considered and the recommended waste forms include; Tritium in low-water cement in high integrity containers (HICs); Iodine-129: As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form

  15. LIFE vs. LWR: End of the Fuel Cycle

    SciTech Connect (OSTI)

    Farmer, J C; Blink, J A; Shaw, H F

    2008-10-02

    LIFE are expected to result in a more straightforward licensing process and are also expected to improve the public perception of risk from nuclear power generation, transportation of nuclear materials, and nuclear waste disposal. Waste disposal is an ongoing issue for LWRs. The conventional (once-through) LWR fuel cycle treats unburned fuel as waste, and results in the current fleet of LWRs producing about twice as much waste in their 60 years of operation as is legally permitted to be disposed of in Yucca Mountain. Advanced LWR fuel cycles would recycle the unused fuel, such that each GWe-yr of electricity generation would produce only a small waste volume compared to the conventional fuel cycle. However, the advanced LWR fuel cycle requires chemical reprocessing plants for the fuel, multiple handling of radioactive materials, and an extensive transportation network for the fuel and waste. In contrast, the LIFE engine requires only one fueling for the plant lifetime, has no chemical reprocessing, and has a single shipment of a small amount of waste per GWe-yr of electricity generation. Public perception of the nuclear option will be improved by the reduction, for LIFE engines, of the number of shipments of radioactive material per GWe-yr and the need to build multiple repositories. In addition, LIFE fuel requires neither enrichment nor reprocessing, eliminating the two most significant pathways to proliferation from commercial nuclear fuel to weapons programs.

  16. Indirect-fired gas turbine dual fuel cell power cycle

    DOE Patents [OSTI]

    Micheli, Paul L.; Williams, Mark C.; Sudhoff, Frederick A.

    1996-01-01

    A fuel cell and gas turbine combined cycle system which includes dual fuel cell cycles combined with a gas turbine cycle wherein a solid oxide fuel cell cycle operated at a pressure of between 6 to 15 atms tops the turbine cycle and is used to produce CO.sub.2 for a molten carbonate fuel cell cycle which bottoms the turbine and is operated at essentially atmospheric pressure. A high pressure combustor is used to combust the excess fuel from the topping fuel cell cycle to further heat the pressurized gas driving the turbine. A low pressure combustor is used to combust the excess fuel from the bottoming fuel cell to reheat the gas stream passing out of the turbine which is used to preheat the pressurized air stream entering the topping fuel cell before passing into the bottoming fuel cell cathode. The CO.sub.2 generated in the solid oxide fuel cell cycle cascades through the system to the molten carbonate fuel cell cycle cathode.

  17. Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

    2013-08-01

    The Department of Energy Office of Nuclear Energy’s Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. • land use • water use • CO2 emissions • radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

  18. Comprehensive Fuel Cycle - Community Perspective - 13093

    SciTech Connect (OSTI)

    McLeod, Richard V.; Frazier, Timothy A.

    2013-07-01

    Should a five-county region surrounding the Department of Energy's Savannah River Site ('SRS') use its assets to help provide solutions to closing the nation's nuclear fuel cycle? That question has been the focus of a local ad hoc multi-disciplinary community task force (Tier I) that has been at work in recent months outlining issues and identifying unanswered questions to determine if assuming a leadership role in closing the nuclear fuel cycle is in the community's interest. If so, what are the terms and conditions under which we the community would agree to participate? Our starting point was the President's Blue Ribbon Commission on America's Nuclear Future ('Commission') which made a total of eight (8) recommendations in its final report. There are several recommendations that are directly relevant to the Tier I group and potential efforts of the Region. These are the 'consent-based approach', the creation of an independent nuclear waste management entity funded from the existing nuclear waste fee; the 'prompt efforts to develop one or more consolidated storage facilities', and 'continued U.S. innovation in nuclear energy technology and for workforce development'. (authors)

  19. (Coordinated research on fuel cycle cost)

    SciTech Connect (OSTI)

    Cantor, R.A.; Shelton, R.B.; Krupnick, A.J.

    1990-11-05

    The Department of Energy (DOE) and the Commission of the European Communities (CEC) have been exploring the possibility of parallel studies on the externals costs of employing fuel cycles to deliver energy services. These studies are of particular importance following the activities of the US National Energy Strategy (NES), where the potential discrepancies between market prices and the social costs of energy services were raised as significant policy concerns. To respond to these concerns, Oak Ridge National Laboratory (ORNL) and Resources for the Future (RFF) have begun a collaborative effort for the DOE to investigate the external costs, or externalities, generated by cradle to grave fuel cycle activities. Upon initiating this project, the CEC expressed an interest to the DOE that Europe should conduct a parallel study and that the two studies should be highly coordinated for consistency in the results. This series of meetings with members of the CEC was undertaken to resolve some issues implied by pursuing parallel, coordinated studies; issues that were previously defined by the August meetings. In addition, it was an opportunity for some members of the US research team and the DOE sponsor to meet with their European counterparts for the study, as well as persons in charge of research areas that ultimately would play a key role in the European study.

  20. Estimating externalities of biomass fuel cycles, Report 7

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report documents the analysis of the biomass fuel cycle, in which biomass is combusted to produce electricity. The major objectives of this study were: (1) to implement the methodological concepts which were developed in the Background Document (ORNL/RFF 1992) as a means of estimating the external costs and benefits of fuel cycles, and by so doing, to demonstrate their application to the biomass fuel cycle; (2) to develop, given the time and resources, a range of estimates of marginal (i.e., the additional or incremental) damages and benefits associated with selected impact-pathways from a new wood-fired power plant, using a representative benchmark technology, at two reference sites in the US; and (3) to assess the state of the information available to support energy decision making and the estimation of externalities, and by so doing, to assist in identifying gaps in knowledge and in setting future research agendas. The demonstration of methods, modeling procedures, and use of scientific information was the most important objective of this study. It provides an illustrative example for those who will, in the future, undertake studies of actual energy options and sites. As in most studies, a more comprehensive analysis could have been completed had budget constraints not been as severe. Particularly affected were the air and water transport modeling, estimation of ecological impacts, and economic valuation. However, the most important objective of the study was to demonstrate methods, as a detailed example for future studies. Thus, having severe budget constraints was appropriate from the standpoint that these studies could also face similar constraints. Consequently, an important result of this study is an indication of what can be done in such studies, rather than the specific numerical estimates themselves.

  1. Fuel cycle centers revisited: Consolidation of fuel cycle activities in a few countries

    SciTech Connect (OSTI)

    Kratzer, M.B.

    1996-07-01

    Despite varied expressions, the general impression remains that the international fuel cycle center concept, whatever its merits, is visionary. It also is quite possibly unattainable in light of strong national pressures toward independence and self-sufficiency in all things nuclear. Is the fuel cycle center an idea that has come and gone? Is it an idea whose time has not yet come? Or is it, as this paper suggests, an idea that has already arrived on the scene, attracting little attention or even acknowledgement of its presence? The difficult in answering this questions arises, in part, from the fact that despite its long and obvious appeal, there has been very little systematic analysis of the concept itself. Such obvious questions as how many and where fuel cycle centers should be located; what characteristics should the hot country or countries possess; and what are the institutional forms or features that endow the concept with enhanced proliferation protection have rarely been seriously and systematically addressed. The title of this paper focuses on limiting the geographic spread of fuel cycle facilities, and some may suggest that doing so does not necessarily call for any type of international or multinational arrangements applicable to those that exist. It is a premise of this paper, however, that a restriction on the number of countries possessing sensitive fuel cycle facilities necessarily involves some degree of multinationalization. This is not only because in every instance a nonproliferation pledge and international or multinational safeguards, or both, will be applied to the facility, but also because a restriction on the number of countries possessing these facilities implies that those in existence will serve a multinational market. This feature in itself is an important form of international auspices. Thus, the two concepts--limitation and multinationalization--if not necessarily one and the same, are at least de facto corollaries.

  2. Why reconsider the thorium fuel cycle?

    SciTech Connect (OSTI)

    Krahn, S.; Croff, A.; Ault, T.; Wymer, R.

    2013-07-01

    In this paper we have endeavored to present the available technical information on the potential use of Th in nuclear fuel cycle (FC) applications as compared to U without subjective evaluations. Where helpful, we have compared the technical attributes of Th-232 as a fertile isotope and U-233 as a fissile isotope with other similar isotopes (i.e., U-238, and U-235 and Pu-239, respectively). In addition, we have summarized (a) experience gained to-date with fabricating and reprocessing of Th-232/U-233 fuels, (b) factors concerning Th fuel irradiation in both test reactors and power reactors, and (c) differences in the backend of the FC with emphasis on repository risks. As might be expected, many technical aspects of Th vs. U have not changed since the sixties. However, there are some factors elaborated in this paper that have changed. Changes potentially encouraging Th use are: (a) the ability to recover large amounts of Th as a byproduct with small attendant costs and environmental impacts, (b) the potential to produce fewer minor actinides (MA) and less Pu during power production, and (c) increased concerns about proliferation which might be somewhat mitigated by the high radioactivity and amenability to isotopic dilution of U-233. Changes challenging Th utilization are: (a) obtaining sufficient experience handling Th/U-233 fuels, (b) the existence of large inventories of depleted U and continuing discovery of large U resources, and (c) recognition that the extent to which U-233 might mitigate proliferation concerns is not as large as originally hoped.

  3. A metallic fuel cycle concept from spent oxide fuel to metallic fuel

    SciTech Connect (OSTI)

    Fujita, Reiko; Kawashima, Masatoshi; Yamaoka, Mitsuaki; Arie, Kazuo; Koyama, Tadafumi

    2007-07-01

    A Metallic fuel cycle concept for Self-Consistent Nuclear Energy System (SCNES) has been proposed in a companion papers. The ultimate goal of the SCNES is to realize sustainable energy supply without endangering the environment and humans. For future transition period from LWR era to SCNES era, a new metallic fuel recycle concept from LWR spent fuel has been proposed in this paper. Combining the technology for electro-reduction of oxide fuels and zirconium recovery by electrorefining in molten salts in the nuclear recycling schemes, the amount of radioactive waste reduced in a proposed metallic fuel cycle concept. If the recovery ratio of zirconium metal from the spent zirconium waste is 95%, the cost estimation in zirconium recycle to the metallic fuel materials has been estimated to be less than 1/25. (authors)

  4. Fuel cycle integration issues associated with P/T technology

    SciTech Connect (OSTI)

    Michaels, G.E.; Ludwig, S.B.

    1992-04-01

    The three primary interfaces between a generic partitioning and transmutation (P/T) technology and the existing United States fuel cycle are the light-water reactor (LWR) spent fuel inventory, the reprocessed uranium (RU) stream, and the high-level waste stream. The features and implications of these three interfaces are reviewed and their implications for P/T system design and for waste management are assessed. The variability of transuranic nuclide composition in the LWR spent fuel is calculated and its potential implications for transmutation system core design are discussed. The radiological characteristics of the RU stream are presented, and options for disposition of the stream are reviewed. Most P/T scenarios assume that RU will be recycled to LWRs. This study demonstrates, however, that LWR recycle cannot totally consume the reprocessed stream, and disposal of a waste uranium steam with high levels of radiologically-significant isotopes will still be necessary. The radioactivity of the tails stream for enrichment plants resulting from a dedicated RU campaign is calculated. The tendency of gaseous diffusion plant enrichment technology to deplete the tails stream of minor uranium isotopes is seen as a benefit and an advantage over Atomic Vapor Laser Isotope Separation-type technology. Finally, the implications of P/T on LWR-origin wastes reporting to the repository is discussed, and several significant differences between LWR-origin waste originating from transmutation systems are assessed.

  5. Fuel cycle integration issues associated with P/T technology

    SciTech Connect (OSTI)

    Michaels, G.E.; Ludwig, S.B.

    1992-01-01

    The three primary interfaces between a generic partitioning and transmutation (P/T) technology and the existing United States fuel cycle are the light-water reactor (LWR) spent fuel inventory, the reprocessed uranium (RU) stream, and the high-level waste stream. The features and implications of these three interfaces are reviewed and their implications for P/T system design and for waste management are assessed. The variability of transuranic nuclide composition in the LWR spent fuel is calculated and its potential implications for transmutation system core design are discussed. The radiological characteristics of the RU stream are presented, and options for disposition of the stream are reviewed. Most P/T scenarios assume that RU will be recycled to LWRs. This study demonstrates, however, that LWR recycle cannot totally consume the reprocessed stream, and disposal of a waste uranium steam with high levels of radiologically-significant isotopes will still be necessary. The radioactivity of the tails stream for enrichment plants resulting from a dedicated RU campaign is calculated. The tendency of gaseous diffusion plant enrichment technology to deplete the tails stream of minor uranium isotopes is seen as a benefit and an advantage over Atomic Vapor Laser Isotope Separation-type technology. Finally, the implications of P/T on LWR-origin wastes reporting to the repository is discussed, and several significant differences between LWR-origin waste originating from transmutation systems are assessed.

  6. Natural Gas as a Fuel Option for Heavy Vehicles

    SciTech Connect (OSTI)

    James E. Wegrzyn; Wai Lin Litzke; Michael Gurevich

    1999-04-26

    The U.S. Department of Energy (DOE), Office of Heavy Vehicle Technologies (OHVT) is promoting the use of natural gas as a fuel option in the transportation energy sector through its natural gas vehicle program [1]. The goal of this program is to eliminate the technical and cost barriers associated with displacing imported petroleum. This is achieved by supporting research and development in technologies that reduce manufacturing costs, reduce emissions, and improve vehicle performance and consumer acceptance for natural gas fueled vehicles. In collaboration with Brookhaven National Laboratory, projects are currently being pursued in (1) liquefied natural gas production from unconventional sources, (2) onboard natural gas storage (adsorbent, compressed, and liquefied), (3) natural gas delivery systems for both onboard the vehicle and the refueling station, and (4) regional and enduse strategies. This paper will provide an overview of these projects highlighting their achievements and current status. In addition, it will discuss how the individual technologies developed are being integrated into an overall program strategic plan.

  7. CASL-U-2015-0151-000 SMR Fuel Cycle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-000 SMR Fuel Cycle Optimization and Control Rod Depletion Using NESTLE and LWROPT Keith ... CASL-U-2015-0151-000 Advances in Nuclear Fuel Management V (ANFM 2015) Hilton Head ...

  8. Sustainable Thorium Nuclear Fuel Cycles: A Comparison of Intermediate...

    Office of Scientific and Technical Information (OSTI)

    1 eV and 105 eV, perform as well as fast spectrum systems in this fuel cycle. ... continuously refueled molten salt reactors, and a sodium-cooled reactor with hydride fuel. ...

  9. FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT FUEL CYCLE TECHNOLOGIES QUALITY ASSURANCE PROGRAM DOCUMENT The purpose of this Fuel Cycle Technologies (FCT) Quality Assurance Program Document (QAPD) is to define qualityassurance (QA) requirements for the FCT Program. These requirements are applicable to FCT activities and Participants (see definition) to the extent defined herein. In developing these requirements, it is recognized that each Department of Energy (DOE)

  10. The Application of CYCLUS to Fuel Cycle Transition Analysis ...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Presented at: GLOBAL 2015, 21st International Conference & Exhibition: "Nuclear Fuel Cycle for a Low-Carbon Future", Paris, France, Sep 20 - Sep 24, ...

  11. NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis...

    Open Energy Info (EERE)

    search Tool Summary LAUNCH TOOL Name: NETL - Petroleum-Based Fuels Life Cycle Greenhouse Gas Analysis 2005 Baseline Model AgencyCompany Organization: National Energy Technology...

  12. Potential synergy: the thorium fuel cycle and rare earths processing...

    Office of Scientific and Technical Information (OSTI)

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A ... Resource Relation: Conference: GLOBAL 2013: International Nuclear Fuel Cycle Conference - ...

  13. Updated Uranium Fuel Cycle Environmental Impacts for Advanced Reactor Designs

    SciTech Connect (OSTI)

    Nitschke, R.

    2004-10-03

    The purpose of this project was to update the environmental impacts from the uranium fuel cycle for select advanced (GEN III+) reactor designs.

  14. Fuel cycle assessment: A compendium of models, methodologies, and approaches

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The purpose of this document is to profile analytical tools and methods which could be used in a total fuel cycle analysis. The information in this document provides a significant step towards: (1) Characterizing the stages of the fuel cycle. (2) Identifying relevant impacts which can feasibly be evaluated quantitatively or qualitatively. (3) Identifying and reviewing other activities that have been conducted to perform a fuel cycle assessment or some component thereof. (4) Reviewing the successes/deficiencies and opportunities/constraints of previous activities. (5) Identifying methods and modeling techniques/tools that are available, tested and could be used for a fuel cycle assessment.

  15. The IAEA international conference on fast reactors and related fuel cycles: highlights and main outcomes

    SciTech Connect (OSTI)

    Monti, S.; Toti, A.

    2013-07-01

    The 'International Conference on Fast Reactors and Related Fuel Cycles', which is regularly held every four years, represents the main international event dealing with fast reactors technology and related fuel cycles options. Main topics of the conference were new fast reactor concepts, design and simulation capabilities, safety of fast reactors, fast reactor fuels and innovative fuel cycles, analysis of past experience, fast reactor knowledge management. Particular emphasis was put on safety aspects, considering the current need of developing and harmonizing safety standards for fast reactors at the international level, taking also into account the lessons learned from the accident occurred at the Fukushima- Daiichi nuclear power plant in March 2011. Main advances in the several key areas of technological development were presented through 208 oral presentations during 41 technical sessions which shows the importance taken by fast reactors in the future of nuclear energy.

  16. Integrating repositories with fuel cycles: The airport authority model

    SciTech Connect (OSTI)

    Forsberg, C.

    2012-07-01

    The organization of the fuel cycle is a legacy of World War II and the cold war. Fuel cycle facilities were developed and deployed without consideration of the waste management implications. This led to the fuel cycle model of a geological repository site with a single owner, a single function (disposal), and no other facilities on site. Recent studies indicate large economic, safety, repository performance, nonproliferation, and institutional incentives to collocate and integrate all back-end facilities. Site functions could include geological disposal of spent nuclear fuel (SNF) with the option for future retrievability, disposal of other wastes, reprocessing with fuel fabrication, radioisotope production, other facilities that generate significant radioactive wastes, SNF inspection (navy and commercial), and related services such as SNF safeguards equipment testing and training. This implies a site with multiple facilities with different owners sharing some facilities and using common facilities - the repository and SNF receiving. This requires a different repository site institutional structure. We propose development of repository site authorities modeled after airport authorities. Airport authorities manage airports with government-owned runways, collocated or shared public and private airline terminals, commercial and federal military facilities, aircraft maintenance bases, and related operations - all enabled and benefiting the high-value runway asset and access to it via taxi ways. With a repository site authority the high value asset is the repository. The SNF and HLW receiving and storage facilities (equivalent to the airport terminal) serve the repository, any future reprocessing plants, and others with needs for access to SNF and other wastes. Non-public special-built roadways and on-site rail lines (equivalent to taxi ways) connect facilities. Airport authorities are typically chartered by state governments and managed by commissions with members

  17. THE MISSION AND ACCOMPLISHMENTS FROM DOE’S FUEL CYCLE RESEARCH AND DEVELOPMENT (FCRD) ADVANCED FUELS CAMPAIGN

    SciTech Connect (OSTI)

    J. Carmack; L. Braase; F. Goldner

    2015-09-01

    The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors, enhance proliferation resistance of nuclear fuel, effectively utilize nuclear energy resources, and address the longer-term waste management challenges. This includes development of a state of the art Research and Development (R&D) infrastructure to support the use of a “goal oriented science based approach.” AFC uses a “goal oriented, science based approach” aimed at a fundamental understanding of fuel and cladding fabrication methods and performance under irradiation, enabling the pursuit of multiple fuel forms for future fuel cycle options. This approach includes fundamental experiments, theory, and advanced modeling and simulation. One of the most challenging aspects of AFC is the management, integration, and coordination of major R&D activities across multiple organizations. AFC interfaces and collaborates with Fuel Cycle Technologies (FCT) campaigns, universities, industry, various DOE programs and laboratories, federal agencies (e.g., Nuclear Regulatory Commission [NRC]), and international organizations. Key challenges are the development of fuel technologies to enable major increases in fuel performance (safety, reliability, power and burnup) beyond current technologies, and development of characterization methods and predictive fuel performance models to enable more efficient development and licensing of advanced fuels. Challenged with the research and development of fuels for two different reactor technology platforms, AFC targeted transmutation fuel development and focused ceramic fuel development for Advanced LWR Fuels.

  18. HTGR Technology Family Assessment for a Range of Fuel Cycle Missions

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Nick R. Soelberg

    2010-11-01

    This report examines how the HTGR technology family can provide options for the once through, modified open cycle (MOC), or full recycle fuel cycle strategies. The HTGR can serve all the fuel cycle missions that an LWR can; both are thermal reactors. Additional analyses are warranted to determine if HTGR “full recycle” service could provide improved consumption of transuranic (TRU) material than LWRs (as expected), to analyze the unique proliferation resistance issues associated with the “pebble bed” approach, and to further test and analyze methods to separate TRISO-coated fuel particles from graphite and/or to separate used HTGR fuel meat from its TRISO coating. The feasibility of these two separation issues is not in doubt, but further R&D could clarify and reduce the cost and enable options not adequately explored at present. The analyses here and the now-demonstrated higher fuel burnup tests (after the illustrative designs studied here) should enable future MOC and full recycle HTGR concepts to more rapidly consume TRU, thereby offering waste management advantages. Interest in “limited separation” or “minimum fuel treatment” separation approaches motivates study of impurity-tolerant fuel fabrication.

  19. Control system options and strategies for supercritical CO2 cycles.

    SciTech Connect (OSTI)

    Moisseytsev, A.; Kulesza, K. P.; Sienicki, J. J.; Nuclear Engineering Division; Oregon State Univ.

    2009-06-18

    The Supercritical Carbon Dioxide (S-CO{sub 2}) Brayton Cycle is a promising alternative to Rankine steam cycle and recuperated gas Brayton cycle energy converters for use with Sodium-Cooled Fast Reactors (SFRs), Lead-Cooled Fast Reactors (LFRs), as well as other advanced reactor concepts. The S-CO{sub 2} Brayton Cycle offers higher plant efficiencies than Rankine or recuperated gas Brayton cycles operating at the same liquid metal reactor core outlet temperatures as well as reduced costs or size of key components especially the turbomachinery. A new Plant Dynamics Computer Code has been developed at Argonne National Laboratory for simulation of a S-CO{sub 2} Brayton Cycle energy converter coupled to an autonomous load following liquid metal-cooled fast reactor. The Plant Dynamics code has been applied to investigate the effectiveness of a control strategy for the S-CO{sub 2} Brayton Cycle for the STAR-LM 181 MWe (400 MWt) Lead-Cooled Fast Reactor. The strategy, which involves a combination of control mechanisms, is found to be effective for controlling the S-CO{sub 2} Brayton Cycle over the complete operating range from 0 to 100 % load for a representative set of transient load changes. While the system dynamic analysis of control strategy performance for STARLM is carried out for a S-CO{sub 2} Brayton Cycle energy converter incorporating an axial flow turbine and compressors, investigations of the S-CO{sub 2} Brayton Cycle have identified benefits from the use of centrifugal compressors which offer a wider operating range, greater stability near the critical point, and potentially further cost reductions due to fewer stages than axial flow compressors. Models have been developed at Argonne for the conceptual design and performance analysis of centrifugal compressors for use in the SCO{sub 2} Brayton Cycle. Steady state calculations demonstrate the wider operating range of centrifugal compressors versus axial compressors installed in a S-CO{sub 2} Brayton Cycle as

  20. Fuel Cycle Technology Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 22, 2015 Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ... The result of the accident tolerant fuel development activities, if successful, ...

  1. Thorium Fuel Options for Sustained Transuranic Burning in Pressurized Water Reactors - 12381

    SciTech Connect (OSTI)

    Rahman, Fariz Abdul; Lee, John C. [University of Michigan, Ann Arbor, MI (United States); Franceschini, Fausto; Wenner, Michael [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

    2012-07-01

    As described in companion papers, Westinghouse is proposing the adoption of a thorium-based fuel cycle to burn the transuranics (TRU) contained in the current Used Nuclear Fuel (UNF) and transition towards a less radio-toxic high level waste. A combination of both light water reactors (LWR) and fast reactors (FR) is envisaged for the task, with the emphasis initially posed on their TRU burning capability and eventually to their self-sufficiency. Given the many technical challenges and development times related to the deployment of TRU burners fast reactors, an interim solution making best use of the current resources to initiate burning the legacy TRU inventory while developing and testing some technologies of later use is desirable. In this perspective, a portion of the LWR fleet can be used to start burning the legacy TRUs using Th-based fuels compatible with the current plants and operational features. This analysis focuses on a typical 4-loop PWR, with 17x17 fuel assembly design and TRUs (or Pu) admixed with Th (similar to U-MOX fuel, but with Th instead of U). Global calculations of the core were represented with unit assembly simulations using the Linear Reactivity Model (LRM). Several assembly configurations have been developed to offer two options that can be attractive during the TRU transmutation campaign: maximization of the TRU transmutation rate and capability for TRU multi-recycling, to extend the option of TRU recycling in LWR until the FR is available. Homogeneous as well as heterogeneous assembly configurations have been developed with various recycling schemes (Pu recycle, TRU recycle, TRU and in-bred U recycle etc.). Oxide as well as nitride fuels have been examined. This enabled an assessment of the potential for burning and multi-recycling TRU in a Th-based fuel PWR to compare against other more typical alternatives (U-MOX and variations thereof). Results will be shown indicating that Th-based PWR fuel is a promising option to multi-recycle and

  2. Software Requirements Specification Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect (OSTI)

    D. E. Shropshire; W. H. West

    2005-11-01

    The purpose of this Software Requirements Specification (SRS) is to define the top-level requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). This simulation model is intended to serve a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies.

  3. Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-01-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide.

  4. Environmental Emissions From Energy Technology Systems: The Total Fuel Cycle

    SciTech Connect (OSTI)

    San Martin, Robert L.

    1989-04-01

    This is a summary report that compares emissions during the entire project life cycle for a number of fossil-fueled and renewable electric power systems, including geothermal steam (probably modeled after The Geysers). The life cycle is broken into Fuel Extraction, Construction, and Operation. The only emission covered is carbon dioxide. (DJE 2005)

  5. 2013 Fuel Cycle Technologies Annual Review MeetingTransactions Report

    SciTech Connect (OSTI)

    Not Listed

    2013-11-01

    The Fuel Cycle Technologies (FCT) program of the Department of Energy (DOE) Office of Nuclear Energy (NE) is charged with identifying promising sustainable fuel cycles and developing strategies for effective disposition of used fuel and high-level nuclear waste, enabling policymakers to make informed decisions about these critical issues. Sustainable fuel cycles will improve uranium resource utilization, maximize energy generation while minimizing waste, improve safety, and limit proliferation risk. To achieve its mission, FCT has initiated numerous activities in each of the technical campaign areas, of which this report provides a sample.

  6. Microsoft Word - Fuel Cycle Subcomm report final v2.docx

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the Fuel Cycle Subcommittee of NEAC June 15, 2011 Washington, D.C. Members: Burton Richter (Chairman) Darleane Hoffman Raymond Juzaitis Sekazi Mtingwa Ron Omberg Joy Rempe Dominique Warin Fuel Cycle Subcommittee Report 6/15/2011 2 I. Introduction and Summary The Fuel Cycle subcommittee of NEAC met April 25-26 in Albuquerque, New Mexico. The main topics of discussion were the Used Nuclear Fuel (UNF) disposal program, the System Study Program's methodology that is to be used to set priorities

  7. Proliferation resistance and the advanced fuel cycle facility (AFCF)

    SciTech Connect (OSTI)

    DeMuth, Scott; Thomas, Kenneth; Tobin, Stephen

    2007-07-01

    The planned Advanced Fuel Cycle Facility (AFCF) is intended to support the Global Nuclear Energy Partnership (GNEP) by demonstrating separation and fuel fabrication processes required to support an Advanced Burner Reactor. The processes, materials and safeguards will be selected and designed to enhance proliferation resistance beyond that of the existing plutonium based mixed oxide (MOX) fuel cycle. This paper explores the concept of proliferation resistance and how the AFCF will advance the related state of the art. (authors)

  8. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect (OSTI)

    1998-03-01

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  9. Comparison of PWR-IMF and FR fuel cycles

    SciTech Connect (OSTI)

    Darilek, Petr; Zajac, Radoslav; Breza, Juraj |; Necas, Vladimir

    2007-07-01

    The paper gives a comparison of PWR (Russia origin VVER-440) cycle with improved micro-heterogeneous inert matrix fuel assemblies and FR cycle. Micro-heterogeneous combined assembly contains transmutation pins with Pu and MAs from burned uranium reprocessing and standard uranium pins. Cycle analyses were performed by HELIOS spectral code and SCALE code system. Comparison is based on fuel cycle indicators, used in the project RED-IMPACT - part of EU FP6. Advantages of both closed cycles are pointed out. (authors)

  10. Integration of the AVLIS (atomic vapor laser isotopic separation) process into the nuclear fuel cycle. [Effect of AVLIS feed requirements on overall fuel cycle

    SciTech Connect (OSTI)

    Hargrove, R.S.; Knighton, J.B.; Eby, R.S.; Pashley, J.H.; Norman, R.E.

    1986-08-01

    AVLIS RD and D efforts are currently proceeding toward full-scale integrated enrichment demonstrations in the late 1980's and potential plant deployment in the mid 1990's. Since AVLIS requires a uranium metal feed and produces an enriched uranium metal product, some change in current uranium processing practices are necessitated. AVLIS could operate with a UF/sub 6/-in UF/sub 6/-out interface with little effect to the remainder of the fuel cycle. This path, however, does not allow electric utility customers to realize the full potential of low cost AVLIS enrichment. Several alternative processing methods have been identified and evaluated which appear to provide opportunities to make substantial cost savings in the overall fuel cycle. These alternatives involve varying levels of RD and D resources, calendar time, and technical risk to implement and provide these cost reduction opportunities. Both feed conversion contracts and fuel fabricator contracts are long-term entities. Because of these factors, it is not too early to start planning and making decisions on the most advantageous options so that AVLIS can be integrated cost effectively into the fuel cycle. This should offer economic opportunity to all parties involved including DOE, utilities, feed converters, and fuel fabricators. 10 refs., 11 figs., 2 tabs.

  11. Fuel Fabrication Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cycle Research & Development Fuel Cycle Research & Development Fuel Cycle Research & Development The mission of the Fuel Cycle Research and Development (FCRD) program is to conduct research and development to help develop sustainable fuel cycles, as described in the Nuclear Energy Research and Development Roadmap. Sustainable fuel cycle options are those that improve uranium resource utilization, maximize energy generation, minimize waste generation, improve safety, and limit

  12. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    SciTech Connect (OSTI)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  13. Assessment of Startup Fuel Options for the GNEP Advanced Burner Reactor (ABR)

    SciTech Connect (OSTI)

    Jon Carmack; Kemal O. Pasamehmetoglu; David Alberstein

    2008-02-01

    The Global Nuclear Energy Program (GNEP) includes a program element for the development and construction of an advanced sodium cooled fast reactor to demonstrate the burning (transmutation) of significant quantities of minor actinides obtained from a separations process and fabricated into a transuranic bearing fuel assembly. To demonstrate and qualify transuranic (TRU) fuel in a fast reactor, an Advanced Burner Reactor (ABR) prototype is needed. The ABR would necessarily be started up using conventional metal alloy or oxide (U or U, Pu) fuel. Startup fuel is needed for the ABR for the first 2 to 4 core loads of fuel in the ABR. Following start up, a series of advanced TRU bearing fuel assemblies will be irradiated in qualification lead test assemblies in the ABR. There are multiple options for this startup fuel. This report provides a description of the possible startup fuel options as well as possible fabrication alternatives available to the program in the current domestic and international facilities and infrastructure.

  14. Evaluation of Waste Arising from Future Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Jubin, Robert Thomas; Taiwo, Temitope; Wigeland, Roald

    2015-01-01

    A comprehensive study was recently completed at the request of the US Department of Energy Office of Nuclear Energy (DOE-NE) to evaluate and screen nuclear fuel cycles. The final report was issued in October 2014. Uranium- and thorium-based fuel cycles were evaluated using both fast and thermal spectrum reactors. Once-through, limited-recycle, and continuous-recycle cases were considered. This study used nine evaluation criteria to identify promising fuel cycles. Nuclear waste management was one of the nine evaluation criteria. The waste generation criterion from this study is discussed herein.

  15. Uranium resource utilization improvements in the once-through PWR fuel cycle

    SciTech Connect (OSTI)

    Matzie, R A

    1980-04-01

    In support of the Nonproliferation Alternative Systems Assessment Program (NASAP), Combustion Engineering, Inc. performed a comprehensive analytical study of potential uranium utilization improvement options that can be backfit into existing PWRs operating on the once-through uranium fuel cycle. A large number of potential improvement options were examined as part of a preliminary survey of candidate options. The most attractive of these, from the standpoint of uranium utilization improvement, economic viability, and ease of implementation, were then selected for detailed analysis and were included in a single composite improvement case. This composite case represents an estimate of the total savings in U/sub 3/O/sub 8/ consumption that can be achieved in current-design PWRs by implementing improvements which can be developed and demonstrated in the near term. The improvement options which were evaluated in detail and included in the composite case were a new five-batch, extended-burnup fuel management scheme, low-leakage fuel management, modified lattice designs, axial blankets, reinsertion of initial core batches, and end-of-cycle stretchout.

  16. The Northeast heating fuel market: Assessment and options

    SciTech Connect (OSTI)

    2000-07-01

    In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

  17. Steady-State Analysis Model for Advanced Fuel Cycle Schemes.

    Energy Science and Technology Software Center (OSTI)

    2008-03-17

    Version 00 SMAFS was developed as a part of the study, "Advanced Fuel Cycles and Waste Management", which was performed during 2003-2005 by an ad-hoc expert group under the Nuclear Development Committee in the OECD/NEA. The model was designed for an efficient conduct of nuclear fuel cycle scheme cost analyses. It is simple, transparent and offers users the capability to track down cost analysis results. All the fuel cycle schemes considered in the model aremore » represented in a graphic format and all values related to a fuel cycle step are shown in the graphic interface, i.e., there are no hidden values embedded in the calculations. All data on the fuel cycle schemes considered in the study including mass flows, waste generation, cost data, and other data such as activities, decay heat and neutron sources of spent fuel and high-level waste along time are included in the model and can be displayed. The user can easily modify values of mass flows and/or cost parameters and see corresponding changes in the results. The model calculates: front-end fuel cycle mass flows such as requirements of enrichment and conversion services and natural uranium; mass of waste based on the waste generation parameters and the mass flow; and all costs.« less

  18. NEAC Fuel Cycle Technologies Subcommittee Report

    Office of Environmental Management (EM)

    and combustion * Fission product release and transport behavior - MELCOR is now being used to assess Accident Tolerant Fuels (Brad Merrill, et al., 2015 and K. Robb, 2015). ...

  19. Fuel Cycle Comparison for Distributed Power Technologies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

  20. Nuclear Fuel Cycle | Department of Energy

    Office of Environmental Management (EM)

    advice to DOE regarding research and development of nuclear fuel and waste management technologies that meet the nation's energy supply, environmental, and energy security needs. ...

  1. Effects of cooling time on a closed LWR fuel cycle

    SciTech Connect (OSTI)

    Arnold, R. P.; Forsberg, C. W.; Shwageraus, E.

    2012-07-01

    In this study, the effects of cooling time prior to reprocessing spent LWR fuel has on the reactor physics characteristics of a PWR fully loaded with homogeneously mixed U-Pu or U-TRU oxide (MOX) fuel is examined. A reactor physics analysis was completed using the CASM04e code. A void reactivity feedback coefficient analysis was also completed for an infinite lattice of fresh fuel assemblies. Some useful conclusions can be made regarding the effect that cooling time prior to reprocessing spent LWR fuel has on a closed homogeneous MOX fuel cycle. The computational analysis shows that it is more neutronically efficient to reprocess cooled spent fuel into homogeneous MOX fuel rods earlier rather than later as the fissile fuel content decreases with time. Also, the number of spent fuel rods needed to fabricate one MOX fuel rod increases as cooling time increases. In the case of TRU MOX fuel, with time, there is an economic tradeoff between fuel handling difficulty and higher throughput of fuel to be reprocessed. The void coefficient analysis shows that the void coefficient becomes progressively more restrictive on fuel Pu content with increasing spent fuel cooling time before reprocessing. (authors)

  2. Summary and recommendations: Total fuel cycle assessment workshop

    SciTech Connect (OSTI)

    1995-08-01

    This report summarizes the activities of the Total Fuel Cycle Assessment Workshop held in Austin, Texas, during October 6--7, 1994. It also contains the proceedings from that workshop.

  3. The Prospective Role of JAEA Nuclear Fuel Cycle Engineering Laboratories

    SciTech Connect (OSTI)

    Ojima, Hisao; Dojiri, Shigeru; Tanaka, Kazuhiko; Takeda, Seiichiro; Nomura, Shigeo

    2007-07-01

    JAEA Nuclear Fuel Cycle Engineering Laboratories was established in 2005 to take over the activities of the JNC Tokai Works. Many kinds of development activities have been carried out since 1959. Among these, the results on the centrifuge for U enrichment, LWR spent fuel reprocessing and MOX fuel fabrication have already provided the foundation of the fuel cycle industry in Japan. R and D on the treatment and disposal of high-level waste and FBR fuel reprocessing has also been carried out. Through such activities, radioactive material release to the environment has been appropriately controlled and all nuclear materials have been placed under IAEA safeguards. The Laboratories has sufficient experience and ability to establish the next generation closed cycle and strives to become a world-class Center Of Excellence (COE). (authors)

  4. Waste Management Planned for the Advanced Fuel Cycle Facility

    SciTech Connect (OSTI)

    Soelberg

    2007-09-01

    The U.S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) program has been proposed to develop and employ advanced technologies to increase the proliferation resistance of spent nuclear fuels, recover and reuse nuclear fuel resources, and reduce the amount of wastes requiring permanent geological disposal. In the initial GNEP fuel cycle concept, spent nuclear fuel is to be reprocessed to separate re-useable transuranic elements and uranium from waste fission products, for fabricating new fuel for fast reactors. The separated wastes would be converted to robust waste forms for disposal. The Advanced Fuel Cycle Facility (AFCF) is proposed by DOE for developing and demonstrating spent nuclear fuel recycling technologies and systems. The AFCF will include capabilities for receiving and reprocessing spent fuel and fabricating new nuclear fuel from the reprocessed spent fuel. Reprocessing and fuel fabrication activities will generate a variety of radioactive and mixed waste streams. Some of these waste streams are unique and unprecedented. The GNEP vision challenges traditional U.S. radioactive waste policies and regulations. Product and waste streams have been identified during conceptual design. Waste treatment technologies have been proposed based on the characteristics of the waste streams and the expected requirements for the final waste forms. Results of AFCF operations will advance new technologies that will contribute to safe and economical commercial spent fuel reprocessing facilities needed to meet the GNEP vision. As conceptual design work and research and design continues, the waste management strategies for the AFCF are expected to also evolve.

  5. International nuclear fuel cycle fact book. Revision 4

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-03-01

    This Fact Book has been compiled in an effort to provide (1) an overview of worldwide nuclear power and fuel cycle programs and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids - international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  6. International Nuclear Fuel Cycle Fact Book. Revision 5

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.; Jeffs, A.G.

    1985-01-01

    This Fact Book has been compiled in an effort to provide: (1) an overview of worldwide nuclear power and fuel cycle programs; and (2) current data concerning fuel cycle and waste management facilities, R and D programs, and key personnel in countries other than the United States. Additional information on each country's program is available in the International Source Book: Nuclear Fuel Cycle Research and Development, PNL-2478, Rev. 2. The Fact Book is organized as follows: (1) Overview section - summary tables which indicate national involvement in nuclear reactor, fuel cycle, and waste management development activities; (2) national summaries - a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; (3) international agencies - a section for each of the international agencies which has significant fuel cycle involvement; (4) energy supply and demand - summary tables, including nuclear power projections; (5) fuel cycle - summary tables; and (6) travel aids international dialing instructions, international standard time chart, passport and visa requirements, and currency exchange rate.

  7. Framework for fuel-cycle approaches to IAEA safeguards

    SciTech Connect (OSTI)

    Fishbone, L.G.

    1986-10-01

    In order to compare several nuclear-safeguards verification approaches to one another and to the conventional facility-oriented approach, we establish a framework of the classes of information routinely verifiable by IAEA safeguards inspections. For each facility type within a State nuclear fuel cycle, the classes include flow data, inventory data, and shipper and receiver data. By showing which classes of information are verified for each facility type within three fuel cycles of different complexity, we distinguish the inspection approaches from one anoter and exhibit their fuel-cycle dependence, i.e., their need for sets of safeguards inspection activities different from those required under the facility-oriented approach at similar facilities in fuel cycles of differing complexity. Tables V-1, V-2, and V-3 graphically depict these relations and give a qualitative summary of the relative effectiveness and effort requirements of the approaches classified. The zone, information-correlation, diversion-assumption-change, and randomization-over-facilities approaches depend intrinsically on the complexity of the fuel cycle: their very definition implies fuel-cycle dependence. The approaches involving randomization over activities and goal relaxations do not have such dependence.

  8. Safety aspects of the IFR pyroprocess fuel cycle

    SciTech Connect (OSTI)

    Forrester, R.J.; Lineberry, M.J.; Charak, I.; Tessier, J.H.; Solbrig, C.W.; Gabor, J.D.

    1989-01-01

    This paper addresses the important safety considerations related to the unique Integral Fast Reactor (IFR) fuel cycle technology, the pyroprocess. Argonne has been developing the IFR since 1984. It is a liquid metal cooled reactor, with a unique metal alloy fuel, and it utilizes a radically new fuel cycle. An existing facility, the Hot Fuel Examination Facility-South (HFEF/S) is being modified and equipped to provide a complete demonstration of the fuel cycle. This paper will concentrate on safety aspects of the future HFEF/S operation, slated to begin late next year. HFEF/S is part of Argonne's complex of reactor test facilities located on the Idaho National Engineering Laboratory. HFEF/S was originally put into operation in 1964 as the EBR-II Fuel Cycle Facility (FCF) (Stevenson, 1987). From 1964--69 FCF operated to demonstrate an earlier and incomplete form of today's pyroprocess, recycling some 400 fuel assemblies back to EBR-II. The FCF mission was then changed to one of an irradiated fuels and materials examination facility, hence the name change to HFEF/S. The modifications consist of activities to bring the facility into conformance with today's much more stringent safety standards, and, of course, providing the new process equipment. The pyroprocess and the modifications themselves are described more fully elsewhere (Lineberry, 1987; Chang, 1987). 18 refs., 5 figs., 2 tabs.

  9. Fuel-cycle facilities: preliminary safety and environmental information document. Volume VII

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Information is presented concerning the mining and milling of uranium and thorium; uranium hexafluoride conversion; enrichment; fuel fabrication; reprocessing; storage options; waste disposal options; transportation; heavy-water-production facilities; and international fuel service centers.

  10. US--EC fuel cycle study: Background document to the approach and issues

    SciTech Connect (OSTI)

    Cantor, Robin; Russell, Lee; Krupnick, Alan; Smith, Hilary; Schaffhauser, Jr., A.; Barnthouse, Larry; Cada, Glen; Kroodsma, Roger; Turner, Robb; Easterly, Clay; Jones, Troyce; Burtraw, Dallas; Harrington, Winston; Freeman, A. Myrick

    1992-11-01

    In February 1991, DOE and the Commission of the European Communities (EC), signed a joint statement regarding the external costs of fuel cycles. This 18-month agreement committed their respective organizations to develop a comparative analytical methodology and to develop the best range of estimates of external costs from secondary sources'' for eight fuel cycles and four conservation options. In our study, a fuel cycle is defined as the series of physical and chemical processes and activities that are required to generate electricity from a specific fuel or resource. This foundation phase of the study is primarily limited to developing and demonstrating methods for estimating impacts and their monetized value, what we term damages'' or benefits,'' leaving aside the extent to which such damages have been internalized. However, Appendix C provides the conceptual framework for evaluating the extent of internalization. This report is a background document to introduce the study approach and to discuss the major conceptual and practical issues entailed by the incremental damage problem. As a background document, the report seeks to communicate an overview of the study and the important methodological choices that were made to conduct the research. In successive sections of the report, the methodological tools used in the study are discussed; the ecological and health impacts are reviewed using the coal fuel cycle as a reference case; and, in the final chapter, the methods for valuing impacts are detailed.

  11. US--EC fuel cycle study: Background document to the approach and issues

    SciTech Connect (OSTI)

    Cantor, Robin; Lee, Russell

    1992-11-01

    In February 1991, DOE and the Commission of the European Communities (EC), signed a joint statement regarding the external costs of fuel cycles. This 18-month agreement committed their respective organizations to ``develop a comparative analytical methodology and to develop the best range of estimates of external costs from secondary sources`` for eight fuel cycles and four conservation options. In our study, a fuel cycle is defined as the series of physical and chemical processes and activities that are required to generate electricity from a specific fuel or resource. This foundation phase of the study is primarily limited to developing and demonstrating methods for estimating impacts and their monetized value, what we term ``damages`` or ``benefits,`` leaving aside the extent to which such damages have been internalized. However, Appendix C provides the conceptual framework for evaluating the extent of internalization. This report is a background document to introduce the study approach and to discuss the major conceptual and practical issues entailed by the incremental damage problem. As a background document, the report seeks to communicate an overview of the study and the important methodological choices that were made to conduct the research. In successive sections of the report, the methodological tools used in the study are discussed; the ecological and health impacts are reviewed using the coal fuel cycle as a reference case; and, in the final chapter, the methods for valuing impacts are detailed.

  12. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  13. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  14. Nuclear Fuel Cycle | Department of Energy

    Energy Savers [EERE]

    ... In a fuel fabrication plant great care is taken with the size and shape of processing ... Generation of electricity in a nuclear reactor is similar to a coal-fired steam station. The ...

  15. Summary of Off-Normal Events in US Fuel Cycle Facilities for AFCI Applications

    SciTech Connect (OSTI)

    L. C. Cadwallader; S. J. Piet; S. O. Sheetz; D. H. McGuire; W. B. Boore

    2005-09-01

    This report is a collection and review of system operation and failure experiences for facilities comprising the fission reactor fuel cycle, with the exception of reactor operations. This report includes mines, mills, conversion plants, enrichment plants, fuel fabrication plants, transportation of fuel materials between these centers, and waste storage facilities. Some of the facilities discussed are no longer operating; others continue to produce fuel for the commercial fission power plant industry. Some of the facilities discussed have been part of the military’s nuclear effort; these are included when the processes used are similar to those used for commercial nuclear power. When reading compilations of incidents and accidents, after repeated entries it is natural to form an opinion that there exists nothing but accidents. For this reason, production or throughput values are described when available. These adverse operating experiences are compiled to support the design and decisions needed for the Advanced Fuel Cycle Initiative (AFCI). The AFCI is to weigh options for a new fission reactor fuel cycle that is efficient, safe, and productive for US energy security.

  16. Options Study Documenting the Fast Reactor Fuels Innovative Design Activity

    SciTech Connect (OSTI)

    Jon Carmack; Kemal Pasamehmetoglu

    2010-07-01

    This document provides presentation and general analysis of innovative design concepts submitted to the FCRD Advanced Fuels Campaign by nine national laboratory teams as part of the Innovative Transmutation Fuels Concepts Call for Proposals issued on October 15, 2009 (Appendix A). Twenty one whitepapers were received and evaluated by an independent technical review committee.

  17. World nuclear capacity and fuel cycle requirements, November 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-30

    This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

  18. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    SciTech Connect (OSTI)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  19. SOLVENT EXTRACTION RESEARCH AND DEVELOPMENT IN THE U.S. FUEL CYCLE PROGRAM

    SciTech Connect (OSTI)

    Terry A. Todd

    2011-10-01

    Treatment or processing of used nuclear fuel to recycle uranium and plutonium has historically been accomplished using the well known PUREX process. The PUREX process has been used on an industrial scale for over 60 years in the nuclear industry. Research is underway to develop advanced separation methods for the recovery of other used fuel components, such as the minor actinides (Np, Am, Cm) for possible transmutation in fast spectrum reactors, or other constituents (e.g. Cs, Sr, transition metals, lanthanides) to help facilitate effective waste management options. This paper will provide an overview of new solvent extraction processes developed for advanced nuclear fuel cycles, and summarize recent experimental results. This will include the utilization of new extractants for selective separation of target metals and new processes developed to selectively recover one or more elements from used fuel.

  20. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  1. Northeast Heating Fuel Market The, Assessment and Options

    Reports and Publications (EIA)

    2000-01-01

    In response to the President's request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of the energy markets in the Northeast

  2. Fossil fuel combined cycle power system

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  3. Phosphorus, Sulfur, and Chlorine in Fuel Gases: Impact on High Temperature Fuel Cell Performance and Clean-Up Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phosphorus, Sulfur, and Chlorine in Fuel Gases: Impact on High Temperature Fuel Cell Performance and Clean-Up Options OLGA A MARINA Pacific Northwest National Laboratory Workshop on Gas Clean-Up for Fuel Cell Applications March 6-7, 2014 57% net electrical efficiency on methane 8 SOFC cells per furnace with independent gas flow Multi-cell MCFC test stand 2 High Temperature Fuel Cell R&D at PNNL; Impurities Overview OA Marina Selected Impurities in Biogas/Landfill Gas: Cell/stack/system

  4. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect (OSTI)

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  5. Regulatory cross-cutting topics for fuel cycle facilities.

    SciTech Connect (OSTI)

    Denman, Matthew R.; Brown, Jason; Goldmann, Andrew Scott; Louie, David

    2013-10-01

    This report overviews crosscutting regulatory topics for nuclear fuel cycle facilities for use in the Fuel Cycle Research&Development Nuclear Fuel Cycle Evaluation and Screening study. In particular, the regulatory infrastructure and analysis capability is assessed for the following topical areas:Fire Regulations (i.e., how applicable are current Nuclear Regulatory Commission (NRC) and/or International Atomic Energy Agency (IAEA) fire regulations to advance fuel cycle facilities)Consequence Assessment (i.e., how applicable are current radionuclide transportation tools to support risk-informed regulations and Level 2 and/or 3 PRA) While not addressed in detail, the following regulatory topic is also discussed:Integrated Security, Safeguard and Safety Requirement (i.e., how applicable are current Nuclear Regulatory Commission (NRC) regulations to future fuel cycle facilities which will likely be required to balance the sometimes conflicting Material Accountability, Security, and Safety requirements.)

  6. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  7. Reprocessing of research reactor fuel the Dounreay option

    SciTech Connect (OSTI)

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  8. New developments and prospects on COSI, the simulation software for fuel cycle analysis

    SciTech Connect (OSTI)

    Eschbach, R.; Meyer, M.; Coquelet-Pascal, C.; Tiphine, M.; Krivtchik, G.; Cany, C.

    2013-07-01

    COSI, software developed by the Nuclear Energy Direction of the CEA, is a code simulating a pool of nuclear power plants with its associated fuel cycle facilities. This code has been designed to study various short, medium and long term options for the introduction of various types of nuclear reactors and for the use of associated nuclear materials. In the frame of the French Act for waste management, scenario studies are carried out with COSI, to compare different options of evolution of the French reactor fleet and options of partitioning and transmutation of plutonium and minor actinides. Those studies aim in particular at evaluating the sustainability of Sodium cooled Fast Reactors (SFR) deployment and the possibility to transmute minor actinides. The COSI6 version is a completely renewed software released in 2006. COSI6 is now coupled with the last version of CESAR (CESAR5.3 based on JEFF3.1.1 nuclear data) allowing the calculations on irradiated fuel with 200 fission products and 100 heavy nuclides. A new release is planned in 2013, including in particular the coupling with a recommended database of reactors. An exercise of validation of COSI6, carried out on the French PWR historic nuclear fleet, has been performed. During this exercise quantities like cumulative natural uranium consumption, or cumulative depleted uranium, or UOX/MOX spent fuel storage, or stocks of reprocessed uranium, or plutonium content in fresh MOX fuel, or the annual production of high level waste, have been computed by COSI6 and compared to industrial data. The results have allowed us to validate the essential phases of the fuel cycle computation, and reinforces the credibility of the results provided by the code.

  9. International nuclear fuel cycle fact book: Revision 9

    SciTech Connect (OSTI)

    Leigh, I.W.

    1989-01-01

    The International Nuclear Fuel Cycle Fact Book has been compiled in an effort to provide current data concerning fuel cycle and waste management facilities, R and D programs and key personnel. The Fact Book contains: national summaries in which a section for each country which summarizes nuclear policy, describes organizational relationships and provides addresses, names of key personnel, and facilities information; and international agencies in which a section for each of the international agencies which has significant fuel cycle involvement, and a listing of nuclear societies. The national summaries, in addition to the data described above, feature a small map for each country as well as some general information. The latter is presented from the perspective of the Fact Book user in the United States.

  10. International Nuclear Fuel Cycle Fact Book. Revision 12

    SciTech Connect (OSTI)

    Leigh, I.W.

    1992-05-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

  11. Software Platform Evaluation - Verifiable Fuel Cycle Simulation (VISION) Model

    SciTech Connect (OSTI)

    J. J. Jacobson; D. E. Shropshire; W. B. West

    2005-11-01

    The purpose of this Software Platform Evaluation (SPE) is to document the top-level evaluation of potential software platforms on which to construct a simulation model that satisfies the requirements for a Verifiable Fuel Cycle Simulation Model (VISION) of the Advanced Fuel Cycle (AFC). See the Software Requirements Specification for Verifiable Fuel Cycle Simulation (VISION) Model (INEEL/EXT-05-02643, Rev. 0) for a discussion of the objective and scope of the VISION model. VISION is intended to serve as a broad systems analysis and study tool applicable to work conducted as part of the AFCI (including costs estimates) and Generation IV reactor development studies. This document will serve as a guide for selecting the most appropriate software platform for VISION. This is a “living document” that will be modified over the course of the execution of this work.

  12. International nuclear fuel cycle fact book. [Contains glossary

    SciTech Connect (OSTI)

    Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

    1987-01-01

    As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

  13. Reducing Proliferation Rick Through Multinational Fuel Cycle Facilities

    SciTech Connect (OSTI)

    Amanda Rynes

    2010-11-01

    With the prospect of rapid expansion of the nuclear energy industry and the ongoing concern over weapons proliferation, there is a growing need for a viable alternative to traditional nation-based fuel production facilities. While some in the international community remain apprehensive, the advantages of multinational fuel cycle facilities are becoming increasingly apparent, with states on both sides of the supply chain able to garner the security and financial benefits of such facilities. Proliferation risk is minimized by eliminating the need of states to establish indigenous fuel production capabilities and the concept's structure provides an additional internationally monitored barrier against the misuse or diversion of nuclear materials. This article gives a brief description of the arguments for and against the implementation of a complete multinational fuel cycle.

  14. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect (OSTI)

    S. X. Li; D. Vaden; R. W. Benedict; T. A. Johnson; B. R. Westphal; Guy L. Frederickson

    2007-09-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electrorefiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processes under the fixed operating parameters that have been developed for this equipment based on over a decades worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test.

  15. Integrated Efficiency Test for Pyrochemical Fuel Cycles

    SciTech Connect (OSTI)

    Li, S.X.; Vaden, D.; Westphal, B.R.; Fredrickson, G.L.; Benedict, R.W.; Johnson, T.A.

    2007-07-01

    An integrated efficiency test was conducted with sodium bonded, spent EBR-II drive fuel elements. The major equipment involved in the test were the element chopper, Mk-IV electro-refiner, cathode processor, and casting furnace. Four electrorefining batches (containing 54.4 kg heavy metal) were processed under the fixed operating parameters that have been developed for this equipment based on over a decade's worth of processing experience. A mass balance across this equipment was performed. Actinide dissolution and recovery efficiencies were established based on the mass balance and chemical analytical results of various samples taken from process streams during the integrated efficiency test. (authors)

  16. Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation

  17. Description of Transmutation Library for Fuel Cycle System Analyses

    SciTech Connect (OSTI)

    Steven J. Piet; Samuel E. Bays; Edward A. Hoffman

    2010-08-01

    This report documents the Transmutation Library that is used in Fuel Cycle System Analyses. This version replaces the 2008 version.[Piet2008] The Transmutation Library has the following objectives: • Assemble past and future transmutation cases for system analyses. • For each case, assemble descriptive information such as where the case was documented, the purpose of the calculation, the codes used, source of feed material, transmutation parameters, and the name of files that contain raw or source data. • Group chemical elements so that masses in separation and waste processes as calculated in dynamic simulations or spreadsheets reflect current thinking of those processes. For example, the CsSr waste form option actually includes all Group 1A and 2A elements. • Provide mass fractions at input (charge) and output (discharge) for each case. • Eliminate the need for either “fission product other” or “actinide other” while conserving mass. Assessments of waste and separation cannot use “fission product other” or “actinide other” as their chemical behavior is undefined. • Catalog other isotope-specific information in one place, e.g., heat and dose conversion factors for individual isotopes. • Describe the correlations for how input and output compositions change as a function of UOX burnup (for LWR UOX fuel) or fast reactor (FR) transuranic (TRU) conversion ratio (CR) for either FR-metal or FR-oxide. This document therefore includes the following sections: • Explanation of the data set information, i.e., the data that describes each case. In no case are all of the data presented in the Library included in previous documents. In assembling the Library, we return to raw data files to extract the case and isotopic data, into the specified format. • Explanation of which isotopes and elements are tracked. For example, the transition metals are tracked via the following: two Zr isotopes, Zr-other, Tc99, Tc-other, two Mo-Ru-Rh-Pd isotopes, Mo

  18. Life-Cycle Analysis of Alternative Aviation Fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-06-01

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1_2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or(2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55–85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources — such as natural gas and coal — could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  19. Life-cycle analysis of alternative aviation fuels in GREET

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S.

    2012-07-23

    The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet

  20. Graphite fuels combustion off-gas treatment options

    SciTech Connect (OSTI)

    Kirkham, R.J.; Lords, R.E.

    1993-03-01

    Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual {sup 129}I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the {sup 3}, {sup 14}C, {sup 85}Kr, and {sup 129}I in the total fuel mass if 0.43 mrem/year.

  1. Full fuel-cycle comparison of forklift propulsion systems.

    SciTech Connect (OSTI)

    Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-11-05

    Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

  2. Fuel-cycle assessment of selected bioethanol production.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil fuel

  3. Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann

    2012-10-01

    Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK

  4. Code System for Reactor Physics and Fuel Cycle Simulation.

    Energy Science and Technology Software Center (OSTI)

    1999-04-21

    Version 00 VSOP94 (Very Superior Old Programs) is a system of codes linked together for the simulation of reactor life histories. It comprises neutron cross section libraries and processing routines, repeated neutron spectrum evaluation, 2-D diffusion calculation based on neutron flux synthesis with depletion and shut-down features, in-core and out-of-pile fuel management, fuel cycle cost analysis, and thermal hydraulics (at present restricted to Pebble Bed HTRs). Various techniques have been employed to accelerate the iterativemore » processes and to optimize the internal data transfer. The code system has been used extensively for comparison studies of reactors, their fuel cycles, and related detailed features. In addition to its use in research and development work for the High Temperature Reactor, the system has been applied successfully to Light Water and Heavy Water Reactors.« less

  5. INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION

    SciTech Connect (OSTI)

    FuelCell Energy

    2005-05-16

    With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water

  6. Life cycle costs for the domestic reactor-based plutonium disposition option

    SciTech Connect (OSTI)

    Williams, K.A.

    1999-10-01

    Projected constant dollar life cycle cost (LCC) estimates are presented for the domestic reactor-based plutonium disposition program being managed by the US Department of Energy Office of Fissile Materials Disposition (DOE/MD). The scope of the LCC estimate includes: design, construction, licensing, operation, and deactivation of a mixed-oxide (MOX) fuel fabrication facility (FFF) that will be used to purify and convert weapons-derived plutonium oxides to MOX fuel pellets and fabricate MOX fuel bundles for use in commercial pressurized-water reactors (PWRs); fuel qualification activities and modification of facilities required for manufacture of lead assemblies that will be used to qualify and license this MOX fuel; and modification, licensing, and operation of commercial PWRs to allow irradiation of a partial core of MOX fuel in combination with low-enriched uranium fuel. The baseline cost elements used for this document are the same as those used for examination of the preferred sites described in the site-specific final environmental impact statement and in the DOE Record of Decision that will follow in late 1999. Cost data are separated by facilities, government accounting categories, contract phases, and expenditures anticipated by the various organizations who will participate in the program over a 20-year period. Total LCCs to DOE/MD are projected at approximately $1.4 billion for a 33-MT plutonium disposition mission.

  7. VHTR Prismatic Super Lattice Model for Equilibrium Fuel Cycle Analysis

    SciTech Connect (OSTI)

    G. S. Chang

    2006-09-01

    The advanced Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on innovative features and passive systems. One of the VHTRs innovative features is the reliance on ceramic-coated fuel particles to retain the fission products under extreme accident conditions. The effect of the random fuel kernel distribution in the fuel prismatic block is addressed through the use of the Dancoff correction factor in the resonance treatment. However, if the fuel kernels are not perfect black absorbers, the Dancoff correction factor is a function of burnup and fuel kernel packing factor, which requires that the Dancoff correction factor be updated during Equilibrium Fuel Cycle (EqFC) analysis. An advanced Kernel-by-Kernel (K-b-K) hexagonal super lattice model can be used to address and update the burnup dependent Dancoff effect during the EqFC analysis. The developed Prismatic Super Homogeneous Lattice Model (PSHLM) is verified by comparing the calculated burnup characteristics of the double-heterogeneous Prismatic Super Kernel-by-Kernel Lattice Model (PSK-b-KLM). This paper summarizes and compares the PSHLM and PSK-b-KLM burnup analysis study and results. This paper also discusses the coupling of a Monte-Carlo code with fuel depletion and buildup code, which provides the fuel burnup analysis tool used to produce the results of the VHTR EqFC burnup analysis.

  8. Moving toward multilateral mechanisms for the fuel cycle

    SciTech Connect (OSTI)

    Panasyuk,A.; Rosenthal,M.; Efremov, G. V.

    2009-04-17

    Multilateral mechanisms for the fuel cycle are seen as a potentially important way to create an industrial infrastructure that will support a renaissance and at the same time not contribute to the risk of nuclear proliferation. In this way, international nuclear fuel cycle centers for enrichment can help to provide an assurance of supply of nuclear fuel that will reduce the likelihood that individual states will pursue this sensitive technology, which can be used to produce nuclear material directly usable nuclear weapons. Multinational participation in such mechanisms can also potentially promote transparency, build confidence, and make the implementation of IAEA safeguards more effective or more efficient. At the same time, it is important to ensure that there is no dissemination of sensitive technology. The Russian Federation has taken a lead role in this area by establishing an International Uranium Enrichment Center (IUEC) for the provision of enrichment services at its uranium enrichment plant located at the Angarsk Electrolysis Chemical Complex (AECC). This paper describes how the IUEe is organized, who its members are, and the steps that it has taken both to provide an assured supply of nuclear fuel and to ensure protection of sensitive technology. It also describes the relationship between the IUEC and the IAEA and steps that remain to be taken to enhance its assurance of supply. Using the IUEC as a starting point for discussion, the paper also explores more generally the ways in which features of such fuel cycle centers with multinational participation can have an impact on safeguards arrangements, transparency, and confidence-building. Issues include possible lAEA safeguards arrangements or other links to the IAEA that might be established at such fuel cycle centers, impact of location in a nuclear weapon state, and the transition by the IAEA to State Level safeguards approaches.

  9. Estimating Externalities of Natural Gas Fuel Cycles, Report 4

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1998-01-01

    This report describes methods for estimating the external costs (and possibly benefits) to human health and the environment that result from natural gas fuel cycles. Although the concept of externalities is far from simple or precise, it generally refers to effects on individuals' well being, that result from a production or market activity in which the individuals do not participate, or are not fully compensated. In the past two years, the methodological approach that this report describes has quickly become a worldwide standard for estimating externalities of fuel cycles. The approach is generally applicable to any fuel cycle in which a resource, such as coal, hydro, or biomass, is used to generate electric power. This particular report focuses on the production activities, pollution, and impacts when natural gas is used to generate electric power. In the 1990s, natural gas technologies have become, in many countries, the least expensive to build and operate. The scope of this report is on how to estimate the value of externalities--where value is defined as individuals' willingness to pay for beneficial effects, or to avoid undesirable ones. This report is about the methodologies to estimate these externalities, not about how to internalize them through regulations or other public policies. Notwithstanding this limit in scope, consideration of externalities can not be done without considering regulatory, insurance, and other considerations because these institutional factors affect whether costs (and benefits) are in fact external, or whether they are already somehow internalized within the electric power market. Although this report considers such factors to some extent, much analysis yet remains to assess the extent to which estimated costs are indeed external. This report is one of a series of reports on estimating the externalities of fuel cycles. The other reports are on the coal, oil, biomass, hydro, and nuclear fuel cycles, and on general methodology.

  10. High-Level Functional and Operational Requirements for the Advanced Fuel Cycle Facilty

    SciTech Connect (OSTI)

    Charles Park

    2006-12-01

    High-Level Functional & Operational Requirements for the AFCF -This document describes the principal functional and operational requirements for the proposed Advanced Fuel Cycle Facility (AFCF). The AFCF is intended to be the world's foremost facility for nuclear fuel cycle research, technology development, and demonstration. The facility will also support the near-term mission to develop and demonstrate technology in support of fuel cycle needs identified by industry, and the long-term mission to retain and retain U.S. leadership in fuel cycle operations. The AFCF is essential to demonstrate a more proliferation-resistant fuel cycle and make long-term improvements in fuel cycle effectiveness, performance and economy.

  11. Transmutation Dynamics: Impacts of Multi-Recycling on Fuel Cycle Performances

    SciTech Connect (OSTI)

    S. Bays; S. Piet; M. Pope; G. Youinou; A. Dumontier; D. Hawn

    2009-09-01

    From a physics standpoint, it is feasible to sustain continuous multi-recycle in either thermal or fast reactors. In Fiscal Year 2009, transmutaton work at INL provided important new insight, caveats, and tools on multi-recycle. Multi-recycle of MOX, even with all the transuranics, is possible provided continuous enrichment of the uranium phase to ~6.5% and also limitting the transuranic enrichment to slightly less than 8%. Multi-recycle of heterogeneous-IMF assemblies is possible with continuous enrichment of the UOX pins to ~4.95% and having =60 of the 264 fuel pins being inter-matrix. A new tool enables quick assessment of the impact of different cooling times on isotopic evolution. The effect of cooling time was found to be almost as controlling on higher mass actinide concentrations in fuel as the selection of thermal versus fast neutron spectra. A new dataset was built which provides on-the-fly estimates of gamma and neutron dose in MOX fuels as a function of the isotopic evolution. All studies this year focused on the impact of dynamic feedback due to choices made in option space. Both the equilibrium fuel cycle concentrations and the transient time to reach equilibrium for each isotope were evaluated over a range of reactor, reprocessing and cooling time combinations. New bounding cases and analysis methods for evaluating both reactor safety and radiation worker safety were established. This holistic collection of physics analyses and methods gives improved resolution of fuel cycle options, and impacts thereof, over that of previous ad-hoc and single-point analyses.

  12. Analysis of advanced european nuclear fuel cycle scenarios including transmutation and economical estimates

    SciTech Connect (OSTI)

    Merino Rodriguez, I.; Alvarez-Velarde, F.; Martin-Fuertes, F.

    2013-07-01

    In this work the transition from the existing Light Water Reactors (LWR) to the advanced reactors is analyzed, including Generation III+ reactors in a European framework. Four European fuel cycle scenarios involving transmutation options have been addressed. The first scenario (i.e., reference) is the current fleet using LWR technology and open fuel cycle. The second scenario assumes a full replacement of the initial fleet with Fast Reactors (FR) burning U-Pu MOX fuel. The third scenario is a modification of the second one introducing Minor Actinide (MA) transmutation in a fraction of the FR fleet. Finally, in the fourth scenario, the LWR fleet is replaced using FR with MOX fuel as well as Accelerator Driven Systems (ADS) for MA transmutation. All scenarios consider an intermediate period of GEN-III+ LWR deployment and they extend for a period of 200 years looking for equilibrium mass flows. The simulations were made using the TR-EVOL code, a tool for fuel cycle studies developed by CIEMAT. The results reveal that all scenarios are feasible according to nuclear resources demand (U and Pu). Concerning to no transmutation cases, the second scenario reduces considerably the Pu inventory in repositories compared to the reference scenario, although the MA inventory increases. The transmutation scenarios show that elimination of the LWR MA legacy requires on one hand a maximum of 33% fraction (i.e., a peak value of 26 FR units) of the FR fleet dedicated to transmutation (MA in MOX fuel, homogeneous transmutation). On the other hand a maximum number of ADS plants accounting for 5% of electricity generation are predicted in the fourth scenario (i.e., 35 ADS units). Regarding the economic analysis, the estimations show an increase of LCOE (Levelized cost of electricity) - averaged over the whole period - with respect to the reference scenario of 21% and 29% for FR and FR with transmutation scenarios respectively, and 34% for the fourth scenario. (authors)

  13. Fuel cycle analysis of once-through nuclear systems.

    SciTech Connect (OSTI)

    Kim, T. K.; Taiwo, T. A.; Nuclear Engineering Division

    2010-08-10

    Once-through fuel cycle systems are commercially used for the generation of nuclear power, with little exception. The bulk of these once-through systems have been water-cooled reactors (light-water and heavy water reactors, LWRs and HWRs). Some gas-cooled reactors are used in the United Kingdom. The commercial power systems that are exceptions use limited recycle (currently one recycle) of transuranic elements, primarily plutonium, as done in Europe and nearing deployment in Japan. For most of these once-through fuel cycles, the ultimate storage of the used (spent) nuclear fuel (UNF, SNF) will be in a geologic repository. Besides the commercial nuclear plants, new once-through concepts are being proposed for various objectives under international advanced nuclear fuel cycle studies and by industrial and venture capital groups. Some of the objectives for these systems include: (1) Long life core for remote use or foreign export and to support proliferation risk reduction goals - In these systems the intent is to achieve very long core-life with no refueling and limited or no access to the fuel. Most of these systems are fast spectrum systems and have been designed with the intent to improve plant economics, minimize nuclear waste, enhance system safety, and reduce proliferation risk. Some of these designs are being developed under Generation IV International Forum activities and have generally not used fuel blankets and have limited the fissile content of the fuel to less than 20% for the purpose on meeting international nonproliferation objectives. In general, the systems attempt to use transuranic elements (TRU) produced in current commercial nuclear power plants as this is seen as a way to minimize the amount of the problematic radio-nuclides that have to be stored in a repository. In this case, however, the reprocessing of the commercial LWR UNF to produce the initial fuel will be necessary. For this reason, some of the systems plan to use low enriched uranium

  14. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  15. Exploratory Design of a Reactor/Fuel Cycle Using Spent Nuclear Fuel Without Conventional Reprocessing - 13579

    SciTech Connect (OSTI)

    Bertch, Timothy C.; Schleicher, Robert W.; Rawls, John D.

    2013-07-01

    General Atomics has started design of a waste to energy nuclear reactor (EM2) that can use light water reactor (LWR) spent nuclear fuel (SNF). This effort addresses two problems: using an advanced small reactor with long core life to reduce nuclear energy overnight cost and providing a disposal path for LWR SNF. LWR SNF is re-fabricated into new EM2 fuel using a dry voloxidation process modeled on AIROX/ OREOX processes which remove some of the fission products but no heavy metals. By not removing all of the fission products the fuel remains self-protecting. By not separating heavy metals, the process remains proliferation resistant. Implementation of Energy Multiplier Module (EM2) fuel cycle will provide low cost nuclear energy while providing a long term LWR SNF disposition path which is important for LWR waste confidence. With LWR waste confidence recent impacts on reactor licensing, an alternate disposition path is highly relevant. Centered on a reactor operating at 250 MWe, the compact electricity generating system design maximizes site flexibility with truck transport of all system components and available dry cooling features that removes the need to be located near a body of water. A high temperature system using helium coolant, electricity is efficiently produced using an asynchronous high-speed gas turbine while the LWR SNF is converted to fission products. Reactor design features such as vented fuel and silicon carbide cladding support reactor operation for decades between refueling, with improved fuel utilization. Beyond the reactor, the fuel cycle is designed so that subsequent generations of EM2 reactor fuel will use the previous EM2 discharge, providing its own waste confidence plus eliminating the need for enrichment after the first generation. Additional LWR SNF is added at each re-fabrication to replace the removed fission products. The fuel cycle uses a dry voloxidation process for both the initial LWR SNF re-fabrication and later for EM2

  16. Safeguards optimization tool for the advanced fuel cycle facility

    SciTech Connect (OSTI)

    DeMuth, Scott; Thomas, Kenneth; Dixon, Eleanor

    2007-07-01

    The planned Advanced Fuel Cycle Facility (AFCF) is intended to support the Global Nuclear Energy Partnership (GNEP) by demonstrating separation and fuel fabrication processes required to support an Advanced Burner Reactor. Advanced safeguards will be based on new world standards for the prevention of nuclear materials proliferation. Safeguarding nuclear facilities includes inventory accountancy, process monitoring, and containment and surveillance. An effort has been undertaken to optimize selection of technology for advanced safeguards accountancy, by way of using the Standard Error in the Inventory Difference (SEID) as a basis for cost/benefit analyses. (authors)

  17. LIFE Materials: Fuel Cycle and Repository Volume 11

    SciTech Connect (OSTI)

    Shaw, H; Blink, J A

    2008-12-12

    The fusion-fission LIFE engine concept provides a path to a sustainable energy future based on safe, carbon-free nuclear power with minimal nuclear waste. The LIFE design ultimately offers many advantages over current and proposed nuclear energy technologies, and could well lead to a true worldwide nuclear energy renaissance. When compared with existing and other proposed future nuclear reactor designs, the LIFE engine exceeds alternatives in the most important measures of proliferation resistance and waste minimization. The engine needs no refueling during its lifetime. It requires no removal of fuel or fissile material generated in the LIFE engine. It leaves no weapons-attractive material at the end of life. Although there is certainly a need for additional work, all indications are that the 'back end' of the fuel cycle does not to raise any 'showstopper' issues for LIFE. Indeed, the LIFE concept has numerous benefits: (1) Per unit of electricity generated, LIFE engines would generate 20-30 times less waste (in terms of mass of heavy metal) requiring disposal in a HLW repository than does the current once-through fuel cycle. (2) Although there may be advanced fuel cycles that can compete with LIFE's low mass flow of heavy metal, all such systems require reprocessing, with attendant proliferation concerns; LIFE engines can do this without enrichment or reprocessing. Moreover, none of the advanced fuel cycles can match the low transuranic content of LIFE waste. (3) The specific thermal power of LIFE waste is initially higher than that of spent LWR fuel. Nevertheless, this higher thermal load can be managed using appropriate engineering features during an interim storage period, and could be accommodated in a Yucca-Mountain-like repository by appropriate 'staging' of the emplacement of waste packages during the operational period of the repository. The planned ventilation rates for Yucca Mountain would be sufficient for LIFE waste to meet the thermal constraints of

  18. User Guide for VISION 3.4.7 (Verifiable Fuel Cycle Simulation) Model

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Robert F. Jeffers; Gretchen E. Matthern; Steven J. Piet; Wendell D. Hintze

    2011-07-01

    The purpose of this document is to provide a guide for using the current version of the Verifiable Fuel Cycle Simulation (VISION) model. This is a complex model with many parameters and options; the user is strongly encouraged to read this user guide before attempting to run the model. This model is an R&D work in progress and may contain errors and omissions. It is based upon numerous assumptions. This model is intended to assist in evaluating 'what if' scenarios and in comparing fuel, reactor, and fuel processing alternatives at a systems level. The model is not intended as a tool for process flow and design modeling of specific facilities nor for tracking individual units of fuel or other material through the system. The model is intended to examine the interactions among the components of a fuel system as a function of time varying system parameters; this model represents a dynamic rather than steady-state approximation of the nuclear fuel system. VISION models the nuclear cycle at the system level, not individual facilities, e.g., 'reactor types' not individual reactors and 'separation types' not individual separation plants. Natural uranium can be enriched, which produces enriched uranium, which goes into fuel fabrication, and depleted uranium (DU), which goes into storage. Fuel is transformed (transmuted) in reactors and then goes into a storage buffer. Used fuel can be pulled from storage into either separation or disposal. If sent to separations, fuel is transformed (partitioned) into fuel products, recovered uranium, and various categories of waste. Recycled material is stored until used by its assigned reactor type. VISION is comprised of several Microsoft Excel input files, a Powersim Studio core, and several Microsoft Excel output files. All must be co-located in the same folder on a PC to function. You must use Powersim Studio 8 or better. We have tested VISION with the Studio 8 Expert, Executive, and Education versions. The Expert and Education

  19. FUEL CYCLE ISOTOPE EVOLUTION BY TRANSMUTATION DYNAMICS OVER MULTIPLE RECYCLES

    SciTech Connect (OSTI)

    Samuel Bays; Steven Piet; Amaury Dumontier

    2010-06-01

    Because all actinides have the ability to fission appreciably in a fast neutron spectrum, these types of reactor systems are usually not associated with the buildup of higher mass actinides: curium, berkelium and californium. These higher actinides have high specific decay heat power, gamma and neutron source strengths, and are usually considered as a complication to the fuel manufacturing and transportation of fresh recycled transuranic fuel. This buildup issue has been studied widely for thermal reactor fuels. However, recent studies have shown that the transmutation physics associated with "gateway isotopes" dictates Cm-Bk-Cf buildup, even in fast burner reactors. Assuming a symbiotic fuel relationship with light water reactors (LWR), Pu-242 and Am-243 are formed in the LWRs and then are externally fed to the fast reactor as part of its overall transuranic fuel supply. These isotopes are created much more readily in a thermal than in fast spectrum systems due to the differences in the fast fission (i.e., above the fission threshold for non-fissile actinides) contribution. In a strictly breeding fast reactor this dependency on LWR transuranics would not exist, and thus avoids the introduction of LWR derived gateway isotopes into the fast reactor system. However in a transuranic burning fast reactor, the external supply of these gateway isotopes behaves as an external driving force towards the creation and build-up of Cm-Bk-Cf in the fuel cycle. It was found that though the Cm-Bk-Cf concentration in the equilibrium fuel cycle is dictated by the fast neutron spectrum, the time required to reach that equilibrium concentration is dictated by recycle, transmutation and decay storage dynamics.

  20. Fuel-cycle energy and emissions impacts of tripled fuel economy vehicles

    SciTech Connect (OSTI)

    Mintz, M.M.; Wang, M.Q.; Vyas, A.D.

    1998-12-31

    This paper presents estimates of the full cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. The fuel efficiency gain by 3X vehicles translated directly into reductions in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter smaller than 10 microns, particularly under the High Market Share Scenario.

  1. Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation IV goals and ...

  2. The role of Z-pinch fusion transmutation of waste in the nuclear fuel cycle.

    SciTech Connect (OSTI)

    Smith, James Dean; Drennen, Thomas E.; Rochau, Gary Eugene; Martin, William Joseph; Kamery, William; Phruksarojanakun, Phiphat; Grady, Ryan; Cipiti, Benjamin B.; Wilson, Paul Philip Hood; Mehlhorn, Thomas Alan; Guild-Bingham, Avery; Tsvetkov, Pavel Valeryevich

    2007-10-01

    The resurgence of interest in reprocessing in the United States with the Global Nuclear Energy Partnership has led to a renewed look at technologies for transmuting nuclear waste. Sandia National Laboratories has been investigating the use of a Z-Pinch fusion driver to burn actinide waste in a sub-critical reactor. The baseline design has been modified to solve some of the engineering issues that were identified in the first year of work, including neutron damage and fuel heating. An on-line control feature was added to the reactor to maintain a constant neutron multiplication with time. The transmutation modeling effort has been optimized to produce more accurate results. In addition, more attention was focused on the integration of this burner option within the fuel cycle including an investigation of overall costs. This report presents the updated reactor design, which is able to burn 1320 kg of actinides per year while producing 3,000 MWth.

  3. Fuel Cycle Technologies Annual Review Meeting Transactions Report

    SciTech Connect (OSTI)

    Lori Braase; W. Edgar May

    2014-11-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energys (DOEs) mission to: Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges. Goal 1 of DOEs Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOEs Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities. FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nations nuclear nonproliferation goals.

  4. Enduring Nuclear Fuel Cycle, Proceedings of a panel discussion

    SciTech Connect (OSTI)

    Walter, C. E., LLNL

    1997-11-18

    The panel reviewed the complete nuclear fuel cycle in the context of alternate energy resources, energy need projections, effects on the environment, susceptibility of nuclear materials to theft, diversion, and weapon proliferation. We also looked at ethical considerations of energy use, as well as waste, and its effects. The scope of the review extended to the end of the next century with due regard for world populations beyond that period. The intent was to take a long- range view and to project, not forecast, the future based on ethical rationales, and to avoid, as often happens, long-range discussions that quickly zoom in on only the next few decades. A specific nuclear fuel cycle technology that could satisfy these considerations was described and can be applied globally.

  5. Estimating Externalities of Coal Fuel Cycles, Report 3

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-09-01

    The agreement between the US DOE and the EC established the specific objectives of the study: (a) to develop a methodological framework that uses existing data and models to quantify the external costs and benefits of energy; (b) to demonstrate the application of the framework to estimate the externalities of the coal, biomass, oil, natural gas, hydro, nuclear, photovoltaic, and wind fuel cycles (by agreement with the EC, the US addressed the first six of these); and (c) to identify major gaps in the availability of information to quantify impacts, damages, benefits, and externalities of fuel cycles; and to suggest priorities for future research. The main consideration in defining these objectives was a desire to have more information about externalities, and a better method for estimating them.

  6. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    SciTech Connect (OSTI)

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    facility, DECON requires that contaminated components either be: (1) decontaminated to restricted or unrestricted release levels or (2) packaged and shipped to an authorized disposal site. This study considers unrestricted release only. The new decommissioning criteria of July 1997 are too recent for this study to include a cost analysis of the restricted release option, which is now allowed under these new criteria. The costs of decommissioning facility components are generally estimated to be in the range of $140 to $27,000, depending on the type of component, the type and amount of radioactive contamination, the remediation options chosen, and the quantity of radioactive waste generated from decommissioning operations. Estimated costs for decommissioning the example laboratories range from $130,000 to $205,000, assuming aggressive low-level waste (LLW) volume reduction. If only minimal LLW volume reduction is employed, decommissioning costs range from $150,000 to $270,000 for these laboratories. On the basis of estimated decommissioning costs for facility components, the costs of decommissioning typical non-fuel-cycle laboratory facilities are estimated to range from about $25,000 for the decommissioning of a small room containing one or two fume hoods to more than $1 million for the decommissioning of an industrial plant containing several laboratories in which radiochemicals and sealed radioactive sources are prepared. For the reference sites of this study, the basic decommissioning alternatives are: (1) site stabilization followed by long-term care and (2) removal of the waste or contaminated soil to an authorized disposal site. Cost estimates made for decommissioning three reference sites range from about $130,000 for the removal of a contaminated drain line and hold-up tank to more than $23 million for the removal of a tailings pile that contains radioactive residue from ore-processing operations in which tin slag is processed for the recovery of rare metals. Total

  7. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    SciTech Connect (OSTI)

    Parker, Frank L.

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long

  8. APEX nuclear fuel cycle for production of LWR fuel and elimination of radioactive waste

    SciTech Connect (OSTI)

    Steinberg, M.; Powell, J.R.

    1981-08-01

    The development of a nuclear fission fuel cycle is proposed which eliminates all the radioactive fission product waste effluent and the need for geological-age high level waste storage and provides a long term supply of fissile fuel for an LWR power reactor economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 years old) to remove the stable nonradioactive (NRFP, e.g. lanthanides, etc.) and short-lived fission products (SLFP e.g. half-lives of (1 to 2 years) and returning, in dilute form, the long-lived fission products, ((LLFPs, e.g. 30 y half-life Cs, Sr, and 10 y Kr, and 16 x 10/sup 6/ y I) and the transuranics (TUs, e.g. Pu, Am, Cm, and Np) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel are to be supplied through the use of a Spallator (linear accelerator spallation-target fuel-producer). The reprocessing of LWR fuel elements is to be performed by means of the Chelox process which consists of Airox treatment (air oxidation and hydrogen reduction) followed by chelation with an organic reagent (..beta..-diketonate) and vapor distillation of the organometallic compounds for separation and partitioning of the fission products.

  9. Apex nuclear fuel cycle for production of light water reactor fuel and elimination of radioactive waste

    SciTech Connect (OSTI)

    Steinberg, M.; Hiroshi, T.; Powell, J.R.

    1982-09-01

    The development of a nuclear fission fuel cycle is proposed that eliminates all the radioactive fission product (FP) waste effluent and the need for geological age high-level waste storage and provides a longterm supply of fissile fuel for a light water reactor (LWR) economy. The fuel cycle consists of reprocessing LWR spent fuel (1 to 2 yr old) to remove the stable nonradioactive FPs (NRFPs) e.g., lanthanides, etc.) and short-lived FPs (SLFP) (e.g., half-lives of less than or equal to 1 to 2 yr) and returning, in dilute form, the long-lived FPs (LLFPs) (e.g., 30-yr half-life cesium and strontium, 10-yr krypton, and 16 X 10/sup 6/-yr iodine) and the transuranics (TUs) (e.g., plutonium, americium, curium, and neptunium) to be refabricated into fresh fuel elements. Makeup fertile and fissile fuel (FF) are to be supplied through the use of the spallator (linear accelerator spallation-target fuel producer). The reprocessing of LWR fuel elements is to be performed by means of the chelox process, which consists of chopping and leaching with an organic chelating reagent (..beta..-diketonate) and distillation of the organometallic compounds formed for purposes of separating and partitioning the FPs. The stable NRFPs and SLFPs are allowed to decay to background in 10 to 20 yr for final disposal to the environment.

  10. Nuclear Fuel Cycle Reasoner: PNNL FY13 Report

    SciTech Connect (OSTI)

    Hohimer, Ryan E.; Strasburg, Jana D.

    2013-09-30

    In Fiscal Year 2012 (FY12) PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In Fiscal Year 2013 (FY13) the SNAP demonstration was enhanced with respect to query and navigation usability issues.

  11. Full Fuel-Cycle Comparison of Forklift Propulsion Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Full Fuel-Cycle Comparison of Forklift Propulsion Systems Full Fuel-Cycle Comparison of Forklift Propulsion Systems This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Developed for the U.S. Department of Energy by Argonne National Laboratory. Full Fuel-Cycle Comparison of Forklift Propulsion Systems (2.02 MB) More Documents

  12. Fuel Cycle Potential Waste Inventory for Disposition Rev 5 | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Cycle Potential Waste Inventory for Disposition Rev 5 Fuel Cycle Potential Waste Inventory for Disposition Rev 5 The United States currently utilizes a once-through fuel cycle where used nuclear fuel is stored onsite in either wet pools or in dry storage systems with ultimate disposal envisioned in a deep mined geologic repository. This report provides an estimate of potential waste inventory and waste form characteristics for the DOE used nuclear fuel and high-level radioactive

  13. Fuel Cycle Services Needs Estimator v.2.0

    Energy Science and Technology Software Center (OSTI)

    2008-03-18

    The "Fuel Cycle Services Needs Estimator", Version 2.0 allows users to estimate the amount of uranium enrichment services needed and amount of spent nuclear fuel produced by a given fleet of nuclear power reactors through 2050 based on user-determined information about the size of a reactor fleet and average characteristics of reactors in that fleet. The program helps users evaluate the current and future supply of nuclear fuel cycle services. The program also allows usersmore » to compare the enrichment needs and spent fuel production of more up to seven defined nuclear power reactor fleets and to aggregate estimated needs. Version 2.0 of the program has an additions of new graphs to show results of calculations (calculation capabilities and other graphing tools included in version 1.o), maps showing flows of material based on calculation results, and additional calculation capabilities that allow the user to compare supply to demand (demand calculations included in version 1.0). Default values for seven selected nuclear energy programs in East Asia are included for reference and comparison. The program was designed using the dynamic simulation software, Powersim.« less

  14. An extended conventional fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect (OSTI)

    Scarangella, M. J.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small pressurized water reactor (PWR) with an integral once-through steam generator and a thermal output of about 500 MW; it is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height PWR assemblies with the familiar 17 x 17 fuel rod array. The Babcock and Wilcox Company (B and W) is offering a core loading and cycle management plan for a four-year cycle based on its presumed attractiveness to potential customers. This option is a once-through fuel cycle in which the entire core is discharged and replaced after four years. In addition, a conventional fuel utilization strategy, employing a periodic partial reload and shuffle, was developed as an alternative to the four-year once-through fuel cycle. This study, which was performed using the Studsvik core design code suite, is a typical multi-cycle projection analysis of the type performed by most fuel management organizations such as fuel vendors and utilities. In the industry, the results of such projections are used by the financial arms of these organizations to assist in making long-term decisions. In the case of the B and W mPower reactor, this analysis demonstrates flexibility for customers who consider the once-through fuel cycle unacceptable from a fuel utilization standpoint. As expected, when compared to the once-through concept, reloads of the B and W mPower reactor will achieve higher batch average discharge exposure, will have adequate shut-down margin, and will have a relatively flat hot excess reactivity trend at the expense of slightly increased peaking. (authors)

  15. June 2011, Report of the Fuel Cycle Subcommittee of NEAC | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy June 2011, Report of the Fuel Cycle Subcommittee of NEAC June 2011, Report of the Fuel Cycle Subcommittee of NEAC Fuel Cycle Subcomm report final v2.pdf (166.24 KB) More Documents & Publications Meeting Materials: June 15, 2011 MEETING MATERIALS: DECEMBER 19, 2013 Meeting Materials: June 12, 2012

  16. Proceedings of GLOBAL 2013: International Nuclear Fuel Cycle Conference - Nuclear Energy at a Crossroads

    SciTech Connect (OSTI)

    2013-07-01

    The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.

  17. Fuel cycles and envisioned roles of fast neutron reactors and hybrids

    SciTech Connect (OSTI)

    Salvatores, Massimo

    2012-06-19

    Future innovative nuclear fuel cycles will require insuring sustainability in terms of safe operation, optimal use of resources, radioactive waste minimization and reduced risk of proliferation. The present paper introduces some basic notions and fundamental fuel cycle strategies. The simulation approach needed to evaluate the impact of the different fuel cycle alternatives will also be shortly discussed.

  18. K Basin spent fuel sludge treatment alternatives study. Volume 2, Technical options

    SciTech Connect (OSTI)

    Beary, M.M.; Honekemp, J.R.; Winters, N.

    1995-01-01

    Approximately 2100 metric tons of irradiated N Reactor fuel are stored in the KE and KW Basins at the Hanford Site, Richland, Washington. Corrosion of the fuel has led to the formation of sludges, both within the storage canisters and on the basin floors. Concern about the degraded condition of the fuel and the potential for leakage from the basins in proximity to the Columbia River has resulted in DOE`s commitment in the Tri-Party Agreement (TPA) to Milestone M-34-00-T08 to remove the fuel and sludges by a December 2002 target date. To support the planning for this expedited removal action, the implications of sludge management under various scenarios are examined. This report, Volume 2 of two volumes, describes the technical options for managing the sludges, including schedule and cost impacts, and assesses strategies for establishing a preferred path.

  19. Estimating Fuel Cycle Externalities: Analytical Methods and Issues, Report 2

    SciTech Connect (OSTI)

    Barnthouse, L.W.; Cada, G.F.; Cheng, M.-D.; Easterly, C.E.; Kroodsma, R.L.; Lee, R.; Shriner, D.S.; Tolbert, V.R.; Turner, R.S.

    1994-07-01

    The activities that produce electric power typically range from extracting and transporting a fuel, to its conversion into electric power, and finally to the disposition of residual by-products. This chain of activities is called a fuel cycle. A fuel cycle has emissions and other effects that result in unintended consequences. When these consequences affect third parties (i.e., those other than the producers and consumers of the fuel-cycle activity) in a way that is not reflected in the price of electricity, they are termed ''hidden'' social costs or externalities. They are the economic value of environmental, health and any other impacts, that the price of electricity does not reflect. How do you estimate the externalities of fuel cycles? Our previous report describes a methodological framework for doing so--called the damage function approach. This approach consists of five steps: (1) characterize the most important fuel cycle activities and their discharges, where importance is based on the expected magnitude of their externalities, (2) estimate the changes in pollutant concentrations or other effects of those activities, by modeling the dispersion and transformation of each pollutant, (3) calculate the impacts on ecosystems, human health, and any other resources of value (such as man-made structures), (4) translate the estimates of impacts into economic terms to estimate damages and benefits, and (5) assess the extent to which these damages and benefits are externalities, not reflected in the price of electricity. Each step requires a different set of equations, models and analysis. Analysts generally believe this to be the best approach for estimating externalities, but it has hardly been used! The reason is that it requires considerable analysis and calculation, and to this point in time, the necessary equations and models have not been assembled. Equally important, the process of identifying and estimating externalities leads to a number of complex issues

  20. Fuel cycle evaluations of biomass-ethanol and reformulated gasoline. Volume 1

    SciTech Connect (OSTI)

    Tyson, K.S.

    1993-11-01

    The US Department of Energy (DOE) is using the total fuel cycle analysis (TFCA) methodology to evaluate energy choices. The National Energy Strategy (NES) identifies TFCA as a tool to describe and quantify the environmental, social, and economic costs and benefits associated with energy alternatives. A TFCA should quantify inputs and outputs, their impacts on society, and the value of those impacts that occur from each activity involved in producing and using fuels, cradle-to-grave. New fuels and energy technologies can be consistently evaluated and compared using TFCA, providing a sound basis for ranking policy options that expand the fuel choices available to consumers. This study is limited to creating an inventory of inputs and outputs for three transportation fuels: (1) reformulated gasoline (RFG) that meets the standards of the Clean Air Act Amendments of 1990 (CAAA) using methyl tertiary butyl ether (MTBE); (2) gasohol (E10), a mixture of 10% ethanol made from municipal solid waste (MSW) and 90% gasoline; and (3) E95, a mixture of 5% gasoline and 95% ethanol made from energy crops such as grasses and trees. The ethanol referred to in this study is produced from lignocellulosic material-trees, grass, and organic wastes -- called biomass. The biomass is converted to ethanol using an experimental technology described in more detail later. Corn-ethanol is not discussed in this report. This study is limited to estimating an inventory of inputs and outputs for each fuel cycle, similar to a mass balance study, for several reasons: (1) to manage the size of the project; (2) to provide the data required for others to conduct site-specific impact analysis on a case-by-case basis; (3) to reduce data requirements associated with projecting future environmental baselines and other variables that require an internally consistent scenario.

  1. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  2. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    SciTech Connect (OSTI)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A. Ignatiev, V. V.; Subbotin, S. A. Tsibulskiy, V. F.

    2015-12-15

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  3. Fuel-cycle energy and emissions impacts of tripled fuel-economy vehicles

    SciTech Connect (OSTI)

    Mintz, M. M.; Vyas, A. D.; Wang, M. Q.

    1997-12-18

    This paper presents estimates of the fill fuel-cycle energy and emissions impacts of light-duty vehicles with tripled fuel economy (3X vehicles) as currently being developed by the Partnership for a New Generation of Vehicles (PNGV). Seven engine and fuel combinations were analyzed: reformulated gasoline, methanol, and ethanol in spark-ignition, direct-injection engines; low-sulfur diesel and dimethyl ether in compression-ignition, direct-injection engines; and hydrogen and methanol in fuel-cell vehicles. Results were obtained for three scenarios: a Reference Scenario without PNGVs, a High Market Share Scenario in which PNGVs account for 60% of new light-duty vehicle sales by 2030, and a Low Market Share Scenario in which PNGVs account for half as many sales by 2030. Under the higher of these two, the fuel-efficiency gain by 3X vehicles translated directly into a nearly 50% reduction in total energy demand, petroleum demand, and carbon dioxide emissions. The combination of fuel substitution and fuel efficiency resulted in substantial reductions in emissions of nitrogen oxide (NO{sub x}), carbon monoxide (CO), volatile organic compounds (VOCs), sulfur oxide, (SO{sub x}), and particulate matter smaller than 10 microns (PM{sub 10}) for most of the engine-fuel combinations examined. The key exceptions were diesel- and ethanol-fueled vehicles for which PM{sub 10} emissions increased.

  4. Deep Burn Fuel Cycle Integration: Evaluation of Two-Tier Scenarios

    SciTech Connect (OSTI)

    S. Bays; H. Zhang; M. Pope

    2009-05-01

    The use of a deep burn strategy using VHTRs (or DB-MHR), as a means of burning transuranics produced by LWRs, was compared to performing this task with LWR MOX. The spent DB-MHR fuel was recycled for ultimate final recycle in fast reactors (ARRs). This report summarizes the preliminary findings of the support ratio (in terms of MWth installed) between LWRs, DB-MHRs and ARRs in an equilibrium two-tier fuel cycle scenario. Values from literature were used to represent the LWR and DB-MHR isotopic compositions. A reactor physics simulation of the ARR was analyzed to determine the effect that the DB-MHR spent fuel cooling time on the ARR transuranic consumption rate. These results suggest that the cooling time has some but not a significant impact on the ARRs conversion ratio and transuranic consumption rate. This is attributed to fissile worth being derived from non-fissile or threshold-fissioning isotopes in the ARRs fast spectrum. The fraction of installed thermal capacity of each reactor in the DB-MHR 2-tier fuel cycle was compared with that of an equivalent MOX 2-tier fuel cycle, assuming fuel supply and demand are in equilibrium. The use of DB-MHRs in the 1st-tier allows for a 10% increase in the fraction of fleet installed capacity of UO2-fueled LWRs compared to using a MOX 1st-tier. Also, it was found that because the DB-MHR derives more power per unit mass of transuranics charged to the fresh fuel, the front-end reprocessing demand is less than MOX. Therefore, more fleet installed capacity of DB-MHR would be required to support a given fleet of UO2 LWRs than would be required of MOX plants. However, the transuranic deep burn achieved by DB-MHRs reduces the number of fast reactors in the 2nd-tier to support the DB-MHRs back-end transuranic output than if MOX plants were used. Further analysis of the relative costs of these various types of reactors is required before a comparative study of these options could be considered complete.

  5. Overview of the international R&D recycling activities of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Patricia Paviet-Hartmann

    2012-12-01

    Nuclear power has demonstrated over the last thirty years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence of the price of uranium. However the management of used nuclear fuel (UNF) remains the “Achilles’ heel of this energy source since the storage of UNF is increasing as evidenced by the following number with 2,000 to 2,300 of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 UNF assemblies stored in dry cask storage and 88,000 stored in pools. Alarmingly, more than half of US commercial reactor sites have filled their pools to capacity and have had to add dry cask storage facilities. Two options adopted by several countries will be discussed. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of UNF into a geologic formation. One has to remind that only 30% of the worldwide UNF are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission

  6. Zone approaches to international safeguards of a nuclear fuel cycle

    SciTech Connect (OSTI)

    Fishbone, L.G.; Higinbotham, W.A.

    1986-01-01

    At present the IAEA designs its safeguards approach with regard to each type of nuclear facility so that the safeguards activities and effort are essentially the same for a given type and size of nuclear facility wherever it may be located. Conclusions regarding a state are derived by combining the results of safeguards verifications for the individual facilities within it. We have examined safeguards approaches for a state nuclear fuel cycle that take into account the existence of all of the nuclear facilities in the state. We have focussed on the fresh-fuel zone of an advanced nuclear fuel cycle, the several facilities of which use or process low-enriched uranium. At one extreme, flows and inventories would be verified at each material balance area. At the other extreme, the flows into and out of the zone and the inventory of the whole zone would be verified. The intention is to develop an approach which will make it possible to compare the technical effectiveness and the inspection effort for the facility-oriented approach, for the zone approach and for some reasonable intermediate safeguards approaches. Technical effectiveness, in these cases, means an estimate of the assurance that all nuclear material has been accounted for.

  7. Biomass Direct Liquefaction Options. TechnoEconomic and Life Cycle Assessment

    SciTech Connect (OSTI)

    Tews, Iva J.; Zhu, Yunhua; Drennan, Corinne; Elliott, Douglas C.; Snowden-Swan, Lesley J.; Onarheim, Kristin; Solantausta, Yrjo; Beckman, David

    2014-07-31

    The purpose of this work was to assess the competitiveness of two biomass to transportation fuel processing routes, which were under development in Finland, the U.S. and elsewhere. Concepts included fast pyrolysis (FP), and hydrothermal liquefaction (HTL), both followed by hydrodeoxygenation, and final product refining. This work was carried out as a collaboration between VTT (Finland), and PNNL (USA). The public funding agents for the work were Tekes in Finland and the Bioenergy Technologies Office of the U.S. Department of Energy. The effort was proposed as an update of the earlier comparative technoeconomic assessment performed by the IEA Bioenergy Direct Biomass Liquefaction Task in the 1980s. New developments in HTL and the upgrading of the HTL biocrude product triggered the interest in reinvestigating this comparison of these biomass liquefaction processes. In addition, developments in FP bio-oil upgrading had provided additional definition of this process option, which could provide an interesting comparison.

  8. Multiple recycle of REMIX fuel at VVER-1000 operation in closed fuel cycle

    SciTech Connect (OSTI)

    Alekseev, P. N.; Bobrov, E. A. Chibinyaev, A. V.; Teplov, P. S.; Dudnikov, A. A.

    2015-12-15

    The basic features of loading the VVER-1000 core with a new variant of REMIX fuel (REgenerated MIXture of U–Pu oxides) are considered during its multiple recycle in a closed nuclear fuel cycle. The fuel composition is produced on the basis of the uranium–plutonium regenerate extracted at processing the spent nuclear fuel (SNF) from a VVER-1000, depleted uranium, and the fissionable material: {sup 235}U as a part of highly enriched uranium (HEU) from warheads superfluous for defense purposes or {sup 233}U accumulated in thorium blankets of fusion (electronuclear) neutron sources or fast reactors. Production of such a fuel assumes no use of natural uranium in addition. When converting a part of the VVER-1000 reactors to the closed fuel cycle based on the REMIX technology, the consumption of natural uranium decreases considerably, and there is no substantial degradation of the isotopic composition of plutonium or change in the reactor-safety characteristics at the passage from recycle to recycle.

  9. Polymer electrolyte direct methanol fuel cells: an option for transportation applications

    SciTech Connect (OSTI)

    Gottesfeld, S.; Cleghorn, S.J.C.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, T.A.

    1996-10-01

    PEFCs most frequently considered for electric vehicles have been based on either hydrogen carried aboard, or steam-reforming of methanol on board to produce H2 + CO2. Direct methanol fuel cells (DMFCs), which use a liquid methanol fuel feed, completely avoid the complexity and weight penalties of the reformer, but have not been considered a serious option until recently, because of much lower power densities. Recent advances in DMFCs have been dramatic, however, with the DMFC reaching power densities which are significant fractions of those provided by reformate/air fuel cells. Use of established Pt-Ru anode electrocatalysts and Pt cathode electrocatalysts in polymer electrolyte DMFCs has resulted in enhanced DMFC performance, particularly when operated above 100 C and when catalyst layer composition and structure are optimized. The higher DMFC power densities recently achieved provide a new basis for considering DMFCs for transportation applications.

  10. Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee

    SciTech Connect (OSTI)

    Richter, Burton; Chu, Margaret; Hoffman, Darleane; Juzaitis, Ray; Mtingwa, Sekazi; Omberg, Ronald P.; Rempe, Joy L.; Warin, Dominique

    2012-06-12

    The Fuel Cycle (FC) Subcommittee of NEAC met February 7-8, 2012 in Washington (Drs. Hoffmann and Juzaitis were unable to attend). While the meeting was originally scheduled to occur after the submission of the President’s FY 2013 budget, the submission was delayed a week; thus, we could have no discussion on balance in the NE program. The Agenda is attached as Appendix A. The main focus of the meeting was on accident tolerant fuels, an important post Fukushima issue, and on issues related to the report of the Blue Ribbon Commission on America’s Nuclear Future (BRC) as related to the responsibility for used fuel disposal which was assigned to the FC program with the end of the Office of Civilian Radioactive Waste Management. In addition we heard an update on the systems study program which is aimed at helping chose the best options for advanced reactors, and possible new study on separation and waste form relevance to used fuel disposal (these two items are only discussed in this section of the report).

  11. A European perspective on the US nuclear fuel cycle

    SciTech Connect (OSTI)

    Wilkinson, W.L.

    1989-01-01

    Many Europeans believe that the main problems which have impeded progress in solving the back end of the nuclear fuel cycle in the United States have been a series of ideological and political hang-ups and these, coupled with excessive bureaucracy, have made logical decision making on the back-end problems impossible. This situation has been caused by a succession of political nondecisions. Public confidence in nuclear generation was thereby undermined and, because of plentiful supplies of other energy sources, there was no urgent need to expand the nuclear program in the United States. Since uranium was cheap and fast reactors not commercially attractive, there was no economic incentive to reprocess fuel from existing reactors in the United States. The problem facing the United States is that of managing the large stocks of spent fuel which have arisen over many years. A logical way forward for the United States would appear to be as follows: build more storage for spent fuel; consider overseas reprocessing to provide plutonium; develop reprocessing technology; and develop direct disposal technology.

  12. Reliability and availability requirements analysis for DEMO: fuel cycle system

    SciTech Connect (OSTI)

    Pinna, T.; Borgognoni, F.

    2015-03-15

    The Demonstration Power Plant (DEMO) will be a fusion reactor prototype designed to demonstrate the capability to produce electrical power in a commercially acceptable way. Two of the key elements of the engineering development of the DEMO reactor are the definitions of reliability and availability requirements (or targets). The availability target for a hypothesized Fuel Cycle has been analysed as a test case. The analysis has been done on the basis of the experience gained in operating existing tokamak fusion reactors and developing the ITER design. Plant Breakdown Structure (PBS) and Functional Breakdown Structure (FBS) related to the DEMO Fuel Cycle and correlations between PBS and FBS have been identified. At first, a set of availability targets has been allocated to the various systems on the basis of their operating, protection and safety functions. 75% and 85% of availability has been allocated to the operating functions of fuelling system and tritium plant respectively. 99% of availability has been allocated to the overall systems in executing their safety functions. The chances of the systems to achieve the allocated targets have then been investigated through a Failure Mode and Effect Analysis and Reliability Block Diagram analysis. The following results have been obtained: 1) the target of 75% for the operations of the fuelling system looks reasonable, while the target of 85% for the operations of the whole tritium plant should be reduced to 80%, even though all the tritium plant systems can individually reach quite high availability targets, over 90% - 95%; 2) all the DEMO Fuel Cycle systems can reach the target of 99% in accomplishing their safety functions. (authors)

  13. Advanced Fuel Cycle Economic Tools, Algorithms, and Methodologies

    SciTech Connect (OSTI)

    David E. Shropshire

    2009-05-01

    The Advanced Fuel Cycle Initiative (AFCI) Systems Analysis supports engineering economic analyses and trade-studies, and requires a requisite reference cost basis to support adequate analysis rigor. In this regard, the AFCI program has created a reference set of economic documentation. The documentation consists of the “Advanced Fuel Cycle (AFC) Cost Basis” report (Shropshire, et al. 2007), “AFCI Economic Analysis” report, and the “AFCI Economic Tools, Algorithms, and Methodologies Report.” Together, these documents provide the reference cost basis, cost modeling basis, and methodologies needed to support AFCI economic analysis. The application of the reference cost data in the cost and econometric systems analysis models will be supported by this report. These methodologies include: the energy/environment/economic evaluation of nuclear technology penetration in the energy market—domestic and internationally—and impacts on AFCI facility deployment, uranium resource modeling to inform the front-end fuel cycle costs, facility first-of-a-kind to nth-of-a-kind learning with application to deployment of AFCI facilities, cost tradeoffs to meet nuclear non-proliferation requirements, and international nuclear facility supply/demand analysis. The economic analysis will be performed using two cost models. VISION.ECON will be used to evaluate and compare costs under dynamic conditions, consistent with the cases and analysis performed by the AFCI Systems Analysis team. Generation IV Excel Calculations of Nuclear Systems (G4-ECONS) will provide static (snapshot-in-time) cost analysis and will provide a check on the dynamic results. In future analysis, additional AFCI measures may be developed to show the value of AFCI in closing the fuel cycle. Comparisons can show AFCI in terms of reduced global proliferation (e.g., reduction in enrichment), greater sustainability through preservation of a natural resource (e.g., reduction in uranium ore depletion), value from

  14. Nuclear Fuel Cycle Reasoner: PNNL FY12 Report

    SciTech Connect (OSTI)

    Hohimer, Ryan E.; Pomiak, Yekaterina G.; Neorr, Peter A.; Gastelum, Zoe N.; Strasburg, Jana D.

    2013-05-03

    Building on previous internal investments and leveraging ongoing advancements in semantic technologies, PNNL implemented a formal reasoning framework and applied it to a specific challenge in nuclear nonproliferation. The Semantic Nonproliferation Analysis Platform (SNAP) was developed as a preliminary graphical user interface to demonstrate the potential power of the underlying semantic technologies to analyze and explore facts and relationships relating to the nuclear fuel cycle (NFC). In developing this proof of concept prototype, the utility and relevancy of semantic technologies to the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D) has been better understood.

  15. Full Fuel-Cycle Comparison of Forklift Propulsion Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also

  16. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    2011-12-19

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  17. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conventional Fuels in the Transportation Sector | Department of Energy A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: ConocoPhillips and Nexant Corporatin 2004_deer_abbott.pdf (160.87 KB) More Documents & Publications Shell Gas to Liquids

  18. NMSS handbook for decommissioning fuel cycle and materials licensees

    SciTech Connect (OSTI)

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  19. EARTHQUAKE CAUSED RELEASES FROM A NUCLEAR FUEL CYCLE FACILITY

    SciTech Connect (OSTI)

    Charles W. Solbrig; Chad Pope; Jason Andrus

    2014-08-01

    The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

  20. Closing nuclear fuel cycle with fast reactors: problems and prospects

    SciTech Connect (OSTI)

    Shadrin, A.; Dvoeglazov, K.; Ivanov, V.

    2013-07-01

    The closed nuclear fuel cycle (CNFC) with fast reactors (FR) is the most promising way of nuclear energetics development because it prevents spent nuclear fuel (SNF) accumulation and minimizes radwaste volume due to minor actinides (MA) transmutation. CNFC with FR requires the elaboration of safety, environmentally acceptable and economically effective methods of treatment of SNF with high burn-up and low cooling time. The up-to-date industrially implemented SNF reprocessing technologies based on hydrometallurgical methods are not suitable for the reprocessing of SNF with high burn-up and low cooling time. The alternative dry methods (such as electrorefining in molten salts or fluoride technologies) applicable for such SNF reprocessing have not found implementation at industrial scale. So the cost of SNF reprocessing by means of dry technologies can hardly be estimated. Another problem of dry technologies is the recovery of fissionable materials pure enough for dense fuel fabrication. A combination of technical solutions performed with hydrometallurgical and dry technologies (pyro-technology) is proposed and it appears to be a promising way for the elaboration of economically, ecologically and socially accepted technology of FR SNF management. This paper deals with discussion of main principle of dry and aqueous operations combination that probably would provide safety and economic efficiency of the FR SNF reprocessing. (authors)

  1. Assessment of Possible Cycle Lengths for Fully-Ceramic Micro-Encapsulated Fuel-Based Light Water Reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2012-04-01

    The tri-isotropic (TRISO) fuel developed for High Temperature reactors is known for its extraordinary fission product retention capabilities [1]. Recently, the possibility of extending the use of TRISO particle fuel to Light Water Reactor (LWR) technology, and perhaps other reactor concepts, has received significant attention [2]. The Deep Burn project [3] currently focuses on once-through burning of transuranic fissile and fissionable isotopes (TRU) in LWRs. The fuel form for this purpose is called Fully-Ceramic Micro-encapsulated (FCM) fuel, a concept that borrows the TRISO fuel particle design from high temperature reactor technology, but uses SiC as a matrix material rather than graphite. In addition, FCM fuel may also use a cladding made of a variety of possible material, again including SiC as an admissible choice. The FCM fuel used in the Deep Burn (DB) project showed promising results in terms of fission product retention at high burnup values and during high-temperature transients. In the case of DB applications, the fuel loading within a TRISO particle is constituted entirely of fissile or fissionable isotopes. Consequently, the fuel was shown to be capable of achieving reasonable burnup levels and cycle lengths, especially in the case of mixed cores (with coexisting DB and regular LWR UO2 fuels). In contrast, as shown below, the use of UO2-only FCM fuel in a LWR results in considerably shorter cycle length when compared to current-generation ordinary LWR designs. Indeed, the constraint of limited space availability for heavy metal loading within the TRISO particles of FCM fuel and the constraint of low (i.e., below 20 w/0) 235U enrichment combine to result in shorter cycle lengths compared to ordinary LWRs if typical LWR power densities are also assumed and if typical TRISO particle dimensions and UO2 kernels are specified. The primary focus of this summary is on using TRISO particles with up to 20 w/0 enriched uranium kernels loaded in Pressurized Water

  2. Analysis of Technology Options to Reduce the Fuel Consumption of Idling Trucks

    SciTech Connect (OSTI)

    F. Stodolsky; L. Gaines; A. Vyas

    2000-06-01

    Long-haul trucks idling overnight consume more than 838 million gallons (20 million barrels) of fuel annually. Idling also emits pollutants. Truck drivers idle their engines primarily to (1) heat or cool the cab and/or sleeper, (2) keep the fuel warm in winter, and (3) keep the engine warm in the winter so that the engine is easier to start. Alternatives to overnight idling could save much of this fuel, reduce emissions, and cut operating costs. Several fuel-efficient alternatives to idling are available to provide heating and cooling: (1) direct-fired heater for cab/sleeper heating, with or without storage cooling; (2) auxiliary power units; and (3) truck stop electrification. Many of these technologies have drawbacks that limit market acceptance. Options that supply electricity are economically viable for trucks that are idled for 1,000-3,000 or more hours a year, while heater units could be used across the board. Payback times for fleets, which would receive quantity discounts on the prices, would be somewhat shorter.

  3. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect (OSTI)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  4. Analysis of Pu-Only Partitioning Strategies in LMFBR Fuel Cycles...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Analysis of Pu-Only Partitioning Strategies in LMFBR Fuel Cycles Sodium cooled Fast Reactors (SFR) have been under consideration for ...

  5. Testing standards for physical security systems at Category 1 fuel cycle facilities

    SciTech Connect (OSTI)

    Dwyer, P.A.

    1991-10-01

    This NUREG is a compilation of physical security testing standards for use at fuel cycle facilities using or possessing formula quantities of strategic special nuclear material.

  6. Options for converting excess plutonium to feed for the MOX fuel fabrication facility

    SciTech Connect (OSTI)

    Watts, Joe A; Smith, Paul H; Psaras, John D; Jarvinen, Gordon D; Costa, David A; Joyce, Jr., Edward L

    2009-01-01

    The storage and safekeeping of excess plutonium in the United States represents a multibillion-dollar lifecycle cost to the taxpayers and poses challenges to National Security and Nuclear Non-Proliferation. Los Alamos National Laboratory is considering options for converting some portion of the 13 metric tons of excess plutonium that was previously destined for long-term waste disposition into feed for the MOX Fuel Fabrication Facility (MFFF). This approach could reduce storage costs and security ri sks, and produce fuel for nuclear energy at the same time. Over the course of 30 years of weapons related plutonium production, Los Alamos has developed a number of flow sheets aimed at separation and purification of plutonium. Flow sheets for converting metal to oxide and for removing chloride and fluoride from plutonium residues have been developed and withstood the test oftime. This presentation will address some potential options for utilizing processes and infrastructure developed by Defense Programs to transform a large variety of highly impure plutonium into feedstock for the MFFF.

  7. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Lakey, L.T.; Silviera, D.J.

    1988-12-01

    The National Briefing Summaries is a compilation of publicly available information concerning the nuclear fuel cycle and radioactive waste management strategies and programs of 21 nations, including the United States and three international agencies that have publicized their activities in this field. It presents available highlight information with references that may be used by the reader for additional information. The information in this document is compiled primarily for use by the US Department of Energy and other US federal agencies and their contractors to provide summary information on radioactive waste management activities in other countries. This document provides an awareness to managers and technical staff of what is occurring in other countries with regard to strategies, activities, and facilities. The information may be useful in program planning to improve and benefit United States' programs through foreign information exchange. Benefits to foreign exchange may be derived through a number of exchange activities.

  8. National briefing summaries: Nuclear fuel cycle and waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Bradley, D.J.; Fletcher, J.F.; Konzek, G.J.; Lakey, L.T.; Mitchell, S.J.; Molton, P.M.; Nightingale, R.E.

    1991-04-01

    Since 1976, the International Program Support Office (IPSO) at the Pacific Northwest Laboratory (PNL) has collected and compiled publicly available information concerning foreign and international radioactive waste management programs. This National Briefing Summaries is a printout of an electronic database that has been compiled and is maintained by the IPSO staff. The database contains current information concerning the radioactive waste management programs (with supporting information on nuclear power and the nuclear fuel cycle) of most of the nations (except eastern European countries) that now have or are contemplating nuclear power, and of the multinational agencies that are active in radioactive waste management. Information in this document is included for three additional countries (China, Mexico, and USSR) compared to the prior issue. The database and this document were developed in response to needs of the US Department of Energy.

  9. Framework for fuel-cycle approaches to IAEA safeguards

    SciTech Connect (OSTI)

    Fishbone, L.G.; Higinbotham, W.

    1986-01-01

    A framework is presented for comparing various safeguards verification approaches which have been proposed for consideration. Each inventory change, inventory, and material balance for each nuclear facility, reported by a state, may be verified. Verification approaches are compared by listing which of these reports would be verified and to what degree for each approach as they might be applied to a state with a closed fuel cycle. The comparison indicates that the extended-material-balance-area (or zone), the information-correlation, and the randomization-over-facilities approaches make more efficient use of Agency resources than the facility-oriented approach for states with large nuclear power programs. In contrast, any advantages of randomizing inspections over inspection activities within facilities are, percentagewise, relatively independent of the size of a state's nuclear program.

  10. Advanced Fuels Campaign 2012 Accomplishments

    SciTech Connect (OSTI)

    Not Listed

    2012-11-01

    The Advanced Fuels Campaign (AFC) under the Fuel Cycle Research and Development (FCRD) program is responsible for developing fuels technologies to support the various fuel cycle options defined in the DOE Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. The fiscal year 2012 (FY 2012) accomplishments are highlighted below. Kemal Pasamehmetoglu is the National Technical Director for AFC.

  11. Long-term global nuclear energy and fuel cycle strategies

    SciTech Connect (OSTI)

    Krakowski, R.A.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  12. Concept of DT fuel cycle for a fusion neutron source

    SciTech Connect (OSTI)

    Anan'ev, S.; Spitsyn, A.V.; Kuteev, B.V.; Cherkez, D.I.; Shirnin, P.N.; Kazakovsky, N.T.

    2015-03-15

    A concept of DT-fusion neutron source (FNS) with the neutron yield higher than 10{sup 18} neutrons per second is under design in Russia. Such a FNS is of interest for many applications: 1) basic and applied research (neutron scattering, etc); 2) testing the structural materials for fusion reactors; 3) control of sub-critical nuclear systems and 4) nuclear waste processing (including transmutation of minor actinides). This paper describes the fuel cycle concept of a compact fusion neutron source based on a small spherical tokamak (FNS-ST) with a MW range of DT fusion power and considers the key physics issues of this device. The major and minor radii are ∼0.5 and ∼0.3 m, magnetic field ∼1.5 T, heating power less than 15 MW and plasma current 1-2 MA. The system provides the fuel mixture with equal fractions of D and T (D:T = 1:1) for all FNS technology systems. (authors)

  13. The FIT 2.0 Model - Fuel-cycle Integration and Tradeoffs

    SciTech Connect (OSTI)

    Steven J. Piet; Nick R. Soelberg; Layne F. Pincock; Eric L. Shaber; Gregory M Teske

    2011-06-01

    All mass streams from fuel separation and fabrication are products that must meet some set of product criteria – fuel feedstock impurity limits, waste acceptance criteria (WAC), material storage (if any), or recycle material purity requirements such as zirconium for cladding or lanthanides for industrial use. These must be considered in a systematic and comprehensive way. The FIT model and the “system losses study” team that developed it [Shropshire2009, Piet2010b] are steps by the Fuel Cycle Technology program toward an analysis that accounts for the requirements and capabilities of each fuel cycle component, as well as major material flows within an integrated fuel cycle. This will help the program identify near-term R&D needs and set longer-term goals. This report describes FIT 2, an update of the original FIT model.[Piet2010c] FIT is a method to analyze different fuel cycles; in particular, to determine how changes in one part of a fuel cycle (say, fuel burnup, cooling, or separation efficiencies) chemically affect other parts of the fuel cycle. FIT provides the following: Rough estimate of physics and mass balance feasibility of combinations of technologies. If feasibility is an issue, it provides an estimate of how performance would have to change to achieve feasibility. Estimate of impurities in fuel and impurities in waste as function of separation performance, fuel fabrication, reactor, uranium source, etc.

  14. OECD/NEA Ongoing activities related to the nuclear fuel cycle

    SciTech Connect (OSTI)

    Cornet, S.M.; McCarthy, K.; Chauvin, N.

    2013-07-01

    As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

  15. Fuel Cycle Research & Development Documents | Department of Energy

    Office of Environmental Management (EM)

    June 22, 2015 Development of Light Water Reactor Fuels with Enhanced Accident Tolerance - Report to ... The result of the accident tolerant fuel development activities, if successful, ...

  16. Fuel Cycle Technologies Near Term Planning for Storage and Transporta...

    Office of Environmental Management (EM)

    an initial focus on accepting used nuclear fuel from shut-down reactor sites; Advances ... for acceptance of enough used nuclear fuel to reduce expected government liabilities; ...

  17. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    SciTech Connect (OSTI)

    Lammert, M. P.; Burton, J.; Sindler, P.; Duran, A.

    2014-10-01

    This research project compares laboratory-measured fuel economy of a medium-duty diesel powered hydraulic hybrid vehicle drivetrain to both a conventional diesel drivetrain and a conventional gasoline drivetrain in a typical commercial parcel delivery application. Vehicles in this study included a model year 2012 Freightliner P100H hybrid compared to a 2012 conventional gasoline P100 and a 2012 conventional diesel parcel delivery van of similar specifications. Drive cycle analysis of 484 days of hybrid parcel delivery van commercial operation from multiple vehicles was used to select three standard laboratory drive cycles as well as to create a custom representative cycle. These four cycles encompass and bracket the range of real world in-use data observed in Baltimore United Parcel Service operations. The NY Composite cycle, the City Suburban Heavy Vehicle Cycle cycle, and the California Air Resources Board Heavy Heavy-Duty Diesel Truck (HHDDT) cycle as well as a custom Baltimore parcel delivery cycle were tested at the National Renewable Energy Laboratory's Renewable Fuels and Lubricants Laboratory. Fuel consumption was measured and analyzed for all three vehicles. Vehicle laboratory results are compared on the basis of fuel economy. The hydraulic hybrid parcel delivery van demonstrated 19%-52% better fuel economy than the conventional diesel parcel delivery van and 30%-56% better fuel economy than the conventional gasoline parcel delivery van on cycles other than the highway-oriented HHDDT cycle.

  18. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    SciTech Connect (OSTI)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  19. Fuel-Cycle Energy and Emissions Analysis with the GREET Model | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel-Cycle Energy and Emissions Analysis with the GREET Model Fuel-Cycle Energy and Emissions Analysis with the GREET Model 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ftp_02_wang.pdf (309.07 KB) More Documents & Publications GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems - A North

  20. GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting van002_wang_2013_o.pdf (1.64 MB) More Documents & Publications Fuel-Cycle Energy and Emissions Analysis with the GREET Model Vehicle Technologies Office Merit Review 2015:

  1. On feasibility of a closed nuclear power fuel cycle with minimum radioactivity

    SciTech Connect (OSTI)

    Andrianova, E. A.; Davidenko, V. D.; Tsibulskiy, V. F.

    2015-12-15

    Practical implementation of a closed nuclear fuel cycle implies solution of two main tasks. The first task is creation of environmentally acceptable operating conditions of the nuclear fuel cycle considering, first of all, high radioactivity of the involved materials. The second task is creation of effective and economically appropriate conditions of involving fertile isotopes in the fuel cycle. Creation of technologies for management of the high-level radioactivity of spent fuel reliable in terms of radiological protection seems to be the hardest problem.

  2. Effect of separation efficiency on repository loading values in fuel cycle scenario analysis codes

    SciTech Connect (OSTI)

    Radel, T.E.; Wilson, P.P.H.; Grady, R.M.; Bauer, T.H.

    2007-07-01

    Fuel cycle scenario analysis codes are valuable tools for investigating the effects of various decisions on the performance of the nuclear fuel cycle as a whole. Until recently, repository metrics in such codes were based on mass and were independent of the isotopic composition of the waste. A methodology has been developed for determining peak repository loading for an arbitrary set of isotopics based on the heat load restrictions and current geometry specifications for the Yucca Mountain repository. This model was implemented in the VISION fuel cycle scenario analysis code and is used here to study the effects of separation efficiencies on repository loading for various AFCI fuel cycle scenarios. Improved separations efficiencies are shown to have continuing technical benefit in fuel cycles that recycle Am and Cm, but a substantial benefit can be achieved with modest separation efficiencies. (authors)

  3. Study on Nuclear Fuel Cycle System using Coated-particle Fuel and Hybrid Micro-capsule Separation Method

    SciTech Connect (OSTI)

    Wakabayashi, Toshio; Mimura, Hitoshi

    2007-07-01

    A new concept of nuclear fuel cycle system for the fast reactors was proposed. The concept is mainly composed of a reprocessing and separation system based on hybrid micro-capsules containing extractant, a remote fuel fabrication system for carbide coated particle fuels and a gas-cooled fast reactor. The gas-cooled fast reactor system features a fast-neutron-spectrum helium-cooled reactor and closed fuel cycle to be able to have sustainable energy resources in future. The feasibility study of the concept has been performed from the viewpoints core performance, radioactive waste reduction, separation technology, fabrication technology, etc. It was shown that the new concept of nuclear fuel cycle system including the gas-cooled fast reactor is very attractive to the future energy supply system in this study. (authors)

  4. Influence of Nuclear Fuel Cycles on Uncertainty of Long Term Performance of Geologic Disposal Systems

    Broader source: Energy.gov [DOE]

    Development and implementation of future advanced fuel cycles including those that recycle fuel materials, use advanced fuels different from current fuels, or partition and transmute actinide radionuclides, will impact the waste management system. The UFD Campaign can reasonably conclude that advanced fuel cycles, in combination with partitioning and transmutation, which remove actinides, will not materially alter the performance, the spread in dose results around the mean, the modeling effort to include significant features, events, and processes (FEPs) in the performance assessment, or the characterization of uncertainty associated with a geologic disposal system in the regulatory environment of the US.

  5. Summary of non-US national and international fuel cycle and radioactive waste management programs 1982

    SciTech Connect (OSTI)

    Harmon, K.M.; Kelman, J.A.

    1982-08-01

    Brief program overviews of fuel cycle, spent fuel, and waste management activities in the following countries are provided: Argentina, Australia, Austria, Belgium, Brazil, Canada, China, Denmark, Finland, France, German Federal Republic, India, Italy, Japan, Republic of Korea, Mexico, Netherlands, Pakistan, South Africa, Spain, Sweden, Switzerland, Taiwan, USSR, and the United Kingdom. International nonproliferation activities, multilateral agreements and projects, and the international agencies specifically involved in the nuclear fuel cycle are also described.

  6. Potential synergy: the thorium fuel cycle and rare earths processing

    SciTech Connect (OSTI)

    Ault, T.; Wymer, R.; Croff, A.; Krahn, S.

    2013-07-01

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

  7. Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems

    SciTech Connect (OSTI)

    Leigh R. Martin

    2014-09-01

    This document was prepared to meet FCR&D level 3 milestone M3FT-14IN0304022, Perform Thermodynamics Measurements on Fuel Cycle Case Study Systems. This work was carried out under the auspices of the Thermodynamics and Kinetics FCR&D work package. This document reports preliminary work in support of determining the thermodynamic parameters for the ALSEP process. The ALSEP process is a mixed extractant system comprised of a cation exchanger 2-ethylhexyl-phosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) and a neutral solvating extractant N,N,N,N-tetraoctyldiglycolamide (TODGA). The extractant combination produces complex organic phase chemistry that is challenging for traditional measurement techniques. To neutralize the complexity, temperature dependent solvent extraction experiments were conducted with neat TODGA and scaled down concentrations of the ALSEP formulation to determine the enthalpies of extraction for the two conditions. A full set of thermodynamic data for Eu, Am, and Cm extraction by TODGA from 3.0 M HNO3 is reported. These data are compared to previous extraction results from a 1.0 M HNO3 aqueous medium, and a short discussion of the mixed HEH[EHP]/TODGA system results is offered.

  8. Managing the Nuclear Fuel Cycle, The Big Picture

    SciTech Connect (OSTI)

    Brett W Carlsen

    2010-07-01

    The nuclear industry, at least in the United States, has failed to deliver on its promise of cheap, abundant energy. After pioneering the science and application and becoming a primary exporter of nuclear technologies, domestic use of nuclear power fell out-of-favor with the public and has been relatively stagnant for several decades. Recently, renewed interest has generated optimism and talk of a nuclear renaissance characterized by a new generation of safe, clean nuclear plants in this country. But, as illustrated by recent policy shifts regarding closure of the fuel cycle and geologic disposal of high-level radioactive wastes, significant hurdles have yet to be overcome. Using the principles of system dynamics, this paper will take a holistic look at the nuclear industry and the interactions between the key players to explore both the intended and unintended consequences of efforts to address the issues that have impeded the growth of the industry and also to illustrate aspects which must be effectively addressed if the renaissance of our industry is to be achieved and sustained.

  9. The Economic, repository and proliferation implications of advanced nuclear fuel cycle

    SciTech Connect (OSTI)

    Deinert, Mark; Cady, K B

    2011-09-04

    The goal of this project was to compare the effects of recycling actinides using fast burner reactors, with recycle that would be done using inert matrix fuel burned in conventional light water reactors. In the fast reactor option, actinides from both spent light water and fast reactor fuel would be recycled. In the inert matrix fuel option, actinides from spent light water fuel would be recycled, but the spent inert matrix fuel would not be reprocessed. The comparison was done over a limited 100-year time horizon. The economic, repository and proliferation implications of these options all hinge on the composition of isotopic byproducts of power production. We took the perspective that back-end economics would be affected by the cost of spent fuel reprocessing (whether conventional uranium dioxide fuel, or fast reactor fuel), fuel manufacture, and ultimate disposal of high level waste in a Yucca Mountain like geological repository. Central to understanding these costs was determining the overall amount of reprocessing needed to implement a fast burner, or inert matrix fuel, recycle program. The total quantity of high level waste requiring geological disposal (along with its thermal output), and the cost of reprocessing were also analyzed. A major advantage of the inert matrix fuel option is that it could in principle be implemented using the existing fleet of commercial power reactors. A central finding of this project was that recycling actinides using an inert matrix fuel could achieve reductions in overall actinide production that are nearly very close to those that could be achieved by recycling the actinides using a fast burner reactor.

  10. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life Cycle Assessment Comparing Select Gas-to-Liquid Fuels with Conventional Fuels in the Transportation Sector Robert E. Abbott, Ph.D. ConocoPhillips Paul Worhach, Ph.D. Nexant Corporation Diesel Engines Emission Reduction Conference Loews Coronado Bay Resort Coronado, CA August 29 - September 2, 2004 Study Purpose * Evaluate GTL energy use and emissions in comparison to alternative fuel production processes and end-uses * Education and communication with peers and stakeholders * Assess and

  11. Utilization of Used Nuclear Fuel in a Potential Future US Fuel Cycle Scenario - 13499

    SciTech Connect (OSTI)

    Worrall, Andrew

    2013-07-01

    To date, the US reactor fleet has generated approximately 68,000 MTHM of used nuclear fuel (UNF) and even with no new nuclear build in the US, this stockpile will continue to grow at approximately 2,000 MTHM per year for several more decades. In the absence of reprocessing and recycle, this UNF is a liability and needs to be dealt with accordingly. However, with the development of future fuel cycle and reactor technologies in the decades ahead, there is potential for UNF to be used effectively and efficiently within a future US nuclear reactor fleet. Based on the detailed expected operating lifetimes, the future UNF discharges from the existing reactor fleet have been calculated on a yearly basis. Assuming a given electricity demand growth in the US and a corresponding growth demand for nuclear energy via new nuclear build, the future discharges of UNF have also been calculated on a yearly basis. Using realistic assumptions about reprocessing technologies and timescales and which future fuels are likely to be reprocessed, the amount of plutonium that could be separated and stored for future reactor technologies has been determined. With fast reactors (FRs) unlikely to be commercially available until 2050, any new nuclear build prior to then is assumed to be a light water reactor (LWR). If the decision is made for the US to proceed with reprocessing by 2030, the analysis shows that the UNF from future fuels discharged from 2025 onwards from the new and existing fleet of LWRs is sufficient to fuel a realistic future demand from FRs. The UNF arising from the existing LWR fleet prior to 2025 can be disposed of directly with no adverse effect on the potential to deploy a FR fleet from 2050 onwards. Furthermore, only a proportion of the UNF is required to be reprocessed from the existing fleet after 2025. All of the analyses and conclusions are based on realistic deployment timescales for reprocessing and reactor deployment. The impact of the delay in recycling the UNF

  12. Evaluation of Options for Permanent Geologic Disposal of Spent NuclearFuel and High-Level Radioactive Waste

    Office of Energy Efficiency and Renewable Energy (EERE)

    [In Support of a Comprehensive National Nuclear Fuel Cycle Strategy, Volumes I and II (Appendices)] This study provides a technical basis for informing policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring geologic isolation.

  13. Fuel Cycle Technologies Near Term Planning for Storage and Transporta...

    Office of Environmental Management (EM)

    Secretary plans to transport spent nuclear fuel or high-level radioactive waste to an ... for the transportation of used nuclear fuel and high-level radioactive waste. 6 ...

  14. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model

    SciTech Connect (OSTI)

    Denia Djokic; Steven J. Piet; Layne F. Pincock; Nick R. Soelberg

    2013-02-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system , and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity.

  15. Waste Classification based on Waste Form Heat Generation in Advanced Nuclear Fuel Cycles Using the Fuel-Cycle Integration and Tradeoffs (FIT) Model - 13413

    SciTech Connect (OSTI)

    Djokic, Denia [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States)] [Department of Nuclear Engineering, University of California - Berkeley, 4149 Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, Steven J.; Pincock, Layne F.; Soelberg, Nick R. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)] [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. This analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. The value of separation of heat-generating fission products and actinides in different fuel cycles is discussed. It was shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is in increasing repository capacity. (authors)

  16. GREET 1.0 -- Transportation fuel cycles model: Methodology and use

    SciTech Connect (OSTI)

    Wang, M.Q.

    1996-06-01

    This report documents the development and use of the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The model, developed in a spreadsheet format, estimates the full fuel-cycle emissions and energy use associated with various transportation fuels for light-duty vehicles. The model calculates fuel-cycle emissions of five criteria pollutants (volatile organic compounds, Co, NOx, SOx, and particulate matter measuring 10 microns or less) and three greenhouse gases (carbon dioxide, methane, and nitrous oxide). The model also calculates the total fuel-cycle energy consumption, fossil fuel consumption, and petroleum consumption using various transportation fuels. The GREET model includes 17 fuel cycles: petroleum to conventional gasoline, reformulated gasoline, clean diesel, liquefied petroleum gas, and electricity via residual oil; natural gas to compressed natural gas, liquefied petroleum gas, methanol, hydrogen, and electricity; coal to electricity; uranium to electricity; renewable energy (hydropower, solar energy, and wind) to electricity; corn, woody biomass, and herbaceous biomass to ethanol; and landfill gases to methanol. This report presents fuel-cycle energy use and emissions for a 2000 model-year car powered by each of the fuels that are produced from the primary energy sources considered in the study.

  17. Results of studies on application of CCMHD to advanced fossil fuel power plant cycles

    SciTech Connect (OSTI)

    Foote, J.P.; Wu, Y.C.L.S.; Lineberry, J.T.

    1998-07-01

    A study was conducted to assess the potential for application of a Closed Cycle MHD disk generator (CCMHD) in advanced fossil fuel power generation systems. Cycle analyses were conducted for a variety of candidate power cycles, including simple cycle CCMHD (MHD); a cycle combining CCMHD and gas turbines (MHD/GT); and a triple combined cycle including CCMHD, gas turbines, and steam turbines (MHD/GT/ST). The above cycles were previously considered in cycle studies reported by Japanese researchers. Also considered was a CCMHD cycle incorporating thermochemical heat recovery through reforming of the fuel stream (MHD/REF), which is the first consideration of this approach. A gas turbine/steam turbine combined cycle (GT/ST) was also analyzed for baseline comparison. The only fuel considered in the study was CH4. Component heat and pressure losses were neglected, and the potential for NOx emission due to high combustion temperatures was not considered. Likewise, engineering limitations for cycle components, particularly the high temperature argon heater, were not considered. This approach was adopted to simplify the analysis for preliminary screening of candidate cycles. Cycle calculations were performed using in-house code. Ideal gas thermodynamic properties were calculated using the NASA SP- 273 data base, and thermodynamic properties for steam were calculated using the computerized ASME Steam Tables. High temperature equilibrium compositions for combustion gas were calculated using tabulated values of the equilibrium constants for the important reactions.

  18. Perspective and current status on fuel cycle system of fast reactor cycle Technology development (FaCT) project in Japan

    SciTech Connect (OSTI)

    Funasaka, Hideyuki; Itoh, Masanori

    2007-07-01

    FaCT Project taking over from Feasibility Study on Commercialized FR cycle system (FS) has been launched in 2006 by Japanese joint team with the participation of all parties concerned in Japan. Combination system of (the sodium-cooled reactor,) the advanced aqueous reprocessing system and the simplified pelletizing fuel fabrication (MOX fuel) is evaluated as the most promising fuel cycle system concept so that it has potential conformity to the design requirements, as well as a high level of technical feasibility as the final report of Phase II in FS. Current status and R and D prospects for this combination system of the advanced aqueous reprocessing system and the simplified pelletizing fuel fabrication (MOX fuel) system until around 2015 have been studied. Then, it is anticipated that in FR reprocessing commercial facility will start to operate around same time that in LWR reprocessing subsequent plant will be required to replace Rokkasho Reprocessing Plant (provided that life time 40 years) around 2050. From the view point of the smooth transition from LWRs to FRs in approximately the year 2050 and beyond in Japan, some issues on fuel cycle have been also discussed. (authors)

  19. Chemistry technology base and fuel cycle of the Los Alamos accelerator-driven transmutation system

    SciTech Connect (OSTI)

    Williamson, M.A.

    1997-12-01

    This paper provides a brief overview of the Los Alamos accelerator-driven transmutation system, a description of the pyrochemistry technology base and the fuel cycle for the system. The pyrochemistry technology base consists of four processes: direct oxide reduction, reductive extraction, electrorefining, and electrowinning. Each process and its utility is described. The fuel cycle is described for a liquid metal-based system with the focus being the conversion of commercial spent nuclear fuel to fuel for the transmutation system. Fission product separation and actinide recycle processes are also described.

  20. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    SciTech Connect (OSTI)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  1. Non-Proliferative, Thorium-Based, Core and Fuel Cycle for Pressurized Water Reactors

    SciTech Connect (OSTI)

    Todosow M.; Todosow M.; Raitses, G. Galperin, A.

    2009-07-12

    Two of the major barriers to the expansion of worldwide adoption of nuclear power are related to proliferation potential of the nuclear fuel cycle and issues associated with the final disposal of spent fuel. The Radkowsky Thorium Fuel (RTF) concept proposed by Professor A. Radkowsky offers a partial solution to these problems. The main idea of the concept is the utilization of the seed-blanket unit (SBU) fuel assembly geometry which is a direct replacement for a 'conventional' assembly in either a Russian pressurized water reactor (VVER-1000) or a Western pressurized water reactor (PWR). The seed-blanket fuel assembly consists of a fissile (U) zone, known as seed, and a fertile (Th) zone known as blanket. The separation of fissile and fertile allows separate fuel management schemes for the thorium part of the fuel (a subcritical 'blanket') and the 'driving' part of the core (a supercritical 'seed'). The design objective for the blanket is an efficient generation and in-situ fissioning of the U233 isotope, while the design objective for the seed is to supply neutrons to the blanket in a most economic way, i.e. with minimal investment of natural uranium. The introduction of thorium as a fertile component in the nuclear fuel cycle significantly reduces the quantity of plutonium production and modifies its isotopic composition, reducing the overall proliferation potential of the fuel cycle. Thorium based spent fuel also contains fewer higher actinides, hence reducing the long-term radioactivity of the spent fuel. The analyses show that the RTF core can satisfy the requirements of fuel cycle length, and the safety margins of conventional pressurized water reactors. The coefficients of reactivity are comparable to currently operating VVER's/PWR's. The major feature of the RTF cycle is related to the total amount of spent fuel discharged for each cycle from the reactor core. The fuel management scheme adopted for RTF core designs allows a significant decrease in the

  2. Report of the Fuel Cycle Research and Development Subcommittee of the Nuclear Energy Advisory Committee

    Broader source: Energy.gov [DOE]

    The Fuel Cycle (FC) Subcommittee of NEAC met February 7-8, 2012 in Washington (Drs. Hoffmann and Juzaitis were unable to attend). While the meeting was originally scheduled to occur after the...

  3. Department of Energy Awards $15 Million for Nuclear Fuel Cycle Technology Research and Development

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced it will award up to $15 million to 34 research organizations as part of the Department's Advanced Fuel Cycle Initiative (AFCI). ...

  4. Energy Return on Energy Investment for an LWR Fuel Cycle (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Energy Return on Energy Investment for an LWR Fuel Cycle Authors: Greenberg, H R ; Smith, C A ; Blink, J A ; Fratoni, M ; Halsey, W G ; Simon, A J ; Sutton, M Publication ...

  5. Report of the Fuel Cycle Subcommittee of the Nuclear Energy Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Fuel Cycle Subcommittee (FCSC) of NEAC met in Washington, August 17- 19, 2010. DOE’s new science-based approach to all matters related to nuclear energy is being implemented. The general...

  6. Microsoft PowerPoint - NEAC Rpt of Fuel Cycle comm slides

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R t f th F l C l Report of the Fuel Cycle Research and Development p Subcommittee of NEAC B Ri h (Ch i ) Burton Richter (Chairman) Margaret Chu Darleane Hoffman Ray Juzaitis Ray ...

  7. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  8. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect (OSTI)

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    2013-01-01

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  9. International Source Book: Nuclear Fuel Cycle Research and Development Vol 1 Volume 1

    SciTech Connect (OSTI)

    Harmon, K. M.; Lakey, L. T.

    1983-07-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This first volume includes the overview and the program summaries of those countries listed alphabetically from Argentina to Italy.

  10. Input visualization for the Cyclus nuclear fuel cycle simulator: CYClus Input Control

    SciTech Connect (OSTI)

    Flanagan, R.; Schneider, E.

    2013-07-01

    This paper discusses and demonstrates the methods used for the graphical user interface for the Cyclus fuel cycle simulator being developed at the University of Wisconsin-Madison. Cyclus Input Control (CYCIC) is currently being designed with nuclear engineers in mind, but future updates to the program will be made to allow even non-technical users to quickly and efficiently simulate fuel cycles to answer the questions important to them. (authors)

  11. DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Research and Development | Department of Energy 15 Million in Funding for Nuclear Fuel Cycle Technology Research and Development DOE Seeks to Invest up to $15 Million in Funding for Nuclear Fuel Cycle Technology Research and Development April 17, 2008 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) inviting universities, national laboratories, and industry to compete for up to $15 million to advance

  12. Chapter 4: Advancing Clean Electric Power Technologies | Nuclear Fuel Cycles Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Fuel Cycles Chapter 4: Technology Assessments Introduction and Background The Nuclear Fuel Cycle (NFC) is defined as the total set of operations required to produce fission energy and manage the associated nuclear materials. It can have different attributes, including the extension of natural resources, or the minimization of waste disposal requirements. The NFC, as depicted in Figure 4.O.1, is comprised of a set of operations that include the extraction of uranium (U) resources from the

  13. Composite turbine blade design options for Claude (open) cycle OTEC power systems

    SciTech Connect (OSTI)

    Penney, T.R.

    1985-11-01

    Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

  14. THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS

    SciTech Connect (OSTI)

    Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.; Bathke, Charles G.; Ebbinghaus, Bartley B.; Hase, Kevin R.; Sleaford, Brad W.; Robel, Martin; Smith, Brian W.

    2011-07-17

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies required to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.

  15. Systems Analysis of an Advanced Nuclear Fuel Cycle Based on a Modified UREX+3c Process

    SciTech Connect (OSTI)

    E. R. Johnson; R. E. Best

    2009-12-28

    The research described in this report was performed under a grant from the U.S. Department of Energy (DOE) to describe and compare the merits of two advanced alternative nuclear fuel cycles -- named by this study as the “UREX+3c fuel cycle” and the “Alternative Fuel Cycle” (AFC). Both fuel cycles were assumed to support 100 1,000 MWe light water reactor (LWR) nuclear power plants operating over the period 2020 through 2100, and the fast reactors (FRs) necessary to burn the plutonium and minor actinides generated by the LWRs. Reprocessing in both fuel cycles is assumed to be based on the UREX+3c process reported in earlier work by the DOE. Conceptually, the UREX+3c process provides nearly complete separation of the various components of spent nuclear fuel in order to enable recycle of reusable nuclear materials, and the storage, conversion, transmutation and/or disposal of other recovered components. Output of the process contains substantially all of the plutonium, which is recovered as a 5:1 uranium/plutonium mixture, in order to discourage plutonium diversion. Mixed oxide (MOX) fuel for recycle in LWRs is made using this 5:1 U/Pu mixture plus appropriate makeup uranium. A second process output contains all of the recovered uranium except the uranium in the 5:1 U/Pu mixture. The several other process outputs are various waste streams, including a stream of minor actinides that are stored until they are consumed in future FRs. For this study, the UREX+3c fuel cycle is assumed to recycle only the 5:1 U/Pu mixture to be used in LWR MOX fuel and to use depleted uranium (tails) for the makeup uranium. This fuel cycle is assumed not to use the recovered uranium output stream but to discard it instead. On the other hand, the AFC is assumed to recycle both the 5:1 U/Pu mixture and all of the recovered uranium. In this case, the recovered uranium is reenriched with the level of enrichment being determined by the amount of recovered plutonium and the combined amount

  16. Fuel Cycle Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  17. Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    The Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel report assesses the technical options for the safe and permanent disposal of high-level radioactive waste (HLW) and spent nuclear fuel (SNF) managed by the Department of Energy. Specifically, it considers whether DOE-managed HLW and SNF should be disposed of with commercial SNF and HLW in one geologic repository or whether there are advantages to developing separate geologic disposal pathways for some DOE-managed HLW and SNF. The report recommends that the Department begin implementation of a phased, adaptive, and consent-based strategy with development of a separate mined repository for some DOE-managed HLW and cooler DOE-managed SNF.

  18. Progress of nitride fuel cycle research for transmutation of minor actinides

    SciTech Connect (OSTI)

    Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo

    2007-07-01

    Recent progress of nitride fuel cycle research for transmutation of MA is summarized. Preparation of MA-bearing nitride pellets, such as (Np,Am)N, (Am,Pu)N and (Np,Pu,Am,Cm)N, was carried out. Irradiation behavior of U-free nitride fuel was investigated by the irradiation test of (Pu,Zr)N and PuN+TiN fuels, in which ZrN and TiN were added as a possible diluent material. Further, pyrochemical process of spent nitride fuel was developed by electrorefining in a molten chloride salt and subsequent re-nitridation of actinides in liquid Cd cathode electro-deposits. Nitride fuel cycle for transmutation of MA has been demonstrated in a laboratory scale by the experimental study with MA and Pu. (authors)

  19. Assessment of PNGV fuels infrastructure. Phase 1 report: Additional capital needs and fuel-cycle energy and emissions impacts

    SciTech Connect (OSTI)

    Wang, M.; Stork, K.; Vyas, A.; Mintz, M.; Singh, M.; Johnson, L.

    1997-01-01

    This report presents the methodologies and results of Argonne`s assessment of additional capital needs and the fuel-cycle energy and emissions impacts of using six different fuels in the vehicles with tripled fuel economy (3X vehicles) that the Partnership for a New Generation of Vehicles is currently investigating. The six fuels included in this study are reformulated gasoline, low-sulfur diesel, methanol, ethanol, dimethyl ether, and hydrogen. Reformulated gasoline, methanol, and ethanol are assumed to be burned in spark-ignition, direct-injection engines. Diesel and dimethyl ether are assumed to be burned in compression-ignition, direct-injection engines. Hydrogen and methanol are assumed to be used in fuel-cell vehicles. The authors have analyzed fuels infrastructure impacts under a 3X vehicle low market share scenario and a high market share scenario. The assessment shows that if 3X vehicles are mass-introduced, a considerable amount of capital investment will be needed to build new fuel production plants and to establish distribution infrastructure for methanol, ethanol, dimethyl ether, and hydrogen. Capital needs for production facilities will far exceed those for distribution infrastructure. Among the four fuels, hydrogen will bear the largest capital needs. The fuel efficiency gain by 3X vehicles translates directly into reductions in total energy demand, fossil energy demand, and CO{sub 2} emissions. The combination of fuel substitution and fuel efficiency results in substantial petroleum displacement and large reductions in emissions of nitrogen oxide, carbon monoxide, volatile organic compounds, sulfur oxide, and particulate matter of size smaller than 10 microns.

  20. Greenhouse gas emission impacts of alternative-fueled vehicles: Near-term vs. long-term technology options

    SciTech Connect (OSTI)

    Wang, M.Q.

    1997-05-20

    Alternative-fueled vehicle technologies have been promoted and used for reducing petroleum use, urban air pollution, and greenhouse gas emissions. In this paper, greenhouse gas emission impacts of near-term and long-term light-duty alternative-fueled vehicle technologies are evaluated. Near-term technologies, available now, include vehicles fueled with M85 (85% methanol and 15% gasoline by volume), E85 (85% ethanol that is produced from corn and 15% gasoline by volume), compressed natural gas, and liquefied petroleum gas. Long-term technologies, assumed to be available around the year 2010, include battery-powered electric vehicles, hybrid electric vehicles, vehicles fueled with E85 (ethanol produced from biomass), and fuel-cell vehicles fueled with hydrogen or methanol. The near-term technologies are found to have small to moderate effects on vehicle greenhouse gas emissions. On the other hand, the long-term technologies, especially those using renewable energy (such as biomass and solar energy), have great potential for reducing vehicle greenhouse gas emissions. In order to realize this greenhouse gas emission reduction potential, R and D efforts must continue on the long-term technology options so that they can compete successfully with conventional vehicle technology.

  1. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion whenmore » speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.« less

  2. Reactivity-controlled compression ignition drive cycle emissions and fuel economy estimations using vehicle system simulations

    SciTech Connect (OSTI)

    Curran, Scott J.; Gao, Zhiming; Wagner, Robert M.

    2014-12-22

    In-cylinder blending of gasoline and diesel to achieve reactivity-controlled compression ignition has been shown to reduce NOX and soot emissions while maintaining or improving brake thermal efficiency as compared with conventional diesel combustion. The reactivity-controlled compression ignition concept has an advantage over many advanced combustion strategies in that the fuel reactivity can be tailored to the engine speed and load, allowing stable low-temperature combustion to be extended over more of the light-duty drive cycle load range. In this paper, a multi-mode reactivity-controlled compression ignition strategy is employed where the engine switches from reactivity-controlled compression ignition to conventional diesel combustion when speed and load demand are outside of the experimentally determined reactivity-controlled compression ignition range. The potential for reactivity-controlled compression ignition to reduce drive cycle fuel economy and emissions is not clearly understood and is explored here by simulating the fuel economy and emissions for a multi-mode reactivity-controlled compression ignition–enabled vehicle operating over a variety of US drive cycles using experimental engine maps for multi-mode reactivity-controlled compression ignition, conventional diesel combustion, and a 2009 port-fuel injected gasoline engine. Drive cycle simulations are completed assuming a conventional mid-size passenger vehicle with an automatic transmission. Multi-mode reactivity-controlled compression ignition fuel economy simulation results are compared with the same vehicle powered by a representative 2009 port-fuel injected gasoline engine over multiple drive cycles. Finally, engine-out drive cycle emissions are compared with conventional diesel combustion, and observations regarding relative gasoline and diesel tank sizes needed for the various drive cycles are also summarized.

  3. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    SciTech Connect (OSTI)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  4. Evaluation of unthrottled combustion system options for light duty applications with future syncrude derived fuels. Alternative Fuels Utilization Program

    SciTech Connect (OSTI)

    Needham, J. R.; Cooper, B. M.; Norris-Jones, S. R.

    1982-12-01

    An experimental program examining the interaction between several fuel and light duty automotive engine combinations is detailed. Combustion systems addressed covered indirect and direct injection diesel and spark ignited stratified charge. Fuels primarily covered D2, naphtha and intermediate broadcut blends. Low ignition quality diesel fuels were also evaluated. The results indicate the baseline fuel tolerance of each combustion system and enable characteristics of the systems to be compared. Performance, gaseous and particulate emissions aspects were assessed. The data obtained assists in the selection of candidate combustion systems for potential future fuels. Performance and environmental penalties as appropriate are highlighted relative to the individual candidates. Areas of further work for increased understanding are also reviewed.

  5. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    SciTech Connect (OSTI)

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J.; Petrovic, B.

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are that the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)

  6. Microsoft PowerPoint - 6_Rowe-Future Challenges for Global Fuel Cycle Material Accounting Final_Updated.pptx

    National Nuclear Security Administration (NNSA)

    Future Challenges for Global Fuel Cycle Material Accounting Nathan Rowe Chris Pickett Oak Ridge National Laboratory Nuclear Materials Management & Safeguards System Users Annual Training Meeting May 20-23, 2013 St. Louis, Missouri 2 Future Challenges for Global Fuel Cycle Material Accounting Introduction * Changing Nuclear Fuel Cycle Activities * Nuclear Security Challenges * How to Respond? - Additional Protocol - State-Level Concept - Continuity of Knowledge * Conclusion 3 Future

  7. Nuclear power generation and fuel cycle report 1997

    SciTech Connect (OSTI)

    1997-09-01

    Nuclear power is an important source of electric energy and the amount of nuclear-generated electricity continued to grow as the performance of nuclear power plants improved. In 1996, nuclear power plants supplied 23 percent of the electricity production for countries with nuclear units, and 17 percent of the total electricity generated worldwide. However, the likelihood of nuclear power assuming a much larger role or even retaining its current share of electricity generation production is uncertain. The industry faces a complex set of issues including economic competitiveness, social acceptance, and the handling of nuclear waste, all of which contribute to the uncertain future of nuclear power. Nevertheless, for some countries the installed nuclear generating capacity is projected to continue to grow. Insufficient indigenous energy resources and concerns over energy independence make nuclear electric generation a viable option, especially for the countries of the Far East.

  8. Solar Fuels and Carbon Cycle 2.0 (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Alivisatos, Paul

    2011-06-03

    Paul Alivisatos, LBNL Director speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 4, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  9. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Broader source: Energy.gov [DOE]

    This presentation by Michael Wang of Argonne National Laboratory provides information about an analysis of hydrogen-powered fuel-cell systems.

  10. International Source Book: Nuclear Fuel Cycle Research and Development Volume 2

    SciTech Connect (OSTI)

    Harmon, K. M.; Lakey, L. T.

    1982-11-01

    This document starts with an overview that summarizes nuclear power policies and waste management activities for nations with significant commercial nuclear fuel cycle activities either under way or planned. A more detailed program summary is then included for each country or international agency conducting nuclear fuel cycle and waste management research and development. This second volume includes the program summaries of those countries listed alphabetically from Japan to Yugoslavia. Information on international agencies and associations, particularly the IAEA, NEA, and CEC, is provided also.

  11. Recovery of Information from the Fast Flux Test Facility for the Advanced Fuel Cycle Initiative

    SciTech Connect (OSTI)

    Nielsen, Deborah L.; Makenas, Bruce J.; Wootan, David W.; Butner, R. Scott; Omberg, Ronald P.

    2009-09-30

    The Fast Flux Test Facility is the most recent Liquid Metal Reactor to operate in the United States. Information from the design, construction, and operation of this reactor was at risk as the facilities associated with the reactor are being shut down. The Advanced Fuel Cycle Initiative is a program managed by the Office of Nuclear Energy of the U.S. Department of Energy with a mission to develop new fuel cycle technologies to support both current and advanced reactors. Securing and preserving the knowledge gained from operation and testing in the Fast Flux Test Facility is an important part of the Knowledge Preservation activity in this program.

  12. Assessment of Possible Cycle Lengths for Fully Encapsulated Microstructure fueled light water reactor Concepts

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal O. Pasamehmetoglu

    2013-02-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel as-is into existing LWRs while retaining their thermalhydraulic characteristics. Another mandatory constraint is use of low enriched uranium (at or below 20 w/o). The feasibility of using this fuel is assessed by looking at two factors: cycle lengths and fuel material failure rates. Other considerations (e.g., safety parameters such as reactivity coefficients, feedback, etc.) were not considered at this stage of the study. The study includes the examination of increases in the TRISO kernel sizes without changing the thickness of any of the coating layers. In addition, cases where the buffer layer thickness is allowed to vary are also considered. The study shows that a nave use of UO2 (even up to 20 w/o enrichment) results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. The increase of fissile inventory can be accomplished through multiple means, including higher particle packing fraction, higher enrichment, larger fuel kernel sizes, and the use of higher density fuels (that contain a higher number of U atoms per unit volume). In this study, starting with the recognized highest packing fraction practically achievable (44%), combinations of the other means have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In

  13. Thorium fuel cycle: a technical overview and practical approach to deployment

    SciTech Connect (OSTI)

    Yamana, Hajimu

    2007-07-01

    A brief overview on the Thorium fuel cycle technology will be described first. Based on the published information, the potential advantages and technical characteristics of the Thorium fuel utilization technologies are described in detail. Special emphasis will be placed on the technological feasibility and maturity of the methods to examine the practicability of their actual implementation in the near future. Then, realistic and possible ways to the deploy of the Thorium fuels utilization are discussed in terms of both value of the implementation and the technological feasibility and practicability. (author)

  14. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear

  15. Promising Fuel Cycle Options for R&D - Results, Insights, and...

    Office of Scientific and Technical Information (OSTI)

    effort that further explores what, if any, benefits of TRU recycle (minor actinides in addition to plutonium recycle) may be in order to inform decisions on future R&D directions. ...

  16. A Screening Method for Guiding R&D Decisions: Pilot Application to Nuclear Fuel Cycle Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy’s Office of Nuclear Energy (DOE-NE) invests in research and development (R&D) to ensure that the United States will maintain its domestic nuclear energy capability and...

  17. Capital requirements and fuel-cycle energy and emissions impacts of potential PNGV fuels.

    SciTech Connect (OSTI)

    Johnson, L.; Mintz, M.; Singh, M.; Stork, K.; Vyas, A.; Wang, M.

    1999-03-11

    Our study reveals that supplying gasoline-equivalent demand for the low-market-share scenario requires a capital investment of less than $40 billion for all fuels except H{sub 2}, which will require a total cumulative investment of $150 billion. By contrast, cumulative capital investments under the high-market-share scenario are $50 billion for LNG, $90 billion for ethanol, $100 billion for methanol, $160 billion for CNG and DME, and $560 billion for H{sub 2}. Although these substantial capital requirements are spread over many years, their magnitude could pose a challenge to the widespread introduction of 3X vehicles. Fossil fuel use by US light-duty vehicles declines significantly with introduction of 3X vehicles because of fuel-efficiency improvements for 3X vehicles and because of fuel substitution (which applies to the nonpetroleum-fueled alternatives). Petroleum use for light-duty vehicles in 2030 is reduced by as much as 45% relative to the reference scenario. GHG emissions follow a similar pattern. Total GHG emissions decline by 25-30% with most of the propulsion system/fuel alternatives. For those using renewable fuels (i.e., ethanol and H{sub 2} from solar energy), GHG emissions drop by 33% (H{sub 2}) and 45% (ethanol). Among urban air pollutants, urban NOX emissions decline slightly for 3X vehicles using CIDI and SIDI engines and drop substantially for fuel-cell vehicles. Urban CO emissions decline for CIDI and FCV alternatives, while VOC emissions drop significantly for all alternatives except RFG-, methanol-, and ethanol-fueled SIDI engines. With the exception of CIDI engines fueled by RFD, FT50, or B20 (which increase urban PM{sub 10} emissions by over 30%), all propulsion system/fuel alternatives reduce urban PM{sub 10} emissions. Reductions are approximately 15-20% for fuel cells and for methanol-, ethanol-, CNG-, or LPG-fueled SIDI engines. Table 3 qualitatively summarizes impacts of the 13 alternatives on capital requirements and on energy use and

  18. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities. Sections 1-14

    SciTech Connect (OSTI)

    Schneider, K.J.

    1982-09-01

    The Fuel Cycle Risk Assessment Program was initiated to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. This report, the first from the program, defines and describes fuel cycle elements that are being considered in the program. One type of facility (and in some cases two) is described that is representative of each element of the fuel cycle. The descriptions are based on real industrial-scale facilities that are current state-of-the-art, or on conceptual facilities where none now exist. Each representative fuel cycle facility is assumed to be located on the appropriate one of four hypothetical but representative sites described. The fuel cycles considered are for Light Water Reactors with once-through flow of spent fuel, and with plutonium and uranium recycle. Representative facilities for the following fuel cycle elements are described for uranium (or uranium plus plutonium where appropriate): mining, milling, conversion, enrichment, fuel fabrication, mixed-oxide fuel refabrication, fuel reprocessing, spent fuel storage, high-level waste storage, transuranic waste storage, spent fuel and high-level and transuranic waste disposal, low-level and intermediate-level waste disposal, and transportation. For each representative facility the description includes: mainline process, effluent processing and waste management, facility and hardware description, safety-related information and potential alternative concepts for that fuel cycle element. The emphasis of the descriptive material is on safety-related information. This includes: operating and maintenance requirements, input/output of major materials, identification and inventories of hazardous materials (particularly radioactive materials), unit operations involved, potential accident driving forces, containment and shielding, and degree of hands-on operation.

  19. Which Elements Should be Recycled for a Comprehensive Fuel Cycle?

    SciTech Connect (OSTI)

    Steven Piet; Trond Bjornard; Brent Dixon; Dirk Gombert; Robert Hill; Chris Laws; Gretchen Matthern; David Shropshire; Roald Wigeland

    2007-09-01

    Uranium recovery can reduce the mass of waste and possibly the number of waste packages that require geologic disposal. Separated uranium can be managed with the same method (near-surface burial) as used for the larger quantities of depleted uranium or recycled into new fuel. Recycle of all transuranics reduces long-term environmental burden, reduces heat load to repositories, extracts more energy from the original uranium ore, and may have significant proliferation resistance and physical security advantages. Recovery of short-lived fission products cesium and strontium can allow them to decay to low-level waste in facilities tailored to that need, rather than geologic disposal. This could also reduce the number and cost of waste packages requiring geologic disposal. These savings are offset by costs for separation, recycle, and storage systems. Recovery of technetium-99 and iodine-129 can allow them to be sent to geologic disposal in improved waste forms. Such separation avoids contamination of the other products (uranium) and waste (cesium-strontium) streams with long-lived radioisotopes so the material might be disposed as low-level waste. Transmutation of technetium and iodine is a possible future alternative.

  20. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    SciTech Connect (OSTI)

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    2013-09-01

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimental study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.

  1. Comprehensive Fuel Cycle Research Study Presented to the Savannah River Site Community Reuse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comprehensive Fuel Cycle Research Study Presented to the Savannah River Site Community Reuse Organization February 2013 The content of this Study reflects the independent views of Dickstein Shapiro LLP, based on information available from a variety of sources. The Study is not intended to reflect the views of the Savannah River Site Community Reuse Organization. 1 Table of Contents Page I. Executive Summary

  2. NUCLEAR MATERIAL ATTRACTIVENESS: AN ASSESSMENT OF MATERIAL FROM PHWR'S IN A CLOSED THORIUM FUEL CYCLE

    SciTech Connect (OSTI)

    Sleaford, B W; Collins, B A; Ebbinghaus, B B; Bathke, C G; Prichard, A W; Wallace, R K; Smith, B W; Hase, K R; Bradley, K S; Robel, M; Jarvinen, G D; Ireland, J R; Johnson, M W

    2010-04-26

    This paper examines the attractiveness of material mixtures containing special nuclear materials (SNM) associated with reprocessing and the thorium-based LWR fuel cycle. This paper expands upon the results from earlier studies that examined the attractiveness of SNM associated with the reprocessing of spent light water reactor (LWR) fuel by various reprocessing schemes and the recycle of plutonium as a mixed oxide (MOX) fuel in LWR. This study shows that {sup 233}U that is produced in thorium-based fuel cycles is very attractive for weapons use. Consistent with other studies, these results also show that all fuel cycles examined to date need to be rigorously safeguarded and provided moderate to high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE), and are based on the calculation of 'attractiveness levels' that has been couched in terms chosen for consistency with those normally used for nuclear materials in DOE nuclear facilities. The methodology and key findings will be presented.

  3. The need for a characteristics-based approach to radioactive waste classification as informed by advanced nuclear fuel cycles using the fuel-cycle integration and tradeoffs (FIT) model

    SciTech Connect (OSTI)

    Djokic, D. [Department of Nuclear Engineering, University of California, Berkeley, 3115B Etcheverry Hall, Berkeley, CA 94720-1730 (United States); Piet, S.; Pincock, L.; Soelberg, N. [Idaho National Laboratory - INL, 2525 North Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    This study explores the impact of wastes generated from potential future fuel cycles and the issues presented by classifying these under current classification criteria, and discusses the possibility of a comprehensive and consistent characteristics-based classification framework based on new waste streams created from advanced fuel cycles. A static mass flow model, Fuel-Cycle Integration and Tradeoffs (FIT), was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices. Because heat generation is generally the most important factor limiting geological repository areal loading, this analysis focuses on the impact of waste form heat load on waste classification practices, although classifying by metrics of radiotoxicity, mass, and volume is also possible. Waste streams generated in different fuel cycles and their possible classification based on the current U.S. framework and international standards are discussed. It is shown that the effects of separating waste streams are neglected under a source-based radioactive waste classification system. (authors)

  4. Fuel Cycle Research & Development Technical Monthly-March 2012

    SciTech Connect (OSTI)

    Miller, Michael C.

    2012-05-10

    meeting. Kenneth Dayman, the graduate student from University of Texas, completed an initial draft of his master's thesis. His research will contribute to the multivariate classifier currently under development. Sarah Bender, the graduate student from Pennsylvania State University, presented her work on a poster and in a conference paper at the MARC IX meeting. A mass balance flowsheet for the fast reactor fuel was completed and a model simulation is scheduled to begin construction next month. The development of a mass balance flowsheet for light water reactor fuel will predict the behavior of the separation process using mathematical functions. The completed flowsheet will be utilized as the basis for constructing the model simulation for the electrochemical separations. Comments and review of the model from the MPACT Working Group meeting have been used to evaluate updates to the EChem model. A preliminary physical security layout has been developed in ATLAS. Thermal stability tests for high temperature microfluidic interconnections were completed on all compounds tested for bonding strength. An interconnection strategy was determined based on these results that we expect will allow for operation at 400C in the first generation of sampling systems. Design of the sampling system using the chosen interconnections was initiated, with handoff to an external foundry for fabrication based on ANL specified process conditions expected by the middle of the month. Monte Carlo simulations of the sampling system were conducted under conditions of realistic sampling size distributions, electrorefiner inhomogeneity distributions, and detector efficiencies. These simulations were used to establish a baseline limit of detection for system operation, assuming an on-line separation step is conducted before detection. Sensor for measuring density and depth of molten electrolyte - The procurement effort continued. 80% of the components ordered to assemble the double bubbler have arrived at

  5. Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett Carlsen; Emily Tavrides; Erich Schneider

    2010-08-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle have focused primarily on energy consumption and CO2 emissions. Results have varied widely. Section 2 of this report provides a summary of historical estimates. This study revises existing empirical correlations and their underlying assumptions to fit to a more complete set of existing data. This study also addresses land transformation, water withdrawals, and occupational and public health impacts associated with the processes of the front end of the once-through nuclear fuel cycle. These processes include uranium mining, milling, refining, conversion, enrichment, and fuel fabrication. Metrics are developed to allow environmental impacts to be summed across the full set of front end processes, including transportation and disposition of the resulting depleted uranium.

  6. Human capital needs - teaching, training and coordination for nuclear fuel cycle

    SciTech Connect (OSTI)

    Retegan, T.; Ekberg, C.; John, J.; Nordlund, A.

    2013-07-01

    Human capital is the accumulation of competencies, knowledge, social and creativity skills and personality attributes, which are necessary to perform work so as to produce economic value. In the frame of the nuclear fuel cycle, this is of paramount importance that the right human capital exists and in Europe this is fostered by a series of integrated or directed projects. The teaching, training and coordination will be discussed in the frame of University curricula with examples from several programs, like e.g. the Master of Nuclear Engineering at Chalmers University, Sweden and two FP7 EURATOM Projects: CINCH - a project for cooperation in nuclear chemistry - and ASGARD - a research project on advanced or novel nuclear fuels and their reprocessing issues for generation IV reactors. The integration of the university curricula in the market needs but also the anchoring in the research and future fuel cycles will be also discussed, with examples from the ASGARD project. (authors)

  7. Disposal options for burner ash from spent graphite fuel. Final study report November 1993

    SciTech Connect (OSTI)

    Pinto, A.P.

    1994-08-01

    Three major disposal alternatives are being considered for Fort St. Vrain Reactor (FSVR) and Peach Bottom Reactor (PBR) spent fuels: direct disposal of packaged, intact spent fuel elements; (2) removal of compacts to separate fuel into high-level waste (HLW) and low-level waste (LLW); and (3) physical/chemical processing to reduce waste volumes and produce stable waste forms. For the third alternative, combustion of fuel matrix graphite and fuel particle carbon coatings is a preferred technique for head-end processing as well as for volume reduction and chemical pretreatment prior to final fixation, packaging, and disposal of radioactive residuals (fissile and fertile materials together with fission and activation products) in a final repository. This report presents the results of a scoping study of alternate means for processing and/or disposal of fissile-bearing particles and ash remaining after combustion of FSVR and PBR spent graphite fuels. Candidate spent fuel ash (SFA) waste forms in decreasing order of estimated technical feasibility include glass-ceramics (GCs), polycrystalline ceramic assemblages (PCAs), and homogeneous amorphous glass. Candidate SFA waste form production processes in increasing order of estimated effort and cost for implementation are: low-density GCs via fuel grinding and simultaneous combustion and waste form production in a slagging cyclone combustor (SCC); glass or low-density GCs via fluidized bed SFA production followed by conventional melting of SFA and frit; PCAs via fluidized bed SFA production followed by hot isostatic pressing (HIPing) of SFA/frit mixtures; and high-density GCs via fluidized bed SFA production followed by HIPing of Calcine/Frit/SFA mixtures.

  8. Nuclear fuel cycle risk assessment: survey and computer compilation of risk-related literature. [Once-through Cycle and Plutonium Recycle

    SciTech Connect (OSTI)

    Yates, K.R.; Schreiber, A.M.; Rudolph, A.W.

    1982-10-01

    The US Nuclear Regulatory Commission has initiated the Fuel Cycle Risk Assessment Program to provide risk assessment methods for assistance in the regulatory process for nuclear fuel cycle facilities other than reactors. Both the once-through cycle and plutonium recycle are being considered. A previous report generated by this program defines and describes fuel cycle facilities, or elements, considered in the program. This report, the second from the program, describes the survey and computer compilation of fuel cycle risk-related literature. Sources of available information on the design, safety, and risk associated with the defined set of fuel cycle elements were searched and documents obtained were catalogued and characterized with respect to fuel cycle elements and specific risk/safety information. Both US and foreign surveys were conducted. Battelle's computer-based BASIS information management system was used to facilitate the establishment of the literature compilation. A complete listing of the literature compilation and several useful indexes are included. Future updates of the literature compilation will be published periodically. 760 annotated citations are included.

  9. A novel concept of QUADRISO particles Part III : applications to the plutonium-thorium fuel cycle.

    SciTech Connect (OSTI)

    Talamo, A.

    2009-03-01

    In the present study, a plutonium-thorium fuel cycle is investigated including the {sup 233}U production and utilization. A prismatic thermal High Temperature Gas Reactor (HTGR) and the novel concept of quadruple isotropic (QUADRISO) coated particles, designed at the Argonne National Laboratory, have been used for the study. In absorbing QUADRISO particles, a burnable poison layer surrounds the central fuel kernel to flatten the reactivity curve as a function of time. At the beginning of life, the fuel in the QUADRISO particles is hidden from neutrons, since they get absorbed in the burnable poison before they reach the fuel kernel. Only when the burnable poison depletes, neutrons start streaming into the fuel kernel inducing fission reactions and compensating the fuel depletion of ordinary TRISO particles. In fertile QUADRISO particles, the absorber layer is replaced by natural thorium with the purpose of flattening the excess of reactivity by the thorium resonances and producing {sup 233}U. The above configuration has been compared with a configuration where fissile (neptunium-plutonium oxide from Light Water Reactors irradiated fuel) and fertile (natural thorium oxide) fuels are homogeneously mixed in the kernel of ordinary TRISO particles. For the {sup 233}U utilization, the core has been equipped with europium oxide absorbing QUADRISO particles.

  10. Implications of Plutonium isotopic separation on closed fuel cycles and repository design

    SciTech Connect (OSTI)

    Forsberg, C.

    2013-07-01

    Advances in laser enrichment may enable relatively low-cost plutonium isotopic separation. This would have large impacts on LWR closed fuel cycles and waste management. If Pu-240 is removed before recycling plutonium as mixed oxide (MOX) fuel, it would dramatically reduce the buildup of higher plutonium isotopes, Americium, and Curium. Pu-240 is a fertile material and thus can be replaced by U-238. Eliminating the higher plutonium isotopes in MOX fuel increases the Doppler feedback, simplifies reactor control, and allows infinite recycle of MOX plutonium in LWRs. Eliminating fertile Pu-240 and Pu-242 reduces the plutonium content in MOX fuel and simplifies fabrication. Reducing production of Pu-241 reduces production of Am-241 - the primary heat generator in spent nuclear fuels after several decades. Reducing heat generating Am-241 would reduce repository cost and waste toxicity. Avoiding Am- 241 avoids its decay product Np-237, a nuclide that partly controls long-term oxidizing repository performance. Most of these benefits also apply to LWR plutonium recycled into fast reactors. There are benefits for plutonium isotopic separation in fast reactor fuel cycles (particularly removal of Pu-242) but the benefits are less. (author)

  11. The advanced fuel cycle facility (AFCF) role in the global nuclear energy partnership

    SciTech Connect (OSTI)

    Griffith, Andrew

    2007-07-01

    The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that builds on recent laboratory breakthroughs in U.S. national laboratories and draws on international and industry partnerships. Central to moving this advanced fuel recycling technology from the laboratory to commercial implementation is a flexible research, development and demonstration facility, called the Advanced Fuel Cycle Facility (AFCF). The AFCF was introduced as one of three projects under GNEP and will provide the U.S. with the capabilities to evaluate technologies that separate used fuel into reusable material and waste in a proliferation-resistant manner. The separations technology demonstration capability is coupled with a remote transmutation fuel fabrication demonstration capability in an integrated manner that demonstrates advanced safeguard technologies. This paper will discuss the key features of AFCF and its support of the GNEP objectives. (author)

  12. Proliferation resistance for fast reactors and related fuel cycles: issues and impacts

    SciTech Connect (OSTI)

    Pilat, Joseph F

    2010-01-01

    The prospects for a dramatic growth in nuclear power may depend to a significant degree on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance and nuclear materials accountability. The challenges for fast reactors and related fuel cycles are especially critical. They are being explored in the Generation IV Tnternational Forum (GIF) and the Tnternational Atomic Energy Agency's (IAEA's) International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) initiative, as well as by many states that are looking to these systems for the efficient lise of uranium resources and long-term energy security. How do any proliferation risks they may pose compare to other reactors, both existing and under development, and their fuel cycles? Can they be designed with intrinsic (technological) features to make these systems more proliferation resistant? What roles can extrinsic (institutional) features play in proliferation resistance? What are the anticipated safeguards requirements, and will new technologies and approaches need to be developed? How can safeguards be facilitated by the design process? These and other questions require a rethinking of proliferation resistance and the prospects for new technologies and other intrinsic and extrinsic features being developed that are responsive to specific issues for fast reactors and related fuel cycles and to the broader threat environment in which these systems will have to operate. There are no technologies that can wholly eliminate the risk of proliferation by a determined state, but technology and design can playa role in reducing state threats and perhaps in eliminating non-state threats. There will be a significant role for extrinsic factors, especially the various measures - from safeguards and physical protection to export controls - embodied in the international nuclear nonproliferation regime. This paper will offer

  13. Conceptual design study of small long-life PWR based on thorium cycle fuel

    SciTech Connect (OSTI)

    Subkhi, M. Nurul; Su'ud, Zaki; Waris, Abdul; Permana, Sidik

    2014-09-30

    A neutronic performance of small long-life Pressurized Water Reactor (PWR) using thorium cycle based fuel has been investigated. Thorium cycle which has higher conversion ratio in thermal region compared to uranium cycle produce some significant of {sup 233}U during burn up time. The cell-burn up calculations were performed by PIJ SRAC code using nuclear data library based on JENDL 3.3, while the multi-energy-group diffusion calculations were optimized in whole core cylindrical two-dimension R-Z geometry by SRAC-CITATION. this study would be introduced thorium nitride fuel system which ZIRLO is the cladding material. The optimization of 350 MWt small long life PWR result small excess reactivity and reduced power peaking during its operation.

  14. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    DOE R&D Accomplishments [OSTI]

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  15. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect (OSTI)

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Boyer, B. D.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2010-11-24

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  16. An improved characterization method for international accountancy measurements of fresh and irradiated mixed oxide (MOX) fuel: helping achieve continual monitoring and safeguards through the fuel cycle

    SciTech Connect (OSTI)

    Evans, Louise G; Croft, Stephen; Swinhoe, Martyn T; Tobin, S. J.; Menlove, H. O.; Schear, M. A.; Worrall, Andrew

    2011-01-13

    Nuclear fuel accountancy measurements are conducted at several points through the nuclear fuel cycle to ensure continuity of knowledge (CofK) of special nuclear material (SNM). Non-destructive assay (NDA) measurements are performed on fresh fuel (prior to irradiation in a reactor) and spent nuclear fuel (SNF) post-irradiation. We have developed a fuel assembly characterization system, based on the novel concept of 'neutron fingerprinting' with multiplicity signatures to ensure detailed CofK of nuclear fuel through the entire fuel cycle. The neutron fingerprint in this case is determined by the measurement of the various correlated neutron signatures, specific to fuel isotopic composition, and therefore offers greater sensitivity to variations in fissile content among fuel assemblies than other techniques such as gross neutron counting. This neutron fingerprint could be measured at the point of fuel dispatch (e.g. from a fuel fabrication plant prior to irradiation, or from a reactor site post-irradiation), monitored during transportation of the fuel assembly, and measured at a subsequent receiving site (e.g. at the reactor site prior to irradiation, or reprocessing facility post-irradiation); this would confirm that no unexpected changes to the fuel composition or amount have taken place during transportation and/ or reactor operations. Changes may indicate an attempt to divert material for example. Here, we present the current state of the practice of fuel measurements for both fresh mixed oxide (MOX) fuel and SNF (both MOX and uranium dioxide). This is presented in the framework of international safeguards perspectives from the US and UK. We also postulate as to how the neutron fingerprinting concept could lead to improved fuel characterization (both fresh MOX and SNF) resulting in: (a) assured CofK of fuel across the nuclear fuel cycle, (b) improved detection of SNM diversion, and (c) greater confidence in safeguards of SNF transportation.

  17. NGV fleet fueling station business plan: A public, private and utility partnership to identify economical business options for implementation of CNG fueling infrastructure

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The City of Long Beach recently incorporated an additional 61 natural gas vehicles (NGV) within its own fleet, bringing the City`s current NGV fleet to 171 NGVs. During January 1992, the City opened its first public access compressed natural gas (CNG) fueling station (86 CFM). This action served as the City`s first step toward developing the required CNG infrastructure to accommodate its growing NGV fleet, as well as those of participating commercial and private fleet owners. The City of Long Beach is committed to promoting NGVs within its own fleet, as well as encouraging NGV use by commercial and private fleet owners and resolving market development barriers. The NGV Business Plan provides recommendations for priority locations, station size and design, capital investment, partnership and pricing options. The NGV Business Plan also includes an econometric model to calculate CNG infrastructure cost recovery options, based on CNG market research within the City of Long Beach and Southern California area. Furthermore, the NGV Business Plan provides the City with a guide regarding CNG infrastructure investment, partnerships and private fueling programs. Although the NGV Business Plan was developed to address the prevailing CNG-related issues affecting the City of Long Beach, the methodology used within the NGV Business Plan and, more significantly, the accompanying econometric model will assist local governments, nation-wide, in the successful implementation of similar CNG infrastructures required for effective market penetration of NGVs.

  18. PWR core design, neutronics evaluation and fuel cycle analysis for thorium-uranium breeding recycle

    SciTech Connect (OSTI)

    Bi, G.; Liu, C.; Si, S.

    2012-07-01

    This paper was focused on core design, neutronics evaluation and fuel cycle analysis for Thorium-Uranium Breeding Recycle in current PWRs, without any major change to the fuel lattice and the core internals, but substituting the UOX pellet with Thorium-based pellet. The fuel cycle analysis indicates that Thorium-Uranium Breeding Recycle is technically feasible in current PWRs. A 4-loop, 193-assembly PWR core utilizing 17 x 17 fuel assemblies (FAs) was taken as the model core. Two mixed cores were investigated respectively loaded with mixed reactor grade Plutonium-Thorium (PuThOX) FAs and mixed reactor grade {sup 233}U-Thorium (U{sub 3}ThOX) FAs on the basis of reference full Uranium oxide (UOX) equilibrium-cycle core. The UOX/PuThOX mixed core consists of 121 UOX FAs and 72 PuThOX FAs. The reactor grade {sup 233}U extracted from burnt PuThOX fuel was used to fabrication of U{sub 3}ThOX for starting Thorium-. Uranium breeding recycle. In UOX/U{sub 3}ThOX mixed core, the well designed U{sub 3}ThOX FAs with 1.94 w/o fissile uranium (mainly {sup 233}U) were located on the periphery of core as a blanket region. U{sub 3}ThOX FAs remained in-core for 6 cycles with the discharged burnup achieving 28 GWD/tHM. Compared with initially loading, the fissile material inventory in U{sub 3}ThOX fuel has increased by 7% via 1-year cooling after discharge. 157 UOX fuel assemblies were located in the inner of UOX/U{sub 3}ThOX mixed core refueling with 64 FAs at each cycle. The designed UOX/PuThOX and UOX/U{sub 3}ThOX mixed core satisfied related nuclear design criteria. The full core performance analyses have shown that mixed core with PuThOX loading has similar impacts as MOX on several neutronic characteristic parameters, such as reduced differential boron worth, higher critical boron concentration, more negative moderator temperature coefficient, reduced control rod worth, reduced shutdown margin, etc.; while mixed core with U{sub 3}ThOX loading on the periphery of core has no

  19. Molten salt considerations for accelerator-driven subcritical fission to close the nuclear fuel cycle

    SciTech Connect (OSTI)

    Sooby, Elizabeth; Baty, Austin; Gerity, James; McIntyre, Peter; Melconian, Karie; Pogue, Nathaniel; Sattarov, Akhdiyor; Adams, Marvin; Tsevkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael; Tripathy, Prabhat

    2013-04-19

    The host salt selection, molecular modeling, physical chemistry, and processing chemistry are presented here for an accelerator-driven subcritical fission in a molten salt core (ADSMS). The core is fueled solely with the transuranics (TRU) and long-lived fission products (LFP) from used nuclear fuel. The neutronics and salt composition are optimized to destroy the transuranics by fission and the long-lived fission products by transmutation. The cores are driven by proton beams from a strong-focusing cyclotron stack. One such ADSMS system can destroy the transuranics in the used nuclear fuel produced by a 1GWe conventional reactor. It uniquely provides a method to close the nuclear fuel cycle for green nuclear energy.

  20. Effect of Fuel and Design Options on RTG Performance versus PFF Power Demand

    SciTech Connect (OSTI)

    Schock, Alfred; Or, Chuen T

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper confines its attention to the relatively conservative option employing standard thermoelectric unicouples, since that may be the only one flight-ready for the projected PFF launch in 2001. There are four copies in the file; also a copy in the ESD files. Included in the file are two previous documents with the same title dated 4/18/1994.

  1. Drive Cycle Analysis, Measurement of Emissions and Fuel Consumption of a PHEV School Bus: Preprint

    SciTech Connect (OSTI)

    Barnitt, R.; Gonder, J.

    2011-04-01

    The National Renewable Energy Laboratory (NREL) collected and analyzed real-world school bus drive cycle data and selected similar standard drive cycles for testing on a chassis dynamometer. NREL tested a first-generation plug-in hybrid electric vehicle (PHEV) school bus equipped with a 6.4L engine and an Enova PHEV drive system comprising a 25-kW/80 kW (continuous/peak) motor and a 370-volt lithium ion battery pack. A Bluebird 7.2L conventional school bus was also tested. Both vehicles were tested over three different drive cycles to capture a range of driving activity. PHEV fuel savings in charge-depleting (CD) mode ranged from slightly more than 30% to a little over 50%. However, the larger fuel savings lasted over a shorter driving distance, as the fully charged PHEV school bus would initially operate in CD mode for some distance, then in a transitional mode, and finally in a charge-sustaining (CS) mode for continued driving. The test results indicate that a PHEV school bus can achieve significant fuel savings during CD operation relative to a conventional bus. In CS mode, the tested bus showed small fuel savings and somewhat higher nitrogen oxide (NOx) emissions than the baseline comparison bus.

  2. Categorization of Used Nuclear Fuel Inventory in Support of a Comprehensive National Nuclear Fuel Cycle Strategy

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Energy has conducted a technical review and assessment of the total current inventory [~70,150 MTHM as of 2011] of domestic discharged used nuclear fuel (UNF) and estimated an amount to be considered for retention in support of research, development, demonstration, and national security interests.

  3. Fuel-Cycle and Nuclear Material Disposition Issues Associated with High-Temperature Gas Reactors

    SciTech Connect (OSTI)

    Shropshire, D.E.; Herring, J.S.

    2004-10-03

    The objective of this paper is to facilitate a better understanding of the fuel-cycle and nuclear material disposition issues associated with high-temperature gas reactors (HTGRs). This paper reviews the nuclear fuel cycles supporting early and present day gas reactors, and identifies challenges for the advanced fuel cycles and waste management systems supporting the next generation of HTGRs, including the Very High Temperature Reactor, which is under development in the Generation IV Program. The earliest gas-cooled reactors were the carbon dioxide (CO2)-cooled reactors. Historical experience is available from over 1,000 reactor-years of operation from 52 electricity-generating, CO2-cooled reactor plants that were placed in operation worldwide. Following the CO2 reactor development, seven HTGR plants were built and operated. The HTGR came about from the combination of helium coolant and graphite moderator. Helium was used instead of air or CO2 as the coolant. The helium gas has a significant technical base due to the experience gained in the United States from the 40-MWe Peach Bottom and 330-MWe Fort St. Vrain reactors designed by General Atomics. Germany also built and operated the 15-MWe Arbeitsgemeinschaft Versuchsreaktor (AVR) and the 300-MWe Thorium High-Temperature Reactor (THTR) power plants. The AVR, THTR, Peach Bottom and Fort St. Vrain all used fuel containing thorium in various forms (i.e., carbides, oxides, thorium particles) and mixtures with highly enriched uranium. The operational experience gained from these early gas reactors can be applied to the next generation of nuclear power systems. HTGR systems are being developed in South Africa, China, Japan, the United States, and Russia. Elements of the HTGR system evaluated included fuel demands on uranium ore mining and milling, conversion, enrichment services, and fuel fabrication; fuel management in-core; spent fuel characteristics affecting fuel recycling and refabrication, fuel handling, interim

  4. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    SciTech Connect (OSTI)

    Lampert, David J.; Cai, Hao; Wang, Zhichao; Keisman, Jennifer; Wu, May; Han, Jeongwoo; Dunn, Jennifer; Sullivan, John L.; Elgowainy, Amgad; Wang, Michael; Keisman, Jennifer

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  5. Modeling Heavy/Medium-Duty Fuel Consumption Based on Drive Cycle Properties

    SciTech Connect (OSTI)

    Wang, Lijuan; Duran, Adam; Gonder, Jeffrey; Kelly, Kenneth

    2015-10-13

    This paper presents multiple methods for predicting heavy/medium-duty vehicle fuel consumption based on driving cycle information. A polynomial model, a black box artificial neural net model, a polynomial neural network model, and a multivariate adaptive regression splines (MARS) model were developed and verified using data collected from chassis testing performed on a parcel delivery diesel truck operating over the Heavy Heavy-Duty Diesel Truck (HHDDT), City Suburban Heavy Vehicle Cycle (CSHVC), New York Composite Cycle (NYCC), and hydraulic hybrid vehicle (HHV) drive cycles. Each model was trained using one of four drive cycles as a training cycle and the other three as testing cycles. By comparing the training and testing results, a representative training cycle was chosen and used to further tune each method. HHDDT as the training cycle gave the best predictive results, because HHDDT contains a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. Among the four model approaches, MARS gave the best predictive performance, with an average absolute percent error of -1.84% over the four chassis dynamometer drive cycles. To further evaluate the accuracy of the predictive models, the approaches were first applied to real-world data. MARS outperformed the other three approaches, providing an average absolute percent error of -2.2% of four real-world road segments. The MARS model performance was then compared to HHDDT, CSHVC, NYCC, and HHV drive cycles with the performance from Future Automotive System Technology Simulator (FASTSim). The results indicated that the MARS method achieved a comparative predictive performance with FASTSim.

  6. Pressurized solid oxide fuel cell/gas turbine combined cycle systems

    SciTech Connect (OSTI)

    George, R.A.

    1997-12-31

    Over the last 10 years, Westinghouse Electric Corporation has made great strides in advancing tubular solid oxide fuel cell (SOFC) technology towards commercialization by the year 2001. In 1993, Westinghouse initiated a program to develop pressurized solid oxide fuel cell/gas turbine (PSOFC/GT) combined cycle power systems because of the ultra-high electrical efficiencies, 60-75% (net AC/LHV CH4), inherent with these systems. This paper will discuss SOFC technology advancements in recent years, and the final phase development program which will focus on the development and demonstration of PSOFC/GT power systems for distributed power applications.

  7. Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Michael Wang Argonne National Laboratory June 10, 2008 Project ID # AN2 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Overview * Project start date: Oct. 2002 * Project end date: Continuous * Percent complete: N/A * Inconsistent data, assumptions, and guidelines * Suite of models and tools * Unplanned studies and analyses * Total project funding from DOE: $2.04 million

  8. Engineering-Scale Development of Injection Casting Technology for Metal Fuel Cycle

    SciTech Connect (OSTI)

    Ogata, Takanari; Tsukada, Takeshi

    2007-07-01

    Engineering-scale injection casting tests were conducted in order to demonstrate the applicability of injection casting technology to the commercialized fast reactor fuel cycle. The uranium-zirconium alloy slugs produced in the tests were examined with reference to the practical slug specifications: average diameter tolerance {+-} 0.05 mm, local diameter tolerance {+-} 0.1 mm, density range 15.3 to 16.1 g/cm{sup 3}, zirconium content range 10 {+-} 1 wt% and total impurity (C, N, O, Si) <2000 ppm, which were provisionally determined. Most of the slugs satisfied these specifications, except for zirconium content. The impurity level was sufficiently low even though the residual and scrapped alloys were repeatedly recycled. The weight ratio of injected metal to charged metal was sufficiently high for a high process throughput. The injection casting technology will be applicable to the commercialized fuel cycle when the issue of zirconium content variation is resolved. (authors)

  9. The full fuel cycle of CO{sub 2} capture and disposal capture and disposal technology

    SciTech Connect (OSTI)

    Saroff, L.

    1995-12-31

    The overall objective of this study was to develop a methodology for the evaluation of the energy usage and cost both private and societal (external cost)for full fuel cycles. It was envisioned that other organizations could employ the methodology with minor alterations for a consistent means of evaluating full fuel cycles. The methodology has been applied to three fossil fuel electric generation processes each producing 500 MWe (net). These are: a Natural Gas Combined Cycle (NGCC) power plant burning natural gas with direct CO{sub 2} capture and disposal; an Integrated Gasification Combined Cycle (IGCC) power plant burning coal with direct CO{sub 2} capture and disposal; and a Pulverized Fuel (PC) power plant burning coal with a managed forest indirectly sequestering CO{sub 2}. The primary aim is to provide decision makers with information from which to derive policy. Thus, the evaluation reports total energy used, private costs to build the facility, emissions and burdens, and the valuation (externalities) of the impacts of the burdens. The energy usage, private costs including capture and disposal, and emissions are reported in this paper. The valuations and analysis of the impact of the plant on the environment are reported in the companion paper. The loss in efficiency (LHV) considering the full fuel cycle as opposed to the thermal efficiency of the power plant is; 0.9, 2.4, and 4.6 for the NGCC, IGCC, and PC+controls, respectively. Electricity cost, c/kWh, including capital, operating and fuel, at a 10% discount rate. ranges from 5.6 to 7.08 for NGCC and 7.24 to 8.61 for IGCC. The range is dependent on the mode of disposal, primarily due to the long pipeline to reach a site for the pope disposal in the ocean. For the PC+ controls then is a considerable range from 7.66 to over 16 c/kWh dependent on the size and cost of the managed forest.

  10. The Back End of the Fuel Cycle Moves Front and Center

    SciTech Connect (OSTI)

    Isaacs, T; Choi, J

    2006-02-16

    For many years, the commercial nuclear business has remained relatively stable in many ways. The introduction of new plants, the spread to new countries, and the development of key elements of the fuel cycle such as enrichment, reprocessing and waste disposal have been quite modest. That is unlikely to be the case in the coming years. A number of events and trends are becoming increasingly apparent and are cause for both opportunity and caution: (1) New nuclear power plant orders are likely to grow and spread, particularly in the developing world, e.g. China and India. (2) The growing recognition that the developing world will be a major competitor for limited energy resources is raising awareness in the developed world regarding concerns for future energy security. (3) Clearer evidence of the effects of greenhouse gas emissions on global warming, largely from the burning of fossil fuels, is creating more attention on the environmental benefits of nuclear power. (4) The last decade has shown unequivocal evidence of countries lying, cheating on their NPT obligation, and covertly carrying out nuclear weapons-related activities. Some have suggested their presumed need for a domestic nuclear fuel cycle as a rationale to pursue enrichment and/or reprocessing capabilities, which would move them to the doorstep of being nuclear weapons capable. The DPRK even took the action to abrogate the NPT to hold on to its nuclear weapons program. (5) 9/11 and other evidence have made it undeniable that terrorist groups would like to obtain weapons of mass destruction, particularly nuclear weapons, and would use them if they could. A number of initiatives have been proposed recently to allow for the growth and spread of nuclear power while limiting the justifications for additional countries to pursue the acquisition of enrichment or reprocessing capabilities. Most of these initiatives have fresh fuel assurance as a central component. The rationale is simple; if a country can have

  11. Executive Summary: Comprehensive Fuel Cycle Research Study Presented to the Savannah River Site Community Reuse

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Executive Summary: Comprehensive Fuel Cycle Research Study Presented to the Savannah River Site Community Reuse Organization February 2013 The content of this Study reflects the independent views of Dickstein Shapiro LLP, based on information available from a variety of sources. The Study is not intended to reflect the views of the Savannah River Site Community Reuse Organization. 1 I. Executive Summary The purpose of this report is to provide the five-county region ("Region")

  12. Fuel Cycle Analysis Framework Base Cases for the IAEA/INPRO GAINS Collaborative Project

    SciTech Connect (OSTI)

    Brent Dixon

    2012-09-01

    Thirteen countries participated in the Collaborative Project GAINS Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors Including a Closed Fuel Cycle, which was the primary activity within the IAEA/INPRO Program Area B: Global Vision on Sustainable Nuclear Energy for the last three years. The overall objective of GAINS was to develop a standard framework for assessing future nuclear energy systems taking into account sustainable development, and to validate results through sample analyses. This paper details the eight scenarios that constitute the GAINS framework base cases for analysis of the transition to future innovative nuclear energy systems. The framework base cases provide a reference for users of the framework to start from in developing and assessing their own alternate systems. Each base case is described along with performance results against the GAINS sustainability evaluation metrics. The eight cases include four using a moderate growth projection and four using a high growth projection for global nuclear electricity generation through 2100. The cases are divided into two sets, addressing homogeneous and heterogeneous scenarios developed by GAINS to model global fuel cycle strategies. The heterogeneous world scenario considers three separate nuclear groups based on their fuel cycle strategies, with non-synergistic and synergistic cases. The framework base case analyses results show the impact of these different fuel cycle strategies while providing references for future users of the GAINS framework. A large number of scenario alterations are possible and can be used to assess different strategies, different technologies, and different assumptions about possible futures of nuclear power. Results can be compared to the framework base cases to assess where these alternate cases perform differently versus the sustainability indicators.

  13. ASSESSMENT OF POSSIBLE CYCLE LENGTHS FOR FULLY-CERAMIC MICRO-ENCAPSULATED FUEL-BASED LIGHT WATER REACTOR CONCEPTS

    SciTech Connect (OSTI)

    R. Sonat Sen; Michael A. Pope; Abderrafi M. Ougouag; Kemal Pasamehmetoglu; Francesco Venneri

    2012-04-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with failure-proof fuel. This paper examines the feasibility of LWR-like cycle length for such a low enriched uranium fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel 'as-is' into existing LWRs while retaining their thermal-hydraulic characteristics. The feasibility of using this fuel is assessed by looking at cycle lengths and fuel failure rates. Other considerations (e.g., safety parameters, etc.) were not considered at this stage of the study. The study includes the examination of different TRISO kernel diameters without changing the coating layer thicknesses. The study shows that a naive use of UO{sub 2} results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. In this study, starting with the recognized highest packing fraction practically achievable (44%), higher enrichment, larger fuel kernel sizes, and the use of higher density fuels have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rates of survival under all considered scenarios. Finally, it is recognized that relaxing the geometry constraint will result in satisfactory cycle lengths even using UO{sub 2}-loaded TRISO particles-based fuel with enrichment at or below 20 w/o.

  14. Assessment of possible cycle lengths for fully-ceramic micro-encapsulated fuel-based light water reactor concepts

    SciTech Connect (OSTI)

    Sen, R. S.; Pope, M. A.; Ougouag, A. M.; Pasamehmetoglu, K.; Venneri, F.

    2012-07-01

    The use of TRISO-particle-based dispersion fuel within SiC matrix and cladding materials has the potential to allow the design of extremely safe LWRs with accident-tolerant fuel. This paper examines the feasibility of LWR-like cycle length for such a low enriched uranium fuel with the imposed constraint of strictly retaining the original geometry of the fuel pins and assemblies. The motivation for retaining the original geometry is to provide the ability to incorporate the fuel 'as-is' into existing LWRs while retaining their thermal-hydraulic characteristics. The feasibility of using this fuel is assessed by looking at cycle lengths and fuel failure rates. Other considerations (e.g., safety parameters, etc.) were not considered at this stage of the study. The study includes the examination of different TRISO kernel diameters without changing the coating layer thicknesses. The study shows that a naive use of UO{sub 2} results in cycle lengths too short to be practical for existing LWR designs and operational demands. Increasing fissile inventory within the fuel compacts shows that acceptable cycle lengths can be achieved. In this study, starting with the recognized highest packing fraction practically achievable (44%), higher enrichment, larger fuel kernel sizes, and the use of higher density fuels have been evaluated. The models demonstrate cycle lengths comparable to those of ordinary LWRs. As expected, TRISO particles with extremely large kernels are shown to fail under all considered scenarios. In contrast, the designs that do not depart too drastically from those of the nominal NGNP HTR fuel TRISO particles are shown to perform satisfactorily and display a high rate of survival under all considered scenarios. Finally, it is recognized that relaxing the geometry constraint will result in satisfactory cycle lengths even using UO{sub 2}-loaded TRISO particles-based fuel with enrichment at or below 20 w/o. (authors)

  15. The benefits of a fast reactor closed fuel cycle in the UK

    SciTech Connect (OSTI)

    Gregg, R.; Hesketh, K.

    2013-07-01

    The work has shown that starting a fast reactor closed fuel cycle in the UK, requires virtually all of Britain's existing and future PWR spent fuel to be reprocessed, in order to obtain the plutonium needed. The existing UK Pu stockpile is sufficient to initially support only a modest SFR 'closed' fleet assuming spent fuel can be reprocessed shortly after discharge (i.e. after two years cooling). For a substantial fast reactor fleet, most Pu will have to originate from reprocessing future spent PWR fuel. Therefore, the maximum fast reactor fleet size will be limited by the preceding PWR fleet size, so scenarios involving fast reactors still require significant quantities of uranium ore indirectly. However, once a fast reactor fuel cycle has been established, the very substantial quantities of uranium tails in the UK would ensure there is sufficient material for several centuries. Both the short and long term impacts on a repository have been considered in this work. Over the short term, the decay heat emanating from the HLW and spent fuel will limit the density of waste within a repository. For scenarios involving fast reactors, the only significant heat bearing actinide content will be present in the final cores, resulting in a 50% overall reduction in decay energy deposited within the repository when compared with an equivalent open fuel cycle. Over the longer term, radiological dose becomes more important. Total radiotoxicity (normalised by electricity generated) is lower for scenarios with Pu recycle after 2000 years. Scenarios involving fast reactors have the lowest radiotoxicity since the quantities of certain actinides (Np, Pu and Am) eventually stabilise. However, total radiotoxicity as a measure of radiological risk does not account for differences in radionuclide mobility once in repository. Radiological dose is dominated by a small number of fission products so is therefore not affected significantly by reactor type or recycling strategy (since the

  16. Occupational safety data and casualty rates for the uranium fuel cycle. [Glossaries

    SciTech Connect (OSTI)

    O'Donnell, F.R.; Hoy, H.C.

    1981-10-01

    Occupational casualty (injuries, illnesses, fatalities, and lost workdays) and production data are presented and used to calculate occupational casualty incidence rates for technologies that make up the uranium fuel cycle, including: mining, milling, conversion, and enrichment of uranium; fabrication of reactor fuel; transportation of uranium and fuel elements; generation of electric power; and transmission of electric power. Each technology is treated in a separate chapter. All data sources are referenced. All steps used to calculate normalized occupational casualty incidence rates from the data are presented. Rates given include fatalities, serious cases, and lost workdays per 100 man-years worked, per 10/sup 12/ Btu of energy output, and per other appropriate units of output.

  17. New In-pile Instrumentation to Support Fuel Cycle Research and Development

    SciTech Connect (OSTI)

    J. Rempe; H. MacLean; R. Schley; D. Hurley; J. Daw; S. Taylor; J. Smith; J. Svoboda; D. Kotter; D. Knudson; M. Guers; S. C. Wilkins

    2011-01-01

    New and enhanced nuclear fuels are a key enabler for new and improved reactor technologies. For example, the goals of the next generation nuclear plant (NGNP) will not be met without irradiations successfully demonstrating the safety and reliability of new fuels. Likewise, fuel reliability has become paramount in ensuring the competitiveness of nuclear power plants. Recently, the Office of Nuclear Energy in the Department of Energy (DOE-NE) launched a new direction in fuel research and development that emphasizes an approach relying on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time, data are essential for characterizing the performance of new fuels during irradiation testing. A three-year strategic research program is proposed for developing the required test vehicles with sensors of unprecedented accuracy and resolution for obtaining the data needed to characterize three-dimensional changes in fuel microstructure during irradiation testing. When implemented, this strategy will yield test capsule designs that are instrumented with new sensor technologies for the Advanced Test Reactor (ATR) and other irradiation locations for the Fuel Cycle Research and Development (FC R&D) program. Prior laboratory testing, and as needed, irradiation testing, of these sensors will have been completed to give sufficient confidence that the irradiation tests will yield the required data. Obtaining these sensors must draw upon the expertise of a wide-range of organizations not currently supporting nuclear fuels research. This document defines this strategic program and provides the necessary background information related to fuel irradiation testing, desired parameters for detection, and an overview of currently available in-pile instrumentation. In addition, candidate sensor technologies are identified in this document, and a list of proposed criteria for ranking

  18. AFCI Options Study

    SciTech Connect (OSTI)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2009-09-01

    This report describes the background and framework for both organizing the discussion and providing information on the potential for nuclear energy R&D to develop alternative nuclear fuel cycles that would address the issues with the current implementations of nuclear power, including nuclear waste disposal, proliferation risk, safety, security, economics, and sustainability. The disposition of used fuel is the cause of many of the concerns, and the possible approaches to used fuel management identify a number of basic technology areas that need to be considered. The basic science in each of the technology areas is discussed, emphasizing what science is currently available, where scientific knowledge may be insufficient, and especially to identify specific areas where transformational discoveries may allow achievement of performance goals not currently attainable. These discussions lead to the wide range of technical options that have been the basis for past and current research and development on advanced nuclear fuel cycles in the United States. The results of this work are then briefly reviewed to show the extent to which such approaches are capable of addressing the issues with nuclear power, the potential for moving further, and the inherent limitations.

  19. Parametric Analyses of Single-zone Thorium-fueled Molten Salt...

    Office of Scientific and Technical Information (OSTI)

    Title: Parametric Analyses of Single-zone Thorium-fueled Molten Salt Reactor Fuel Cycle Options Authors: Powers, Jeffrey J 1 ; Worrall, Andrew 1 ; Gehin, Jess C 1 ; Harrison, ...

  20. Environmental Impacts, Health and Safety Impacts, and Financial Costs of the Front End of the Nuclear Fuel Cycle

    SciTech Connect (OSTI)

    Brett W Carlsen; Urairisa Phathanapirom; Eric Schneider; John S. Collins; Roderick G. Eggert; Brett Jordan; Bethany L. Smith; Timothy M. Ault; Alan G. Croff; Steven L. Krahn; William G. Halsey; Mark Sutton; Clay E. Easterly; Ryan P. Manger; C. Wilson McGinn; Stephen E. Fisher; Brent W. Dixon; Latif Yacout

    2013-07-01

    FEFC processes, unlike many of the proposed fuel cycles and technologies under consideration, involve mature operational processes presently in use at a number of facilities worldwide. This report identifies significant impacts resulting from these current FEFC processes and activities. Impacts considered to be significant are those that may be helpful in differentiating between fuel cycle performance and for which the FEFC impact is not negligible relative to those from the remainder of the full fuel cycle. This report: • Defines ‘representative’ processes that typify impacts associated with each step of the FEFC, • Establishes a framework and architecture for rolling up impacts into normalized measures that can be scaled to quantify their contribution to the total impacts associated with various fuel cycles, and • Develops and documents the bases for estimates of the impacts and costs associated with each of the representative FEFC processes.

  1. Study of the potential uses of the Barnwell Nuclear Fuel Plant (BNFP). Final report

    SciTech Connect (OSTI)

    Not Available

    1980-03-25

    The purpose of this study is to provide an evaluation of possible international and domestic uses for the Barnwell Nuclear Fuel Plant, located in South Carolina, at the conclusion of the International Nuclear Fuel Cycle Evaluation. Four generic categories of use options for the Barnwell plant have been considered: storage of spent LWR fuel; reprocessing of LWR spent fuel; safeguards development and training; and non-use. Chapters are devoted to institutional options and integrated institutional-use options.

  2. Summary of national and international fuel cycle and radioactive waste management programs, 1984

    SciTech Connect (OSTI)

    Harmon, K.M.; Lakey, L.T.; Leigh, I.W.

    1984-07-01

    Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treat and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.

  3. Energy Return on Investment from Recycling Nuclear Fuel

    SciTech Connect (OSTI)

    2011-08-17

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  4. Hybrid fusion–fission reactor with a thorium blanket: Its potential in the fuel cycle of nuclear reactors

    SciTech Connect (OSTI)

    Shmelev, A. N. Kulikov, G. G. Kurnaev, V. A. Salahutdinov, G. H. Kulikov, E. G. Apse, V. A.

    2015-12-15

    Discussions are currently going on as to whether it is suitable to employ thorium in the nuclear fuel cycle. This work demonstrates that the {sup 231}Pa–{sup 232}U–{sup 233}U–Th composition to be produced in the thorium blanket of a hybrid thermonuclear reactor (HTR) as a fuel for light-water reactors opens up the possibility of achieving high, up to 30% of heavy metals (HM), or even ultrahigh fuel burnup. This is because the above fuel composition is able to stabilize its neutron-multiplying properties in the process of high fuel burnup. In addition, it allows the nuclear fuel cycle (NFC) to be better protected against unauthorized proliferation of fissile materials owing to an unprecedentedly large fraction of {sup 232}U (several percent!) in the uranium bred from the Th blanket, which will substantially hamper the use of fissile materials in a closed NFC for purposes other than power production.

  5. The Potential Role of the Thorium Fuel Cycle in Reducing the Radiotoxicity of Long-Lived Waste - 13477

    SciTech Connect (OSTI)

    Hesketh, Kevin; Thomas, Mike

    2013-07-01

    The thorium (or more accurately the Th-232/U-233) fuel cycle is attracting growing interest world wide and one reason for this is the reduced radiotoxicity of long-lived waste, with the Th- 232/U-233 fuel cycle often being justified partly on the grounds of low radiotoxicity for long cooling times. This paper considers the evolution of heavy metal radiotoxicity in a Molten Salt Fast Reactor (MSFR) operating a closed Th-232/U-233 cycle during different operational phases. The paper shows that even in the MSFR core, the equilibrium radiotoxicity of the thorium fuel cycle is only reached after almost 100 years of operation. MSFR was chosen because it has many theoretical advantages that favour the Th-232/U-233 fuel cycle. Conventional solid fuel systems would be expected to behave similarly, but with even longer timescales and therefore the MSFR cycle can be used to define the limits of what is practically achievable. The results are used to argue the case that a fair approach to justifying the Th-232/U-233 breeder cycle should not quote the long term equilibrium radiotoxicity, but rather the somewhat less favourable radiotoxicity that could be achieved within the operational lifetime of the first generation of Th-232/U-233 breeder reactors. (authors)

  6. Core materials development for the fuel cycle R&D program

    SciTech Connect (OSTI)

    Maloy, S. A.; Toloczko, Mychailo B.; Cole, J. I.; Byun, Thak Sang

    2011-12-31

    The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels’ fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350– 750 °C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 °C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (~400 MPa) and a large increase in DBTT (up to 230 °C) for specimens irradiated at 383 °C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 °C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous

  7. Core Materials Development for the Fuel Cycle R&D Program

    SciTech Connect (OSTI)

    S. A. Maloy; M. Toloczko; J. Cole; T. S. Byun

    2011-08-01

    The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels fast reactor core materials (cladding and duct) must be able to withstand very high doses (greater than 300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350-750 C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress ({approx}400 MPa) and a large increase in DBTT (up to 230 C) for specimens irradiated at 383 C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous

  8. Core materials development for the fuel cycle R&D program

    SciTech Connect (OSTI)

    Toloczko, M; Maloy, S; Cole, James I.; Byun, Thak Sang

    2011-01-01

    The Fuel Cycle Research and Development program is investigating methods of burning minor actinides in a transmutation fuel. One of the challenges of achieving this goal is to develop fuels capable of reaching extreme burnup levels (e.g. 40%). To achieve such high burnup levels fast reactor core materials (cladding and duct) must be able to withstand very high doses (>300 dpa design goal) while in contact with the coolant and the fuel. Thus, these materials must withstand radiation effects that promote low temperature embrittlement, radiation induced segregation, high temperature helium embrittlement, swelling, accelerated creep, corrosion with the coolant, and chemical interaction with the fuel (FCCI). To develop and qualify materials to a total fluence greater than 200 dpa requires development of advanced alloys and irradiations in fast reactors to test these alloys. Test specimens of ferritic/martensitic alloys (T91/HT-9) previously irradiated in the FFTF reactor up to 210 dpa at a temperature range of 350 750 C are presently being tested. This includes analysis of a duct made of HT-9 after irradiation to a total dose of 155 dpa at temperatures from 370 to 510 C. Compact tension, charpy and tensile specimens have been machined from this duct and mechanical testing as well as SANS and Mossbauer spectroscopy are currently being performed. Initial results from compression testing and Charpy testing reveal a strong increase in yield stress (400 MPa) and a large increase in DBTT (up to 230 C) for specimens irradiated at 383 C to a dose of 28 dpa. Less hardening and a smaller increase in DBTT was observed for specimens irradiated at higher temperatures up to 500 C. Advanced radiation tolerant materials are also being developed to enable the desired extreme fuel burnup levels. Specifically, coatings are being developed to minimize FCCI, and research is underway to fabricate large heats of radiation tolerant oxide dispersion steels with homogeneous oxide dispersions.

  9. Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States | Department of Energy Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States Predicted Impact of Idling Reduction Options for Heavy-Duty Diesel Trucks: A Comparison of Full-Fuel-Cycle Emissions, Energy Use, and Proximity to Urban Populations in Five States Poster

  10. Design Evolution Study - Aging Options

    SciTech Connect (OSTI)

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  11. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a methodmore » for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.« less

  12. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment

    SciTech Connect (OSTI)

    Balakrishnan, Madhesan; Sacia, Eric R.; Sreekumar, Sanil; Gunbas, Gorkem; Gokhale, Amit A.; Scown, Corinne D.; Toste, F. Dean; Bell, Alexis T.

    2015-06-08

    Decarbonizing the transportation sector is critical to achieving global climate change mitigation. Although biofuels will play an important role in conventional gasoline and diesel applications, bioderived solutions are particularly important in jet fuels and lubricants, for which no other viable renewable alternatives exist. Producing compounds for jet fuel and lubricant base oil applications often requires upgrading fermentation products, such as alcohols and ketones, to reach the appropriate molecular-weight range. Ketones possess both electrophilic and nucleophilic functionality, which allows them to be used as building blocks similar to alkenes and aromatics in a petroleum refining complex. Here, we develop a method for selectively upgrading biomass-derived alkyl methyl ketones with >95% yields into trimer condensates, which can then be hydrodeoxygenated in near-quantitative yields to give a new class of cycloalkane compounds. The basic chemistry developed here can be tailored for aviation fuels as well as lubricants by changing the production strategy. We demonstrate that a sugarcane biorefinery could use natural synergies between various routes to produce a mixture of lubricant base oils and jet fuels that achieve net life-cycle greenhouse gas savings of up to 80%.

  13. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results

    SciTech Connect (OSTI)

    John Smart; Richard "Barney" Carlson; Jeff Gonder; Aaron Brooker

    2009-09-01

    Plug-in hybrid electric vehicles (PHEVs) have potential to reduce or eliminate the U.S. dependence on foreign oil. Quantifying the amount of petroleum each uses, however, is challenging. To estimate in-use fuel economy for conventional vehicles the Environmental Protection Agency (EPA) conducts chassis dynamometer tests on standard historic drive cycles and then adjusts the resulting “raw” fuel economy measurements downward. Various publications, such as the forthcoming update to the SAE J1711 recommended practice for PHEV fuel economy testing, address the challenges of applying standard test procedures to PHEVs. This paper explores the issue of how to apply an adjustment method to such “raw” PHEV dynamometer test results in order to more closely estimate the in-use fuel and electricity consumption characteristics of these vehicles. The paper discusses two possible adjustment methods, and evaluates one method by applying it to dynamometer data and comparing the result to in-use fleet data (on an aftermarket conversion PHEV). The paper will also present the methodologies used to collect the data needed for this comparison.

  14. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  15. An assessment of the effect on Olkiluoto repository capacity achievable with advanced fuel cycles

    SciTech Connect (OSTI)

    Juutilainen, P.; Viitanen, T.

    2013-07-01

    Previously a few scenarios have been simulated for transition from thermal to fast reactor fleet in Finland in order to determine how much the transuranic inventory could be reduced with the partitioning and transmutation (P-T) technologies. Those calculations, performed with COSI6 code developed by CEA, are extended in the present study, in which the effect of P-T on the capacity of the planned final disposal repository at Olkiluoto (Finland) is evaluated by taking into account the created fission products and transuranic residuals from the reprocessing operations. The decay heat is assumed to be the most restrictive factor in defining the waste disposal packing density. The repository capacity evaluation of this study is based on the comparison of the decay heats produced by the deposited waste in various scenarios. The reference scenario of this article involves only Light Water Reactors (LWR) in an open fuel cycle. The capacity requirement of the geological repository is estimated in a few closed fuel cycle scenarios, all including actinide transmutation with Fast Reactors (FR). The comparison between the P-T scenarios and reference is based on the decay heat production of the deposited waste. The COSI6 code is used for simulations to provide the repository decay heat curves. Applying the closed fuel cycle would change the disposal concept and schedule, because of which it is not quite straightforward to assess the impact of P-T on the capacity. However, it can be concluded that recycling the transuranic nuclides probably decreases the required volume for the disposal, but thermal dimensioning analysis is needed for more specific conclusions.

  16. Measures of the environmental footprint of the front end of the nuclear fuel cycle

    SciTech Connect (OSTI)

    E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

    2013-11-01

    Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation. To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as well as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle. Total energy input is calculated at 8.7 x 10- 3 GJ(e)/MWh(e) of electricity and 5.9 x 10- 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 x 10- 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up

  17. Selecting the incremental use of the fuel cycle and regional reference environments

    SciTech Connect (OSTI)

    Cantor, R.; Curlee, R.; Hillsman, E.

    1990-10-18

    To demonstrate the accounting framework and give some practical meaning to the concept of external costs of various stages of the fuel cycle, we will apply the approach to a limited number of case studies. These case studies will emphasize two of the major sectors for which energy sources are needed: electricity production and transportation. Because the intent here is to illustrate the approach and not to derive sweeping generalizations or comparisons, criteria and proposed selections for the two sectors were not constrained to be identical. However, applications to either sector require the resolution of a number of general issues. 1 fig.

  18. A 48-month extended fuel cycle for the B and W mPower{sup TM} small modular nuclear reactor

    SciTech Connect (OSTI)

    Erighin, M. A.

    2012-07-01

    The B and W mPower{sup TM} reactor is a small, rail-shippable pressurized water reactor (PWR) with an integral once-through steam generator and an electric power output of 150 MW, which is intended to replace aging fossil power plants of similar output. The core is composed of 69 reduced-height, but otherwise standard, PWR assemblies with the familiar 17 x 17 fuel rod array on a 21.5 cm inter-assembly pitch. The B and W mPower core design and cycle management plan, which were performed using the Studsvik core design code suite, follow the pattern of a typical nuclear reactor fuel cycle design and analysis performed by most nuclear fuel management organizations, such as fuel vendors and utilities. However, B and W is offering a core loading and cycle management plan for four years of continuous power operations without refueling and without the hurdles of chemical shim. (authors)

  19. Preliminary plan for the qualification of the LEU/Th fuel cycle for the Fort St. Vrain HTGR

    SciTech Connect (OSTI)

    Gulden, T.D.; Gainey, B.W.; Altschwager, C.J.

    1980-03-01

    This plan was prepared to ensure that low-enriched uranium/thorium (LEU/Th) would be available as a backup to the highly enriched uranium/thorium (HEU/Th) fuel cycle currently being used in the Fort St. Vrain (FSV) high-temperature gas-cooled reactor (HTGR) in the event that the US nonproliferation policies require it. It describes the program that would be required to develop, qualify, and introduce an LEU/Th fuel cycle into the FSV HTGR on the earliest possible and most optimistic schedule. The results of the study indicate that licensing of the LEU/Th fuel cycle for FSV could be completed and fuel manufacturing could begin about 4.5 years from inception of the program.

  20. Improving the actinides recycling in closed fuel cycles, a major step towards nuclear energy sustainability

    SciTech Connect (OSTI)

    Poinssot, C.; Grandjean, S.; Masson, M.; Bouillis, B.; Warin, D.

    2013-07-01

    Increasing the sustainability of nuclear energy is a longstanding road that requires a stepwise approach to successively tackle the following 3 objectives. First of all, optimize the consumption of natural resource to preserve them for future generations and hence guarantee the energetic independence of the countries (no uranium ore is needed anymore). The current twice-through cycle of Pu implemented by France, UK, Japan and soon China is a first step in this direction and already allows the development and optimization of the relevant industrial processes. It also allows a major improvement regarding the conditioning of the ultimate waste in a durable and robust nuclear glass. Secondly, the recycling of americium could be an interesting option for the future with the deployment of FR fleet to save the repository resource and optimize its use by allowing a denser disposal. It would limit the burden towards the future generations and the need for additional repositories before several centuries. Thirdly, the recycling of the whole minor actinides inventory could be an interesting option for the far-future for strongly decreasing the waste long-term toxicity, down to a few centuries. It would bring the waste issue back within the human history, which should promote its acceptance by the social opinion.

  1. Study of feasible and sustainable multilateral approach on nuclear fuel cycle

    SciTech Connect (OSTI)

    Kuno, Y.; Tazaki, M.; Akiba, M.; Takashima, R.; Izumi, Y.; Tanaka, S.

    2013-07-01

    Despite the Fukushima accident it is undeniable that nuclear power remains one of the most important methods to handle global growth of economic/energy consumption and issues with greenhouse gases. If the demand for nuclear power increases, the demand for not only the generation of power but also for refining uranium (U), conversion, enrichment, re-conversion, and fuel manufacturing should increase. In addition, concerns for the proliferation of 'Sensitive Nuclear Technologies' (SNT) should also increase. We propose a demand-side approach, where nuclear fuel cycle (NFC) activities would be implemented among multiple states. With this approach, NFC services, in particular those using SNTs, are multilaterally executed and controlled, thereby preventing unnecessary proliferation of SNTs, and enabling safe and appropriate control of nuclear technologies and nuclear materials. This proposal would implement nuclear safety and security at an international level and solve transport issues for nuclear fuels. This proposal is based on 3 types of cooperation for each element of NFC: type A: cooperation for 3S only, services received; Type B: cooperation for 3S, MNA (Multilateral Nuclear Activities) without transfer of ownership to MNA; and Type C cooperation for 3S, MNA holding ownership rights. States involved in the 3 types of activity should be referred to as partner states, host states, and site states respectively. The feasibility of the proposal is discussed for the Asian region.

  2. GREET 1.5 - transportation fuel-cycle model - Vol. 1 : methodology...

    Office of Scientific and Technical Information (OSTI)

    ... SYSTEMS; FUEL CONSUMPTION; ETHERS; GREENHOUSE GASES; LIQUEFIED NATURAL GAS; AIR POLLUTION; FLY ASH; DIESEL FUELS; GASOLINE; LIQUEFIED PETROLEUM GASES; METHANOL; FUEL ...

  3. Nuclear-fuel-cycle risk assessment: descriptions of representative non-reactor facilities, Sections 15-19

    SciTech Connect (OSTI)

    Schneider, K.J.

    1982-09-01

    Information is presented under the following section headings: fuel reprocessing; spent fuel and high-level and transuranic waste storage; spent fuel and high-level and transuranic waste disposal; low-level and intermediate-level waste disposal; and, transportation of radioactive materials in the nuclear fuel cycle. In each of the first three sections a description is given on the mainline process, effluent processing and waste management systems, plant layout, and alternative process schemes. Safety information and a summary are also included in each. The section on transport of radioactive materials includes information on the transportation of uranium ore, uranium ore concentrate, UF/sub 6/, PuO/sub 2/ powder, unirradiated uranium and mixed-oxide fuel assemblies, spent fuel, solidified high-level waste, contact-handled transuranic waste, remote-handled transuranic waste, and low and intermediate level nontransuranic waste. A glossary is included. (JGB)

  4. Sandia Energy Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    c-liquids-create-more-sustainable-processesfeed 0 DOE Joint BioEnergy Institute Joins Elite '100500 Club' http:energy.sandia.govdoe-joint-bioenergy-institute-joins-elite-1005...

  5. Dynamic Systems Analysis Report for Nuclear Fuel Recycle

    SciTech Connect (OSTI)

    Brent Dixon; Sonny Kim; David Shropshire; Steven Piet; Gretchen Matthern; Bill Halsey

    2008-12-01

    This report examines the time-dependent dynamics of transitioning from the current United States (U.S.) nuclear fuel cycle where used nuclear fuel is disposed in a repository to a closed fuel cycle where the used fuel is recycled and only fission products and waste are disposed. The report is intended to help inform policy developers, decision makers, and program managers of system-level options and constraints as they guide the formulation and implementation of advanced fuel cycle development and demonstration efforts and move toward deployment of nuclear fuel recycling infrastructure.

  6. Evaluating the Impact of Road Grade on Simulated Commercial Vehicle Fuel Economy Using Real-World Drive Cycles

    SciTech Connect (OSTI)

    Lopp, Sean; Wood, Eric; Duran, Adam

    2015-10-13

    Commercial vehicle fuel economy is known to vary significantly with both positive and negative road grade. Medium- and heavy-duty vehicles operating at highway speeds require incrementally larger amounts of energy to pull heavy payloads up inclines as road grade increases. Non-hybrid vehicles are then unable to recapture energy on descent and lose energy through friction braking. While the on-road effects of road grade are well understood, the majority of standard commercial vehicle drive cycles feature no climb or descent requirements. Additionally, existing literature offers a limited number of sources that attempt to estimate the on-road energy implications of road grade in the medium- and heavy-duty space. This study uses real-world commercial vehicle drive cycles from the National Renewable Energy Laboratory's Fleet DNA database to simulate the effects of road grade on fuel economy across a range of vocations, operating conditions, and locations. Drive-cycles are matched with vocation-specific vehicle models and simulated with and without grade. Fuel use due to grade is presented, and variation in fuel consumption due to drive cycle and vehicle characteristics is explored through graphical and statistical comparison. The results of this study suggest that road grade accounts for 1%-9% of fuel use in commercial vehicles on average and up to 40% on select routes.

  7. The hydrogen hybrid option

    SciTech Connect (OSTI)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  8. Enterprise SRS: leveraging ongoing operations to advance nuclear fuel cycles research and development programs

    SciTech Connect (OSTI)

    Murray, A.M.; Marra, J.E.; Wilmarth, W.R.; McGuire, P.W.; Wheeler, V.B.

    2013-07-01

    The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.

  9. Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative

    SciTech Connect (OSTI)

    Santi, Peter A; Demuth, Scott F; Klasky, Kristen L; Lee, Haeok; Miller, Michael C; Sprinkle, James K; Tobin, Stephen J; Williams, Bradley

    2009-01-01

    A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

  10. Resource intensities of the front end of the nuclear fuel cycle

    SciTech Connect (OSTI)

    Schneider, E.; Phathanapirom, U.; Eggert, R.; Collins, J.

    2013-07-01

    This paper presents resource intensities, including direct and embodied energy consumption, land and water use, associated with the processes comprising the front end of the nuclear fuel cycle. These processes include uranium extraction, conversion, enrichment, fuel fabrication and depleted uranium de-conversion. To the extent feasible, these impacts are calculated based on data reported by operating facilities, with preference given to more recent data based on current technologies and regulations. All impacts are normalized per GWh of electricity produced. Uranium extraction is seen to be the most resource intensive front end process. Combined, the energy consumed by all front end processes is equal to less than 1% of the electricity produced by the uranium in a nuclear reactor. Land transformation and water withdrawals are calculated at 8.07 m{sup 2} /GWh(e) and 1.37x10{sup 5} l/GWh(e), respectively. Both are dominated by the requirements of uranium extraction, which accounts for over 70% of land use and nearly 90% of water use.

  11. An agent-based framework for fuel cycle simulation with recycling

    SciTech Connect (OSTI)

    Gidden, M.J.; Wilson, P.P.H.; Huff, K.D.; Carlsen, R.W.

    2013-07-01

    Simulation of the nuclear fuel cycle is an established field with multiple players. Prior development work has utilized techniques such as system dynamics to provide a solution structure for the matching of supply and demand in these simulations. In general, however, simulation infrastructure development has occurred in relatively closed circles, each effort having unique considerations as to the cases which are desired to be modeled. Accordingly, individual simulators tend to have their design decisions driven by specific use cases. Presented in this work is a proposed supply and demand matching algorithm that leverages the techniques of the well-studied field of mathematical programming. A generic approach is achieved by treating facilities as individual entities and actors in the supply-demand market which denote preferences amongst commodities. Using such a framework allows for varying levels of interaction fidelity, ranging from low-fidelity, quick solutions to high-fidelity solutions that model individual transactions (e.g. at the fuel-assembly level). The power of the technique is that it allows such flexibility while still treating the problem in a generic manner, encapsulating simulation engine design decisions in such a way that future simulation requirements can be relatively easily added when needed. (authors)

  12. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

  13. A Life-Cycle Assessment Comparing Select Gas-to-Liquid Fuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shell Gas to Liquids in the context of a Future Fuel Strategy - Technical Marketing Aspects Verification of Shell GTL Fuel as CARB Alternative Diesel Assessment of Environmental ...

  14. High Purity Americium-241 for Fuel Cycle R&D Program

    SciTech Connect (OSTI)

    Dr. Paul A. Lessing

    2011-07-01

    Previously the U.S. Department of Energy released Am-241 for various applications such as smoke detectors and Am-Be neutron sources for oil wells. At this date there is a shortage of usable, higher purity Am-241 in metal and oxide form available in the United States. Recently, the limited source of Am-241 has been from Russia with production being contracted to existing customers. The shortage has resulted in the price per gram rising dramatically over the last few years. DOE-NE currently has need for high purity Am-241 metal and oxide to fabricate fuel pellets for reactor testing in the Fuel Cycle R&D program. All the available high purity americium has been gathered from within the DOE system of laboratories. However, this is only a fraction of the projected needs of FCRD over the next 10 years. Therefore, FCR&D has proposed extraction and purification concepts to extract Am-241 from a mixed AmO2-PuO2 feedstock stored at the Savannah River Site. The most simple extraction system is based upon high temperature reduction using lanthanum metal with concurrent evaporation and condensation to produce high purity Am metal. Metallic americium has over a four order of magnitude higher vapor pressure than plutonium. Results from small-scale reduction experiments are presented. These results confirm thermodynamic predictions that at 1000 deg C metallic lanthanum reduces both PuO2 and AmO2. Faster kinetics are expected for temperatures up to about 1500 deg C.

  15. Chemical Engineering Division fuel cycle programs. Quarterly progress report, July-September 1978

    SciTech Connect (OSTI)

    Steindler, M.J.; Ader, M.; Barletta, R.E.

    1980-01-01

    Fuel cycle work included hydraulic performance and extraction efficiency of eight-stage centrifugal contactors, flowsheet for the Aralex process, Ru and Zr extraction in a miniature centrifugal contactor, study of Zr aging in the organic phase and its effect on Zr extraction and hydraulic testing of the 9-cm-ID contactor. Work for predicting accident consequences in LWR fuel processing covered the relation between energy input (to subdivide a solid) and the modes of particle size frequency distribution. In the pyrochemical and dry processing program corrosion-testing materials for containment vessels and equipment for studying carbide reactions in bismuth is under way. Analytical studies have been made of salt-transport processes; efforts to spin tungsten crucibles 13 cm dia continue, and other information on tungsten fabrication is being assembled; the process steps of the chloride volatility process have been demonstrated and the thoria powder product used to produce oxide pellets; solubility of UO/sub 2/, PuO/sub 2/, and fission products in molten alkali nitrates is being investigated; work was continued on reprocessing actinide oxides by extracting the actinides into ammonium chloroaluminate from bismuth; the preparation of thorium-uranium carbide from the oxide is being studied as a means of improving the oxide reactivity; studies are in progress on producing uranium metal and decontaminated ThO/sub 2/ by the reaction of (Th,U)O/sub 2/ solid solution in molten salts containing ThCl/sub 4/ and thorium metal chips. In the molten tin process, no basic thermodynamic or kinetic factors have been found that may limit process development.

  16. Development and Utilization of mathematical Optimization in Advanced Fuel Cycle Systems Analysis

    SciTech Connect (OSTI)

    Turinsky, Paul; Hays, Ross

    2011-09-02

    Over the past sixty years, a wide variety of nuclear power technologies have been theorized, investigated and tested to various degrees. These technologies, if properly applied, could provide a stable, long-term, economical source of CO2-free electric power. However, the recycling of nuclear fuel introduces a degree of coupling between reactor systems which must be accounted for when making long term strategic plans. This work investigates the use of a simulated annealing optimization algorithm coupled together with the VISION fuel cycle simulation model in order to identify attractive strategies from economic, evironmental, non-proliferation and waste-disposal perspectives, which each have associated an objective function. The simulated annealing optimization algorithm works by perturbing the fraction of new reactor capacity allocated to each available reactor type (using a set of heuristic rules) then evaluating the resulting deployment scenario outcomes using the VISION model and the chosen objective functions. These new scenarios, which are either accepted or rejected according the the Metropolis Criterion, are then used as the basis for further perturbations. By repeating this process several thousand times, a family of near-optimal solutions are obtained. Preliminary results from this work using a two-step, Once-through LWR to Full-recycle/FRburner deployment scenario with exponentially increasing electric demand indicate that the algorithm is capable of #12;nding reactor deployment pro#12;les that reduce the long-term-heat waste disposal burden relative to an initial reference scenario. Further work is under way to re#12;ne the current results and to extend them to include the other objective functions and to examine the optimization trade-o#11;s that exist between these di#11;erent objectives.

  17. THE ATTRACTIVENESS OF MATERIALS IN ADVANCED NUCLEAR FUEL CYCLES FOR VARIOUS PROLIFERATION AND THEFT SCENARIOS

    SciTech Connect (OSTI)

    Bathke, C. G.; Ebbinghaus, Bartley B.; Collins, Brian A.; Sleaford, Brad W.; Hase, Kevin R.; Robel, Martin; Wallace, R. K.; Bradley, Keith S.; Ireland, J. R.; Jarvinen, G. D.; Johnson, M. W.; Prichard, Andrew W.; Smith, Brian W.

    2012-08-29

    We must anticipate that the day is approaching when details of nuclear weapons design and fabrication will become common knowledge. On that day we must be particularly certain that all special nuclear materials (SNM) are adequately accounted for and protected and that we have a clear understanding of the utility of nuclear materials to potential adversaries. To this end, this paper examines the attractiveness of materials mixtures containing SNM and alternate nuclear materials associated with the plutonium-uranium reduction extraction (Purex), uranium extraction (UREX), coextraction (COEX), thorium extraction (THOREX), and PYROX (an electrochemical refining method) reprocessing schemes. This paper provides a set of figures of merit for evaluating material attractiveness that covers a broad range of proliferant state and subnational group capabilities. The primary conclusion of this paper is that all fissile material must be rigorously safeguarded to detect diversion by a state and must be provided the highest levels of physical protection to prevent theft by subnational groups; no 'silver bullet' fuel cycle has been found that will permit the relaxation of current international safeguards or national physical security protection levels. The work reported herein has been performed at the request of the U.S. Department of Energy (DOE) and is based on the calculation of 'attractiveness levels' that are expressed in terms consistent with, but normally reserved for, the nuclear materials in DOE nuclear facilities. The methodology and findings are presented. Additionally, how these attractiveness levels relate to proliferation resistance and physical security is discussed.

  18. The Importance of Establishing and Maintaining Continuity of Knowledge during 21st Century Nuclear Fuel Cycle Activities

    SciTech Connect (OSTI)

    Pickett, Chris A; Rowe, Nathan C; Younkin, James R; Wishard, Bernard; Bean, Robert; Blair, Dianna; Lawson, Ray; Weeks, George; Tolk, Keith

    2012-01-01

    During this century, the entire nuclear fuel cycle will expand and become increasingly more global, taxing both the resources and capabilities of the International Atomic Energy Agency (IAEA) to maintain an effective Continuity of Knowledge (CoK) and its ability to provide timely detection of diversion. Uranium that currently is mined and milled in one country will be converted, enriched, and fabricated into fuel for reactors in an expanding set of new countries. This expansion will make it harder to guarantee that regional activities stay regional and that diversion detection is timely unless new and sustainable tools are developed to improve inspector effectiveness. To deal with this emerging reality, the IAEA must increase its use of unattended monitoring and employ new tools and methods that enhance CoK during all phases of the fuel cycle. This approach will help provide useful information to aid in detecting undeclared activities and create opportunities for timely and appropriate responses to events well before they enter phases of greater concern (e.g., enrichment). The systems that maintain CoK of safeguarded assets rely on containment and surveillance (C/S) technologies. The 21st century fuel cycle will require increased use of these technologies and systems, plus greater implementation of unattended systems that can securely collect data when inspectors are not present.

  19. Enterprise SRS: Leveraging Ongoing Operations to Advance Nuclear Fuel Cycle Programs - 12579

    SciTech Connect (OSTI)

    Marra, J.E.; Griffin, J.C.; Murray, A.M.; Wilmarth, W.R.

    2012-07-01

    The international leadership in nuclear technology development and deployment long held by the United States has eroded due to the lack of clear national strategies for advanced reactor fuel cycle concepts and for nuclear materials management, as well as to the recent policy decision that halts work on the nuclear fuel repository at Yucca Mountain. Although no national consensus on strategy has yet been reached, a number of recent high-profile reviews and workshops have clearly highlighted a national need for robust research, development and deployment (RD and D) programs in key areas of nuclear technology, especially nuclear separations science and engineering. Collectively, these reviews and workshops provide a picture of the nuclear separations mission needs for three major program offices: Department of Energy Office of-Environmental Management), DOE Office of Nuclear Energy), and the National Nuclear Security Administration (NNSA). While the individual program needs differ significantly in detail and timing, they share common needs in two critical areas of RD and D: - The need for access to and use of multi-purpose engineering-scale demonstration test facilities that can support testing with radioactive material, and - The need for collaborative research enterprises that encompass government research organizations (i.e., national laboratories), commercial industry and the academic community. Such collaborative enterprises effectively integrate theory and modeling with the actual experimental work at all scales, as well as strengthen the technical foundation for research in critical areas. The arguments for engineering-scale collaborative research facilities are compelling. Processing history has shown that test programs and demonstrations conducted with actual nuclear materials are essential to program success. It is widely recognized, however, that such facilities are expensive to build and maintain; creating an imposing, if not prohibitive, financial burden

  20. Summary of the radiological assessment of the fuel cycle for a thorium-uranium carbide-fueled fast breeder reactor

    SciTech Connect (OSTI)

    Tennery, V.J.; Bomar, E.S.; Bond, W.D.; Meyer, H.R.; Morse, L.E.; Till, J.E.; Yalcintas, M.G.

    1980-01-01

    A large fraction of the potential fuel for nuclear power reactors employing fissionable materials exists as ores of thorium. In addition, certain characteristics of a fuel system based on breeding of the fissionable isotope {sup 233}U from thorium offer the possibility of a greater resistance to the diversion of fissionable material for the fabrication of nuclear weapons. This report consolidates into a single source the principal content of two previous reports which assess the radiological environmental impact of mining and milling of thorium ore and of the reprocessing and refabrication of spent FBR thorium-uranium carbide fuel.

  1. An assessment of the attractiveness of material associated with thorium/uranium and uranium closed fuel cycles from a safeguards perspective

    SciTech Connect (OSTI)

    Bathke, Charles Gary; Wallace, Richard K; Hase, Kevin R; Sleaford, Brad W; Ebbinghaus, Bartley B; Collins, Brian W; Bradley, Keith S; Prichard, Andrew W; Smith, Brian W

    2010-01-01

    This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with various proposed nuclear fuel cycles. Specifically, this paper examines two closed fuel cycles. The first fuel cycle examined is a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of plutonium/thorium and {sup 233}U/thorium. The used fuel is then reprocessed using the THOREX process and the actinides are recycled. The second fuel cycle examined consists of conventional light water reactors (LWR) whose fuel is reprocessed for actinides that are then fed to and recycled until consumed in fast-spectrum reactors: fast reactors and accelerator driven systems (ADS). As reprocessing of LWR fuel has already been examined, this paper will focus on the reprocessing of the scheme's fast-spectrum reactors' fuel. This study will indicate what is required to render these materials as having low utility for use in nuclear weapons. Nevertheless, the results of this paper suggest that all reprocessing products evaluated so far need to be rigorously safeguarded and provided high levels of physical protection. These studies were performed at the request of the United States Department of Energy (DOE). The methodology and key findings will be presented.

  2. Evaluation and Adaptation of 5-Cycle Fuel Economy Testing and Calculations for HEVs and PHEVs

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Enterprise SRS: Leveraging Ongoing Operations To Advance Nuclear Fuel Cycles Research And Development Programs

    SciTech Connect (OSTI)

    Murray, Alice M.; Marra, John E.; Wilmarth, William R.; Mcguire, Patrick W.; Wheeler, Vickie B.

    2013-07-03

    The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS

  4. Between-cycle laser system for depressurization and resealing of modified design nuclear fuel assemblies

    DOE Patents [OSTI]

    Bradley, John G.

    1982-01-01

    A laser beam is used to puncture fuel cladding for release of contained pressurized fission gas from plenum sections or irradiated fuel pins. Exhausted fission gases are collected and trapped for safe disposal. The laser beam, adjusted to welding mode, is subsequently used to reseal the puncture holes. The fuel assembly is returned to additional irradiation or, if at end of reactivity lifetime, is routed to reprocess. The fuel assembly design provides graded cladding lengths, by rows or arrays, such that the cladding of each component fuel element of the assembly is accessible to laser beam reception.

  5. A full fuel-cycle analysis of energy and emissions impacts of...

    Office of Scientific and Technical Information (OSTI)

    use in five types of motor vehicles--spark-ignition vehicles, compression-ignition vehicles, hybrid electric vehicles, battery-powered electric vehicles, and fuel-cell vehicles. ...

  6. Light-Duty Reactivity Controlled Compression Ignition Drive Cycle Fuel Economy and Emissions Estimates

    Broader source: Energy.gov [DOE]

    Vehicle systems simulations using experimental data demonstrate improved modeled fuel economy of 15% for passenger vehicles solely from powertrain efficiency relative to a 2009 PFI gasoline baseline.

  7. Options for Burning LWR SNF in LIFE Engine

    SciTech Connect (OSTI)

    Farmer, J

    2008-09-09

    We have pursued two processes in parallel for the burning of LWR SNF in the LIFE engine: (1) solid fuel option and (2) liquid fuel option. Approaches with both are discussed. The assigned Topical Report on liquid fuels is attached.

  8. Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications

    SciTech Connect (OSTI)

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

  9. Advanced Fuel Cycle Technology: Special Session in Honor of Dr. Michael Lineberry

    SciTech Connect (OSTI)

    D.M. Wachs; N. Woolstenhulme

    2014-06-01

    The US DOE recently initiated an effort to develop accident tolerant fuel designs for potential use in commercial power reactors. Evaluation of various fuel design concepts will require a broad array of testing that will include performance attributes at both steady state and transient irradiation conditions. The first stage of the transient testing program is intended to establish the relative performance limits of each proposed concept and to support development of first-draft fuel performance models. It is anticipated that this data can subsequently be used as the basis for larger scale qualification testing. This initial stage of the testing program is outlined in this paper.

  10. Basis for Identification of Disposal Options for R and D for Spent Nuclear Fuel and High-Level Waste

    Broader source: Energy.gov [DOE]

    The Used Fuel Disposition campaign (UFD) is selecting a set of geologic media for further study including variations on the design of the repository, the engineered barrier, and the waste. Salt, clay/shale, and granitic rocks are examined; granitic rocks are also the primary basement rock to consider for deep borehole disposal. UFD is developing generic system analysis capability and general experimental data related to mined geologic disposal in the three media (salt, clay/shale, and granitic rocks), and the use of deep boreholes in granitic rocks.

  11. Chapter 4: Advancing Clean Electric Power Technologies | Carbon Dioxide and Storage Value-Added Options Technology Assessment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Value-Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells Supercritical Carbon Dioxide Brayton Cycle

  12. Project Description Advanced Fuel Cycle Initiative AFC-2A and AFC-2B Experiments

    SciTech Connect (OSTI)

    AFCI AFC-2A and AFC-2B Experiments Project Executi

    2007-03-01

    The proposed AFC-2A and AFC-2B irradiation experiments are a continuation of the AFC-1 fuel test series currently in progress in the ATR. This document discusses the experiments and the planned activities that will take place.

  13. Deriving In-Use PHEV Fuel Economy Predictions from Standardized Test Cycle Results: Preprint

    SciTech Connect (OSTI)

    Gonder, J.; Brooker, A.; Carlson, R.; Smart, J.

    2009-08-01

    Explores the issue of how to apply an adjustment method to raw plug-in hybrid vehicle dynamometer test results to better estimate PHEVs' in-use fuel and electricity consumption.

  14. Effect of delivery condition on desorption rate of ZrCo metal hydride bed for fusion fuel cycle

    SciTech Connect (OSTI)

    Kang, H.G.; Yun, S.H.; Chung, D.; Oh, Y.H.; Chang, M.H.; Cho, S.; Chung, H.; Song, K.M.

    2015-03-15

    For the safety of fusion fuel cycle, hydrogen isotope gases including tritium are stored as metal hydride form. To satisfy fueling requirement of fusion machine, rapid delivery from metal hydride bed is one of major factors for the development of tritium storage and delivery system. Desorption from metal hydride depends on the operation scenario by pressure and temperature control of the bed. The effect of operation scenario and pump performance on desorption rate of metal hydride bed was experimentally investigated using ZrCo bed. The results showed that the condition of pre-heating scenario before actual delivery of gas affected the delivery performance. Different pumps were connected to desorption line from bed and the effect of pump capacity on desorption rate were also found to be significant. (authors)

  15. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect (OSTI)

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  16. High efficiency direct fuel cell hybrid power cycle for near term application

    SciTech Connect (OSTI)

    Steinfeld, G.; Maru, H.C.; Sanderson, R.A.

    1996-12-31

    Direct carbonate fuel cells being developed by Energy Research Corporation can generate power at an efficiency approaching 60% LHV. This unique fuel cell technology can consume natural gas and other hydrocarbon based fuels directly without requiring an external reformer, thus providing a simpler and inherently efficient power generation system. A 2 MW power plant demonstration of this technology has been initiated at an installation in the city of Santa Clara in California. A 2.85 MW commercial configuration shown in Figure 1 is presently being developed. The complete plant includes the carbonate fuel cell modules, an inverter, transformer and switchgear, a heat recovery unit and supporting instrument air and water treatment systems. The emission levels for this 2.85 MW plant are projected to be orders of magnitude below existing or proposed standards. The 30 year levelized cost of electricity, without inflation, is projected to be approximately 5{cents}/kW-h assuming capital cost for the carbonate fuel cell system of $1000/kW.

  17. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap

    SciTech Connect (OSTI)

    Croff, A.G.; Liberman, M.S.; Morrison, G.W.

    1982-01-01

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

  18. Tips: Buying and Driving Fuel Efficient and Alternative Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    fuel efficient or alternative fuel vehicles. | Photo courtesy of Dennis Schroeder, NREL. Electric vehicles are just one option for buyers interested in fuel efficient or...

  19. Overview of Options to Integrate Stationary Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Power Generation ...

  20. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  1. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  2. A formalized approach to cycle chemistry improvement in fossil fuel power plants

    SciTech Connect (OSTI)

    Dimmer, J.P.; Dooley, R.B.

    1995-01-01

    The overall cost impact of cycle chemistry problems in fossil plants is typically hidden within the statistics of component forced outages, efficiency losses and premature end of useful component life. Corrosion of components in US utility steam generating plants is responsible for an estimated 50% of forced outages and over three billion dollars a year in additional operating and maintenance costs. These problems are usually the direct result of repeat incidents of impurity ingress, corrosion, and/or corrosion product generation transport, and deposition on heat transfer and power generation process equipment surfaces. The only way to prevent repeat incidents of cycle chemistry corrosion and/or deposition-influenced equipment problems is to implement a formalized cycle chemistry improvement program that addresses the root-causes of these problems. This paper describes such a program being implemented at twelve (12) utilities under EPRI research project RP2712-11, {open_quotes}Cycle Chemistry Improvement Program.{close_quotes} Interim utility results, after almost three years of project participation, have demonstrated substantial reductions in availability/performance losses and water treatment costs due to applications of state-of-the-art cycle chemistry, monitoring equipment and/or process control systems.

  3. Impact of cycle chemistry on fossil-fueled high pressure boilers - BHEL approach and experience

    SciTech Connect (OSTI)

    Somu, M.; Gourishankar, S.

    1995-01-01

    Cycle chemistry in high pressure boilers plays an important role as far as availability and reliability of the boilers are concerned. Up keep of proper cycle chemistry is a stupendous task and care must be taken, right from design stage to commissioning and operation of the boilers. It calls for selection of proper design, method of manufacture of critical components and practicing proper procedures during commissioning and regular operation of boilers. Control of cycle chemistry is important from the view point of proper quality of steam and prevention of corrosion. The corrosion is like a double edged knife which reduces the boiler availability on one side and steam quality on the other. The steam quality dictates the efficiency of the turbine. Apart from the internal and external Water Treatment practices, selection of proper deaerator, sizing of drum, steam loading, selection of appropriate drum internals etc. help achieve the desired cycle chemistry. The impact of such cycle chemistry, selection of equipment, Water Treatment practice and operational practices are presented in this paper, in the back drop of BHEL`s design, fabrication and operational guidelines and experience on high pressure boilers. The critical components in the pre-boiler circuit as well as in the main circuit are assessed from the point of view of appropriate water chemistry parameters.

  4. Acceptance criteria for the evaluation of Category 1 fuel cycle facility physical security plans

    SciTech Connect (OSTI)

    Dwyer, P.A.

    1991-10-01

    This NUREG document presents criteria developed from US Nuclear Regulatory Commission regulations for the evaluation of physical security plans submitted by Category 1 fuel facility licensees. Category 1 refers to those licensees who use or possess a formula quantity of strategic special nuclear material.

  5. Advanced Fuels Campaign FY 2010 Accomplishments Report

    SciTech Connect (OSTI)

    Lori Braase

    2010-12-01

    The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

  6. Hydraulic Hybrid and Conventional Parcel Delivery Vehicles' Measured Laboratory Fuel Economy on Targeted Drive Cycles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hybrid drivetrains have shown signifcant promise as part of an overall petroleum reduction feet strategy [1, 2, 3, 4, 5, 6]. Hybrid drivetrains consist of an energy storage device and a motor integrated into a traditional powertrain and offer the potential fuel savings by capturing energy normally lost during deceleration through the application of regenerative braking. Because hybrid technologies, especially hydraulic hybrids, have low adoption rates in the medium-duty vehicle segment and

  7. FS65 Disposition Option Report

    SciTech Connect (OSTI)

    Wenz, Tracy R.

    2015-09-25

    This report outlines the options for dispositioning the MOX fuel stored in FS65 containers at LANL. Additional discussion regarding the support equipment for loading and unloading the FS65 transport containers is included at the end of the report.

  8. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  9. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  10. Ignition assist systems for direct-injected, diesel cycle, medium-duty alternative fuel engines: Final report phase 1

    SciTech Connect (OSTI)

    Chan, A.K.

    2000-02-23

    This report is a summary of the results of Phase 1 of this contract. The objective was to evaluate the potential of assist technologies for direct-injected alternative fuel engines vs. glow plug ignition assist. The goal was to demonstrate the feasibility of an ignition system life of 10,000 hours and a system cost of less than 50% of the glow plug system, while meeting or exceeding the engine thermal efficiency obtained with the glow plug system. There were three tasks in Phase 1. Under Task 1, a comprehensive review of feasible ignition options for DING engines was completed. The most promising options are: (1) AC and the ''SmartFire'' spark, which are both long-duration, low-power (LDLP) spark systems; (2) the short-duration, high-power (SDHP) spark system; (3) the micropilot injection ignition; and (4) the stratified charge plasma ignition. Efforts concentrated on investigating the AC spark, SmartFire spark, and short-duration/high-power spark systems. Using proprietary pricing information, the authors predicted that the commercial costs for the AC spark, the short-duration/high-power spark and SmartFire spark systems will be comparable (if not less) to the glow plug system. Task 2 involved designing and performing bench tests to determine the criteria for the ignition system and the prototype spark plug for Task 3. The two most important design criteria are the high voltage output requirement of the ignition system and the minimum electrical insulation requirement for the spark plug. Under Task 3, all the necessary hardware for the one-cylinder engine test was designed. The hardware includes modified 3126 cylinder heads, specially designed prototype spark plugs, ignition system electronics, and parts for the system installation. Two 3126 cylinder heads and the SmartFire ignition system were procured, and testing will begin in Phase 2 of this subcontract.

  11. Chemical Engineering Division fuel cycle programs. Quarterly progress report, October-December 1978

    SciTech Connect (OSTI)

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, tungsten crucibles were successfully spun for use in laboratory-scale experiments. Corrosion testing of refractory metals and alloys in PDPM environments was done. Ceramic substrates were successfully coated with tungsten. Solubility measurements were made to determine Cd/Mg alloy composition and temperature at which dissolved Th will precipitate. Experiments were started to study the reduction of high-fired ThO/sub 2/ with Ca in a molten metal-molten salt system. Work on the fused salt electrolysis of CaO was started. Equipment for determining phase diagrams for U-Cu-Mg system was set up. The reaction of UO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ was studied as part of a project to identify chemically feasible nonaqueous fuel reprocessing methods. Work was continued on development of a flowsheet for reprocessing actinide oxides by extracting actinides into ammonium chloro-aluminate (and alternative salts) from a bismuth solution. Preparation of Th, U, and Pu nitrides after dissolution of spent fuel elements in molten tin is being studied. Leach rates of glass beads, pulverized beads, and beads encapsulated in a lead matrix with no protective envelope were studied. A method (employing no pressure or vacuum systems) of encapsulating various solid wastes in a lead metal matrix was developed and tested. A preliminary integration was made of earlier data on effects of impacts on metal-matrix waste forms.Leach migration experiments were compared with conventional infiltration experiments as methods of evaluating geologic formations as barriers to nuclide migration. The effect of the streaming potential on the rates of transport of radioactive I/sup -/ and Na/sup +/ through kaolinite columns was measured, as well as adsorption of iodide and iodate by several compounds; implications of the results upon the disposal of radioactive iodine are discussed.

  12. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  13. System and process for producing fuel with a methane thermochemical cycle

    DOE Patents [OSTI]

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  14. Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas

    SciTech Connect (OSTI)

    Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews

    2008-10-15

    Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

  15. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-01-2049 Measured Laboratory and In-Use Fuel Economy Published Observed over Targeted Drive Cycles for 09/24/2012 Comparable Hybrid and Conventional Package Delivery Vehicles Michael P. Lammert, Kevin Walkowicz, Adam Duran and Petr Sindler National Renewable Energy Laboratory ABSTRACT This research project compares the in-use and laboratory- derived fuel economy of a medium-duty hybrid electric drivetrain with "engine off at idle" capability to a conventional drivetrain in a typical

  16. Nuclear proliferation and civilian nuclear power. Report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle description

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The Nonproliferation Alterntive Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates.

  17. Treatment of high-level wastes from the IFR fuel cycle

    SciTech Connect (OSTI)

    Johnson, T.R.; Lewis, M.A.; Newman, A.E.; Laidler, J.J.

    1992-08-01

    The Integral Fast Reactor (IFR) is being developed as a future commercial power source that promises to have important advantages over present reactors, including improved resource conservation and waste management. The spent metal alloy fuels from an IFR will be processed in an electrochemical cell operating at 500{degree}C with a molten chloride salt electrolyte and cadmium metal anode. After the actinides have been recovered from several batches of core and blanket fuels, the salt cadmium in this electrorefiner will be treated to separate fission products from residual transuranic elements. This treatment produces a waste salt that contains the alkali metal, alkaline earth, and halide fission products; some of the rare earths; and less than 100 nCi/g of alpha activity. The treated metal wastes contain the rest of the fission products (except T, Kr, and Xe) small amounts of uranium, and only trace amounts of transuranic elements. The current concept for the salt waste form is an aluminosilicate matrix, and the concept for the metal waste form is a corrosion-resistant metal alloy. The processes and equipment being developed to treat and immobilize the salt and metal wastes are described.

  18. Treatment of high-level wastes from the IFR fuel cycle

    SciTech Connect (OSTI)

    Johnson, T.R.; Lewis, M.A.; Newman, A.E.; Laidler, J.J.

    1992-01-01

    The Integral Fast Reactor (IFR) is being developed as a future commercial power source that promises to have important advantages over present reactors, including improved resource conservation and waste management. The spent metal alloy fuels from an IFR will be processed in an electrochemical cell operating at 500{degree}C with a molten chloride salt electrolyte and cadmium metal anode. After the actinides have been recovered from several batches of core and blanket fuels, the salt cadmium in this electrorefiner will be treated to separate fission products from residual transuranic elements. This treatment produces a waste salt that contains the alkali metal, alkaline earth, and halide fission products; some of the rare earths; and less than 100 nCi/g of alpha activity. The treated metal wastes contain the rest of the fission products (except T, Kr, and Xe) small amounts of uranium, and only trace amounts of transuranic elements. The current concept for the salt waste form is an aluminosilicate matrix, and the concept for the metal waste form is a corrosion-resistant metal alloy. The processes and equipment being developed to treat and immobilize the salt and metal wastes are described.

  19. Using Backup Generators: Alternative Backup Power Options

    Office of Energy Efficiency and Renewable Energy (EERE)

    Using Backup Generators: In preparing for emergencies, in addition to electric generators powered by fuel, homeowners and business owners may consider alternative backup power options

  20. The feasibility study of small long-life gas cooled fast reactor with mixed natural Uranium/Thorium as fuel cycle input

    SciTech Connect (OSTI)

    Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Khairurrijal,; Monado, Fiber; Sekimoto, Hiroshi

    2012-06-06

    A conceptual design study of Gas Cooled Fast Reactors with Modified CANDLE burn-up scheme has been performed. In this study, design GCFR with Helium coolant which can be continuously operated by supplying mixed Natural Uranium/Thorium without fuel enrichment plant or fuel reprocessing plant. The active reactor cores are divided into two region, Thorium fuel region and Uranium fuel region. Each fuel core regions are subdivided into ten parts (region-1 until region-10) with the same volume in the axial direction. The fresh Natural Uranium and Thorium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh natural Uranium/Thorium fuel. This concept is basically applied to all regions in both cores area, i.e. shifted the core of i{sup th} region into i+1 region after the end of 10 years burn-up cycle. For the next cycles, we will add only Natural Uranium and Thorium on each region-1. The calculation results show the reactivity reached by mixed Natural Uranium/Thorium with volume ratio is 4.7:1. This reactor can results power thermal 550 MWth. After reactor start-up the operation, furthermore reactor only needs Natural Uranium/Thorium supply for continue operation along 100 years.

  1. Well-to-Wheels Analysis of Advanced Fuel/Vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions

    SciTech Connect (OSTI)

    Brinkman, Norman; Wang, Michael; Weber, Trudy; Darlington, Thomas

    2005-05-01

    An accurate assessment of future fuel/propulsion system options requires a complete vehicle fuel-cycle analysis, commonly called a well-to-wheels (WTW) analysis. This WTW study analyzes energy use and emissions associated with fuel production (or well-to-tank [WTT]) activities and energy use and emissions associated with vehicle operation (or tank-to-wheels [TTW]) activities.

  2. IN-PILE INSTRUMENTATION TO SUPPORT FUEL CYCLE RESEARCH AND DEVELOPMENT - FY12 STATUS REPORT

    SciTech Connect (OSTI)

    J. . Rempe; J. Daw; D. Knudson; R. Schley

    2012-09-01

    As part of the FCRD program objective to emphasize science-based, goal-oriented research, a strategic research program is underway to develop new sensors that can be used to obtain the high fidelity, real-time, data required for characterizing the performance of new fuels during irradiation testing. The overarching goal of this initiative is to develop new test vehicles with new sensors of unprecedented accuracy and resolution that can obtain the required data. Prior laboratory testing and, as needed, irradiation testing of sensors in these capsules will be completed as part of this initiative to give sufficient confidence that the irradiation tests will yield the required data. This report documents FY12 progress in this initiative.

  3. Chemical Engineering Division Fuel Cycle Programs. Quarterly progress report, January-March 1979

    SciTech Connect (OSTI)

    Steindler, M J; Ader, M; Barletta, R E

    1980-01-01

    In the program on pyrochemical and dry processing methods (PDPM) for nuclear fuel, corrosion testing of refractory metals and alloys, graphite, and SiC in PDPM environments was done. A tungsten-metallized Al/sub 2/O/sub 3/-3% Y/sub 2/O/sub 3/ crucible was successfully fabricated. Tungsten microstructure of a plasma-sprayed tungsten crucible was stabilized by nickel infiltration and heat treatment. Solubility measurements of Th in Cd and Cd-Mg alloys were continued, as were experiments to study the reduction of high-fired ThO/sub 2/. Work on the fused salt electrolysis of CaO also was continued. The method of coprocessing of U and Pu by a salt transport process was modified. Tungsten-coated molybdenum crucibles were fabricated. The proliferation resistance of chloride volatility processing of thorium-based fuels is being evaluated by studying the behavior of fission product elements during chlorination of U and Th. Thermodynamic analysis of the phase relationships in the U-Pu-Zn system was initiated. The Pyro-Civex reprocessing method is being reviewed. Reactivity of UO/sub 2/ and PuO/sub 2/ with molten equimolar NaNO/sub 3/-KNO/sub 3/ is being studied along with the behavior of selected fission product elements. Work was continued on the reprocessing of actinide oxides by extracting the actinides from a bismuth solution. Rate of dissolution of UO/sub 2/ microspheres in LiCl/AlCl/sub 3/ was measured. Nitriding rates of Th and U dissolved in molten tin were measured. In work on the encapsulation of radioactive waste in metal, leach rates of a simulated waste glass were studied. Rates of dissolution of metals (potential barrier materials) in aqueous media are being studied. In work on the transport properties of nuclear waste in geologic media, the adsorption of iodate by hematite as a function of pH and iodate concentration was measured. The migration behavior of cesium in limestone was studied in relation to the cesium concentration and pH of simulated groundwater

  4. Recovery Act: Johnston Rhode Island Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2013-06-30

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Central Landfill in Johnston, Rhode Island. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting project reflected a cost effective balance of the following specific sub-objectives. 1) Meet environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas. 2) Utilize proven and reliable technology and equipment. 3) Maximize electrical efficiency. 4) Maximize electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Central Landfill. 5) Maximize equipment uptime. 6) Minimize water consumption. 7) Minimize post-combustion emissions. To achieve the Project Objective the project consisted of several components. 1) The landfill gas collection system was modified and upgraded. 2) A State-of-the Art gas clean up and compression facility was constructed. 3) A high pressure pipeline was constructed to convey cleaned landfill gas from the clean-up and compression facility to the power plant. 4) A combined cycle electric generating facility was constructed consisting of combustion turbine generator sets, heat recovery steam generators and a steam turbine. 5) The voltage of the electricity produced was increased at a newly constructed transformer/substation and the electricity was delivered to the local transmission system. The Project produced a myriad of beneficial impacts. 1) The Project created 453 FTE construction and manufacturing jobs and 25 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. 2) By combining state-of-the-art gas clean up systems with post combustion emissions control

  5. Measured Laboratory and In-Use Fuel Economy Observed over Targeted Drive Cycles for Comparable Hybrid and Conventional Package Delivery Vehicles

    SciTech Connect (OSTI)

    Lammert, M. P.; Walkowicz, K.; Duran, A.; Sindler, P.

    2012-10-01

    In-use and laboratory-derived fuel economies were analyzed for a medium-duty hybrid electric drivetrain with 'engine off at idle' capability and a conventional drivetrain in a typical commercial package delivery application. Vehicles studied included eleven 2010 Freightliner P100H hybrids in service at a United Parcel Service facility in Minneapolis during the first half of 2010. The hybrids were evaluated for 18 months against eleven 2010 Freightliner P100D diesels at the same facility. Both vehicle groups use the same 2009 Cummins ISB 200-HP engine. In-use fuel economy was evaluated using UPS's fueling and mileage records, periodic ECM image downloads, and J1939 CAN bus recordings during the periods of duty cycle study. Analysis of the in-use fuel economy showed 13%-29% hybrid advantage depending on measurement method, and a delivery route assignment analysis showed 13%-26% hybrid advantage on the less kinetically intense original diesel route assignments and 20%-33% hybrid advantage on the more kinetically intense original hybrid route assignments. Three standardized laboratory drive cycles were selected that encompassed the range of real-world in-use data. The hybrid vehicle demonstrated improvements in ton-mi./gal fuel economy of 39%, 45%, and 21% on the NYC Comp, HTUF Class 4, and CARB HHDDT test cycles, respectively.

  6. DEVELOPMENT OF CERAMIC WASTE FORMS FOR AN ADVANCED NUCLEAR FUEL CYCLE

    SciTech Connect (OSTI)

    Marra, J.; Billings, A.; Brinkman, K.; Fox, K.

    2010-11-30

    A series of ceramic waste forms were developed and characterized for the immobilization of a Cesium/Lanthanide (CS/LN) waste stream anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3} and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores and other minor metal titanate phases. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy coupled with Energy Dispersive Spectroscopy (SEM/EDS) results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. Identification of excess Al{sub 2}O{sub 3} via XRD and SEM/EDS in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms.

  7. Conceptual design study on very small long-life gas cooled fast reactor using metallic natural Uranium-Zr as fuel cycle input

    SciTech Connect (OSTI)

    Monado, Fiber; Ariani, Menik; Su'ud, Zaki; Waris, Abdul; Basar, Khairul; Permana, Sidik; Aziz, Ferhat; Sekimoto, Hiroshi

    2014-02-12

    A conceptual design study of very small 350 MWth Gas-cooled Fast Reactors with Helium coolant has been performed. In this study Modified CANDLE burn-up scheme was implemented to create small and long life fast reactors with natural Uranium as fuel cycle input. Such system can utilize natural Uranium resources efficiently without the necessity of enrichment plant or reprocessing plant. The core with metallic fuel based was subdivided into 10 regions with the same volume. The fresh Natural Uranium is initially put in region-1, after one cycle of 10 years of burn-up it is shifted to region-2 and the each region-1 is filled by fresh Natural Uranium fuel. This concept is basically applied to all axial regions. The reactor discharge burn-up is 31.8% HM. From the neutronic point of view, this design is in compliance with good performance.

  8. ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT

    SciTech Connect (OSTI)

    Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

    2012-04-25

    The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated

  9. Technology Options for a Fast Spectrum Test Reactor

    SciTech Connect (OSTI)

    D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

    2006-06-01

    Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

  10. DETERMINATION OF THE QUANTITY OF I-135 RELEASED FROM THE AGR-1 TEST FUELS AT THE END OF ATR OPERATING CYCLE 138B

    SciTech Connect (OSTI)

    J. K. Hartwell; D. M. Scates; J. B. Walter; M. W. Drigert

    2007-05-01

    The AGR-1 experiment is a multiple fueled-capsule irradiation experiment being conducted in the Advanced Test Reactor (ATR) in support of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and ended with shutdown of the reactor for a brief outage on February 10, 2007 at 0900. The AGR-1 experiment will continue cyclical irradiation for about 2.5 years. In order to allow estimation of the amount of radioiodine released during the first cycle, purge gas flow to all capsules continued for about 4 days after reactor shutdown. The FPMS data acquired during part of that shutdown flow period has been analyzed to elucidate the level of 135I released during the operating cycle.

  11. Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas

    SciTech Connect (OSTI)

    Galowitz, Stephen

    2012-12-31

    The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: • Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas • Utilizing proven and reliable technology and equipment • Maximizing electrical efficiency • Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill • Maximizing equipment uptime • Minimizing water consumption • Minimizing post-combustion emissions • The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWh’s of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

  12. PRELIMINARY STUDY OF CERAMICS FOR IMMOBILIZATION OF ADVANCED FUEL CYCLE REPROCESSING WASTES

    SciTech Connect (OSTI)

    Fox, K.; Billings, A.; Brinkman, K.; Marra, J.

    2010-09-22

    The Savannah River National Laboratory (SRNL) developed a series of ceramic waste forms for the immobilization of Cesium/Lanthanide (CS/LN) and Cesium/Lanthanide/Transition Metal (CS/LN/TM) waste streams anticipated to result from nuclear fuel reprocessing. Simple raw materials, including Al{sub 2}O{sub 3}, CaO, and TiO{sub 2} were combined with simulated waste components to produce multiphase ceramics containing hollandite-type phases, perovskites (particularly BaTiO{sub 3}), pyrochlores, zirconolite, and other minor metal titanate phases. Identification of excess Al{sub 2}O{sub 3} via X-ray Diffraction (XRD) and Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) in the first series of compositions led to a Phase II study, with significantly reduced Al{sub 2}O{sub 3} concentrations and increased waste loadings. Three fabrication methodologies were used, including melting and crystallizing, pressing and sintering, and Spark Plasma Sintering (SPS), with the intent of studying phase evolution under various sintering conditions. XRD and SEM/EDS results showed that the partitioning of the waste elements in the sintered materials was very similar, despite varying stoichiometry of the phases formed. The Phase II compositions generally contained a reduced amount of unreacted Al{sub 2}O{sub 3} as identified by XRD, and had phase assemblages that were closer to the initial targets. Chemical composition measurements showed no significant issues with meeting the target compositions. However, volatilization of Cs and Mo was identified, particularly during melting, since sintering of the pressed pellets and SPS were performed at lower temperatures. Partitioning of some of the waste components was difficult to determine via XRD. SEM/EDS mapping showed that those elements, which were generally present in small concentrations, were well distributed throughout the waste forms. Initial studies of radiation damage tolerance using ion beam irradiation at Los

  13. Career Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Options Explore the multiple dimensions of a career at Los Alamos Lab: work with the best minds on the planet in an inclusive environment that is rich in...

  14. Financing Options

    Broader source: Energy.gov [DOE]

    A growing variety of options are available for financing an LED street lighting replacement program. One or another approach may be preferable based on the system ownership and maintenance model in...

  15. Preliminary studies on the heat exchanger option for S-CO{sub 2} power conversion cycle coupled to water cooled SMR

    SciTech Connect (OSTI)

    Ahn, Y.; Lee, J.; Lee, J. I.

    2012-07-01

    For more than a half century, the steam Rankine cycle had been the major power conversion cycle for a nuclear power plant. However, as the interest on the next generation reactors grows, a variety of alternative power conversion systems have been studied. Among them, the S-CO{sub 2} cycle (Supercritical carbon dioxide Brayton cycle) is considered as a promising candidate due to several benefits such as 1) Relatively high thermal efficiency at relatively low turbine inlet temperature, 2) High efficiency with simple lay-out 3) Compactness of turbo-machineries. 4) Compactness of total cycle combined with PCHE (Printed Circuit Heat Exchanger). According to the conventional classification of heat exchangers (HE), there are three kind of HE, 1) Tubular HEs, 2) Plate-type HEs, 3) Extended surface HEs. So far, the researcher has mostly assumed PCHE type HE for the S-CO{sub 2} cycle due to its compactness with reasonably low pressure drop. However, PCHE is currently one of the most expensive components in the cycle, which can have a negative effect on the economics of the cycle. Therefore, an alternative for the HE should be seriously investigated. By comparing the operating condition (pressure and temperature) there are three kind of HE in the S-CO{sub 2} cycle, 1) IHX (Intermediate Heat exchanger) 2) Recuperator and 3) Pre-cooler. In each heat exchanger, hot side and cold side coolants are different, i.e. reactor coolant to S-CO{sub 2} (IHX), S-CO{sub 2} to S-CO{sub 2}(Recuperator), S-CO{sub 2} to water (Pre-cooler). By considering all the attributes mentioned above, all existing types of heat exchangers are compared to find a possible alternative to PCHE. The comparing factors are 1) Size(volume), 2) Cost. Plate fin type HEs are considered to be the most competitive heat exchanger regarding the size and the cost after some improvements on the design limit are made. (authors)

  16. AFIP-6 MKII First Cycle Report

    SciTech Connect (OSTI)

    N.E. Woolstenhulme

    2012-03-01

    The first fuel plate frame assembly of the AFIP-6 MKII experiment was irradiated as planned from December, 2011 through February, 2012 in the center flux trap of the Advanced Test Reactor during cycle 151A. Following irradiation in this cycle and while reconfiguring the experiment in the ATR canal, a non-fueled component (the bottom plate) of the first fuel plate frame assembly became separated from the rail sides. There is no evidence that the fueled region of the fuel plate frame assembly was compromised by this incident or the irradiation conditions. The separation of this component was determined to have been caused by flow induced vibrations, where vortex shedding frequencies were resonant with a natural frequency of the bottom plate component. This gave way to amplification, fracture, and separation from the assembly. Although parallel flow induced vibrations were analyzed, vortex shedding flow induced vibrations was an unfamiliar failure mode that was difficult to identify. Both the once-irradiated first fuel plate and un-irradiated second fuel plate frame assemblies were planned for irradiation in the subsequent cycle 151B. The AFIP-6 MKII experiment was excluded from irradiation in cycle 151B because non-trivial design modifications would be needed to mitigate this type of incident during the second irradiation cycle. All items of the experiment hardware were accounted for and cycle 151B occurred with a non-fueled AFIP backup assembly in the center flux trap. Options for completion of the AFIP-6 MKII experiment campaign are presented and future preventative actions are recommended.

  17. Canadian Environmental Protection Act, strategic options for the management of toxic substances: Electric power generation (fossil fuel) sector, report of stakeholder consultations

    SciTech Connect (OSTI)

    1997-12-31

    The Electric Power Generation Sector Issue Table was formed to assess the management of toxic substances released from that sector, and more specifically, to develop (where warranted) goals, targets, and effective and efficient options for managing toxic releases in order to reduce potential risks to human health and the environment. This strategic options report sets out the recommendations of Issue Table members for the management of toxic substances. The introduction includes an industry profile and a review of the provincial management of electric power sector strategic options priority (SOP) substances. Chapter 2 discusses what substances are toxic, estimates releases of SOP substances from the sector, and reviews Issue Table approaches to risk assessment. Chapter 3 outlines Issue Table activities. Chapter 4 screens toxic substance management options, with evaluation of options against 13 groups of criteria. Chapter 5 presents toxic substances management proposals made to the Issue Table by the electric power generation industry, environmental groups, and Environment Canada.

  18. Hydrogen as a fuel for fuel cell vehicles: A technical and economic comparison

    SciTech Connect (OSTI)

    Ogden, J.; Steinbugler, M.; Kreutz, T.

    1997-12-31

    All fuel cells currently being developed for near term use in vehicles require hydrogen as a fuel. Hydrogen can be stored directly or produced onboard the vehicle by reforming methanol, ethanol or hydrocarbon fuels derived from crude oil (e.g., Diesel, gasoline or middle distillates). The vehicle design is simpler with direct hydrogen storage, but requires developing a more complex refueling infrastructure. In this paper, the authors compare three leading options for fuel storage onboard fuel cell vehicles: compressed gas hydrogen storage; onboard steam reforming of methanol; onboard partial oxidation (POX) of hydrocarbon fuels derived from crude oil. Equilibrium, kinetic and heat integrated system (ASPEN) models have been developed to estimate the performance of onboard steam reforming and POX fuel processors. These results have been incorporated into a fuel cell vehicle model, allowing us to compare the vehicle performance, fuel economy, weight, and cost for various fuel storage choices and driving cycles. A range of technical and economic parameters were considered. The infrastructure requirements are also compared for gaseous hydrogen, methanol and hydrocarbon fuels from crude oil, including the added costs of fuel production, storage, distribution and refueling stations. Considering both vehicle and infrastructure issues, the authors compare hydrogen to other fuel cell vehicle fuels. Technical and economic goals for fuel cell vehicle and hydrogen technologies are discussed. Potential roles for hydrogen in the commercialization of fuel cell vehicles are sketched.

  19. Alternative Fuels Data Center | Open Energy Information

    Open Energy Info (EERE)

    and resources to enable the use of alternative fuels, in addition to other petroleum reduction options such as advanced vehicles, fuel blends, idle reduction, and fuel...

  20. Concepts and Strategies for Transparency Monitoring of Nuclear Materials at the Back End of the Fuel/Weapons Cycle

    SciTech Connect (OSTI)

    COSTIN, LAURENCE; DAVIES, PETER; PREGENZER, ARIAN L.

    1999-10-01

    Representatives of the Department of Energy, the national laboratories, the Waste Isolation Pilot Plant (WIPP), and others gathered to initiate the development of broad-based concepts and strategies for transparency monitoring of nuclear materials at the back end of the fuel/weapons cycle, including both geologic disposal and monitored retrievable storage. The workshop focused on two key questions: ''Why should we monitor?'' and ''What should we monitor?'' These questions were addressed by identifying the range of potential stakeholders, concerns that stakeholders may have, and the information needed to address those concerns. The group constructed a strategic framework for repository transparency implementation, organized around the issues of safety (both operational and environmental), diversion (assuring legitimate use and security), and viability (both political and economic). Potential concerns of the international community were recognized as the possibility of material diversion, the multinational impacts of potential radionuclide releases, and public and political perceptions of unsafe repositories. The workshop participants also identified potential roles that the WIPP may play as a monitoring technology development and demonstration test-bed facility. Concepts for WIPP'S potential test-bed role include serving as (1) an international monitoring technology and development testing facility, (2) an international demonstration facility, and (3) an education and technology exchange center on repository transparency technologies.

  1. Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants

    SciTech Connect (OSTI)

    Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

    1998-07-01

    The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

  2. Environmental review for the conversion of Bellefonte Nuclear Plant to fossil fuel

    SciTech Connect (OSTI)

    Carter, R.; Rucker, H.; Summers, R.

    1998-07-01

    The Tennessee Valley Authority recently issued for public review a Draft Environmental Impact Statement for the conversion of the unfinished Bellefonte Nuclear Plant to fossil fuel. The DEIS was structured to support three tiers of decision making. Tier 1 is to decide between the No-Action Alternative, which is to leave Bellefonte as a partially completed nuclear plant into the indefinite future, and the Proposed Action Alternative, which is to proceed with converting Bellefonte to fossil fuel. Tier 2 is to select one of five conversion options. In the DEIS, TVA indicated no preference among the five competing fossil conversion options. The five conversion pathways would fully repower the plant consistent with fossil fuel availability, would use commercially ready systems and technologies and be designed to fully utilize the capacity of transmission lines serving Bellefonte. Conversion options addressed were pulverized coal (PC), natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), IGCC with joint production of electricity and chemicals, and an option, which combines elements of NGCC and IGCC with coproduction. Tier 3 involves decisions about eight sub-option choices, basically types of processes, equipment, and modes of operation, which is part of two or more conversion options. An example of a sub-option choice would be the type of gasifier that would be used in conversion options involving coal or petroleum coke gasification. Other sub-option choices addressed in the DEIS were natural gas pipeline corridors; fuels, feedstocks, and by-products transportation modes; types of combustion turbines; solid fuels; types of boilers for conventional coal-fired options; chemical production mixes; and modes of onsite solid fuel conveyance. The impact of constructing and operating each proposed fossil conversion option at Bellefonte were evaluated for 18 environmental resource and economic categories.

  3. The Economics of Reprocessing Versus Direct Disposal of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Bunn, Matthew; Holdren, John P.; Fetter, Steve; Zwaan, Bob van der

    2005-06-15

    We assess the economics of reprocessing versus direct disposal of spent fuel. The uranium price at which reprocessing spent fuel from light water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is estimated for a range of reprocessing prices and other fuel cycle costs. The contribution of both fuel cycle options to the cost of electricity is also estimated. A similar analysis is performed to compare fast neutron reactors (FRs) with LWRs. We review available information about various fuel cycle costs, as well as the quantities of uranium likely to be recoverable at a range of future prices. We conclude that the once-through LWR fuel cycle is likely to remain significantly cheaper than recycling in either LWRs or FRs for at least the next 50 yr, even with substantial growth in nuclear power.

  4. The low-temperature partial-oxidation reforming of fuels for transportation fuel cell systems

    SciTech Connect (OSTI)

    Kumar, R.; Ahmed, S.; Krumpelt, M.

    1996-12-31

    Passenger cars powered by fuel cell propulsion systems with high efficiency offer superior fuel economy, very low to zero pollutant emissions, and the option to operate on alternative and/or renewable fuels. Although the fuel cell operates on hydrogen, a liquid fuel such as methanol or gasoline is more attractive for automotive use because of the convenience in handling and vehicle refueling. Such a liquid fuel must be dynamically converted (reformed) to hydrogen on board the vehicle in real time to meet fluctuating power demands. This paper describes the low-temperature Argonne partial-oxidation reformer (APOR) developed for this application. The APOR is a rapid-start, compact, lightweight, catalytic device that is efficient and dynamically responsive. The reformer is easily controlled by varying the feed rates of the fuel, water, and air to satisfy the rapidly changing system power demands during the vehicle`s driving cycle.

  5. Progress and interim results of the INPRO joint study on assessment of INS based on closed nuclear fuel cycle with fast reactors

    SciTech Connect (OSTI)

    Usanov, Vladimir; Raj, Baldev; Vasile, Alfredo

    2007-07-01

    The purpose of the work is to review interim results of the Joint Study on assessment of an Innovative Nuclear System based on a Closed Nuclear Fuel Cycle with Fast Reactors (INS CNFC-FR). This study is a part of the IAEA international project for innovative reactors and fuel cycle technologies (INPRO). Now it is being implemented by Canada, China, France, India, Japan, Republic of Korea, Russia, and Ukraine. A report on results of implementation of the first phase of the Joint Study was presented to the INPRO Steering Committee meeting in December 2006. It was also agreed by the Joint Study participants to reveal these results to broader discussion at scientific conferences and meetings. The authors' interpretation of the Joint Study findings and issues is presented in the paper. (authors)

  6. Hydrogen Delivery Infrastructure Option Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen Delivery Infrastructure Option Analysis Option Analysis DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop January 25, 2005 Washington DC This presentation does not contain any proprietary or confidential information Tan-Ping Chen Nexant Jim Campbell Bhadra Grover Air Liquide Stefan Unnasch TIAX Glyn Hazelden GTI Graham Moore Chevron Matt Ringer NREL Ray Hobbs Pinnacle West 2 Presentation Outline Project Background Knowledge Collected and

  7. Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report

    SciTech Connect (OSTI)

    1995-01-31

    This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

  8. Fuel Cycle Subcommittee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for example, China, India, France, Japan, Russia, and possibly even South Korea. ... next decade as is being done in other countries, such as Japan, India, Russia, and China. ...

  9. Fuel Cycle Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Powerful imperatives drive the continued need for nuclear power, among them the need for reliable, baseload electricity and the threat of global climate change. As the only large-scale source of...

  10. Fuel Cycle Subcommittee

    Office of Environmental Management (EM)

    ... drilling technologies, verification of conditions at depth and wellbore stability, evaluation of materials, and testing of engineering methods for canister emplacement. The cost ...

  11. TRANSPORTATION OPTIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORTATION OPTIONS The Pittsburgh Airport Marriott provides complimentary shuttle service. The hotel asks all guests arriving at the Pittsburgh International Airport to collect luggage in the baggage claim area of the airport and then call for the shuttle at 412-788- 8800. Let the Hotel Operator know that you have collected your luggage and have a reservation at the Marriott and need transportation from the airport. The Hotel Operator will instruct the guest which door to exit, which curb to

  12. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  13. Forecourt Storage and Compression Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecourt Storage and Compression Options DOE and FreedomCAR & Fuel Partnership Hydrogen Delivery and On-Board Storage Analysis Workshop DOE Headquarters 25 January 2006 Mark E. Richards Gas Technology Institute 2 Overview > Project objectives > Gaseous delivery configurations > Analysis tool: CASCADE H2 Pro > Station demand profiles > Operational analysis results - Compressor-storage relationships - Vehicle fueling times - Temperature effects > Cost profiles >

  14. Economic Study of Spent Nuclear Fuel Storage and Reprocessing Practices in Russia

    SciTech Connect (OSTI)

    C. E. Singer; G. H. Miley

    1997-10-01

    This report describes a study of nuclear power economics in Russia. It addresses political and institutional background factors which constrain Russia's energy choices in the short and intermediate run. In the approach developed here, political and institutional factors might dominate short-term decisions, but the comparative costs of Russia's fuel-cycle options are likely to constrain her long-term energy strategy. To this end, the authors have also formulated a set of policy questions which should be addressed using a quantitative decision modeling which analyzes economic costs for all major components of different fuel cycle options, including the evolution of uranium prices.

  15. Power Systems Life Cycle Analysis Tool (Power L-CAT).

    SciTech Connect (OSTI)

    Andruski, Joel; Drennen, Thomas E.

    2011-01-01

    The Power Systems L-CAT is a high-level dynamic model that calculates levelized production costs and tracks environmental performance for a range of electricity generation technologies: natural gas combined cycle (using either imported (LNGCC) or domestic natural gas (NGCC)), integrated gasification combined cycle (IGCC), supercritical pulverized coal (SCPC), existing pulverized coal (EXPC), nuclear, and wind. All of the fossil fuel technologies also include an option for including carbon capture and sequestration technologies (CCS). The model allows for quick sensitivity analysis on key technical and financial assumptions, such as: capital, O&M, and fuel costs; interest rates; construction time; heat rates; taxes; depreciation; and capacity factors. The fossil fuel options are based on detailed life cycle analysis reports conducted by the National Energy Technology Laboratory (NETL). For each of these technologies, NETL's detailed LCAs include consideration of five stages associated with energy production: raw material acquisition (RMA), raw material transport (RMT), energy conversion facility (ECF), product transportation and distribution (PT&D), and end user electricity consumption. The goal of the NETL studies is to compare existing and future fossil fuel technology options using a cradle-to-grave analysis. The NETL reports consider constant dollar levelized cost of delivered electricity, total plant costs, greenhouse gas emissions, criteria air pollutants, mercury (Hg) and ammonia (NH3) emissions, water withdrawal and consumption, and land use (acreage).

  16. Alternatives to Diesel Fuel in California - Fuel Cycle Energy and Emission Effects of Possible Replacements Due to the TAC Diesel Particulate Decision

    SciTech Connect (OSTI)

    Christopher L. Saraicks; Donald M. Rote; Frank Stodolsky; James J. Eberhardt

    2000-05-01

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel, per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible ''mid-course'' strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression ignition by spark ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21 percent above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7 percent above projected (total) consumption level. In the second case, ressionignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case we estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOx emissions, though all scenarios bring about PM10 reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  17. Alternatives to diesel fuel in California - fuel cycle energy and emission effects of possible replacements due to the TAC diesel particulate decision.

    SciTech Connect (OSTI)

    Saricks, C. L.; Rote, D. M.; Stodolsky, F.; Eberhardt, J. J.

    1999-12-03

    Limitations on petroleum-based diesel fuel in California could occur pursuant to the 1998 declaration by California's Air Resources Board (CARB) that the particulate matter component of diesel exhaust is a carcinogen, therefore a toxic air contaminant (TAC) subject to the state's Proposition 65. It is the declared intention of CARB not to ban or restrict diesel fuel per se, at this time. Assuming no total ban, Argonne National Laboratory (ANL) explored two feasible mid-course strategies, each of which results in some degree of (conventional) diesel displacement. In the first case, with substantial displacement of compression-ignition by spark-ignition engines, diesel fuel is assumed admissible for ignition assistance as a pilot fuel in natural gas (NG)-powered heavy-duty vehicles. Gasoline demand in California increases by 32.2 million liters (8.5 million gallons) per day overall, about 21% above projected 2010 baseline demand. Natural gas demand increases by 13.6 million diesel liter (3.6 million gallon) equivalents per day, about 7% above projected (total) consumption level. In the second case, compression-ignition engines utilize substitutes for petroleum-based diesel having similar ignition and performance properties. For each case the authors estimated localized air emission plus generalized greenhouse gas and energy changes. Fuel replacement by di-methyl ether yields the greatest overall reduction in NOX emissions, though all scenarios bring about PM{sub 10} reductions relative to the 2010 baseline, with greatest reductions from the first case described above and the least from fuel replacement by Fischer-Tropsch synthetic diesel. Economic implications of vehicle and engine replacement were not formally evaluated.

  18. Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy

    SciTech Connect (OSTI)

    McIntyre, Peter; Assadi, Saeed; Badgley, Karie; Baker, William; Comeaux, Justin; Gerity, James; Kellams, Joshua; McInturff, Al; Pogue, Nathaniel; Sattarov, Akhdiyor; Sooby, Elizabeth; Tsvetkov, Pavel; Phongikaroon, Supathorn; Simpson, Michael

    2013-04-19

    A technology for accelerator-driven subcritical fission in a molten salt core (ADSMS) is being developed as a basis for the destruction of the transuranics in used nuclear fuel. The molten salt fuel is a eutectic mixture of NaCl and the chlorides of the transuranics and fission products. The core is driven by proton beams from a strong-focusing cyclotron stack. This approach uniquely provides an intrinsically safe means to drive a core fueled only with transuranics, thereby eliminating competing breeding terms.

  19. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; Smith, David E.; Wagner, Robert M.; Daw, C. Stuart; Edwards, K. Dean; Thomas, John F.

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxidemore » (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.« less

  20. Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles

    SciTech Connect (OSTI)

    Gao, Zhiming; Curran, Scott J.; Parks, James E.; Smith, David E.; Wagner, Robert M.; Daw, C. Stuart; Edwards, K. Dean; Thomas, John F.

    2015-04-06

    We present fuel economy and engine-out emissions for light-duty (LD) conventional and hybrid vehicles powered by conventional and high-efficiency combustion engines. Engine technologies include port fuel-injected (PFI), direct gasoline injection (GDI), reactivity controlled compression ignition (RCCI) and conventional diesel combustion (CDC). In the case of RCCI, the engine utilized CDC combustion at speed/load points not feasible with RCCI. The results, without emissions considered, show that the best fuel economies can be achieved with CDC/RCCI, with CDC/RCCI, CDC-only, and lean GDI all surpassing PFI fuel economy significantly. In all cases, hybridization significantly improved fuel economy. The engine-out hydrocarbon (HC), carbon monoxide (CO), nitrogen oxides (NOx), and particulate matter (PM) emissions varied remarkably with combustion mode. The simulated engine-out CO and HC emissions from RCCI are significantly higher than CDC, but RCCI makes less NOx and PM emissions. Hybridization can improve lean GDI and RCCI cases by increasing time percentage for these more fuel efficient modes. Moreover, hybridization can dramatically decreases the lean GDI and RCCI engine out emissions. Importantly, lean GDI and RCCI combustion modes decrease exhaust temperatures, especially for RCCI, which limits aftertreatment performance to control tailpipe emissions. Overall, the combination of engine and hybrid drivetrain selected greatly affects the emissions challenges required to meet emission regulations.