National Library of Energy BETA

Sample records for fuel cxs applied

  1. Evaluation Metrics Applied to Accident Tolerant Fuels

    SciTech Connect (OSTI)

    Shannon M. Bragg-Sitton; Jon Carmack; Frank Goldner

    2014-10-01

    The safe, reliable, and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. Continual improvement of technology, including advanced materials and nuclear fuels, remains central to the industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and have yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. One of the current missions of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) is to develop nuclear fuels and claddings with enhanced accident tolerance for use in the current fleet of commercial LWRs or in reactor concepts with design certifications (GEN-III+). Accident tolerance became a focus within advanced LWR research upon direction from Congress following the 2011 Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex. The overall goal of ATF development is to identify alternative fuel system technologies to further enhance the safety, competitiveness and economics of commercial nuclear power. Enhanced accident tolerant fuels would endure loss of active cooling in the reactor core for a considerably longer period of time than the current fuel system while maintaining or improving performance during normal operations. The U.S. DOE is supporting multiple teams to investigate a number of technologies that may improve fuel system response and behavior in accident conditions, with team leadership provided by DOE national laboratories, universities, and the nuclear industry. Concepts under consideration offer both evolutionary and revolutionary changes to the current nuclear fuel system. Mature concepts will be tested in the Advanced Test Reactor at Idaho National Laboratory beginning in Summer 2014 with additional concepts being

  2. A VU governance process applied to a Bison Fuel Rod Validation...

    Office of Scientific and Technical Information (OSTI)

    A VU governance process applied to a Bison Fuel Rod Validation exercise. Citation Details In-Document Search Title: A VU governance process applied to a Bison Fuel Rod Validation ...

  3. Applying fast calorimetry on a spent nuclear fuel calorimeter

    SciTech Connect (OSTI)

    Liljenfeldt, Henrik

    2015-04-15

    Recently at Los Alamos National Laboratory, sophisticated prediction algorithms have been considered for the use of calorimetry for treaty verification. These algorithms aim to predict the equilibrium temperature based on early data and therefore be able to shorten the measurement time while maintaining good accuracy. The algorithms have been implemented in MATLAB and applied on existing equilibrium measurements from a spent nuclear fuel calorimeter located at the Swedish nuclear fuel interim storage facility. The results show significant improvements in measurement time in the order of 15 to 50 compared to equilibrium measurements, but cannot predict the heat accurately in less time than the currently used temperature increase method can. This Is both due to uncertainties in the calibration of the method as well as identified design features of the calorimeter that limits the usefulness of equilibrium type measurements. The conclusions of these findings are discussed, and suggestions of both improvements of the current calorimeter as well as what to keep in mind in a new design are given.

  4. A VU governance process applied to a Bison Fuel Rod Validation...

    Office of Scientific and Technical Information (OSTI)

    Title: A VU governance process applied to a Bison Fuel Rod Validation exercise. Authors: Knupp, Patrick Michael Publication Date: 2012-09-01 OSTI Identifier: 1055887 Report ...

  5. Lessons Learned from the Alternative Fuels Experience and How They Apply to the Development of a Hydrogen-Fueled Transportation System

    SciTech Connect (OSTI)

    Melendez, M.; Theis, K.; Johnson, C.

    2007-08-01

    Report describes efforts to deploy alternative transportation fuels and how those experiences might apply to a hydrogen-fueled transportation system.

  6. Program for fundamental and applied research of fuel cells in VNIIEF

    SciTech Connect (OSTI)

    Anisin, A.V.; Borisseonock, V.A.; Novitskii, Y.Z.; Potyomckin, G.A.

    1996-04-01

    According to VNIIEF the integral part of development of fuel cell power plants is fundamental and applied research. This paper describes areas of research on molten carbonate fuel cells. Topics include the development of mathematical models for porous electrodes, thin film electrolytes, the possibility of solid nickel anodes, model of activation polarization of anode, electrolyte with high solubility of oxygen. Other areas include research on a stationary mode of stack operation, anticorrosion coatings, impedance diagnostic methods, ultrasound diagnostics, radiation treatments, an air aluminium cell, and alternative catalysts for low temperature fuel cells.

  7. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) Applied Studies and Technology (AS&T) DOE established the Environmental Sciences Laboratory (ESL) in Grand Junction, Colorado, in 1991 to support its programs. ESL scientists perform applied research and laboratory-scale demonstrations of soil and groundwater remediation and treatment technologies. Capabilities Installation, monitoring, and operation of permeable reactive barriers Research of permeable

  8. Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Application Process Bringing together top space science students with internationally recognized researchers at Los Alamos in an educational and collaborative atmosphere. ...

  9. Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis

    SciTech Connect (OSTI)

    Ibrahim, Ahmad M; Peplow, Douglas E.; Bekar, Kursat B; Celik, Cihangir; Scaglione, John M; Ilas, Dan; Wagner, John C

    2013-01-01

    The new hybrid SOURCE ConveRgence accelERator (SOURCERER) sequence in SCALE deterministically computes a fission distribution and uses it as the starting source in a Monte Carlo eigenvalue criticality calculation. In addition to taking the guesswork out of defining an appropriate, problem-dependent starting source, the more accurate starting source provided by the deterministic calculation decreases the probability of producing inaccurate tally estimates associated with undersampling problems caused by inadequate source convergence. Furthermore, SOURCERER can increase the efficiency of the overall simulation by decreasing the number of cycles that has to be skipped before the keff accumulation. SOURCERER was applied to a representative example for a used nuclear fuel cask utilized at the Maine Yankee storage site {Scaglione and Ilas}. Because of the time constraints of the Used Fuel Research, Development, and Demonstration project, it was found that using more than 30,000 neutrons per cycle will lead to inaccurate Monte Carlo calculation of keff due to the inevitable decrease in the number of skipped and active cycles used with this problem. For a fixed uncertainty objective and by using 30,000 neutron per cycle, the use of SOURCERER increased the efficiency of the keff calculation by 60%compared to a Monte Carlo calculation that used a starting source distributed uniformly in fissionable regions, even with the inclusion of the extra computational time required by the deterministic calculation. Additionally, the use of SOURCERER increased the reliability of keff calculation using any number of skipped cycles below 350.

  10. Ethanol Fuels Incentives Applied in the U.S.: Reviewed from California's Perspective

    SciTech Connect (OSTI)

    MacDonald, Tom

    2004-01-01

    This report describes measures employed by state governments and by the federal government to advance the production and use of ethanol fuel in the United States. The future of ethanol as an alternative transportation fuel poses a number of increasingly-important issues and decisions for California government, as the state becomes a larger consumer, and potentially a larger producer, of ethanol.

  11. The Path to Sustainable Nuclear Energy. Basic and Applied Research Opportunities for Advanced Fuel Cycles

    SciTech Connect (OSTI)

    Finck, P.; Edelstein, N.; Allen, T.; Burns, C.; Chadwick, M.; Corradini, M.; Dixon, D.; Goff, M.; Laidler, J.; McCarthy, K.; Moyer, B.; Nash, K.; Navrotsky, A.; Oblozinsky, P.; Pasamehmetoglu, K.; Peterson, P.; Sackett, J.; Sickafus, K. E.; Tulenko, J.; Weber, W.; Morss, L.; Henry, G.

    2005-09-01

    The objective of this report is to identify new basic science that will be the foundation for advances in nuclear fuel-cycle technology in the near term, and for changing the nature of fuel cycles and of the nuclear energy industry in the long term. The goals are to enhance the development of nuclear energy, to maximize energy production in nuclear reactor parks, and to minimize radioactive wastes, other environmental impacts, and proliferation risks. The limitations of the once-through fuel cycle can be overcome by adopting a closed fuel cycle, in which the irradiated fuel is reprocessed and its components are separated into streams that are recycled into a reactor or disposed of in appropriate waste forms. The recycled fuel is irradiated in a reactor, where certain constituents are partially transmuted into heavier isotopes via neutron capture or into lighter isotopes via fission. Fast reactors are required to complete the transmutation of long-lived isotopes. Closed fuel cycles are encompassed by the Department of Energy?s Advanced Fuel Cycle Initiative (AFCI), to which basic scientific research can contribute. Two nuclear reactor system architectures can meet the AFCI objectives: a ?single-tier? system or a ?dual-tier? system. Both begin with light water reactors and incorporate fast reactors. The ?dual-tier? systems transmute some plutonium and neptunium in light water reactors and all remaining transuranic elements (TRUs) in a closed-cycle fast reactor. Basic science initiatives are needed in two broad areas: ? Near-term impacts that can enhance the development of either ?single-tier? or ?dual-tier? AFCI systems, primarily within the next 20 years, through basic research. Examples: Dissolution of spent fuel, separations of elements for TRU recycling and transmutation Design, synthesis, and testing of inert matrix nuclear fuels and non-oxide fuels Invention and development of accurate on-line monitoring systems for chemical and nuclear species in the nuclear

  12. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  13. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  14. Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing ... Heavy Duty Fuels DISI Combustion HCCISCCI Fundamentals Spray Combustion Modeling ...

  15. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part I: Pebble Bed Reactors

    SciTech Connect (OSTI)

    Brian Boer; Abderrafi M. Ougouag

    2011-03-01

    The Deep-Burn (DB) concept [ ] focuses on the destruction of transuranic nuclides from used light water reactor (LWR) fuel. These transuranic nuclides are incorporated into tri-isotopic (TRISO) coated fuel particles and used in gas-cooled reactors with the aim of a fractional fuel burnup of 60 to 70% in fissions per initial metal atom (FIMA). This high performance is expected through the use of multiple recirculation passes of the fuel in pebble form without any physical or chemical changes between passes. In particular, the concept does not call for reprocessing of the fuel between passes. In principle, the DB pebble bed concept employs the same reactor designs as the presently envisioned low-enriched uranium core designs, such as the 400 MWth Pebble Bed Modular Reactor (PBMR-400) [ ]. Although it has been shown in the previous Fiscal Year (FY) (2009) that a PuO2 fueled pebble bed reactor concept is viable, achieving a high fuel burnup while remaining within safety-imposed prescribed operational limits for fuel temperature, power peaking, and temperature reactivity feedback coefficients for the entire temperature range, is challenging. The presence of the isotopes 239Pu, 240Pu, and 241Pu that have resonances in the thermal energy range significantly modifies the neutron thermal energy spectrum as compared to a standard, UO2-fueled core. Therefore, the DB pebble bed core exhibits a relatively hard neutron energy spectrum. However, regions within the pebble bed that are near the graphite reflectors experience a locally softer spectrum. This can lead to power and temperature peaking in these regions. Furthermore, a shift of the thermal energy spectrum with increasing temperature can lead to increased absorption in the resonances of the fissile Pu isotopes. This can lead to a positive temperature reactivity coefficient for the graphite moderator under certain operating conditions. Regarding the coated particle performance, the FY 2009 investigations showed that no

  16. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    SciTech Connect (OSTI)

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  17. A parallel multi-domain solution methodology applied to nonlinear thermal transport problems in nuclear fuel pins

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Philip, Bobby; Berrill, Mark A.; Allu, Srikanth; Hamilton, Steven P.; Sampath, Rahul S.; Clarno, Kevin T.; Dilts, Gary A.

    2015-01-26

    We describe an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. The details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstratingmore » the achieved efficiency of the algorithm are presented. Moreover, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.« less

  18. A Parallel Multi-Domain Solution Methodology Applied to Nonlinear Thermal Transport Problems in Nuclear Fuel Pins

    SciTech Connect (OSTI)

    Philip, Bobby; Berrill, Mark A; Allu, Srikanth; Hamilton, Steven P; Sampath, Rahul S; Clarno, Kevin T; Dilts, Gary

    2015-01-01

    This paper describes an efficient and nonlinearly consistent parallel solution methodology for solving coupled nonlinear thermal transport problems that occur in nuclear reactor applications over hundreds of individual 3D physical subdomains. Efficiency is obtained by leveraging knowledge of the physical domains, the physics on individual domains, and the couplings between them for preconditioning within a Jacobian Free Newton Krylov method. Details of the computational infrastructure that enabled this work, namely the open source Advanced Multi-Physics (AMP) package developed by the authors are described. Details of verification and validation experiments, and parallel performance analysis in weak and strong scaling studies demonstrating the achieved efficiency of the algorithm are presented. Furthermore, numerical experiments demonstrate that the preconditioner developed is independent of the number of fuel subdomains in a fuel rod, which is particularly important when simulating different types of fuel rods. Finally, we demonstrate the power of the coupling methodology by considering problems with couplings between surface and volume physics and coupling of nonlinear thermal transport in fuel rods to an external radiation transport code.

  19. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part II: Prismatic Reactor Cross Section Generation

    SciTech Connect (OSTI)

    Vincent Descotes

    2011-03-01

    The deep-burn prismatic high temperature reactor is made up of an annular core loaded with transuranic isotopes and surrounded in the center and in the periphery by reflector blocks in graphite. This disposition creates challenges for the neutronics compared to usual light water reactor calculation schemes. The longer mean free path of neutrons in graphite affects the neutron spectrum deep inside the blocks located next to the reflector. The neutron thermalisation in the graphite leads to two characteristic fission peaks at the inner and outer interfaces as a result of the increased thermal flux seen in those assemblies. Spectral changes are seen at least on half of the fuel blocks adjacent to the reflector. This spectral effect of the reflector may prevent us from successfully using the two step scheme -lattice then core calculation- typically used for light water reactors. We have been studying the core without control mechanisms to provide input for the development of a complete calculation scheme. To correct the spectrum at the lattice level, we have tried to generate cross-sections from supercell calculations at the lattice level, thus taking into account part of the graphite surrounding the blocks of interest for generating the homogenised cross-sections for the full-core calculation. This one has been done with 2 to 295 groups to assess if increasing the number of groups leads to more accurate results. A comparison with a classical single block model has been done. Both paths were compared to a reference calculation done with MCNP. It is concluded that the agreement with MCNP is better with supercells, but that the single block model remains quite close if enough groups are kept for the core calculation. 26 groups seems to be a good compromise between time and accu- racy. However, some trials with depletion have shown huge variations of the isotopic composition across a block next to the reflector. It may imply that at least an in- core depletion for the

  20. Applied combustion

    SciTech Connect (OSTI)

    1993-12-31

    From the title, the reader is led to expect a broad practical treatise on combustion and combustion devices. Remarkably, for a book of modest dimension, the author is able to deliver. The text is organized into 12 Chapters, broadly treating three major areas: combustion fundamentals -- introduction (Ch. 1), thermodynamics (Ch. 2), fluid mechanics (Ch. 7), and kinetics (Ch. 8); fuels -- coal, municipal solid waste, and other solid fuels (Ch. 4), liquid (Ch. 5) and gaseous (Ch. 6) fuels; and combustion devices -- fuel cells (Ch. 3), boilers (Ch. 4), Otto (Ch. 10), diesel (Ch. 11), and Wankel (Ch. 10) engines and gas turbines (Ch. 12). Although each topic could warrant a complete text on its own, the author addresses each of these major themes with reasonable thoroughness. Also, the book is well documented with a bibliography, references, a good index, and many helpful tables and appendices. In short, Applied Combustion does admirably fulfill the author`s goal for a wide engineering science introduction to the general subject of combustion.

  1. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Labeling Requirements Alternative fuel dispensers must be labeled with information to help consumers make informed decisions about fueling a vehicle, including the name of the fuel and the minimum percentage of the main component of the fuel. Labels may also list the percentage of other fuel components. This requirement applies to, but is not limited to, the following fuel types: methanol, denatured ethanol, and/or other alcohols; mixtures containing 85% or more by volume of

  2. Applied Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to apply the resulting insights to the design, synthesis, and testing of materials with improved properties and performance, including accident-tolerant and higher burn-up fuels. ...

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Vehicle (AFV) Decal The state motor fuel tax does not apply to passenger vehicles, certain buses, or commercial vehicles that are powered by an alternative fuel, if they obtain an AFV decal. Owners or operators of such vehicles that also own or operate their own personal fueling stations are required to pay an annual alternative fuel decal fee, as listed below. Hybrid electric vehicles and motor vehicles licensed as historic vehicles are exempt from the alternative fuel decal

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels Tax Exemption and Refund for Government Fleet Vehicles State excise tax does not apply to special fuels, including gaseous special fuels, when used in state or federal government owned vehicles. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition, state excise tax paid on special fuels used in state or federal government vehicles is subject to a refund, as long as the tax was

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuels Technician Certificates The Department of Labor (DOL) will issue a certificate to any person who has successfully passed the appropriate alternative fuels equipment, alternative fuels compression, or electric vehicle technician examination as provided in the Alternative Fuels Technician Certification Act. A certification fee applies. For companies, partnerships, or corporations involved in the business of installing, servicing, repairing, modifying, or renovating equipment used

  6. Fuel flexible fuel injector

    DOE Patents [OSTI]

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  7. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biodiesel Tax Exemption Biodiesel blends containing at least 20% biodiesel derived from used cooking oil are exempt from the $0.30 per gallon state fuel excise tax. The exemption does not apply to fuel used in vehicles with a gross vehicle weight rating of 26,001 pounds or more, fuel not sold in retail operations, or fuel sold in operations involving fleet fueling or bulk sales. The exemption expires after December 31, 2019. (Reference Oregon Revised Statutes 319.530

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    State Agency Low Carbon Fuel Use Requirement Beginning January 1, 2017, at least 3% of the aggregate amount of bulk transportation fuel purchased by the state government must be from very low carbon transportation fuel sources. Beginning January 1, 2018, the required amount of very low carbon transportation fuel purchased will increase by 1% annually until January 1, 2024. Some exemptions may apply, as determined by the California Department of General Services (DGS). Very low carbon fuel is

  9. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOE Patents [OSTI]

    Ruka, Roswell J.; Basel, Richard A.; Zhang, Gong

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  10. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY) 2004 and subsequent model year passenger cars, light-duty trucks, and medium-duty passenger vehicles meeting specified exhaust standards. The LEV II standards represent the maximum exhaust emissions for LEVs, Ultra Low Emission Vehicles, and Super Ultra Low Emission Vehicles, including flexible fuel, bi-fuel, and dual-fuel vehicles when operating on an alternative fuel. MY 2009 and

  11. CX-010768: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    ZIRCEX Nuclear Fuel Dissolution Testing CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Idaho Offices(s): Nuclear Energy

  12. CX-012788: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Bio-Aviation Fuel LCA with GREET CX(s) Applied: B5.15Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office

  13. CX-011712: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 01/08/2014 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  14. CX-012705: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex (MFC)-703 Fire Alarm Replacement CX(s) Applied: B2.2Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  15. CX-012725: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuel Complex (MFC)-782 Fire Sprinkler Installation CX(s) Applied: B2.2Date: 41829 Location(s): IdahoOffices(s): Nuclear Energy

  16. CX-011065: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 08/29/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  17. CX-010938: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 09/17/2013 Location(s): Kansas, Kansas Offices(s): National Energy Technology Laboratory

  18. CX-003703: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Florida Hydrogen Initiative - Florida Institute of Technology (Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program) CX(s) Applied: A9 Date: 09...

  19. CX-007939: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 02/16/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  20. CX-008926: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Texas Alternative Fuel Vehicle Pilot Program CX(s) Applied: A1 Date: 08/24/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  1. Categorical Exclusion Determinations: Oklahoma | Department of...

    Energy Savers [EERE]

    ... December 19, 2013 CX-011417: Categorical Exclusion Determination Technology Integration ... Kapin LLC - Mayes County Compressed Natural Gas Fueling CX(s) Applied: B5.1 Date: 09232013 ...

  2. CX-010618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: 0 Date: 07/19/2013 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  3. Fuel Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Market Transformation Fuel Cells Predictive Simulation of Engines ... Twitter Google + Vimeo Newsletter Signup SlideShare Fuel Options HomeCapabilitiesFuel ...

  4. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Feasibility Study Grants The Wyoming State Energy Office (SEO) offers grants of up to $5,000 to municipalities in the state to conduct feasibility studies related to acquiring alternative fuel vehicles or developing fueling infrastructure. Awardees must submit final feasibility studies to the SEO within 180 days of the grant execution date. Eligible applicants are required to provide at least a 10% cash match. Other terms and conditions may apply. Funding is not currently

  5. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Road Tax Alternative fuels including, but not limited to, natural gas or propane sold by a licensed alternative fuel dealer and used in on-road vehicles is subject to a $0.222 per gallon equivalent road tax. The New Hampshire Department of Safety will define rules for the applicable conversion rates for natural gas and propane based on nationally recognized standards for weights and measures. Certain exemptions apply, including sales to government entities, between duly licensed

  6. Fossil fuels -- future fuels

    SciTech Connect (OSTI)

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  7. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel economy of 22 miles per gallon (as listed at www.fueleconomy.gov) and may not be a sport utility vehicle. Exemptions apply to security, emergency rescue, snow removal, and...

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Fuel Cell Electric Vehicle (FCEV) Emissions Inspection Exemption Qualified PEVs and FCEVs are exempt from state emissions inspection requirements. Other restrictions may apply. (Reference North Carolina General Statutes 20-4.01 and 20-183.2

  9. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1994-12-31

    Opportunity fuels - fuels that can be converted to other forms of energy at lower cost than standard fossil fuels - are discussed in outline form. The type and source of fuels, types of fuels, combustability, methods of combustion, refinery wastes, petroleum coke, garbage fuels, wood wastes, tires, and economics are discussed.

  10. Fuel Cell Technologies Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4/3/2012 eere.energy.gov Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 3/7/2011 Flow Cells for Energy Storage Workshop Purpose To understand the applied research and development needs and the grand challenges for the use of flow cells as energy-storage devices. Objectives 1. Understand the needs for applied research from stakeholders. 2. Gather input for future

  11. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax Rates A special excise tax rate of 2% is imposed on the sale of propane and an excise tax of $0.23 per gallon is imposed on all special fuels sales and deliveries, including compressed natural gas (CNG) and liquefied natural gas (LNG). One gallon of special fuel is equal to 120 cubic feet of CNG or 1.7 gallons of LNG. Retailers must obtain a license from the Office of the State Tax Commissioner to sell special fuels. Exceptions apply. (Reference House Bill 1133, 2015, and

  12. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  13. NREL: Hydrogen and Fuel Cells Research - Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells Photo of scientific equipment in a laboratory setting. NREL scientist applies catalyst layer to a fuel cell through a spray process that delivers a more even distribution of material, improving performance. Photo by Dennis Schroeder, NREL What is a fuel cell? A single fuel cell consists of an electrolyte sandwiched between two electrodes. Bipolar plates on either side of the cell help distribute gases and serve as current collectors. Depending on the application, a fuel cell stack may

  14. Engines and Fuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engines and Fuels Engines and Fuels Argonne's Engines and Fuels research focuses on understanding the interactions between fuels and engines in order to maximize the benefits available through optimization as well as to enable multi-fuel capability. Argonne researchers apply their expertise in the areas of combustion chemistry, fuel spray characterization, combustion system design, controls, and in-cylinder sensing as well as emissions control. A team of experts spanning a range of disciplines

  15. Applied ALARA techniques

    SciTech Connect (OSTI)

    Waggoner, L.O.

    1998-02-05

    The presentation focuses on some of the time-proven and new technologies being used to accomplish radiological work. These techniques can be applied at nuclear facilities to reduce radiation doses and protect the environment. The last reactor plants and processing facilities were shutdown and Hanford was given a new mission to put the facilities in a safe condition, decontaminate, and prepare them for decommissioning. The skills that were necessary to operate these facilities were different than the skills needed today to clean up Hanford. Workers were not familiar with many of the tools, equipment, and materials needed to accomplish:the new mission, which includes clean up of contaminated areas in and around all the facilities, recovery of reactor fuel from spent fuel pools, and the removal of millions of gallons of highly radioactive waste from 177 underground tanks. In addition, this work has to be done with a reduced number of workers and a smaller budget. At Hanford, facilities contain a myriad of radioactive isotopes that are 2048 located inside plant systems, underground tanks, and the soil. As cleanup work at Hanford began, it became obvious early that in order to get workers to apply ALARA and use hew tools and equipment to accomplish the radiological work it was necessary to plan the work in advance and get radiological control and/or ALARA committee personnel involved early in the planning process. Emphasis was placed on applying,ALARA techniques to reduce dose, limit contamination spread and minimize the amount of radioactive waste generated. Progress on the cleanup has,b6en steady and Hanford workers have learned to use different types of engineered controls and ALARA techniques to perform radiological work. The purpose of this presentation is to share the lessons learned on how Hanford is accomplishing radiological work.

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuels Tax Exemption Sales and use taxes apply to 80% of the proceeds from the sale of fuel blends containing between 1% and 10% biodiesel and the sale of fuels containing 10% ethanol (E10) made between July 1, 2003, and December 31, 2018. If at any time these taxes are imposed at a rate of 1.25%, the tax on biodiesel blends and E10 will then apply to 100% of the proceeds of sales. These taxes do not apply to the proceeds from the sale of biodiesel blends containing more than 10% biodiesel or

  17. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  18. Fuel pin

    DOE Patents [OSTI]

    Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

    1987-11-24

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  19. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W. (Kennewick, WA); Karnesky, Richard A. (Richland, WA); Leggett, Robert D. (Richland, WA); Baker, Ronald B. (Richland, WA)

    1989-01-01

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  20. Fuel pin

    DOE Patents [OSTI]

    Christiansen, David W.; Karnesky, Richard A.; Leggett, Robert D.; Baker, Ronald B.

    1989-10-03

    A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

  1. Alternative Fuels Data Center: Fuel Prices

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Alternative Fuel Tax An excise tax rate of 9% of the average wholesale price on a per gallon basis applies to all special fuels, including diesel, natural gas, liquefied petroleum gas (propane), ethanol, biodiesel, hydrogen, and any other combustible gases and liquids, excluding gasoline, used to propel motor vehicles. For taxation purposes, one gasoline gallon equivalent (GGE) of compressed natural gas (CNG) is equal to 5.66 pounds (lbs.) or 126.67 cubic feet. One GGE of liquefied natural gas

  3. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Reduction Technology Tax Credit Fuel reduction technologies are eligible for a tax credit equal to a percentage of the actual cost paid for the technology. The actual cost paid must account for eligible federal credits, grants, or rebates; therefore taxpayers must subtract credits, grants, or rebates amounts before applying the percentage calculations listed below. Beginning January 1, 2017, hydraulic hybrid trailers are eligible for a fixed tax credit rather than a percentage. Category

  4. Alternative Fuels Data Center: Emerging Fuels

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative

  5. Alternative Fuels Data Center: Biodiesel Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in

  6. Alternative Fuels Data Center: Electricity Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on

  7. Alternative Fuels Data Center: Ethanol Fuel Basics

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this

  8. Alternative Fuels Data Center: Ethanol Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on

  9. Alternative Fuels Data Center: Hydrogen Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations

  10. Alternative Fuels Data Center: Propane Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on

  11. Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Total Fuel Oil Consumption and Expenditures, 1999" ,"All Buildings Using Fuel Oil",,,"Fuel Oil Consumption",,"Fuel Oil Expenditures" ,"Number of Buildings (thousand)","Floorspac...

  12. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Reformer Development Putting the 'Fuel' in Fuel Cells Subir Roychoudhury Precision Combustion, Inc. (PCI), North Haven, CT Shipboard Fuel Cell Workshop March 29, 2011 ...

  13. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Dealer and Commercial User License Beginning January 1, 2017, alternative fuel dealers and alternative fuel commercial users must apply for a license from the Michigan Department of Treasury. Commercial users are defined as those operating vehicles with three or more axles, or two axles and a gross vehicle weight rating exceeding 26,000 pounds, that operate in more than one state. Alternative fuel dealers must pay a license fee of $500 and commercial users must pay a license fee of $50. For the

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Biofuel Volume Rebate Program - Propel Fuels Propel Fuels offers a rebate to qualified fleet customers for monthly purchases of more than 500 gallons of biodiesel blends and E85. Fleet customers must purchase the fuel directly from Propel public retail locations using the Propel CleanDrive WEX fleet card. The program offers a rebate of $0.05 per gallon for purchases of more than 500 gallons of biofuel per month. The rebate is applied at the end of each monthly billing cycle. For more

  15. Transportation Fuels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels DOE would invest $52 million to fund a major fleet transformation at Idaho National Laboratory, along with the installation of nine fuel management systems, purchase of additional flex fuel cars and one E85 ethanol fueling station. Transportation projects, such as the acquisition of highly efficient and alternative-fuel vehicles, are not authorized by ESPC legislation. DOE has twice proportion of medium vehicles and three times as many heavy vehicles as compared to the Federal agency

  16. CRC handbook of applied thermodynamics

    SciTech Connect (OSTI)

    Palmer, D.A. . Research and Development Dept.)

    1987-01-01

    The emphasis of this book is on applied thermodynamics, featuring the stage of development of a process rather than the logical development of thermodynamic principles. It is organized according to the types of problems encountered in industry, such as probing research, process assessment, and process development. The applied principles presented can be used in most areas of industry including oil and gas production and processing, chemical processing, power generation, polymer production, food processing, synthetic fuels production, specialty chemicals and pharmaceuticals production, bioengineered processes, etc.

  17. Alternative Fuels Data Center: Flexible Fuel Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg

  18. Opportunity fuels

    SciTech Connect (OSTI)

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  19. CX-100529 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Hydrogen Fueling Station Supply Award Number: DE-EE0006524 CX(s) Applied: A9, B3.6 Fuel Cell Technologies Office Date: 07/14/2014 Location(s): PA Office(s): Golden Field Office

  20. CX-100206 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fuel Cell and Hydrogen Opportunity Center Award Number: DE-EE0006932 CX(s) Applied: A9 Fuel Cells Technologies Office Date: 04/01/2015 Location(s): VA Office(s): Golden Field Office

  1. CX-013731: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improved Reliability of Solid Oxide Fuel Cell Systems – LG Fuel Cell Systems CX(s) Applied: B3.6Date: 04/13/2015 Location(s): OhioOffices(s): National Energy Technology Laboratory

  2. CX-014608: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improved Reliability of Solid Oxide Fuel Cell Systems – LG Fuel Cell Systems CX(s) Applied: B3.6Date: 01/21/2016 Location(s): WashingtonOffices(s): National Energy Technology Laboratory

  3. CX-012514: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improved Reliability of Solid Oxide Fuel Cell Systems – LG Fuel Cell Systems CX(s) Applied: B3.6Date: 41848 Location(s): OhioOffices(s): National Energy Technology Laboratory

  4. Synthetic Fuel

    ScienceCinema (OSTI)

    Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

    2010-01-08

    Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

  5. Fuel Economy

    Broader source: Energy.gov [DOE]

    The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel.

  6. Webinar: Introduction to SAE Hydrogen Fueling Standardization

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Introduction to SAE Hydrogen Fueling Standardization" on Thursday, September 11. The webinar will provide an overview of the SAE Standards SAE J2601 and J2799 and how they are applied to hydrogen fueling for fuel cell electric vehicles (FCEVs).

  7. Fuels Technologies

    Office of Environmental Management (EM)

    Displacement of petroleum n Approach n Example Project Accomplishments n Research Directions Fuels Technologies R&D Budget by Activities Major Activities FY 2007 ...

  8. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Truck Idle Reduction Requirements A driver of a diesel-fueled vehicle with a gross vehicle weight rating of more than 10,000 pounds may not idle the vehicle's primary engine for more than five consecutive minutes at any location, and is not allowed to operate a diesel-fueled auxiliary power system (APS) on the vehicle for more than five minutes when located within 100 feet of a restricted area. Exceptions apply in certain situations and for certain vehicles. Any internal combustion

  9. Fuel Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system...

  10. Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Advanced Fuel Reformer Development: Putting the 'Fuel' in Fuel Cells Presented at the DOE-DOD Shipboard APU Workshop on March 29, 2011. apu2011_6_roychoudhury.pdf (4.83 MB) More Documents & Publications System Design - Lessons Learned, Generic Concepts, Characteristics & Impacts Fuel Cells For Transportation - 1999 Annual Progress Report Energy Conversion Team Fuel Cell Systems Annual Progress Report

  11. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  12. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  13. Fuel injector

    DOE Patents [OSTI]

    Lambeth, Malcolm David Dick

    2001-02-27

    A fuel injector comprises first and second housing parts, the first housing part being located within a bore or recess formed in the second housing part, the housing parts defining therebetween an inlet chamber, a delivery chamber axially spaced from the inlet chamber, and a filtration flow path interconnecting the inlet and delivery chambers to remove particulate contaminants from the flow of fuel therebetween.

  14. Fuel cell-fuel cell hybrid system

    DOE Patents [OSTI]

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  15. Fuel Cells and Renewable Gaseous Fuels

    Broader source: Energy.gov [DOE]

    Breakout Session 3-C: Renewable Gaseous FuelsFuel Cells and Renewable Gaseous FuelsSarah Studer, ORISE Fellow—Fuel Cell Technologies Office, U.S. Department of Energy

  16. How To Apply

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSCNSI How To Apply How to Apply for Computer System, Cluster, and Networking Summer Institute Emphasizes practical skills development Contact Leader Stephan Eidenbenz (505)...

  17. FUEL ELEMENT

    DOE Patents [OSTI]

    Bean, R.W.

    1963-11-19

    A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle Incremental Cost Allocation The U.S. General Services Administration (GSA) must allocate the incremental cost of purchasing alternative fuel vehicles (AFVs) across the entire fleet of vehicles distributed by GSA. This mandate also applies to other federal agencies that procure vehicles for federal fleets. For more information, see the GSA's AFV website. (Reference 42 U.S. Code 13212 (c)) Point of Contact U.S. General Services Administration Phone: (703) 605-5630

  19. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fleet Emissions Reduction Requirements - South Coast The South Coast Air Quality Management District (SCAQMD) requires government fleets and private contractors under contract with public entities to purchase non-diesel lower emission and alternative fuel vehicles. The rule applies to transit bus, school bus, refuse hauler, and other vehicle fleets of at least 15 vehicles that operate in Los Angeles, San Bernardino, Riverside, and Orange counties. (Reference SCAQMD Rules 1186.1 and 1191-1196)

  20. Fuel economizer

    SciTech Connect (OSTI)

    Zwierzelewski, V.F.

    1984-06-26

    A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

  1. Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of 175 per kW, and ...

  2. Applied Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARC Privacy and Security Notice Skip over navigation Search the JLab Site Applied Research Center Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Applied Research Center ARC Home Consortium News EH&S Reports print version ARC Resources Commercial Tenants ARC Brochure Library Conference Room Applied Research Center Applied Research Center front view Applied Research

  3. Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Hydrogen and Fuel Cell Technologies Program: Fuel Cells Fact Sheet Fact sheet produced by the Fuel Cell ...

  4. Method of improving fuel cell performance by removing at least one metal oxide contaminant from a fuel cell electrode

    DOE Patents [OSTI]

    Kim, Yu Seung; Choi, Jong-Ho; Zelenay, Piotr

    2009-08-18

    A method of removing contaminants from a fuel cell catalyst electrode. The method includes providing a getter electrode and a fuel cell catalyst electrode having at least one contaminant to a bath and applying a voltage sufficient to drive the contaminant from the fuel cell catalyst electrode to the getter electrode. Methods of removing contaminants from a membrane electrode assembly of a fuel cell and of improving performance of a fuel cell are also provided.

  5. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart

  6. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E.

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  7. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, R.E.

    1988-03-08

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

  8. Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling

  9. Sintered electrode for solid oxide fuel cells

    DOE Patents [OSTI]

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  13. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  14. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  15. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Clean Transportation Fuel Standards The Oregon Department of Environmental Quality (DEQ) administers the Oregon Clean Fuels Program (Program), which requires fuel producers and ...

  16. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle and Fueling Infrastructure Grants and Loans The Utah Clean Fuels and Vehicle Technology Grant and Loan Program, funded through the Clean Fuels and Vehicle Technology Fund, ...

  17. CX-012672: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Controlling Hexavalent Americium – A Centerpiece to a Compact Nuclear Fuel Cycle – Colorado School of Mines CX(s) Applied: B3.6Date: 41872 Location(s): ColoradoOffices(s): Nuclear Energy

  18. CX-012425: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Durable, Impermeable Brazes for Solid Oxide Fuel Cells CX(s) Applied: B3.6Date: 41880 Location(s): MichiganOffices(s): National Energy Technology Laboratory

  19. CX-012446: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Truck and Bus Radial Materials for Fuel-Efficiency CX(s) Applied: B3.6Date: 41878 Location(s): TennesseeOffices(s): National Energy Technology Laboratory

  20. CX-008730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex Underground and Aboveground Storage Tank Replacement CX(s) Applied: B2.5 Date: 06/07/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  1. CX-009594: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cathodic Protection Potential Stations at 292-S Diesel Fuel Oil Storage Tanks CX(s) Applied: B2.5 Date: 12/11/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  2. CX-012683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Studies of Lanthanide Transport in metallic Nuclear Fuels – Ohio State University CX(s) Applied: B3.6Date: 41862 Location(s): OhioOffices(s): Nuclear Energy

  3. CX-012460: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology for Greenhouse Gas Emission Reduction & Cost Competitiveness of Mil-Spec Jet Fuel Production Using CTL CX(s) Applied: B3.6Date: 41877 Location(s): AlabamaOffices(s): National Energy Technology Laboratory

  4. CX-012462: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology for Greenhouse Gas Emission Reduction & Cost Competitiveness of Mil-Spec Jet Fuel Production Using CTL CX(s) Applied: B3.6Date: 41877 Location(s): UtahOffices(s): National Energy Technology Laboratory

  5. CX-008253: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex (MFC) Contaminated Equipment Storage Building (CESB) Conversion Scope Change CX(s) Applied: B1.31 Date: 03/15/2012 Location(s): Idaho Offices(s): Nuclear Energy

  6. CX-013341: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Basin Modifications to Receive Research Fuel CX(s) Applied: B2.5Date: 12/08/2014 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  7. CX-008256: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: A1, B5.22 Date: 03/29/2012 Location(s): New York Offices(s): National Energy Technology Laboratory

  8. CX-012432: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Truck and Bus Radial Materials for Fuel-Efficiency CX(s) Applied: B3.6Date: 41878 Location(s): PennsylvaniaOffices(s): National Energy Technology Laboratory

  9. CX-012429: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Truck and Bus Radial Materials for Fuel-Efficiency CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  10. CX-007617: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 01/09/2012 Location(s): Nebraska Offices(s): National Energy Technology Laboratory

  11. CX-013681: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hot Fuel Examination Facility Lab Hot Water System Modification CX(s) Applied: B2.5Date: 04/14/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  12. CX-011020: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost High-H2 Syngas Production for Power and Liquid Fuels CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  13. CX-009570: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hyundai Fuel Cell Electric Vehicle Testing, Data Collection and Validation Fleet CX(s) Applied: A9 Date: 12/19/2012 Location(s): Michigan, California Offices(s): Golden Field Office

  14. CX-010998: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improve Fuel Economy through Formulation Design and Modeling CX(s) Applied: B3.6, B3.11, B5.1 Date: 09/13/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  15. CX-010987: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improve Fuel Economy through Formulation Design and Modeling CX(s) Applied: B3.6, B5.1 Date: 09/13/2013 Location(s): Kentucky Offices(s): National Energy Technology Laboratory

  16. CX-010986: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improve Fuel Economy through Formulation Design and Modeling CX(s) Applied: B3.6, B5.1 Date: 09/13/2013 Location(s): Kentucky, Kentucky Offices(s): National Energy Technology Laboratory

  17. CX-010303: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utah Expansion of Alternative Fueling Infrastructure CX(s) Applied: B5.22 Date: 04/30/2013 Location(s): Utah Offices(s): National Energy Technology Laboratory

  18. CX-007946: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: B2.3, B5.1 Date: 02/09/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  19. CX-012145: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Connecticut Clean Cities Future Fuels Project CX(s) Applied: A1, B5.1 Date: 05/22/2014 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

  20. CX-012319: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hot Fuels and Examination Facility (HFEF) Documented Safety Analysis (DSA) Implementation Tasks CX(s) Applied: B2.5 Date: 05/21/2014 Location(s): Idaho Offices(s): Nuclear Energy

  1. CX-011024: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biofuels Retail Availability Improvement Network - Biodiesel Fueling Infrastructure CX(s) Applied: B5.22 Date: 09/11/2013 Location(s): Wisconsin Offices(s): National Energy Technology Laboratory

  2. CX-011302: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minnesota E85 Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 10/08/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory

  3. CX-007475: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Carolina Fuel Monitoring Initiative CX(s) Applied: B5.1 Date: 12/13/2011 Location(s): North Carolina Offices(s): National Energy Technology Laboratory

  4. CX-012676: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Zeolite Membranes for Krypton/Xenon Separation from Spent Nuclear Fuel Reprocessing Off-Gas – Georgia Tech Research Corporation CX(s) Applied: B3.6Date: 41863 Location(s): GeorgiaOffices(s): Nuclear Energy

  5. CX-012670: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Self-Healing Zirconium Silicide Coatings for Improved Performance of Zirconium- Alloy Fuel Cladding – University of Wisconsin CX(s) Applied: B3.6Date: 41877 Location(s): WisconsinOffices(s): Nuclear Energy

  6. CX-010495: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Fuel Cycle Initiative (AFCI) Am/Cm Separations CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  7. CX-014582: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Testing for Hot Fuel Examination Facility Gas Sample Assay and Recharge Upgrade at Idaho National Laboratory Research Center CX(s) Applied: B2.4Date: 01/05/2016 Location(s): IdahoOffices(s): Nuclear Energy

  8. CX-014077: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Pulse Detonation Engine for Advanced Oxy-Combustion of Coal-Based Fuel for MHD CX(s) Applied: B3.6 Date: 07222015 Location(s): Oregon Offices(s): National Energy Technology ...

  9. CX-011765: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clean Energy Supply Chain and Manufacturing Competitiveness Analysis for Hydrogen and Fuel Cell Technologies CX(s) Applied: A9 Date: 02/20/2014 Location(s): Colorado Offices(s): Golden Field Office

  10. CX-010264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Synthetic Microorganisms to Enable Lignin to Fuel Conversion CX(s) Applied: A9, B3.6 Date: 04/15/2013 Location(s): Texas, Georgia, Washington Offices(s): Golden Field Office

  11. CX-009390: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SECA Coal-Based Systems - FuelCell Energy (Revised Summary CX) CX(s) Applied: A9, B3.6 Date: 09/13/2012 Location(s): Multiple, Canada Offices(s): National Energy Technology Laboratory

  12. CX-014276: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hydrogen Fuel-Cell Electric Hybrid Truck Demonstration CX(s) Applied: B5.22Date: 08/27/2015 Location(s): TexasOffices(s): National Energy Technology Laboratory

  13. CX-011303: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota E85 Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 10/08/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory

  14. CX-011561: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities CX(s) Applied: B3.6 Date: 11/19/2013 Location(s): South Carolina Offices(s): Idaho Operations Office

  15. CX-014087: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Self-Regulating Surface Chemistry For More Robust Highly Durable Solid Oxide Fuel Cell Cathodes CX(s) Applied: B3.6Date: 07/16/2015 Location(s): MassachusettsOffices(s): National Energy Technology Laboratory

  16. CX-007585: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Minnesota E85 Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 12/29/2011 Location(s): Minnesota Offices(s): National Energy Technology Laboratory

  17. CX-007970: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Monitoring of L-Area Basin Spent Fuel Storage Facility CX(s) Applied: B3.6 Date: 02/06/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  18. CX-011563: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Multiphase Nanocrystalline Ceramic Concept for Nuclear Fuel CX(s) Applied: B3.15 Date: 11/19/2013 Location(s): California Offices(s): Idaho Operations Office

  19. CX-014393: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Dispose of Old Materials and Fuels Complex Security Trailer CX(s) Applied: B1.24Date: 12/07/2015 Location(s): IdahoOffices(s): Nuclear Energy

  20. CX-011793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Texas Alternative Fuel Vehicle Pilot Program CX(s) Applied: A1, B5.22 Date: 02/07/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  1. CX-013726: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alternative Fuel Vehicle Curriculum Development and Outreach Initiative CX(s) Applied: A9Date: 04/20/2015 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  2. CX-008727: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuel Complex – Sodium Processing Facility Tank System Resource Conservation and Recovery Act Closure CX(s) Applied: B6.1 Date: 06/27/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  3. CX-014231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metal 3D Printing of Low-NOX Fuel Injectors with Integrated Temperature Sensors CX(s) Applied: A9Date: 09/16/2015 Location(s): TexasOffices(s): National Energy Technology Laboratory

  4. CX-009115: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Basin Modifications to Receive Research Fuel CX(s) Applied: B2.5 Date: 08/15/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-012673: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Combining Experiments and Simulations of Extraction Kinetics and Thermodynamics in Advanced Separation Processes for Used Nuclear Fuel. University of California, Irving CX(s) Applied: B3.6Date: 41872 Location(s): CaliforniaOffices(s): Nuclear Energy

  6. CX-008970: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration CX(s) Applied: A9, A11 Date: 08/01/2012 Location(s): Spain Offices(s): National Energy Technology Laboratory

  7. CX-014004: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuel Complex-752 Analytical Laboratory Argon Relief Valve and Flow Meter Installation CX(s) Applied: B2.2Date: 07/30/2015 Location(s): IdahoOffices(s): Nuclear Energy

  8. CX-013839: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex (MFC)-752 Analytical Laboratory Casting Laboratory Glovebox Heat Detection CX(s) Applied: B2.2Date: 06/18/2015 Location(s): IdahoOffices(s): Nuclear Energy

  9. CX-013675: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex MH50 Fiber Optic Installation Project CX(s) Applied: B4.7Date: 05/19/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  10. CX-013317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex (MFC)-776 (Zero Power Physics Reactor [ZPPR]) Roof Repairs/Replacement CX(s) Applied: B3.11Date: 12/18/2014 Location(s): IdahoOffices(s): Nuclear Energy

  11. CX-012711: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex (MFC) Fire Water Replacement and Upgrades CX(s) Applied: B2.5Date: 41849 Location(s): IdahoOffices(s): Nuclear Energy

  12. CX-013318: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex (MFC)-765 Elevator Upgrade CX(s) Applied: B2.5Date: 12/17/2014 Location(s): IdahoOffices(s): Nuclear Energy

  13. CX-002689: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fuels Research Lab at TA-35-455CX(s) Applied: B3.6Date: 06/02/2010Location(s): New MexicoOffice(s): Los Alamos Site Office

  14. CX-100398 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Continuous Fiber Composite Electrofusion Couplers Award Number: DE- EE-0007274 CX(s) Applied: A9, B3.6 Fuel Cell Technologies Office Date: 11/03/2015 Location(s): NY Office(s): Golden Field Office

  15. CX-010173: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sooting Behavior of Conventional and Renewable Diesel-Fuel Compounds and Mixtures CX(s) Applied: B3.6 Date: 04/26/2013 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

  16. CX-008269: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Beaver Natural Gas Fueling Station CX(s) Applied: B5.22 Date: 05/15/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory

  17. CX-011795: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ultra Efficient CHHP using High Temperature Fuel Cell CX(s) Applied: B3.6 Date: 02/06/2014 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

  18. CX-010803: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Midwest Region Alternative Fuels Project CX(s) Applied: A1, B5.22 Date: 08/08/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  19. CX-011460: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Texas Alternative Fuel Vehicle Pilot Program CX(s) Applied: A1, B5.22 Date: 11/04/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  20. CX-009449: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: A1 Date: 11/08/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory

  1. CX-013815: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiation Effects on High Thermal Conductivity Fuel Surrogates - University of Tennessee CX(s) Applied: B3.6Date: 06/18/2015 Location(s): IdahoOffices(s): Nuclear Energy

  2. CX-013816: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Multimodal Nondestructive Dry Cask Basket Structure and Spent Fuel Evaluation- The University of Mississippi CX(s) Applied: B3.6Date: 06/18/2015 Location(s): IdahoOffices(s): Nuclear Energy

  3. CX-008275: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clean Cities - Implementation Initiatives to Advance Alternative Fuel Markets CX(s) Applied: A1, A9, A11 Date: 05/10/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory

  4. CX-012117: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fuel Cell Hybrid Walk-In Van Deployment Project CX(s) Applied: A9 Date: 05/21/2014 Location(s): Georgia Offices(s): Golden Field Office

  5. CX-009364: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 09/19/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  6. CX-009335: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22 Date: 09/24/2012 Location(s): Florida Offices(s): National Energy Technology Laboratory

  7. CX-008284: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22 Date: 05/01/2012 Location(s): Florida Offices(s): National Energy Technology Laboratory

  8. CX-007595: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1 Date: 01/26/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  9. CX-007592: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: B5.22 Date: 01/27/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  10. CX-011112: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Gasification to Produce Fischer-Tropsch Jet and Diesel Fuel CX(s) Applied: A9 Date: 08/15/2013 Location(s): Iowa Offices(s): Golden Field Office

  11. CX-009039: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SiC-SiC Composite for Fuel Structure Applications – Electric Power Research Institute CX(s) Applied: B3.6 Date: 08/09/2012 Location(s): CX: none Offices(s): Nuclear Energy

  12. CX-010059: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Density Fuel Material for Light Water Reactors (LWRs) CX(s) Applied: B1.31 Date: 01/14/2013 Location(s): Idaho Offices(s): Nuclear Energy

  13. CX-010701: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex Diversion Dam CX(s) Applied: B2.5 Date: 06/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  14. CX-009559: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Light-Duty Fuel Cell Electric Vehicle Validation Data CX(s) Applied: A9 Date: 12/13/2012 Location(s): California Offices(s): Golden Field Office

  15. CX-012452: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design/Cost Study and Commercialization Analysis for Synthetic Jet Fuel Production CX(s) Applied: A8, A9, A11Date: 41877 Location(s): New JerseyOffices(s): National Energy Technology Laboratory

  16. CX-012459: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Design/Cost Study and Commercialization Analysis for Synthetic Jet Fuel Production CX(s) Applied: A8, A9, A11Date: 41877 Location(s): PennsylvaniaOffices(s): National Energy Technology Laboratory

  17. CX-013672: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuel Complex-752 Analytical Laboratory Main Stack Modifications for Sample Probe Replacement CX(s) Applied: B2.2Date: 05/11/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  18. CX-011009: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): New York Offices(s): National Energy Technology Laboratory

  19. CX-011010: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  20. CX-011012: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: A1, A9 Date: 09/11/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  1. CX-011011: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Solid Oxide Fuel Cell (SOFC) Cell and Stack Technology CX(s) Applied: B3.6 Date: 09/11/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  2. CX-011083: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SECA Coal Based Systems- LG Fuel Cell Systems CX(s) Applied: B3.6 Date: 08/27/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  3. CX-011084: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SECA Coal Based Systems- LG Fuel Cell Systems CX(s) Applied: B3.6 Date: 08/27/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory

  4. CX-011082: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SECA Coal Based Systems- LG Fuel Cell Systems CX(s) Applied: B3.6 Date: 08/27/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  5. CX-012251: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-012251: Categorical Exclusion Determination A Hybrid Catalytic Route to Fuels from Biomass Syngas CX(s) Applied: B3.6 Date: 05292014 Location(s): Georgia, Illinois Offices(s): ...

  6. CX-009863: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Production of Coal/Biomass-to-Liquid-Based Jet Fuels from Biomass-Based Feedstocks CX(s) Applied: B3.6 Date: 01/08/2013 Location(s): North Dakota Offices(s): National Energy Technology Laboratory

  7. CX-010952: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Biofuels Retail Availability Improvement Network - Biodiesel Fueling Infrastructure CX(s) Applied: B5.22 Date: 09/17/2013 Location(s): Wisconsin Offices(s): National Energy Technology Laboratory

  8. CX-011758: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Delaware - Synthetic Methylotrophy to Liquid Fuel CX(s) Applied: B3.6 Date: 12/19/2013 Location(s): Delaware, New York Offices(s): Advanced Research Projects Agency-Energy

  9. CX-009922: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fuel Cell Powered Airport Ground Support Equipment Deployment CX(s) Applied: A9, B5.1, B5.22 Date: 01/29/2013 Location(s): New York Offices(s): Golden Field Office

  10. CX-012420: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Durable, Impermeable Brazes for Solid Oxide Fuel Cells CX(s) Applied: B3.6Date: 41880 Location(s): MichiganOffices(s): National Energy Technology Laboratory

  11. CX-011297: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A Novel Lubricant Formulation Scheme for 2% Fuel Efficiency Improvement CX(s) Applied: B3.6 Date: 10/10/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  12. CX-010788: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fossil Fleet Transition with Fuel Changes and Large Scale Variable Renewable Integration - SUMMARY Categorical Exclusion (CX) CX(s) Applied: A9 Date: 08/14/2013 Location(s): Multiple States Offices(s): National Energy Technology Laboratory

  13. CX-012372: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reactive Gas Reprocessing of Used Nuclear Fuel Simulants CX(s) Applied: B3.6 Date: 05/30/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-011257: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    New Fuel Cell Membranes with Improved Durability and Performance CX(s) Applied: A9, B3.6 Date: 09/18/2013 Location(s): Minnesota, Michigan, Tennessee Offices(s): Golden Field Office

  15. CX-009856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: A1, B5.22 Date: 01/16/2013 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  16. CX-011293: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California Low Carbon Fuels Infrastructure Investment Initiative CX(s) Applied: B5.22 Date: 10/24/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  17. CX-011292: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California Low Carbon Fuels Infrastructure Investment Initiative CX(s) Applied: B5.22 Date: 10/24/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  18. CX-011780: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California Low Carbon Fuels Infrastructure Investment Initiative (LCFI3) CX(s) Applied: B5.22 Date: 02/20/2014 Location(s): California Offices(s): National Energy Technology Laboratory

  19. CX-010641: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California Low Carbon Fuels Infrastructure Investment Initiative CX(s) Applied: B5.22 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  20. CX-010896: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California Low Carbon Fuels Infrastructure Investment Initiative (SUMMARY Categorical Exclusion) CX(s) Applied: B5.22 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  1. CX-011781: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    California Low Carbon Fuels Infrastructure Investment Initiative (LCFI3) CX(s) Applied: B5.22 Date: 02/20/2014 Location(s): California Offices(s): National Energy Technology Laboratory

  2. FE Categorical Exclusions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09162011 Location(s): South Windsor, Connecticut...

  3. CX-009471: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Utah Expansion of Alternative Fuel Infrastructure - Lehi Compressed Natural Gas Station CX(s) Applied: B5.22 Date: 10/15/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory

  4. CX-009457: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    California Avenue Natural Gas Fueling Station CX(s) Applied: B5.22 Date: 10/31/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory

  5. CX-008364: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Paint Disturbance and/or Removal Activities in Spent Fuel Project Facilities CX(s) Applied: B1.3 Date: 04/09/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  6. CX-009840: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Multi-Phase Injectors for Fuel Flexible Microturbine for Stripper Well Applications CX(s) Applied: A9, B3.6 Date: 02/06/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

  7. CX-013870: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Southeast Alternative Fuel Demonstration Project CX(s) Applied: A1, A9Date: 07/07/2015 Location(s): North CarolinaOffices(s): National Energy Technology Laboratory

  8. CX-012515: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mitigation of Chromium Impurity Effects and Degradation in Solid Oxide Fuel Cells: The Roles of… CX(s) Applied: B3.6Date: 41848 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  9. CX-012521: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mitigation of Chromium Impurity Effects and Degradation in Solid Oxide Fuel Cells: The Roles of… CX(s) Applied: B3.6Date: 41848 Location(s): MassachusettsOffices(s): National Energy Technology Laboratory

  10. CX-010172: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ignition and Combustion Characteristics of Transportation Fuels under Lean-Burn Conditions CX(s) Applied: A9, B3.6 Date: 04/26/2013 Location(s): Michigan, Illinois Offices(s): National Energy Technology Laboratory

  11. CX-100565 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Innovative Advanced Hydrogen Mobile Fueler Award Number: DE-EE0007275 CX(s) Applied: A9, B3.6 Fuel Cell Technologies Office Date: 03/04/2016 Location(s): CA Office(s): Golden Field Office

  12. Categorical Exclusion Determinations: Nuclear Energy | Department...

    Office of Environmental Management (EM)

    February 24, 2016 CX-014559: Categorical Exclusion Determination Hot Fuel Examination Facility High Bay Crane Refurbishment CX(s) Applied: B1.31 Date: 02242016 Location(s): Idaho ...

  13. CX-012786: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Methods to Measure, Predict, and Relate Friction, Wear, and Fuel Economy CX(s) Applied: B3.6Date: 41906 Location(s): IllinoisOffices(s): Argonne Site Office

  14. CX-014413: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Materials and Fuels Complex (MFC) Machine Shop Reconfiguration and Installation Project CX(s) Applied: B1.31Date: 11/09/2015 Location(s): IdahoOffices(s): Nuclear Energy

  15. CX-014559: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hot Fuel Examination Facility High Bay Crane Refurbishment CX(s) Applied: B1.31Date: 02/24/2016 Location(s): IdahoOffices(s): Nuclear Energy

  16. CX-010399: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    High Density Fuel Material for Light Water Reactors CX(s) Applied: B1.31 Date: 04/25/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  17. CX-013674: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Materials and Fuel Complex-785 Monorail System Upgrade CX(s) Applied: B1.31Date: 05/20/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  18. CX-100587 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Categorical Exclusion Determination CX-100587 Categorical Exclusion Determination H2 Refuel H-Prize Selection of Finalist Award Number: NA CX(s) Applied: A9 Fuel Cells Technology ...

  19. CX-011101: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bio-Jet Fuel from N-Butanol Utilizing Lignocellulosic Sugars CX(s) Applied: A9 Date: 08/30/2013 Location(s): California Offices(s): Golden Field Office

  20. CX-008285: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22 Date: 05/01/2012 Location(s): Florida Offices(s): National Energy Technology Laboratory

  1. CX-007719: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Carolina State University - Jet Fuel from Camelina Sativa: A Systems Approach CX(s) Applied: B3.6 Date: 11/23/2011 Location(s): North Carolina Offices(s): Advanced Research Projects Agency-Energy

  2. CX-009241: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of Light Water Reactor Fuels Enhanced Accident Tolerance - Westinghouse Electric Company LLC CX(s) Applied: B3.6 Date: 09/25/2012 Location(s): New Mexico Offices(s): Nuclear Energy

  3. CX-013835: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advanced Surface Plasma Nitriding for Development of Corrosion Resistant and Accident Tolerant Fuel Cladding CX(s) Applied: B3.6Date: 06/09/2015 Location(s): IdahoOffices(s): Nuclear Energy

  4. CX-013804: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of Accident Tolerant Fuel Options for Near Term Applications - Massachusetts Institute of Technology CX(s) Applied: B3.6, B3.10Date: 06/29/2015 Location(s): IdahoOffices(s): Nuclear Energy

  5. CX-012688: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Assessment of Corrosion Resistance of Promising Accident Tolerant Fuel Cladding Under Reactor Conditions – Notre Dame University CX(s) Applied: B3.6Date: 41869 Location(s): IndianaOffices(s): Nuclear Energy

  6. CX-011558: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Structural Health Monitoring of Nuclear Spent Fuel Storage Facilities CX(s) Applied: B3.6 Date: 11/21/2013 Location(s): California Offices(s): Idaho Operations Office

  7. CX-014232: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coal Syngas Combustor Development for High-Pressure, Oxy-Fuel Supercritical… CX(s) Applied: A1, A9, A11Date: 09/15/2015 Location(s): North CarolinaOffices(s): National Energy Technology Laboratory

  8. CX-008586: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SkyFuel Baseload Parabolic Trough CX(s) Applied: B3.6, B5.15 Date: 07/11/2012 Location(s): Colorado Offices(s): Golden Field Office

  9. CX-010939: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09/17/2013 Location(s): North Carolina Offices(s): National Energy Technology Laboratory

  10. CX-008332: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Midwest Region Alternative Fuels Project CX(s) Applied: B5.22 Date: 04/05/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory