Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Consumption - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Energy Consumption Survey(RTECS), 1994 Fuel Consumption

2

Alternative Fuels - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Energy Information Administration, Residential Transportation Energy Consumption Survey(RTECS), Transporation Channel of Alternative Fuels

3

Nuclear fuel cycle costs  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel cycle costs are given for the pressurized water reactor once-through and fuel recycle systems, and for the liquid-metal fast breeder reactor system. These calculations show that fuel cycle costs are a small part of the total power costs. For breeder reactors, fuel cycle costs are about half that of the present once-through system. The total power cost of the breeder reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1982-02-01T23:59:59.000Z

4

Chapter 30 - Cost Accounting Standards Administration | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 - Cost Accounting Standards Administration Chapter 30 - Cost Accounting Standards Administration 30.1DOE'sOversightofCertainContractorDefinedPensionPlansandItsEffect...

5

Chapter 4. Receipts and Cost of Fossil Fuels  

U.S. Energy Information Administration (EIA)

74 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 4. Receipts and Cost of Fossil Fuels

6

Fuel-cycle costs for alternative fuels  

Science Conference Proceedings (OSTI)

This paper compares the fuel cycle cost and fresh fuel requirements for a range of nuclear reactor systems including the present day LWR without fuel recycle, an LWR modified to obtain a higher fuel burnup, an LWR using recycle uranium and plutonium fuel, an LWR using a proliferation resistant /sup 233/U-Th cycle, a heavy water reactor, a couple of HTGRs, a GCFR, and several LMFBRs. These reactor systems were selected from a set of 26 developed for the NASAP study and represent a wide range of fuel cycle requirements.

Rainey, R.H.; Burch, W.D.; Haire, M.J.; Unger, W.E.

1980-01-01T23:59:59.000Z

7

Advanced Fuel Cycle Cost Basis  

SciTech Connect

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

2008-03-01T23:59:59.000Z

8

Advanced Fuel Cycle Cost Basis  

SciTech Connect

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

2007-04-01T23:59:59.000Z

9

Advanced Fuel Cycle Cost Basis  

SciTech Connect

This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

2009-12-01T23:59:59.000Z

10

Costs of electronuclear fuel production  

SciTech Connect

The Los Alamos Scientific Laboratory (LASL) proposes to study the electronuclear fuel producer (EFP) as a means of producing fissile fuel to generate electricity. The main advantage of the EFP is that it may reduce the risks of nuclear proliferation by breeding /sup 233/U from thorium, thereby avoiding plutonium separation. A report on the costs of electronuclear fuel production based upon two designs considered by LASL is presented. The findings indicate that the EFP design variations considered are not likely to result in electricity generation costs as low as the uranium fuel cycle used in the US today. At current estimates of annual fuel output (500 kg /sup 233/U per EFP), the costs of electricity generation using fuel produced by the EFP are more than three times higher than generating costs using the traditional fuel cycle. Sensitivity analysis indicates that electronuclear fuel production would become cost competitive with the traditional uranium fuel cycle when U/sub 3/O/sub 8/ (yellowcake) prices approach $1000 per pound.

Flaim, T.; Loose, V.

1978-07-01T23:59:59.000Z

11

Alternative Fuels Data Center: Vehicle Incremental Cost Allocation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Incremental Vehicle Incremental Cost Allocation to someone by E-mail Share Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Facebook Tweet about Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Twitter Bookmark Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Google Bookmark Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Delicious Rank Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on Digg Find More places to share Alternative Fuels Data Center: Vehicle Incremental Cost Allocation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Vehicle Incremental Cost Allocation The U.S. General Services Administration (GSA) must allocate the

12

Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reynolds Logistics Reynolds Logistics Reduces Fuel Costs With EVs to someone by E-mail Share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Facebook Tweet about Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Twitter Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Google Bookmark Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Delicious Rank Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on Digg Find More places to share Alternative Fuels Data Center: Reynolds Logistics Reduces Fuel Costs With EVs on AddThis.com... July 23, 2011 Reynolds Logistics Reduces Fuel Costs With EVs F ind out how Reynolds Logistics uses electric vehicles to offset petroleum

13

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

14

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

15

GUIDE TO NUCLEAR POWER COST EVALUATION. VOLUME 4. FUEL CYCLE COSTS  

SciTech Connect

Information on fuel cycle cost is presented. Topics covered include: nuclear fuel, fuel management, fuel cost, fissionable material cost, use charge, conversion and fabrication costs, processing cost, and shipping cost. (M.C.G.)

1962-03-15T23:59:59.000Z

16

Cost and Quality of Fuels for Electric Plants 2006 and 2007  

U.S. Energy Information Administration (EIA)

DOE/EIA-0191(2007) Distribution Category UC-950 Cost and Quality of Fuels for Electric Plants 2006 and 2007 December 2008 Energy Information Administration

17

Fuel-cycle cost comparisons with oxide and silicide fuels  

SciTech Connect

This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed.

Matos, J.E.; Freese, K.E.

1982-01-01T23:59:59.000Z

18

Cost of Fuel to General Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fuel to Generate Electricity of Fuel to Generate Electricity Cost of Fuel to Generate Electricity Herb Emmrich Gas Demand Forecast, Economic Analysis & Tariffs Manager SCG/SDG&E SCG/SDG&E Federal Utility Partnership Working Group (FUPWG) 2009 Fall Meeting November 18, 2009 Ontario, California The Six Main Costs to Price Electricity are:  Capital costs - the cost of capital investment (debt & equity), depreciation, Federal & State income taxes and property taxes and property taxes  Fuel costs based on fuel used to generate electricity - hydro, natural gas, coal, fuel oil, wind, solar, photovoltaic geothermal biogas photovoltaic, geothermal, biogas  Operating and maintenance costs  Transmission costs  Distribution costs  Social adder costs - GHG adder, low income adder,

19

Today in Energy - High airline jet fuel costs prompt cost ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... and idling time. ... Delta stated that it anticipates cost savings of $300 million per year as a result of this ...

20

Cost and Quality of Fuels for Electric Utility Plants  

Gasoline and Diesel Fuel Update (EIA)

1) 1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Preface Background The Cost and Quality of Fuels for Electric Utility Plants 2001 is prepared by the Electric Power Divi- sion; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); U.S.

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Department Announces New Investment to Reduce Fuel Cell Costs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Investment to Reduce Fuel Cell New Investment to Reduce Fuel Cell Costs Energy Department Announces New Investment to Reduce Fuel Cell Costs August 1, 2013 - 12:00pm Addthis In support of the Obama Administration's all-of-the-above strategy to develop clean, domestic energy sources, the Energy Department today announced a $4.5 million investment in two projects-led by Minnesota-based 3M and the Colorado School of Mines-to lower the cost, improve the durability, and increase the efficiency of next-generation fuel cell systems. This investment is a part of the Energy Department's commitment to maintain American leadership in innovative clean energy technologies, give American businesses more options to cut energy costs, and reduce our reliance on imported oil. "Fuel cell technologies have an important role to play in diversifying

22

Breaking the Fuel Cell Cost Barrier  

NLE Websites -- All DOE Office Websites (Extended Search)

Breaking the Fuel Cell Cost Barrier Breaking the Fuel Cell Cost Barrier AMFC Workshop May 8 th , 2011, Arlington, VA Shimshon Gottesfeld, CTO The Fuel Cell Cost Challenge 2 CellEra's goal - achieve price parity with incumbents earlier on in market entry process ! Mainstream Polymer Electrolyte Fuel Cell ( PEM) Cost Barriers 3 Graphite / stainless steel hardware Acidic membrane Platinum based electrodes Cost barriers deeply embedded in core tech materials BOM-based cost barriers - 90% of stack cost Cost volatility - Platinum $500/Oz - $2,500/Oz The possibility of an OH - ion conducting membrane 4 Non-acidic membrane CellEra Took Advantage of this Opportunity A new type of membrane component with potential for strong fuel cell cost cuts was revealed in 2006, but was accompanied by general industry skepticism

23

Fuel cycle cost study with HEU and LEU fuels  

SciTech Connect

Fuel cycle costs are compared for a range of /sup 235/U loadings with HEU and LEU fuels using the IAEA generic 10 MW reactor as an example. If LEU silicide fuels are successfully demonstrated and licensed, the results indicate that total fuel cycle costs can be about the same or lower than those with the HEU fuels that are currently used in most research reactors.

Matos, J.E.; Freese, K.E.

1984-01-01T23:59:59.000Z

24

Cost and Quality of Fuels for Electric Utility Plants 1997  

Gasoline and Diesel Fuel Update (EIA)

7 Tables 7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost and Quality of Fuels for Electric Utility Plants 1997 Tables ii Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

25

Benchmark the Fuel Cost of Steam Generation  

SciTech Connect

This revised ITP tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

2006-01-01T23:59:59.000Z

26

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

27

Nuclear-fuel-cycle costs. Consolidated Fuel-Reprocessing Program  

Science Conference Proceedings (OSTI)

The costs for the back-end of the nuclear fuel cycle, which were developed as part of the Nonproliferation Alternative Systems Assessment Program (NASAP), are presented. Total fuel-cycle costs are given for the pressurized-water reactor once-through and fuel-recycle systems, and for the liquid-metal fast-breeder-reactor system. These calculations show that fuel-cycle costs are a small part of the total power costs. For breeder reactors, fuel-cycle costs are about half that of the present once-through system. The total power cost of the breeder-reactor system is greater than that of light-water reactor at today's prices for uranium and enrichment.

Burch, W.D.; Haire, M.J.; Rainey, R.H.

1981-01-01T23:59:59.000Z

28

FACILITY AND ADMINISTRATIVE (INDIRECT) COSTS September 2007  

E-Print Network (OSTI)

, 2015. Definitions: Direct Costs: Costs that can be specifically identified with a particular project(s) Cost: A broad category of costs that are common to all research projects. "Facilities" is defined one F&A cost rate. If 50% or more of a project is performed off-campus (exclusive of any subcontract

Albertini, David

29

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

3.1 Fuel Cell System Cost Estimate We define the fuel cellto note that these cost estimates are based on a largeother studies on fuel cell cost estimates Baseline gasoline

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

30

Middle East Production Costs - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Persian Gulf Oil Production Capacity and Development Cost Forecast (without additional development to replace production) Based on Low-Case Weighted Average

31

HEFA and F-T jet fuel cost analyses  

E-Print Network (OSTI)

Aviation and the Environment 2. HEFA jet fuel from vegetable oil bottom-up cost study 3. HEFA jet fuel from microalgae bottom-up cost

Nick Carter; Michael Bredehoeft; Christoph Wollersheim; Hakan Olcay; James Hileman; Steven Barrett; Website Lae. Mit. Edu

2012-01-01T23:59:59.000Z

32

FSM Research Administrators' Workshop Series Cost Principles for Sponsored Projects  

E-Print Network (OSTI)

FSM Research Administrators' Workshop Series Cost Principles for Sponsored Projects October 4, 2012 degree of accuracy #12;Examples of Direct Costs · Salaries and fringe benefits of project personnel, unallowable. Other factors affecting allowability of costs: · Reasonable · Allocable to the proposed project

Chisholm, Rex L.

33

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

Winchester, N.

34

Facilities & Administrative (F&A) Costs at NIU F&A costs at NIU  

E-Print Network (OSTI)

project, instructional or public service activity. Such costs include utilities, buildings and facilities accrue only as projects dollars are expended. As a result, F&A costs are collected and allocatedFacilities & Administrative (F&A) Costs at NIU #12;F&A costs at NIU What are Facilities

Karonis, Nicholas T.

35

Fuel Cell System Cost for Transporationa--2008 Cost Estimate  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell System Cost for Fuel Cell System Cost for Transportation-2008 Cost Estimate National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC Contract No. DE-AC36-08-GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen Program NREL/BK-6A1-45457 May 2009 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

36

Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on AddThis.com...

37

Durable, Low Cost, Improved Fuel Cell Membranes  

NLE Websites -- All DOE Office Websites (Extended Search)

Durable, Low-cost, Improved Durable, Low-cost, Improved Fuel Cell Membranes US Department of Energy Office of Hydrogen, Fuel Cells and Infrastructure Technologies Kickoff Meeting, Washington DC, February 13, 2007 Michel Fouré Project Objectives z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80°C at low relative humidity (25-50%). z To develop a membrane capable of operating at 120°C for brief periods of time. z To elucidate membrane degradation and failure mechanisms. U:jen/slides/pres.07/FC kickoff Washington DC 2-13-07 2 Technical Barriers Addressed z Membrane Cost z Membrane Durability z Membrane capability to operate at low relative humidity. z Membrane capability to operate at 120ºC for brief period of times.

38

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

James, A cost comparison of fuel-cell and battery electricHowever, battery electric vehicles have lower fuel cost, usebattery-electric vehicles in terms of weight, volume, GHGs and cost,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

39

Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

CNG Shuttles Save Fuel CNG Shuttles Save Fuel Costs for R&R Limousine and Bus to someone by E-mail Share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Facebook Tweet about Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Twitter Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Google Bookmark Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Delicious Rank Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on Digg Find More places to share Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for R&R Limousine and Bus on AddThis.com... June 1, 2013

40

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Parametric Study of Front-End Nuclear Fuel Cycle Costs  

Science Conference Proceedings (OSTI)

This study provides an overview of front-end fuel cost components for nuclear plants, specifically uranium concentrates, uranium conversion services, uranium enrichment services, and nuclear fuel fabrication services. A parametric analysis of light-water reactor (LWR) fuel cycle costs is also included in order to quantify the impacts that result from changes in the cost of one or more front-end components on overall fuel cycle costs.

2009-02-20T23:59:59.000Z

42

Cost and Quality of Fuels for Electric Plants  

Reports and Publications (EIA)

Provides comprehensive information concerning the quality, quantity, and cost of fossil fuels used to produce electricity in the United States.

Dean Fennell

2010-12-01T23:59:59.000Z

43

Residual Fuel Oil - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

44

Own Use of Fuel - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The process energy factors, Pi, are estimated from primary data on process energy use and fuel or feedstock output, at each stage. The conversion/loss factors, Ki ...

45

Energy Information Administration (EIA) - Renewable Fuels ...  

U.S. Energy Information Administration (EIA)

Generally, a requirement to increase ethanol use would lead to higher ethanol production costs, especially for the marginal supplier, ...

46

THE NUCLEAR FUEL CYCLE: PROSPECTS FOR REDUCING ITS COST  

SciTech Connect

Nuclear fuel cost of 1.25 mills/kwh would make nuclear power competitive with conventional power in lowcost coal areas if capital and operating costs can be brought to within about 10 percent of those of coal-fired plants. Substantial decreases in fuel fabrication cost are anticipated by 1970: other costs in the fuel cycle are expccted to remain about the same as at present. Unit costs and irradiation levels that would be needed to give a fuel cost of 1.25 mills/kwh are believed to be attainable by 1970. (auth)

Albrecht, W.L.

1959-02-20T23:59:59.000Z

47

Renewable & Alternative Fuels - U.S. Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Renewable & Alternative Fuels Renewable & Alternative Fuels Glossary › FAQS › Overview Data Summary Biomass Geothermal Hydropower Solar Wind Alternative Transportation Fuels All Renewable & Alternative Fuels Data Reports Analysis & Projections Most Requested Alternative Fuels Capacity and Generation Consumption Environment Industry Characteristics Prices Production Projections Renewable Energy Type All Reports Don't miss: EIA's Alternative Fuel Vehicle Data. Including two interactive data viewers that provide custom data views of Alternative Fuel Vehicle data for both User & Fuel Data and Supplier Data. EIA's latest Short-Term Energy Outlook for renewables › chart showing U.S. renewable energy supply Source: U.S. Energy Information Administration, Short-Term Energy Outlook, released monthly.

48

Section I: FUEL BILLS - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Section I: FUEL BILLS I-1 In this interview you have told me how your household uses energy. ... What portion of the electric bill is for non-household uses?

49

Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Rate and Natural Gas Rate and Cost Recovery Authorization to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Google Bookmark Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Delicious Rank Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Rate and Cost Recovery Authorization on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

50

DOE Hydrogen Analysis Repository: H2 Fueling Appliances Cost and  

NLE Websites -- All DOE Office Websites (Extended Search)

H2 Fueling Appliances Cost and Performance H2 Fueling Appliances Cost and Performance Project Summary Full Title: H2 Production Infrastructure Analysis - Task 2: Cost and Performance of H2 Fueling Appliances Project ID: 80 Principal Investigator: Brian James Keywords: Costs; steam methane reforming (SMR); autothermal reforming (ATR); hydrogen fueling Purpose The purpose of the analysis was to estimate the capital cost and the resulting cost of hydrogen of several types of methane-fueled hydrogen production systems. A bottoms-up cost analysis was conducted of each system to generate a system design and detailed bill-of-materials. Estimates of the overall capital cost of the hydrogen production appliance were generated. This work supports Systems Analysis Milestone A1. ("Complete techno-economic analysis on production and delivery technologies currently

51

Fuel costs and the retirement of capital goods  

E-Print Network (OSTI)

This paper explores the effect that energy prices and market conditions have on the retirement rates of capital goods using new micro data on aircraft lifetimes and fuel costs. The oil shocks of the 1970s made fuel intensive ...

Goolsbee, Austan Dean

1993-01-01T23:59:59.000Z

52

Back-end costs of alternative nuclear fuel cycles  

Science Conference Proceedings (OSTI)

As part of its charter, the Alternate Fuel Cycle Evaluation Program (AFCEP) was directed to evaluate the back-end of the nuclear fuel cycle in support of the Nonproliferation Alternative Systems Assessment Program (NASAP). The principal conclusion from this study is that the costs for recycling a broad range of reactor fuels will not have a large impact on total fuel cycle costs. For the once-through fuel cycle, the costs of fresh fuel fabrication, irradiated fuel storage, and associated transportation is about 1.2 to 1.3 mills/kWh. For the recycle of uranium and plutonium into thermal reactors, the back-cycle costs (i.e., the costs of irradiated fuel storage, transportation, reprocessing, refabrication, and waste disposal) will be from 3 to 3.5 mills/kWh. The costs for the recycle of uranium and plutonium into fast breeder reactors will be from 4.5 to 5 mills/kWh. Using a radioactive spikant or a denatured /sup 233/U-Th cycle will increase power costs for both recycle cases by about 1 mill/kWh. None of these costs substantially influence the total cost of nuclear power, which is in the range of 4 cents/kWh. The fuel cycle costs used in this study do not include costs incurred prior to fuel fabrication; that is, the cost of the uranium or thorium, the costs for enrichment, or credit for fissile materials in the discharged fuel, which is not recycled with the system.

Rainey, R.H.; Burch, W.D.; Haire, M.J.; Unger, W.E.

1980-01-01T23:59:59.000Z

53

Energy Tips: Benchmark the Fuel Cost of Steam Generation | ENERGY...  

NLE Websites -- All DOE Office Websites (Extended Search)

You are here Home Buildings & Plants Energy Tips: Benchmark the Fuel Cost of Steam Generation Secondary menu About us Press room Contact Us Portfolio Manager Login...

54

Figure 34. Ratio of average per megawatthour fuel costs ...  

U.S. Energy Information Administration (EIA)

Title: Figure 34. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in the RFC west ...

55

Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Ukraine Fuel Removal: Fact Sheet Fact Sheet Ukraine Fuel Removal: Fact Sheet Mar 26, 2012 For nearly two decades, the United States and Ukraine have cooperated on a

56

Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration Ukraine Fuel Removal: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Ukraine Fuel Removal: Fact Sheet Fact Sheet Ukraine Fuel Removal: Fact Sheet Mar 26, 2012 For nearly two decades, the United States and Ukraine have cooperated on a

57

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

d Total Battery Capacity (Kwh) Cost per Battery ($)e Totalcosts to consumersto purchase a EV fuel economy in miles per kwhKwh equivalent to per-mile gasoline road tax was included. Table 11 Performance and Cost

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

58

Impacts on irrigated agriculture of changes in electricity costs resulting from Western Area Power Administration`s power marketing alternatives  

DOE Green Energy (OSTI)

Irrigation is a major factor in the growth of US agricultural productivity, especially in western states, which account for more than 85% of the nation`s irrigated acreage. In some of these states, almost all cropland is irrigated, and nearly 50% of the irrigation is done with electrically powered pumps. Therefore, even small increases in the cost of electricity could have a disproportionate impact on irrigated agriculture. This technical memorandum examines the impacts that could result from proposed changes in the power marketing programs of the Western Area Power Administration`s Salt Lake City Area Office. The changes could increase the cost of power to all Western customers, including rural municipalities and irrigation districts that rely on inexpensive federal power to pump water. The impacts are assessed by translating changes in Western`s wholesale power rate into changes in the cost of pumping water as an input for agricultural production. Farmers can adapt to higher electricity prices in many ways, such as (1) using different pumping fuels, (2) adding workers and increasing management to irrigate more efficiently, and (3) growing more drought-tolerant crops. This study projects several responses, including using less groundwater and planting fewer waterintensive crops. The study finds that when dependence on Western`s power is high, the cost of power can have a major effect on energy use, agricultural practices, and the distribution of planted acreage. The biggest percentage changes in farm income would occur (1) in Nevada and Utah (however, all projected changes are less than 2% of the baseline) and (2) under the marketing alternatives that represent the lowest capacity and energy offer considered in Western`s Electric Power Marketing Environmental Impact Statement. The aggregate impact on farm incomes and the value of total farm production would be much smaller than that suggested by the changes in water use and planted acreage.

Edwards, B.K.; Flaim, S.J.; Howitt, R.E. [Argonne National Lab., IL (United States); Palmer, S.C. [Western Area Power Administration, Salt Lake City, UT (United States)

1995-03-01T23:59:59.000Z

59

Nuclear fuel fabrication and refabrication cost estimation methodology  

SciTech Connect

The costs for construction and operation of nuclear fuel fabrication facilities for several reactor types and fuels were estimated, and the unit costs (prices) of the fuels were determined from these estimates. The techniques used in estimating the costs of building and operating these nuclear fuel fabrication facilities are described in this report. Basically, the estimation techniques involve detailed comparisons of alternative and reference fuel fabrication plants. Increases or decreases in requirements for fabricating the alternative fuels are identified and assessed for their impact on the capital and operating costs. The impact on costs due to facility size or capacity was also assessed, and scaling factors for the various captial and operating cost categories are presented. The method and rationale by which these scaling factors were obtained are also discussed. By use of the techniques described herein, consistent cost information for a wide variety of fuel types can be obtained in a relatively short period of time. In this study, estimates for 52 fuel fabrication plants were obtained in approximately two months. These cost estimates were extensively reviewed by experts in the fabrication of the various fuels, and, in the opinion of the reviewers, the estimates were very consistent and sufficiently accurate for use in overall cycle assessments.

Judkins, R.R.; Olsen, A.R.

1979-11-01T23:59:59.000Z

60

Emission control cost-effectiveness of alternative-fuel vehicles  

DOE Green Energy (OSTI)

Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

Wang, Q. [Argonne National Lab., IL (United States); Sperling, D.; Olmstead, J. [California Univ., Davis, CA (United States). Inst. of Transportation Studies

1993-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel Cell System Cost for Transportation-2008 Cost Estimate (Book)  

DOE Green Energy (OSTI)

Independent review prepared for the U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies (HFCIT) Program Manager.

Not Available

2009-05-01T23:59:59.000Z

62

Evaluation of administrative procedures at the Synthetic Fuels Corporation  

Science Conference Proceedings (OSTI)

The Synthetic Fuels Corporation has improved its administrative procedures, but further actions are needed to strengthen contracting practices and internal financial controls. Pertinent recommendations are made in this report. This report also discusses the evolution of the Corporations's current salary structure and the activities of the Office of the Inspector General.

Not Available

1982-10-18T23:59:59.000Z

63

Flexible Fuel vehicle cost calculator | Open Energy Information  

Open Energy Info (EERE)

Flexible Fuel vehicle cost calculator Flexible Fuel vehicle cost calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Flexible Fuel Vehicle Cost Calculator Agency/Company /Organization: United States Department of Energy Phase: "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property. User Interface: Website Website: www.afdc.energy.gov/afdc/progs/cost_anal.php?0/E85 Calculate the cost to drive a flex-fueled vehicle (one that can run on either E85 Ethanol or gasoline) on each fuel type.

64

Cost Analysis of Fuel Cell Systems for Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Fuel Cell Systems for Transportation Compressed Hydrogen and PEM Fuel Cell System Discussion Fuel Cell Tech Team FreedomCar Detroit. MI October 20, 2004 TIAX LLC Acorn Park Cambridge, Massachusetts 02140-2390 Ref D0006 SFAA No. DE-SCO2- 98EE50526 Topic 1 Subtopic 1C Agenda EC_2004 10 20 FC Tech Team Presentation 1 1 Project Overview 2 Compressed Hydrogen Storage Cost 3 2004 System Cost Update 4 Appendix Project Overview Approach EC_2004 10 20 FC Tech Team Presentation 2 In our final year of the project, we assessed the cost of compressed hydrogen storage and updated the overall system cost projection. Task 1: PEMFC System Technology Synopsis Task 2: Develop Cost Model and Baseline Estimates Task 3: Identify Opportunities for System Cost Reduction Tasks 4, 5, 6 & 7: Annual Updates

65

Cost and Quality of Fuels for Electric Utility Plants 2000 Tables  

Gasoline and Diesel Fuel Update (EIA)

0) 0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions

66

Automotive and MHE Fuel Cell System Cost Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Vince Contini, Kathya Mahadevan, Fritz Eubanks, Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Analysis of Fuel Cells for Material Handling Applications 2 Presentation Outline * Background * Approach * System Design * Fuel Cell Stack Design * Stack, BOP and System Cost Models * System Cost Summary * Results Summary 3 * 10 and 25 kW PEM Fuel Cells for Material Handling Equipment (MHE) applications Background 5-year program to provide feedback to DOE on evaluating fuel cell systems for stationary and emerging markets by developing independent models and cost estimates * Applications - Primary (including CHP) power, backup power, APU, and material handling * Fuel Cell Types - 80°C PEM, 180°C PEM, SOFC technologies

67

Energy Tips: Benchmark the Fuel Cost of Steam Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Type (sales unit) Type (sales unit) Energy Content Combustion (Btu/sales unit) Efficiency (%) Natural Gas (therm) 100,000 81.7 Natural Gas (cubic foot) 1,030 81.7 Distillate/No. 2 Oil (gallon) 138,700 84.6 Residual/No. 6 Oil (gallon) 149,700 86.1 Coal (ton) 27,000,000 87.6 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation ($/1000 lbs of steam) is an effective way to assess the efficiency of your steam system. This cost is dependent upon fuel type, unit fuel cost, boiler efficiency, feedwater temperature, and steam pressure. This calculation provides a good first approximation for the cost of generating steam and serves as a tracking device to allow for boiler performance monitoring. Table 1 shows the heat input required to produce one pound of saturated

68

Performance and fuel cycle cost study of the R2 reactor with HEU and LEU fuels  

SciTech Connect

A systematic study of the experiment performance and fuel cycle costs of the 50 MW R2 reactor operated by Studsvik Energiteknik AB has been performed using the current R2 HEU fuel, a variety of LEU fuel element designs, and two core-box/reflector configurations. The results include the relative performance of both in-core and ex-core experiments, control rod worths, and relative annual fuel cycle costs.

Pond, R.B.; Freese, K.E.; Matos, J.E.

1984-01-01T23:59:59.000Z

69

FUEL CELLS IN SHIPPING: HIGHER CAPITAL COSTS AND REDUCED FLEXIBILITY  

E-Print Network (OSTI)

Abstract: The paper discusses some main economic characteristics of fuel cell power production technology applied to shipping. Whenever competitive fuel cell systems enter the market, they are likely to have higher capital costs and lower operating costs than systems based on traditional combustion technology. Implications of the difference are investigated with respect to investment flexibility by the use of a real options model of ship investment, lay-up and scrapping decisions under freight rate uncertainty. A higher capital share of total expected costs can represent a significant opportunity cost in uncertain markets. The paper highlights the significance of accounting properly for value of flexibility prior to investment in new technology.

Sigbjørn Sødal

2003-01-01T23:59:59.000Z

70

Figure 33. Ratio of average per megawatthour fuel costs for ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 33. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in the SERC southeast ...

71

Figure 27. Ratio of average per megawatthour fuel costs for ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 27. Ratio of average per megawatthour fuel costs for natural gas combined-cycle plants to coal-fired steam turbines in five cases, 2008-2040

72

Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost  

Scientists at Argonne National Laboratory have developed two alternative strategies for detecting impurities in the hydrogen used in fuel cells. Both yield highly accurate results and use simpler, less costly equipment. As the United States gradually ...

73

Low Cost Reversible fuel cell systems  

DOE Green Energy (OSTI)

This final report summarizes a 3-phase program performed from March 2000 through September 2003 with a particular focus on Phase III. The overall program studied TMI's reversible solid oxide stack, system concepts, and potential applications. The TMI reversible (fuel cell-electrolyzer) system employs a stack of high temperature solid-oxide electrochemical cells to produce either electricity (from a fuel and air or oxygen) or hydrogen (from water and supplied electricity). An atmospheric pressure fuel cell system operates on natural gas (or other carbon-containing fuel) and air. A high-pressure reversible electrolyzer system is used to make high-pressure hydrogen and oxygen from water and when desired, operates in reverse to generate electricity from these gases.

Technology Management Inc.

2003-12-30T23:59:59.000Z

74

Cost and quality of fuels for electric plants 1993  

Science Conference Proceedings (OSTI)

The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1994-07-01T23:59:59.000Z

75

Cost-effective fuel cycle closure  

SciTech Connect

The U.S. government is moving toward meeting its obligation to accept spent fuel from commercial light water reactors (LWRs) in 1998 by providing an interim storage facility. Site work and analysis of the deep, geologic repository at Yucca Mountain will continue at a reduced level of effort. This provides the time required to reevaluate the use of spent-fuel recycling instead of direct disposal. A preliminary assessment of this option is presented in this paper.

Ehrman, C.S. [Burns & Roe, Inc., Oradell, NJ (United States); Boardman, C.E. [General Electric Company, San Jose, CA (United States)

1995-12-31T23:59:59.000Z

76

DOE Hydrogen and Fuel Cells Program Record 5005: Fuel Cell System Cost - 2002 versus 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Date: March 20, 2005 5 Date: March 20, 2005 Title: Fuel Cell System Cost - 2002 vs 2005 Originator: Patrick Davis Approved by: JoAnn Milliken Date: May 22, 2006 Item: "Reduced the high-volume cost of automotive fuel cells from $275/kW (50kW system) in 2002 to $110/kW (80kW system) in 2005." Supporting Information: In 2002, TIAX reported a cost of $324/kW for a 50-kW automotive PEM fuel cell system operating on gasoline reformate, based on their modeling of projected cost for 500,000 units per year. See Eric Carlson et al., "Cost Analyses of Fuel Cell Stack/System." U.S. DOE Hydrogen Program Annual Progress Report. (2002) at http://www.eere.energy.gov/hydrogenandfuelcells/pdfs/33098_sec4-1.pdf. Also see "Cost Modeling of PEM Fuel Cell Systems for Automobiles," Eric Carlson et al., SAE

77

Fuel Cell System for Transportation -- 2005 Cost Estimate  

Science Conference Proceedings (OSTI)

Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of this independent review will permit NREL and DOE to better understand the credibility of the TIAX cost estimation process and to implement changes in future cost analyses, if necessary. The Team found the methodology used by TIAX to estimate the cost of producing PEM fuel cells to be reasonable and, using 2005 cell stack technology and assuming production of 500,000 units per year, to have calculated a credible cost of $108/kW.

Wheeler, D.

2006-10-01T23:59:59.000Z

78

EFFECT OF REDUCED U-235 PRICE ON FUEL CYCLE COSTS  

SciTech Connect

A study was made to determine the effect of changes in natural uranium cost and in separative work charges on fuel cycle costs in nuclear power plants. Reactors considered were a Dresden-type boiling water reactor (BWR) and a Yankee- type pressurized water reactor (PWR), with net power ratings of 100, 300, and 500 Mwe. Fuel cycle costs were calculated for these reactors, using either enriched uranium or U/sup 235/-thorium as the fuel material. The price schedule for uranium was based on a feed material cost of /kg uranium as UF/sub 6/ and separative work costs of /kg uranium (Schedule B) and /kg uranium (Schedule C). The present AEC price schedule for enriched uranium was also used for purposes of a reference case. The results indicate that a reduction in present enriched uranium price to that given by Schedule B would reduce fuel cycle costs for the BWR plants by 0.4 to 0.5 mill/kwh for the enriched-uranium cycle, and 0.4 to 0.7 mill/kwh for the thorium cycle. Reductions in fuel cycle costs for the PWR plants were 0.5 to 0.7 and 0.4 to 0.75 mill/kwh, respectively, for the same situations. (auth)

Bennett, L.L.

1962-03-01T23:59:59.000Z

79

Agricultural scientists cut alcohol fuel costs  

Science Conference Proceedings (OSTI)

Scientists at the US Department of Agriculture have succeeded in lowering the cost of making alcohol from corn by 15 cents to $1.64 per gallon. The cost of drying distillers' solubles dropped because at the end of each cooking/fermenting/distilling run, the solubles are used for cooking, cooling and fermenting in the next run. One evaporation of solubles is required after 10 runs, so energy cost is cut from 17 cents to 1.7 cents. The protein by-products recovered, can be used as swine and poultry feeds and as human food.

Not Available

1981-09-21T23:59:59.000Z

80

Benchmark the Fuel Cost of Steam Generation  

DOE Green Energy (OSTI)

BestPractices Steam tip sheet regarding ways to assess steam system efficiency. To determine the effective cost of steam, use a combined heat and power simulation model that includes all the significant effects.

Papar, R. [U.S. Department of Energy (US)

2000-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Hydrogen Program Record 10004, Fuel Cell System Cost - 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record Program Record Record #: 10004 Date: September 16, 2010 Title: Fuel Cell System Cost - 2010 Update to: Record 9012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: December 16, 2010 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2010 technology and operating on direct hydrogen is projected to be $51/kW when manufactured at a volume of 500,000 units/year. Rationale: In fiscal year 2010, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2009 cost analyses of 80-kW net direct hydrogen PEM automotive fuel cell systems based on 2010 technology and projected to manufacturing volumes of 500,000 units per year [1,2]. Both cost estimates are based on performance at beginning of life.

82

Pulverizer performance upgrades lower fuel costs  

Science Conference Proceedings (OSTI)

Between 2002 and 2005, combustion equipment modifications were carried out at St. Johns River Power Plant in Jacksonville, FL. The effort succeeded in obtaining the desired emission reductions and to increase petroleum coke consumption. Since 2005 the boilers typically fired a blend of 70% Colombia coal and 30% delayed petroleum coke. To realize significant fuel savings, the pulverizer capacity was increased by 14% to allow a lower grade coal to be used. The article describes the changes made to the pulverizer to allow 11,800 Btu/pound coal to be burnt, with annual savings of $6.3 m beginning in 2006. 4 figs., 1 tab.

Hansen, T.

2007-05-15T23:59:59.000Z

83

DOE Fuel Cell Technologies Program Record 12020: Fuel Cell System Cost - 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Record Record Record #: 12020 Date: August 21, 2012 Title: Fuel Cell System Cost - 2012 Update to: Record 11012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: September 14, 2012 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2012 technology 1 and operating on direct hydrogen is projected to be $47/kW when manufactured at a volume of 500,000 units/year. Rationale: The DOE Fuel Cell Technologies Program supports analysis projects that perform detailed analysis to estimate cost status of fuel cell systems, updated on an annual basis [1]. In fiscal year 2012, Strategic Analysis, Inc. (SA) updated their 2011 cost analysis of an 80-kW net direct hydrogen PEM automotive fuel cell system, based on 2012 technology and projected to a

84

Methodology for estimating reprocessing costs for nuclear fuels  

Science Conference Proceedings (OSTI)

A technological and economic evaluation of reprocessing requirements for alternate fuel cycles requires a common assessment method and a common basis to which various cycles can be related. A methodology is described for the assessment of alternate fuel cycles utilizing a side-by-side comparison of functional flow diagrams of major areas of the reprocessing plant with corresponding diagrams of the well-developed Purex process as installed in the Barnwell Nuclear Fuel Plant (BNFP). The BNFP treats 1500 metric tons of uranium per year (MTU/yr). Complexity and capacity factors are determined for adjusting the estimated facility and equipment costs of BNFP to determine the corresponding costs for the alternate fuel cycle. Costs of capacities other than the reference 1500 MT of heavy metal per year are estimated by the use of scaling factors. Unit costs of reprocessed fuel are calculated using a discounted cash flow analysis for three economic bases to show the effect of low-risk, typical, and high-risk financing methods.

Carter, W. L.; Rainey, R. H.

1980-02-01T23:59:59.000Z

85

Hydrogen as a transportation fuel: Costs and benefits  

SciTech Connect

Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

Berry, G.D.

1996-03-01T23:59:59.000Z

86

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Record Office Record Record #: 13012 Date: September 18, 2013 Title: Fuel Cell System Cost - 2013 Update to: Record 12020 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: October 16, 2013 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2013 technology 1 and operating on direct hydrogen is projected to be $67/kW when manufactured at a volume of 100,000 units/year, and $55/kW at 500,000 units/year. Rationale: The DOE Fuel Cell Technologies (FCT) Office supports projects that perform detailed analysis to estimate cost status of fuel cell systems, updated on an annual basis [1]. In fiscal year 2013, Strategic Analysis, Inc. (SA) updated their 2012 cost analysis of an 80-kW

87

The importance of vehicle costs, fuel prices, and fuel efficiency to HEV market success.  

DOE Green Energy (OSTI)

Toyota's introduction of a hybrid electric vehicle (HEV) named ''Prius'' in Japan and Honda's proposed introduction of an HEV in the United States have generated considerable interest in the long-term viability of such fuel-efficient vehicles. A performance and cost projection model developed entirely at Argonne National Laboratory (ANL) is used here to estimate costs. ANL staff developed fuel economy estimates by extending conventional vehicle (CV) modeling done primarily under the National Cooperative Highway Research Program. Together, these estimates are employed to analyze dollar costs vs. benefits of two of many possible HEV technologies. We project incremental costs and fuel savings for a Prius-type low-performance hybrid (14.3 seconds zero to 60 mph acceleration, 260 time) and a higher-performance ''mild'' hybrid vehicle, or MHV (11 seconds 260 time). Each HEV is compared to a U.S. Toyota Corolla with automatic transmission (11 seconds 260 time). The base incremental retail price range, projected a decade hence, is $3,200-$3,750, before considering battery replacement cost. Historical data are analyzed to evaluate the effect of fuel price on consumer preferences for vehicle fuel economy, performance, and size. The relationship between fuel price, the level of change in fuel price, and consumer attitude toward higher fuel efficiency is also evaluated. A recent survey on the value of higher fuel efficiency is presented and U.S. commercial viability of the hybrids is evaluated using discount rates of 2090 and 870. Our analysis, with our current HEV cost estimates and current fuel savings estimates, implies that the U.S. market for such HEVS would be quite limited.

Santini, D. J.; Patterson, P. D.; Vyas, A. D.

1999-12-08T23:59:59.000Z

88

residual fuel oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Residual fuel oil: A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter ...

89

Cost and quality of fuels for electric utility plants, 1994  

Science Conference Proceedings (OSTI)

This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

NONE

1995-07-14T23:59:59.000Z

90

Cost and quality of fuels for electric utility plants, 1992  

Science Conference Proceedings (OSTI)

This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

Not Available

1993-08-02T23:59:59.000Z

91

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS -POTENTIALS, LIMITATIONS & COSTS  

E-Print Network (OSTI)

BIOMASS FOR HYDROGEN AND OTHER TRANSPORT FUELS - POTENTIALS, LIMITATIONS & COSTS Senior scientist - "Towards Hydrogen Society" ·biomass resources - potentials, limits ·biomass carbon cycle ·biomass for hydrogen - as compared to other H2- sources and to other biomass paths #12;BIOMASS - THE CARBON CYCLE

92

Lightweighting Impacts on Fuel Economy, Cost, and Component Losses  

DOE Green Energy (OSTI)

The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

Brooker, A. D.; Ward, J.; Wang, L.

2013-01-01T23:59:59.000Z

93

NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator U.S. Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

10 1 10 1 NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator U.S. Energy Information Administration EIA Short-Term and Winter Fuels Outlook Richard Newell, NASEO Winter Fuels Conference, October 2010 2 Overview * EIA expects average heating bills to be 3% higher this winter than last - an increase of $24 to a U.S. average of $986 per household * Due to higher fuel prices forecast this winter compared to last - 2% higher electricity prices - 8% higher heating oil prices - 6% higher residential natural gas prices - 11% higher propane prices * Bill increases are moderated by a warmer winter weather forecast for the South, but little change in the Midwest/West; slightly colder in the Northeast * Inventories of fuel oil and natural gas are currently well above typical levels,

94

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

DOE Green Energy (OSTI)

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

95

Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

7: January 16, 7: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? to someone by E-mail Share Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Facebook Tweet about Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Twitter Bookmark Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Google Bookmark Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Delicious Rank Vehicle Technologies Office: Fact #407: January 16, 2006 Vehicle Fuel Cost vs. Home Heating Cost: Which Causes More Concern? on Digg

96

SOLID OXIDE FUEL CELL MANUFACTURING COST MODEL: SIMULATING RELATIONSHIPS BETWEEN PERFORMANCE, MANUFACTURING, AND COST OF PRODUCTION  

DOE Green Energy (OSTI)

The successful commercialization of fuel cells will depend on the achievement of competitive system costs and efficiencies. System cost directly impacts the capital equipment component of cost of electricity (COE) and is a major contributor to the O and M component. The replacement costs for equipment (also heavily influenced by stack life) is generally a major contributor to O and M costs. In this project, they worked with the SECA industrial teams to estimate the impact of general manufacturing issues of interest on stack cost using an activities-based cost model for anode-supported planar SOFC stacks with metallic interconnects. An earlier model developed for NETL for anode supported planar SOFCs was enhanced by a linkage to a performance/thermal/mechanical model, by addition of Quality Control steps to the process flow with specific characterization methods, and by assessment of economies of scale. The 3-dimensional adiabatic performance model was used to calculate the average power density for the assumed geometry and operating conditions (i.e., inlet and exhaust temperatures, utilization, and fuel composition) based on publicly available polarizations curves. The SECA team provided guidance on what manufacturing and design issues should be assessed in this Phase I demonstration of cost modeling capabilities. They considered the impact of the following parameters on yield and cost: layer thickness (i.e., anode, electrolyte, and cathode) on cost and stress levels, statistical nature of ceramic material failure on yield, and Quality Control steps and strategies. In this demonstration of the capabilities of the linked model, only the active stack (i.e., anode, electrolyte, and cathode) and interconnect materials were included in the analysis. Factory costs are presented on an area and kilowatt basis to allow developers to extrapolate to their level of performance, stack design, materials, seal and system configurations, and internal corporate overheads and margin goals.

Eric J. Carlson; Yong Yang; Chandler Fulton

2004-04-20T23:59:59.000Z

97

Fuel cost adjustments: An idea whose time has gone  

SciTech Connect

Fuel adjustment clauses, now clearly unneeded, are a disincentive to efficient utility planning and operation. They have no place in a competitive marketplace and should not be turned into incentive regulation as some would do. As competition grow stronger, the case for abandoning FACs also grows stronger. Despite recent proposals that FACs be modified to serve conservation goals or to become incentive regulations, FACs are poor instruments to prod utilities toward conservation or efficiency. Recent developments in fuel markets fully warrant removing FACs and replacing them with traditional cost-of-service regulation. There is a final reason to end fuel clauses; the electric industry's inevitable transition to competition will be easier and more efficient under old-style regulation than under FACs.

Michaels, R.J.

1994-02-01T23:59:59.000Z

98

THORIUM BREEDER REACTOR EVALUATION. PART 1. FUEL YIELD AND FUEL CYCLE COSTS IN FIVE THERMAL BREEDERS  

SciTech Connect

The performances of aqueous-homogeneous (AHBR), molten-salt (MSBR), liquid-bismuth (LBBR), gas-cooled graphite-moderated (GGBR), and deuterium- moderated gas-cooled (DGBR) breeder reactors were evaluated in respect to fuel yield, fuel cycle costs, and development status. A net electrical plant capability of 1000 Mwe was selected, and the fuel and fertile streams were processed continuously on-site. The maximum annual fuel yields were 1.5 mills/ kwhr. The minimum estimated fuel cycle costs were 0.9, 0.6, 1.0, 1.2, and 1.3 mills/kwhr at fuel yields of were 0.9, 0.9, 1.5, 1.5, and 1.3 mills/kwhr. Only the AHBR and the MSBR are capable of achieving fuel yields substantially in excess of 4%/yr, and therefore, in view of the uncertainties in nuclear data and efficiencies of processing methods, only these two can be listed with confidence as being able to satisfy the main criterion of the AEC longrange thorium breeder program, viz. a doubling time of 25 years or less. The development effort required to bring the various concepts to the stage where a prototype station could be designed was estimated to be least for the AHBR, somewhat more for the MSBR, and several times as much for the other systems. The AHBR was judged to rank first in regard to nuclear capability, fuel cycle potential, and status of development. (auth)

Alexander, L.G.; Carter, W.L.; Chapman, R.H.; Kinyon, R.W.; Miller, J.W.; Van Winkle, R.

1961-05-24T23:59:59.000Z

99

DOE Hydrogen and Fuel Cells Program Record 11012: Fuel Cell System Cost - 2011  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Date: August 17, 2011 2 Date: August 17, 2011 Title: Fuel Cell System Cost - 2011 Update to: Record 10004 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: September 7, 2011 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on 2011 technology 1 and operating on direct hydrogen is projected to be $49/kW when manufactured at a volume of 500,000 units/year. Rationale: In fiscal year 2011, Strategic Analysis, Inc. (SA) 2 updated the 2010 Directed Technologies, Inc. (DTI) cost analysis of 80-kW net direct hydrogen PEM automotive fuel cell systems, based on 2011 technology and projected to a manufacturing volume of 500,000 units per year [1]. Results from the analysis were communicated to the DOE

100

DOE Hydrogen and Fuel Cells Program Record 8002: Fuel Cell System Cost - 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

02 Date: October 31, 2008 02 Date: October 31, 2008 Title: Fuel Cell System Cost - 2007 Update to: Record 5005 Originator: Nancy Garland and Jason Marcinkoski Approved by: Sunita Satyapal Date: April 3, 2009 Item: The cost of an 80-kW automotive polymer electrolyte membrane (PEM) fuel cell system operating on direct hydrogen and projected to a manufacturing volume of 500,000 units per year is $94/kW for 2007 technology in 2007 dollars ($82/kW in 2002 dollars for comparison with targets). Rationale: In fiscal year 2007, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2006 cost analyses of direct hydrogen, 80-kW, PEM automotive fuel cell systems based on 2007 technology and projected to manufacturing volumes of 500,000 units per year [1,2].

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

DOE Hydrogen and Fuel Cells Program Record 9012: Fuel Cell System Cost - 2009  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Date: October 7, 2009 2 Date: October 7, 2009 Title: Fuel Cell System Cost - 2009 Update to: Record 8019 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: October 7, 2009 Item: The cost of an 80-kW automotive polymer electrolyte membrane (PEM) fuel cell system operating on direct hydrogen and projected to a manufacturing volume of 500,000 units per year is $61/kW for 2009 technology in 2009 dollars ($51/kW in 2002 dollars for comparison with targets). Rationale: In fiscal year 2009, TIAX LLC (TIAX) and Directed Technologies, Inc. (DTI) each updated their 2008 cost analyses of 80-kW direct hydrogen PEM automotive fuel cell systems based on 2009 technology and projected to manufacturing volumes of 500,000 units per year [1,2]. DTI and TIAX use Design for Manufacturing and Assembly

102

Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel  

Science Conference Proceedings (OSTI)

Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

Primm, Trent [ORNL; Guida, Tracey [University of Pittsburgh

2010-02-01T23:59:59.000Z

103

Gasoline and Diesel Fuel Update - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption & Efficiency.

104

Residual Fuel Demand - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

In the 1986 to 1991 period, residual fuel oil demand declined only slightly both in absolute and as a percent of total product demand. While not shown, residual fuel ...

105

FUEL CYCLE COSTS IN A GRAPHITE MODERATED SLIGHTLY ENRICHED FUSED SALT REACTOR  

SciTech Connect

A fuel cycle economic study has been made for a 315Mwe graphite- moderated slightly enriched fused-salt reactor. Fuel cycle costs of less than 1.5 mills may be possible for such reactors operating on a ten-year cycle even when the fuel is discarded at the end of the cycle. Recovery of the uranium and plutonium at the end of the cycle reduces the fuel cycle costs to approximates 1 mill/kwh. Changes in the waste storage cost, reprocessing cost or salt inventory have a relatively minor effect on fuel cycle costs. (auth)

Guthrie, C.E.

1959-01-01T23:59:59.000Z

106

Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind-to-Hydrogen Cost Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Google Bookmark Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Delicious Rank Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Wind-to-Hydrogen Cost Modeling and Project Findings (Text Version) on

107

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Average cost of fossil-fuels for electricity generation;

108

Natural Gas Vehicle Fuel Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Gas volumes delivered for use as vehicle fuel are included in the State annual totals through 2009 but not in ... electric power price data are for regulated ...

109

Winter Fuels Outlook: 2002-2003 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... augmented by generally higher fuel prices, strongly suggests the likelihood that household energy expenses during the 2002-2003 heating season will be up ...

110

EIA/NASEO Winter Fuels Conference - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Heating Fuel Stock Cycles. ... Retail Heating Oil Prices Should Be Lower This Year. Heating Degree-Days. Normal Weather Will Bring Higher Demand. Distillate Production.

111

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

112

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Petrolem Reports Petrolem Reports Fuel Oil and Kerosene Sales With Data for 2012 | Release Date: November 15, 2013 | Next Release Date: November 2014 Previous Issues Year: 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 Go The Fuel Oil and Kerosene Sales 2012 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 distillate fuel oil; and residual fuel oil. State-level kerosene sales include volumes for residential, commercial, industrial, farm, and all other uses. State-level distillate sales include volumes for residential, commercial, industrial, oil company, railroad, vessel bunkering, military, electric utility, farm, on-highway, off-highway construction, and other uses. State-level residual fuel sales

113

Durable, Low-cost, Improved Fuel Cell Membranes  

Science Conference Proceedings (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) that operate under reduced relative humidity (RH) conditions remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. to address these shortages. Thus, this project addresses the following technical barriers from the fuel cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted of using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. In the traditional approach to polyelectrolytes for proton exchange membranes (PEM), all the required properties are “packaged” in one macromolecule. The properties of interest include proton conductivity, mechanical properties, durability, and water/gas transport. This is the case, for example, for perfluorosulfonic acid-containing (PFSA) membranes. However, the cost of these materials is high, largely due to the complexity and the number of steps involved in their synthesis. In addition, they suffer other shortcomings such as mediocre mechanical properties and insufficient durability for some applications. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® PVDF provides an exceptional combination of properties that make it ideally suited for a membrane matrix (Kynar® is a registered trademark of Arkema Inc.). It exhibits outstanding chemical resistance in highly oxidative and acidic environments. In work with a prior grant, a membrane known as M41 was developed by Arkema. M41 had many of the properties needed for a high performance PEM, but had a significant deficiency in conductivity at low RH. In the first phase of this work, the processing parameters of M41 were explored as a means to increase its proton conductivity. Optimizing the processing of M41 was found to increase its proton conductivity by almost an order of magnitude at 50% RH. Characterization of the membrane morphology with Karren More at Oak Ridge National Laboratory showed that the membrane morphology was complex. This technology platform was dubbed M43 and was used as a baseline in the majority of the work on the project. Although its performance was superior to M41, M43 still showed proton conductivity an order of magnitude lower than that of a PFSA membrane at 50% RH. The MEA performance of M43 could be increased by reducing the thickness from 1 to 0.6 mils. However, the performance of the thinner M43 still did not match that of a PFSA membrane.

Chris Roger; David Mountz; Wensheng He; Tao Zhang

2011-03-17T23:59:59.000Z

114

An Econometric Analysis of the Elasticity of Vehicle Travel with Respect to Fuel Cost per Mile Using RTEC Survey Data  

Science Conference Proceedings (OSTI)

This paper presents the results of econometric estimation of the ''rebound effect'' for household vehicle travel in the United States based on a comprehensive analysis of survey data collected by the U.S. Energy Information Administration (EIA) at approximately three-year intervals over a 15-year period. The rebound effect is defined as the percent change in vehicle travel for a percent change in fuel economy. It summarizes the tendency to ''take back'' potential energy savings due to fuel economy improvements in the form of increased vehicle travel. Separate vehicles use models were estimated for one-, two-, three-, four-, and five-vehicle households. The results are consistent with the consensus of recently published estimates based on national or state-level data, which show a long-run rebound effect of about +0.2 (a ten percent increase in fuel economy, all else equal, would produce roughly a two percent increase in vehicle travel and an eight percent reduction in fuel use). The hypothesis that vehicle travel responds equally to changes in fuel cost-per-mile whether caused by changes in fuel economy or fuel price per gallon could not be rejected. Recognizing the interdependency in survey data among miles of travel, fuel economy and price paid for fuel for a particular vehicle turns out to be crucial to obtaining meaningful results.

Greene, D.L.; Kahn, J.; Gibson, R.

1999-03-01T23:59:59.000Z

115

Fuel Oil and Kerosene Sales - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Fuel Oil and Kerosene Sales 2011 report provides information, illustrations and State-level statistical data on end-use sales of kerosene; No.1, No. 2, and No. 4 ...

116

Cost of Radiotherapy Versus NSAID Administration for Prevention of Heterotopic Ossification After Total Hip Arthroplasty  

Science Conference Proceedings (OSTI)

Purpose: Heterotopic ossification (HO), or abnormal bone formation, is a common sequela of total hip arthroplasty. This abnormal bone can impair joint function and must be surgically removed to restore mobility. HO can be prevented by postoperative nonsteroidal anti-inflammatory drug (NSAID) use or radiotherapy (RT). NSAIDs are associated with multiple toxicities, including gastrointestinal bleeding. Although RT has been shown to be more efficacious than NSAIDs at preventing HO, its cost-effectiveness has been questioned. Methods and Materials: We performed an analysis of the cost of postoperative RT to the hip compared with NSAID administration, taking into account the costs of surgery for HO formation, treatment-induced morbidity, and productivity loss from missed work. The costs of RT, surgical revision, and treatment of gastrointestinal bleeding were estimated using the 2007 Medicare Fee Schedule and inpatient diagnosis-related group codes. The cost of lost wages was estimated using the 2006 median salary data from the U.S. Census Bureau. Results: The cost of administering RT was estimated at $899 vs. $20 for NSAID use. After accounting for the additional costs associated with revision total hip arthroplasty and gastrointestinal bleeding, the corresponding estimated costs were $1,208 vs. $930. Conclusion: If the costs associated with treatment failure and treatment-induced morbidity are considered, the cost of NSAIDs approaches that of RT. Other NSAID morbidities and quality-of-life differences that are difficult to quantify add to the cost of NSAIDs. These considerations have led us to recommend RT as the preferred modality for use in prophylaxis against HO after total hip arthroplasty, even when the cost is considered.

Strauss, Jonathan B. [Department of Radiation Oncology, Rush University Medical Center, Chicago, IL (United States)], E-mail: Jonathan_Strauss@rush.edu; Chen, Sea S.; Shah, Anand P.; Coon, Alan B. [Department of Radiation Oncology, Rush University Medical Center, Chicago, IL (United States); Dickler, Adam [Department of Radiation Oncology, Little Company of Mary Hospital, Evergreen Park, IL (United States)

2008-08-01T23:59:59.000Z

117

UW Madison Fleet Fiscal Year 2010 Rates: Fuel, maintenance and insurance costs are included. If fuel prices exceed the budgeted  

E-Print Network (OSTI)

UW Madison Fleet Fiscal Year 2010 Rates: Fuel, maintenance and insurance costs are included. If fuel prices exceed the budgeted amount by a significant margin, the rates will be amended with a fuel surcharge at that time and the change notice will be posted in the fleet web site, rates page. Some rate

Sheridan, Jennifer

118

Energy Information Administration - Table 2. End Uses of Fuel Consumption,  

Gasoline and Diesel Fuel Update (EIA)

2 2 Page Last Modified: June 2010 Table 2. End Uses of Fuel Consumption, 1998, 2002, and 2006 (trillion Btu) MECS Survey Years Iron and Steel Mills (NAICS1 331111) 1998 2002 2006 Total 2 1,672 1,455 1,147 Net Electricity 3 158 184 175 Natural Gas 456 388 326 Coal 48 36 14 Boiler Fuel -- -- -- Coal 8 W 1 Residual Fuel Oil 10 * 4 Natural Gas 52 39 27 Process Heating -- -- -- Net Electricity 74 79 76 Residual Fuel Oil 19 * 11 Natural Gas 369 329 272 Machine Drive -- -- -- Net Electricity 68 86 77 Notes 1. The North American Industry Classification System (NAICS) has replaced the Standard Industrial Classification (SIC) system. NAICS 331111 includes steel works, blast furnaces (including coke ovens), and rolling mills. 2. 'Total' is the sum of all energy sources listed below, including net steam (the sum of purchases, generation from renewable resources, and net transfers), and other energy that respondents indicated was used to produce heat and power. It is the fuel quantities across all end-uses.

119

Nuclear Fuel Cycle Cost Comparison Between Once-Through and Fully Closed Cycles  

Science Conference Proceedings (OSTI)

This report presents results from a parametric study of equilibrium fuel cycle costs for a closed fuel cycle with multi-recycling of plutonium (Pu) and minor actinides in fast reactors (FRs) compared to an open, once-through fuel cycle using pressurized water reactors (PWRs). The study examines the impact on fuel cycle costs from changes in the unit costs of uranium, advanced plutonium and uranium recovery by extraction (PUREX) reprocessing of discharged fast-reactor mixed-oxide (FR-MOX) fuel, and fabric...

2010-11-04T23:59:59.000Z

120

Dark spreads measure returns over fuel costs of coal-fired ...  

U.S. Energy Information Administration (EIA)

The dark spread is a common metric used to estimate returns over fuel costs of coal-fired electric generators. A dark spread is the difference between ...

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski...

122

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

change, and noise. Oil-use costs comprise the cost of theexcept as indicated) Oil-use cost SPR Low Best High BY ROCdirect economic costs of oil dependence – including wealth

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

123

Fuel Cell Technologies Office: DOE Announces New Hydrogen Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

124

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

Effects of Compressed Natural Gas as a VehicleFuel-Volumepetroleumgas, compressed natural gas, and electricity.fuel vehicle types, compressed natural gas vehicles are the

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

125

Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

SciTech Connect

This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

Ramsden, T.

2013-04-01T23:59:59.000Z

126

FUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY  

E-Print Network (OSTI)

during many months of the year). * Similarly, use of PEM fuel cell waste heat for hot water heating wouldFUEL CELL SYSTEM ECONOMICS: COMPARING THE COSTS OF GENERATING POWER WITH STATIONARY AND MOTOR VEHICLE PEM FUEL CELL SYSTEMS UCD-ITS-RP-04-21 April 2004 by Timothy Lipman University of California

Kammen, Daniel M.

127

Gasoline and Diesel Fuel Update - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

all petroleum reports all petroleum reports Gasoline and Diesel Fuel Update Gasoline Release Date: December 16, 2013 | Next Release Date: December 23, 2013 Diesel Fuel Release Date: December 16, 2013 | Next Release Date: December 23, 2013 U.S. Regular Gasoline Prices* (dollars per gallon)full history Change from 12/02/13 12/09/13 12/16/13 week ago year ago U.S. 3.272 3.269 3.239 values are down -0.030 values are down -0.015 East Coast (PADD1) 3.389 3.382 3.373 values are down -0.009 values are up 0.023 New England (PADD1A) 3.475 3.494 3.508 values are up 0.014 values are up 0.015 Central Atlantic (PADD1B) 3.441 3.447 3.457 values are up 0.010 values are down -0.029 Lower Atlantic (PADD1C) 3.325 3.300 3.270 values are down -0.030 values are up 0.063

128

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks  

NLE Websites -- All DOE Office Websites (Extended Search)

AURORA Program Overview Topic 4A. Transport within the PEM Stack / Transport Studies Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Award#: DE-EE0000472 US DOE Fuel Cell Projects Kickoff Meeting Washington, DC September 30, 2009 Program Objectives The objective of this program is to optimize the efficiency of a stack technology meeting DOE cost targets. As cost reduction is of central importance in commercialization, the objective of this program addresses all fuel cell applications. AURORA C. Performance Technical Barriers Premise: DOE cost targets can be met by jointly exceeding both the Pt loading (1.0 W/cm2) targets.

129

Parametric Study of Front-End Nuclear Fuel Cycle Costs Using Reprocessed Uranium  

Science Conference Proceedings (OSTI)

This study evaluates front-end nuclear fuel cycle costs assuming that uranium recovered during the reprocessing of commercial light-water reactor (LWR) spent nuclear fuel is available to be recycled and used in the place of natural uranium. This report explores the relationship between the costs associated with using a natural uranium fuel cycle, in which reprocessed uranium (RepU) is not recycled, with those associated with using RepU.

2010-01-26T23:59:59.000Z

130

Low Cost PEM Fuel Cell Metal Bipolar Plates  

NLE Websites -- All DOE Office Websites (Extended Search)

Background and Mission 3 Project Objectives * Overall Objective: Develop lower cost metal bipolar plates to meet performance target and 2015 cost target (<3kW) - Develop...

131

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

132

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. [Oak Ridge National Lab., TN (United States); Duleep, K.G. [Energy and Environmental Analysis, Inc., Arlington, VA (United States)

1992-03-01T23:59:59.000Z

133

Costs and benefits of automotive fuel economy improvement: A partial analysis  

SciTech Connect

This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

Greene, D.L. (Oak Ridge National Lab., TN (United States)); Duleep, K.G. (Energy and Environmental Analysis, Inc., Arlington, VA (United States))

1992-03-01T23:59:59.000Z

134

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system, Energy Policy

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

135

Challenge: Decrease Size and Cost of Fuel Processor  

E-Print Network (OSTI)

published papers 2 Patent Applications (mesoporous MOx, Pt/WO3 Fuel Cell Cat) #12;Significant Results

136

Investigation of low-cost LNG vehicle fuel tank concepts. Final report  

DOE Green Energy (OSTI)

The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

O`Brien, J.E.; Siahpush, A. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-02-01T23:59:59.000Z

137

Obama Administration Takes Major Step toward Advanced Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

further towards advanced vehicles and decreased petroleum consumption, while also cutting costs associated with fuel consumption. Furthering the Administration's goals to cut oil...

138

DOE Hydrogen and Fuel Cells Program Record 5013: Hydrogen Cost...  

NLE Websites -- All DOE Office Websites (Extended Search)

projected gasoline price of 1.29 in 2015 is based on the high "A" case (Annual Energy Outlook 2005, Energy Information Administration, January 2005). Calculation Reference:...

139

Study of costs associated with alternative fuels development: A case study. Research report  

SciTech Connect

The primary objective of the study was to conduct a case study of large-scale fuel conversion project to assess selected costs and related issues. An inventory of public transit agencies engaged in demonstration projects involving alternative fuels as conducted with representative sample of large public transit systems in the nation. Included in the survey were questions pertaining to fuel supply arrangements, fuel reserve storage requirements and/or deficiencies; future plans for managing energy resources and costs associated with fuel conversion/alternative fuels use -- whether planned or currently in operation. The case study approach was used to document the methodological and logistical problems encountered during the course of projects involving alternative fuels use compared with a control sample using diesel fuel. Monthly status reports on the alternative fuel project included data on accumulated mileage, road calls/unscheduled maintenance, fuel consumption, fuel cost per mile, alternative fuel purchases, schedule of activities, personnel, safety , and diesel emission test results. The data collected indicate several conclusions and future implications about technical and safety issues associated with the testing and use of liquefied natural gas (LNG).

Lede, N.W.

1995-07-01T23:59:59.000Z

140

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Helps Nonprofit Cut Fuel Costs with Propane Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000

142

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

143

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

144

Low Cost PEM Fuel Cell Metal Bipolar Plates  

E-Print Network (OSTI)

Objectives · Overall Objective: Develop lower cost metal bipolar plates to meet performance target and 2015 cost target (usage Electrical Conductivity S /cm >100 >100 Resistivity ohm.cm 25

145

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Compressed Natural Gas (CNG), synthetic diesel, methanol,FCX Fuels Gasoline, Diesel, CNG, FT diesel, methanol, H2,H2, electricity Gasoline, diesel, CNG, biogas, LPG, ethanol,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

146

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

analysis shows that hybrid and electric cars perform bettercar (4-5 passengers) Fuels Gasoline, CNG, diesel, FT50, methanol, H2 Powertrains ICE, hybrid,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

147

Improving Costs and Efficiency of PEM Fuel Cell Vehicles by ...  

Fuel cell vehicles have the potential to reduce our dependence on foreign oil and lower emissions. Running the vehicle’s motor on hydrogen rather than gasoline ...

148

Effect of changes in DOE pricing policies for enrichment and reprocessing on research reactor fuel cycle costs  

SciTech Connect

Fuel cycle costs with HEU and LEU fuels for the IAEA generic 10 MW reactor are updated to reflect the change in DOE pricing policy for enrichment services as of October 1985 and the published charges for LEU reprocessing services as of February 1986. The net effects are essentially no change in HEU fuel cycle costs and a reduction of about 8 to 10% in the fuel cycle costs for LEU silicide fuel.

Matos, J.E.; Freese, K.E.

1986-11-03T23:59:59.000Z

149

Low-Cost Manufacturing of Fuel Cell Bipolar Plates by ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Emerging Material Forming Technologies. Presentation Title, Low-Cost ...

150

Analysis of near-term spent fuel transportation hardware requirements and transportation costs  

SciTech Connect

A computer model was developed to quantify the transportation hardware requirements and transportation costs associated with shipping spent fuel in the commercial nucler fuel cycle in the near future. Results from this study indicate that alternative spent fuel shipping systems (consolidated or disassembled fuel elements and new casks designed for older fuel) will significantly reduce the transportation hardware requirements and costs for shipping spent fuel in the commercial nuclear fuel cycle, if there is no significant change in their operating/handling characteristics. It was also found that a more modest cost reduction results from increasing the fraction of spent fuel shipped by truck from 25% to 50%. Larger transportation cost reductions could be realized with further increases in the truck shipping fraction. Using the given set of assumptions, it was found that the existing spent fuel cask fleet size is generally adequate to perform the needed transportation services until a fuel reprocessing plant (FRP) begins to receive fuel (assumed in 1987). Once the FRP opens, up to 7 additional truck systems and 16 additional rail systems are required at the reference truck shipping fraction of 25%. For the 50% truck shipping fraction, 17 additional truck systems and 9 additional rail systems are required. If consolidated fuel only is shipped (25% by truck), 5 additional rail casks are required and the current truck cask fleet is more than adequate until at least 1995. Changes in assumptions could affect the results. Transportation costs for a federal interim storage program could total about $25M if the FRP begins receiving fuel in 1987 or about $95M if the FRP is delayed until 1989. This is due to an increased utilization of federal interim storage facility from 350 MTU for the reference scenario to about 750 MTU if reprocessing is delayed by two years.

Daling, P.M.; Engel, R.L.

1983-01-01T23:59:59.000Z

151

Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - III: Spent DUPIC Fuel Disposal Cost  

Science Conference Proceedings (OSTI)

The disposal costs of spent pressurized water reactor (PWR), Canada deuterium uranium (CANDU) reactor, and DUPIC fuels have been estimated based on available literature data and the engineering design of a spent CANDU fuel disposal facility by the Atomic Energy of Canada Limited. The cost estimation was carried out by the normalization concept of total electricity generation. Therefore, the future electricity generation scale was analyzed to evaluate the appropriate capacity of the high-level waste disposal facility in Korea, which is a key parameter of the disposal cost estimation. Based on the total electricity generation scale, it is concluded that the disposal unit costs for spent CANDU natural uranium, CANDU-DUPIC, and PWR fuels are 192.3, 388.5, and 696.5 $/kg heavy element, respectively.

Ko, Won Il; Choi, Hangbok; Roh, Gyuhong; Yang, Myung Seung [Korea Atomic Energy Research Institute (Korea, Republic of)

2001-05-15T23:59:59.000Z

152

Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual  

SciTech Connect

In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

1981-06-25T23:59:59.000Z

153

Facilities and Administration (F&A) cost is another term used for indirect cost. F&A/Indirect cost are calculated based on the direct expenditures of sponsored projects.  

E-Print Network (OSTI)

are calculated based on the direct expenditures of sponsored projects. F&A/Indirect cost can not be readily. These costs are "real" though they can not be associated with a specific project. Examples of F and departmental administration. Penn will apply the appropriate F&A rate to the direct cost of the project based

Bushman, Frederic

154

Optimal fuel cell system design considering functional performance and production costs  

E-Print Network (OSTI)

In this work the optimization-based, integrated concurrent design method is applied to the modelling, analysis, and design of a transportation fuel cell system. A general optimal design model considering both functional performance and production costs is first introduced. Using the Ballard Mark V Transit Bus fuel cell system as an example, the study explores the intrinsic relations among various fuel cell system performance and cost aspects to provide insights for new cost-effective designs. A joint performance and cost optimization is carried out to demonstrate this new approach. This approach breaks the traditional barrier between design Žconcerning functional performance. and manufacturing Ž concerning production costs., allowing both functional performance and production costs to

D. Xue A; Z. Dong B

1998-01-01T23:59:59.000Z

155

FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS  

Science Conference Proceedings (OSTI)

We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

Gao, Zhiming [ORNL; LaClair, Tim J [ORNL; Daw, C Stuart [ORNL; Smith, David E [ORNL

2013-01-01T23:59:59.000Z

156

Cost Analysis of PEM Fuel Cell Systems for Transportation: September 30, 2005  

DOE Green Energy (OSTI)

The results of sensitivity and Monte Carlo analyses on PEM fuel cell components and the overall system are presented including the most important cost factors and the effects of selected scenarios.

Carlson, E. J.; Kopf, P.; Sinha, J.; Sriramulu, S.; Yang, Y.

2005-12-01T23:59:59.000Z

157

Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)  

Science Conference Proceedings (OSTI)

Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

Brinkman, G.; Lew, D.; Denholm, P.

2012-09-01T23:59:59.000Z

158

Low Cost High-H2 Syngas Production for Power and Liquid Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Low Cost High-H2 Syngas Production for Power and Liquid Fuels Gas Technology Institute (GTI) Project Number: FE0011958 Project Description Proof-of-concept of a metal-polymeric...

159

DOE Hydrogen and Fuel Cells Program Record 12021: Cost Projections...  

NLE Websites -- All DOE Office Websites (Extended Search)

Approved by: Sunita Satyapal and Rick Farmer Date: November 28, 2012 Item: Delivery costs associated with distributed production refueling station functions, Compression,...

160

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

from U.S. consumers to foreign oil producers (a cost only inThus, the PS received by foreign oil producers is a real

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Use of Persian-Gulf Oil for Motor Vehicles, Energy Policythe Use of Persian Gulf Oil for Motor Vehicles, UCD-ITS-RR-per gallon of motor fuel, Defense of oil on average; thus,

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

162

DOE Hydrogen and Fuel Cells Program Record 12001: H2 Production and Delivery Cost Apportionment  

NLE Websites -- All DOE Office Websites (Extended Search)

01 Date: May 14, 2012 01 Date: May 14, 2012 Title: H 2 Production and Delivery Cost Apportionment Originator: Scott Weil, Sara Dillich, Fred Joseck, and Mark Ruth Approved by: Sunita Satyapal and Rick Farmer Date: December 14, 2012 Item: The hydrogen threshold cost is defined as the untaxed cost of hydrogen (H 2 ) (produced, delivered, and dispensed) at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a $/mile basis with competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. As established in Record 11007 [1], this cost ranges from $2.00-$4.00/gge a of H 2 (based on $2007). The threshold cost can be apportioned into its constituent H 2 production and delivery costs, which can then serve as the respective cost targets for multi-year planning of the Fuel Cell Technologies (FCT)

163

Nuclear Fuel Recycling - the Value of the Separated Transuranics and the Levelized Cost of Electricity  

E-Print Network (OSTI)

We analyze the levelized cost of electricity (LCOE) for three different fuel cycles: a Once-Through Cycle, in which the spent fuel is sent for disposal after one use in a reactor, a Twice-Through Cycle, in which the spent ...

Parsons, John E.

164

The mine safety and health administration and how it affects the synthetic fuels industry  

SciTech Connect

The synthetic fuels industry is coming of age, with several demonstration plants operating and several commercial size plants in various stages of development. Although some of these facilities will be totally under the Occupational Safety and Health Act's (OSHA's) jurisdiction, others will be or have certain areas under the Mine Safety and Health Administration's (MSHA) regulatory authority. MSHA's jurisdiction and its regulations and guidelines are introduced.

Peason, T.P.

1983-11-01T23:59:59.000Z

165

Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Multi-Recycling in Fast Reactors  

Science Conference Proceedings (OSTI)

This report presents results from a parametric study of equilibrium fuel cycle costs for a closed fuel cycle with multi-recycling of plutonium in fast reactors (FRs) compared to an open, once-through fuel cycle using PWRs. The study examines the impact on fuel cycle costs from changes in the unit costs of uranium, advanced PUREX reprocessing of discharged uranium dioxide (UO2) fuel and fast-reactor mixed-oxide (FR-MOX) fuel, and FR-MOX fuel fabrication. In addition, the impact associated with changes in ...

2010-03-15T23:59:59.000Z

166

Fuel cycle cost, reactor physics and fuel manufacturing considerations for Erbia-bearing PWR fuel with > 5 wt% U-235 content  

Science Conference Proceedings (OSTI)

The efforts to reduce fuel cycle cost have driven LWR fuel close to the licensed limit in fuel fissile content, 5.0 wt% U-235 enrichment, and the acceptable duty on current Zr-based cladding. An increase in the fuel enrichment beyond the 5 wt% limit, while certainly possible, entails costly investment in infrastructure and licensing. As a possible way to offset some of these costs, the addition of small amounts of Erbia to the UO{sub 2} powder with >5 wt% U-235 has been proposed, so that its initial reactivity is reduced to that of licensed fuel and most modifications to the existing facilities and equipment could be avoided. This paper discusses the potentialities of such a fuel on the US market from a vendor's perspective. An analysis of the in-core behavior and fuel cycle performance of a typical 4-loop PWR with 18 and 24-month operating cycles has been conducted, with the aim of quantifying the potential economic advantage and other operational benefits of this concept. Subsequently, the implications on fuel manufacturing and storage are discussed. While this concept has certainly good potential, a compelling case for its short-term introduction as PWR fuel for the US market could not be determined. (authors)

Franceschini, F.; Lahoda, E. J.; Kucukboyaci, V. N. [Westinghouse Electric Co. LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

2012-07-01T23:59:59.000Z

167

Preliminary assessment of costs and risks of transporting spent fuel by barge  

SciTech Connect

The purpose of this study is to analyze the costs and risks associated with transporting spent fuel by barge. The barge movements would be made in combination with rail movements to transport spent fuel from plants to a repository. For the purpose of this analysis, three candidate repository sites are analyzed: Yucca Mountain, Nevada, Deaf Smith, Texas, and Hanford, Washington. This report complements a report prepared by Sandia National Laboratories in 1984 that analyzes the costs and risks of transporting spent fuel by rail and by truck to nine candidate repository sites.

Tobin, R.L.; Meshkov, N.K.; Jones, R.H.

1985-12-01T23:59:59.000Z

168

DOE Hydrogen and Fuel Cells Program Record 5035: Cost Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

5 Date: May 22, 2006 Title: Cost Analysis of Hydrogen Production from Natural Gas 2003 - 2005 Originator: Patrick Davis Approved by: JoAnn Milliken Approval Date: May 22, 2006 Item...

169

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

cost $2,458, or $11.1/kWh. Carbon fiber was the major costrange of $10-$17/kWh and carbon fiber contributes about 65%

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

170

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

Kwh/mile) d Total Battery Capacity (Kwh) Cost per Battery (this study. in Total battery capacity was calculated as:calculated as total battery capacity multiplied by per-unit-

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

171

On the Path to Low Cost Renewable Fuels, an Important Breakthrough |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough On the Path to Low Cost Renewable Fuels, an Important Breakthrough April 18, 2013 - 4:10pm Addthis NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. NREL Scientist Bryon Donohoe looks at different views of ultra structures of pre-treated biomass materials in the Cellular Visualization room of the Biomass Surface Characterization Lab. | Photo by Dennis Schroeder, NREL. A researcher examines a strain of the fermentation microorganism Zymomonas mobilis on a culture plate. NREL has genetically engineered and patented its own strains of Zymomonas mobilis to more effectively ferment the multiple sugars found in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | Photo by Dennis Schroeder, NREL.

172

Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers  

NLE Websites -- All DOE Office Websites (Extended Search)

Kick-off Meeting, Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Objective and Technical Barriers Addressed More efficient, low-cost humidifiers can increase fuel cell inlet humidity: Reduce system cost and size of balance of plant; Improve fuel cell performance; Improve fuel cell durability. OBJECTIVE: Demonstrate a durable, high performance water

173

Emission Control Cost-Effectiveness of Alternative-Fuel Vehicles  

E-Print Network (OSTI)

r---1 DF LPG M85 FFV J E85 FFV M100 FFV S/ton (Thousands)Vehicles MI00 DedL Vehicles E85 FFVs LPGVs Dual-Fuel CNGVsM85 Dedi. M1 00 DF LPG M85 FFV E85 FFV M100 FFV S/ton 3O (

Wang, Quanlu; Sperling, Daniel; Olmstead, Janis

1993-01-01T23:59:59.000Z

174

Cost and Performance Comparison Of Stationary Hydrogen Fueling Appliances  

E-Print Network (OSTI)

or nitrogen from air and the purification of hydrogen from sources such as catalytic reformer off gas, coke oven gas, and ethylene plant effluent gas. Pressure swing systems are based on selective adsorbent beds of hydrogen from natural gas to fuel hydrogen FCV's. Four potential reforming systems were studied: 10

175

A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant  

DOE Green Energy (OSTI)

This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

Not Available

1993-06-30T23:59:59.000Z

176

Development of an energy consumption and cost data base for fuel cell total energy systems and conventional building energy systems  

DOE Green Energy (OSTI)

This report describes the procedures and data sources used to develop an energy-consumption and system-cost data base for use in predicting the market penetration of phosphoric acid fuel cell total-energy systems in the nonindustrial building market. A computer program was used to simulate the hourly energy requirements of six types of buildings - office buildings, retail stores, hotels and motels, schools, hospitals, and multifamily residences. The simulations were done by using hourly weather tapes for one city in each of the ten Department of Energy administrative regions. Two types of building construction were considered, one for existing buildings and one for new buildings. A fuel cell system combined with electrically driven heat pumps and one combined with a gas boiler and an electrically driven chiller were compared with similar conventional systems. The methods of system simulation, component sizing, and system cost estimation are described for each system. The systems were simulated for a single building size for each building type. Methods were developed to extrapolate the system cost and performance data to other building sizes.

Pine, G.D.; Christian, J.E.; Mixon, W.R.; Jackson, W.L.

1980-07-01T23:59:59.000Z

177

Administration  

E-Print Network (OSTI)

This document has been funded by the United States Environmental Protection Agency under Contract 68-W6-0014. It has been subject to administrative review by all agencies participating in the Federal Remediation Technologies Roundtable, and has been approved for publication. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. TABLE OF CONTENTS

Technologies Roundtable

1998-01-01T23:59:59.000Z

178

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

Science Conference Proceedings (OSTI)

In 1988 the Department of Energy (DOE) undertook a comprehensive technical analysis of a flexible-fuel transportation system in the United States. During the next two decades, alternative fuels such as alcohol (methanol or ethanol), compressed natural gas (CNG), and electricity could become practical alternatives to oil-based fuels in the US transportation sector. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability. To keep interested parties informed about the progress of the DOE Alternative Fuels Assessment, the Department periodically publishes reports dealing with particular aspects of this complex study. This report provides an analysis of the expected costs to produce methanol from biomass feedstock.

Not Available

1990-12-01T23:59:59.000Z

179

Correlating Cycle Duty with Cost at Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

The work described in this report is part of the ongoing EPRI Cycling Impacts Program to develop a range of analysis and simulation-capable planning tools. The objectives are to better determine cycling impacts (including incremental costs), reliability impact, component level effects, and impacts and other elements needed to better plan and manage operational and financial aspects of power generation. This report documents early efforts to establish strong correlations between the cycle duty of a produc...

2001-09-14T23:59:59.000Z

180

Comparative analysis of monetary estimates of external environmental costs associated with combustion of fossil fuels  

SciTech Connect

Public utility commissions in a number of states have begun to explicitly treat costs of environmental externalities in the resource planning and acquisition process (Cohen et al. 1990). This paper compares ten different estimates and regulatory determinations of external environmental costs associated with fossil fuel combustion, using consistent assumptions about combustion efficiency, emissions factors, and resource costs. This consistent comparison is useful because it makes explicit the effects of various assumptions. This paper uses the results of the comparison to illustrate pitfalls in calculation of external environmental costs, and to derive lessons for design of policies to incorporate these externalities into resource planning. 38 refs., 2 figs., 10 tabs.

Koomey, J.

1990-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility, IG-0887  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Use of Staff Augmentation The Use of Staff Augmentation Subcontracts at National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility DOE/IG-0887 May 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 15, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility" BACKGROUND Shaw AREVA MOX Services, LLC (MOX Services) is responsible for the design and construction of the National Nuclear Security Administration's (NNSA) nearly $5 billion Mixed

182

How to utilize hedging and a fuel surcharge program to stabilize the cost of fuel.  

E-Print Network (OSTI)

??This paper looks at some of these travails as well as the common tools used to approach a volatile priced commodity, diesel fuel. It focuses… (more)

Witalec, Michael R

2010-01-01T23:59:59.000Z

183

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the ninth quarter of work performed under this agreement. The design of the vessel for pressure testing has been completed. The design will be finalized and purchased in the next quarter.

Donald P. Malone; William R. Renner

2005-07-01T23:59:59.000Z

184

Transportation costs for new fuel forms produced from low rank US coals  

DOE Green Energy (OSTI)

Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

Newcombe, R.J.; McKelvey, D.G. (TMS, Inc., Germantown, MD (USA)); Ruether, J.A. (USDOE Pittsburgh Energy Technology Center, PA (USA))

1990-09-01T23:59:59.000Z

185

Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct?hydrogen proton ex

186

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update  

Fuel Cell Technologies Publication and Product Library (EERE)

This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

187

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the third quarter of work performed under this agreement. Atmospheric testing was conducted as scheduled on June 5 through June 13, 2003. The test results were encouraging, however, the rate of carbon dissolution was below expectations. Additional atmospheric testing is scheduled for the first week of September 2003. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product stream. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2003-07-31T23:59:59.000Z

188

REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN  

DOE Green Energy (OSTI)

This report describes activities for the seventh quarter of work performed under this agreement. We await approval from the Swedish pressure vessel board to allow us to proceed with the procurement of the vessel for super atmospheric testing. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2005-01-01T23:59:59.000Z

189

Low-Cost Composite Materials for Polymer Electrolyte Fuel Cell Bipolar Plates  

DOE Green Energy (OSTI)

Polymer electrolyte fuel cells (PEFCS) are under widespread development to produce electrical power for a variety of stationary and transportation applications. To date, the bipolar plate remains the most problematic and costly component of PEFC stacks (1). In addition to meeting cost constraints, bipolar plates must possess a host of other properties, the most important of which are listed in Table 1. The most commonly used material for single cell testing is machined graphite, which is expensive and costly to machine. The brittle nature of graphite also precludes the use of thin components for reducing stack size and weight, which is particularly important for transportation applications. Other stack designs consider the use of metal hardware such as stainless steel (2,3). But a number of disadvantages are associated with stainless steel, including high density, high cost of machining, and possible corrosion in the fuel cell environment. In light of these difficulties, much of the recent work on fuel cell bipolar plate materials has concentrated on graphite/polymer composites (4--8). Composite materials offer the potential advantages of lower cost, lower weight, and greater ease of manufacture than traditional graphite and metal plates. For instance, flow fields can be molded directly into these composites, thereby eliminating the costly and difficult machining step required for graphite or metal hardware.

Busick, D.N.; Wilson, M.S.

1998-11-01T23:59:59.000Z

190

A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions  

DOE Green Energy (OSTI)

The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

Hadder, G.R.

1995-11-01T23:59:59.000Z

191

Stationery and Emerging Market Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kathya Mahadevan (Primary Contact), VinceContini, Matt Goshe, and Fritz Eubanks Battelle 505 King Avenue Columbus, OH 43201 Phone: (614) 424-3197 Email: mahadevank@battelle.org DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Reg Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-EE0005250/001 Project Start Date: September 30, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives To assist the DOE in developing fuel cell systems for stationary and emerging markets by developing independent cost models and costs estimates for manufacture and

192

How to utilize hedging and a fuel surcharge program to stabilize the cost of fuel  

E-Print Network (OSTI)

This paper looks at some of these travails as well as the common tools used to approach a volatile priced commodity, diesel fuel. It focuses on the impacts of hedging for companies that are directly impacted through the ...

Shehadi, Charles A., III (Charles Anthony)

2010-01-01T23:59:59.000Z

193

Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report  

SciTech Connect

The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

William L. ROberts

2012-10-31T23:59:59.000Z

194

LOW COST MULTI-LAYER FABRICATION METHOD FOR SOLID OXIDE FUEL CELLS (SOFC)  

SciTech Connect

Under this program, Technology Management, Inc, is evaluating the economic advantages of a multi-pass printing process on the costs of fabricating planar solid oxide fuel cell stacks. The technique, still unproven technically, uses a ''green-field'' or build-up approach. Other more mature processes were considered to obtain some baseline assumptions. Based on this analysis, TMI has shown that multi-pass printing can offer substantial economic advantages over many existing fabrication processes and can reduce costs. By impacting overall production costs, the time is compressed to penetrate early low volume niche markets and more mature high-volume market applications.

Dr. Christopher E. Milliken; Dr. Robert C. Ruhl

2001-05-16T23:59:59.000Z

195

The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements  

DOE Green Energy (OSTI)

Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

1996-03-20T23:59:59.000Z

196

An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment  

NLE Websites -- All DOE Office Websites (Extended Search)

Evaluation of the Total Cost Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Prepared under Task No. HT12.8610 Technical Report NREL/TP-5600-56408

197

Energy Department Announces New Investment to Reduce Fuel Cell ...  

Energy Department Announces New Investment to Reduce Fuel Cell Costs. August 1, 2013. In support of the Obama Administration's all-of-the-above strategy to develop ...

198

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gas and pollutants than

199

Low cost fuel cell diffusion layer configured for optimized anode water management  

DOE Patents (OSTI)

A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

2013-08-27T23:59:59.000Z

200

lease and plant fuel - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. Comprehensive data summaries, comparisons, analysis, and projections ...

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Cost of Adding E85 Fuel Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search The cost of purchasing and installing E85 fueling equip- ment varies widely, yet station owners need to have an idea of what to expect when budgeting or reviewing bids for this upgrade. The purpose of this document is to provide a framework for station owners to assess what a reason- able cost would be. This framework was developed by the National Renewable Energy Laboratory (NREL) by surveying actual costs for stations, conducting a literature search, not- ing the major cost-affecting variables, addressing anomalies in the survey, and projecting changes in future costs. The findings of NREL's survey and literature search are shown in the table below. This table divides the study's

202

Conversion and standardization of university reactor fuels using low-enrichment uranium - options and costs  

SciTech Connect

The highly-enriched uranium (HEU) fuel used in twenty United States university reactors can be viewed as contributing to the risk of theft or diversion of weapons-useable material. The US Nuclear Regulatory Commission has issued a policy statement expressing its concern and has published a proposed rule on limiting the use of HEU in NRC-licensed non-power reactors. The fuel options, functional impacts, licensing, and scheduling of conversion and standardization of these reactor fuels to use of low-enrichment uranium (LEU) have been assessed. The university reactors span a wide range in form and function, from medium-power intense neutron sources where HEU fuel may be required, to low-power training and research facilities where HEU fuel is unnecessary. Conversion provides an opportunity to standardize university reactor fuels and improve reactor utilization in some cases. The entire program is estimated to cost about $10 million and to last about five years. Planning for conversion and standardization is facilitated by the US Department of Energy. 20 refs., 1 tab.

Harris, D.R.; Matos, J.E.; Young, H.H.

1985-01-01T23:59:59.000Z

203

Cost Analysis of PEM Fuel Cell Systems for Transportation: September 30, 2005  

NLE Websites -- All DOE Office Websites (Extended Search)

Subcontract Report Subcontract Report Cost Analysis of PEM Fuel Cell NREL/SR-560-39104 Systems for Transportation December 2005 September 30, 2005 E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang TIAX LLC Cambridge, Massachusetts NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Cost Analysis of PEM Fuel Cell Systems for Transportation September 30, 2005 E.J. Carlson, P. Kopf, J. Sinha, S. Sriramulu, and Y. Yang TIAX LLC Cambridge, Massachusetts NREL Technical Monitor: K. Wipke Prepared under Subcontract No. KACX-5-44452-01 Subcontract Report NREL/SR-560-39104 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy

204

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

DOE Green Energy (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

205

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

Not Available

2010-11-01T23:59:59.000Z

206

Average System Cost Methodology : Administrator's Record of Decision.  

SciTech Connect

Significant features of average system cost (ASC) methodology adopted are: retention of the jurisdictional approach where retail rate orders of regulartory agencies provide primary data for computing the ASC for utilities participating in the residential exchange; inclusion of transmission costs; exclusion of construction work in progress; use of a utility's weighted cost of debt securities; exclusion of income taxes; simplification of separation procedures for subsidized generation and transmission accounts from other accounts; clarification of ASC methodology rules; more generous review timetable for individual filings; phase-in of reformed methodology; and each exchanging utility must file under the new methodology within 20 days of implementation by the Federal Energy Regulatory Commission of the ten major participating utilities, the revised ASC will substantially only affect three. (PSB)

United States. Bonneville Power Administration.

1984-06-01T23:59:59.000Z

207

DOE Hydrogen and Fuel Cells Program Record 5014: Electricity Price Effect on Electrolysis Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

5014 Date: December 15, 2005 5014 Date: December 15, 2005 Title: Electricity Price Effect on Electrolysis Cost Originator: Roxanne Garland Approved by: JoAnn Milliken Date: January 2, 2006 Item: Effect of Electricity Price on Distributed Hydrogen Production Cost (Assumes: 1500 GGE/day, electrolyzer at 76% efficiency, and capital cost of $250/kW) The graph is based on the 2010 target of a 1500 kg/day water electrolysis refueling station described on page 3-12 of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan, February 2005. The graph uses all the same assumptions associated with the target, except for electricity price: Reference: - 76% efficient electrolyzer - 75% system efficiency

208

Toward a Common Method of Cost Estimation for CO2 Capture and Storage at Fossil Fuel Power Plants  

Science Conference Proceedings (OSTI)

There are significant differences in the methods employed by various organizations to estimate the cost of carbon capture and storage (CCS) systems for fossil fuel power plants. Such differences often are not readily apparent in publicly reported CCS cost estimates. As a consequence, there is a significant degree of misunderstanding, confusion, and mis-representation of CCS cost information, especially among audiences not familiar with the details of CCS costing. Given the international importance ...

2013-03-18T23:59:59.000Z

209

National Aeronautics and Space Administration Ultra-Light, Low-Cost Solar Concentrator Offers  

E-Print Network (OSTI)

Fresnel lenses for optical concentration, minimizing solar cell area, mass, and cost. The SLA has been of solar energy technologies and sustainable daylighting solutions. The company designs, manufacturers lenses focusing sunlight onto multi-junction solar cells mounted to thin carbon-fiber composite radiators

210

Effect of Highly Enriched/Highly Burnt UO2 Fuels on Fuel Cycle Costs, Radiotoxicity, and Nuclear Design Parameters  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

Robert Gregg; Andrew Worrall

211

Nuclear Fuel Cycle Cost Comparison Between Once-Through and Plutonium Single-Recycling in Pressurized Water Reactors  

Science Conference Proceedings (OSTI)

Within the context of long-term waste management and sustainable nuclear fuel supply, there continue to be discussions regarding whether the United States should consider recycling of light-water reactor (LWR) spent nuclear fuel (SNF) for the current fleet of U.S. LWRs. This report presents a parametric study of equilibrium fuel cycle costs for an open fuel cycle without plutonium recycling (once-through) and with plutonium recycling (single-recycling using mixed-oxide, or MOX, fuel), assuming an all-pre...

2009-02-25T23:59:59.000Z

212

Forest Products: Georgia-Pacific's Insulation Upgrade Leads to Reduced Fuel Costs and Increased Process Efficiency  

SciTech Connect

This Steam Challenge Case Study looks at how the company, by insulating steam lines and replacing steam traps, was able to reduce fuel costs, increase process efficiency, and improve plant safety.

Ericksen, E.

1999-01-25T23:59:59.000Z

213

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

DOE Green Energy (OSTI)

The Alternative Motor Fuels Act of 1988 (Public Law 100-494), Section 400EE, states that the Secretary of Energy ...shall study methanol plants, including the costs and practicability of such plants that are (A) capable of utilizing current domestic supplies of unutilized natural gas; (B) relocatable; or (C) suitable for natural gas to methanol conversion by natural gas distribution companies...'' The purpose of this report is to characterize unutilized gas within the lower 48 states and to perform an economic analysis of methanol plants required by the act. The approach with regard to unutilized lower 48 gas is to (1) compare the costs of converting such gas to methanol against the expected price of gasoline over the next 20 years, and (2) compare the economics of converting such gas to methanol against the economics of using the gas as a pipeline-transported fuel. This study concludes that remote gas and low-Btu gas generally cannot be converted to methanol at costs near the expected competitive value of gasoline because of the poor economies of scale of small methanol plants.

Not Available

1991-07-01T23:59:59.000Z

214

Cost probability analysis of reprocessing spent nuclear fuel in the US G.D. Recktenwald, M.R. Deinert  

E-Print Network (OSTI)

to the sustainability of nuclear power while others argue against them on economic, environmental and security groundsCost probability analysis of reprocessing spent nuclear fuel in the US G.D. Recktenwald, M P48 Keywords: Reprocessing Nuclear power Spent fuel The methods by which nuclear power's radioactive

Deinert, Mark

215

Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program  

E-Print Network (OSTI)

A Georgia-Pacific plywood plant located in Madison, Georgia recently decided to insulate their steam lines for energy conservation, improved process efficiency and personnel protection. The goal of the project was to eliminate dependency on purchased fuel. Georgia-Pacific realized immediate and significant results and reduced fuel cost by about one third over a one year period.

Jackson, D.

1997-04-01T23:59:59.000Z

216

Request for Reduction/Waiver of F&A Principal Investigators /Project Directors must budget Facilities and Administrative (F&A) costs in all grant, contract, and  

E-Print Network (OSTI)

Allowed By Sponsor (if known) Project Budget: Reason for Reduction/Waiver Request: Direct Costs (MTDC BaseRequest for Reduction/Waiver of F&A Principal Investigators /Project Directors must budget Facilities and Administrative (F&A) costs in all grant, contract, and cooperative agreement proposals using

Guenther, Frank

217

A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES  

SciTech Connect

Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was found that the ground pellets could be used as an effective NOx control agent for pulverized-coal-fired systems. NOx emissions reductions up to 63% were recorded, when using AFP as a NOx control agent. In addition to performance benefits, economic analyses showed the good economic benefits of AFP fuel. Using equipment manufacturer inputs, and reasonable values for biomass, biosolids and coal fines costs, it was determined that an AFP plant would have good profitability. For cases where biosolids contents were in the range of 50%, the after tax Internal Rates of Return were in the range of 40% to 50%. These are very attractive returns. Besides the baseline analysis for the various AFP formulations tested at pilot scale, sensitivity analysis showed the impact of important parameters on return. From results, it was clear that returns are excellent for a range of parameters that could be expected in practice. Importantly, these good returns are achieved even without incentives related to the emissions control benefits of biomass.

John T. Kelly; George Miller; Mehdi Namazian

2001-07-01T23:59:59.000Z

218

Stationary Fuel Cell System Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Technical Advisor Bryan Pivovar Phone: (303) 275-3809 Email: bryan.pivovar@nrel.gov Sub-Contract Number No: AGB-0-40628-01 under Prime Contract No. DE-AC36-08G028308 Project Start Date: July 8, 2010 Project End Date: September 7, 2012 Fiscal Year (FY) 2012 Objectives Perform Design for Manufacturing and Assembly * (DFMA ® ) cost analysis for low-temperature (LT)

219

DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS  

DOE Green Energy (OSTI)

This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

2004-06-12T23:59:59.000Z

220

Fuel Cost Savings Through Computer Control of a Boiler Complex - - Two Case Histories  

E-Print Network (OSTI)

This paper discusses the growing need for energy efficiency in industry and describes a new, packaged approach to fuel optimization through direct digital control and accurate in-stack measurement of combustion products. Results are presented for a large pulp and paper mill complex in which multiple power boilers and turbine generators are controlled so as to meet the total energy demand of the mill at minimum cost. Also discussed are results from a second installation involving control of a combined bark and gas boiler, a gas package boiler and a turbine generator, including utility tie-line control.

Worthley, C. M.

1979-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hydrogen Refueling Infrastructure Cost Analysis - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Marc W. Melaina (Primary Contact), Michael Penev and Darlene Steward National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 275-3836 Email: Marc.Melaina@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Subcontractor: IDC Energy Insights, Framingham, MA Project Start Date: October 1, 2010 Project End Date: September 28, 2012 Fiscal Year (FY) 2012 Objectives Identify the capacity (kg/day) and capital costs * associated with "Early Commercial" hydrogen stations (defined below) Identify cost metrics for larger numbers of stations and * larger capacities Technical Barriers This project addresses the following technical barriers

222

Cost/performance comparison between pulse columns and centrifugal contactors designed to process Clinch River Breeder Reactor fuel  

Science Conference Proceedings (OSTI)

A comparison between pulse columns and centrifugal contactors was made to determine which type of equipment was more advantageous for use in the primary decontamination cycle of a remotely operated fuel reprocessing plant. Clinch River Breeder Reactor (CRBR) fuel was chosen as the fuel to be processed in the proposed 1 metric tonne/day reprocessing facility. The pulse columns and centrifugal contactors were compared on a performance and total cost basis. From this comparison, either the pulse columns or the centrifugal contactors will be recommended for use in a fuel reprocessing plant built to reprocess CRBR fuel. The reliability, solvent exposure to radiation, required time to reach steady state, and the total costs were the primary areas of concern for the comparison. The pulse column units were determined to be more reliable than the centrifugal contactors. When a centrifugal contactor motor fails, it can be remotely changed in less than one eight hour shift. Pulse columns expose the solvent to approximately five times as much radiation dose as the centrifugal contactor units; however, the proposed solvent recovery system adequately cleans the solvent for either case. The time required for pulse columns to reach steady state is many times longer than the time required for centrifugal contactors to reach steady state. The cost comparison between the two types of contacting equipment resulted in centrifugal contactors costing 85% of the total cost of pulse columns when the contactors were stacked on three levels in the module. If the centrifugal contactors were all positioned on the top level of a module with the unoccupied volume in the module occupied by other equipment, the centrifugal contactors cost is 66% of the total cost of pulse columns. Based on these results, centrifugal contactors are recommended for use in a remotely operated reprocessing plant built to reprocess CRBR fuel.

Ciucci, J.A. Jr.

1983-12-01T23:59:59.000Z

223

Projected Cost, Energy Use, and Emissions of Hydrogen Technologies for Fuel Cell Vehicles  

SciTech Connect

Each combination of technologies necessary to produce, deliver, and distribute hydrogen for transportation use has a corresponding levelized cost, energy requirement, and greenhouse gas emission profile depending upon the technologies' efficiencies and costs. Understanding the technical status, potential, and tradeoffs is necessary to properly allocate research and development (R&D) funding. In this paper, levelized delivered hydrogen costs, pathway energy use, and well-to-wheels (WTW) energy use and emissions are reported for multiple hydrogen production, delivery, and distribution pathways. Technologies analyzed include both central and distributed reforming of natural gas and electrolysis of water, and central hydrogen production from biomass and coal. Delivery options analyzed include trucks carrying liquid hydrogen and pipelines carrying gaseous hydrogen. Projected costs, energy use, and emissions for current technologies (technology that has been developed to at least the bench-scale, extrapolated to commercial-scale) are reported. Results compare favorably with those for gasoline, diesel, and E85 used in current internal combustion engine (ICE) vehicles, gasoline hybrid electric vehicles (HEVs), and flexible fuel vehicles. Sensitivities of pathway cost, pathway energy use, WTW energy use, and WTW emissions to important primary parameters were examined as an aid in understanding the benefits of various options. Sensitivity studies on production process energy efficiency, total production process capital investment, feed stock cost, production facility operating capacity, electricity grid mix, hydrogen vehicle market penetration, distance from the hydrogen production facility to city gate, and other parameters are reported. The Hydrogen Macro-System Model (MSM) was used for this analysis. The MSM estimates the cost, energy use, and emissions trade offs of various hydrogen production, delivery, and distribution pathways under consideration. The MSM links the H2A Production Model, the Hydrogen Delivery Scenario Analysis Model (HDSAM), and the Greenhouse Gas, Regulated Emission, and Energy for Transportation (GREET) Model. The MSM utilizes the capabilities of each component model and ensures the use of consistent parameters between the models to enable analysis of full hydrogen production, delivery, and distribution pathways. To better understand spatial aspects of hydrogen pathways, the MSM is linked to the Hydrogen Demand and Resource Analysis Tool (HyDRA). The MSM is available to the public and enables users to analyze the pathways and complete sensitivity analyses.

Ruth, M. F.; Diakov, V.; Laffen, M. J.; Timbario, T. A.

2010-01-01T23:59:59.000Z

224

DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

2024 Date: September 19, 2012 2024 Date: September 19, 2012 Title: Hydrogen Production Cost Using Low-Cost Natural Gas Originator: Sara Dillich, Todd Ramsden & Marc Melaina Approved by: Sunita Satyapal Date: September 24, 2012 Item: Hydrogen produced and dispensed in distributed facilities at high-volume refueling stations using current technology and DOE's Annual Energy Outlook (AEO) 2009 projected prices for industrial natural gas result in a hydrogen levelized cost of $4.49 per gallon-gasoline-equivalent (gge) (untaxed) including compression, storage and dispensing costs. The hydrogen production portion of this cost is $2.03/gge. In comparison, current analyses using low-cost natural gas with a price of $2.00 per MMBtu can decrease the hydrogen levelized cost to $3.68 per gge (untaxed) including

225

Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios  

DOE Green Energy (OSTI)

Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

2013-04-01T23:59:59.000Z

226

Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements  

SciTech Connect

There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

1986-10-01T23:59:59.000Z

227

EPA Fuel Economy Ratings  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Window Sticker Current Window Sticker The U.S. Environmental Protection Agency (EPA) and the National Highway Traffic Safety Administration (NHTSA) recently redesigned and enhanced the window sticker that appears on new vehicles. The new Fuel Economy and Environment Label will be mandatory on all new vehicles beginning with the 2013 model year. For the 2012 model year, manufacturers can use the new window sticker or the older window sticker shown below. Roll over the highlighted elements on the label below to learn more about EPA's current fuel economy label. EPA's Current Fuel Economy Label EPA's New Fuel Economy Label Estimated Annual Fuel Cost: $2,039 based on 15,000 mile at $2.80 per gallon Your fuel cost may differ depending on annual miles and fuel prices. Combined Fuel Economy for this Vehicle: 21 MPG, Range for all SUVs: 10-31

228

Mass-Production Cost Estimation for Automotive Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Kevin Baum, Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington VA 22203 Phone: (703) 778-7114 Email: bjames@sainc.com DOE Managers HQ: Jason Marcinkoski, Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov GO: Gregory Kleen Phone: (720) 356-1672 Email: Gregory.Kleen@go.doe.gov Contract Number: DE-EE0005236 Project Start Date: September 30, 2011 Project End Date: September 30, 2016 Fiscal Year (FY) 2012 Objectives Update 2011 automotive fuel cell cost model to include * latest performance data and system design information. Examine costs of fuel cell systems (FCSs) for light-duty * vehicle and bus applications.

229

Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate  

Science Conference Proceedings (OSTI)

In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

Warren, R.N.

1998-09-29T23:59:59.000Z

230

On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells  

DOE Green Energy (OSTI)

Final Report of On-Board Vehicle, Cost Effective Hydrogen Enhancement Technology for Transportation PEM Fuel Cells. The objective of this effort was to technologically enable a compact, fast start-up integrated Water Gas Shift-Pd membrane reactor for integration into an On Board Fuel Processing System (FPS) for an automotive 50 kWe PEM Fuel Cell (PEM FC). Our approach was to: (1) use physics based reactor and system level models to optimize the design through trade studies of the various system design and operating parameters; and (2) synthesize, characterize and assess the performance of advanced high flux, high selectivity, Pd alloy membranes on porous stainless steel tubes for mechanical strength and robustness. In parallel and not part of this program we were simultaneously developing air tolerant, high volumetric activity, thermally stable Water Gas Shift catalysts for the WGS/membrane reactor. We identified through our models the optimum WGS/membrane reactor configuration, and best Pd membrane/FPS and PEM FC integration scheme. Such a PEM FC power plant was shown through the models to offer 6% higher efficiency than a system without the integrated membrane reactor. The estimated FPS response time was < 1 minute to 50% power on start-up, 5 sec transient response time, 1140 W/L power density and 1100 W/kg specific power with an estimated production cost of $35/kW. Such an FPS system would have a Catalytic Partial Oxidation System (CPO) rather than the slower starting Auto-Thermal Reformer (ATR). We found that at optimum WGS reactor configuration that H{sub 2} recovery efficiencies of 95% could be achieved at 6 atm WGS pressure. However optimum overall fuel to net electrical efficiency ({approx}31%) is highest at lower fuel processor efficiency (67%) with 85% H{sub 2} recovery because less parasitic power is needed. The H{sub 2} permeance of {approx}45 m{sup 3}/m{sup 2}-hr-atm{sup 0.5} at 350 C was assumed in these simulations. In the laboratory we achieved a H{sub 2} permeance of 50 m{sup 3}/(m{sup 2}-hr-atm{sup 0.5}) with a H{sub 2}/N{sub 2} selectivity of 110 at 350 C with pure Pd. We also demonstrated that we could produce Pd-Ag membranes. Such alloy membranes are necessary because they aren't prone to the Pd-hydride {alpha}-{beta} phase transition that is known to cause membrane failure in cyclic operation. When funding was terminated we were on track to demonstrated Pd-Ag alloy deposition on a nano-porous ({approx}80 nm) oxide layer supported on porous stainless steel tubing using a process designed for scale-up.

Thomas H. Vanderspurt; Zissis Dardas; Ying She; Mallika Gummalla; Benoit Olsommer

2005-12-30T23:59:59.000Z

231

DOE Hydrogen and Fuel Cells Program Record 9017: On-Board Hydrogen Storage Systems … Projected Performance and Cost Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 9017 Date: July 02, 2010 Title: On-Board Hydrogen Storage Systems - Projected Performance and Cost Parameters Originators: Robert C. Bowman and Ned Stetson Approved by: Sunita Satyapal Date: August 10, 2010 This record summarizes the current technical assessments of hydrogen (H 2 ) storage system capacities and projected manufacturing costs for the scenario of high-volume production (i.e., 500,000 units/year) for various types of "on-board" vehicular storage systems. These analyses were performed within the Hydrogen Storage sub-program of the DOE Fuel Cell Technologies (FCT) program of the Office of Energy Efficiency and Renewable Energy. Item: It is important to note that all system capacities are "net useable capacities" able to be delivered to the

232

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... storage, imports and exports, ... Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy.

233

Commerce study looks at cost of pollution control for fossil-fuel power industry  

SciTech Connect

Environmental controls for fossil-fuel power plants consumed 1.3 percent of the national fuel used in 1974, with the largest demand going for sulfur dioxide emission control. Projections for power plant consumption to meet environmental standards range as high as eight percent in the 1980s. Less-energy-consuming systems include coal blending, tall stacks, and supplementary control systems; while high consumers are using coal washing operations in place of scrubbers, fuel transportation, conversion to acceptable fuels, waste heat disposal, and particulate controls. A summary table presents sulfur dioxide regulations in terms of their goals and their anticipated minimum and maximum fuel consumption. (DCK)

1977-06-01T23:59:59.000Z

234

Development of Low-Cost Manufacturing Processes for Planar, Multilayer Solid Oxide Fuel Cell Elements  

DOE Green Energy (OSTI)

This report summarizes the results of Phase II of this program, 'Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'. The objective of the program is to develop advanced ceramic manufacturing technologies for making planar solid oxide fuel cell (SOFC) components that are more economical and reliable for a variety of applications. Phase II development work focused on three distinct manufacturing approaches (or tracks) for planar solid oxide fuel cell elements. Two development tracks, led by NexTech Materials and Oak Ridge National Laboratory, involved co-sintering of planar SOFC elements of cathode-supported and anode-supported variations. A third development track, led by the University of Missouri-Rolla, focused on a revolutionary approach for reducing operating temperature of SOFCs by using spin-coating to deposit ultra-thin, nano-crystalline YSZ electrolyte films. The work in Phase II was supported by characterization work at Ohio State University. The primary technical accomplishments within each of the three development tracks are summarized. Track 1--NexTech's targeted manufacturing process for planar SOFC elements involves tape casting of porous electrode substrates, colloidal-spray deposition of YSZ electrolyte films, co-sintering of bi-layer elements, and screen printing of opposite electrode coatings. The bulk of NexTech's work focused on making cathode-supported elements, although the processes developed at NexTech also were applied to the fabrication of anode-supported cells. Primary accomplishments within this track are summarized below: (1) Scale up of lanthanum strontium manganite (LSM) cathode powder production process; (2) Development and scale-up of tape casting methods for cathode and anode substrates; (3) Development of automated ultrasonic-spray process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer elements (both cathode and anode supported); (5) Development of anode and cathode screen-printing processes; and (6) Demonstration of novel processes for composite cathode and cermet anode materials. Track 2--ORNL's development work focused solely on making anode-supported planar cells by tape casting of a porous anode substrate, screen printing of a YSZ electrolyte film, co-sintering of the bi-layer element, and screen-printing of an opposite cathode coating. Primary accomplishments within this track are summarized below: (1) Development and scale-up of anode tape casting and lamination processes; (2) Development of proprietary ink vehicle for screen-printing processes; (3) Development of screen-printing process for depositing YSZ films; (4) Successful co-sintering of flat bi-layer anode-supported elements; and (5) Development of cathode screen-printing process. Track 3--UMR's process development work involved fabrication of a micro-porous cathode substrate, deposition of a nano-porous interlayer film, deposition of nano-crystalline YSZ electrolyte films from polymeric precursor solutions, and deposition of an anode coating. Primary accomplishments within this track are summarized below: (1) Development and scale up of tape casting and sintering methods for cathode substrates; (2) Deposition of nano-porous ceria interlayer films on cathode substrates; (3) Successful deposition of dense YSZ films on porous cathode substrates; and (4) Identification of several anode material options.

Scott Swartz; Matthew Seabaugh; William Dawson; Tim Armstrong; Harlan Anderson; John Lannutti

2001-09-30T23:59:59.000Z

235

2005 DOE Hydrogen Program Review PresentationCOST AND PERFORMANCE ENHANCEMENTS FOR A PEM FUEL CELL TURBOCOMPRESSOR  

DOE Green Energy (OSTI)

The objectives of the program during the past year was to complete Technical Objectives 2 and 3 and initiate Technical Objective 4 are described. To assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2005-04-01T23:59:59.000Z

236

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector  

DOE Green Energy (OSTI)

The DOE is conducting a comprehensive technical analysis of a flexible-fuel transportation system in the United States -- that is, a system that could easily switch between petroleum and another fuel, depending on price and availability. The DOE Alternative Fuels Assessment is aimed directly at questions of energy security and fuel availability, but covers a wide range of issues. This report examines environmental, health, and safety concerns associated with a switch to alternative- and flexible-fuel vehicles. Three potential alternatives to oil-based fuels in the transportation sector are considered: methanol, compressed natural gas (CNG), and electricity. The objective is to describe and discuss qualitatively potential environmental, health, and safety issues that would accompany widespread use of these three fuels. This report presents the results of exhaustive literature reviews; discussions with specialists in the vehicular and fuel-production industries and with Federal, State, and local officials; and recent information from in-use fleet tests. Each chapter deals with the end-use and process emissions of air pollutants, presenting an overview of the potential air pollution contribution of the fuel --relative to that of gasoline and diesel fuel -- in various applications. Carbon monoxide, particulate matter, ozone precursors, and carbon dioxide are emphasized. 67 refs., 6 figs. , 8 tabs.

Not Available

1991-10-01T23:59:59.000Z

237

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update September 30, 2010 Prepared by: Brian D. James, Jeffrey A. Kalinoski & Kevin N. Baum One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared under: Subcontract No. AGB-0-40628-01 to the National Renewable Energy Laboratory (NREL) under Prime Contract No. DE-AC36-08GO28308 to the U.S. Department of Energy Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gasses and pollutants than

238

Energy Information Administration (EIA)- Commercial Buildings ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Uranium fuel, nuclear reactors, generation, spent fuel.

239

Cost Impact of Using ISG-8 Rev. 3 for PWR Spent Fuel Pool Criticality Analysis  

Science Conference Proceedings (OSTI)

Nuclear Regulatory Commission (NRC) guidance for applying burnup credit in criticality analyses for spent fuel storage and transportation requirements recently changed with the release of Interim Staff Guidance (ISG) 8 Revision 3, Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transportation and Storage Casks. If ISG-8 Rev. 3 were imposed upon pressurized water reactor (PWR) spent fuel pool (SFP) criticality analyses, the burnup requirements for loading would ...

2012-11-21T23:59:59.000Z

240

Microsoft Word - 2011 fuel costs per mile w-header.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

of driving an electric vehicle depends on the cost of electricity per kilowatt-hour (kWh) and the energy efficiency of the vehicle. For example, to determine the energy cost...

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Low-Cost PEM Fuel Cell Metal Bipolar Plates - DOE Hydrogen and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Report DOE Hydrogen and Fuel Cells Program Conghua "CH" Wang TreadStone Technologies, Inc. 201 Washington Rd. Princeton, NJ 08543 Phone: (609) 734-3071 Email:...

242

DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year. The current projected performance and cost of these systems are presented in Table 1 against the DOE Hydrogen Storage System targets. These analyses were performed in support of the Hydrogen Storage

243

1998 Cost and Quality Annual  

Gasoline and Diesel Fuel Update (EIA)

8) 8) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 1998 Tables June 1999 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) is no longer published by the EIA. The tables presented in this document are intended to replace that annual publication. Questions regarding the availability of these data should

244

DOE Hydrogen and Fuel Cells Program: Energy Department Announces...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Department Announces New Investment to Reduce Fuel Cell Costs Aug 1, 2013 In support of the Obama Administration's all-of-the-above strategy to develop clean, domestic...

245

Appendix A - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration Fuel Oil and Kerosene Sales 2009 37 Technical Note 1: EIA-821: Annual Fuel Oil and Kerosene Sales Report, 2007

246

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application  

NLE Websites -- All DOE Office Websites (Extended Search)

presentation presentation does not contain any proprietary, confidential, or otherwise restricted information page 1 Overview * Base Period: - 100% complete * Manufacturing costs * Materials costs (particularly precious Timeline Barriers - Feb 17, 2006 to Feb. 16, 2008 * Option year 1 of 3: - 65% complete - Started Feb 16, 2008 metal catalysts) Characteristic Units 2008 2010 2015 Stack Cost $/kW e (net) - $25 $15 - $325K (2 year base period) - $182k (opt. yr. 1) - Contractor share: $0 * Funding for FY 2008 * Extensive interaction with Collaborations System Cost $/kW e (net) - $45 $30 * Funding for FY 2008 - $182k industry/researchers to solicit design & manufacturing metrics as input to cost analysis. page 2 Started Feb 16, 2008 Budget * Total project funding DOE Cost Targets

247

Rough cost estimates of solar thermal/coal or biomass-derived fuels. [Hybrid approach: solar thermal plus either coal or biomass  

SciTech Connect

The production of a synthetic fuel from a solar thermal resource could provide a means of replacing critical liquid and gaseous fossil fuels. The solar thermal resource is large and economics favors a southwestern site. A synthetic fuel would provide a desirable product and a means of transporting solar thermal energy to large load centers outside the southwest. This paper presents cost data for one method of producing synthetic methane. A hybrid approach was chosen, a combination of solar thermal and either coal or biomass. The magnitude of the solar thermal resource is estimated as well as projected cost. Cost projections for coal and biomass are accumulated. The cost of synthetic gas from a hybrid and a conventional fuel source are compared.

Copeland, R. J.

1979-01-01T23:59:59.000Z

248

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today...

249

mMass Production Cost Estimation for Direct H2 PEM Fuel Cell...  

NLE Websites -- All DOE Office Websites (Extended Search)

has not been included in this study. In general, the system designs do not change with production rate, but material costs, manufacturing methods, and business-operational...

250

Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

has not been included in this study. In general, our system designs do not change with production rate, but material costs, manufacturing methods, and business-operational...

251

Cost modeling approach and economic analysis of biomass gasification integrated solid oxide fuel cell systems  

Science Conference Proceedings (OSTI)

This paper presents a cost modeling approach and the economic feasibility for selected plant configurations operating under three modes: air gasification

Rajesh S. Kempegowda; Øyvind Skreiberg; Khanh-Quang Tran

2012-01-01T23:59:59.000Z

252

A cost-effective and fuel-conserving nonelectric air conditioner that combines engine-driven compression and absorption cycles  

SciTech Connect

A natural-gas-fueled electricity-producing condensing furnace with the potential of being mass produced at a cost of less than $1000 and providing a cost-effective and highly fuel-conserving alternative to virtually every residential gas furnace in the world has been developed. While this is a new system, it completely consists of existing mass-produced components including single-cylinder air-cooled engines, induction motors/generators, and control devices. Thus, timely commercialization can be expected and an important new energy technology and industry can result. However, all the benefits of this electricity-producing furnace occur during the winter. This has stimulated the search for a new system that can provide comparable benefits in terms of fuel conservation, the environment, and electric utility peak reduction during the summer, along with the prospects of a new and efficient new use for the natural gas surpluses that occur during the summer. The resulting system, which can use existing component equipment, is a commercial-size nonelectric air conditioner that consists of an automobile-type engine converted to natural gas, or possibly a diesel or combustion turbine, driving a Freon compression cycle, with virtually all of the engine reject heat from the exhaust and from the engine cooling system driving a conventional absorption air conditioning cycle.

Wicks, F.

1988-01-01T23:59:59.000Z

253

Cost-effectiveness of controlling emissions for various alternative-fuel vehicle types, with vehicle and fuel price subsidies estimated on the basis of monetary values of emission reductions  

DOE Green Energy (OSTI)

Emission-control cost-effectiveness is estimated for ten alternative-fuel vehicle (AFV) types (i.e., vehicles fueled with reformulated gasoline, M85 flexible-fuel vehicles [FFVs], M100 FFVs, dedicated M85 vehicles, dedicated M100 vehicles, E85 FFVS, dual-fuel liquefied petroleum gas vehicles, dual-fuel compressed natural gas vehicles [CNGVs], dedicated CNGVs, and electric vehicles [EVs]). Given the assumptions made, CNGVs are found to be most cost-effective in controlling emissions and E85 FFVs to be least cost-effective, with the other vehicle types falling between these two. AFV cost-effectiveness is further calculated for various cases representing changes in costs of vehicles and fuels, AFV emission reductions, and baseline gasoline vehicle emissions, among other factors. Changes in these parameters can change cost-effectiveness dramatically. However, the rank of the ten AFV types according to their cost-effectiveness remains essentially unchanged. Based on assumed dollars-per-ton emission values and estimated AFV emission reductions, the per-vehicle monetary value of emission reductions is calculated for each AFV type. Calculated emission reduction values ranged from as little as $500 to as much as $40,000 per vehicle, depending on AFV type, dollar-per-ton emission values, and baseline gasoline vehicle emissions. Among the ten vehicle types, vehicles fueled with reformulated gasoline have the lowest per-vehicle value, while EVs have the highest per-vehicle value, reflecting the magnitude of emission reductions by these vehicle types. To translate the calculated per-vehicle emission reduction values to individual AFV users, AFV fuel or vehicle price subsidies are designed to be equal to AFV emission reduction values. The subsidies designed in this way are substantial. In fact, providing the subsidies to AFVs would change most AFV types from net cost increases to net cost decreases, relative to conventional gasoline vehicles.

Wang, M.Q.

1993-12-31T23:59:59.000Z

254

Economic costs and environmental impacts of alternative fuel vehicle fleets in local government: An interim assessment  

E-Print Network (OSTI)

; Environmental policy 1. Introduction High crude oil prices and increasing public awareness of the environmental and fuel provider fleet vehicles (US Department of Energy, 2006). Nevertheless, fleets covered under

Illinois at Chicago, University of

255

Cost-benefit analysis of ultra-low sulfur jet fuel  

E-Print Network (OSTI)

The growth of aviation has spurred increased study of its environmental impacts and the possible mitigation thereof. One emissions reduction option is the introduction of an Ultra Low Sulfur (ULS) jet fuel standard for ...

Kuhn, Stephen (Stephen Richard)

2010-01-01T23:59:59.000Z

256

Carbonate fuel cell monolith design for high power density and low cost  

SciTech Connect

Objective is higher power density operation and cost reduction. This is accomplished by the design of a bipolar plate where the separate corrugated current collectors are eliminated; cost reduction was also derived through higher power density and reduced material usage. The higher volumetric power density operation was achieved through lower cell resistance, increased active component surface area, and reduced cell height.

Allen, J.; Doyon, J.

1996-08-01T23:59:59.000Z

257

DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

3013 Date: September 26, 2013 3013 Date: September 26, 2013 Title: H 2 Delivery Cost Projections - 2013 Originator: E. Sutherland, A. Elgowainy and S. Dillich Approved by: R. Farmer and S. Satyapal Date: December 18, 2013 Item: Reported herein are past 2005 and 2011 estimates, current 2013 estimates, 2020 projected cost estimates and the 2015 and 2020 target costs for delivering and dispensing (untaxed) H 2 to 10%- 15% of vehicles within a city population of 1.2M from a centralized H 2 production plant located 100 km from the city gate. The 2011 volume cost estimates are based on the H2A Hydrogen Delivery Scenario Analysis Model (HDSAM) V2.3 projections and are employed as the basis for defining the cost and technical targets of delivery components in Table 3.2.4 in the 2012 Delivery

258

DOE Hydrogen and Fuel Cells Program Record 5040: 2005 Hydrogen Cost from Water Electrolysis  

NLE Websites -- All DOE Office Websites (Extended Search)

40 Date: December 12, 2008 40 Date: December 12, 2008 Title: 2005 Hydrogen Cost from Water Electrolysis Originator: Roxanne Garland Approved by: Sunita Satyapal Date: December 19, 2008 Item: The 2005 cost status for hydrogen produced from distributed water electrolysis is $5.90 / gge. Assumptions and References: The H2A analysis used to determine the projected cost of $5.88/gge (rounded up to $5.90/gge) was performed by Directed Technologies, Inc. and can be found in Record 5040a. The increase in cost compared to the 2004 analysis ($5.45/gge) is due to two assumptions changed in the model: (a) an increase in the industrial electricity price from 5¢/kWh to 5.5¢/kWh from the EIA Annual Energy Outlook, and (b) an increase in the capital cost estimate of the electrolyzer. The other assumptions in the analysis used standard values

259

Annual Energy Outlook 2013 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Uranium fuel, nuclear reactors, ... About the National Energy Modeling System (NEMS)

260

Georgia Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

... Sustainability Division; Georgia Energy Data; Southeastern Power Administration; Alternative Fuels and Advanced Vehicle Data Center - Federal and State Incentives ...

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Hydrogen Storage Cost Analysis, Preliminary Results - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Brian D. James (Primary Contact), Andrew B. Spisak, Whitney G. Colella Strategic Analysis, Inc. 4075 Wilson Blvd. Suite 200 Arlington, VA 22203 Phone: (703) 778-7114 E-mail: bjames@sainc.com DOE Managers HQ: Grace Ordaz Phone: (202) 586-8350 Email: Grace.Ordaz@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0005253 Project Start Date: September 30, 2012 Project End Date: September 29, 2016 Fiscal Year (FY) 2012 Objectives Develop cost models of carbon fiber hydrogen storage * pressure vessels. Explore the sensitivity of pressure vessel cost to design * parameters including hydrogen storage quantity, storage

262

Nuclear fuels accounting interface: River Bend experience  

SciTech Connect

This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation.

Barry, J.E.

1986-01-01T23:59:59.000Z

263

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

264

Optimal Control of the Solid Fuel Ignition Model with H1-Cost  

Science Conference Proceedings (OSTI)

Optimal control problems for the stationary as well as the time-dependent solid fuel ignition model are investigated. Existence of optimal controls is proved, and optimality systems are derived. The analysis is based on a closedness lemma for the exponential ... Keywords: control of exponential nonlinearity, explosion phenomena, optimal control, optimality conditions

Kazufumi Ito; Karl Kunisch

2001-05-01T23:59:59.000Z

265

Life-cycle cost comparisons of advanced storage batteries and fuel cells for utility, stand-alone, and electric vehicle applications  

DOE Green Energy (OSTI)

This report presents a comparison of battery and fuel cell economics for ten different technologies. To develop an equitable economic comparison, the technologies were evaluated on a life-cycle cost (LCC) basis. The LCC comparison involved normalizing source estimates to a standard set of assumptions and preparing a lifetime cost scenario for each technology, including the initial capital cost, replacement costs, operating and maintenance (O M) costs, auxiliary energy costs, costs due to system inefficiencies, the cost of energy stored, and salvage costs or credits. By considering all the costs associated with each technology over its respective lifetime, the technology that is most economical to operate over any given period of time can be determined. An analysis of this type indicates whether paying a high initial capital cost for a technology with low O M costs is more or less economical on a lifetime basis than purchasing a technology with a low initial capital cost and high O M costs. It is important to realize that while minimizing cost is important, the customer will not always purchase the least expensive technology. The customer may identify benefits associated with a more expensive option that make it the more attractive over all (e.g., reduced construction lead times, modularity, environmental benefits, spinning reserve, etc.). The LCC estimates presented in this report represent three end-use applications: utility load-leveling, stand-alone power systems, and electric vehicles.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

266

Program Record 13006 (Offices of Vehicle Technologies and Fuel Cell Technologies: Life-Cycle Costs of Mid-Size Light-Duty Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Vehicle Technologies & Fuel Cell Program Record (Offices of Vehicle Technologies & Fuel Cell Technologies) Record #: 13006 Date: April 24, 2013 Title: Life-cycle Costs of Mid-Size Light-Duty Vehicles Originator: Tien Nguyen & Jake Ward Approved by: Sunita Satyapal Pat Davis Date: April 25, 2013 Items: DOE is pursuing a portfolio of technologies with the potential to significantly reduce greenhouse gases (GHG) emissions and petroleum consumption while being cost-effective. This record documents the assumptions and results of analyses conducted to estimate the life-cycle costs resulting from several fuel/vehicle pathways, for a future mid-size car. The results are summarized graphically in the following figure. Costs of Operation for Future Mid-Size Car

267

DOE Hydrogen Analysis Repository: Hydrogen Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Costs Project Summary Full Title: Fuel Choice for Fuel Cell Vehicles: Hydrogen Infrastructure Costs Previous Title(s): Guidance for Transportation Technologies: Fuel...

268

Estimating the marginal cost of reducing global fossil fuel CO[sub 2] emissions  

Science Conference Proceedings (OSTI)

This paper estimates the marginal, total, and average cost and effectiveness of carbon taxes applied either by the Organization for Economic Cooperation and Development (OECD) members alone, or as part of a global cooperative strategy, to reduce potential future emissions and their direct implications for employment in the US coal industry. Two sets of cases are examined, one set in which OECD members acts alone, and another set in which the world acts in concert. In each case set taxes are examined which achieve four alternative levels of emissions reduction: halve the rate of emissions growth, no emissions growth, 20[percent] reduction from 1988 levels, and 50[percent] reduction from 1988 levels. For the global cooperation case, carbon tax rates of [dollar sign]32, [dollar sign]113, [dollar sign]161, and [dollar sign]517 per metric ton of carbon (mtC) were needed in the year 2025 to achieve the objectives. Total costs were respectively [dollar sign]40, [dollar sign]178, [dollar sign]253, and [dollar sign]848 billions of 1990 US dollars per year in the year 2025. Average costs were [dollar sign]32, [dollar sign]55, [dollar sign]59, and [dollar sign]135 per mtC. Costs were significantly higher in the cases in which the OECD members states acted alone. OECD member states, acting alone, could not reduce global emissions by 50[percent] or 20[percent] relative to 1988, given reference case assumptions regarding developing and recently planned nations economic growth.

Edmonds, J.; Barns, D.W.; McDonald, S. (Pacific Northwest Lab., Washington, DC (United States))

1992-01-01T23:59:59.000Z

269

Small-Scale Low Cost Solid Oxide Fuel Cell Power Systems  

DOE Green Energy (OSTI)

Progress in tasks seeking greater cell power density and lower cost through new cell designs, new cell materials and lower operating temperature is summarized. The design of the program required Proof-of-Concept unit of residential capacity scale is reviewed along with a summary of results from its successful test. Attachment 1 summarizes the status of cell development. Attachment 2 summarizes the status of generator design, and Attachment 3 of BOP design.

S. D. Vora

2008-02-01T23:59:59.000Z

270

Development of a Low-Cost, Durable Membrane and MEA for Stationary and Mobile Fuel Cell Applications  

DOE Green Energy (OSTI)

The development of low cost, durable membranes and membranes electrode assemblies (MEAs) remain a critical challenge for the successful introduction of fuel cells into mass markets. It was the goal of the team lead by Arkema, Inc. (formerly Atofina, Inc.) to address these shortages. Thus, this project addresses the following technical barriers from the Fuel Cells section of the Hydrogen Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan: (A) Durability (B) Cost Arkema’s approach consisted in using blends of polyvinylidenefluoride (PVDF) and proprietary sulfonated polyelectrolytes. The strength and originality of Arkema’s approach lies in the decoupling of ion conductivity from the other requirements. Kynar® (Arkema trade name for PVDF) provides an exceptional combination of properties that make it ideally suited for a membrane matrix. In a first phase, Arkema demonstrated the feasibility of the concept with the M31 membrane generation. After MEA optimization, it was shown that the beginning-of-life (BOL) performance of M31 MEAs was essentially on a par with that of PFSA MEAs at 60ºC under fully humidified conditions. On the other hand, long-term durability studies showed a high decay rate of 45µV/h over a 2100 hr. test. Arkema then designed several families of polyelectrolyte candidates, which – in principle – could not undergo the same failure mechanisms. A new membrane candidate was developed: M41. It offered the same generally good mechanical, ex-situ conductivity and gas barrier properties as M31. In addition, ex-situ accelerated testing suggested a several orders of magnitude improvement in chemical stability. M41 based MEAs showed comparable BOL performance with that of PFSA (80ºC, 100% RH). M41 MEAs were further shown to be able to withstand several hours temperature excursions at 120ºC without apparent damage. Accelerated studies were carried out using the DOE and/or US Fuel Cell Council protocols. M41 MEAs shown sizeable advantages over PFSA MEAs in the Open Circuit Voltage Hold test, Relative Humidity Cycling test and the Voltage Cycling test. The main known limitation of the M41 family is its ability to function well at low RH.

Michel Foure, Scott Gaboury, Jim Goldbach, David Mountz and Jung Yi (no longer with company)

2008-01-31T23:59:59.000Z

271

Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas  

SciTech Connect

Liquid transportation fuels derived from coal and natural gas could help the United States reduce its dependence on petroleum. The fuels could be produced domestically or imported from fossil fuel-rich countries. The goal of this paper is to determine the life-cycle GHG emissions of coal- and natural gas-based Fischer-Tropsch (FT) liquids, as well as to compare production costs. The results show that the use of coal- or natural gas-based FT liquids will likely lead to significant increases in greenhouse gas (GHG) emissions compared to petroleum-based fuels. In a best-case scenario, coal- or natural gas-based FT-liquids have emissions only comparable to petroleum-based fuels. In addition, the economic advantages of gas-to-liquid (GTL) fuels are not obvious: there is a narrow range of petroleum and natural gas prices at which GTL fuels would be competitive with petroleum-based fuels. CTL fuels are generally cheaper than petroleum-based fuels. However, recent reports suggest there is uncertainty about the availability of economically viable coal resources in the United States. If the U.S. has a goal of increasing its energy security, and at the same time significantly reducing its GHG emissions, neither CTL nor GTL consumption seem a reasonable path to follow. 28 refs., 2 figs., 4 tabs.

Paulina Jaramillo; W. Michael Griffin; H. Scott Matthews [Carnegie Mellon University, Pittsburgh, PA (USA). Civil and Environmental Engineering Department

2008-10-15T23:59:59.000Z

272

2002 EIA Models Directory - Energy Information Administration  

U.S. Energy Information Administration (EIA)

LNFCC-PC computes an electric utility's levelized nuclear fuel cost. The code computes quantities of fuel-cycle services and levelized direct costs, ...

273

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

DOE Green Energy (OSTI)

This report describes activities for the thirteenth quarter of work performed under this agreement. EnviRes initiated a wire transfer of funds for procurement of a pressure vessel and associated refractory lining. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-01-01T23:59:59.000Z

274

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

DOE Green Energy (OSTI)

Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the thirteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that they were having difficulty with refractory vendors meeting specifications for the lining of the pressure vessel. EnviRes is working to resolve this issue.

Donald P. Malone; William R. Renner

2006-04-01T23:59:59.000Z

275

Administrator - Energy Information Administration  

U.S. Energy Information Administration (EIA)

www.eia.gov Adam Sieminski Administrator Biography Adam Sieminski was sworn in on June 4, 2012, as the eighth administrator of the U.S. Energy Information ...

276

Flex-fuel Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles Stations that Sell E85 (Alternative Fuels and Advanced Vehicles Data Center AFDC) Flexible Fuel Vehicle (FFV) Cost Calculator (compare costs for operating your vehicle...

277

Preliminary Design and Cost Structure of a 50-kW Polymer Electrolyte Membrane Fuel Cell (PEMFC) System for Stationary Applications  

Science Conference Proceedings (OSTI)

There is a growing interest in using Polymer Electrolyte Membrane Fuel Cell (PEMFC) technology in commercial on-site power and co-generation systems. However, little quantitative information is available on such factors as cost structure, size/weight characteristics, and cost/performance tradeoffs. This report both updates and refines results of prior studies to provide a more quantitative basis for developing a program that supports sound product strategy and business decisions.

1998-12-31T23:59:59.000Z

278

Analysis of environmental factors impacting the life cycle cost analysis of conventional and fuel cell/battery-powered passenger vehicles. Final report  

DOE Green Energy (OSTI)

This report presents the results of the further developments and testing of the Life Cycle Cost (LCC) Model previously developed by Engineering Systems Management, Inc. (ESM) on behalf of the U.S. Department of Energy (DOE) under contract No. DE-AC02-91CH10491. The Model incorporates specific analytical relationships and cost/performance data relevant to internal combustion engine (ICE) powered vehicles, battery powered electric vehicles (BPEVs), and fuel cell/battery-powered electric vehicles (FCEVs).

NONE

1995-01-31T23:59:59.000Z

279

Grenada - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Uranium fuel, nuclear reactors, generation, spent fuel.

280

Guatemala - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Uranium fuel, nuclear reactors, generation, spent fuel.

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reducing Ultra-Clean Transportation Fuel Costs with HyMelt Hydrogen  

DOE Green Energy (OSTI)

This report describes activities for the sixteenth quarter of work performed under this agreement. MEFOS, the gasification testing subcontractor, reported to EnviRes that the vendor for the pressure vessel for above atmospheric testing now plans to deliver it by November 20, 2006 instead of October 20, 2006 as previously reported. MEFOS performed a hazardous operation review of pressurized testing. The current schedule anticipates above atmospheric pressure testing to begin during the week of April 16, 2007. Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 3 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

Donald P. Malone; William R. Renner

2006-09-30T23:59:59.000Z

282

Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Minnesota Company 3M Awarded $3 Million by Energy Department to Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells Minnesota Company 3M Awarded $3 Million by Energy Department to Reduce Cost of Advanced Fuel Cells March 29, 2012 - 4:20pm Addthis In support of the Obama Administration's all-of-the-above approach to American energy, the Energy Department today announced the investment of $3 million to 3M Company in St. Paul, Minnesota, to lower the cost of advanced fuel cell systems by developing cost-effective, durable, and highly efficient fuel cell components. The 3-year project will focus on boosting the performance of fuel cell systems for vehicles and stationary applications while driving down costs. These investments are a part of the Department's commitment to U.S. leadership in innovative fuel cell

283

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rhode Island Incentives and Laws Rhode Island Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Vehicle (AFV) Loans Expired: 04/10/2009 The Rhode Island Office of Energy Resources offers loans for up to five years, with low administrative fees, to state agencies and municipal governments to cover the incremental cost of purchasing original equipment manufactured AFVs. Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit Expired: 01/01/2008 The Alternative Fueled Vehicle and Filling Station Tax Credit entitles taxpayers to a tax credit equal to 50% of the capital, labor, and equipment

284

TECHNOLOGY ADMINISTRATION  

E-Print Network (OSTI)

This report originated in the authors ’ participation in a multi-country study of national innovation systems and their impact on new technology development, sponsored by the Organization for Economic Cooperation and Development (OECD). Our task was to look at the U.S. national innovation system’s impact on the commercial development of Proton Exchange Membrane (PEM) fuel cells for residential power applications. Early drivers of PEM fuel cell innovation were the aerospace and defense programs, in particular the National Aeronautics and Space Administration (NASA), which used fuel cells on its spacecraft. In the early 1990s, deregulation hit the electric utility industry, which made utilities and entrepreneurs see the potential in generating electricity from distributed power. Throughout the 1990s, the Department of Energy funded a significant portion of civilian fuel cell research, while the Department of Defense and NASA funded more esoteric military and space applications. In 1998, the Department of Commerce’s Advanced Technology Program (ATP) awarded the first of 25 fuel cell projects, as prospects for adoption and commercialization of fuel cell technologies improved.

John M. Nail; Gary Anderson; Gerald Ceasar; Christopher J. Hansen; John M. Nail; Gerald Ceasar; Christopher J. Hansen; Carlos M. Gutierrez; Hratch G. Samerjian; Acting Director; Marc G. Stanley; Director Abstract

2005-01-01T23:59:59.000Z

285

Jet Fuel Supply/Price Outlook - Fueling the Recovery  

U.S. Energy Information Administration (EIA)

Jet Fuel Supply/Price Outlook: Fueling the Recovery Energy Information Administration Presentation to 4th International Jet Fuel Conference February ...

286

COMPARATIVE COST STUDY OF PROCESSING STAINLESS STEEL-JACKETED UO$sub 2$ FUEL: MECHANICAL SHEAR-LEACH VS SULFEX-CORE DISSOLUTION  

SciTech Connect

The economics of mechanical shear-leach and Sulfex decladding-core dissolution head end treatments for processing typical tubular bundles of stainless steel-jacketed UO/sub 2/ nuclear fuels were compared. A 2.66 metric ton U/day head end portion of a plant was designed for each process and capital and operating costs were developed. For plants of this size and larger, mechanical shear-leach processing has the advantage of ~20% lower capital cost and 50% lower operating cost. Processing costs of stainless steel-jacketed UO/ sub 2/ by the Sulfex and shear-leach methods, including amortization and waste disposal but excluding solvent extraction, were .78 and 7l/kg U, respectively. Storage of stainless steel waste produced by the shear-leach method is less costly by a factor of 20 than for Sulfex. (auth)

Adams, J.B.; Benis, A.M.; Watson, C.D.

1962-04-23T23:59:59.000Z

287

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

288

Short-Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration | Short-Term Energy and Winter Fuels Outlook October 2013 2 Projected Winter Fuel Expenditures by Fuel and Region

289

COST AND QUALITY TABLES 95  

Gasoline and Diesel Fuel Update (EIA)

5 Tables 5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Contacts The annual publication Cost and Quality of Fuels for Electric Utility Plants (C&Q) will no longer be pub- lished by the EIA. The tables presented in this docu- ment are intended to replace that annual publication. Questions regarding the availability of these data should be directed to: Coal and Electric Data and Renewables Division

290

- Today in Energy - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Renewable & Alternative Fuels. Includes hydropower, solar, wind, geothermal, biomass and ethanol. ...

291

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Electricity. Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

292

Monthly Energy Review - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, ...

293

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, ...

294

Impact of DOE Program Goals on Hydrogen Vehicles: Market Prospect, Costs, and Benefits - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 9 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Zhenhong Lin (Primary Contact), David Greene, Jing Dong Oak Ridge National Laboratory (ORNL) National Transportation Research Center 2360 Cherahala Boulevard Knoxville, TN 37932 Phone: (865) 946-1308 Email: linz@ornl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: October 2011 Project End Date: September 2012 Fiscal Year (FY) 2012 Objectives Project market penetrations of hydrogen vehicles under * varied assumptions on processes of achieving the DOE program goals for fuel cells, hydrogen storage, batteries, motors, and hydrogen supply. Estimate social benefits and public costs under different *

295

Development of a Low-Cost 3-10 kW Tubular SOFC Power System - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Norman Bessette Acumentrics Corporation 20 Southwest Park Westwood, MA 02090 Phone: (781) 461-8251; Email: nbessette@acumentrics.com DOE Managers HQ: Dimitrios Papageorgopoulos Phone: (202) 586-5463 Email: Dimitrios.Papageorgopoulos@ee.doe.gov GO: Reginald Tyler Phone: (720) 356-1805 Email: Reginald.Tyler@go.doe.gov Contract Number: DE-FC36-03NT41838 Project Start Date: April 1, 2008 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives The goal of the project is to develop a low-cost 3-10 kW solid oxide fuel cell (SOFC) power generator capable of meeting multiple market applications. This is accomplished by: Improving cell power and stability * Cost reduction of cell manufacturing

296

The economics of alternative fuel cycles on sodium-cooled fast reactors and uncertainty and sensitivity analysis of cost estimates  

E-Print Network (OSTI)

Previous work was done to create a baseline capital cost model for the SFR in which case studies were performed to identify ways to decrease the capital costs while maintaining safety and performance. This thesis expands ...

Russo, Genevieve V. (Genevieve Virgina)

2010-01-01T23:59:59.000Z

297

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

298

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports Technical Workshop on Behavior Economics Presentations Technical Workshop on Behavior Economics Presentations Cost of Natural Gas Used in Manufacturing Sector Has Fallen Graph showing Cost of Natural Gas Used in Manufacturing Sector Has Fallen Source: U.S. Energy Information Administration, Manufacturing Energy

299

Hydrogen Fuel Initiative | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Fuel Initiative Hydrogen Fuel Initiative Jump to: navigation, search Contents 1 Introduction 2 Cost 3 Hydrogen Production Strategy 4 Objectives 5 Manufacturing Challenges 6 References Introduction The United States imports 55% percent of it's oil consumption and is expected to grow to 68% by the year 2025. A substitution for petroleum needs to happen to help fix this growing problem. So in 2003 the Bush Administration started this Hydrogen Fuel initiative. 1.2 Billion dollars was spent in the first five years for better hydrogen technologies. The goal is for there to be commercialization decisions made by 2015 and for hydrogen vehicles to being mass-produced and on the road with hydrogen filling stations by the year 2020. Cost The cost of hydrogen fuel is supposed to be gasoline gallon equivalent

300

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Reducing home heating and cooling costs  

SciTech Connect

This report is in response to a request from the House Committee on Energy and Commerce that the Energy Information Administration (EIA) undertake a neutral, unbiased analysis of the cost, safety, and health and environmental effects of the three major heating fuels: heating oil, natural gas, and electricity. The Committee also asked EIA to examine the role of conservation in the choice of heating and cooling fuel. To accommodate a wide audience, EIA decided to respond to the Committee`s request in the context of a report on reducing home heating and cooling costs. Accordingly, this report discusses ways to weatherize the home, compares the features of the three major heating and cooling fuels, and comments on the types of heating and cooling systems on the market. The report also includes a worksheet and supporting tables that will help in the selection of a heating and/or cooling system.

Not Available

1994-07-01T23:59:59.000Z

302

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual Fuel Economy Guide Now Available 10 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

303

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

304

EIA - Electricity Data - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, ... Petroleum Coke Natural Gas All Fossil Fuels Receipts Average Cost Receipts

305

Cost of Adding E85 Fueling Capability to Existing Gasoline Stations: NREL Survey and Literature Search (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet provides framework for gas station owners to access what a reasonable cost would be to install E85 infrastructure.

Not Available

2008-03-01T23:59:59.000Z

306

New MEA Materials for Improved Direct Methanol Fuel Cell (DMFC) Performance, Durability, and Cost - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report James Fletcher (Primary Contact), Philip Cox University of North Florida (UNF) 1 UNF Drive Jacksonville, FL 32224 Phone: (904) 620-1844 Email: jfletche@UNF.edu DOE Managers HQ: Donna Ho Phone: (202) 586-8000 Email: Donna.Ho@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-EE0000475 Subcontractors: * University of Florida, Gainesville, FL * Northeastern University, Boston, MA * Johnson Matthey Fuel Cells, Swindon, UK

307

Electricity - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

plants generating capacity Consumption of fuels used to generate electricity Receipts of fossil-fuels for electricity generation Average cost of fossil-fuels for electricity...

308

PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative and Renewable Fuel and Vehicle Technology Program  

E-Print Network (OSTI)

PON08010 American Recovery and Reinvestment Act of 2009 (ARRA) Cost Share: Alternative Plug-In Hybrid Electric Vehicles (PHEVs) and Battery Electric Vehicles (BEVs). 15) A public entity and implementation of those vehicles. Will the budget breakdown include vehicle manufacturer costs involved? If so

309

Hydrogen and Infrastructure Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Infrastructure Costs Hydrogen Infrastructure Market Readiness Workshop Washington D.C. February 17, 2011 Fred Joseck U.S. Department of...

310

DOE Hydrogen and Fuel Cells Program Record 5038: Hydrogen Cost Competitive on a Cents per Mile Basis - 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

8 Date: May 22, 2006 8 Date: May 22, 2006 Title: Hydrogen Cost Competitive on a Cents per Mile Basis - 2006 Originator: Patrick Davis & Steve Chalk Approved by: JoAnn Milliken Approval Date: May 22, 2006 Item : Lower the cost of hydrogen from natural gas to be competitive on a cents per mile basis with conventional gasoline vehicles. Supporting Information: The results of a 2003 economic analysis were used to estimate the cost of hydrogen produced from distributed natural gas reforming at $5 per gallon of gasoline equivalent (gge) (See U.S. DOE Record 5030: Hydrogen Baseline Cost of $5 per gge in 2003; available at http://www.hydrogen.energy.gov/program_records). Since the original analysis, DOE-sponsored R&D has resulted in significant cost reductions,

311

High Speed, Low Cost Fabrication of Gas Diffusion Electrodes for Membrane Electrode Assemblies - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Emory S. De Castro BASF Fuel Cell, Inc. 39 Veronica Avenue Somerset, NJ 08873 Phone: (732) 545-5100 ext 4114 Email: Emory.DeCastro@BASF.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-EE0000384 Subcontractor: Dr. Vladimir Gurau Case Western Reserve University, Cleveland, Ohio Project Start Date: July 1, 2009 Project End Date: June 30, 2013 Fiscal Year (FY) 2012 Objectives Reduce cost in fabricating gas diffusion electrodes * through the introduction of high speed coating technology, with a focus on materials used for the high- temperature membrane electrode assemblies (MEAs)

312

Development of a New Class of Low Cost, High Frequency Link Direct DC to AC Converters for Solid Oxide Fuel Cells (SOFC)  

SciTech Connect

This project proposes to design and develop a new class of power converters (direct DC to AC) to drastically improve performance and optimize the cost, size, weight and volume of the DC to AC converter in SOFC systems. The proposed topologies employ a high frequency link; direct DC to AC conversion approach. The direct DC to AC conversion approach is more efficient and operates without an intermediate dc-link stage. The absence of the dc-link, results in the elimination of bulky, aluminum electrolytic capacitors, which in turn leads to a reduction in the cost, volume, size and weight of the power electronic converter. The feasibility of two direct DC to AC converter topologies and their suitability to meet SECA objectives will be investigated. Laboratory proto-type converters (3-5kW) will be designed and tested in Phase-1. A detailed design trade-off study along with the test results will be available in the form of a report for the evaluation of SECA Industrial partners. This project proposes to develop a new and innovative power converter technology suitable for Solid Oxide Fuel Cell (SOFC) power systems in accordance with SECA objectives. The proposed fuel cell inverter (FCI) employs state of the art power electronic devices configured in two unique topologies to achieve direct conversion of DC power (24-48V) available from a SOFC to AC power (120/240V, 60Hz) suitable for utility interface and powering stand alone loads. The primary objective is to realize cost effective fuel cell converter, which operates under a wide input voltage range, and output load swings with high efficiency and improved reliability.

Prasad Enjeti; J.W. Howze

2003-12-01T23:59:59.000Z

313

Alternative Fuels Data Center: Alternative Fuels Feasibility Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Feasibility Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Feasibility Study The North Carolina State Energy Office, Department of Administration,

314

Cost Estimate for an Away-From-Reactor Generic Interim Storage Facility (GISF) for Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

As nuclear power plants began to run out of storage capacity in spent nuclear fuel (SNF) storage pools, many nuclear operating companies added higher density pool storage racks to increase pool capacity. Most nuclear power plant storage pools have been re-racked one or more times. As many spent fuel storage pools were re-racked to the maximum extent possible, nuclear operating companies began to employ interim dry storage technologies to store SNF in certified casks and canister-based systems outside of ...

2009-05-20T23:59:59.000Z

315

2002 EIA Models Directory - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Levelized Nuclear Fuel Cycle Cost Model (LNFCC-PC) Propane Market Model (PPMM) Short-Term Hydroelectric Generation Model (STHGM)

316

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

317

Energy Department Invests Over $7 Million to Commercialize Cost...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over 7 Million to Commercialize Cost-Effective Hydrogen and Fuel...

318

PEM Electrolyzer Incorporating an Advanced Low-Cost Membrane - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Monjid Hamdan (Primary Contact), Tim Norman Giner, Inc. (Formerly Giner Electrochemical Systems, LLC.) 89 Rumford Ave. Newton, MA 02466 Phone: (781) 529-0526 Email: mhamdan@ginerinc.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-08GO18065 Subcontractors: * Virginia Polytechnic Institute and University, Blacksburg, VA * Parker Hannifin Ltd domnick hunter Division, Hemel Hempstead, United Kingdom Project Start Date: May 1, 2008

319

High Performance, Low Cost Hydrogen Generation from Renewable Energy - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Dr. Katherine Ayers (Primary Contact), Andy Roemer Proton Energy Systems d/b/a Proton OnSite 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2190 Email: kayers@protononsite.com DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Dave Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-EE000276 Subcontractors: * Entegris, Inc., Chaska, MN * The Electrochemical Engine Center at Penn State, University Park, PA * Oak Ridge National Laboratory, Oak Ridge, TN Project Start Date: September 1, 2009

320

Power from the Fuel Cell  

E-Print Network (OSTI)

Power for Buildings Using Fuel-Cell Cars,” Proceedings ofwell as to drive down fuel-cell system costs through productis most likely to be the fuel-cell vehicle. Fuel cells are

Lipman, Timothy E.

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Croatia - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Renewable & Alternative Fuels. ... International Energy Statistics . U.S. Net Petroleum Imports By Country.

322

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... imports and exports, production, prices, sales. Electricity. Sales, revenue and prices, power plants, fuel ... Colorado May 21, ...

323

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, ...

324

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... power plants, fuel use, stocks, generation, trade, demand ... Eastern electric systems tested during first ...

325

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Electricity. Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

326

U.S. Energy Information Administration (EIA) - Pub  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Electricity. Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

327

What's New - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Electricity. Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions.

328

EIA - State Electricity Profiles - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Electric Power Delivered Fuel Prices and Quality for Coal, Petroleum, Natural Gas, 1990 Through 2010: Table 7.

329

Obama Administration | OpenEI Community  

Open Energy Info (EERE)

has begun contest data fuel efficiency launch Obama Administration OpenEI Vehicles Data Challenge **Update: Visit the Apps for Vehicles page for all the information you need...

330

Renewable Energy Trends 2003 - Energy Information Administration  

U.S. Energy Information Administration (EIA)

DOE/EIA Renewable Energy Trends 2003 With Preliminary Data For 2003 July 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels

331

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

332

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Genevieve Saur (Primary Contact), Chris Ainscough. National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3783 Email: genevieve.saur@nrel.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Corroborate recent wind electrolysis cost studies using a * more detailed hour-by-hour analysis. Examine consequences of different system configuration * and operation for four scenarios, at 42 sites in five

333

Infrastructure Costs Associated with Central Hydrogen Production from Biomass and Coal - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Darlene Steward (Primary Contact), Billy Roberts, Karen Webster National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3837 Email: Darlene.Steward@nrel.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Project Start Date: Fiscal Year (FY) 2010 Project End Date: Project continuation and direction determined annually by DOE FY 2012 Objectives Elucidate the location-dependent variability of * infrastructure costs for biomass- and coal-based central hydrogen production and delivery and the tradeoffs inherent in plant-location choices Provide modeling output and correlations for use in other * integrated analyses and tools

334

Effects of Technology Cost Parameters on Hydrogen Pathway Succession - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Victor Diakov*, Brian James † , Julie Perez ‡ , Andrew Spisak † *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov and Victor.Diakov@nrel.gov † Strategic Analysis, Inc. ‡ New West Technologies DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Subcontractor: Strategic Analysis, Inc., Arlington, VA Project Start Date: February 1, 2009 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models -

335

A Low-Cost Soft-Switched DC/DC Converter for Solid-Oxide Fuel Cells  

DOE Green Energy (OSTI)

A highly efficient DC to DC converter has been developed for low-voltage high-current solid oxide fuel cells. The newly developed 'V6' converter resembles what has been done in internal combustion engine that split into multiple cylinders to increase the output capacity without having to increase individual cell size and to smooth out the torque with interleaving operation. The development was started with topology overview to ensure that all the DC to DC converter circuits were included in the study. Efficiency models for different circuit topologies were established, and computer simulations were performed to determine the best candidate converter circuit. Through design optimization including topology selection, device selection, magnetic component design, thermal design, and digital controller design, a bench prototype rated 5-kW, with 20 to 50V input and 200/400V output was fabricated and tested. Efficiency goal of 97% was proven achievable through hardware experiment. This DC to DC converter was then modified in the later stage to converter 35 to 63 V input and 13.8 V output for automotive charging applications. The complete prototype was tested at Delphi with their solid oxide fuel cell test stand to verify the performance of the modified DC to DC converter. The output was tested up to 3-kW level, and the efficiency exceeded 97.5%. Multiple-phase interleaving operation design was proved to be reliable and ripple free at the output, which is desirable for the battery charging. Overall this is a very successful collaboration project between the SECA Core Technology Team and Industrial Team.

Jason Lai

2009-03-03T23:59:59.000Z

336

Opportunities for Low Cost Titanium in Reduced Fuel Consumption, Improved Emissions, and Enhanced Durability Heavy Duty Vehicles  

DOE Green Energy (OSTI)

The purpose of this study was to determine which components of heavy-duty highway vehicles are candidates for the substitution of titanium materials for current materials if the cost of those Ti components is very significantly reduced from current levels. The processes which could be used to produce those low cost components were also investigated. Heavy-duty highway vehicles are defined as all trucks and busses included in Classes 2C through 8. These include heavy pickups and vans above 8,500 lbs. GVWR, through highway tractor trailers. Class 8 is characterized as being a very cyclic market, with ''normal'' year volume, such as in 2000, of approximately 240,000 new vehicles. Classes 3-7 are less cyclic, with ''normal'' i.e., year 2000, volume totaling approximately 325,000 new vehicles. Classes 3-8 are powered about 88.5% by diesel engines, and Class 2C at very roughly 83% diesel. The engine portion of the study therefore focused on diesels. Vehicle production volumes were used in estimates of the market size for candidate components.

Kraft, E.H.

2002-07-22T23:59:59.000Z

337

Obama Administration Announces Major Steps Forward to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Announces Major Steps Forward to Advance Energy Efficiency Efforts, Improve Access to Low-Cost Financing for States and Local Communities Obama Administration...

338

New High Performance Water Vapor Membranes to Improve Fuel Cell Balance of Plant Efficiency and Lower Costs (SBIR Phase I) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Earl H. Wagener (Primary Contact), Brad P. Morgan, Jeffrey R. DiMaio Tetramer Technologies L.L.C. 657 S. Mechanic St. Pendleton, SC 29670 Phone: (864) 646-6282 Email: earl.wagener@tetramertechnologies.com DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Contract Number: DE-SC0006172 Project Start Date: June 17, 2011 Project End Date: March 16, 2012 Fiscal Year (FY) 2012 Objectives Demonstrate water vapor transport membrane with * >18,000 gas permeation units (GPU) Water vapor membrane with less than 20% loss in * performance after stress tests Crossover leak rate: <150 GPU * Temperature Durability of 90°C with excursions to * 100°C Cost of <$10/m

339

Energy Department Invests Over $7 Million to Commercialize Cost-Effective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests Over $7 Million to Commercialize Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies December 17, 2013 - 12:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster. This investment - across four projects in Georgia, Kansas, Pennsylvania and Tennessee - will increase U.S. leadership in fuel cell-powered vehicles and backup power systems, and give businesses more affordable, cleaner transportation and power options.

340

Energy Department Invests Over $7 Million to Commercialize Cost-Effective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests Over $7 Million to Commercialize Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies December 17, 2013 - 12:12pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster. This investment - across four projects in Georgia, Kansas, Pennsylvania and Tennessee - will increase U.S. leadership in fuel cell-powered vehicles and backup power systems, and give businesses more affordable, cleaner transportation and power options.

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hydrogen Pathway Cost Distributions  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathway Cost Distributions Pathway Cost Distributions Jim Uihlein Fuel Pathways Integration Tech Team January 25, 2006 2 Outline * Pathway-Independent Cost Goal * Cost Distribution Objective * Overview * H2A Influence * Approach * Implementation * Results * Discussion Process * Summary 3 Hydrogen R&D Cost Goal * Goal is pathway independent * Developed through a well defined, transparent process * Consumer fueling costs are equivalent or less on a cents per mile basis * Evolved gasoline ICE and gasoline-electric hybrids are benchmarks * R&D guidance provided in two forms * Evolved gasoline ICE defines a threshold hydrogen cost used to screen or eliminate options which can't show ability to meet target * Gasoline-electric hybrid defines a lower hydrogen cost used to prioritize projects for resource allocation

342

Obama Administration Takes Major Step toward Advanced Vehicles with New  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Takes Major Step toward Advanced Vehicles with Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot Obama Administration Takes Major Step toward Advanced Vehicles with New Fleet Management Practices and Launch of First Federal Electric Vehicle Pilot May 24, 2011 - 12:00am Addthis WASHINGTON, DC - Today, Secretary of Energy Steven Chu, General Services Administrator Martha Johnson, and White House Council on Environmental Quality Chair Nancy Sutley announced a major step in moving the Federal fleet further towards advanced vehicles and decreased petroleum consumption, while also cutting costs associated with fuel consumption. Furthering the Administration's goals to cut oil imports by one-third by 2025 and to put one million advanced vehicles on the road by 2015,

343

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

344

Investigation of the viability and cost effectiveness of solid fuel gasifiers close coupled to internal combustion engines for 200 kWe power generation. Technical progress report No. 9  

DOE Green Energy (OSTI)

The viability and cost effectiveness of a 200 kWe engine generator unit fueled by a direct coupled, solid fuel gasifier were studied. Recent literature describing gasifier technology was obtained and personal visits were made to test facility sites and engine manufacturing plants to discuss the subject with researchers and engineers. Two prototype units were inspected, one of which was in partial operation. This report presents a brief discussion of fuel and gasifier technology, gas treatment (clean up) for engine use, engine use technology, other uses for gasifiers, the viability of close coupled units, and an estimate of cost effectiveness. Present small experimental gasifier systems perform as expected and have served to demonstrate the technology. Typically they operate with fuel species which are present and collected on the site of a processing plant. Certain needed development efforts are discussed. Also, fuel must be available at low cost and even then electric power produced in this way is unlikely to be competitive economically where utility poles are available. (LTN)

Mingle, J. G.; Junge, D. C.

1979-01-01T23:59:59.000Z

345

Hydrogen and Fuel Cell Transit Bus Evaluations: Joint Evaluation Plan for the U.S. Department of Energy and the Federal Transit Administration (Report and Appendix)  

DOE Green Energy (OSTI)

This document describes the hydrogen transit bus evaluations performed by the National Renewable Energy Laboratory (NREL) and funded by the U.S. Department of Energy (DOE) and the U.S. Department of Transportation's Federal Transit Administration (FTA).

Eudy, L.; Chandler, K.

2008-05-01T23:59:59.000Z

346

AVCEM: Advanced-Vehicle Cost and Energy Use Model  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

347

Evaluation of I-15 Devore (08-0A4224) Long-Life Pavement Rehabilitation Costs  

E-Print Network (OSTI)

Cost Indirect Costs Engineer's Estimate Category Amount2 lane-mi. Administrative Costs Engineer's Estimate CategoryMiles) Total (All Costs) Engineer's Estimate Amount Original

Fermo, Mary G; Santero, Nicholas J; Nokes, William; Harvey, John T

2005-01-01T23:59:59.000Z

348

Biodiesel Performance, Costs, and Use  

U.S. Energy Information Administration (EIA)

Biodiesel Performance, Costs, and Use. by Anthony Radich. Introduction. The idea of using vegetable oil for fuel has been around as long as the diesel engine.

349

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

350

United Kingdom - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy. ... which were already strained by high operating and decommissioning costs.

351

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

352

Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)  

NLE Websites -- All DOE Office Websites (Extended Search)

3 * November 2010 3 * November 2010 Electricity Natural Gas Power Heat Natural Gas or Biogas Tri-Generation Fuel Cell Hydrogen Natural Gas Converted to hydrogen on site via steam-methane reforming electrolyzer peak burner heat sink FC SYSTEM + H 2 Renewables H 2 -FC H 2 -storage 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) 0 2 4 6 8 10 12 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Electricity Demand (kW) Heat Demand (kW) Hydrogen Demand (kW) * Grid electricity (hourly) * Fuel prices * Water price 0 2 4

353

The Social-Cost Calculator (SCC): Documentation of Methods and Data, and Case Study of Sacramento  

E-Print Network (OSTI)

N. I. Tishchcishyna, Costs of Oil Dependence: A 2000 Update,costs • Climate change costs • Oil use costs • Fuel costs •sections on climate-change costs, oil-use external costs,

Delucchi, Mark

2005-01-01T23:59:59.000Z

354

THE SOCIAL-COST CALCULATOR (SCC): DOCUMENTATION OF METHODS AND DATA, AND CASE STUDY OF SACRAMENTO  

E-Print Network (OSTI)

N. I. Tishchcishyna, Costs of Oil Dependence: A 2000 Update,costs • Climate change costs • Oil use costs • Fuel costs •sections on climate-change costs, oil-use external costs,

Delucchi, Mark

2005-01-01T23:59:59.000Z

355

National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

i. i. Message from the Administrator President Obama has reshaped our national security priorities making enterprise infrastructure modernization with integrated Information Technology (IT) capabilities a key strategic initiative. Our IT infrastructure must ensure that our workforce can access appropriate information in a secure, reliable, and cost-effective manner. Effective information sharing throughout the government enhances the national security of the United States (US). For the National Nuclear Security Administration (NNSA), effective information sharing helps strengthen our nuclear security mission; builds collaborative networks within NNSA as well as with the Department of Energy (DOE), Department of Defense (DoD), and other national security

356

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network (OSTI)

reducing USdependenceon foreign oil imports, the associatedor, as they do fuel now,to foreign oil producers, assuming

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

357

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1996 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

358

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

359

CA Problem is Price - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The basic California problem concerning heavy crude oil is price. With the reported cost of the natural-gas-fueled steam for extracting the crude sometimes being as ...

360

U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Provides comprehensive information concerning the quality, quantity, and cost of fossil fuels used to produce electricity in the United States. (archived versions)

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

2002 EIA Models Directory - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The Coal Production Submodule produces supply-price relationships for 12 coal types and 11 ... Monthly Report of Cost and Quality of Fuels for Electric ...

362

Consumption & Efficiency - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

Consumption & Efficiency Consumption & Efficiency Glossary › FAQS › Overview Data Residential Energy Consumption Survey Data Commercial Energy Consumption Survey Data Manufacturing Energy Consumption Survey Data Vehicle Energy Consumption Survey Data Energy Intensity Consumption Summaries Average cost of fossil-fuels for electricity generation All Consumption & Efficiency Data Reports Analysis & Projections All Sectors Commercial Buildings Efficiency Manufacturing Projections Residential Transportation All Reports An Assessment of EIA's Building Consumption Data Background image of CNSTAT logo The U.S. Energy Information Administration (EIA) routinely uses feedback from customers and outside experts to help improve its programs and products. As part of an assessment of its consumption

363

Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moniz Announces New Biofuels Projects to Drive Cost Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs August 1, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and reduce greenhouse gas emissions from the transportation sector. Secretary Moniz also announced over $22 million in new investments to help develop cost-competitive algae fuels and streamline the biomass feedstock supply chain for advanced biofuels. "By partnering with industry and universities, we can help make clean,

364

Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary Moniz Announces New Biofuels Projects to Drive Cost Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs Secretary Moniz Announces New Biofuels Projects to Drive Cost Reductions, Technological Breakthroughs August 1, 2013 - 2:00pm Addthis News Media Contact (202) 586-4940 WASHINGTON - During remarks at the Energy Department's Biomass 2013 annual conference, Secretary Moniz today highlighted the important role biofuels play in the Administration's Climate Action Plan to increase our energy security and reduce greenhouse gas emissions from the transportation sector. Secretary Moniz also announced over $22 million in new investments to help develop cost-competitive algae fuels and streamline the biomass feedstock supply chain for advanced biofuels. "By partnering with industry and universities, we can help make clean,

365

Pilot-Scale Demonstration of a Novel, Low-Cost Oxygen Supply Process and its Integration with Oxy-Fuel Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

In order to achieve DOE targets for carbon dioxide capture, it is crucial not only to develop process options that will generate and provide oxygen to the power cycle in a cost-effective manner compared to the conventional oxygen supply methods based on cryogenic air separation technology, but also to identify effective integration options for these new technologies into the power cycle with carbon dioxide capture. The Linde/BOC developed Ceramic Autothermal Recovery (CAR) process remains an interesting candidate to address both of these issues by the transfer of oxygen from the air to a recycled CO{sub 2} rich flue-gas stream in a cyclic process utilizing the high temperature sorption properties of perovskites. Good progress was made on this technology in this project, but significant challenges remain to be addressed before CAR oxygen production technology is ready for commercial exploitation. Phase 1 of the project was completed by the end of September 2008. The two-bed 0.7 tons/day O2 CAR process development unit (PDU) was installed adjacent to WRI's pilot scale coal combustion test facility (CTF). Start-up and operating sequences for the PDU were developed and cyclic operation of the CAR process demonstrated. Controlled low concentration methane addition allowed the beds to be heated up to operational temperature (800-900 C) and then held there during cyclic operation of the 2-bed CAR process, in this way overcoming unavoidable heat losses from the beds during steady state operation. The performance of the PDU was optimized as much as possible, but equipment limitations prevented the system from fully achieving its target performance. Design of the flue gas recirculation system to integrate CAR PDU with the CTF and the system was completed and integrated tests successfully performed at the end of the period. A detailed techno-economic analysis was made of the CAR process for supplying the oxygen in oxy-fuel combustion retrofit option using AEP's 450 MW Conesville, Ohio plant and contrasted with the cryogenic air separation option (ASU). Design of a large scale CAR unit was completed to support this techno-economic assessment. Based on the finding that the overall cost potential of the CAR technology compared to cryogenic ASU is nominal at current performance levels and that the risks related to both material and process scale up are still significant, the team recommended not to proceed to Phase 2. CAR process economics continue to look attractive if the original and still 'realistic' target oxygen capacities could be realized in practice. In order to achieve this end, a new fundamental materials development program would be needed. With the effective oxygen capacities of the current CAR materials there is, however, insufficient economic incentive to use this commercially unproven technology in oxy-fuel power plant applications in place of conventional ASUs. In addition, it is now clear that before a larger scale pilot demonstration of the CAR technology is made, a better understanding of the impact of flue-gas impurities on the CAR materials and of thermal transients in the beds is required.

Krish Krishnamurthy; Divy Acharya; Frank Fitch

2008-09-30T23:59:59.000Z

366

ESS 2012 Peer Review - Reducing the Costs of Manufacturing Flow Batteries - Dhruv Bhatnagar, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Costs of Manufacturing Flow Batteries the Costs of Manufacturing Flow Batteries Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND No. 2011-XXXXP Next Steps 1. Continued outreach with other with other manufacturers 2. Characterization of the flow battery manufacturing process and determination of process issues 3. Evaluation of the fuel cell, other battery and other industry manufacturing process to address issues identified 4. Coordination with PNNL flow battery component cost

367

Liquid Fuels Market Model of the National Energy Modeling ...  

U.S. Energy Information Administration (EIA)

The outside battery-limit (OSBL) costs include the cost of cooling water, steam and electric power generation and distribution, fuel oil and fuel gas ...

368

Energy Information Administration  

Gasoline and Diesel Fuel Update (EIA)

Marks 25th Anniversary of 1973 Oil Embargo Marks 25th Anniversary of 1973 Oil Embargo Jay Hakes, Administrator, Energy Information Administration (EIA) September 3, 1998 Click here to start Table of Contents Energy Information Administration Some Views of 1973 Major Disruptions of World Oil Supply Imported Oil as a Percent of Total U. S. Consumption Percent of OPEC and Persian Gulf World Oil Production U. S. Retail Price of Gasoline U. S. Total Petroleum Consumption U. S. Per Capita Use of Petroleum U. S. Government Owned Crude Oil Stocks Cost of Finding Oil and Gas Reserves U. S. MPG Ratings for New Vehicles U. S. Average Horsepower of a New Vehicle Share of U. S. Electricity Generated By Petroleum Futures And Options Markets Changed Energy Marketing U. S. Total Energy Consumption U. S. Per Capita Use of Energy

369

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

370

Modeling of Cost Curves 1.0 Costs of Generating Electrical Energy  

E-Print Network (OSTI)

production costs. Some typical average costs of fuel are given in the following table for coal, petroleum [1] Petroleum [2] Natural Gas [3] All Fossil Fuels Receipts (Billion BTU) Average Cost Avg. Sulfur fuel, kerosene, petroleum coke (converted to liquid petroleum, see Technical Notes for conversion

McCalley, James D.

371

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual Fuel Economy Guide 1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

372

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

373

Estimating decommissioning costs: The 1994 YNPS decommissioning cost study  

Science Conference Proceedings (OSTI)

Early this year, Yankee Atomic Electric Company began developing a revised decommissioning cost estimate for the Yankee Nuclear Power Station (YNPS) to provide a basis for detailed decommissioning planning and to reflect slow progress in siting low-level waste (LLW) and spent-nuclear-fuel disposal facilities. The revision also reflects the need to change from a cost estimate that focuses on overall costs to a cost estimate that is sufficiently detailed to implement decommissioning and identify the final cost of decommissioning.

Szymczak, W.J.

1994-12-31T23:59:59.000Z

374

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations June 1, 2011 - 12:00am Addthis WASHINGTON, DC - As part of the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today announced the availability of more than $27 million in new funding that will reduce the non-hardware costs of solar energy projects, a critical element in bringing down the overall costs of installed solar energy systems. The funding will support a $12.5 million challenge to encourage cities and counties to compete to streamline and digitize permitting processes, as

375

DOE Announces $27 Million to Reduce Costs of Solar Energy Projects,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27 Million to Reduce Costs of Solar Energy Projects, 27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations DOE Announces $27 Million to Reduce Costs of Solar Energy Projects, Streamline Permitting and Installations June 1, 2011 - 12:00am Addthis WASHINGTON, DC - As part of the Obama Administration's SunShot Initiative to make solar energy cost-competitive with fossil fuels within the decade, U.S. Department of Energy Secretary Steven Chu today announced the availability of more than $27 million in new funding that will reduce the non-hardware costs of solar energy projects, a critical element in bringing down the overall costs of installed solar energy systems. The funding will support a $12.5 million challenge to encourage cities and counties to compete to streamline and digitize permitting processes, as

376

U.S. Energy Information Administration | Annual Energy Outlook 2013  

Gasoline and Diesel Fuel Update (EIA)

9 9 U.S. Energy Information Administration | Annual Energy Outlook 2013 Reference case Table A12. Petroleum product prices (2010 dollars per gallon, unless otherwise noted) Energy Information Administration / Annual Energy Outlook 2013 Table A12. Petroleum product prices (2011 dollars per gallon, unless otherwise noted) Sector and fuel Reference case Annual growth 2011-2040 (percent) 2010 2011 2020 2025 2030 2035 2040 Crude oil prices (2011 dollars per barrel) Brent spot .............................................................. 81.31 111.26 105.57 117.36 130.47 145.41 162.68 1.3% West Texas Intermediate spot ............................... 81.08 94.86 103.57 115.36 128.47 143.41 160.68 1.8% Average imported refiners acquisition cost 1 ........... 77.49 102.65 102.19 113.48 125.64 138.70 154.96 1.4%

377

Policy 1306 Cost Sharing on Sponsored Projects  

E-Print Network (OSTI)

Policy 1306 Cost Sharing on Sponsored Projects Responsible Office Office of Research Administration committed cost sharing, and in-kind/matching requirements associated with sponsored projects. Definitions Cost Sharing A portion of total sponsored project costs not funded by the sponsor. Mandatory Cost

378

Assessment of costs and benefits of flexible and alternative fuel use in the U.S. transportation sector. Technical report fourteen: Market potential and impacts of alternative fuel use in light-duty vehicles -- A 2000/2010 analysis  

DOE Green Energy (OSTI)

In this report, estimates are provided of the potential, by 2010, to displace conventional light-duty vehicle motor fuels with alternative fuels--compressed natural gas (CNG), liquefied petroleum gas (LPG), methanol from natural gas, ethanol from grain and from cellulosic feedstocks, and electricity--and with replacement fuels such as oxygenates added to gasoline. The 2010 estimates include the motor fuel displacement resulting both from government programs (including the Clean Air Act and EPACT) and from potential market forces. This report also provides an estimate of motor fuel displacement by replacement and alterative fuels in the year 2000. However, in contrast to the 2010 estimates, the year 2000 estimate is restricted to an accounting of the effects of existing programs and regulations. 27 figs., 108 tabs.

NONE

1996-01-01T23:59:59.000Z

379

Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)  

SciTech Connect

The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

Mac Donald, Philip Elsworth

2002-09-01T23:59:59.000Z

380

Electricity Generation Cost Simulation Model (GenSim)  

Science Conference Proceedings (OSTI)

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

DRENNEN, THOMAS E.; KAMERY, WILLIAM

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electricity Generation Cost Simulation Model (GenSim).  

Science Conference Proceedings (OSTI)

The Electricity Generation Cost Simulation Model (GenSim) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration of a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercuty. Two different data sets are included in the model; one from the US. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emissions trade-offs. The base case results, using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax credit of 1.8cents/kwhr.

Kamery, William (Hobart and William Smith Colleges, Geneva, NY); Baker, Arnold Barry; Drennen, Thomas E.

2003-07-01T23:59:59.000Z

382

Freedom of Information Act - Costs | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

review of documents located for responsiveness; 16% administrative costs; reproduction cost of .05 per page; and the time it took the FOIA Specialist to process the request....

383

Cutting Electricity Costs in Miami-Dade County, Florida | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Cutting Electricity Costs in Miami-Dade County, Florida Cutting Electricity Costs in Miami-Dade County,...

384

Alternative Fuels Data Center: Hydrogen Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Infrastructure Tax Credit A tax credit is available for the cost of hydrogen fueling equipment placed

385

Assessment of costs and benefits of flexible and alternative fuel use in the US transportation sector. Technical report twelve: Economic analysis of alternative uses for Alaskan North Slope natural gas  

DOE Green Energy (OSTI)

As part of the Altemative Fuels Assessment, the Department of Energy (DOE) is studying the use of derivatives of natural gas, including compressed natural gas and methanol, as altemative transportation fuels. A critical part of this effort is determining potential sources of natural gas and the economics of those sources. Previous studies in this series characterized the economics of unutilized gas within the lower 48 United States, comparing its value for methanol production against its value as a pipelined fuel (US Department of Energy 1991), and analyzed the costs of developing undeveloped nonassociated gas reserves in several countries (US Department of Energy 1992c). This report extends those analyses to include Alaskan North Slope natural gas that either is not being produced or is being reinjected. The report includes the following: A description of discovered and potential (undiscovered) quantities of natural gas on the Alaskan North Slope. A discussion of proposed altemative uses for Alaskan North Slope natural gas. A comparison of the economics of the proposed alternative uses for Alaskan North Slope natural gas. The purpose of this report is to illustrate the costs of transporting Alaskan North Slope gas to markets in the lower 48 States as pipeline gas, liquefied natural gas (LNG), or methanol. It is not intended to recommend one alternative over another or to evaluate the relative economics or timing of using North Slope gas in new tertiary oil recovery projects. The information is supplied in sufficient detail to allow incorporation of relevant economic relationships (for example, wellhead gas prices and transportation costs) into the Altemative Fuels Trade Model, the analytical framework DOE is using to evaluate various policy options.

Not Available

1993-12-01T23:59:59.000Z

386

Georgia - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

... Sustainability Division; Georgia Energy Data; Southeastern Power Administration; Alternative Fuels and Advanced Vehicle Data Center - Federal and State Incentives ...

387

Short-Term Energy Outlook - U.S. Energy Information Administration ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... prices, sales. Electricity. Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. ...

388

A-Z Index - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... Alternative Fuels. Includes hydropower, solar, wind, geothermal, ...

389

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... buy or sell a generator for a number of reasons including diversifying fuel mix, ... corrected to be Arizona Public Service ...

390

Today in Energy - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Glass manufacturing is an energy-intensive industry mainly fueled by ... Combined heat and power technology fills an important ...

391

Countries - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA - Official Energy Statistics from the U.S. Government ... power plants, fuel use, stocks, generation, trade, demand & emissions.

392

Energy Information Administration / Natural Gas Annual 2007 74  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2007 75 Table 31. Summary...

393

Energy Information Administration / Natural Gas Annual 2008 74  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2008 75 Table 31. Summary...

394

DOE/EIA-0515(85) Energy Information Administration Manufacturing...  

U.S. Energy Information Administration (EIA) Indexed Site

5(85) Energy Information Administration Manufacturing Energy Consumption Survey: Fuel Switching, 1985 This publication is available from the Superintendent of Documents, U.S,...

395

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Gasoline and Diesel Fuel Update (EIA)

Wholesale Volumes 1996 Annual Averages Motor Gasoline No. 2 Distillate Propane Kero-jet Residual Fuel Oil Other Energy Information Administration Petroleum Marketing Annual 1996...

396

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Gasoline and Diesel Fuel Update (EIA)

Wholesale Volumes 1997 Annual Averages Motor Gasoline No. 2 Distillate Propane Kero-jet Residual Fuel Oil Other Energy Information Administration Petroleum Marketing Annual 1997...

397

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Gasoline and Diesel Fuel Update (EIA)

Retail Volumes 1997 Annual Averages Motor Gasoline No. 2 Distillate Propane Kero-jet Residual Fuel Oil Other Energy Information Administration Petroleum Marketing Annual 1997...

398

Source: Energy Information Administration, Form EIA-782A, "Refiners...  

Annual Energy Outlook 2012 (EIA)

Retail Volumes 1996 Annual Averages Motor Gasoline No. 2 Distillate Propane Kero-jet Residual Fuel Oil Other Energy Information Administration Petroleum Marketing Annual 1996...

399

Deputy Administrator Anne Harrington on Completion of BN-350...  

NLE Websites -- All DOE Office Websites (Extended Search)

Anne Harrington on Completion of BN-350 Fuel Shipments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering...

400

Energy Information Administration / Natural Gas Annual 2005 124  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2005 125 Table 57. Summary...

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Energy Information Administration / Natural Gas Annual 2006 124  

Gasoline and Diesel Fuel Update (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2006 125 Table 57. Summary...

402

Energy Information Administration / Natural Gas Annual 2007 128  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2007 129 Table 58. Summary...

403

Energy Information Administration / Natural Gas Annual 2008 128  

Annual Energy Outlook 2012 (EIA)

Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Energy Information Administration Natural Gas Annual 2008 129 Table 58. Summary...

404

Short-Term Energy Outlook - Energy Information Administration  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration | Short-Term Energy Outlook August 2013 2 Global Crude Oil and Liquid Fuels . The recent increase in crude oil and liquid fuels ...

405

NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 ...  

U.S. Energy Information Administration (EIA)

10/13/2010: NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator U.S. Energy Information Administration

406

Joint Fuel Cell Bus Workshop Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment is heavy and costly * Slow response time of the fuel cell adversely affects regenerative energy recovery potential and efficiency Barriers to full fuel cell bus...

407

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Incentives and Laws Virginia Incentives and Laws The following is a list of expired, repealed, and archived incentives, laws, regulations, funding opportunities, or other initiatives related to alternative fuels and vehicles, advanced technologies, or air quality. Alternative Fuel Public-Private Partnerships (PPPs) Expired: 01/31/2014 Archived: 03/01/2013 The Virginia Offices of the Secretary of Administration and the Secretary of Natural Resources released a PPP solicitation outlining their interest in forming partnerships with and among alternative fuel providers, infrastructure developers, vehicle manufacturers, and other alternative fuel industry stakeholders to expand fueling infrastructure and to support alternative fuel use in the commonwealth fleet. By May 2012, the Virginia

408

Requirements for low cost electricity and hydrogen fuel production from multi-unit intertial fusion energy plants with a shared driver and target factory  

E-Print Network (OSTI)

steam generators (SG),steam turbines(T), generators andawith the costs of modern steam turbine generator plants forSteam generators Remote maintenance equipment Turbine plant

Logan, B. Grant; Moir, Ralph; Hoffman, Myron A.

1994-01-01T23:59:59.000Z

409

High-burnup fuel and the impact on fuel management  

SciTech Connect

Competition in the electric utility industry has forced utilities to reduce cost. For a nuclear utility, this means a reduction of both the nuclear fuel cost and the operating and maintenance cost. To this extent, utilities are pursuing longer cycles. To reduce the nuclear fuel cost, utilities are trying to reduce batch size while increasing cycle length. Yankee Atomic Electric Company has performed a number of fuel cycle studies to optimize both batch size and cycle length; however, certain burnup-related constraints are encountered. As a result of these circumstances, longer fuel cycles make it increasingly difficult to simultaneously meet the burnup-related fuel design constraints and the technical specification limits. Longer cycles require fuel assemblies to operate for longer times at relatively high power. If utilities continue to pursue longer cycles to help reduce nuclear fuel cost, changes may need to be made to existing fuel burnup limits.

Cacciapouti, R.J.; Weader, R.J. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

410

Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Infrastructure Tax Credit A tax credit is available for 25% of the cost to install or retrofit

411

MECS Fuel Oil Figures  

U.S. Energy Information Administration (EIA) Indexed Site

: Percentage of Total Purchased Fuels by Type of Fuel : Percentage of Total Purchased Fuels by Type of Fuel Figure 1. Percent of Total Purchased Fuel Sources: Energy Information Administration. Office of Energy Markets and End Use, Manufacturing Energy Consumption Survey (MECS): Consumption of Energy; U.S. Department of Commerce, Bureau of the Census, Annual Survey of Manufactures (ASM): Statistics for Industry Groups and Industries: Statistical Abstract of the United States. Note: The years below the line on the "X" Axis are interpolated data--not directly from the Manufacturing Energy Consumption Survey or the Annual Survey of Manufactures. Figure 2: Changes in the Ratios of Distillate Fuel Oil to Natural Gas Figure 2. Changes in the Ratios of Distillate Fuel Oil to Natural Gas Sources: Energy Information Administration. Office of

412

NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 ...  

U.S. Energy Information Administration (EIA)

EIA Short-Term and Winter Fuels Outlook NASEO 2010 Winter Fuels Outlook Conference October 13, 2010 Washington, DC Richard Newell, Administrator

413

Short-Term Energy Outlook and Winter Fuels Outlook  

U.S. Energy Information Administration (EIA) Indexed Site

Short-Term Energy Outlook and Winter Fuels Outlook For NASEO Winter Fuels Outlook Conference November 1, 2013| Washington, DC By Adam Sieminski, Administrator EIA works closely...

414

The Transparent Cost Database (TCDB) | OpenEI Community  

Open Energy Info (EERE)

The Transparent Cost Database (TCDB) The Transparent Cost Database (TCDB) Home > Blogs > Graham7781's blog Graham7781's picture Submitted by Graham7781(2002) Super contributor 2 August, 2012 - 13:30 advanced vehicles electric generation NREL OpenEI renewables tcdb This new web application collects cost and performance estimates and makes it available to everyone to perform analysis. Utilities, policy makers, consumers, and academics can all take advantage of the app that makes electric generation, advanced vehicles, and renewable fuel technologies' performance estimates transparent and open. The Obama Administration has been committed to making data open and transparent. As part, the DOE developed the TCDB through a grant from DOE's Office of Energy Efficiency and Renewable Energy. The platform that hosts

415

DOE Hydrogen Analysis Repository: PEMFC Manufacturing Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

PEMFC Manufacturing Cost PEMFC Manufacturing Cost Project Summary Full Title: Manufacturing Cost of Stationary Polymer Electrolyte Membrane (PEM) Fuel Cell Systems Project ID: 85 Principal Investigator: Brian James Keywords: Costs; fuel cells; stationary Performer Principal Investigator: Brian James Organization: Directed Technologies, Inc. (DTI) Address: 3601 Wilson Blvd., Suite 650 Arlington, VA 22201 Telephone: 703-243-3383 Email: brian_james@directedtechnologies.com Period of Performance End: November 1999 Project Description Type of Project: Analysis Category: Cross-Cutting Objectives: Estimate the cost of the fuel cell system using the Directed Technologies, Inc. cost database built up over the several years under U.S. Department of Energy and Ford Motor Company contracts.

416

Opportunity Fuels Guidebook  

Science Conference Proceedings (OSTI)

Power generators are considering cofiring alternative fuels in their coal-fired boilers because such operations may offer opportunities to lower their fuel costs, enhance customer relationships, or meet possible future mandates requiring renewable sources or reduced fossil carbon emissions. In this guidebook, companies can find information drawn from research, testing, and experience with six categories of these opportunity fuels.

1998-10-13T23:59:59.000Z

417

COSTS OF NUCLEAR POWER  

SciTech Connect

The discussion on the costs of nuclear power from stationary plants, designed primarily for the generation of electricity. deals with those plants in operation, being built, or being designed for construction at an early date. An attempt is made to consider the power costs on the basis of consistent definitions and assumptions for the various nuclear plants and for comparable fossil-fuel plants. Information on several new power reactor projects is included. (auth)

1961-01-01T23:59:59.000Z

418

Benefits and concerns of a closed nuclear fuel cycle  

Science Conference Proceedings (OSTI)

Nuclear power can play an important role in our energy future, contributing to increasing electricity demand while at the same time decreasing carbon dioxide emissions. However, the nuclear fuel cycle in the United States today is unsustainable. As stated in the 1982 Nuclear Waste Policy Act, the U.S. Department of Energy is responsible for disposing of spent nuclear fuel generated by commercial nuclear power plants operating in a “once-through” fuel cycle in the deep geologic repository located at Yucca Mountain. However, unyielding political opposition to the site has hindered the commissioning process to the extant that the current administration has recently declared the unsuitability of the Yucca Mountain site. In light of this the DOE is exploring other options, including closing the fuel cycle through recycling and reprocessing of spent nuclear fuel. The possibility of closing the fuel cycle is receiving special attention because of its ability to minimize the final high level waste (HLW) package as well as recover additional energy value from the original fuel. The technology is, however, still very controversial because of the increased cost and proliferation risk it can present. To lend perspective on the closed fuel cycle alternative, this presents the arguments for and against closing the fuel cycle with respect to sustainability, proliferation risk, commercial viability, waste management, and energy security.

Widder, Sarah H.

2010-11-17T23:59:59.000Z

419

Hydrogen Refueling Station Costs in Shanghai  

E-Print Network (OSTI)

Well-to-wheels analysis of hydrogen based fuel-cell vehicleJP, et al. Distributed Hydrogen Fueling Systems Analysis,”Year 2006 UCD—ITS—RR—06—04 Hydrogen Refueling Station Costs

Weinert, Jonathan X.; Shaojun, Liu; Ogden, Joan M; Jianxin, Ma

2006-01-01T23:59:59.000Z

420

Fuel Cell Technologies Office: Hydrogen Compression, Storage...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Compression, Storage, and Dispensing Cost...

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

U.S. average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012  

U.S. Energy Information Administration (EIA) Indexed Site

average gasoline and diesel fuel prices expected to be average gasoline and diesel fuel prices expected to be slightly lower in 2013 than in 2012 Despite the recent run-up in gasoline prices, the U.S. Energy Information Administration expects falling crude oil prices will lead to a small decline in average motor fuel costs this year compared with last year. The price for regular gasoline is expected to average $3.55 a gallon in 2013 and $3.39 next year, according to EIA's new Short-Term Energy Outlook. That's down from $3.63 a gallon in 2012. For the short-term, however, pump prices are expected to peak at $3.73 per gallon in May because of higher seasonal fuel demand and refiners switching their production to make cleaner burning gasoline for the summer. Diesel fuel will continue to cost more than gasoline because of strong global demand for diesel.

422

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

423

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability Low-Cost Supports - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Radoslav Adzic (Primary Contact), Miomir Vukmirovic, Kotaro Sasaki, Jia Wang, Yang Shao-Horn 1 , Rachel O'Malley 2 Brookhaven National Laboratory (BNL), Bldg. 555 Upton, NY 11973-5000 Phone: (631) 344-4522 Email: adzic@bnl.gov DOE Manager HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov Subcontractors: 1 Massachusetts Institute of Technology (MIT), Cambridge MA 2 Johnson Matthey Fuel Cells (JMFC), London, England Project Start Date: July 1, 2009 Project End Date: September 30, 2013 Fiscal Year (FY) 2012 Objectives Developing high-performance fuel cell electrocatalysts for the oxygen reduction reaction (ORR) comprising contiguous Pt monolayer (ML) on stable, inexpensive metal

424

Explicit and implicit copayments for phototherapy: examining the cost of commuting  

E-Print Network (OSTI)

Table  1.    Patients’  cost  for  office-­?based  2.  Differences  in  cost  based  on  fuel  efficiency  Statistics.    2010  Cost  of  Owning  and  Operating  a  

Yentzer, Brad A; Gustafson, Cheryl J; Feldman, Steven R

2013-01-01T23:59:59.000Z

425

AVCEM: Advanced Vehicle Cost and Energy Use Model. Overview of AVCEM  

E-Print Network (OSTI)

of the battery, according to the battery cost equations (seediscussion of battery cost above). There actually are twoin the amount and cost of fuel-storage, battery, vehicle

Delucchi, Mark

2005-01-01T23:59:59.000Z

426

2013-2014 Projected Aviation Program Costs  

E-Print Network (OSTI)

06/21/13 2013-2014 Projected Aviation Program Costs UND Aerospace offers two aviation degree the cost of a degree program. BACHELOR of BUSINESS ADMINISTRATION ** Flight Costs Airport Management Survey Certificate $ 11,574 **NOTE: Total flight costs are based on averages and are subject to change. Also, the ATC

Delene, David J.

427

Chapter 2. Consumption of Fossil Fuels - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

48 U.S. Energy Information Administration/Electric Power Monthly June 2012 Chapter 2. Consumption of Fossil Fuels

428

A COMPARISON OF THE NUCLEAR DEFENSE CAPABILITIES ON NUCLEAR AND COAL-FIRED POWER PLANTS. FUEL COST STUDY VARIOUS REACTORS AT 100 AND 300 Mwe  

SciTech Connect

Appendices C and D may further be identified as SL1925 and CF-61-12- 20(Rev.), respectively. A comparative report is presented in which the economics and feasibility of plant protection from nuclear attack by plant hardening, remote siting, and utilization of optional fueling concepts for the coal-fired plant are evaluated. (J.R.D.)

Gift, E.H.

1962-05-29T23:59:59.000Z

429

Will the Bush Administration's GNEP Help or Hurt the Prospects  

E-Print Network (OSTI)

recovered plutonium has been fabricated into mixed-oxide (MOX) fuel and recycled to commercial light water is conventional PUREX reprocessing and recycling of MOX fuel, for which cost information is available. This information makes clear that the conventional MOX fuel cycle is more costly than the alternative

430

Advanced Fuel Cycle Economic Sensitivity Analysis  

Science Conference Proceedings (OSTI)

A fuel cycle economic analysis was performed on four fuel cycles to provide a baseline for initial cost comparison using the Gen IV Economic Modeling Work Group G4 ECON spreadsheet model, Decision Programming Language software, the 2006 Advanced Fuel Cycle Cost Basis report, industry cost data, international papers, the nuclear power related cost study from MIT, Harvard, and the University of Chicago. The analysis developed and compared the fuel cycle cost component of the total cost of energy for a wide range of fuel cycles including: once through, thermal with fast recycle, continuous fast recycle, and thermal recycle.

David Shropshire; Kent Williams; J.D. Smith; Brent Boore

2006-12-01T23:59:59.000Z

431

Transportation Energy Futures Series: Alternative Fuel Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Capacity, and Retail Availability for Low-Carbon Scenarios TRANSPORTATION ENERGY FUTURES SERIES: Alternative Fuel Infrastructure Expansion: Costs, Resources,...

432

Transmission line capital costs  

Science Conference Proceedings (OSTI)

The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

Hughes, K.R.; Brown, D.R.

1995-05-01T23:59:59.000Z

433

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market...

434

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice  

DOE Green Energy (OSTI)

This Clean Cities Program fact sheet describes aspects of flexible fuel vehicles such as use of E85, special features, benefits of use, costs, and fueling locations. It discusses performance and lists additional resources.

Not Available

2007-05-01T23:59:59.000Z

435

Weighing the Costs and Benefits of Renewables Portfolio Standards: A Comparative Analysis of State-Level Policy Impact Projections  

E-Print Network (OSTI)

An Overview of Alternative Fossil Fuel Price and Carbonof renewable technology cost, fossil fuel price uncertainty,energy, including the fossil fuel hedge value of renewable

Chen, Cliff; Wiser, Ryan; Bolinger, Mark

2007-01-01T23:59:59.000Z

436

Chapter 30 Waste Management: General Administrative Procedures (Kentucky) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chapter 30 Waste Management: General Administrative Procedures Chapter 30 Waste Management: General Administrative Procedures (Kentucky) Chapter 30 Waste Management: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Wind Program Info State Kentucky Program Type Environmental Regulations Provider Department for Environmental Protection The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous

437

Fuel Cell Projects Kickoff Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cost-Competitive Fuel Cell Stacks James Cross, Nuvera 4:30 Fuel Cell Fundamentals at Low and Subzero Temperatures Adam Weber, LBNL 4:50 Development and Validation of...

438

ADMINISTRATIVE RECORDS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: 3: PROCUREMENT, SUPPLY, AND GRANT RECORDS July 2008 Revision 2 Procurement and supply records document the acquisition of goods and non-personal services, controlling the volume of stock on hand, reporting procurement needs, and related supply matters which are part of daily procurement operations. The basic procurement files reflect a considerable range of procedure, from simple, small purchases to complicated prime contractor and subcontractor operations. Any records created prior to 1895 must first be offered to the National Archives and Records Administration (NARA) for appraisal before applying the disposal instructions. Frequently copies of procurement papers become integral parts of other files, such as project files of various types or general subject files pertaining to program operations;

439

Economic analysis of fuel recycle  

SciTech Connect

Economic analysis was performed at KAERI with the assistance of US DOE to compare single reactor fuel cycle costs for a once-through option and a thermal recycle option to operate 1 GWe of a PWR plant for its lifetime. A reference fuel cycle cost was first calculated for each option with best estimated reference input data. Then a sensitivity analysis was performed changing each single value of such fuel cycle component costs as yellow cake price, enrichment charges, spent fuel storage cost, reprocessing cost, spent fuel disposal cost and reprocessing waste disposal cost. Savings due to thermal recycle in requirements of uranium, conversion, and enrichment were examined using formulas suggested by US DOE, while MOX fabrication penalty was accounted for. As a result of the reference fuel cycle cost analysis, it is calculated that the thermal recycle option is marginally more economical than the once-through option. The major factors affecting the comparative costs between thermal recycle and once-through are the costs of reprocessing, spent fuel storage and the difference between spent fuel disposal and reprocessing waste disposal. However, considering the uncertainty in these cost parameters there seems no immediate economic incentive for thermal recycle at the present time.

Juhn, P.E.

1985-01-01T23:59:59.000Z

440

Bush Administration Establishes Program to Reduce Foreign Oil Dependency,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bush Administration Establishes Program to Reduce Foreign Oil Bush Administration Establishes Program to Reduce Foreign Oil Dependency, Greenhouse Gases Bush Administration Establishes Program to Reduce Foreign Oil Dependency, Greenhouse Gases April 10, 2007 - 12:34pm Addthis WASHINGTON, DC - In step with the Bush Administration's call to increase the supply of alternative and renewable fuels nationwide, the U.S. Environmental Protection Agency today established the nation's first comprehensive Renewable Fuel Standard (RFS) program. At a press conference today, EPA Administrator Johnson, joined by Energy Secretary Samuel Bodman and National Highway Traffic Safety Administrator Nicole Nason, discussed the RFS program, increasing the use of alternative fuels and modernizing CAFÉ standards for cars. "The Renewable Fuel Standard offers the American people a hat trick - it

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Obama Administration Announces Major Steps Forward to Advance...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Steps Forward to Advance Energy Efficiency Efforts, Improve Access to Low-Cost Financing for States and Local Communities Obama Administration Announces Major Steps Forward...

442

U.S. Energy Information Administration - EIA - Independent ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration - EIA ... Common impacts of high hydro generation include low power prices due to hydro's relatively low operating costs, ...

443

Sensitivity Analysis of H2-Vehicles' Market Prospects, Costs and Benefits - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program David L. Greene (Primary Contact), Zhenhong Lin, Jing Dong Oak Ridge National Laboratory National Transportation Research Center 2360 Cherahala Boulevard Knoxville, TN 37932 Phone: (865) 946-1310 Email: dlgreene@ornl.gov DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@hq.doe.gov Subcontractor: Department of Industrial Engineering, University of Tennessee, Knoxville, TN Project Start Date: October, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Project market shares of hydrogen fuel cell vehicles * (FCVs) under varying market conditions using the Market Acceptance of Advanced Automotive Technologies (MA3T) model.

444

Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark Leavitt Quantum Fuel Systems Technologies Worldwide, Inc. 25242 Arctic Ocean Drive Lake Forest, CA 92630 Phone: (949) 399-4584 Email: mleavitt@qtww.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FG36-08GO18055 Subcontractors: * Boeing Research and Technology, Seattle, WA * Pacific Northwest National Laboratory (PNNL), Richland, WA Project Start Date: September 1, 2008 Project End Date: March 31, 2013 Fiscal Year (FY) 2012 Objectives Develop new methods for manufacturing Type IV

445

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

with a focus on improving the performance and durability and reducing the cost of fuel cell components and systems. Research efforts involve: Developing advanced catalysts,...

446

Fuel comsumption of heavy-duty trucks : potential effect of future technologies for improving energy efficiency and emission.  

Science Conference Proceedings (OSTI)

The results of an analysis of heavy-duty truck (Classes 2b through 8) technologies conducted to support the Energy Information Administration's long-term projections for energy use are summarized. Several technology options that have the potential to improve the fuel economy and emissions characteristics of heavy-duty trucks are included in the analysis. The technologies are grouped as those that enhance fuel economy and those that improve emissions. Each technology's potential impact on the fuel economy of heavy-duty trucks is estimated. A rough cost projection is also presented. The extent of technology penetration is estimated on the basis of truck data analyses and technical judgment.

Saricks, C. L.; Vyas, A. D.; Stodolsky, F.; Maples, J. D.; Energy Systems; USDOE

2003-01-01T23:59:59.000Z

447

Fuel Cells Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

448

Management and Administration | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Management and Administration | National Nuclear Security Administration Management and Administration | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Management and Administration Home > About Us > Our Programs > Powering the Nuclear Navy > Management and Administration Management and Administration NNSA's Naval Reactors is committed to excellence and dedicated to meeting

449

STATEMENT OF ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ADAM SIEMINSKI ADAM SIEMINSKI ADMINISTRATOR ENERGY INFORMATION ADMINISTRATION U.S. DEPARTMENT OF ENERGY before the SUBCOMMITTEE ON ENERGY AND POWER COMMITTEE ON ENERGY AND COMMERCE U. S. HOUSE OF REPRESENTATIVES JUNE 26, 2013 2 Chairman Whitfield, Ranking Member Rush and Members of the Subcommittee, thank you for the opportunity to appear before you today to discuss the Renewable Fuel Standard (RFS) program. The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding regarding energy and its interaction with the economy and the environment. By law, EIA's data, analyses, and

450

USING THE FUEL ECONOMY GUIDE  

NLE Websites -- All DOE Office Websites (Extended Search)

allows you to insert your local gasoline prices and typical driving conditions (% city & highway) to achieve the most accurate fuel cost information for your vehicle. Strengthen...

451

World Fossil Fuel Economics - TMS  

Science Conference Proceedings (OSTI)

Jan 1, 1971 ... World Fossil Fuel Economics ... in world energy demand, particularly in the U. S. and Europe; the consumption patterns and cost patterns of oil, ...

452

Diesel fuel filtration system  

SciTech Connect

The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel`s hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system.

Schneider, D. [Wisconsin Fuel and Light, Wausau, WI (United States)

1996-03-01T23:59:59.000Z

453

Thin film battery/fuel cell power generation system. Topical report covering Task 5: the design, cost and benefit of an industrial cogeneration system, using a high-temperature solid-oxide-electrolyte (HTSOE) fuel-cell generator  

DOE Green Energy (OSTI)

A literature search and review of the studies analyzing the relationship between thermal and electrical energy demand for various industries and applications resulted in several applications affording reasonable correlation to the thermal and electrical output of the HTSOE fuel cell. One of the best matches was in the aluminum industry, specifically, the Reynolds Aluminum Production Complex near Corpus Christi, Texas. Therefore, a preliminary design of three variations of a cogeneration system for this plant was effected. The designs were not optimized, nor were alternate methods of providing energy compared with the HTSOE cogeneration systems. The designs were developed to the extent necessary to determine technical practicality and economic viability, when compared with alternate conventional fuel (gas and electric) prices in the year 1990.

Not Available

1981-02-25T23:59:59.000Z

454

Overview of Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard Farmer Richard Farmer Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States Hydrogen Business Council September 14, 2010  Double Renewable Energy Capacity by 2012  Invest $150 billion over ten years in energy R&D to transition to a clean energy economy  Reduce GHG emissions 83% by 2050 Administration's Clean Energy Goals 2 U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 3 4 Technology Barriers* Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Stationary Systems: $750 per kW, 40,000-hr durability Vehicles: $30 per kW, 5,000-hr durability Safety, Codes & Standards Development

455

A model and optimization of alternative fuel vehicle fleet composition with triple bottom line concerns .  

E-Print Network (OSTI)

??Alternative fuel types and technologies are increasingly being advocated for transportation needs to ameliorate concerns around energy security, climate change, and fuel cost. Each fuel… (more)

Zullo, Johnathon

2012-01-01T23:59:59.000Z

456

Synergistically Enhanced Materials and Design Parameters for Reducing the Cost of Hydrogen Storage Tanks - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Kevin L. Simmons (Primary Contact), Kenneth Johnson, and Kyle Alvine Pacific Northwest National Laboratory (PNNL) 902 Battelle Blvd Richland, WA 99352 Phone: (509) 375-3651 Email: Kevin.Simmons@pnnl.gov Norman Newhouse (Lincoln Composites, Inc.), Mike Veenstra (Ford Motor Company), Anand V. Rau (TORAY Carbon Fibers America) and Thomas Steinhausler (AOC, L.L.C.) DOE Managers HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov GO: Jesse Adams

457

Development of Low-Cost, High Strength Commercial Textile Precursor (PAN-MA) - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report C.D. Warren and Felix L. Paulauskas Oak Ridge National Laboratory 1 Bethel Valley Road Oak Ridge, TN 37831 Phone: (865) 574-9693 Email: warrencd@ornl.gov Email: paulauskasfl@ornl.gov DOE Manager HQ: Ned Stetson Phone: (202) 586-9995 Email: Ned.Stetson@ee.doe.gov Contributors: * Hippolyte Grappe (ORNL) * Fue Xiong (ORNL) * Ana Paula Vidigal (FISIPE) * Jose Contrerias (FISIPE) Project Start Date: April 21, 2011 Project End Date: July 31, 2013 Fiscal Year (FY) 2012 Objectives Down-select from 11 polymer candidate polymer *

458

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Invests to Drive Down Costs of Carbon Capture, Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

459

Energy Department Invests to Drive Down Costs of Carbon Capture, Support  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Invests to Drive Down Costs of Carbon Capture, Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution Energy Department Invests to Drive Down Costs of Carbon Capture, Support Reductions in Greenhouse Gas Pollution November 7, 2013 - 10:30am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's Climate Action Plan, today the Energy Department announced the selection of 18 projects across the country to research innovative, second-generation technologies that will help improve the efficiency and drive down costs of carbon capture processes for new and existing coal-fired power plants. "In the past four years we've more than doubled renewable energy generation from wind and solar power. However, coal and other fossil fuels

460

The Actual Cost of Food Systems on  

E-Print Network (OSTI)

emissions and air quality); infrastructure; energy (fuel); congestion; safety; and user (tax payer) costs emissions and air quality); infrastructure; energy (fuel); congestion; safety; and user (tax payer) costs ...................................................................................................................16 Table 14: Fruit and Vegetable Consumption Rate Per Capita from County Survey

Beresnev, Igor

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Automotive System Cost Modeling Tool (ASCM)  

E-Print Network (OSTI)

technology vehicles (i.e., diesel, hybrid, and fuel cell) developed for improved fuel economy remains either be done through Argonne National laboratory's hybrid vehicle cost model algorithm (adapted the Tool Can Help Answer · What is the life cycle cost of today's midsize hybrid vehicle? · How does

462

Obama Administration Delivers More Than $66 Million for Weatherization...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program, assisting low-income persons in minimizing energy-related costs and fuel usage in their residences. Every home is checked for various health and safety measures...

463

Energy Information Administration (EIA) - Analysis of Oil and Gas ...  

U.S. Energy Information Administration (EIA)

Also, other provisions in the CEB could reduce the price of natural gas, ... the effective fuel cost of the biomass returns to pre-PTC levels, ...

464

Fuel Ethanol Oxygenate Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Totals may not equal sum ...

465

Distillate Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

466

Residual Fuel Oil Exports - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Crude oil exports are ...

467

Fuels Solvent Deasphalting - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

468

Section H: FUELS USED - Energy Information Administration  

U.S. Energy Information Administration (EIA)

underground pipes and bottled gas (LPG or propane) in your home. ... Heating your home .....1.....0 Heating water ...

469

Commercial Jet Fuel Production - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Beginning in 1993, motor ...

470

1998 Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

purpose vehicles (2-wheel drive and 4-wheel drive). By using this Guide consumers can estimate the average yearly fuel cost for any vehicle. The mileage figures included in...

471

NUCLEAR ENERGY SYSTEM COST MODELING  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy’s Fuel Cycle Technologies (FCT) Program is preparing to perform an evaluation of the full range of possible Nuclear Energy Systems (NES) in 2013. These include all practical combinations of fuels and transmuters (reactors and sub-critical systems) in single and multi-tier combinations of burners and breeders with no, partial, and full recycle. As part of this evaluation, Levelized Cost of Electricity at Equilibrium (LCAE) ranges for each representative system will be calculated. To facilitate the cost analyses, the 2009 Advanced Fuel Cycle Cost Basis Report is being amended to provide up-to-date cost data for each step in the fuel cycle, and a new analysis tool, NE-COST, has been developed. This paper explains the innovative “Island” approach used by NE-COST to streamline and simplify the economic analysis effort and provides examples of LCAE costs generated. The Island approach treats each transmuter (or target burner) and the associated fuel cycle facilities as a separate analysis module, allowing reuse of modules that appear frequently in the NES options list. For example, a number of options to be screened will include a once-through uranium oxide (UOX) fueled light water reactor (LWR). The UOX LWR may be standalone, or may be the first stage in a multi-stage system. Using the Island approach, the UOX LWR only needs to be modeled once and the module can then be reused on subsequent fuel cycles. NE-COST models the unit operations and life cycle costs associated with each step of the fuel cycle on each island. This includes three front-end options for supplying feedstock to fuel fabrication (mining/enrichment, reprocessing of used fuel from another island, and/or reprocessing of this island’s used fuel), along with the transmuter and back-end storage/disposal. Results of each island are combined based on the fractional energy generated by each islands in an equilibrium system. The cost analyses use the probability distributions of key parameters and employs Monte Carlo sampling to arrive at an island’s cost probability density function (PDF). When comparing two NES to determine delta cost, strongly correlated parameters can be cancelled out so that only the differences in the systems contribute to the relative cost PDFs. For example, one comparative analysis presented in the paper is a single stage LWR-UOX system versus a two-stage LWR-UOX to LWR-MOX system. In this case, the first stage of both systems is the same (but with different fractional energy generation), while the second stage of the UOX to MOX system uses the same type transmuter but the fuel type and feedstock sources are different. In this case, the cost difference between systems is driven by only the fuel cycle differences of the MOX stage.

Francesco Ganda; Brent Dixon

2012-09-01T23:59:59.000Z

472

Manufacturing of Low-Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program F. Colin Busby W.L. Gore & Associates, Inc (Gore) Gore Electrochemical Technologies Team 201 Airport Road Elkton, MD 21921 Phone: (410) 392-3200 Email: CBusby@WLGore.com DOE Managers HQ: Nancy Garland Phone: (202) 586-5673 Email: Nancy.Garland@ee.doe.gov GO: Jesse Adams Phone: (720) 356-1421 Email: Jesse.Adams@go.doe.gov Contract Number: DE-FСЗ6-08G018052 Subcontractors: * UTC Power, South Windsor, CT * University of Delaware, Newark, DE (UD) * University of Tennessee, Knoxville, TN (UTK) Project Start Date: October 1, 2008 Project End Date: June 30, 2014

473

Low-Cost Large-Scale PEM Electrolysis for Renewable Energy Storage - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Dr. Katherine Ayers (Primary Contact), Chris Capuano Proton Energy Systems d/b/a Proton OnSite 10 Technology Drive Wallingford, CT 06492 Phone: (203) 678-2190 Email: kayers@protononsite.com DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Contract Number: DE-SC0001338 Subcontractors: * 3M, Minneapolis, MN * University of Wyoming, Laramie, WY Project Start Date: June 19, 2010 (Phase 1) Project End Date: August 18, 2013 (with Phase 2 continuation) Fiscal Year (FY) 2012 Project Objectives Demonstrate optimal membrane electrode assembly * (MEA) efficiency through: Refinement of catalyst compositions based on -

474

Cost, Energy Use, and Emissions of Tri-Generation Systems - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Mark F. Ruth* (Primary Contact), Michael E. Goldsby † , Timothy J. Sa † , Victor Diakov* *National Renewable Energy Laboratory 15013 Denver West Pkwy. Golden, CO 80401 Phone: (303) 817-6160 Email: Mark.Ruth@nrel.gov † Sandia National Laboratories DOE Manager HQ: Fred Joseck Phone: (202) 586-7932 Email: Fred.Joseck@ee.doe.gov Project Start Date: December 1, 2010 Project End Date: October 31, 2011 Fiscal Year (FY) 2012 Objectives Develop a macro-system model (MSM): * Aimed at performing rapid cross-cutting analysis - Utilizing and linking other models - Improving consistency between models - Incorporate tri-generation systems into the MSM and * develop a methodology for MSM users to analyze

475

Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Liwei Xu (Primary Contact) 1 , Anke E. Abken 2 , William B. Ingler 3 , John Turner 4 1 Midwest Optoelectronics LLC (MWOE) 2801 W. Bancroft Street Mail Stop 230 Toledo, OH 43606 Phone: (419) 215-8583 Email: xu@mwoe.com 2 Xunlight Corporation (Xunlight) 3 University of Toledo, Toledo, OH (UT) 4 National Renewable Energy Laboratory, Golden, CO (NREL) DOE Managers HQ: Eric Miller Phone: (202) 287-5829 Email: Eric.Miller@ee.doe.gov GO: David Peterson Phone: (720) 356-1747 Email: David.Peterson@go.doe.gov Contract Number: DE-FG36-05GO15028 Subcontractors: * Xunlight Corporation, Toledo, OH * University of Toledo, Toledo, OH * National Renewable Energy Laboratory, Golden, CO

476

Production Cost Optimization Assessments  

Science Conference Proceedings (OSTI)

The benefits of improved thermal performance of coal-fired power plants continue to grow, as the costs of fuel rise and the prospect of a carbon dioxide cap and trade program looms on the horizon. This report summarizes the efforts to date of utilities committed to reducing their heat rate by 1.0% in the Production Cost Optimization (PCO) Project. The process includes benchmarking of plant thermal performance using existing plant data and a site-specific performance appraisal. The appraisal determines po...

2008-12-11T23:59:59.000Z

477

Low Cost, Durable Seal  

SciTech Connect

Seal durability is critical to achieving the 2010 DOE operational life goals for both stationary and transportation PEM fuel cell stacks. The seal material must be chemically and mechanically stable in an environment consisting of aggressive operating temperatures, humidified gases, and acidic membranes. The seal must also be producible at low cost. Currentlyused seal materials do not meet all these requirements. This project developed and demonstrated a high consistency hydrocarbon rubber seal material that was able to meet the DOE technical and cost targets. Significant emphasis was placed on characterization of the material and full scale molding demonstrations.

Roberts, George; Parsons, Jason; Friedman, Jake

2010-12-17T23:59:59.000Z

478

Environmental protection using social costing  

Science Conference Proceedings (OSTI)

Emissions and other residual wastes come from industrial production, commercial and household activities, and transportation. These wastes damage the environment, including human health. As economies grow, so does concern about balancing that growth with the desire for environmental protection. At issue is how much environmental protection we should have. We address this issue using the concept of social costing. The issue is discussed in the context of electric power generation. There is particular concern about the use of fossil fuels such as petroleum, the major fuel used in the Republic of China, and coal which is the most common fuel used in the U. S. Electric power generation is a major source of airborne pollutants such as SO{sub 2}, NO{sub x} particulate matter, volatile organic compounds, CO, and CO{sub 2}. It also results in liquid and solid wastes, and other effects such as changes in land use. To generate electric power, fuel (such as petroleum, coal or enriched uranium) or some other resource (e.g., wind or geothermal) is needed. A fuel cycle consists of a sequence of activities and processes involved in generating electric power. These activities include fuel extraction, treatment and processing; fuel conversion into electricity; transmission; waste disposal; and transportation of fuel and wastes between the different stages of the fuel cycle. Each stage results in emissions or other residuals. Several recent-studies have been about the environmental costs of electricity.

Lee, R.

1993-10-01T23:59:59.000Z

479

2012 2013 Projected Aviation Program Costs  

E-Print Network (OSTI)

2012 ­ 2013 Projected Aviation Program Costs UND Aerospace offers two aviation degree programs with a total of seven academic majors. Each has its own flight course requirements, which affect the cost of a degree program. BACHELOR of BUSINESS ADMINISTRATION ** Flight Costs Airport Management Survey of Flight

Delene, David J.

480

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen & Hydrogen & Fuel Cells Hydrogen & Fuel Cells Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial buildings. This technology, which is similar to a battery, has the potential to revolutionize the way we power the nation while reducing carbon pollution and oil consumption.

Note: This page contains sample records for the topic "fuel costs administrative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Few transportation fuels surpass the energy densities of ...  

U.S. Energy Information Administration (EIA)

Energy density and the cost, weight, and size of onboard energy storage are important characteristics of fuels for transportation. Fuels that require ...

482

Department of Energy Awards Nearly $7 Million to Advance Fuel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

energy, raw materials, and various components that will help identify ways to drive down production costs of transportation fuel cell systems, stationary fuel cell systems, and...

483

MEMS Fuel Cells – Low Temp – High Power Density  

The miniature fuel-cell technology uses thin-film fuel ... Reduced life cycle cost in comparison to ... for the Department of Energy's National Nuclear Security ...