National Library of Energy BETA

Sample records for fuel cost savings

  1. EV Everywhere: Saving on Fuel and Vehicle Costs | Department...

    Energy Savers [EERE]

    EV Everywhere: Saving on Fuel and Vehicle Costs EV Everywhere: Saving on Fuel and Vehicle Costs eGallon: Compare the costs of driving with electricity What is eGallon? It is the ...

  2. EV Everywhere: Saving on Fuel and Vehicle Costs

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (also known as electric cars or EVs) can save you money, with much lower fuel costs on average than conventional gasoline vehicles. Electricity prices are lower and more stable than gasoline prices. On a national average, it costs less than half as much to travel the same distance in an EV than a conventional vehicle.

  3. Alternative Fuels Data Center: CNG Shuttles Save Fuel Costs for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Regional Heavy-Duty LNG Fueling Station March 21, 2015 Photo of a street sweeper New Hampshire Fleet Revs up With Natural Gas March 7, 2015 Photo of a truck pulling into a CNG ...

  4. EV Everywhere: Saving on Fuel and Vehicle Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV Everywhere: Saving on Fuel and Vehicle Costs EV Everywhere: Saving on Fuel and Vehicle Costs eGallon: Compare the costs of driving with electricity What is eGallon? It is the cost of fueling a vehicle with electricity compared to a similar vehicle that runs on gasoline. Did you know? On average, it costs about half as much to drive an electric vehicle. Find out how much it costs to fuel an electric vehicle in your state regular gasoline 0 6 4 1 0 3 * 0 2 0 4 8 6 0 8 9 2 3 5 0 electric eGallon

  5. FUEL CONSUMPTION AND COST SAVINGS OF CLASS 8 HEAVY-DUTY TRUCKS POWERED BY NATURAL GAS

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J; Daw, C Stuart; Smith, David E

    2013-01-01

    We compare the fuel consumption and greenhouse gas emissions of natural gas and diesel heavy-duty (HD) class 8 trucks under consistent simulated drive cycle conditions. Our study included both conventional and hybrid HD trucks operating with either natural gas or diesel engines, and we compare the resulting simulated fuel efficiencies, fuel costs, and payback periods. While trucks powered by natural gas engines have lower fuel economy, their CO2 emissions and costs are lower than comparable diesel trucks. Both diesel and natural gas powered hybrid trucks have significantly improved fuel economy, reasonable cost savings and payback time, and lower CO2 emissions under city driving conditions. However, under freeway-dominant driving conditions, the overall benefits of hybridization are considerably less. Based on payback period alone, non-hybrid natural gas trucks appear to be the most economic option for both urban and freeway driving environments.

  6. Energy Smart Guide to Campus Cost Savings: Today's Trends in Project Finance, Clean Fuel Fleets, Combined Heat& Power, Emissions Markets

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    The Energy Smart Guide to Campus Cost Savings covers today's trends in project finance, combined heat& power, clean fuel fleets and emissions trading. The guide is directed at campus facilities and business managers and contains general guidance, contact information and case studies from colleges and universities across the country.

  7. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  8. Water-saving Measures: Energy and Cost Savings Calculator | Open...

    Open Energy Info (EERE)

    and Cost Savings Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Water-saving Measures: Energy and Cost Savings Calculator AgencyCompany Organization:...

  9. Save Electricity and Fuel | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use, purchase efficient products, save money on your electric bills, and buy or ... Learn about the following topics: Saving money on gas Buying and driving fuel efficient ...

  10. Alternative Fuels Data Center: Minnesota School District Finds Cost

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Savings, Cold-Weather Reliability with Propane Buses Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses to someone by E-mail Share Alternative Fuels Data Center: Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses on Facebook Tweet about Alternative Fuels Data Center: Minnesota School District Finds Cost Savings, Cold-Weather Reliability with Propane Buses on Twitter Bookmark Alternative Fuels Data Center: Minnesota

  11. FY 1995 cost savings report

    SciTech Connect (OSTI)

    Andrews-Smith, K.L., Westinghouse Hanford

    1996-06-21

    Fiscal Year (FY) 1995 challenged us to dramatically reduce costs at Hanford. We began the year with an 8 percent reduction in our Environmental Management budget but at the same time were tasked with accomplishing additional workscope. This resulted in a Productivity Challenge whereby we took on more work at the beginning of the year than we had funding to complete. During the year, the Productivity Challenge actually grew to 23 percent because of recissions, Congressional budget reductions, and DOE Headquarters actions. We successfully met our FY 1995 Productivity Challenge through an aggressive cost reduction program that identified and eliminated unnecessary workscope and found ways to be more efficient. We reduced the size of the workforce, cut overhead expenses, eliminated paperwork, cancelled construction of new facilities, and reengineered our processes. We are proving we can get the job done better and for less money at Hanford. DOE`s drive to do it ``better, faster, cheaper`` has led us to look for more and larger partnerships with the private sector. The biggest will be privatization of Hanford`s Tank Waste Remediation System, which will turn liquid tank waste into glass logs for eventual disposal. We will also save millions of dollars and avoid the cost of replacing aging steam plants by contracting Hanford`s energy needs to a private company. Other privatization successes include the Hanford Mail Service, a spinoff of advanced technical training, low level mixed waste thermal treatment, and transfer of the Hanford Museums of Science and history to a private non-profit organization. Despite the rough roads and uncertainty we faced in FY 1995, less than 3 percent of our work fell behind schedule, while the work that was performed was completed with an 8.6 percent cost under-run. We not only met the FY 1995 productivity challenge, we also met our FY 1995-1998 savings commitments and accelerated some critical cleanup milestones. The challenges continue

  12. Standardized Cost Savings Definitions and Reporting Template

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of the Office of Management and Budget (OMB) Acquisition Savings Initiative and the DOE Strategic Sourcing Program, a key challenge has been to address the requirements of reporting cost savings and cost avoidance data. In order for DOE to fully comply with reporting requirements, we are directing that the attached template be utilized for reporting Fiscal Year (FY) 2012 data.

  13. Better Buildings Challenge Saves $840 Million in Energy Costs...

    Energy Savers [EERE]

    Saves 840 Million in Energy Costs, Adds New Water Savings Goal Better Buildings Challenge Saves 840 Million in Energy Costs, Adds New Water Savings Goal May 27, 2015 - 10:08am ...

  14. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department...

    Energy Savers [EERE]

    saving on fuel costs," he said. "If these law enforcement vehicles were running great on propane autogas in such a demanding environment, then this was the fuel for my fleet."...

  15. DOE Zero Energy Ready Home Savings and Cost Estimate Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings and Cost Estimate Summary DOE Zero Energy Ready Home Savings and Cost Estimate Summary The U.S. Department of Energy Zero Energy Ready Home Savings and Cost Estimate ...

  16. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings This case study describes how the Boise Inc. ...

  17. Energy and Cost Savings Calculators for Energy-Efficient Products...

    Open Energy Info (EERE)

    Energy and Cost Savings Calculators for Energy-Efficient Products Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy and Cost Savings Calculators for...

  18. On the Road with Fuel Saving Tools | Department of Energy

    Energy Savers [EERE]

    On the Road with Fuel Saving Tools On the Road with Fuel Saving Tools May 23, 2014 - 11:07am Addthis Driving efficiently can help you save money on gas this summer.| Photo courtesy ...

  19. cost savings | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    cost savings NNSA's Nevada Field Office Transfers Two Armored Vehicles to FBI LAS VEGAS - The National Nuclear Security Administration's (NNSA) Nevada Field Office recently transferred two Advanced Concept Armored Vehicles (ACAVs) to The Department of Justice's local FBI office in Nevada. The transfer created $474,000 in savings to the government as the NFO security force no... Savannah River Site hosts regional Lean Alliance event Companies from around the Central Savannah River Area had the

  20. Unconventional Staging Package Selection Leads to Cost Savings

    SciTech Connect (OSTI)

    ,

    2012-06-07

    In late 2010, U.S. Department of Energy (DOE) Deputy Secretary of Energy, Daniel Poneman, directed that an analysis be conducted on the U-233 steel-clad, Zero Power Reactor (ZPR) fuel plates that were stored at Oak Ridge National Laboratory (ORNL), focusing on cost savings and any potential DOE programmatic needs for the special nuclear material (SNM). The NA-162 Nuclear Criticality Safety Program requested retention of these fuel plates for use in experiments at the Nevada National Security Site (NNSS). A Secretarial Initiative challenged ORNL to make the first shipment to the NNSS by the end of the 2011 calendar year, and this effort became known as the U-233 Project Accelerated Shipping Campaign. To meet the Secretarial Initiative, National Security Technologies, LLC (NSTec), the NNSS Management and Operations contractor, was asked to facilitate the receipt and staging of the U-233 fuel plates in the Device Assembly Facility (DAF). Because there were insufficient staging containers available for the fuel plates, NSTec conducted an analysis of alternatives. The project required a staging method that would reduce the staging footprint while addressing nuclear criticality safety and radiation exposure concerns. To accommodate an intermediate staging method of approximately five years, the NSTec project team determined that a unique and unconventional staging package, the AT-400R, was available to meet the project requirements. By using the AT-400R containers, NSTec was able to realize a cost savings of approximately $10K per container, a total cost savings of nearly $450K.

  1. Alternative Fuels Data Center: Propane Buses Save Money for Virginia

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Schools Propane Buses Save Money for Virginia Schools to someone by E-mail Share Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Facebook Tweet about Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Twitter Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Google Bookmark Alternative Fuels Data Center: Propane Buses Save Money for Virginia Schools on Delicious Rank Alternative Fuels Data

  2. Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vans Renzenberger Inc Saves Money With Propane Vans to someone by E-mail Share Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Facebook Tweet about Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Twitter Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Google Bookmark Alternative Fuels Data Center: Renzenberger Inc Saves Money With Propane Vans on Delicious Rank Alternative Fuels Data

  3. Pollution prevention cost savings potential

    SciTech Connect (OSTI)

    Celeste, J.

    1994-12-01

    The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

  4. Energy savings estimates and cost benefit calculations for high...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy savings estimates and cost benefit calculations for high performance relocatable classrooms Citation Details In-Document Search Title: Energy savings ...

  5. Estimated Maintenance Cost Savings from a Geothermal Heat Pump...

    Office of Scientific and Technical Information (OSTI)

    Contract at Fort Polk, LA Citation Details In-Document Search Title: Estimated Maintenance Cost Savings from a Geothermal Heat Pump Energy Savings Performance Contract at ...

  6. Microsoft Word - CR-091 Primary Basis of Cost Savings and Cost...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Cost Savings and Cost Savings Amount. The new configurations will only apply to acquisition document types, specifically: BPA Calls, Contracts, Delivery OrderTask Order,...

  7. Waste fuel, EMS may save plant $1M yearly

    SciTech Connect (OSTI)

    Barber, J.

    1982-05-24

    A mixture of paper trash and coal ash fueling an Erie, Pa. General Electric plant and a Network 90 microprocessor-based energy-management system (EMS) to optimize boiler efficiency will cost about $3 million and have a three-to-four-year payback. Over half the savings will come from the avoided costs of burning plant-generated trash. The EMS system will monitor fuel requirements in the boiler and compensate for changes in steam demand. It will also monitor plant electrical needs and control the steam diverted for cogeneration. (DCK)

  8. Capturing Waste Gas: Saves Energy, Lower Costs - Case Study,...

    Office of Environmental Management (EM)

    Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 ArcelorMittal USA, Inc.'s Indiana Harbor steel ...

  9. Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Stop Electrification Saving Fuel in the Garden State with Truck Stop Electrification to someone by E-mail Share Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Facebook Tweet about Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Twitter Bookmark Alternative Fuels Data Center: Saving Fuel in the Garden State with Truck Stop Electrification on Google Bookmark Alternative Fuels Data Center:

  10. Go Green Save Fuel LLC | Open Energy Information

    Open Energy Info (EERE)

    Go Green Save Fuel LLC Jump to: navigation, search Name: Go Green Save Fuel, LLC Place: Seattle, Washington Zip: 98134 Sector: Carbon Product: Seattle-based lobbyist seeking to...

  11. Cost-Effective Modeling and Savings Projections for Multifamily...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Effective Modeling and Savings Projections for Multifamily Projects Better Buildings Residential Network Multifamily and Low-Income Housing Peer Exchange Call Series: Cost-Eff...

  12. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2008-03-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  13. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert; E. Schneider

    2009-12-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 25 cost modules—23 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste.

  14. Advanced Fuel Cycle Cost Basis

    SciTech Connect (OSTI)

    D. E. Shropshire; K. A. Williams; W. B. Boore; J. D. Smith; B. W. Dixon; M. Dunzik-Gougar; R. D. Adams; D. Gombert

    2007-04-01

    This report, commissioned by the U.S. Department of Energy (DOE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the Advanced Fuel Cycle Initiative (AFCI) Program. The report describes the AFCI cost basis development process, reference information on AFCI cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This report contains reference cost data for 26 cost modules—24 fuel cycle cost modules and 2 reactor modules. The cost modules were developed in the areas of natural uranium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, and high-level waste.

  15. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    SciTech Connect (OSTI)

    Williams, Charles; Green, Andrew S.; Dahle, Douglas; Barnett, John; Butler, Pat; Kerner, David

    2013-08-01

    The findings of this study indicate that potential exists in non-building applications to save energy and costs. This potential could save billions of federal dollars, reduce reliance on fossil fuels, increase energy independence and security, and reduce greenhouse gas emissions. The Federal Government has nearly twenty years of experience with achieving similar energy cost reductions, and letting the energy costs savings pay for themselves, by applying energy savings performance contracts (ESPC) inits buildings. Currently, the application of ESPCs is limited by statute to federal buildings. This study indicates that ESPCs can be a compatible and effective contracting tool for achieving savings in non-building applications.

  16. Reported Energy and Cost Savings from the DOE ESPC Program

    SciTech Connect (OSTI)

    Shonder, John A; Slattery, Bob S; Atkin, Erica

    2012-01-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy's Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 134 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For 133 of the 134 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $95.7 million, total reported cost savings were $96.8 million, and total guaranteed cost savings were $92.1 million. This means that on average: ESPC contractors guaranteed 96% of the estimated cost savings, projects reported achieving 101% of the estimated cost savings, and projects reported achieving 105% of the guaranteed cost savings. For 129 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 5.371 million MMBtu, and reported savings were 5.374 million MMBtu, just over 100% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 129 projects were 10.400 million MMBtu, and reported saving were 10.405 million MMBtu, again, just over 100.0% of the estimated energy savings.

  17. DOE Perspective on Budget, Accounting, and Cost-Saving Initiatives

    Office of Energy Efficiency and Renewable Energy (EERE)

    Joseph Hezir, Chief Financial Officer, DOE presented on the topic DOE Perspective on Budget, Accounting, and Cost-Saving Initiatives. The presentation focuses on FFRDCs, National Lab funding and cost accounting, ICR, and overhead costs.

  18. Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy 4: July 18, 2011 Fuel Economy versus Fuel Savings Fact #684: July 18, 2011 Fuel Economy versus Fuel Savings An increase in fuel economy by 5 miles per gallon (mpg) does not translate to a constant fuel savings amount. Thus, trading a low-mpg car or truck for one with just slightly better mpg will save more fuel than trading a high-mpg car or truck for one that is even higher. For example, trading a truck that gets 15 mpg for a new one that gets 20 mpg will save 16.7 gallons of fuel

  19. Sustainable Alternative Fuels Cost Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels Cost Workshop Tuesday, November 27, 2012 9:00 a.m. - 4:00 p.m. National Renewable Energy Lab Offices - Suite 930 901 D Street, SW, Washington, DC 20585 AGENDA ...

  20. Energy Smart Guide to Campus Cost Savings: Executive Summary

    SciTech Connect (OSTI)

    Not Available

    2003-07-01

    Summary of The Energy Smart Guide to Campus Cost Savings, an energy efficiency guidebook for College and University business and facility managers.

  1. Cost-Effective Modeling and Savings Projections for Multifamily Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Effective Modeling and Savings Projections for Multifamily Projects Cost-Effective Modeling and Savings Projections for Multifamily Projects Better Buildings Residential Network Multifamily and Low-Income Housing Peer Exchange Call Series: Cost-Effective Modeling and Savings Projections for Multifamily Projects, Call Slides and Discussion Summary, June 26, 2014. Call Slides and Discussion Summary (1.02 MB) More Documents & Publications Trends in Multifamily Programs:

  2. Navy Lowering Upfront Costs to Save Energy

    Broader source: Energy.gov [DOE]

    A project started last year at a U.S. Navy base in Meridian, Miss., that will save thousands in taxpayer dollars has been successfully completed.

  3. Building Life Cycle Cost Programs File Saving Troubleshooting | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy File Saving Troubleshooting Building Life Cycle Cost Programs File Saving Troubleshooting Some users have experienced difficulties saving BLCC projects. The primary issue causing the issue is that the user is not an "Administrator," and lacks the "permission" to save to that location. In this case, a user can save the BLCC project file anywhere else on the computer, such as "My Documents" or "Desktop". Below are instructions and a screen shot

  4. Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating Applications Only | Department of Energy Commercial Boilers: Closed Loop, Space Heating Applications Only Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space Heating Applications Only This cost calculator is a screening tool that estimates a product's lifetime energy cost savings at various efficiency levels. Learn more about the base model and other assumptions. Project Type Is this a new installation or a replacement? New Replacement What is the deliverable

  5. EECBG Success Story: Ormond Beach Triples Energy Cost Savings Projections |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ormond Beach Triples Energy Cost Savings Projections EECBG Success Story: Ormond Beach Triples Energy Cost Savings Projections July 9, 2013 - 1:42pm Addthis Thanks to funding from the Energy Department's Energy Efficiency and Conservation Block Grant Program, Ormond Beach was able to make energy efficiency upgrades to 16 city-owned buildings and is now saving more than $45,000 a year on its energy costs. | Photo courtesy of the City of Ormond Beach, Florida. Thanks to

  6. Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle...

    Office of Scientific and Technical Information (OSTI)

    Title: Fast Reactor Fuel Cycle Cost Estimates for Advanced Fuel Cycle Studies Authors: Harrison, Thomas J 1 + Show Author Affiliations ORNL ORNL Publication Date: 2013-01-01 ...

  7. Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)

    SciTech Connect (OSTI)

    Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

    2013-10-01

    This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

  8. Ormond Beach Triples Energy Cost Savings Projections

    Broader source: Energy.gov [DOE]

    With the help of the Energy Department's Energy Efficiency and Conservation Block Grant (EECBG) Program, the city of Ormond Beach, Florida is saving energy and encouraging its residents to do the same through an environmental education program.

  9. Lender-Based Revenues and Cost-Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lender-Based Revenues and Cost-Savings Lender-Based Revenues and Cost-Savings Program Sustainability Peer Exchange Call: Lender-Based Revenues and Cost-Savings, Call Slides and ...

  10. Bartering results in cost savings | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Technology Park (old K-25 site) with EMWMF. The new roadway is part of a plan to ... UCOR illustrates that efforts to find new cost-saving solutions continue to ensure the ...

  11. EECBG Success Story: Ormond Beach Triples Energy Cost Savings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to make energy efficiency upgrades to 16 city-owned buildings and is now saving more than 45,000 a year on its energy costs. | Photo courtesy of the City of Ormond Beach, Florida. ...

  12. Benchmark the Fuel Cost of Steam Generation

    Broader source: Energy.gov [DOE]

    This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  13. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  14. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  15. Types of Energy and Water Cost Savings That Can Be Used to Pay for a Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    "Savings must exceed payments." This is the cardinal rule of federal energy savings performance contracts (ESPCs). Savings must exceed payments in each contract year. Savings that may be used to pay the energy service company (ESCO) include energy and water cost savings and energy- and water-related cost savings.

  16. Theoretical, Methodological, and Empirical Approaches to Cost Savings: A Compendium

    SciTech Connect (OSTI)

    M Weimar

    1998-12-10

    This publication summarizes and contains the original documentation for understanding why the U.S. Department of Energy's (DOE's) privatization approach provides cost savings and the different approaches that could be used in calculating cost savings for the Tank Waste Remediation System (TWRS) Phase I contract. The initial section summarizes the approaches in the different papers. The appendices are the individual source papers which have been reviewed by individuals outside of the Pacific Northwest National Laboratory and the TWRS Program. Appendix A provides a theoretical basis for and estimate of the level of savings that can be" obtained from a fixed-priced contract with performance risk maintained by the contractor. Appendix B provides the methodology for determining cost savings when comparing a fixed-priced contractor with a Management and Operations (M&O) contractor (cost-plus contractor). Appendix C summarizes the economic model used to calculate cost savings and provides hypothetical output from preliminary calculations. Appendix D provides the summary of the approach for the DOE-Richland Operations Office (RL) estimate of the M&O contractor to perform the same work as BNFL Inc. Appendix E contains information on cost growth and per metric ton of glass costs for high-level waste at two other DOE sites, West Valley and Savannah River. Appendix F addresses a risk allocation analysis of the BNFL proposal that indicates,that the current approach is still better than the alternative.

  17. Toward Cost-Effective Polymer Electrolyte Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward Cost-Effective Polymer Electrolyte Fuel Cells Toward Cost-Effective Polymer Electrolyte Fuel ... finding the next generation of fuel cell technology that is low cost, long ...

  18. Energy Tricks Lead to Cost-Saving Treats | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tricks Lead to Cost-Saving Treats Energy Tricks Lead to Cost-Saving Treats October 29, ... Want to save more energy? Learn more tips and tricks to ward off energy waste as ...

  19. Capturing Waste Gas: Saves Energy, Lower Costs

    SciTech Connect (OSTI)

    2013-07-12

    In June 2009, ArcelorMittal learned about the potential to receive a 50% cost-matching grant from the American Recovery and Reinvestment Act (ARRA) administered by the U.S. Department of Energy (DOE). ArcelorMittal applied for the competitive grant and, in November, received $31.6 million as a DOE cost-sharing award. By matching the federal funding, ArcelorMittal was able to construct a new, high efficiency Energy Recovery & Reuse 504 Boiler and supporting infrastructure.

  20. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect (OSTI)

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  1. Alternative Fuel Infrastructure Expansion: Costs, Resources, Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capacity, and Retail Availability for Low-Carbon Scenarios | Department of Energy Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel

  2. Clean Cities Helps Nonprofit Cut Fuel Costs with Propane | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Helps Nonprofit Cut Fuel Costs with Propane Clean Cities Helps Nonprofit Cut Fuel Costs with Propane May 15, 2013 - 4:10pm Addthis Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. | Photo courtesy of Community Counseling Services. Mississippi's Community Counseling Services converted 29 vans to run on propane, saving more than $1.50 per gallon on fuel or more than $60,000 a year. |

  3. Fact #776: April 22, 2013 Fuel Savings from Attempts to Alleviate Traffic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congestion | Department of Energy 6: April 22, 2013 Fuel Savings from Attempts to Alleviate Traffic Congestion Fact #776: April 22, 2013 Fuel Savings from Attempts to Alleviate Traffic Congestion Despite the news that traffic congestion wasted nearly 2.9 billion gallons of fuel in 2011, fuel savings were achieved due to efforts to combat congestion. According to the Texas Transportation Institute, public transportation was responsible for a savings of 450 million gallons of fuel in 2011.

  4. Fuel Savings from Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Bennion, K.; Thornton, M.

    2009-03-01

    NREL's study shows that hybrid electric vehicles can significantly reduce oil imports for use in light-duty vehicles, particularly if drivers switch to smaller, more fuel-efficient vehicles overall.

  5. Analyzing Vehicle Fuel Saving Opportunities through Intelligent Driver Feedback

    SciTech Connect (OSTI)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2012-06-01

    Driving style changes, e.g., improving driver efficiency and motivating driver behavior changes, could deliver significant petroleum savings. This project examines eliminating stop-and-go driving and unnecessary idling, and also adjusting acceleration rates and cruising speeds to ideal levels to quantify fuel savings. Such extreme adjustments can result in dramatic fuel savings of over 30%, but would in reality only be achievable through automated control of vehicles and traffic flow. In real-world driving, efficient driving behaviors could reduce fuel use by 20% on aggressively driven cycles and by 5-10% on more moderately driven trips. A literature survey was conducted of driver behavior influences, and pertinent factors from on-road experiments with different driving styles were observed. This effort highlighted important driver influences such as surrounding vehicle behavior, anxiety over trying to get somewhere quickly, and the power/torque available from the vehicle. Existing feedback approaches often deliver efficiency information and instruction. Three recommendations for maximizing fuel savings from potential drive cycle improvement are: (1) leveraging applications with enhanced incentives, (2) using an approach that is easy and widely deployable to motivate drivers, and (3) utilizing connected vehicle and automation technologies to achieve large and widespread efficiency improvements.

  6. Final Report on the Fuel Saving Effectiveness of Various Driver Feedback Approaches

    SciTech Connect (OSTI)

    Gonder, J.; Earleywine, M.; Sparks, W.

    2011-03-01

    This final report quantifies the fuel-savings opportunities from specific driving behavior changes, identifies factors that influence drivers' receptiveness to adopting fuel-saving behaviors, and assesses various driver feedback approaches.

  7. Cost savings from nuclear regulatory reform: An econometric model

    SciTech Connect (OSTI)

    Canterbery, E.R. |; Johnson, B.; Reading, D.

    1996-01-01

    The nuclear-generated power touted in the 1950s as someday being {open_quotes}too cheap to meter{close_quotes} got dismissed in the 1980s as incapable of being both safe and cost effective. Today, less than 20 percent of American`s electricity is nuclear-generated, no new plants are planned or on order, and some of the earliest units are scheduled for decommissioning within the next decade. Even so, interest in nuclear power has been revived by increasing energy demands, concerns about global warming, and the uncertainty surrounding oil resources in the Persian Gulf. As a long-term alternative to fossil fuels, atomic energy offers the important advantages of clean air and domestic availability of fuel. But these advantages will count for little unless and until the costs of nuclear power can be seen as reasonable. The authors premise is that the relevant costs are those of providing safe and environmentally clean electric energy. To the extent that increased costs have resulted from increasingly stringent regulations, they reflect the internalization of external costs. Indeed, the external costs of nuclear power (particularly safety and environmental protection) have been internalized to a greater degree than with most alternative fuel sources used by electric utilities. Nuclear construction costs are properly compared with those of alternative sources only after the latter are adjusted for environmental damage and endangerment, including, as examples, the costs of oil spills, of building double-hulled tankers, and of building off-shore offloading facilities. A shift to nuclear sources could reduce these costs whereas it would increase disposal costs for radioactive materials. The authors contend that a better understanding of nuclear plant construction costs is pivotal to a balanced evaluation of the merits of uranium relative to other fuel choices. 12 refs., 2 figs., 5 tabs.

  8. NNSA projects win Secretary's Achievement Awards for cost savings and

    National Nuclear Security Administration (NNSA)

    efficiency | National Nuclear Security Administration | (NNSA) projects win Secretary's Achievement Awards for cost savings and efficiency Wednesday, March 30, 2016 - 3:39pm From left, Uranium Processing Facility (UPF) Site Readiness Federal Project Director Eric Thompson; UPF Federal Project Director Dale Christenson; Deputy Secretary of Energy Elizabeth Sherwood-Randall; U.S. Army Corps of Engineers Huntington, WV, Program Manager Sherry Adams; and UPF Construction Manager Lynn Nolan,

  9. DOE Zero Energy Ready Home Savings and Cost Estimate Summary | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Savings and Cost Estimate Summary DOE Zero Energy Ready Home Savings and Cost Estimate Summary The U.S. Department of Energy Zero Energy Ready Home Savings and Cost Estimate Summary, October 2015 DOE Zero Energy Ready Home - Cost & Savings Summary OCT 2015.pdf (652.24 KB) More Documents & Publications Indoor airPLUS Construction Specifications Indoor airPLUS Construction Specifications Version 1 (Rev. 02) Washington DOE ZERH

  10. Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety

    SciTech Connect (OSTI)

    Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

    2007-06-11

    The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for

  11. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving...

  12. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L.; Duleep, K.G.

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer`s surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer`s surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  13. Costs and benefits of automotive fuel economy improvement: A partial analysis

    SciTech Connect (OSTI)

    Greene, D.L. ); Duleep, K.G. )

    1992-03-01

    This paper is an exercise in estimating the costs and benefits of technology-based fuel economy improvements for automobiles and light trucks. Benefits quantified include vehicle cots, fuel savings, consumer's surplus effects, the effect of reduced weight on vehicle safety, impacts on emissions of CO{sub 2} and criteria pollutants, world oil market and energy security benefits, and the transfer of wealth from US consumes to oil producers. A vehicle stock model is used to capture sales, scrappage, and vehicle use effects under three fuel price scenarios. Three alternative fuel economy levels for 2001 are considered, ranging from 32.9 to 36.5 MPG for cars and 24.2 to 27.5 MPG for light trucks. Fuel economy improvements of this size are probably cost-effective. The size of the benefit, and whether there is a benefit, strongly depends on the financial costs of fuel economy improvement and judgments about the values of energy security, emissions, safety, etc. Three sets of values for eight parameters are used to define the sensitivity of costs and benefits to key assumptions. The net present social value (1989$) of costs and benefits ranges from a cost of $11 billion to a benefit of $286 billion. The critical parameters being the discount rate (10% vs. 3%) and the values attached to externalities. The two largest components are always the direct vehicle costs and fuel savings, but these tend to counterbalance each other for the fuel economy levels examined here. Other components are the wealth transfer, oil cost savings, CO{sub 2} emissions reductions, and energy security benefits. Safety impacts, emissions of criteria pollutants, and consumer's surplus effects are relatively minor components. The critical issues for automotive fuel economy are therefore: (1) the value of present versus future costs and benefits, (2) the values of external costs and benefits, and (3) the financially cost-effective level of MPG achievable by available technology. 53 refs.

  14. Reported Energy and Cost Savings from the DOE ESPC Program: FY 2014

    SciTech Connect (OSTI)

    Slattery, Bob S.

    2015-03-01

    The objective of this work was to determine the realization rate of energy and cost savings from the Department of Energy’s Energy Savings Performance Contract (ESPC) program based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Information was extracted from 156 Measurement and Verification (M&V) reports to determine reported, estimated, and guaranteed cost savings and reported and estimated energy savings for the previous contract year. Because the quality of the reports varied, it was not possible to determine all of these parameters for each project. For all 156 projects, there was sufficient information to compare estimated, reported, and guaranteed cost savings. For this group, the total estimated cost savings for the reporting periods addressed were $210.6 million, total reported cost savings were $215.1 million, and total guaranteed cost savings were $204.5 million. This means that on average: ESPC contractors guaranteed 97% of the estimated cost savings; projects reported achieving 102% of the estimated cost savings; and projects reported achieving 105% of the guaranteed cost savings. For 155 of the projects examined, there was sufficient information to compare estimated and reported energy savings. On the basis of site energy, estimated savings for those projects for the previous year totaled 11.938 million MMBtu, and reported savings were 12.138 million MMBtu, 101.7% of the estimated energy savings. On the basis of source energy, total estimated energy savings for the 155 projects were 19.052 million MMBtu, and reported saving were 19.516 million MMBtu, 102.4% of the estimated energy savings.

  15. Reported Energy and Cost Savings From the ESPC Program | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Reported Energy and Cost Savings From the ESPC Program Reported Energy and Cost Savings From the ESPC Program These annual reports summarize the realization rate of energy and cost savings from the U.S. Department of Energy's energy savings performance contract (ESPC) program. These reports are based on information reported by the energy services companies (ESCOs) that are carrying out ESPC projects at federal sites. Supplemental data are available for these reports. 2014 Performance

  16. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Document provides information on the use of energy savings performance contracts to reduce energy consumption and provide energy and cost savings in non-building applications.

  17. Saving Money and Fuel with a Click of a Mouse

    Broader source: Energy.gov [DOE]

    With so many options, it can be hard to decipher what car is right for you, or if there’s a clear economic benefit in trading up to a new vehicle. Fortunately, the Energy Department offers a number of tools that can help consumers save money and fuel, whether you’re in the market for a new vehicle or trying to make the most of your current one.

  18. #tipsEnergy: Ways to Save on Electricity Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Costs #tipsEnergy: Ways to Save on Electricity Costs July 22, 2013 - 4:18pm Addthis Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Ways to Save on Electricity Costs Every month we ask you to share your energy-saving tips, and we feature some of the best ideas in a Storify to encourage others to save energy and money at home. For this month's #tipsEnergy, we want to know how you save on electricity costs. Storified by

  19. Small Changes Help Long Island Homeowner Save Big on Energy Costs...

    Energy Savers [EERE]

    Changes Help Long Island Homeowner Save Big on Energy Costs Small Changes Help Long Island ... of her home while saving money on energy bills. | Photo courtesy of Deborah Wetzel. ...

  20. Question of the Week: Besides Cost, What Motivates You to Save...

    Broader source: Energy.gov (indexed) [DOE]

    the majority of energy-conscious citizens, we wondered what other reasons you have for saving energy. Besides cost, what motivates you to save energy? E-mail your responses to...

  1. Building America Solution Center Shows Builders How to Save Materials Costs While Saving Energy

    SciTech Connect (OSTI)

    Gilbride, Theresa L.

    2015-06-15

    This short article was prepared for the U.S. Department of Energy's Building America Update newsletter. The article identifies energy and cost-saving benefits of using advanced framing techniques in new construction identified by research teams working with the DOE's Building America program. The article also provides links to guides in the Building America Solution Center that give how-to instructions for builders who want to implement advanced framing construction. The newsletter is issued monthly and can be accessed at http://energy.gov/eere/buildings/building-america-update-newsletter

  2. Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost Advancing the science of fuel ...

  3. #tipsEnergy: Saving on Home Heating Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Saving on Home Heating Costs #tipsEnergy: Saving on Home Heating Costs November 23, 2012 - 3:37pm Addthis Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Saving on Home Heating Costs A feature on the Energy Department's Twitter account, #tipsEnergy highlights ways to save energy and money at home. Once a month, we ask you to share your energy-saving tips so the larger energy community can learn from you, and we feature some of the

  4. NETL Patented CO2-Removal Sorbents Promise Power and Cost Savings |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Patented CO2-Removal Sorbents Promise Power and Cost Savings NETL Patented CO2-Removal Sorbents Promise Power and Cost Savings May 30, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide removal sorbents developed by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) could result in power and cost savings for users of some heating, ventilation and air conditioning (HVAC) systems under a recently signed license agreement. NETL, the

  5. Lender-Based Revenues and Cost-Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lender-Based Revenues and Cost-Savings Lender-Based Revenues and Cost-Savings Program Sustainability Peer Exchange Call: Lender-Based Revenues and Cost-Savings, Call Slides and Summary, February 14, 2013. Call Slides and Summary (1.11 MB) More Documents & Publications Tracking and Using Data to Support Revenue Streams Loan Performance Data and Communication Assessing Revenue Streams: What Is Right for Your Program?

  6. Energy- and Cost-Savings Calculators for Energy-Efficient Products |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Efficient Products » Energy- and Cost-Savings Calculators for Energy-Efficient Products Energy- and Cost-Savings Calculators for Energy-Efficient Products Estimate energy and cost savings for energy- and water-efficient product categories using these interactive calculators provided by the Federal Energy Management Program or ENERGY STAR. Commercial Heating and Cooling Air-Cooled Chillers Boilers Commercial Heat Pumps Commercial Rooftop Air Conditioners Residential

  7. Fact #793: August 19, 2013 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Fuel Savings

    Broader source: Energy.gov [DOE]

    The relationship between gallons used over a given distance and miles per gallon (mpg) is not linear. Thus, an increase in fuel economy by 5 mpg does not translate to a constant fuel savings amount...

  8. Industrial Heat Pumps for Steam and Fuel Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Pumps for Steam and Fuel Savings Industrial Heat Pumps for Steam and Fuel Savings This brief introduces heat-pump technology and its application in industrial processes as part of steam systems. The focus is on the most common applications, with guidelines for initial identification and evaluation of the opportunities being provided. Industrial Heat Pumps for Steam and Fuel Savings (June 2003) (445.24 KB) More Documents & Publications This thermoelastic system provides a promising

  9. California Federal Facilities: Rate-Responsive Buidling Operating for Deeper Cost and Energy Savings

    Broader source: Energy.gov [DOE]

    Fact sheet from the Federal Energy Management Program (FEMP) describes rate-responsive building operations for cost and energy savings in California federal facilities.

  10. Firm eyes savings from tires-to-fuel system

    SciTech Connect (OSTI)

    Barber, J.

    1983-01-31

    A $600,000 pyrolysis system to convert tire scraps into methane will eliminate a tire retreading company's landfill and boiler fuel costs and achieve a five-year payback. The process also yields steel belts, fibers, and carbon black byproducts that can be sold for additional revenue. Heat from the hot exhaust gases will be recycled to the combustion chamber. A 10% federal energy tax credit and a 10% investment tax credit lowered the capital costs for $480,000. (DCK)

  11. DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Low-Cost Natural Gas | Department of Energy 2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about the cost of hydrogen production using low-cost natural gas. DOE Hydrogen and Fuel Cells Program Record # 12024 (448.95 KB) More Documents & Publications Distributed

  12. Durable Low Cost Improved Fuel Cell Membranes | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Durable, Low Cost, Improved Fuel Cell Membranes Novel Materials for High Efficiency Direct ...

  13. Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accurate Detection of Impurities in Hydrogen Fuel at Lower Cost Technology available for licensing: Two alternative strategies for detecting impurities in the hydrogen used in fuel...

  14. Low cost fuel cell diffusion layer configured for optimized anode...

    Office of Scientific and Technical Information (OSTI)

    for optimized anode water management Citation Details In-Document Search Title: Low cost fuel cell diffusion layer configured for optimized anode water management A fuel cell ...

  15. Sustainable Alternative Fuels Cost Workshop Roster of Participants

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuels Cost Workshop Roster of Participants Richard Altman - Commercial Aviation Alternative Fuels Initiative Andrew Argo - National Renewable Energy Labortory- Systems ...

  16. Automotive and MHE Fuel Cell System Cost Analysis

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar, Automotive and MHE Fuel Cell System Cost Analysis, held April 16, 2013.

  17. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation ...

  18. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuel Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a ...

  19. Technology Partnerships Are Yielding Reliable, Cost-Saving Appliances...

    Office of Environmental Management (EM)

    And the market for innovative water heaters that will save consumers money by saving energy is continuing to grow. In the U.S., the demand for energy-efficient water heaters grew ...

  20. Treatment Resin Reduces Costs, Materials in Hanford Groundwater Cleanup- Efficiency delivered more than $6 million in cost savings, $3 million in annual savings

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – U.S. Department of Energy (DOE) contractor CH2M HILL Plateau Remediation Company is using a treatment material that has delivered more than $6 million in cost savings to date and is delivering more than $3 million in annual cost savings and efficiencies in treatment of contaminated groundwater near the Columbia River at the Hanford Site in southeast Washington state.

  1. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  2. Energy efficiency improvement and cost saving opportunities forpetroleum refineries

    SciTech Connect (OSTI)

    Worrell, Ernst; Galitsky, Christina

    2005-02-15

    The petroleum refining industry in the United States is the largest in the world, providing inputs to virtually any economic sector,including the transport sector and the chemical industry. The industry operates 146 refineries (as of January 2004) around the country,employing over 65,000 employees. The refining industry produces a mix of products with a total value exceeding $151 billion. Refineries spend typically 50 percent of cash operating costs (i.e., excluding capital costs and depreciation) on energy, making energy a major cost factor and also an important opportunity for cost reduction. Energy use is also a major source of emissions in the refinery industry making energy efficiency improvement an attractive opportunity to reduce emissions and operating costs. Voluntary government programs aim to assist industry to improve competitiveness through increased energy efficiency and reduced environmental impact. ENERGY STAR (R), a voluntary program managed by the U.S. Environmental Protection Agency, stresses the need for strong and strategic corporate energy management programs. ENERGY STAR provides energy management tools and strategies for successful corporate energy management programs. This Energy Guide describes research conducted to support ENERGY STAR and its work with the petroleum refining industry.This research provides information on potential energy efficiency opportunities for petroleum refineries. This Energy Guide introduces energy efficiency opportunities available for petroleum refineries. It begins with descriptions of the trends, structure, and production of the refining industry and the energy used in the refining and conversion processes. Specific energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The Energy Guide draws upon the experiences with energy efficiency measures of petroleum refineries worldwide

  3. #tipsEnergy: Ways to Save on Water Heating Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water Heating Costs #tipsEnergy: Ways to Save on Water Heating Costs February 20, 2013 - 5:09pm Addthis Rebecca Matulka Rebecca Matulka Former Digital Communications Specialist, Office of Public Affairs #tipsEnergy: Ways to Save on Water Heating Costs Every month we ask the larger energy community to share their energy-saving tips, and we feature some of our favorite tips in a Storify. For this month's #tipsEnergy, we wanted to know how you save energy and money on water heating. Storified by

  4. Jefferson Lab Innovation Saves $1,000/Day in Cooling Costs | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Saves $1,000/Day in Cooling Costs Jefferson Lab Innovation Saves $1,000/Day in Cooling Costs August 29, 2006 Venkatarao (Rao) Ganni Venkatarao (Rao) Ganni, Jefferson Lab's deputy Cryogenics Group leader (left), and Dana Arenius, Cryo Group leader, pause while walking through a section of Central Helium Liquefier distribution piping. Photo by Greg Adams, JLab. A new process invented by Jefferson Lab engineers has revolutionized the way helium cryogenic plants work, saving electricity

  5. Benchmark the Fuel Cost of Steam Generation, Energy Tips: STEAM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Benchmark the Fuel Cost of Steam Generation Benchmarking the fuel cost of steam generation, in dollars per 1,000 pounds (1,000 lb) of steam, is an effective way to assess the ...

  6. Low Cost PEM Fuel Cell Metal Bipolar Plates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost PEM Fuel Cell Metal Bipolar Plates CH Wang TreadStone Technologies, Inc. Fuel Cell ... has been evaluated by various clients and used in portable fuel cell power systems. ...

  7. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D.; Yim, M.S.

    2013-07-01

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  8. Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Methodology Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Assumptions and Methodology on Delicious Rank Alternative

  9. Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    and Methodology Widget Assumptions and Methodology to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and Methodology on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator Widget Assumptions and

  10. Durable, Low Cost, Improved Fuel Cell Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durable, Low Cost, Improved Fuel Cell Membranes Durable, Low Cost, Improved Fuel Cell Membranes This presentation, which focuses on fuel cell membranes, was given by Michel Foure of Arkema at a meeting on new fuel cell projects in February 2007. new_fc_foure_arkema.pdf (168.93 KB) More Documents & Publications Polyvinylidene Fluoride-Based Membranes for Direct Methanol Fuel Cell Applications Novel Materials for High Efficiency Direct Methanol Fuel Cells High Temperature Membrane Working

  11. Fuel savings and emissions reductions from light duty fuel cell vehicles

    SciTech Connect (OSTI)

    Mark, J; Ohi, J M; Hudson, Jr, D V

    1994-04-01

    Fuel cell vehicles (FCVs) operate efficiently, emit few pollutants, and run on nonpetroleum fuels. Because of these characteristics, the large-scale deployment of FCVs has the potential to lessen US dependence on foreign oil and improve air quality. This study characterizes the benefits of large-scale FCV deployment in the light duty vehicle market. Specifically, the study assesses the potential fuel savings and emissions reductions resulting from large-scale use of these FCVs and identifies the key parameters that affect the scope of the benefits from FCV use. The analysis scenario assumes that FCVs will compete with gasoline-powered light trucks and cars in the new vehicle market for replacement of retired vehicles and will compete for growth in the total market. Analysts concluded that the potential benefits from FCVs, measured in terms of consumer outlays for motor fuel and the value of reduced air emissions, are substantial.

  12. (Coordinated research on fuel cycle cost)

    SciTech Connect (OSTI)

    Cantor, R.A.; Shelton, R.B.; Krupnick, A.J.

    1990-11-05

    The Department of Energy (DOE) and the Commission of the European Communities (CEC) have been exploring the possibility of parallel studies on the externals costs of employing fuel cycles to deliver energy services. These studies are of particular importance following the activities of the US National Energy Strategy (NES), where the potential discrepancies between market prices and the social costs of energy services were raised as significant policy concerns. To respond to these concerns, Oak Ridge National Laboratory (ORNL) and Resources for the Future (RFF) have begun a collaborative effort for the DOE to investigate the external costs, or externalities, generated by cradle to grave fuel cycle activities. Upon initiating this project, the CEC expressed an interest to the DOE that Europe should conduct a parallel study and that the two studies should be highly coordinated for consistency in the results. This series of meetings with members of the CEC was undertaken to resolve some issues implied by pursuing parallel, coordinated studies; issues that were previously defined by the August meetings. In addition, it was an opportunity for some members of the US research team and the DOE sponsor to meet with their European counterparts for the study, as well as persons in charge of research areas that ultimately would play a key role in the European study.

  13. Fact #925: May 16, 2016 Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Improvements in Fuel Economy for Low-MPG Vehicles Yield the Greatest Savings

  14. DOE Hydrogen and Fuel Cells Program Record 14014: Fuel Cell System Cost – 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    Program record 14014 from the U.S. Department of Energy's Hydrogen and Fuel Cells Program provides information about fuel cell system costs in 2014.

  15. Toward Cost-Effective Polymer Electrolyte Fuel Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Toward Cost-Effective Polymer Electrolyte Fuel Cells Toward Cost-Effective Polymer Electrolyte Fuel Cells DFT Calculations Run at NERSC Show Less Platinum is Possible August 8, 2016 Contact: Kathy Kincade, kkincade@lbl.gov, 510-495-2124 yongmancover As we enter the age of hybrid, electric and self-driving cars, interest remains high in finding the next generation of fuel cell technology that is low cost, long lasting and mass producible. In recent years, fuel cell research and development

  16. Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator Gobble Up Fuel Savings on Your Next Road Trip with My Trip Calculator November 19, 2012 - 9:51am Addthis Save time and money on your next road trip with fueleconomy.gov's newest tool, <a href="http://www.fueleconomy.gov/trip/">My Trip Calculator</a>. | Photo courtesy of iStockphoto.com/gioadventures. Save time and money on your next road trip with fueleconomy.gov's newest tool, My

  17. Standardized Cost Savings Definitions and Reporting Template- Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    In September 2012, DOE issued Policy Flash 2012-67, Acquisition Savings Reporting Template Guidance to fully comply with reporting requirements. This is an update to that Policy Flash.

  18. Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Classes | Department of Energy 4: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes Fact #594: October 26, 2009 Fuel Economy and Annual Fuel Cost Ranges for Vehicle Classes The graph below shows the range of the lowest and highest fuel economy for each vehicle class, along with the lowest and highest annual fuel cost (in parentheses). For example, the two-seater model with the lowest fuel economy gets 10 miles per gallon (MPG) with an estimated annual fuel

  19. Verify by Genability - Providing Solar Customers with Accurate Reports of Utility Bill Cost Savings

    SciTech Connect (OSTI)

    2015-12-01

    The National Renewable Energy Laboratory (NREL), partnering with Genability and supported by the U.S. Department of Energy's SunShot Incubator program, independently verified the accuracy of Genability's monthly cost savings.

  20. NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers the NASA Ames Research Center's effort to save energy and reduce project costs with non-invasive retrofit technologies.

  1. Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document, from the U.S. Environmental Protection Agency's ENERGY STAR Residential Program, is part of the Case Study Series, highlighting how "Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs."

  2. Innovation Saves Laboratory $1,000/Day in Cooling Costs | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Saves Laboratory $1,000/Day in Cooling Costs Innovation Saves Laboratory $1,000/Day in Cooling Costs September 6, 2006 Cryogenics Group Jefferson Lab's Deputy Cryogenics Group Leader Venkatarao (Rao) Ganni (left), and Cryo Group Leader Dana Arenius pause in the Central Helium Liquefier control room. The Cryogenics Group in the Accelerator Engineering Department of the Accelerator Division is tasked with providing refrigeration for a variety of Jefferson Lab research activities. Three

  3. Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Stacks | Department of Energy Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 cross_nuvera_transport_kickoff.pdf (952.2 KB) More Documents & Publications Durability of Low Pt Fuel Cells Operating at High Power Density Advanced Cathode Catalysts and Supports for PEM

  4. Thurston Regional Planning Council Helps Washingtonians Save on Travel Costs

    Broader source: Energy.gov [DOE]

    Thurston County provides travel information for lower costs, improved safety, and faster response to challenges.

  5. Fuel Savings Potential from Future In-motion Wireless Power Transfer...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT) E. Burton, L. ... charge or direct power to the motor o Charging efficiencies at high speed o Metrics ...

  6. Fact #776: April 22, 2013 Fuel Savings from Attempts to Alleviate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Saved Due to Methods of Alleviating Congestion Year Operational Treatments and High-Occupancy Vehicle Lanes Public Transportation 1982 1 204 1983 4 208 1984 7 219 1985 9 235 ...

  7. Cost and Quality of Fuels for Electric Plants - Energy Information...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    and the environment All electricity data reports Analysis & Projections Major Topics Most popular Capacity and generation Costs, revenue and expense Demand Environment Fuel use...

  8. Production Costs of Alternative Transportation Fuels | Open Energy...

    Open Energy Info (EERE)

    ... further results Find Another Tool FIND TRANSPORTATION TOOLS This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil...

  9. Sustainable Alternative Fuels Cost Workshop Roster of Participants...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Roster of Participants Sustainable Alternative Fuels Cost Workshop Roster of Participants This is the list of attendees from the November 27, 2012, Sustainable Alternative ...

  10. Light Weight, Low Cost PEM Fuel Cell Stacks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-weight, Low Cost PEM Fuel Cell Stacks Case Western Reserve University Endura Plastics Inc. This presentation does not contain any proprietary or confidential information. ...

  11. Improved System Performance and Reduced Cost of a Fuel Reformer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An ...

  12. Automotive and MHE Fuel Cell System Cost Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vince Contini, Kathya Mahadevan, Fritz Eubanks, Jennifer Smith, Gabe Stout and Mike Jansen Battelle April 16, 2013 Manufacturing Cost Analysis of Fuel Cells for Material Handling ...

  13. Estimated Maintenance Cost Savings from a Geothermal Heat Pump Energy Savings Performance Contract at Fort Polk, LA

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    1997-06-01

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. These retrofits were performed by an energy services company at no up-front cost to the Army. The company has also assumed responsibility for maintenance of all equipment installed. In return, it receives a percentage of the energy and maintenance savings realized by the Army. In developing the energy savings performance contract, the Army estimated its pre-retrofit maintenance costs from bids received on a request for proposals. In this paper, a more rigorous cost estimate is developed, based on a survey of maintenance records for the pre-retrofit HVAC equipment. The reliability of the equipment is also estimated using an actuarial method to determine the number of units requiring replacement each year and the effect of these replacements on annual maintenance costs.

  14. Estimated maintenance cost savings from a geothermal heat pump energy savings performance contract at Fort Polk, Louisiana

    SciTech Connect (OSTI)

    Shonder, J.A.; Hughes, P.J.

    1997-12-31

    At Fort Polk, Louisiana, the space-conditioning systems of an entire city (4,003 military family housing units) have been converted to geothermal heat pumps (GHPs) under an energy savings performance contract. At the same time, other efficiency measures, such as compact fluorescent lights, low-flow hot water outlets, and attic insulation, were installed. These retrofits were performed by an energy services company at no up-front cost to the Army. The company has also assumed responsibility for maintenance of all the equipment installed. In return, it receives a percentage of the energy and maintenance savings realized by the Army. In developing the energy savings performance contract, the Army estimated its pre-retrofit maintenance costs from bids received on a request for proposals. In this paper, a more rigorous cost estimate is developed, based on a survey of maintenance records for the pre-retrofit HVAC equipment. The reliability of the equipment is also estimated using an actuarial method to determine the number of units requiring replacement each year and the effect of these replacements on annual maintenance costs.

  15. Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cummins Collaboration | Department of Energy Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration Road to Fuel Savings: Clean Diesel Trucks Gain Momentum with Nissan and Cummins Collaboration August 28, 2014 - 9:51am Addthis Pictured here is a clean diesel engine for light trucks that was part of Cummins research and development effort from 1997-2004. Supported with funding by the Energy Department, this engine is as clean and quiet as a gasoline

  16. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies | Department of Energy 6: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies SUBSCRIBE to the Fact of the Week The 2015 Work Truck Electrification and Idle Management Study

  17. 54.5 MPG and Beyond: New Tire Technology Pumps Up Fuel Savings | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy New Tire Technology Pumps Up Fuel Savings 54.5 MPG and Beyond: New Tire Technology Pumps Up Fuel Savings December 12, 2012 - 10:30am Addthis This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear. This graphic shows how Goodyear's new Air Maintenance Technology -- also called the self-regulating tire -- works. | Graphic courtesy of Goodyear. Rebecca Matulka Rebecca Matulka Former Digital

  18. Evaluation of the Super ESPC Program: Level 2 -- Recalculated Cost Savings

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    2009-04-01

    This report presents the results of Level 2 of a three-tiered evaluation of the U.S. Department of Energy Federal Energy Management Program's Super Energy Savings Performance Contract (Super ESPC) Program. Level 1 of the analysis studied all of the Super ESPC projects for which at least one Annual Measurement & Verification (M&V) Report had been produced by April 2006. For those 102 projects in aggregate, we found that the value of cost savings reported by the energy service company (ESCO) in the Annual M&V Reports was 108% of the cost savings guaranteed in the contracts. We also compared estimated energy savings (which are not guaranteed, but are the basis for the guaranteed cost savings) to the energy savings reported by the ESCO in the Annual M&V Report. In aggregate, reported energy savings were 99.8% of estimated energy savings on the basis of site energy, or 102% of estimated energy savings based on source energy. Level 2 focused on a random sample of 27 projects taken from the 102 Super ESPC projects studied in Level 1. The objectives were, for each project in the sample, to: repeat the calculations of the annual energy and cost savings in the most recent Annual M&V Report to validate the ESCO's results or correct any errors, and recalculate the value of the reported energy, water, and operations and maintenance (O&M) savings using actual utility prices paid at the project site instead of the 'contract' energy prices - the prices that are established in the project contract as those to be used by the ESCO to calculate the annual cost savings, which determine whether the guarantee has been met. Level 3 analysis will be conducted on three to five projects from the Level 2 sample that meet validity criteria for whole-building or whole-facility data analysis. This effort will verify energy and cost savings using statistical analysis of actual utility use, cost, and weather data. This approach, which can only be used for projects meeting particular validity

  19. Alternative Fuels Data Center: Hydraulic Hybrids: A Success in...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    is paying off with fuel savings, lower maintenance costs, and increased productivity. ... The hydraulic regenerative braking system also means huge savings in brake maintenance. ...

  20. Emission control cost-effectiveness of alternative-fuel vehicles

    SciTech Connect (OSTI)

    Wang, Q.; Sperling, D.; Olmstead, J.

    1993-06-14

    Although various legislation and regulations have been adopted to promote the use of alternative-fuel vehicles for curbing urban air pollution problems, there is a lack of systematic comparisons of emission control cost-effectiveness among various alternative-fuel vehicle types. In this paper, life-cycle emission reductions and life-cycle costs were estimated for passenger cars fueled with methanol, ethanol, liquefied petroleum gas, compressed natural gas, and electricity. Vehicle emission estimates included both exhaust and evaporative emissions for air pollutants of hydrocarbon, carbon monoxide, nitrogen oxides, and air-toxic pollutants of benzene, formaldehyde, 1,3-butadiene, and acetaldehyde. Vehicle life-cycle cost estimates accounted for vehicle purchase prices, vehicle life, fuel costs, and vehicle maintenance costs. Emission control cost-effectiveness presented in dollars per ton of emission reduction was calculated for each alternative-fuel vehicle types from the estimated vehicle life-cycle emission reductions and costs. Among various alternative-fuel vehicle types, compressed natural gas vehicles are the most cost-effective vehicle type in controlling vehicle emissions. Dedicated methanol vehicles are the next most cost-effective vehicle type. The cost-effectiveness of electric vehicles depends on improvements in electric vehicle battery technology. With low-cost, high-performance batteries, electric vehicles are more cost-effective than methanol, ethanol, and liquified petroleum gas vehicles.

  1. Energy Cost Savings Calculator for Commercial Boilers: Closed...

    Office of Environmental Management (EM)

    Water Steam What fuel is used? Gas Oil How many boilers will you purchase? unit(s) Performance Factors Existing What is the capacity of the existing boiler? MBtuhr* What is the ...

  2. New Osage Nation Facilities Deliver High Energy Performance, Comfort, and Cost Savings

    Broader source: Energy.gov [DOE]

    The Osage Nation (OK) celebrated the opening of two state-of-the-art tribal government buildings designed with energy efficiency, comfort, and cost savings in mind. The buildings incorporate daylighting, geothermal heat pumps, fans, and other environmentally friendly design features that optimize the use of natural light, moderate heating and cooling, and reduce electricity consumption and costs.

  3. Fuel Cell System Cost for Transportation-2008 Cost Estimate (Book)

    SciTech Connect (OSTI)

    Not Available

    2009-05-01

    Independent review prepared for the U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies (HFCIT) Program Manager.

  4. Energy and Cost Savings of Retro-Commissioning and Retrofit Measures for Large Office Buildings

    SciTech Connect (OSTI)

    Wang, Weimin; Zhang, Jian; Moser, Dave; Liu, Guopeng; Athalye, Rahul A.; Liu, Bing

    2012-08-03

    This paper evaluates the energy and cost savings of seven retro-commissioning measures and 29 retrofit measures applicable to most large office buildings. The baseline model is for a hypothetical building with characteristics of large office buildings constructed before 1980. Each retro-commissioning measure is evaluated against the original baseline in terms of its potential of energy and cost savings while each retrofit measure is evaluated against the commissioned building. All measures are evaluated in five locations (Miami, Las Vegas, Seattle, Chicago and Duluth) to understand the impact of weather conditions on energy and cost savings. The results show that implementation of the seven operation and maintenance measures as part of a retro-commissioning process can yield an average of about 22% of energy use reduction and 14% of energy cost reduction. Widening zone temperature deadband, lowering VAV terminal minimum air flow set points and lighting upgrades are effective retrofit measures to be considered.

  5. Sustainable Alternative Fuels Cost Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop Sustainable Alternative Fuels Cost Workshop This is the agenda from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop, held at the National Renewable Energy Lab Offices. caafi_workshop_agenda.pdf (148.08 KB) More Documents & Publications 2015 Project Peer Review Program Booklet Biomass 2013 Agenda USDA Feedstocks and Biofuels

  6. California: Energy-Efficient Glass Saves Energy Costs, Increases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    View's window designs are decreasing energy costs and improving quality of life by decreasing glares and helping to control internal temperatures. View is also creating green ...

  7. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered...

    Broader source: Energy.gov (indexed) [DOE]

    handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. ...

  8. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure Factors to consider in the implementation of fueling stations and equipment Margaret Smith, New West Technologies (DOE HQ Technical Support) John Gonzales, National Renewable Energy Laboratory This document has been peer reviewed by the natural gas industry. September 2014 2 Introduction This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas

  9. Sustainable Alternative Fuels Cost Workshop Roster of Participants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Workshop Roster of Participants Sustainable Alternative Fuels Cost Workshop Roster of Participants This is the list of attendees from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop. caafi_workshop_attendees.pdf (295.04 KB) More Documents & Publications Advanced Biofuels Industry Roundtable - List of Participants Report of the DOE-DOE Workshop on Fuel Cells in Aviation: Workshop Summary and Action Plan Biomass 2013 Agenda

  10. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina

    2008-01-01

    The cost of energy as part of the total production costs in the cement industry is significant, warranting attention for energy efficiency to improve the bottom line. Historically, energy intensity has declined, although more recently energy intensity seems to have stabilized with the gains. Coal and coke are currently the primary fuels for the sector, supplanting the dominance of natural gas in the 1970s. Most recently, there is a slight increase in the use of waste fuels, including tires. Between 1970 and 1999, primary physical energy intensity for cement production dropped 1 percent/year from 7.3 MBtu/short ton to 5.3 MBtu/short ton. Carbon dioxide intensity due to fuel consumption and raw material calcination dropped 16 percent, from 609 lb. C/ton of cement (0.31 tC/tonne) to 510 lb. C/ton cement (0.26 tC/tonne). Despite the historic progress, there is ample room for energy efficiency improvement. The relatively high share of wet-process plants (25 percent of clinker production in 1999 in the U.S.) suggests the existence of a considerable potential, when compared to other industrialized countries. We examined over 40 energy efficient technologies and measures and estimated energy savings, carbon dioxide savings, investment costs, and operation and maintenance costs for each of the measures. The report describes the measures and experiences of cement plants around the wold with these practices and technologies. Substantial potential for energy efficiency improvement exists in the cement industry and in individual plants. A portion of this potential will be achieved as part of (natural) modernization and expansion of existing facilities, as well as construction of new plants in particular regions. Still, a relatively large potential for improved energy management practices exists.

  11. NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Estimates U.S. Hybrid Electric Vehicle Fuel Savings June 20, 2007 Hybrid electric vehicles have saved close to 230 million gallons - or 5.5 million barrels - of fuel in the United States since their introduction in 1999, according to a recent analysis conducted at the U. S. Department of Energy's National Renewable Energy Laboratory (NREL). "Sales of hybrid electric vehicles have increased an average of 72 percent a year for the past five years and in 2006 the average fuel economy

  12. Quantitative evaluation of savings in outage costs by using emergency actions strategy

    SciTech Connect (OSTI)

    Akhtar, A.; Asuhaimi, A.; Shaibon, H. [Univ. Teknologi Malaysia, Johor Bharu (Malaysia); Lo, K.L. [Univ. of Strathclyde, Glasgow (United Kingdom)

    1995-12-31

    This paper presents the results of a study carried out to assess the savings in consumer outage costs that can be accrued as a result of implementing Emergency Actions Strategy. The use of Emergency Actions Strategy plays a significant role in curtailing the consumer outage costs ensuing from unreliable electric service. In order to calculate the savings in outage costs, the probabilistic framework of the frequency and duration method has been used in conjunction with emergency actions. At first, the outage costs of various consumer sectors are estimated without considering the emergency actions. Secondly, the consumer outage costs are calculated by combining the frequency and duration method, and unserved energy with the emergency actions invoked. The results of the savings in consumer outage costs that can be accrued by utilizing Emergency Actions Strategy are presented for a synthetic system. The results of the study show that substantial savings in consumer outage costs are obtained by devising and implementing emergency actions strategy in situations of capacity outages. The results are of particular relevance and utility to the underdeveloped and developing countries where capacity shortages occur quite frequently. These results also suggest the importance of emergency actions strategy for electric utilities in reducing the consumer economic losses arising from unreliable electric service.

  13. Costs Associated With Compressed Natural Gas Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-09-01

    This document is designed to help fleets understand the cost factors associated with fueling infrastructure for compressed natural gas (CNG) vehicles. It provides estimated cost ranges for various sizes and types of CNG fueling stations and an overview of factors that contribute to the total cost of an installed station. The information presented is based on input from professionals in the natural gas industry who design, sell equipment for, and/or own and operate CNG stations.

  14. Ormond Beach Triples Energy Cost Savings Projections | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    costs. | Photo courtesy of the City of Dallas. Dallas: Building a Greener City Ajani Stewart was close to losing his job as environmental coordinator for the city of Miami before...

  15. Road to Fuel Savings: GM Technology Ramps Up Engine Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Energy Department, is having a big impact on the vehicle's fuel consumption. ... is a compact technology that is having a big impact on the vehicle's fuel consumption. ...

  16. Analyzing Fuel Saving Opportunities through Driver Feedback Mechanisms

    Office of Energy Efficiency and Renewable Energy (EERE)

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  17. Earth-sheltered compromise home saves on heating, cooling costs

    SciTech Connect (OSTI)

    Frankhauser, T.

    1985-02-01

    Building a home into the side of a hill to take advantage of the earth's temperature-neutralizing qualities and facing it to the south will reduce heating and cooling costs. A home in North Dakota based on these principles has never had two unheated rooms freeze and needs no air conditioning. Mutli-zoned thermostats are located in the south-facing rooms. Other features are a five-foot overhang, lower ceilings, aluminum foil deflectors beneath carpets and above the plasterboard in the ceiling, and extra insulation. By eliminating an earth covering that would require sturdier support, construction costs were competitive with regular frame construction.

  18. Demonstration of a fuel-saving system for paint-curing ovens

    SciTech Connect (OSTI)

    Jensen, W P

    1980-12-01

    Two curing ovens at Roll Coater, Inc. (the Greenfield, Indiana plant) were retrofitted to save fuel and cost. Included in the fuel conserving retrofit was the design, fabrication, and installation of an afterburner for each of the two ovens, piping their combustion products to each of two commonly housed waste heat boilers before discharge from those units to the atmosphere at about 450 F. Depending on the product being run and the coating applied, natural gas requirements have been reduced by 45 to 65% with operation of the zone incinerators only and by as much as 65 to 85% including the effects of both the zone incineration and heat recovery by means of the afterburners and waste heat boilers. A demonstration program on conversion work at the No. 3 line at Greenfield and results are described in Section 2. Section 3 describes the retrofit design and the system construction. System performance (tests and measurements, qualitative performance, maintenance factors, and economic performance) is described in Section 4. Conclusions and recommendations are summarized.

  19. Innovative Nanocoatings Unlock the Potential for Major Energy and Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings for Airline Industry | Department of Energy Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry Innovative Nanocoatings Unlock the Potential for Major Energy and Cost Savings for Airline Industry July 17, 2012 - 3:33pm Addthis Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Erosion-resistant nanocoatings are making gas turbine engines more efficient, reducing cost and saving fuel. Bob

  20. New class of fuel cells offer increased flexibility, lower cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New class of fuel cells offer increased flexibility, lower cost New class of fuel cells offer increased flexibility, lower cost A new class of fuel cells based on a newly discovered polymer-based material could bridge the gap between the operating temperature ranges of two existing types of polymer fuel cells. August 23, 2016 Yu Seung Kim (left) and Kwan-Soo Lee (right) Yu Seung Kim (left) and Kwan-Soo Lee (right) Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email

  1. Atlanta Suburb Greases the Path to Savings with Biodiesel | Department...

    Energy Savers [EERE]

    What does this project do? Reduces fuel consumption Saves the city money Extends the ... from used cooking oil in order to cut fuel costs and reduce fossil fuel consumption. ...

  2. The Program Administrator Cost of Saved Energy for Utility Customer-Funded Energy Efficiency Programs

    SciTech Connect (OSTI)

    Billingsley, Megan A.; Hoffman, Ian M.; Stuart, Elizabeth; Schiller, Steven R.; Goldman, Charles A.; LaCommare, Kristina

    2014-03-19

    End-use energy efficiency is increasingly being relied upon as a resource for meeting electricity and natural gas utility system needs within the United States. There is a direct connection between the maturation of energy efficiency as a resource and the need for consistent, high-quality data and reporting of efficiency program costs and impacts. To support this effort, LBNL initiated the Cost of Saved Energy Project (CSE Project) and created a Demand-Side Management (DSM) Program Impacts Database to provide a resource for policy makers, regulators, and the efficiency industry as a whole. This study is the first technical report of the LBNL CSE Project and provides an overview of the project scope, approach, and initial findings, including: • Providing a proof of concept that the program-level cost and savings data can be collected, organized, and analyzed in a systematic fashion; • Presenting initial program, sector, and portfolio level results for the program administrator CSE for a recent time period (2009-2011); and • Encouraging state and regional entities to establish common reporting definitions and formats that would make the collection and comparison of CSE data more reliable. The LBNL DSM Program Impacts Database includes the program results reported to state regulators by more than 100 program administrators in 31 states, primarily for the years 2009–2011. In total, we have compiled cost and energy savings data on more than 1,700 programs over one or more program-years for a total of more than 4,000 program-years’ worth of data, providing a rich dataset for analyses. We use the information to report costs-per-unit of electricity and natural gas savings for utility customer-funded, end-use energy efficiency programs. The program administrator CSE values are presented at national, state, and regional levels by market sector (e.g., commercial, industrial, residential) and by program type (e.g., residential whole home programs, commercial new

  3. The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report profiles a select group of nationally recognizable companies and corporations that have purchased or deployed fuel cells since our last report (November 2012) through December 2013.

  4. Alternative Fuels Data Center: New Jersey Utility Saves With...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... GE Showcases Innovation in Alternative Fuel Vehicles July 15, 2015 Photo of a locomotive engine carrying passenger cars. New Hampshire Railway Makes Tracks With Biodiesel June 27, ...

  5. Boise Inc. St. Helens Paper Mill Achieves Significant Fuel Savings

    Broader source: Energy.gov [DOE]

    This case study describes how the Boise Inc. paper mill in St. Helens, Oregon, achieved annual savings of approximately 154,000 MMBtu and more than $1 million. This was accomplished after receiving a DOE energy assessment and implementing recommendations to improve the efficiency of its steam system.

  6. Pressure monitoring technique provides cost-savings solution

    SciTech Connect (OSTI)

    Blanchard, J.O.

    1994-05-01

    EnergyNorth Natural Gas, Inc. solved its concern over cost-effectively retrieving various amounts of data over an extensive geographical area with a smart pressure transmitter. Much of the company's existing technology was either old, or required a substantial degree of manual intervention. It was determined that the age along with manual requirements would have an adverse effect on future management operations. The company explored the market for alternative solutions and the search led to the Rosemount Model 1151 Smart Pressure Transmitter. The transmitter was particularly appealing because it allowed direct communication with the transmitter through a modem without additional peripheral devices. The supplier was contacted directly regarding the interest in using the devices for monitoring the ENGI system pressures. Specifications for the HART protocol was provided which was used to determine how to utilize the transmitters to obtain cost-effective pressure readings. The smart transmitters proved to be the driving force behind the entire SCADA system installation. The use of these transmitters will pay for SCADA installation over a 5-year period.

  7. Cost and quality of fuels for electric plants 1993

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The Cost and Quality of Fuels for Electric Utility Plants (C&Q) presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  8. Indonesian fuel consumers shouldering development costs

    SciTech Connect (OSTI)

    Not Available

    1984-08-22

    A graph shows how Indonesia's prices for regular and premium leaded gasolines and diesel fuel compare to the world average price, in US dollars per gallon: USA $0.28 lower for regular leaded gasoline, $0.30 lower for premium leaded, and $0.48 lower for diesel. Such proximity to world averages is of note in the context that Indonesia, a developing country with pressing needs for industrial and social development, does not internally provide the deep consumer subsidies that have long persisted in many such oil-producing countries. Although the other three countries shown on the graph have recently moved to cut internal fuel price subsidies, they still price these three important fuels more deeply below the world average than does Indonesia. A table details Indonesia's internal market price changes over time, by petroleum product. A chart tracks Indonesia's oil exports since 1966. The year of the first world oil price shock, 1973, shows a dramatic increase in exports, but that near-doubling was not repeated during the period of the second price shock, 1978-1979. As of 182, exports (by now including condensates) had fallen to pre-Arab Oil Embargo levels. This issue contains the fuel price/tax series and the principal industrial fuel prices for August 1984 for countries of the Western Hemisphere. Also, beginning with this issue, Energy Detente will appear only in English rather than both English and Spanish, as heretofore.

  9. Fuel Cell System for Transportation -- 2005 Cost Estimate

    SciTech Connect (OSTI)

    Wheeler, D.

    2006-10-01

    Independent review report of the methodology used by TIAX to estimate the cost of producing PEM fuel cells using 2005 cell stack technology. The U.S. Department of Energy (DOE) Hydrogen, Fuel Cells and Infrastructure Technologies Program Manager asked the National Renewable Energy Laboratory (NREL) to commission an independent review of the 2005 TIAX cost analysis for fuel cell production. The NREL Systems Integrator is responsible for conducting independent reviews of progress toward meeting the DOE Hydrogen Program (the Program) technical targets. An important technical target of the Program is the proton exchange membrane (PEM) fuel cell cost in terms of dollars per kilowatt ($/kW). The Program's Multi-Year Program Research, Development, and Demonstration Plan established $125/kW as the 2005 technical target. Over the last several years, the Program has contracted with TIAX, LLC (TIAX) to produce estimates of the high volume cost of PEM fuel cell production for transportation use. Since no manufacturer is yet producing PEM fuel cells in the quantities needed for an initial hydrogen-based transportation economy, these estimates are necessary for DOE to gauge progress toward meeting its targets. For a PEM fuel cell system configuration developed by Argonne National Laboratory, TIAX estimated the total cost to be $108/kW, based on assumptions of 500,000 units per year produced with 2005 cell stack technology, vertical integration of cell stack manufacturing, and balance-of-plant (BOP) components purchased from a supplier network. Furthermore, TIAX conducted a Monte Carlo analysis by varying ten key parameters over a wide range of values and estimated with 98% certainty that the mean PEM fuel cell system cost would be below DOE's 2005 target of $125/kW. NREL commissioned DJW TECHNOLOGY, LLC to form an Independent Review Team (the Team) of industry fuel cell experts and to evaluate the cost estimation process and the results reported by TIAX. The results of this

  10. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost ...

  11. Energy Savings Measure Packages: Existing Homes

    SciTech Connect (OSTI)

    Casey, S.; Booten, C.

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the US. These packages are optimized for minimum cost to homeowners for given source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home. The dollar value of the maximum annual savings varies significantly by location but typically amounts to $300 - $700/year.

  12. The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings

    Broader source: Energy.gov (indexed) [DOE]

    The Business Case for Fuel Cells 2013 Reliability, Resiliency & Savings i Authors and Acknowledgements This report was written and compiled by Sandra Curtin and Jennifer Gangi of Fuel Cells 2000, an activity of the Breakthrough Technologies Institute in Washington, D.C. Special thanks to Peter Callowhill of NetGain Energy Advisors for contributing the PPA section and to Matthew Crescimanno and Eirik Mørk for assisting in research. Support was provided by the U.S. Department of Energy's

  13. Saving the Fuel Cell Dream: Making Non Noble Metal Electrocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia. 4cwgmay2012mukerjee.pdf ...

  14. Alternative Fuels Data Center: Los Angeles Saves With Hybrid...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    ... Regional Heavy-Duty LNG Fueling Station March 21, 2015 Photo of a street sweeper New Hampshire Fleet Revs up With Natural Gas March 7, 2015 Photo of a truck pulling into a CNG ...

  15. Durable, Low Cost, Improved Fuel Cell Membranes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    z To develop a low cost (vs. perfluorosulfonated ionomers), durable membrane. z To develop a membrane capable at 80C at low relative humidity (25-50%). z To develop a ...

  16. Cost savings deliverables and criteria for the OST technology decision process

    SciTech Connect (OSTI)

    McCown, A.

    1997-04-01

    This document has been prepared to assist focus area (FA) technical and management teams in understanding the cost savings deliverables associated with a technology system during its research and development (R and D) phases. It discusses the usefulness of cost analysis in the decision-making process, and asserts that the level of confidence and data quality of a cost analysis is proportional to the maturity of the technology system`s development life cycle. Suggestions of specific investment criteria or cost savings metrics that a FA might levy on individual research projects are made but the final form of these elements should be stipulated by the FA management based on their rationale for a successful technology development project. Also, cost savings deliverables for a single FA will be more detailed than those for management of the Office of Science and Technology (OST). For example, OST management may want an analysis of the overall return on investment for each FA, while the FA program manager may want this analysis and the return on investment metrics for each technology research activity the FA supports.

  17. Ohio Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Ohio homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Ohio homeowners will save $5,151 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $330 for the 2012 IECC.

  18. Pennsylvania Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Pennsylvania homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost-effective over a 30-year life cycle. On average, Pennsylvania homeowners will save $8,632 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $515 for the 2012 IECC.

  19. Nevada Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Nevada homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Nevada homeowners will save $4,736 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2012 IECC. Average annual energy savings are $360 for the 2012 IECC.

  20. Idaho Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Idaho homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Idaho homeowners will save $4,057 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $285 for the 2012 IECC.

  1. 12 Days of Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12 Days of Energy Savings 12 Days of Energy Savings Addthis Day 12: Drive Your Way to Fuel Savings 1 of 12 Day 12: Drive Your Way to Fuel Savings Save money on fuel costs by emptying your car after all your shopping trips -- an extra 100 pounds in your vehicle could increase gas costs by up to $.08 a gallon. Image: Sarah Gerrity, Energy Department Day 11: Plug Holiday Decorations into Power Strips 2 of 12 Day 11: Plug Holiday Decorations into Power Strips Stop phantom loads -- which cost

  2. Low Cost PEM Fuel Cell Metal Bipolar Plates

    SciTech Connect (OSTI)

    Wang, Conghua

    2013-05-30

    Bipolar plate is an important component in fuel cell stacks and accounts for more than 75% of stack weight and volume. The technology development of metal bipolar plates can effectively reduce the fuel cells stack weight and volume over 50%. The challenge is the metal plate corrosion protection at low cost for the broad commercial applications. This project is aimed to develop innovative technological solutions to overcome the corrosion barrier of low cost metal plates. The feasibility of has been demonstrated and patented (US Patent 7,309,540). The plan is to further reduce the cost, and scale up the technology. The project is built on three pillars: 1) robust experimental evidence demonstrating the feasibility of our technology, 2) a team that consists of industrial leaders in fuel cell stack application, design, and manufactures; 3) a low-risk, significant-milestone driven program that proves the feasibility of meeting program objectives The implementation of this project will reduce the fuel cell stack metal bipolar separator plate cost which accounts 15-21% of the overall stack cost. It will contribute to the market adoption of fuel cell technologies. In addition, this corrosion protection technology can be used similar energy devices, such as batteries and electrolyzers. Therefore, the success of the project will be benefit in broad markets.

  3. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    SciTech Connect (OSTI)

    Maguire, Jeff; Burch, Jay; Merrigan, Tim; Ong, Sean

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  4. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    SciTech Connect (OSTI)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Dollar and Energy Savings Loans The Nebraska Dollar and Energy Savings Loan...

  6. Saving Money on Gas | Department of Energy

    Office of Environmental Management (EM)

    Electricity & Fuel Vehicles & Fuels Saving Money on Gas Saving Money on Gas Saving ... to use less gas to save them money, helping reduce pollution and improve energy security. ...

  7. DOE Fuel Cell Technologies Office Record 14014: Fuel Cell System Cost - 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    14014 Date: September 25, 2014 Title: Fuel Cell System Cost - 2014 Update to: Record 14012 Originator: Jacob Spendelow and Jason Marcinkoski Approved by: Sunita Satyapal Date: October 6, 2014 Item: The cost of an 80-kW net automotive polymer electrolyte membrane (PEM) fuel cell system based on next-generation laboratory technology 1 and operating on direct hydrogen is projected to be $55/kW net when manufactured at a volume of 500,000 units/year. The expected cost of automotive PEM fuel cell

  8. cost savings

    National Nuclear Security Administration (NNSA)

    Savannah River Area had the opportunity to learn from the Savannah River Site's continuous improvement success stories when SRS management and operations contractor...

  9. Light Weight, Low Cost PEM Fuel Cell Stacks | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Weight, Low Cost PEM Fuel Cell Stacks Light Weight, Low Cost PEM Fuel Cell Stacks Part of a 100 million fuel cell award announced by DOE Secretary Bodman on Oct. 25, 2006. ...

  10. Cost and Quality of Fuels for Electric Utility Plants

    Gasoline and Diesel Fuel Update (EIA)

    1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the

  11. NREL-Developed Software Tackles Building Efficiency and Offers Cost Savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL NREL-Developed Software Tackles Building Efficiency and Offers Cost Savings November 20, 2013 A unique software application created by the Energy Department's National Renewable Energy Laboratory (NREL) could improve the efficiency of commercial buildings by allowing occupants to interact with buildings more directly. The new Building Agent (BA) application allows facility managers to quickly diagnose and adjust for problems based on direct occupant comfort feedback.

  12. Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steelmaker Matches Recovery Act Funds to Save Energy & Reduce Steel Production Costs ArcelorMittal Indiana Harbor Energy Recovery & Reuse 504 Boiler constructed and installed with DOE Recovery Act Funding The Advanced Manufacturing Office (AMO) at the U.S. Department of Energy provided $31.6 million in American Recovery & Reinvestment Act (ARRA) funding to construct and install an energy-efficient boiler and upgrade ArcelorMittal Indiana Harbor steelmaking complex facilities. One of

  13. Comparing liquid fuel costs: grain alcohol versus sunflower oil

    SciTech Connect (OSTI)

    Reining, R.C.; Tyner, W.E.

    1983-08-01

    This paper compares the technical and economic feasibility of small-scale production of fuel grade grain alcohol with sunflower oil. Three scales of ethanol and sunflower oil production are modeled, and sensitivity analysis is conducted for various operating conditions and costs. The general conclusion is that sunflower oil costs less to produce than alcohol. Government subsidies for alcohol, but not sunflower oil, could cause adoption of more expensive alcohol in place of cheaper sunflower oil. However, neither sunflower oil nor alcohol are competitive with diesel fuel. 7 references.

  14. Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in Non-Building Applications A Joint Study by the United States Secretaries of Energy and Defense Authorized in the Energy Independence and Security Act 2007 by Congress Prepared by US Department of Energy Office of Energy Efficiency and Renewable Energy, Federal Energy Management Program For questions and comments please contact: Schuyler Schell Federal Energy Management Program

  15. Hydrogen as a transportation fuel: Costs and benefits

    SciTech Connect (OSTI)

    Berry, G.D.

    1996-03-01

    Hydrogen fuel and vehicles are assessed and compared to other alternative fuels and vehicles. The cost, efficiency, and emissions of hydrogen storage, delivery, and use in hybrid-electric vehicles (HEVs) are estimated. Hydrogen made thermochemically from natural gas and electrolytically from a range of electricity mixes is examined. Hydrogen produced at central plants and delivered by truck is compared to hydrogen produced on-site at filling stations, fleet refueling centers, and residences. The impacts of hydrogen HEVs, fueled using these pathways, are compared to ultra-low emissions gasoline internal-combustion-engine vehicles (ICEVs), advanced battery-powered electric vehicles (BPEVs), and HEVs using gasoline or natural gas.

  16. Oklahoma Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Oklahoma homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost effective over a 30-year life cycle. On average, Oklahoma homeowners will save $5,786 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $408 for the 2012 IECC.

  17. Iowa Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Iowa homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Iowa homeowners will save $7,573 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $454 for the 2012 IECC.

  18. Massachusetts Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Massachusetts homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Massachusetts homeowners will save $10,848 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $621 for the 2012 IECC.

  19. Rhode Island Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Rhode Island homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Rhode Island homeowners will save $11,011 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $629 for the 2012 IECC.

  20. Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

  1. Cost and quality of fuels for electric utility plants, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-02

    This publication presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. The purpose of this publication is to provide energy decision-makers with accurate and timely information that may be used in forming various perspectives on issues regarding electric power.

  2. Cost and quality of fuels for electric utility plants, 1994

    SciTech Connect (OSTI)

    1995-07-14

    This document presents an annual summary of statistics at the national, Census division, State, electric utility, and plant levels regarding the quantity, quality, and cost of fossil fuels used to produce electricity. Purpose of this publication is to provide energy decision-makers with accurate, timely information that may be used in forming various perspectives on issues regarding electric power.

  3. Woolen mill captures exhaust to cut fuel costs

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    To keep ahead of growing competition, a northeast woolen mill sought a method of reducing fuel costs while increasing production. A counterflow-design plate heat exchanger was employed to recirculate dryer exhaust. It has cut propane consumption from 4900 to 2400 gallons a week while design modifications have doubled dryer speed. The heat recovery system is described.

  4. SAVE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAVE the DATE The U.S. Department of Energy Office of Legacy Management is proud to announce the pending release of the Office of Legacy Management's Strategic Plan 2016-2025 on October 1, 2015, for a 30-day public comment period. Please look for our next Program Update newsletter the first week in October where we will provide links on our website. http://energy.gov/lm

  5. Energy Savings Measure Packages. Existing Homes

    SciTech Connect (OSTI)

    Casey, Sean; Booten, Chuck

    2011-11-01

    This document presents the most cost effective Energy Savings Measure Packages (ESMP) for existing mixed-fuel and all electric homes to achieve 15% and 30% savings for each BetterBuildings grantee location across the United States. These packages are optimized for minimum cost to homeowners for source energy savings given the local climate and prevalent building characteristics (i.e. foundation types). Maximum cost savings are typically found between 30% and 50% energy savings over the reference home; this typically amounts to $300 - $700/year.

  6. Market Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implications of Synergism Between Low Drag Area and Electric Drive Fuel Savings by Dan Santini, Anant Vyas Center for Transportation Research Argonne National Laboratory Doug Saucedo, Bryan Jungers Electric Power Research Institute Presented at: Light-Duty Vehicle Workshop July 26, 2010 U.S. Department of Energy Washington DC The submitted manuscript has been created by Argonne National Laboratory, a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC, under Contract No.

  7. Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed the Pounds

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Ford, Magna Partnership Help Vehicles Shed the Pounds Road to Fuel Savings: Ford, Magna Partnership Help Vehicles Shed the Pounds August 20, 2014 - 1:08pm Addthis Pictured here is Ford's Lightweight Concept vehicle, a prototype that is nearly 25 percent lighter than an equivalent conventional vehicle. Using a mix of advanced materials, Ford -- in partnership with Magna International -- shaved about 800 pounds off the baseline vehicle, making a midsize sedan roughly the

  8. 12 Days of Energy Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Days of Energy Savings 12 Days of Energy Savings December 24, 2012 - 9:30am Addthis Day 12: Drive Your Way to Fuel Savings 1 of 12 Day 12: Drive Your Way to Fuel Savings Save money on fuel costs by emptying your car after all your shopping trips -- an extra 100 pounds in your vehicle could increase gas costs by up to $.08 a gallon. Image: Sarah Gerrity, Energy Department Day 11: Plug Holiday Decorations into Power Strips 2 of 12 Day 11: Plug Holiday Decorations into Power Strips Stop phantom

  9. Cost projections for planar solid oxide fuel cell systems

    SciTech Connect (OSTI)

    Krist, K.; Wright, J.D.; Romero, C.; Chen, Tan Ping

    1996-12-31

    The Gas Research Institute (GRI) is funding fundamental research on solid oxide fuel cells (SOFCs) that operate at reduced temperature. As part of this effort, we have carried out engineering analysis to determine what areas of research can have the greatest effect on the commercialization of SOFCs. Previous papers have evaluated the markets for SOFCs and the amount which a customer will be willing to pay for fuel cell systems or stacks in these markets, the contribution of materials costs to the total stack cost, and the benefits and design requirements associated with reduced temperature operation. In this paper, we describe the cost of fabricating SOFC stacks by different methods. The complete analysis is available in report form.

  10. Selected bibliography: cost and energy savings of conservation and renewable energy technologies

    SciTech Connect (OSTI)

    1980-05-01

    This bibliography is a compilation of reports on the cost and energy savings of conservation and renewable energy applications throughout the United States. It is part of an overall effort to inform utilities of technological developments in conservation and renewable energy technologies and so aid utilities in their planning process to determine the most effective and economic combination of capital investments to meet customer needs. Department of Energy assessments of the applications, current costs and cost goals for the various technologies included in this bibliography are presented. These assessments are based on analyses performed by or for the respective DOE Program Offices. The results are sensitive to a number of variables and assumptions; however, the estimates presented are considered representative. These assessments are presented, followed by some conclusions regarding the potential role of the conservation and renewable energy alternative. The approach used to classify the bibliographic citations and abstracts is outlined.

  11. Lightweighting Impacts on Fuel Economy, Cost, and Component Losses

    SciTech Connect (OSTI)

    Brooker, A. D.; Ward, J.; Wang, L.

    2013-01-01

    The Future Automotive Systems Technology Simulator (FASTSim) is the U.S. Department of Energy's high-level vehicle powertrain model developed at the National Renewable Energy Laboratory. It uses a time versus speed drive cycle to estimate the powertrain forces required to meet the cycle. It simulates the major vehicle powertrain components and their losses. It includes a cost model based on component sizing and fuel prices. FASTSim simulated different levels of lightweighting for four different powertrains: a conventional gasoline engine vehicle, a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), and a battery electric vehicle (EV). Weight reductions impacted the conventional vehicle's efficiency more than the HEV, PHEV and EV. Although lightweighting impacted the advanced vehicles' efficiency less, it reduced component cost and overall costs more. The PHEV and EV are less cost effective than the conventional vehicle and HEV using current battery costs. Assuming the DOE's battery cost target of $100/kWh, however, the PHEV attained similar cost and lightweighting benefits. Generally, lightweighting was cost effective when it costs less than $6/kg of mass eliminated.

  12. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: ...

  13. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined ... Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling ...

  14. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation ... Jason Marcinkoski of DOE's Office of Energy Efficiency and Renewable Energy (EERE) Fuel ...

  15. A Total Cost of Ownership Model for Low Temperature PEM Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LBNL-6772E A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined ... Efficiency and Renewable Energy (EERE) Fuel Cells Technologies Office (FCTO) under ...

  16. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and ... Efficiency and Renewable Energy (EERE) Fuel Cells Technologies Office (FCTO) under ...

  17. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Handling Equipment | Department of Energy An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of

  18. Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    SciTech Connect (OSTI)

    Ramsden, T.

    2013-04-01

    This report discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment (MHE, or more typically 'forklifts'). A number of fuel cell MHE deployments have received funding support from the federal government. Using data from these government co-funded deployments, DOE's National Renewable Energy Laboratory (NREL) has been evaluating the performance of fuel cells in material handling applications. NREL has assessed the total cost of ownership of fuel cell MHE and compared it to the cost of ownership of traditional battery-powered MHE. As part of its cost of ownership assessment, NREL looked at a range of costs associated with MHE operation, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. Considering all these costs, NREL found that fuel cell MHE can have a lower overall cost of ownership than comparable battery-powered MHE.

  19. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    -weatherization water-heating energy consumption and 17% of predicted). The overall BCR for the ECMs was 1.24 using the same assumptions followed in the selection technique: no administration cost, residential fuel costs, real discount rate of 0.05, and no fuel escalation. A weatherization program would be cost effective at an administration cost less than $335/house. On average, the indoor temperature increased in the audit houses by 0.5 F following weatherization and decreased in the control houses by 0.1 F. The following conclusions regarding the measure selection technique were drawn from the study: (1) a significant cost-effective level of energy savings resulted, (2) space-heating energy savings and total installation costs were predicted with reasonable accuracy, indicating that the technique's recommendations are justified, (3) effectiveness improved from earlier versions and can continue to be improved, and (4) a wider variety of ECMs were installed compared to most weatherization programs. An additional conclusion of the study was that a significant indoor temperature take-back effect had not occurred.

  20. Thermostatic/orifice trap reduces fuel, repair costs

    SciTech Connect (OSTI)

    Not Available

    1982-11-01

    This article is an evaluation of a steam trap that combines the continuous drain oriface with a thermostatically controlled trap oriface to efficiently remove condensate from virtually any steam system within its operating limits. This trap effectively reduces fuel and repair costs and has a capacity of 6000 il/hr, handles various pressures up to 600 psig, and operates against back pressures up to 90% of inlet pressure.

  1. Cost and Quality of Fuels for Electric Utility Plants 1997

    Gasoline and Diesel Fuel Update (EIA)

    7 Tables May 1998 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration/Cost

  2. Web-based Tool Identifies and Quantifies Potential Cost Savings Measures at the Hanford Site

    SciTech Connect (OSTI)

    Renevitz, Marisa J.; Peschong, Jon C.; Charboneau, Briant L.; Simpson, Brett C.

    2014-01-09

    The Technical Improvement system is an approachable web-based tool that is available to Hanford DOE staff, site contractors, and general support service contractors as part of the baseline optimization effort underway at the Hanford Site. Finding and implementing technical improvements are a large part of DOE’s cost savings efforts. The Technical Improvement dashboard is a key tool for brainstorming and monitoring the progress of submitted baseline optimization and potential cost/schedule efficiencies. The dashboard is accessible to users over the Hanford Local Area Network (HLAN) and provides a highly visual and straightforward status to management on the ideas provided, alleviating the need for resource intensive weekly and monthly reviews.

  3. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    SciTech Connect (OSTI)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance were combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.

  4. Exploring Fuel-Saving Potential of Long-Haul Truck Hybridization

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; LaClair, Tim J.; Smith, David E.; Daw, C. Stuart

    2015-10-01

    We report our comparisons on the simulated fuel economy for parallel, series, and dual-mode hybrid electric long-haul trucks, in addition to a conventional powertrain configuration, powered by a commercial 2010-compliant 15-L diesel engine over a freeway-dominated heavy-duty truck driving cycle. The driving cycle was obtained by measurement during normal driving conditions. The results indicated that both parallel and dual-mode hybrid powertrains were capable of improving fuel economy by 7% to 8%. But there was no significant fuel economy benefit for the series hybrid truck because of internal inefficiencies in energy exchange. When reduced aerodynamic drag and tire rolling resistance weremore » combined with hybridization, there was a synergistic fuel economy benefit for appropriate hybrids that increased the fuel economy benefit to more than 15%. Long-haul hybrid trucks with reduced aerodynamic drag and rolling resistance offered lower peak engine loads, better kinetic energy recovery, and reduced average engine power demand. Therefore, it is expected that hybridization with load reduction technologies offers important potential fuel energy savings for future long-haul trucks.« less

  5. DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost...

    Energy Savers [EERE]

    3013: H2 Delivery Cost Projections - 2013 DOE Fuel Cell Technologies Office Record 13013: H2 Delivery ... past, current, and projected costs for delivering and dispensing hydrogen. ...

  6. Low Cost PEM Fuel Cell Metal Bipolar Plates | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update Mass Production Cost Estimation for ...

  7. Survey Results and Analysis of the Cost and Efficiency of Various Operating Hydrogen Fueling Stations

    SciTech Connect (OSTI)

    Cornish, John

    2011-03-05

    Existing Hydrogen Fueling Stations were surveyed to determine capital and operational costs. Recommendations for cost reduction in future stations and for research were developed.

  8. Manufacturing Facility Opened Using EERE-Supported Low-Cost Fuel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    To accomplish this cost reduction, BASF developed a higher throughput coating process, ... Catalyst Licensed for Use in Fuel Cell Hybrid Advanced Vehicles Low-Cost Production of ...

  9. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a total cost of ownership model for emerging applications in stationary fuel cell systems. ... A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat ...

  10. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the ... Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  11. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for ...

  12. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and ... Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and ...

  13. HEFA and Fischer-Tropsch Jet Fuel Cost Analyses | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HEFA and Fischer-Tropsch Jet Fuel Cost Analyses HEFA and Fischer-Tropsch Jet Fuel Cost Analyses This is a presentation from the November 27, 2012, Sustainable Alternative Fuels Cost Workshop given by Robert Malina, MIT. malina_caafi_workshop.pdf (23.86 MB) More Documents & Publications February GBTL Webinar Opportunities for the Early Production of Fischer-Tropsch (F-T) Fuels in the U.S. -- An Overview Application of Synthetic Diesel Fuels

  14. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications: 2007 Update | Department of Energy Applications: 2007 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update (3.19

  15. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Broader source: Energy.gov [DOE]

    This presentation reports on the status of mass production cost estimation for direct hydrogen PEM fuel cell systems.

  16. Fact #772: March 25, 2013 Fuel Economy by Speed: Slow Down to Save Fuel

    Broader source: Energy.gov [DOE]

    A recent study by Oak Ridge National Laboratory shows that the fuel economy of cars and light trucks in the study decreases rapidly at speeds above 50 miles per hour (mph). The study of 74 light...

  17. Energy Efficiency Standards for Microwave Ovens Saves Consumers Energy and Updates the Social Cost of Carbon

    Broader source: Energy.gov [DOE]

    EERE's new microwave standards will reduce carbon pollution and save consumers money on their energy bills.

  18. Fact #916: March 14, 2016 Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies- Dataset

    Broader source: Energy.gov [DOE]

    Excel file and dataset for Fuel Savings/Emissions Reduction was the Top Reason Cited by Truck Fleet Management for Adopting Idle Reduction Technologies

  19. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    SciTech Connect (OSTI)

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.; Zhuge, Jing Wei; Rosenberg, Michael I.; Hart, Philip R.; Liu, Bing

    2015-06-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  20. Energy and Energy Cost Savings Analysis of the 2015 IECC for Commercial Buildings

    SciTech Connect (OSTI)

    Zhang, Jian; Xie, YuLong; Athalye, Rahul A.; Zhuge, Jing Wei; Rosenberg, Michael I.; Hart, Philip R.; Liu, Bing

    2015-09-01

    As required by statute (42 USC 6833), DOE recently issued a determination that ANSI/ASHRAE/IES Standard 90.1-2013 would achieve greater energy efficiency in buildings subject to the code compared to the 2010 edition of the standard. Pacific Northwest National Laboratory (PNNL) conducted an energy savings analysis for Standard 90.1-2013 in support of its determination . While Standard 90.1 is the model energy standard for commercial and multi-family residential buildings over three floors (42 USC 6833), many states have historically adopted the International Energy Conservation Code (IECC) for both residential and commercial buildings. This report provides an assessment as to whether buildings constructed to the commercial energy efficiency provisions of the 2015 IECC would save energy and energy costs as compared to the 2012 IECC. PNNL also compared the energy performance of the 2015 IECC with the corresponding Standard 90.1-2013. The goal of this analysis is to help states and local jurisdictions make informed decisions regarding model code adoption.

  1. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to

    Office of Scientific and Technical Information (OSTI)

    Replace Fossil Fuels, Final Technical Report (Technical Report) | SciTech Connect Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Citation Details In-Document Search Title: Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a

  2. DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Calculation | Department of Energy 1007: Hydrogen Threshold Cost Calculation DOE Hydrogen and Fuel Cells Program Record 11007: Hydrogen Threshold Cost Calculation The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$), which represents the cost at which hydrogen fuel cell electric vehicles are projected to become competitive on a cost per mile basis with the competing vehicles (gasoline in hybrid-electric vehicles) in 2020. This record from the

  3. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Automotive Applications: 2010 Update | Department of Energy Applications: 2010 Update Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2010 Update This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles. Mass Production Cost

  4. Light Weight, Low Cost PEM Fuel Cell Stacks

    Broader source: Energy.gov [DOE]

    This presentation, which focuses on fuel cell stacks, was given at a February 2007 meeting on new fuel cell projects.

  5. Vehicle Lightweighting: 40% and 45% Weight Savings Analysis: Technical Cost Modeling for Vehicle Lightweighting

    SciTech Connect (OSTI)

    Mascarin, Anthony; Hannibal, Ted; Raghunathan, Anand; Ivanic, Ziga; Francfort, James

    2015-04-01

    The U.S. Department of Energy’s Vehicle Technologies Office, Materials area commissioned a study to model and assess manufacturing economics of alternative design and production strategies for a series of lightweight vehicle concepts. The strategic targets were a 40% and a 45% mass reduction relative to a standard North American midsize passenger sedan at an effective cost of $3.42 per pound (lb) saved. The baseline vehicle was an average of several available vehicles in this class. Mass and cost breakdowns from several sources were used, including original equipment manufacturers’ (OEMs’) input through U.S. Department of Energy’s Vehicle Technologies Office programs and public presentations, A2Mac1 LLC’s teardown information, Lotus Engineering Limited and FEV, Inc. breakdowns in their respective lightweighting studies, and IBIS Associates, Inc.’s decades of experience in automotive lightweighting and materials substitution analyses. Information on lightweighting strategies in this analysis came from these same sources and the ongoing U.S. Department of Energy-funded Vehma International of America, Inc. /Ford Motor Company Multi-Material Lightweight Prototype Vehicle Demonstration Project, the Aluminum Association Transportation Group, and many United States Council for Automotive Research’s/United States Automotive Materials Partnership LLC lightweight materials programs.

  6. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energymore » (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.« less

  7. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; Finney, Charles; Daw, Charles; LaClair, Tim J.; Smith, David

    2014-09-30

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  8. Comparative Study of Hybrid Powertrains on Fuel Saving, Emissions, and Component Energy Loss in HD Trucks

    SciTech Connect (OSTI)

    Gao, Zhiming; FINNEY, Charles E A; Daw, C Stuart; LaClair, Tim J; Smith, David E

    2014-01-01

    We compared parallel and series hybrid powertrains on fuel economy, component energy loss, and emissions control in Class 8 trucks over both city and highway driving. A comprehensive set of component models describing battery energy, engine fuel efficiency, emissions control, and power demand interactions for heavy duty (HD) hybrids has been integrated with parallel and series hybrid Class 8 trucks in order to identify the technical barriers of these hybrid powertrain technologies. The results show that series hybrid is absolutely negative for fuel economy benefit of long-haul trucks due to an efficiency penalty associated with the dual-step conversions of energy (i.e. mechanical to electric to mechanical). The current parallel hybrid technology combined with 50% auxiliary load reduction could elevate 5-7% fuel economy of long-haul trucks, but a profound improvement of long-haul truck fuel economy requires additional innovative technologies for reducing aerodynamic drag and rolling resistance losses. The simulated emissions control indicates that hybrid trucks reduce more CO and HC emissions than conventional trucks. The simulated results further indicate that the catalyzed DPF played an important role in CO oxidations. Limited NH3 emissions could be slipped from the Urea SCR, but the average NH3 emissions are below 20 ppm. Meanwhile our estimations show 1.5-1.9% of equivalent fuel-cost penalty due to urea consumption in the simulated SCR cases.

  9. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:www.nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  10. fuel

    National Nuclear Security Administration (NNSA)

    4%2A en Cheaper catalyst may lower fuel costs for hydrogen-powered cars http:nnsa.energy.govblogcheaper-catalyst-may-lower-fuel-costs-hydrogen-powered-cars

  11. Alternative Fuels Data Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to

  12. Developing Low-Cost, Highly Efficient Heat Recovery for Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration courtesy of FuelCell Energy, Inc. Project Description The goal of this ... It is now be- ing incorporated into FuelCell Energy's commercial Direct FuelCell ...

  13. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power and Combined Heat and Power Applications | Department of Energy 0 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems for Primary Power and Combined Heat and Power Applications Battelle Memorial Institute is conducting manufacturing cost assessments of fuel cells for stationary and non-automotive applications to identify the primary cost drivers impacting successful product

  14. DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projections - 2013 | Department of Energy 3013: H2 Delivery Cost Projections - 2013 DOE Fuel Cell Technologies Office Record 13013: H2 Delivery Cost Projections - 2013 This program record from the U.S. Department of Energy's Fuel Cell Technologies Office provides information about past, current, and projected costs for delivering and dispensing hydrogen. DOE Hydrogen and Fuel Cells Program Record # 13013 (329.18 KB) More Documents & Publications Hydrogen Delivery Roadmap US DRIVE

  15. Characterization of the Installed Costs of Prime Movers Using Gaseous Opportunity Fuels, September 2007

    Broader source: Energy.gov [DOE]

    A report addendum and final white paper for the Characterization of the Installed Costs of Prime Movers Using Gaseous Opportunity Fuels

  16. Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster.

  17. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty ...

  18. Michigan Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the Michigan Uniform Energy Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-07-03

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Michigan homeowners. Moving to the 2012 IECC from the Michigan Uniform Energy Code is cost-effective over a 30-year life cycle. On average, Michigan homeowners will save $10,081 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $604 for the 2012 IECC.

  19. Fuel Savings Potential from Future In-motion Wireless Power Transfer (WPT); NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Burton, E.; Wang, L.; Gonder, J.; Brooker, A.; Konan, A.

    2015-02-10

    This presentation discusses the fuel savings potential from future in-motion wireless power transfer. There is an extensive overlap in road usage apparent across regional vehicle population, which occurs primarily on high-capacity roads--1% of roads are used for 25% of the vehicle miles traveled. Interstates and highways make up between 2.5% and 4% of the total roads within the Consolidated Statistical Areas (CSAs), which represent groupings of metropolitan and/or micropolitan statistical areas. Mileage traveled on the interstates and highways ranges from 54% in California to 24% in Chicago. Road electrification could remove range restrictions of electric vehicles and increase the fuel savings of PHEVs or HEVs if implemented on a large scale. If 1% of the road miles within a geographic area are electrified, 25% of the fuel used by a 'fleet' of vehicles enabled with the technology could be displaced.

  20. Benchmark the Fuel Cost of Steam Generation - Steam Tip Sheet #15

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  1. Energy Department Awards More than $5 Million to Reduce Cost of Advanced Fuel Cells

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department announced the investment of more than $5 million in two projects—led by 3M Company in St. Paul, Minnesota, and Eaton Corporation in Southfield, Michigan—that will lower the cost of advanced fuel cell systems by developing and engineering cost-effective, durable, and highly efficient fuel cell components.

  2. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Virginia Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 Virginia Construction Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Virginia homeowners. Moving to the 2012 IECC from the current Virginia Construction Code is cost effective over a 30-year life cycle. On average, Virginia homeowners will save $5,836 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $388 for the 2012 IECC.

  4. Energy Efficiency and Least-Cost Planning: The Best Way to Save Money and Reduce Energy Use in Hawaii

    SciTech Connect (OSTI)

    Mowris, Robert J.

    1990-05-21

    If the 500 MW geothermal project on the Big Island of Hawaii is developed as planned, the Wao Kele O Puna rain forest will be severely damaged or destroyed. If this happens the State will lose one of its most precious resources. It would be tragic for this to happen, since on a least-cost basis, the geothermal project does not make economic sense. Improving energy efficiency in the commercial and residential sectors of Hawaii can save about 500 MW of power at a cost of $700 million.

  5. RCRA Part B permit modifications for cost savings and increased flexibility at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Jierree, C.; Ticknor, K.

    1996-10-01

    With shrinking budgets and downsizing, a need for streamlined compliance initiatives became evident at the Rocky Flats Environmental Technology Site (RFETS). Therefore, Rocky Mountain Remediation Services (RMRS) at the RFETS successfully and quickly modified the RFETS RCRA Part B Permit to obtain significant cost savings and increased flexibility. This `was accomplished by requesting operations personnel to suggest changes to the Part B Permit which did not diminish overall compliance and which would be most. cost beneficial. The U.S. Department of Energy (DOE) subsequently obtained approval of those changes from the Colorado Department of Public Health and the Environment (CDPHE).

  6. Wind energy systems have low operating expenses because they have no fuel cost.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy systems have low operating expenses because they have no fuel cost. Photo by Jenny Hager Photography, NREL 15990. 1. Wind energy is cost competitive with other fuel sources. The average levelized price of wind power purchase agree- ments signed in 2013 was approximately 2.5 cents per kilowatt-hour, a price that is not only cost competitive with new gas-fired power plants but also compares favorably to a range of fuel cost projections of gas-fired generation extending out through 2040. 1

  7. Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface of Stainless Steel Bipolar Plates - Energy Innovation Portal Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Improving Costs and Efficiency of PEM Fuel Cell Vehicles by Modifying the Surface of Stainless Steel Bipolar Plates National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing SummaryFuel cell vehicles have the potential to reduce our dependence on foreign oil and lower emissions. Running the vehicle's motor

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the Petrochemical Industry - An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Neelis, Maarten; Worrell, Ernst; Masanet, Eric

    2008-09-01

    Energy is the most important cost factor in the U.S petrochemical industry, defined in this guide as the chemical industry sectors producing large volume basic and intermediate organic chemicals as well as large volume plastics. The sector spent about $10 billion on fuels and electricity in 2004. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. petrochemical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the petrochemical industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the petrochemical and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. petrochemical industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--and on their applicability to different production practices--is needed to assess their cost effectiveness at individual plants.

  9. Investigation of low-cost LNG vehicle fuel tank concepts. Final report

    SciTech Connect (OSTI)

    O`Brien, J.E.; Siahpush, A.

    1998-02-01

    The objective of this study was to investigate development of a low-cost liquid natural gas (LNG) vehicle fuel storage tank with low fuel boil-off, low tank pressure, and high safety margin. One of the largest contributors to the cost of converting a vehicle to LNG is the cost of the LNG fuel tank. To minimize heat leak from the surroundings into the low-temperature fuel, these tanks are designed as cryogenic dewars with double walls separated by an evacuated insulation space containing multi-layer insulation. The cost of these fuel tanks is driven by this double-walled construction, both in terms of materials and labor. The primary focus of the analysis was to try to devise a fuel tank concept that would allow for the elimination of the double-wall requirement. Results of this study have validated the benefit of vacuum/MLI insulation for LNG fuel tanks and the difficulty in identifying viable alternatives. The thickness of a non-vacuum insulation layer would have to be unreasonably large to achieve an acceptable non-venting hold time. Reasonable hold times could be achieved by using an auxiliary tank to accept boil-off vapor from a non-vacuum insulated primary tank, if the vapor in the auxiliary tank can be stored at high pressure. The primary focus of the analysis was to try to devise a fuel tank concept that allowed for the elimination of the double-wall requirement. Thermodynamic relations were developed for analyzing the fuel tank transient response to heat transfer, venting of vapor, and out-flow of either vapor or liquid. One of the major costs associated with conversion of a vehicle to LNG fuel is the cost of the LNG fuel tank. The cost of these tanks is driven by the cryogenic nature of the fuel and by the fundamental design requirements of long non-venting hold times and low storage pressure.

  10. Breaking the Fuel Cell Cost Barrier | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation at the AMFC Workshop, May 8, Arlington, VA PDF icon amfc050811gottesfeldcellera.pdf More Documents & Publications 2011 Alkaline Membrane Fuel Cell Workshop Final ...

  11. PEM fuel cell cost minimization using ``Design For Manufacture and Assembly`` techniques

    SciTech Connect (OSTI)

    Lomax, F.D. Jr.; James, B.D.; Mooradian, R.P.

    1997-12-31

    Polymer Electrolyte Membrane (PEM) fuel cells fueled with direct hydrogen have demonstrated substantial technical potential to replace Internal Combustion Engines (ICE`s) in light duty vehicles. Such a transition to a hydrogen economy offers the potential of substantial benefits from reduced criteria and greenhouse emissions as well as reduced foreign fuel dependence. Research conducted for the Ford Motor Co. under a US Department of Energy contract suggests that hydrogen fuel, when used in a fuel cell vehicle (FCV), can achieve a cost per vehicle mile less than or equal to the gasoline cost per mile when used in an ICE vehicle. However, fuel cost parity is not sufficient to ensure overall economic success: the PEM fuel cell power system itself must be of comparable cost to the ICE. To ascertain if low cost production of PEM fuel cells is feasible, a powerful set of mechanical engineering tools collectively referred to as Design for Manufacture and Assembly (DFMA) has been applied to several representative PEM fuel cell designs. The preliminary results of this work are encouraging, as presented.

  12. Analysis of near-term spent fuel transportation hardware requirements and transportation costs

    SciTech Connect (OSTI)

    Daling, P.M.; Engel, R.L.

    1983-01-01

    A computer model was developed to quantify the transportation hardware requirements and transportation costs associated with shipping spent fuel in the commercial nucler fuel cycle in the near future. Results from this study indicate that alternative spent fuel shipping systems (consolidated or disassembled fuel elements and new casks designed for older fuel) will significantly reduce the transportation hardware requirements and costs for shipping spent fuel in the commercial nuclear fuel cycle, if there is no significant change in their operating/handling characteristics. It was also found that a more modest cost reduction results from increasing the fraction of spent fuel shipped by truck from 25% to 50%. Larger transportation cost reductions could be realized with further increases in the truck shipping fraction. Using the given set of assumptions, it was found that the existing spent fuel cask fleet size is generally adequate to perform the needed transportation services until a fuel reprocessing plant (FRP) begins to receive fuel (assumed in 1987). Once the FRP opens, up to 7 additional truck systems and 16 additional rail systems are required at the reference truck shipping fraction of 25%. For the 50% truck shipping fraction, 17 additional truck systems and 9 additional rail systems are required. If consolidated fuel only is shipped (25% by truck), 5 additional rail casks are required and the current truck cask fleet is more than adequate until at least 1995. Changes in assumptions could affect the results. Transportation costs for a federal interim storage program could total about $25M if the FRP begins receiving fuel in 1987 or about $95M if the FRP is delayed until 1989. This is due to an increased utilization of federal interim storage facility from 350 MTU for the reference scenario to about 750 MTU if reprocessing is delayed by two years.

  13. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  14. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  15. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2008 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2009-03-26

    This report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  16. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    Broader source: Energy.gov [DOE]

    Report estimates fuel cell system cost for systems produced in the years 2006, 2010, and 2015, and is the second annual update of a comprehensive automotive fuel cell cost analysis.

  17. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2007 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.

    2008-02-29

    This report estimates fuel cell system cost for systems produced in the years 2007, 2010, and 2015, and is the first annual update of a comprehensive automotive fuel cell cost analysis.

  18. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect (OSTI)

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR(R) (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  19. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades Versus Cost-Optimized Solutions

    SciTech Connect (OSTI)

    Yee, S.; Milby, M.; Baker, J.

    2014-06-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR® (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for 15 Chicagoland single family housing archetypes. In the present study, 800 IHP homes are first matched to one of these 15 housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost effectiveness.

  20. Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions; Chicago, Illinois (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-07-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for fifteen Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these fifteen housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations. Additionally, a measure-level sensitivity analysis conducted for one housing group reveals which measures may be contributing the most to gas and electric savings. Overall, the study finds not only that for some housing groups, the average IHP retrofit results in more energy savings than would result from cost-optimal, BEopt-recommended measure packages, but also that linking home categorization to standardized retrofit measure packages provides an opportunity to streamline the process for single family home energy retrofits and maximize both energy savings and cost-effectiveness.

  1. Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Modules for Low Cost, High Performance Fuel Cell Humidifiers Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 johnson_gore_kickoff.pdf (442.96 KB) More Documents & Publications Advance Patent Waiver W(A)2010-041 Kick-Off Meeting for New Fuel Cell Projects CARISMA: A Networking Project for High Temperature PEMFC MEA Activities in Europ

  2. A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power and Power-Only Applications | Department of Energy Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications A Total Cost of Ownership Model for Solid Oxide Fuel Cells in Combined Heat and Power and Power-Only Applications This report prepared by Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems. Solid oxide fuel cell systems (SOFC) for use in combined heat and power (CHP)

  3. Cost and quality of fuels for electric utility plants: Energy data report. 1980 annual

    SciTech Connect (OSTI)

    Not Available

    1981-06-25

    In 1980 US electric utilities reported purchasng 594 million tons of coal, 408.5 million barrels of oil and 3568.7 billion ft/sup 3/ of gas. As compared with 1979 purchases, coal rose 6.7%, oil decreased 20.9%, and gas increased for the fourth year in a row. This volume presents tabulated and graphic data on the cost and quality of fossil fuel receipts to US electric utilities plants with a combined capacity of 25 MW or greater. Information is included on fuel origin and destination, fuel types, and sulfur content, plant types, capacity, and flue gas desulfurization method used, and fuel costs. (LCL)

  4. Low-cost, highly transparent flexible low-e coating film to enable electrochromic windows with increased energy savings

    SciTech Connect (OSTI)

    Berland, Brian; Hollingsworth, Russell

    2015-03-31

    Five Quads of energy are lost through windows annually in the U.S. Low-e coatings are increasingly employed to reduce the wasted energy. Most commonly, the low-e coating is an oxide material applied directly to the glass at high temperature. With over 100,000,000 existing homes, a retrofit product is crucial to achieve widespread energy savings. Low-e films, i.e. coatings on polymeric substrates, are now also available to meet this need. However, the traditional oxide materials and process is incompatible with low temperature plastics. Alternate high performing low-e films typically incorporate materials that limit visible transmission to 35% or less. Further, the cost is high. The objective of this award was to develop a retrofit, integrated low-e/electrochromic window film to dramatically reduce energy lost through windows. While field testing of state-of-the-art electrochromic (EC) windows show the energy savings are maximized if a low-e coating is used in conjunction with the EC, available low-e films have a low visible transmission (~70% or less) that limits the achievable clear state and therefore, appearance and energy savings potential. Comprehensive energy savings models were completed at Lawrence Berkeley National Lab (LBNL). A parametric approach was used to project energy usage for windows with a large range of low-e properties across all U.S. climate zones, without limiting the study to materials that had already been produced commercially or made in a lab. The model enables projection of energy savings for low-e films as well as integrated low-e/EC products. This project developed a novel low-e film, optimized for compatibility with EC windows, using low temperature, high deposition rate processes for the growth of low-e coatings on plastic films by microwave plasma enhanced chemical vapor deposition. Silica films with good density and optical properties were demonstrated at deposition rates as high as 130Å/sec. A simple bi-layer low-e stack of

  5. EERE Success Story—Thurston Regional Planning Council Helps Washingtonians Save on Travel Costs

    Broader source: Energy.gov [DOE]

    Thurston County provides travel information for lower costs, improved safety, and faster response to challenges.

  6. Energy Efficiency Improvement and Cost Saving Opportunities for the Fruit and Vegetable Processing Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Masanet, Eric; Masanet, Eric; Worrell, Ernst; Graus, Wina; Galitsky, Christina

    2008-01-01

    The U.S. fruit and vegetable processing industry--defined in this Energy Guide as facilities engaged in the canning, freezing, and drying or dehydrating of fruits and vegetables--consumes over $800 million worth of purchased fuels and electricity per year. Energy efficiency improvement isan important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. fruit and vegetable processing industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. fruit and vegetable processing industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures applicable to fruit and vegetable processing plants are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in fruit and vegetable processing facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. Given the importance of water in fruit and vegetable processing, a summary of basic, proven measures for improving plant-level water efficiency are also provided. The information in this Energy Guide is intended to help energy and plant managers in the U.S. fruit and vegetable processing industry reduce energy and water consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures--as well as on their applicability to different production

  7. Developing Information on Energy Savings and Associated Costs and Benefits of Energy Efficient Emerging Technologies Applicable in California

    SciTech Connect (OSTI)

    Xu, Tengfang; Slaa, Jan Willem; Sathaye, Jayant

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing carbon dioxide (CO2) emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world and in California. Successful implementation of applicable emerging technologies not only may help advance productivities, improve environmental impacts, or enhance industrial competitiveness, but also can play a significant role in climate-mitigation efforts by saving energy and reducing the associated GHG emissions. Developing new information on costs and savings benefits of energy efficient emerging technologies applicable in California market is important for policy makers as well as the industries. Therefore, provision of timely evaluation and estimation of the costs and energy savings potential of emerging technologies applicable to California is the focus of this report. The overall goal of the project is to identify and select a set of emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. Specifically, this report contains the results from performing Task 3 Technology Characterization for California Industries for the project titled Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies, sponsored by

  8. Savannah River Site Liquid-Waste Contractor Installs New Cost-Saving Pump Design

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Sometimes, buying off the shelf beats a special order when it comes to saving money. At the Savannah River Site (SRS), that mantra has been applied to pumps used to mixed radioactive waste in million-gallon waste tanks.

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building, Other EE, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Dollar and Energy Savings Loans The Nebraska Dollar and Energy Savings Loan program was...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering PGE and PacifiCorp Customers Eligibility: Commercial, Industrial,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy and Energy Conservation Patent Income Tax Deduction...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering NOTE: In Feb 2014, the PUC proposed changes to the State's...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewables Portfolio Standard Eligible Technologies: Eligibility:...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Connecticut Clean Energy Fund Connecticut's 1998 electric restructuring...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Green Power Purchasing Commitment In April 2007, Massachusetts Gov. Deval...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering PGE and PacifiCorp Customers Eligibility: Commercial,...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative and Clean Energy Program NOTE: It is important to note that some...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Portfolio Standard NOTE: On November 2nd 2015, Governor Cumo...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Sales and Use Tax Exemption for Electrical Generating Facilities Electrical...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Clean Energy Development Fund Vermont's Clean Energy Development Fund (CEDF)...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings City of San Diego- Sustainable Building Policy The City of San Diego's...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings City of San Diego- Sustainable Building Policy The City of San Diego's Sustainable...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EE, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Dollar and Energy Savings Loans The Nebraska Dollar and Energy Savings Loan program was created in 1990...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering New Jersey's net-metering rules require state's investor-owned...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering PGE and PacifiCorp Customers Eligibility: Commercial, Industrial,...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Ohio's net-metering law requires electric distribution utilities to...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CustomOthers pending approval, Wind (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Dollar and Energy Savings Loans The Nebraska Dollar and Energy Savings Loan...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole Building, Other EE, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Dollar and Energy Savings Loans The Nebraska Dollar and Energy Savings Loan...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Systems Exemption Recognized forms of energy generation include...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewables Portfolio Standard Eligible Technologies: Eligibility: Investor-Owned...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Local Option- Property Tax Exemption Note: Solar photovoltaic systems of 50 kW or...

  12. Wisconsin Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Wisconsin Uniform Dwelling Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wisconsin homeowners. Moving to either the 2009 or 2012 IECC from the current Wisconsin state code is cost effective over a 30-year life cycle. On average, Wisconsin homeowners will save $2,484 over 30 years under the 2009 IECC, with savings still higher at $10,733 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $149 for the 2009 IECC and $672 for the 2012 IECC.

  13. Minnesota Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the Minnesota Residential Energy Code

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Minnesota homeowners. Moving to either the 2009 or 2012 IECC from the current Minnesota Residential Energy Code is cost effective over a 30-year life cycle. On average, Minnesota homeowners will save $1,277 over 30 years under the 2009 IECC, with savings still higher at $9,873 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceed cumulative cash outlays) in 3 years for the 2009 IECC and 1 year for the 2012 IECC. Average annual energy savings are $122 for the 2009 IECC and $669 for the 2012 IECC.

  14. Kansas Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Kansas homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, Kansas homeowners will save $2,556 over 30 years under the 2009 IECC, with savings still higher at $8,828 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $155 for the 2009 IECC and $543 for the 2012 IECC.

  15. Arizona Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Arizona homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost-effective over a 30-year life cycle. On average, Arizona homeowners will save $3,245 over 30 years under the 2009 IECC, with savings still higher at $6,550 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2009 and 2 years with the 2012 IECC. Average annual energy savings are $231 for the 2009 IECC and $486 for the 2012 IECC.

  16. West Virginia Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for West Virginia homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, West Virginia homeowners will save $1,996 over 30 years under the 2009 IECC, with savings still higher at $7,301 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $135 for the 2009 IECC and $480 for the 2012 IECC.

  17. Missouri Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Missouri homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost effective over a 30-year life cycle. On average, Missouri homeowners will save $2,229 over 30 years under the 2009 IECC, with savings still higher at $7,826 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for both the 2009 and 2012 IECC. Average annual energy savings are $143 for the 2009 IECC and $507 for the 2012 IECC.

  18. Low-Cost, Highly Transparent Flexible low-e Coating Film to Enable Electrochromic Windows with Increased Energy Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Berland, bberland@itnes.com ITN Energy Systems Low-Cost, Highly Transparent Flexible low-e Coating Film to Enable Electrochromic Windows with Increased Energy Savings 2014 Building Technologies Office Peer Review 2 Project Summary Timeline: Start date: October 1, 2013 Planned end date: September 30, 2014 Key Milestones 1.Low-e Film: 90% T,vis & R,ir (100 cm 2 ) (Q2) 2.Low-e Film: 90% T,vis & R,ir (2m long, %T,%R variation < 2% cross web) (Q3) 3.Demonstrate Low-e/EC Film (Q3) Budget:

  19. Materials and Modules for Low Cost, High Performance Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Advance Patent Waiver W(A)2010-041 Kick-Off Meeting for New Fuel Cell Projects CARISMA: A Networking Project for High Temperature PEMFC MEA Activities ...

  20. Webinar: Automotive and MHE Fuel Cell System Cost Analysis |...

    Broader source: Energy.gov (indexed) [DOE]

    ... The-what we did this year was look at 10 and 25 kilowatt PEM fuel cell systems for material handling applications, and that's what I'll be talking about today. Next slide ...

  1. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss077shidore2012o.pdf (1.6 MB) More Documents & ...

  2. Fuel Displacement & Cost Potential of CNG, LNG, and LPG Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    12 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss078kwon2012o.pdf (648.12 KB) More Documents & ...

  3. Energy Department Invests Over $7 Million to Commercialize Cost-Effective Hydrogen and Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today announced more than $7 million for projects that will help bring cost-effective, advanced hydrogen and fuel cell technologies online faster.

  4. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty ...

  5. Review of Transportation Issues & Comparison of Infrastructure Costs for a Renewable Fuels Standard

    Reports and Publications (EIA)

    2002-01-01

    This paper analyzes the inter-regional transportation issues and associated costs for increased distribution of renewable fuels with the assumption that ethanol will be used to meet the standards.

  6. Cost Analysis of PEM Fuel Cell Systems for Transportation: September 30, 2005

    SciTech Connect (OSTI)

    Carlson, E. J.; Kopf, P.; Sinha, J.; Sriramulu, S.; Yang, Y.

    2005-12-01

    The results of sensitivity and Monte Carlo analyses on PEM fuel cell components and the overall system are presented including the most important cost factors and the effects of selected scenarios.

  7. Impacts of Renewable Generation on Fossil Fuel Unit Cycling: Costs and Emissions (Presentation)

    SciTech Connect (OSTI)

    Brinkman, G.; Lew, D.; Denholm, P.

    2012-09-01

    Prepared for the Clean Energy Regulatory Forum III, this presentation looks at the Western Wind and Solar Integration Study and reexamines the cost and emissions impacts of fossil fuel unit cycling.

  8. NREL: Hydrogen and Fuel Cells Research - Hydrogen Production Cost Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Production Cost Analysis NREL analyzed the cost of hydrogen production via wind-based water electrolysis at 42 potential sites in 11 states across the nation. This analysis included centralized plants producing the Department of Energy (DOE) target of 50,000 kg of hydrogen per day, using both wind and grid electricity. The use of wind and grid electricity can be balanced either by power or cost, including or excluding the purchase of peak summer electricity. Current wind incentives-such

  9. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vehicles decreases with time. * Manufacturing costs associated with batteries and electric machines fall faster than those of conventional technologies (i.e., engine,...

  10. Cost and Quality of Fuels for Electric Plants - Energy Information...

    Gasoline and Diesel Fuel Update (EIA)

    Electricity transactions, reliability Electricity and the environment All electricity data reports Analysis & Projections Major Topics Most popular Capacity and generation Costs, ...

  11. New Material has Potential to Cut Costs and Make Nuclear Fuel Recycling

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cleaner: Computer modeling helps pinpoint best material out of a hundred thousand options | Department of Energy New Material has Potential to Cut Costs and Make Nuclear Fuel Recycling Cleaner: Computer modeling helps pinpoint best material out of a hundred thousand options New Material has Potential to Cut Costs and Make Nuclear Fuel Recycling Cleaner: Computer modeling helps pinpoint best material out of a hundred thousand options June 13, 2016 - 10:46am Addthis News release from Pacific

  12. Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SCR Aftertreatment System Meeting Emissions Useful Life Requirement | Department of Energy System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement Improved System Performance and Reduced Cost of a Fuel Reformer, LNT, and SCR Aftertreatment System Meeting Emissions Useful Life Requirement An advanced exhaust aftertreatment system developed to meet EPA 2010 and final Tier 4 emission regulations show substantial

  13. Geothermal Heat Pumps as a Cost Saving and Capital Renewal Too!

    SciTech Connect (OSTI)

    Hughes, P.J.

    1998-11-06

    An independent evaluation of the Fort Polk, Louisiana energy savings performance contract (ESPC) has verified the financial value of geothermal heat pump (GHP)-centered ESPCS to the federal government. The Department of Energy (DOE) Federal Energy Management Program (FEMP) has responded by issuing an RFP for the "National GHP-Technology-Specific Super ESPC Procurement." Federal agency sites anywhere in the nation will be able to implement GHP-centered ESPC projects as delivery orders against the awarded contracts.

  14. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicle (AFV) and Fueling Infrastructure Loans The Nebraska Energy Office administers the Dollar and Energy Saving Loan Program, which makes low-cost loans available for a variety of alternative fuel projects, including the replacement of conventional vehicles with AFVs; the purchase of new AFVs; the conversion of conventional vehicles to operate on alternative fuels; and the construction or purchase of fueling stations or equipment. The maximum loan amount is $750,000 per borrower, and the

  15. Alternative Fuels Data Center: Propane School Buses Launched...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gloucester County Public Schools estimates it will save about 1.50 per gallon in fuel costs and more in maintenance costs due to the cleaner engine and prolonged oil change ...

  16. Vehicle Cost Calculator Helps You Add Up the Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis The Vehicle Cost Calculator helps consumers go beyond the sticker price of a vehicle and determine the lifetime cost when they head to the car lot. | Photo by Kino Praxis Shannon Brescher Shea Senior Writer/Editor, Office of Science When most people go to the car dealership, they take a hard look at the vehicle's window

  17. Do You Have Your Own Tips for Saving Fuel? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keeping your car well maintained is one way to make sure that it's not using more gas than it needs to. Do you have any other ideas for saving gas this summer? You have the chance ...

  18. Back to School: Saving Fuel in the Last Days of Summer | Department...

    Energy Savers [EERE]

    To save money and reduce pollution, turn off your car and roll down the windows. Better yet, you can just step out of your car for some fresh air CUT THE PRE-TRIP COOL DOWN If ...

  19. Back to School: Saving Fuel in the Last Days of Summer | Department...

    Energy Savers [EERE]

    To save money and reduce pollution, turn off your car and roll down the windows. Better yet, you can just step out of your car for some fresh air Cut the pre-trip cool down If ...

  20. Simple Summer Savings

    Broader source: Energy.gov [DOE]

    There are many tips for saving energy and energy costs in the upcoming months of unending heat and humidity.

  1. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages

    SciTech Connect (OSTI)

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-08-01

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  2. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages: Preprint

    SciTech Connect (OSTI)

    Simpkins, Travis; Cutler, Dylan; Hirsch, Brian; Olis, Dan; Anderson, Kate

    2015-10-28

    There are thousands of isolated, diesel-powered microgrids that deliver energy to remote communities around the world at very high energy costs. The Remote Communities Renewable Energy program aims to help these communities reduce their fuel consumption and lower their energy costs through the use of high penetration renewable energy. As part of this program, the REopt modeling platform for energy system integration and optimization was used to analyze cost-optimal pathways toward achieving a combined 75% reduction in diesel fuel and fuel oil consumption in a select Alaskan village. In addition to the existing diesel generator and fuel oil heating technologies, the model was able to select from among wind, battery storage, and dispatchable electric heaters to meet the electrical and thermal loads. The model results indicate that while 75% fuel reduction appears to be technically feasible it may not be economically viable at this time. When the fuel reduction target was relaxed, the results indicate that by installing high-penetration renewable energy, the community could lower their energy costs by 21% while still reducing their fuel consumption by 54%.

  3. Estimating the Energy, Demand and Cost Savings from a Geothermal Heat Pump ESPC Project at Fort Polk, LA Through Utility Bill Analysis.

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick

    2006-01-01

    Energy savings performance contracts (ESPCs) are a method of financing energy conservation projects using the energy cost savings generated by the conservation measures themselves. Ideally, reduced energy costs are visible as reduced utility bills, but in fact this is not always the case. On large military bases, for example, a single electric meter typically covers hundreds of individual buildings. Savings from an ESPC involving only a small number of these buildings will have little effect on the overall utility bill. In fact, changes in mission, occupancy, and energy prices could cause substantial increases in utility bills. For this reason, other, more practical, methods have been developed to measure and verify savings in ESPC projects. Nevertheless, increasing utility bills--when ESPCs are expected to be reducing them--are problematic and can lead some observers to question whether savings are actually being achieved. In this paper, the authors use utility bill analysis to determine energy, demand, and cost savings from an ESPC project that installed geothermal heat pumps in the family housing areas of the military base at Fort Polk, Louisiana. The savings estimates for the first year after the retrofits were found to be in substantial agreement with previous estimates that were based on submetered data. However, the utility bills also show that electrical use tended to increase as time went on. Since other data show that the energy use in family housing has remained about the same over the period, the authors conclude that the savings from the ESPC have persisted, and increases in electrical use must be due to loads unassociated with family housing. This shows that under certain circumstances, and with the proper analysis, utility bills can be used to estimate savings from ESPC projects. However, these circumstances are rare and over time the comparison may be invalidated by increases in energy use in areas unaffected by the ESPC.

  4. Energy Efficiency Improvement and Cost Saving Opportunities for the Pharmaceutical Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Galitsky, Christina; Chang, Sheng-chieh; Worrell, Ernst; Masanet, Eric

    2008-03-01

    The U.S. pharmaceutical industry consumes almost $1 billion in energy annually. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. pharmaceutical industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. pharmaceutical industry is provided along with a description of the major process steps in the pharmaceutical manufacturing process. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in pharmaceutical and related facilities worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers reduce energy consumption in a cost-effective manner while meeting regulatory requirements and maintaining the quality of products manufactured. At individual plants, further research on the economics of the measures?as well as their applicability to different production practices?is needed to assess potential implementation of selected technologies.

  5. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Martin, Nathan; Worrell, Ernst; Lehman, Bryan

    2003-09-01

    Annually, breweries in the United States spend over $200 million on energy. Energy consumption is equal to 38 percent of the production costs of beer, making energy efficiency improvement an important way to reduce costs, especially in times of high energy price volatility. After a summary of the beer making process and energy use, we examine energy efficiency opportunities available for breweries. We provide specific primary energy savings for each energy efficiency measure based on case studies that have implemented the measures, as well as references to technical literature. If available, we have also listed typical payback periods. Our findings suggest that given available technology, there are still opportunities to reduce energy consumption cost-effectively in the brewing industry. Brewers value highly the quality, taste and drinkability of their beer. Brewing companies have and are expected to continue to spend capital on cost-effective energy conservation measures that meet these quality, taste and drinkability requirements. For individual plants, further research on the economics of the measures, as well as their applicability to different brewing practices, is needed to assess implementation of selected technologies.

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooperative Utilities, Institutional Savings Category: Solar Photovoltaics, Biomass, Hydroelectric, Hydrogen, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Multifamily Residential, Institutional Savings Category: Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel Cells using Non-Renewable Fuels, Landfill Gas,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Renewable Fuels, Microturbines City of New Orleans- Net Metering Origin Eligibility: Commercial, Residential, Agricultural Savings Category: Geothermal...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agricultural, Institutional Savings Category: Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel Cells using Non-Renewable Fuels, Hydroelectric (Small),...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Agricultural Savings Category: Geothermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Hydroelectric (Small), Fuel Cells using Renewable Fuels,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Small), Fuel Cells using Renewable Fuels, LED Lighting, Commercial Refrigeration Equipment Michigan Saves- Business Energy Financing Pre-qualification application...

  12. A model of the Capital Cost of a natural gas-fired fuel cell based Central Utilities Plant

    SciTech Connect (OSTI)

    Not Available

    1993-06-30

    This model defines the methods used to estimate the cost associated with acquisition and installation of capital equipment of the fuel cell systems defined by the central utility plant model. The capital cost model estimates the cost of acquiring and installing the fuel cell unit, and all auxiliary equipment such as a boiler, air conditioning, hot water storage, and pumps. The model provides a means to adjust initial cost estimates to consider learning associated with the projected level of production and installation of fuel cell systems. The capital cost estimate is an input to the cost of ownership analysis where it is combined with operating cost and revenue model estimates.

  13. Energy Efficiency Improvement and Cost Saving Opportunities for the Glass Industry. An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Galitsky, Christina; Masanet, Eric; Graus, Wina

    2008-03-01

    The U.S. glass industry is comprised of four primary industry segments--flat glass, container glass, specialty glass, and fiberglass--which together consume $1.6 billion in energy annually. On average, energy costs in the U.S. glass industry account for around 14 percent of total glass production costs. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There is a variety of opportunities available at individual plants in the U.S. glass industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, system, and organizational levels. A discussion of the trends, structure, and energy consumption characteristics of the U.S. glass industry is provided along with a description of the major process steps in glass manufacturing. Expected savings in energy and energy-related costs are given for many energy efficiency measures, based on case study data from real-world applications in glass production facilities and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. glass industry reduce energy consumption in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of the measures--as well on as their applicability to different production practices--is needed to assess potential implementation of selected technologies at individual plants.

  14. California Federal Facilities: Rate-Responsive Building Operation for Deeper Cost and Energy Savings

    SciTech Connect (OSTI)

    2012-05-01

    Dynamic pricing electricity tariffs, now the default for large customers in California (peak demand of 200 kW and higher for PG&E and SCE, and 20 kW and higher for SDG&E), are providing Federal facilities new opportunities to cut their electricity bills and help them meet their energy savings mandates. The U.S. Department of Energy’s (DOE) Federal Energy Management Program (FEMP) has created this fact sheet to help California federal facilities take advantage of these opportunities through “rate-responsive building operation.” Rate-responsive building operation involves designing your load management strategies around your facility’s variable electric rate, using measures that require little or no financial investment.

  15. Evaluation of Production Cost Savings from Consolidation of Balancing Authorities in the US Western Interconnection under High Wind and Solar Penetration

    SciTech Connect (OSTI)

    Nguyen, Tony B.; Samaan, Nader A.; Jin, Chunlian

    2014-12-24

    This paper introduces a comprehensive analysis to quantify the potential savings in production cost due to consolidation of 32 US western interconnection Balancing Authorities (BAs). Three simulation scenarios are developed: current Western Electricity Coordinating Council (WECC) BAs structure, full copper-sheet consolidation, and full consolidation with transmission congestion considered. The study uses WECC Transmission Expansion Planning Policy Committee (TEPPC) model that was developed for the year 2020. The model assumes 8% wind and 3% solar energy penetration as percentage of total WECC demand in 2020. Sensitivity analyses are carried out to assess the impact of transmission hurdle rates between WECC BAs on potential benefits. The study shows savings that ranges from $400 Million (2.4% of total one year production cost) to $600 Million (3.2%) per year in thermal units production cost due to consolidation can be achieved. The copper sheet consolidation scenario shows an extra savings of $240 Million (1.4%) per year.

  16. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema (OSTI)

    McGraw, Jennifer

    2013-05-28

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  17. Hydrogen milestone could help lower fossil fuel refining costs

    SciTech Connect (OSTI)

    McGraw, Jennifer

    2009-01-01

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  18. Selecting the proper fuel gas for cost-effective oxyfuel cutting

    SciTech Connect (OSTI)

    Lyttle, K.A.; Stapon, W.F.G.; Guimaraes, A.

    1997-07-01

    The motivating factor behind recent research and development efforts in metal cutting has been the growing need for companies everywhere to embrace emerging technologies if they are to complete in the global economy. To quickly implement these productivity improvements and gain lower bottom line costs for welding and cutting operations, rapid commercialization of these process advancements is needed. Although initially more expensive, additive-enhanced fuel gases may be the most cost-effective choice for certain cutting applications. The cost of additive-enhanced fuel gases can be justified where oxygen pricing is low (such as with bulk oxygen). Propylene exhibited equal cutting speeds to acetylene and improved cutting economy under specific conditions, which involved longer cuts on thicker base materials. With a longer cut distance, the extra time required to reach the kindling temperature (when compared to acetylene) becomes less critical. It is important to note that kindling temperature was reached more rapidly with propylene than it was with propane, but both fuel gases were slower than acetylene. When factors such as these are considered, many applications are found to be more cost effectively performed with the more expensive acetylene or propylene fuel gases. Each individual application must be studied on a singular basis to determine the most cost-effective choice when selecting the fuel gas.

  19. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    SciTech Connect (OSTI)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-09

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form.

  20. New Whole-House Solutions Case Study: Low-Cost Evaluation of Energy Savings at the Community Scale - Fresno, California

    SciTech Connect (OSTI)

    2014-10-01

    In this project, IBACOS partnered with builder Wathen-Castanos Hybrid Homes to develop a simple and low-cost methodology by which community-scale energy savings can be evaluated based on results at the occupied test house level.Research focused on the builder and trade implementation of a whole-house systems integrated measures package and the actual utility usage in the houses at the community scale of production. Five occupants participated in this community-scale research by providing utility bills and information on occupancy and miscellaneous gas and electric appliance use for their houses. IBACOS used these utility data and background information to analyze the actual energy performance of the houses. Verification with measured data is an important component in predictive energy modeling. The actual utility bill readings were compared to projected energy consumption using BEopt with actual weather and thermostat set points for normalization.

  1. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    SciTech Connect (OSTI)

    Ray, J.W.; Marra, S.L.; Herman, C.C.

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  2. Top 3 Driving Tools That Will Help Save You Money at the Pump...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- fuel costs can still add up quickly. If you're one of the millions traveling by car over the holiday weekend, check out three tools that will help you save money on your...

  3. Manufacturers in U.S. Energy Department’s Better Plants Program Save More Than $2 Billion in Energy Costs; Program Expands to Help America’s Water Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    Better Buildings, Better Plants Program manufacturers rack up an estimated $2.4 billion in cumulative energy cost savings over the last five years.

  4. Dry Kraft Pulping at Ambient Pressure for Cost Effective Energy Saving and Pollution Deduction

    SciTech Connect (OSTI)

    Yulin Deng; Art Ragauskas

    2012-08-28

    evaporated first under vacuum condition at low temperature. Then, the dry woodchips were baked at high temperature (120-130 C) at atmospheric pressure. The qualities of the pulp made with this method were improved compared to that made with method one. The pulp shows higher brightness and lower bulk than Kraft pulping. The tensile strength is significantly higher than the pulp made from the first method. Although the pulp is stronger than that of TMP pulp, it is still lower than conventional Kraft fiber. Method Three: The third dry method was done in a Kraft pulping digester at elevated pressure but without free liquid in the digester. With this method, pulp that has almost the same qualities as conventional Kraft pulp could be produced. The screen yield, Kappa number, fiber brightness, pulp strength and pulp bulk are almost identical to the conventional Kraft pulp. The key advantages of this dry pulping method include ca. 55 % of cooking energy saved during the pulping process, as high as 50 wt% of NaOH saving as well as 3 wt% of Na2S saving comparing to Kraft one. By analyzing fiber properties, yields, chemical and energy consumptions, we concluded that the dry pulping method based on Liquid Free Chemical Pulping, LFCP, could be very attractive for the pulp and paper industry. More fundamental studies and scale up trials are needed to fully commercialize the technology. We expect to conduct pilot trials between 12 to 24 months of period if the DOE or industry can provide continual research funding. Based on the technology we demonstrated in this report, several pilot trial facilities in the United States will be available after small modifications. For example, the Herty Foundation in Savannah, Georgia is one of these potential locations. DOE funding for continuous study and final lead to commercialization of the technique is important.

  5. Fuel Cell Installation Improves Reliability and Saves Energy at a Corporate Data Center

    SciTech Connect (OSTI)

    2002-05-01

    In 2002, Chevron Energy Solutions implemented a fuel cell installation project at the corporate data center of Chevron Texaco's corporate headquarters in San Ramon, California.

  6. Topeka’s “Green Light Tunnel” Saves Fuel and Time

    Broader source: Energy.gov [DOE]

    Topeka, Kansas is saving their motorists time and gasoline through the use of a real-time, adaptive "green light tunnel". A traffic signal system that synchronizes traffic lights in order to create a series of green lights that result in fewer stops and less travel time.

  7. REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2005-07-01

    Phase I of the work to be done under this agreement consisted of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream were gasified. Phase II of the work to be done under this agreement, consists of gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations. This report describes activities for the ninth quarter of work performed under this agreement. The design of the vessel for pressure testing has been completed. The design will be finalized and purchased in the next quarter.

  8. Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study

    SciTech Connect (OSTI)

    2013-05-29

    Texas A&M University is operating a high-efficiency combined heat and power (CHP) system at its district energy campus in College Station, Texas. Texas A&M received $10 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009 for this project. Private-sector cost share totaled $40 million.

  9. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    SciTech Connect (OSTI)

    Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  10. Comparative analysis of monetary estimates of external environmental costs associated with combustion of fossil fuels

    SciTech Connect (OSTI)

    Koomey, J.

    1990-07-01

    Public utility commissions in a number of states have begun to explicitly treat costs of environmental externalities in the resource planning and acquisition process (Cohen et al. 1990). This paper compares ten different estimates and regulatory determinations of external environmental costs associated with fossil fuel combustion, using consistent assumptions about combustion efficiency, emissions factors, and resource costs. This consistent comparison is useful because it makes explicit the effects of various assumptions. This paper uses the results of the comparison to illustrate pitfalls in calculation of external environmental costs, and to derive lessons for design of policies to incorporate these externalities into resource planning. 38 refs., 2 figs., 10 tabs.

  11. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 703-243-3383 Prepared for: Contract No. GS-10F-0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program Foreword Energy security is

  12. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mass Production Cost Estimation of Direct H 2 PEM Fuel Cell Systems for Transportation Applications: 2012 Update October 18, 2012 Prepared By: Brian D. James Andrew B. Spisak Revision 4 2 Sponsorship and Acknowledgements This research was conducted under Award Number DE-EE0005236 to the US Department of Energy. The authors wish to thank Dr. Dimitrios Papageorgopoulos and Mr. Jason Marcinkoski of DOE's Office of Energy Efficiency and Renewable Energy (EERE) Fuel Cell Technologies (FCT) Program

  13. Cost and Quality of Fuels for Electric Utility Plants 2000 Tables

    Gasoline and Diesel Fuel Update (EIA)

    0) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2000 Tables August 2001 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position

  14. Transportation costs for new fuel forms produced from low rank US coals

    SciTech Connect (OSTI)

    Newcombe, R.J.; McKelvey, D.G. ); Ruether, J.A. )

    1990-09-01

    Transportation costs are examined for four types of new fuel forms (solid, syncrude, methanol, and slurry) produced from low rank coals found in the lower 48 states of the USA. Nine low rank coal deposits are considered as possible feedstocks for mine mouth processing plants. Transportation modes analyzed include ship/barge, pipelines, rail, and truck. The largest potential market for the new fuel forms is coal-fired utility boilers without emission controls. Lowest cost routes from each of the nine source regions to supply this market are determined. 12 figs.

  15. A new principle for low-cost hydrogen sensors for fuel cell technology safety

    SciTech Connect (OSTI)

    Liess, Martin

    2014-03-24

    Hydrogen sensors are of paramount importance for the safety of hydrogen fuel cell technology as result of the high pressure necessary in fuel tanks and its low explosion limit. I present a novel sensor principle based on thermal conduction that is very sensitive to hydrogen, highly specific and can operate on low temperatures. As opposed to other thermal sensors it can be operated with low cost and low power driving electronics. On top of this, as sensor element a modified standard of-the shelf MEMS thermopile IR-sensor can be used. The sensor principle presented is thus suited for the future mass markets of hydrogen fuel cell technology.S.

  16. REDUCING ULTRA-CLEAN TRANSPORTATION FUEL COSTS WITH HYMELT HYDROGEN

    SciTech Connect (OSTI)

    Donald P. Malone; William R. Renner

    2005-01-01

    This report describes activities for the seventh quarter of work performed under this agreement. We await approval from the Swedish pressure vessel board to allow us to proceed with the procurement of the vessel for super atmospheric testing. Phase I of the work to be done under this agreement consists of conducting atmospheric gasification of coal using the HyMelt technology to produce separate hydrogen rich and carbon monoxide rich product streams. In addition smaller quantities of petroleum coke and a low value refinery stream will be gasified. DOE and EnviRes will evaluate the results of this work to determine the feasibility and desirability of proceeding to Phase II of the work to be done under this agreement, which is gasification of the above-mentioned feeds at a gasifier pressure of approximately 5 bar. The results of this work will be used to evaluate the technical and economic aspects of producing ultra-clean transportation fuels using the HyMelt technology in existing and proposed refinery configurations.

  17. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    SciTech Connect (OSTI)

    Roberts, William L

    2012-10-31

    glycerol from biodiesel production. This analysis showed that the cost of replacing natural gas with crude glycerol requires a strong function of the market price per unit of energy for the traditional fuel. However, the economics can be improved through the inclusion of a federal tax credit for the use of a renewable fuel. The conclusion of this analysis also shows that the ideal customer for energy replacement via crude glycerol is biodiesel producers who are located in remote regions, where the cost of energy is higher and the cost of crude glycerol is lowest. Lastly, the commercialization strategy analyzed competing technologies, namely traditional natural gas and electric heaters, as well as competing glycerol burners, and concludes with a discussion of the requirements for a pilot demonstration.

  18. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    SciTech Connect (OSTI)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and

  19. A comparison of estimates of cost-effectiveness of alternative fuels and vehicles for reducing emissions

    SciTech Connect (OSTI)

    Hadder, G.R.

    1995-11-01

    The cost-effectiveness ratio (CER) is a measure of the monetary value of resources expended to obtain reductions in emissions of air pollutants. The CER can lead to selection of the most effective sequence of pollution reduction options. Derived with different methodologies and technical assumptions, CER estimates for alternative fuel vehicles (AFVs) have varied widely among pervious studies. In one of several explanations of LCER differences, this report uses a consistent basis for fuel price to re-estimate CERs for AFVs in reduction of emissions of criteria pollutants, toxics, and greenhouse gases. The re-estimated CERs for a given fuel type have considerable differences due to non-fuel costs and emissions reductions, but the CERs do provide an ordinal sense of cost-effectiveness. The category with CER less than $5,000 per ton includes compressed natural gas and ed Petroleum gas vehicles; and E85 flexible-fueled vehicles (with fuel mixture of 85 percent cellulose-derived ethanol in gasoline). The E85 system would be much less attractive if corn-derived ethanol were used. The CER for E85 (corn-derived) is higher with higher values placed on the reduction of gas emissions. CER estimates are relative to conventional vehicles fueled with Phase 1 California reformulated gasoline (RFG). The California Phase 2 RFG program will be implemented before significant market penetration by AFVs. CERs could be substantially greater if they are calculated incremental to the Phase 2 RFG program. Regression analysis suggests that different assumptions across studies can sometimes have predictable effects on the CER estimate of a particular AFV type. The relative differences in cost and emissions reduction assumptions can be large, and the effect of these differences on the CER estimate is often not predictable. Decomposition of CERs suggests that methodological differences can make large contributions to CER differences among studies.

  20. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2009 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exch

  1. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications: 2010 Update

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct‐hydrogen proton ex

  2. Saving the Fuel Cell Dream: Making Non Noble Metal Electrocatalysts a Reality?

    Broader source: Energy.gov [DOE]

    Presentation about non noble metal electrocatalysts, presented by Sanjeev Mukerjee, Northeastern University, at the kick-off meeting of the U.S. Department of Energy Fuel Cell Technologies Program's Catalysis Working Group, held May 14, 2012, in Arlington, Virginia.

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Solar Photovoltaics, Biomass, Hydroelectric, Hydrogen, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Tidal, Wave, Ocean Thermal, Fuel Cells using...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Solar Photovoltaics, Wind (All), Biomass, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Wind (Small), Anaerobic Digestion, Fuel Cells using...

  5. Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reducing Idle Power Consumption in Office Spaces Saves U.S. Navy in Energy Costs As part of a two-year project to demonstrate energy efficiency measures, renewable energy generation, and energy systems integration, the National Renewable Energy Laboratory (NREL) has identified advanced plug load controls as a promising technology for reducing energy use and related costs in the U.S. Navy's Naval Facilities Engineering Command (NAVFAC) office spaces. The demonstration was one of eight

  6. Energy and Energy Cost Savings Analysis of the IECC for Commercial Buildings

    SciTech Connect (OSTI)

    Zhang, Jian; Athalye, Rahul A.; Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Goel, Supriya; Mendon, Vrushali V.; Liu, Bing

    2013-08-30

    The purpose of this analysis is to assess the relative energy and energy cost performance of commercial buildings designed to meet the requirements found in the commercial energy efficiency provisions of the International Energy Conservation Code (IECC). Section 304(b) of the Energy Conservation and Production Act (ECPA), as amended, requires the Secretary of Energy to make a determination each time a revised version of ASHRAE Standard 90.1 is published with respect to whether the revised standard would improve energy efficiency in commercial buildings. As many states have historically adopted the IECC for both residential and commercial buildings, PNNL has evaluated the impacts of the commercial provisions of the 2006, 2009, and 2012 editions of the IECC. PNNL also compared energy performance with corresponding editions of ANSI/ASHRAE/IES Standard 90.1 to help states and local jurisdictions make informed decisions regarding model code adoption.

  7. Mass Production Cost Estimation of Direct Hydrogen PEM Fuel Cell Systems for Transportation Applications: 2012 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the sixth annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. This 2012 update will cover current status technology updates since the 2011 report, as well as introduce a 2012 bus system analysis considered alongside the automotive system.

  8. Ford Cleveland: Inside-Out Analysis Identifies Energy and Cost Savings Opportunities at Metal Casting Plant; Industrial Technologies Program Metal Casting BestPractices Plant-Wide Assessment Case Study

    SciTech Connect (OSTI)

    Not Available

    2003-09-01

    The Ford Cleveland Casting Plant used results from its plant-wide energy efficiency assessment to identify 16 energy- and cost-saving projects. These projects addressed combustion, compressed air, water, steam, motor drive, and lighting systems. When implemented, the projects should save a total of$3.28 million per year. In addition, two long-term projects were identified that together would represent another$9.5 million in cost savings.

  9. DOE Hydrogen and Fuel Cells Program Record 13013: Hydrogen Delivery Cost Projections - 2013

    Broader source: Energy.gov (indexed) [DOE]

    Hydrogen and Fuel Cells Program Record Record #: 13013 Date: September 26, 2013 Title: H 2 Delivery Cost Projections - 2013 Originator: E. Sutherland, A. Elgowainy and S. Dillich Approved by: R. Farmer and S. Satyapal Date: December 18, 2013 Item: Reported herein are past 2005 and 2011 estimates, current 2013 estimates, 2020 projected cost estimates and the 2015 and 2020 target costs for delivering and dispensing (untaxed) H 2 to 10%- 15% of vehicles within a city population of 1.2M from a

  10. The transition to hydrogen as a transportation fuel: Costs and infrastructure requirements

    SciTech Connect (OSTI)

    Schock, R.N.; Berry, G.D.; Ramback, G.D.; Smith, J.R.

    1996-03-20

    Hydrogen fuel, used in an internal combustion engine optimized for maximum efficiency and as part of a hybrid-electric vehicle, will give excellent performance and range with emissions below one-tenth the ultra-low emission vehicle standards being considered in California as Equivalent Zero Emission Vehicles. These vehicles can also be manufactured with increased but not excessive cost. Hydrogen-fueled engines have demonstrated indicated efficiencies of more than 50% under lean operation. Combining optimized engines and other advanced components, the overall vehicle efficiency should approach 40%, compared with 13% for a conventional vehicle in the urban driving cycle. The optimized engine-generator unit is the mechanical equivalent of the fuel cell but at a cost competitive with today`s engines. The increased efficiency of hybrid-electric vehicles now makes hydrogen fuel competitive with today`s conventional vehicles. Conservative analysis of the infrastructure options to support a transition to a hydrogen-fueled light-duty fleet indicates that hydrogen may be utilized at a total cost comparable to the 3.1 cents/km U.S. vehicle operators pay today while using conventional automobiles. Both on-site production by electrolysis or reforming of natural gas and liquid hydrogen distribution offer the possibility of a smooth transition by taking advantage of existing large-scale energy infrastructures. Eventually, renewable sources of electricity and scalable methods of making hydrogen will have lower costs than today. With a hybrid-electric propulsion system, the infrastructure to supply hydrogen and the vehicles to use it can be developed today and thus be in place when fuel cells become economical for vehicle use.

  11. Acid-sludge characterization and remediation improve well productivity and save costs in the Permian Basin

    SciTech Connect (OSTI)

    Wong, T.C.; Hwang, R.J.; Beaty, D.W.; Dolan, J.D.; McCarty, R.A.; Franzen, A.L.

    1997-02-01

    Many oil wells in the Permian Basin have reported sludging problems associated with acid stimulations. The acid sludge is similar among wells and was identified as a viscous emulsion stabilized by asphaltene-rich organic solids. The sludging tendency of the oil increased with the concentrations of asphaltenes and resins, base number of the oil, and ferric ion content in the acid. Only three out of nine commercial acid systems tested were effective in preventing acid-sludge formation; they all use the same novel iron control technology, i.e., catalytic reduction of ferric ions. Several commercial and generic solvent systems were effective in dissolving acid sludge, including mixtures of an aromatic solvent (e.g., xylene) with either isopropyl alcohol (2:1 volume ratio), or ethylene glycol-monobutylether (EGMBE) (2:1 to 3:1 volume ratios). Selection of acid formulations and solvent systems was based on cost effectiveness and operation safety. Field implementation proved successful. If the results of this study had been implemented earlier in the lives of some of the Permian Basin properties, the recovery of 574 BOPD of lost or deferred production from 99 wells could have been realized. This would have resulted in an estimated increased revenue of over US $3 million in 1 year.

  12. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    SciTech Connect (OSTI)

    Letschert, Virginie E.; Bojda, Nicholas; Ke, Jing; McNeil, Michael A.

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  13. Potential for savings in compliance costs for reducing ground-level ozone possible by instituting seasonal versus annual nitric oxide emission limits

    SciTech Connect (OSTI)

    Lookman, A.A.

    1996-12-31

    Ground-level ozone is formed in the atmosphere from its precursor emissions, namely nitric oxide (NO{sub x}) and volatile organic compounds (VOC), with its rate of formation dependent on atmospheric conditions. Since ozone levels tend to be highest during the summer months, seasonal controls of precursors have been suggested as a means of reducing the costs of decreasing ozone concentrations to acceptable levels. This paper attempts to quantify what the potential savings if seasonal control were instituted for coal-fired power plants, assuming that only commercially available NO{sub x} control technologies are used. Cost savings through seasonal control is measured by calculating the total annualized cost of NO{sub x} removal at a given amount of seasonal control for different target levels of annual control. For this study, it is assumed that trading of NO{sub x} emissions will be allowed, as has been proposed by the Ozone Transportation Commission (OTC). The problem has been posed as a binary integer linear programming problem, with decision variables being which control to use at each power plant. The results indicate that requiring annual limits which are lower than seasonal limits can substantially reduce compliance costs. These savings occur because requiring stringent compliance only on a seasonal basis allows power plants to use control methods for which the variable costs are paid for only part of the year, and through the use of gas-based controls, which are much cheaper to operate in the summer months.

  14. Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2013 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the seventh annual update of a comprehensive automotive fuel cell cost analysis conducted by Strategic Analysis under contract to the U.S. Department of Energy. The 2013 update covers fuel cell cost analysis of both light duty vehicle (automotive) and transit bus applications for only the current year (i.e., 2013).

  15. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications. 2009 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-01-01

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing cost of complete 80 kWnet direct hydrogen proton exchange membrane fuel cell systems suitable for powering light duty automobiles.

  16. Mass Production Cost Estimation For Direct H2 PEM Fuel Cell Systesm for Automotive Applications. 2010 Update

    SciTech Connect (OSTI)

    James, Brian D.; Kalinoski, Jeffrey A.; Baum, Kevin N.

    2010-09-30

    This report is the fourth annual update of a comprehensive automotive fuel cell cost analysis. It contains estimates for material and manufacturing costs of complete 80 kWnet direct-hydrogen proton exchange membrane fuel cell systems suitable for powering light-duty automobiles.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Connecticut Light & Power- ZREC and LREC Long Term Contracts NOTE: Year 3 of the competitive...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Energy Trust of Oregon Of the funds collected by the electric utilities, 56.7% must be...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Business Tax Incentives Businesses must first submit an application to the AZ...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Standard Notes: In July 2015, the Tenth Circuit Court of Appeals upheld the...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Tax Credit Note: This credit expired on December 31, 2014, and is not allowed for...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Systems Sales Tax Exemption "Renewable energy" is defined under 30 V.S.A. 8002 as...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings USDA- Rural Energy for America Program (REAP) Loan Guarantees Notably, the 2014 Farm Bill removed...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy Portfolio Standard Eligible technologies Eligibility: Investor-Owned Utility, Retail...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy and Energy Conservation Patent Income Tax Deduction (Corporate) Massachusetts offers a...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Systems Exemption Recognized forms of energy generation include solar photovoltaics,...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy and Energy Conservation Patent Income Tax Deduction (Corporate)...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Alternative Energy and Energy Conservation Patent Income Tax Deduction (Corporate)...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Illinois Clean Energy Community Foundation Grants Note: For the Renewable Energy January 21, 2016,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Energy Conversion and Thermal Efficiency Sales Tax Exemption Qualifying energy conversion...

  12. Low cost fuel cell diffusion layer configured for optimized anode water management

    DOE Patents [OSTI]

    Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

    2013-08-27

    A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

  13. Integrating Volume Reduction and Packaging Alternatives to Achieve Cost Savings for Low Level Waste Disposal at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Church, A.; Gordon, J.; Montrose, J. K.

    2002-02-26

    In order to reduce costs and achieve schedules for Closure of the Rocky Flats Environmental Technology Site (RFETS), the Waste Requirements Group has implemented a number of cost saving initiatives aimed at integrating waste volume reduction with the selection of compliant waste packaging methods for the disposal of RFETS low level radioactive waste (LLW). Waste Guidance Inventory and Shipping Forecasts indicate that over 200,000 m3 of low level waste will be shipped offsite between FY2002 and FY2006. Current projections indicate that the majority of this waste will be shipped offsite in an estimated 40,000 55-gallon drums, 10,000 metal and plywood boxes, and 5000 cargo containers. Currently, the projected cost for packaging, shipment, and disposal adds up to $80 million. With these waste volume and cost projections, the need for more efficient and cost effective packaging and transportation options were apparent in order to reduce costs and achieve future Site packaging a nd transportation needs. This paper presents some of the cost saving initiatives being implemented for waste packaging at the Rocky Flats Environmental Technology Site (the Site). There are many options for either volume reduction or alternative packaging. Each building and/or project may indicate different preferences and/or combinations of options.

  14. Potential benefits of solar reflective car shells: cooler cabins, fuel savings and emission reductions

    SciTech Connect (OSTI)

    Levinson, Ronnen; Pan, Heng; Ban-Weiss, George; Rosado, Pablo; Paolini, Riccardo; Akbari, Hashem

    2011-05-11

    Abstract: Vehicle thermal loads and air conditioning ancillary loads are strongly influenced by the absorption of solar energy. The adoption of solar reflective coatings for opaque surfaces of the vehicle shell can decrease the ?soak? temperature of the air in the cabin of a vehicle parked in the sun, potentially reducing the vehicle?s ancillary load and improving its fuel economy by permitting the use of a smaller air conditioner. An experimental comparison of otherwise identical black and silver compact sedans indicated that increasing the solar reflectance (?) of the car?s shell by about 0.5 lowered the soak temperature of breath-level air by about 5?6?C. Thermal analysis predicts that the air conditioning capacity required to cool the cabin air in the silver car to 25?C within 30min is 13percent less than that required in the black car. Assuming that potential reductions in AC capacity and engine ancillary load scale linearly with increase in shell solar reflectance, ADVISOR simulations of the SC03 driving cycle indicate that substituting a typical cool-colored shell (?=0.35) for a black shell (?=0.05) would reduce fuel consumption by 0.12L per 100km (1.1percent), increasing fuel economy by 0.10kmL?1 [0.24mpg] (1.1percent). It would also decrease carbon dioxide (CO2) emissions by 2.7gkm?1 (1.1percent), nitrogen oxide (NOx) emissions by 5.4mgkm?1 (0.44percent), carbon monoxide (CO) emissions by 17mgkm?1 (0.43percent), and hydrocarbon (HC) emissions by 4.1mgkm?1 (0.37percent). Selecting a typical white or silver shell (?=0.60) instead of a black shell would lower fuel consumption by 0.21L per 100km (1.9percent), raising fuel economy by 0.19kmL?1 [0.44mpg] (2.0percent). It would also decrease CO2 emissions by 4.9gkm?1 (1.9percent), NOx emissions by 9.9mgkm?1 (0.80percent), CO emissions by 31mgkm?1 (0.79percent), and HC emissions by 7.4mgkm?1 (0.67percent). Our simulations may underestimate emission reductions because emissions in standardized driving cycles are

  15. 2009 Fuel Economy Guide and FuelEconomy.gov | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Fuel Economy Guide and FuelEconomy.gov 2009 Fuel Economy Guide and FuelEconomy.gov October 24, 2008 - 4:00am Addthis Shannon Brescher Shea Communications Manager, Clean Cities Program With energy costs looming as winter approaches, saving money is on everyone's minds these days. Fortunately, improving your vehicle's fuel economy is both economically and environmentally smart. In the winter, one of the easiest ways to decrease gasoline consumption is to warm up your engine for no more than

  16. Cheaper catalyst may lower fuel costs for hydrogen-powered cars | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Cheaper catalyst may lower fuel costs for hydrogen-powered cars Wednesday, October 7, 2015 - 1:10pm NNSA Blog Sandia National Laboratories post-doctoral fellow Stan Chou demonstrates the reaction of more efficiently catalyzing hydrogen. In this simulation, the color is from dye excited by light and generating electrons for the catalyst molybdenum disulfide to evolve hydrogen. ALBUQUERQUE, N.M. -Sandia National Laboratories researchers seeking to make

  17. Membrane-Electrode Structures for Low Cost Molecular Catalysts in Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells and Other Electrochemical Devices - Energy Innovation Portal Membrane-Electrode Structures for Low Cost Molecular Catalysts in Fuel Cells and Other Electrochemical Devices Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing Summary A team of Berkeley Lab researchers has developed a technology to coat electrode surfaces with a homogeneous catalyst that has been immobilized within a polymer layer. The team demonstrated that a 3-D distributed array

  18. Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combined Heat and Power Integrated with Burners for Packaged Boilers ADVANCED MANUFACTURING OFFICE Providing Clean, Low-Cost, Onsite Distributed Generation at Very High Fuel Efficiency This project integrated a gas-fred, simple-cycle 100 kilowatt (kW) microturbine (SCMT) with a new ultra-low nitrogen oxide (NO x ) gas-fred burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy System Technology (BBEST). Introduction CHP systems can achieve signifcant

  19. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No.

  20. Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost-Optimal Pathways to 75% Fuel Reduction in Remote Alaskan Villages Preprint Travis Simpkins, Dylan Cutler, Brian Hirsch, Dan Olis, and Kate Anderson National Renewable Energy Laboratory Presented at the 2015 IEEE Conference on Technologies for Sustainability - Engineering and the Environment (SusTech) Ogden, Utah July 30 - August 1, 2015 © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,

  1. Fuel Cell Power Model Elucidates Life-Cycle Costs for Fuel Cell-Based Combined Heat, Hydrogen, and Power (CHHP) Production Systems (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    This fact sheet describes NREL's accomplishments in accurately modeling costs for fuel cell-based combined heat, hydrogen, and power systems. Work was performed by NREL's Hydrogen Technologies and Systems Center.

  2. Financing Energy Cost Savings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    *Pricing RFQ *Firm and Staff Qualifications Subsequent Discovery *Details *Process and Pricing Creating A Cleaner Energy Future For the Commonwealth Regional Aggregated Projects...

  3. Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Auxiliary Power Applications | Department of Energy kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Manufacturing Cost Analysis of 1 kW and 5 kW Solid Oxide Fuel Cell (SOFC) for Auxiliary Power Applications Under a cooperative agreement with the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office, Battelle Memorial Institute is providing an independent assessment of fuel cell manufacturing costs at varied volumes and alternative system designs.

  4. Energy savings in Polish buildings

    SciTech Connect (OSTI)

    Markel, L.C.; Gula, A.; Reeves, G.

    1995-12-31

    A demonstration of low-cost insulation and weatherization techniques was a part of phase 1 of the Krakow Clean Fossil Fuels and Energy Efficient Project. The objectives were to identify a cost-effective set of measures to reduce energy used for space heating, determine how much energy could be saved, and foster widespread implementation of those measures. The demonstration project focused on 4 11-story buildings in a Krakow housing cooperative. Energy savings of over 20% were obtained. Most important, the procedures and materials implemented in the demonstration project have been adapted to Polish conditions and applied to other housing cooperatives, schools, and hospitals. Additional projects are being planned, in Krakow and other cities, under the direction of FEWE-Krakow, the Polish Energie Cities Network, and Biuro Rozwoju Krakowa.

  5. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    SciTech Connect (OSTI)

    Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

    2013-12-01

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  6. DOE Hydrogen and Fuel Cells Program Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas

    Broader source: Energy.gov (indexed) [DOE]

    Congress | Department of Energy Presentation by Sunita Satyapal at the 2010 Society of Automotive Engineers (SAE) World Congress in Detroit, Michigan. DOE Hydrogen and Fuel Cell Activities Panel Discussion (272.28 KB) More Documents & Publications EERE Fuel Cell Technologies Program Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Informational Call

  7. Rohm and Haas: Chemical Plant Uses Pinch Analysis to Quantify Energy and Cost Savings Opportunities at Deer Park, Texas

    SciTech Connect (OSTI)

    2004-08-01

    An assessment team conducted a pinch analysis on major production processes at a Rohm and Haas chemical plant. Several potential projects were identified, which could yield annual savings totaling 2.2 million MMBtu and almost $7.7 million.

  8. Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Application: 2009 Update

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is the third annual update of a comprehensive automotive fuel cell cost analysis conducted by Directed Technologies (DTI), under contract to the US Department of Energy (DOE).

  9. Gas-Saving Tips

    SciTech Connect (OSTI)

    2015-02-12

    This fact sheet for consumers describes a few simple tips to help obtain the best possible fuel economy from vehicles and to reduce fuel costs.

  10. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Net Metering Net metering is available on a first-come, first-served basis...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells using Non-Renewable Fuels Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings previous 1 2 3 4 5 6 7 next Refine your results Keyword(s) State All Alabama...

  12. Rural Energy Savings Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    This program helps rural families and small businesses achieve cost savings by providing loans to qualified consumers to implement durable, cost-effective energy efficiency measures, including on- or off-grid renewable energy.

  13. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  14. A LOW COST AND HIGH QUALITY SOLID FUEL FROM BIOMASS AND COAL FINES

    SciTech Connect (OSTI)

    John T. Kelly; George Miller; Mehdi Namazian

    2001-07-01

    Use of biomass wastes as fuels in existing boilers would reduce greenhouse gas emissions, SO2 and NOx emissions, while beneficially utilizing wastes. However, the use of biomass has been limited by its low energy content and density, high moisture content, inconsistent configuration and decay characteristics. If biomass is upgraded by conventional methods, the cost of the fuel becomes prohibitive. Altex has identified a process, called the Altex Fuel Pellet (AFP) process, that utilizes a mixture of biomass wastes, including municipal biosolids, and some coal fines, to produce a strong, high energy content, good burning and weather resistant fuel pellet, that is lower in cost than coal. This cost benefit is primarily derived from fees that are collected for accepting municipal biosolids. Besides low cost, the process is also flexible and can incorporate several biomass materials of interest The work reported on herein showed the technical and economic feasibility of the AFP process. Low-cost sawdust wood waste and light fractions of municipal wastes were selected as key biomass wastes to be combined with biosolids and coal fines to produce AFP pellets. The process combines steps of dewatering, pellet extrusion, drying and weatherizing. Prior to pilot-scale tests, bench-scale test equipment was used to produce limited quantities of pellets for characterization. These tests showed which pellet formulations had a high potential. Pilot-scale tests then showed that extremely robust pellets could be produced that have high energy content, good density and adequate weatherability. It was concluded that these pellets could be handled, stored and transported using equipment similar to that used for coal. Tests showed that AFP pellets have a high combustion rate when burned in a stoker type systems. While NOx emissions under stoker type firing conditions was high, a simple air staging approach reduced emissions to below that for coal. In pulverized-fuel-fired tests it was

  15. DEVELOPMENT OF LOW-COST MANUFACTURING PROCESSES FOR PLANAR, MULTILAYER SOLID OXIDE FUEL CELL ELEMENTS

    SciTech Connect (OSTI)

    Scott Swartz; Matthew Seabaugh; William Dawson; Harlan Anderson; Tim Armstrong; Michael Cobb; Kirby Meacham; James Stephan; Russell Bennett; Bob Remick; Chuck Sishtla; Scott Barnett; John Lannutti

    2004-06-12

    This report summarizes the results of a four-year project, entitled, ''Low-Cost Manufacturing Of Multilayer Ceramic Fuel Cells'', jointly funded by the U.S. Department of Energy, the State of Ohio, and by project participants. The project was led by NexTech Materials, Ltd., with subcontracting support provided by University of Missouri-Rolla, Michael A. Cobb & Co., Advanced Materials Technologies, Inc., Edison Materials Technology Center, Gas Technology Institute, Northwestern University, and The Ohio State University. Oak Ridge National Laboratory, though not formally a subcontractor on the program, supported the effort with separate DOE funding. The objective of the program was to develop advanced manufacturing technologies for making solid oxide fuel cell components that are more economical and reliable for a variety of applications. The program was carried out in three phases. In the Phase I effort, several manufacturing approaches were considered and subjected to detailed assessments of manufacturability and development risk. Estimated manufacturing costs for 5-kW stacks were in the range of $139/kW to $179/kW. The risk assessment identified a number of technical issues that would need to be considered during development. Phase II development work focused on development of planar solid oxide fuel cell elements, using a number of ceramic manufacturing methods, including tape casting, colloidal-spray deposition, screen printing, spin-coating, and sintering. Several processes were successfully established for fabrication of anode-supported, thin-film electrolyte cells, with performance levels at or near the state-of-the-art. The work in Phase III involved scale-up of cell manufacturing methods, development of non-destructive evaluation methods, and comprehensive electrical and electrochemical testing of solid oxide fuel cell materials and components.

  16. Biomass fuel use in agriculture under alternative fuel prices

    SciTech Connect (OSTI)

    Bjornstad, D.J.; Hillsman, E.L.; Tepel, R.C.

    1984-11-01

    A linear programming model is used to analyze cost-competitiveness of biomass fuels in agricultural applications for the projected year 1990. With all else held constant, the prices of conventional fuels are increased and analytically compared to prices for biomass fuel products across a variety of end uses. Potential penetration of biomass fuels is measured as the share of each conventional fuel for which cost savings could be realized by substituting biomass fuels. This study examines the cost competitiveness of biomass fuels produced on farms, relative to conventional fuels (diesel, gasoline, natural gas, LPG, fuel oil, and electricity), as the prices of conventional fuels change. The study is targeted at the year 1990 and considers only fuel use in the agricultural sector. The method of analysis is to project fuel demands for ten farm operations in the year 1990 and to match these with biomass fuel substitutes from ten feedstock and nine process alternatives. In all, 61 feedstock/process combinations are possible. The matching of fuel demands and biomass fuels occurs in a linear programming model that seeks to meet fuel demands at minimum cost. Two types of biomass fuel facilities are considered, assuming a decentralized fuel distribution system. The first includes on-farm production units such as oil presses, low-Btu gasifiers, biogas digestors and direct combustion units. The second type of facility would be run by a farm co-operative. The primary data describing the biomass technologies are cost per unit output, where costs are calculated as first-year capital charges, plus al l allocable operating expenses, less any by-products of value. All costs assume commercial purchase of equipment. Homemade or makeshift installations are not considered. 1 reference.

  17. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Combined Heat & Power, Fuel Cells using...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential, Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Fuel Cells using...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small), Anaerobic Digestion, Fuel...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Schools, State Government, Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Hydroelectric, Combined Heat & Power, Fuel Cells using...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government, Agricultural, Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Landfill Gas, Wind (Small), Hydroelectric (Small), Fuel...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Fuel Cells using...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel Cells using Non-Renewable...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Fuel Cells using...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schools, Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Fuel Cells...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial, Residential Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Fuel Cells...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multifamily Residential, Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Hydrogen, Fuel Cells using...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Government, Agricultural, Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Fuel Cells...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government, Agricultural, Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel Cells using...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Municipal Utilities, Residential, Cooperative Utilities, Institutional Savings Category: Solar Photovoltaics, Biomass, Hydroelectric, Hydrogen, Combined Heat & Power, Fuel Cells...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Anaerobic Digestion, Fuel Cells using Renewable Fuels Dollar and Energy Savings Loans Renewable energy projects may be eligible for a loan under one of two circumstances....

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Municipal Solid Waste, Fuel Cells using Non-Renewable Fuels, Landfill Gas,...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government Savings Category: Solar Water Heat, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Landfill Gas,...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Institutional Savings Category: Solar Thermal Electric, Solar Photovoltaics, Wind (All), Hydroelectric, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Wind (Small),...

  17. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Solar Water Heat, Solar Photovoltaics, Wind (All), Geothermal Heat Pumps, Fuel Cells using Non-Renewable Fuels, Water Heaters, Lighting, Lighting...

  18. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    natural gas or fuel oil to an alternate fuel or power source excluding propane, butane, napht... Eligibility: Commercial, Industrial Savings Category: Geothermal Electric,...

  19. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels Dollar and Energy Savings Loans Renewable energy projects may be eligible for a loan under one of two...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    EE, Wind (Small), Hydroelectric (Small), Fuel Cells using Renewable Fuels Dollar and Energy Savings Loans Renewable energy projects may be eligible for a loan under one of two...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Utilities, Institutional Savings Category: Solar Photovoltaics, Biomass, Hydroelectric, Hydrogen, Combined Heat & Power, Fuel Cells using Non-Renewable Fuels, Tidal, Wave, Ocean...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    (Small), Fuel Cells using Renewable Fuels Dollar and Energy Savings Loans Renewable energy projects may be eligible for a loan under one of two circumstances. First, a project...

  3. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    efficiency projects which... Eligibility: Commercial Savings Category: Solar Water Heat, Solar Photovoltaics, Fuel Cells using Non-Renewable Fuels, Lighting, Lighting Controls...

  4. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of converting natural gas or fuel oil to an alternate fuel or power source excluding propane, butane, napht... Eligibility: Commercial, Industrial Savings Category: Geothermal...

  5. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Dollar and Energy Savings Loans The Nebraska Dollar...

  6. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Fuel Cells using Non-Renewable Fuels, Landfill...

  7. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category: Solar - Passive, Solar Water Heat, Solar Space Heat, Solar Photovoltaics, Wind (All), Biomass, Geothermal Heat Pumps, Fuel Cells using Non-Renewable Fuels,...

  8. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    not identified, Wind (Small), Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Comprehensive Energy Savings Plan for State Facilities Energy Reduction...

  9. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel Cells using Non-Renewable Fuels,...

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Supplier Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Hydroelectric, Fuel Cells using Non-Renewable Fuels,...

  11. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Institutional Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Biomass, Municipal Solid Waste, Fuel Cells using Non-Renewable Fuels,...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Residential Savings Category: Fuel Cells using Non-Renewable Fuels, Clothes Washers, Dishwasher, RefrigeratorsFreezers, Water Heaters, Furnaces, Boilers, Heat Pumps, Air...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Local Government Savings Category: Solar - Passive, Solar Water Heat, Solar Space Heat, Solar Photovoltaics, Wind (All), Biomass, Fuel Cells using Non-Renewable Fuels,...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savings Category: Solar Water Heat, Solar Space Heat, Solar Thermal Process Heat, Solar Photovoltaics, Wind (All), Fuel Cells using Non-Renewable Fuels, Hydroelectric...

  15. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial, Residential Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Hydroelectric, Fuel Cells using Non-Renewable Fuels, Wind...

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Industrial, Agricultural Savings Category: Geothermal Electric, Solar Thermal Electric, Solar Photovoltaics, Wind (All), Hydroelectric, Fuel Cells using Non-Renewable Fuels,...

  17. Novel Material for Efficient and Low-cost Separation of Gases for Fuels and Plastics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Material for Efficient and Low-Cost Separation of Gases for Fuels and Plastics Work was performed at University of California and supported by the Center for Gas Separations Relevant to Clean Energy Technologies EFRC. Bloch, E. D.; Queen, W. L.; Krishna, R.; Zadrozny, J. M.; Brown, C. M.; Long, J. R. Science 2012, 335, 1606-1610 Left: Crystal structure of Fe 2 (dobdc)-ethylene showing Fe (orange), O(red), C(gray), and D(blue) atoms. The view along the [001] direction shows an ethylene molecule

  18. Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kick-off Meeting, Wash. D.C - 10/01/2009 Materials and Modules for Low Cost, High Performance Fuel Cell Humidifiers Prime Contractor: W. L. Gore & Associates Elkton, MD Principal Investigator: William B. Johnson Sub-Contractor: dPoint Technologies Vancouver, BC W. L. Gore & Associates, Inc. DOE Kick-off Meeting, Wash. D.C - 10/01/2009 Ahluwalia, et. al, ibid. Mirza, Z. DOE Hydrogen Program Review, June 9-13, 2008; Washington, DC Background W. L. Gore & Associates, Inc. DOE Kick-off

  19. Low-Risk and Cost-Effective Prior Savings Estimates for Large-Scale Energy Conservation Projects in Housing: Learning from the Fort Polk GHP Project

    SciTech Connect (OSTI)

    Shonder, John A; Hughes, Patrick; Thornton, Jeff W.

    1997-08-01

    Many opportunities exist for large-scale energy conservation projects in housing: military housing, federally-subsidized low-income housing, and planned communities (condominiums, townhomes, senior centers) to name a few. Energy savings performance contracting (ESPC) is now receiving greater attention, as a means to implement such projects. This paper proposes an improved method for prior (to construction) savings estimates for these projects. More accurate prior estimates reduce project risk, decrease financing costs, and help avoid post-construction legal disputes over performance contract baseline adjustments. The proposed approach to prior estimates is verified against data from Fort Polk, LA. In the course of evaluating the ESPC at Fort Polk, Louisiana, we have collected energy use data - both at the electrical feeder level and at the level of individual residences - which allowed us to develop calibrated engineering models which accurately predict pre-retrofit energy consumption. We believe that such calibrated models could be used to provide much more accurate estimates of energy savings in retrofit projects, particularly in cases where the energy consumption of large populations of housing can be captured on one or a few meters. The improved savings estimating approach described here is based on an engineering model calibrated to field-collected data from the pre-retrofit period. A dynamic model of pre-retrofit energy use was developed for all housing and non-housing loads on a complete electrical feeder at Fort Polk. The feeder serves 46 buildings containing a total of 200 individual apartments. Of the 46 buildings, there are three unique types, and among these types the only difference is compass orientation. The model included the heat transfer characteristics of the buildings, the pre-retrofit air source heat pump, a hot water consumption model and a profile for electrical use by lights and other appliances. Energy consumption for all 200 apartments was

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Qualifying Wood Stove Deduction This incentive allows Arizona taxpayers to deduct the cost of converting an...

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Commercial Refrigeration Rebate Program Efficiency Vermont offers financial incentives to cover the incremental costs...

  2. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Utilities Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Renewable Energy Cost Recovery Incentive Payment In May 2005, Washington enacted Senate Bill...

  3. Manufacturing Cost Analysis of 100 and 250 kW Fuel Cell Systems...

    Broader source: Energy.gov (indexed) [DOE]

    Both polymer electrolyte membrane (PEM) fuel cell stacks and solid oxide fuel cell (SOFC) ... kW Direct Hydrogen Polymer Electrolyte Membrane (PEM) Fuel Cell for Material Handling ...

  4. Establishing a Cost Basis for Converting the High Flux Isotope Reactor from High Enriched to Low Enriched Uranium Fuel

    SciTech Connect (OSTI)

    Primm, Trent; Guida, Tracey

    2010-02-01

    Under the auspices of the Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors Program, the National Nuclear Security Administration /Department of Energy (NNSA/DOE) has, as a goal, to convert research reactors worldwide from weapons grade to non-weapons grade uranium. The High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab (ORNL) is one of the candidates for conversion of fuel from high enriched uranium (HEU) to low enriched uranium (LEU). A well documented business model, including tasks, costs, and schedules was developed to plan the conversion of HFIR. Using Microsoft Project, a detailed outline of the conversion program was established and consists of LEU fuel design activities, a fresh fuel shipping cask, improvements to the HFIR reactor building, and spent fuel operations. Current-value costs total $76 million dollars, include over 100 subtasks, and will take over 10 years to complete. The model and schedule follows the path of the fuel from receipt from fuel fabricator to delivery to spent fuel storage and illustrates the duration, start, and completion dates of each subtask to be completed. Assumptions that form the basis of the cost estimate have significant impact on cost and schedule.

  5. Evaluation of Federal Energy Savings Performance Contracting -- Methodology for Comparing Processes and Costs of ESPC and Appropriatins-Funded Energy Projects

    SciTech Connect (OSTI)

    Hughes, P.J.

    2002-10-08

    Federal agencies have had performance contracting authority since 1985, when Congress first authorized agencies to enter into shared energy savings agreements with Public Law 99-272, the Consolidated Omnibus Budget Reconciliation Act. By the end of FY 2001, agencies had used energy savings performance contracts (ESPCs) to attract private-sector investment of over $1 billion to improve the energy efficiency of federal buildings. Executive Order 13123 directs agencies to maximize their use of alternative financing contracting mechanisms such as ESPCs when life-cycle cost effective to reduce energy use and cost in their facilities and operations. Continuing support for ESPCs at the Administration and Congressional levels is evident in the pending comprehensive national energy legislation, which repeals the sunset provision on ESPC authority and extends ESPC authority to water savings projects. Despite the Congressional and Presidential directives to use ESPCs, some agencies have been reluctant to do so. Decision makers in these agencies see no reason to enter into long-term obligations to pay interest on borrowed money out of their own operating budgets if instead Congress will grant them appropriations to pay for the improvements up front. Questions frequently arise about whether pricing in ESPCs, which are negotiated for best value, is as favorable as prices obtained through competitive sourcing, and whether ESPC as a means of implementing energy conservation projects is as life-cycle cost effective as the standard practice of funding these projects through appropriations. The lack of any quantitative analysis to address these issues was the impetus for this study. ESPCs are by definition cost-effective because of their ''pay-from-savings'' requirement and guarantee, but do their interest costs and negotiated pricing extract an unreasonably high price? Appropriations seem to be the least-cost option, because the U.S. Treasury can borrow money at lower interest rates

  6. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas Fueled Power Plants: August 2012 - December 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Study Manual Cost Study Manual Update 6/29/12. Memo regarding Cost Study Manual (60.85 KB) Cost Study Manual (334.89 KB) More Documents & Publications Contractor Human Resources Management QER - Comment of Energy Innovation 7 QER - Comment of Energy Innovation 6

    Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants August 2012 - December 2013 S. Venkataraman, G. Jordan, and M. O'Connor GE Energy Schenectady, New York N. Kumar and S. Lefton Intertek AIM

  7. Novel, low-cost separator plates and flow-field elements for use in PEM fuel cells

    SciTech Connect (OSTI)

    Edlund, D.J.

    1996-12-31

    PEM fuel cells offer promise for a wide range of applications including vehicular (e.g., automotive) and stationary power generation. The performance and cost targets that must be met for PEM technology to be commercially successful varies to some degree with the application. However, in general the cost of PEM fuel cell stacks must be reduced substantially if they are to see widespread use for electrical power generation. A significant contribution to the manufactured cost of PEM fuel cells is the machined carbon plates that traditionally serve as bipolar separator plates and flow-field elements. In addition, carbon separator plates are inherently brittle and suffer from breakage due to shock, vibration, and improper handling. This report describes a bifurcated separator device with low resistivity, low manufacturing cost, compact size and durability.

  8. Energy Efficiency Improvement and Cost Saving Opportunities for the U.S. Iron and Steel Industry An ENERGY STAR(R) Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Worrell, Ernst; Blinde, Paul; Neelis, Maarten; Blomen, Eliane; Masanet, Eric

    2010-10-21

    Energy is an important cost factor in the U.S iron and steel industry. Energy efficiency improvement is an important way to reduce these costs and to increase predictable earnings, especially in times of high energy price volatility. There are a variety of opportunities available at individual plants in the U.S. iron and steel industry to reduce energy consumption in a cost-effective manner. This Energy Guide discusses energy efficiency practices and energy-efficient technologies that can be implemented at the component, process, facility, and organizational levels. A discussion of the structure, production trends, energy consumption, and greenhouse gas emissions of the iron and steel industry is provided along with a description of the major process technologies used within the industry. Next, a wide variety of energy efficiency measures are described. Many measure descriptions include expected savings in energy and energy-related costs, based on case study data from real-world applications in the steel and related industries worldwide. Typical measure payback periods and references to further information in the technical literature are also provided, when available. The information in this Energy Guide is intended to help energy and plant managers in the U.S. iron and steel industry reduce energy consumption and greenhouse gas emissions in a cost-effective manner while maintaining the quality of products manufactured. Further research on the economics of all measures?and on their applicability to different production practices?is needed to assess their cost effectiveness at individual plants.

  9. DOE's Energy Savers Website Helps Consumers "Stay Warm, Save...

    Energy Savers [EERE]

    be more energy efficient and save on energy costs. The information focuses on proactive ways to implement simple, cost-effective, energy saving solutions for both homes and ...

  10. Momentum Savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that drives any Momentum Savings analysis. While program savings often have receipts, rebate forms, or pre- and post- engineering measurements, Momentum Savings-those efficient...

  11. The Business Case for Fuel Cells 2013: Reliability, Resiliency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings This report, compiled by Fuel ...

  12. The Business Case for Fuel Cells 2013: Reliability, Resiliency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Reliability, Resiliency & Savings The Business Case for Fuel Cells 2013: Reliability, Resiliency & Savings This report, compiled by Fuel Cells 2000 with support from the Fuel ...

  13. Saving Water Saves Energy

    SciTech Connect (OSTI)

    McMahon, James E.; Whitehead, Camilla Dunham; Biermayer, Peter

    2006-06-15

    Hot water use in households, for showers and baths as wellas for washing clothes and dishes, is a major driver of household energyconsumption. Other household uses of water (such as irrigatinglandscaping) require additional energy in other sectors to transport andtreat the water before use, and to treat wastewater. In California, 19percent of total electricity for all sectors combined and 32 percent ofnatural gas consumption is related to water. There is a criticalinterdependence between energy and water systems: thermal power plantsrequire cooling water, and water pumping and treatment require energy.Energy efficiency can be increased by a number of means, includingmore-efficient appliances (e.g., clothes washers or dishwashers that useless total water and less heated water), water-conserving plumbingfixtures and fittings (e.g., showerheads, faucets, toilets) and changesin consumer behavior (e.g., lower temperature set points for storagewater heaters, shorter showers). Water- and energy-conserving activitiescan help offset the stress imposed on limited water (and energy) suppliesfrom increasing population in some areas, particularly in drought years,or increased consumption (e.g., some new shower systems) as a result ofincreased wealth. This paper explores the connections between householdwater use and energy, and suggests options for increased efficiencies inboth individual technologies and systems. Studies indicate that urbanwater use can be reduced cost-effectively by up to 30 percent withcommercially available products. The energy savings associated with watersavings may represent a large additional and largely untappedcost-effective opportunity.

  14. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    SciTech Connect (OSTI)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  15. Low Cost High-H2 Syngas Production for Power and Liquid Fuels

    SciTech Connect (OSTI)

    Zhou, S. James

    2015-07-31

    This report summarizes the technical progress made of the research project entitled “Low Cost High-H2 Syngas Production for Power and Liquid Fuels,” under DOE Contract No. DE-FE-0011958. The period of performance was October 1, 2013 through July 30, 2015. The overall objectives of this project was to determine the technical and economic feasibility of a systems approach for producing high hydrogen syngas from coal with the potential to reduce significantly the cost of producing power, chemical-grade hydrogen or liquid fuels, with carbon capture to reduce the environmental impact of gasification. The project encompasses several areas of study and the results are summarized here. (1) Experimental work to determine the technical feasibility of a novel hybrid polymer/metal H2-membrane to recover pure H2 from a coal-derived syngas was done. This task was not successful. Membranes were synthesized and show impermeability of any gases at required conditions. The cause of this impermeability was most likely due to the densification of the porous polymer membrane support made from polybenzimidazole (PBI) at test temperatures above 250 °C. (2) Bench-scale experimental work was performed to extend GTI's current database on the University of California Sulfur Recovery Process-High Pressure (UCSRP-HP) and recently renamed Sulfur Removal and Recovery (SR2) process for syngas cleanup including removal of sulfur and other trace contaminants, such as, chlorides and ammonia. The SR2 process tests show >90% H2S conversion with outlet H2S concentrations less than 4 ppmv, and 80-90% ammonia and chloride removal with high mass transfer rates. (3) Techno-economic analyses (TEA) were done for the production of electric power, chemical-grade hydrogen and diesel fuels, from a mixture of coal- plus natural gas-derived syngas using the Aerojet Rocketdyne (AR) Advanced Compact coal gasifier and a natural gas partial oxidation reactor (POX) with SR2 technology. Due to the unsuccessful

  16. Existing Whole-House Case Study: Evaluation of Missed Energy Saving Opportunity Based on Illinois Home Performance Program Field Data: Homeowner Selected Upgrades vs. Cost-Optimized Solutions, Chicago, Illinois

    SciTech Connect (OSTI)

    2014-07-01

    Expanding on previous research by PARR, this study compares measure packages installed during 800 Illinois Home Performance with ENERGY STAR (IHP) residential retrofits to those recommended as cost-optimal by Building Energy Optimization (BEopt) modeling software. In previous research, cost-optimal measure packages were identified for 15 Chicagoland single family housing archetypes, called housing groups. In the present study, 800 IHP homes are first matched to one of these 15 housing groups, and then the average measures being installed in each housing group are modeled using BEopt to estimate energy savings. For most housing groups, the differences between recommended and installed measure packages is substantial. By comparing actual IHP retrofit measures to BEopt-recommended cost-optimal measures, missed savings opportunities are identified in some housing groups; also, valuable information is obtained regarding housing groups where IHP achieves greater savings than BEopt-modeled, cost-optimal recommendations.

  17. Federal Energy and Water Management Award Winner 22nd Operations Group Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Office | Department of Energy 22nd Operations Group Fuel Efficiency Office Federal Energy and Water Management Award Winner 22nd Operations Group Fuel Efficiency Office fewm13_mcconnellafb_highres.pdf (4.97 MB) fewm13_mcconnellafb.pdf (2.03 MB) More Documents & Publications Air Force Achieves Fuel Efficiency through Industry Best Practices Potential for the Use of Energy Savings Performance Contracts to Reduce Energy Consumption and Provide Energy and Cost Savings in

  18. On the Path to Low Cost Renewable Fuels, an Important Breakthrough...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | ... in biomass as part of the cellulosic ethanol-to-renewable fuel conversion process. | ...

  19. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Brochure), Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petro- leum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numer- ous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mow- ers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment

  20. Alternative Fuel and Advanced Technology Commercial Lawn Equipment (Spanish version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    Nelson, Erik

    2015-06-01

    Powering commercial lawn equipment with alternative fuels or advanced engine technology is an effective way to reduce U.S. dependence on petroleum, reduce harmful emissions, and lessen the environmental impacts of commercial lawn mowing. Numerous alternative fuel and fuel-efficient advanced technology mowers are available. Owners turn to these mowers because they may save on fuel and maintenance costs, extend mower life, reduce fuel spillage and fuel theft, and demonstrate their commitment to sustainability.