Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

2

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Car Buyers and Fuel Economy? Energy Policy, vol. 35, 2007.Fuel Economy: What Drives Consumer Choice? BY TOMyou think about fuel economy? Rather, we listened closely

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

3

Midwest (PADD 2) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

4

PAD District 5 Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

5

PAD District 4 Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

6

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So its unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

7

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

decisions around cars, fuel economy, and hybrid vehiclesfuel-ef?cient compact cars. The hybrid buyers in this studycar models are often small. So its unsurprising that even hybrid

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

8

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas stationif that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

9

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

N E W S . Reporters mob gas stations to ask drivers how theymost recent trip to a gas stationif that trip had been madevariations between gas stations, or differences in fuel

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

10

U.S. Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA) Indexed Site

Barrels, Except Where Noted) Barrels, Except Where Noted) Area: U.S. East Coast (PADD 1) Midwest (PADD 2) Gulf Coast (PADD 3) Rocky Mountain (PADD 4) West Coast (PADD 5) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2007 2008 2009 2010 2011 2012 View History Crude Oil 0 0 0 0 0 0 1986-2012 Liquefied Petroleum Gases 2,663 2,930 2,866 2,404 1,291 1,521 1986-2012 Distillate Fuel Oil 420 472 339 440 483 539 1986-2012 Residual Fuel Oil 1,844 1,390 1,249 980 759 540 1986-2012 Still Gas 247,106 237,161 220,191 219,890 217,716 220,094 1986-2012 Petroleum Coke 88,015 81,811 82,516 82,971 84,053 85,190 1986-2012 Marketable Petroleum Coke

11

East Coast (PADD 1) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

12

Gulf Coast (PADD 3) Fuel Consumed at Refineries  

U.S. Energy Information Administration (EIA)

Other products includes pentanes plus, other hydrocarbons, oxygenates, hydrogen, unfinished oils, gasoline, special naphthas, jet fuel, lubricants, asphalt and road ...

13

Retail Price of No. 2 Fuel Oil to Residential Consumers  

U.S. Energy Information Administration (EIA)

(Dollars per Gallon Excluding Taxes) Data ... total No. 2 diesel fuel has been eliminated to help ensure that sensitive data reported to EIA by ...

14

Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications  

DOE Green Energy (OSTI)

Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

Carlstrom, Charles, M., Jr.

2009-07-07T23:59:59.000Z

15

Cost of Fuel to General Electricity  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Fuel to Generate Electricity of Fuel to Generate Electricity Cost of Fuel to Generate Electricity Herb Emmrich Gas Demand Forecast, Economic Analysis & Tariffs Manager SCG/SDG&E SCG/SDG&E Federal Utility Partnership Working Group (FUPWG) 2009 Fall Meeting November 18, 2009 Ontario, California The Six Main Costs to Price Electricity are:  Capital costs - the cost of capital investment (debt & equity), depreciation, Federal & State income taxes and property taxes and property taxes  Fuel costs based on fuel used to generate electricity - hydro, natural gas, coal, fuel oil, wind, solar, photovoltaic geothermal biogas photovoltaic, geothermal, biogas  Operating and maintenance costs  Transmission costs  Distribution costs  Social adder costs - GHG adder, low income adder,

16

The Pacific Northwest residential consumer: Perceptions and preferences of home heating fuels, major appliances, and appliance fuels  

SciTech Connect

In 1983 the Bonneville Power Administration contracted with the Pacific Northwest Laboratory (PNL) to conduct an analysis of the marketing environment for Bonneville's conservation activities. Since this baseline residential study, PNL has conducted two follow up market research projects: Phase 2 in 1985, and Phase 3, in 1988. In this report the respondents' perceptions, preferences, and fuel switching possibilities of fuels for home heating and major appliances are examined. To aid in effective target marketing, the report identifies market segments according to consumers' demographics, life-cycle, attitudes, and opinions.

Harkreader, S.A.; Hattrup, M.P.

1988-09-01T23:59:59.000Z

17

Survey Evidence on the Willingness of U.S. Consumers to Pay for Automotive Fuel Economy  

Science Conference Proceedings (OSTI)

Prospect theory, which was awarded the Nobel Prize in Economics in 2002, holds that human beings faced with a risky bet will tend to value potential losses about twice as much as potential gains. Previous research has demonstrated that prospect theory could be sufficient to explain an energy paradox in the market for automotive fuel economy. This paper analyzes data from four random sample surveys of 1,000 U.S. households each in 2004, 2011, 2012 and 2013. Households were asked about willingness to pay for future fuel savings as well as the annual fuel savings necessary to justify a given upfront payment. Payback periods inferred from household responses are consistent over time and across different formulations of questions. Mean calculated payback periods are short, about 3 years, but there is substantial dispersion among individual responses. Calculated payback periods do not appear to be correlated with the attributes of respondents. Respondents were able to quantitatively describe their uncertainty about both vehicle fuel economy and future fuel prices. Simulation of loss averse behavior based on this stated uncertainty illustrate how loss aversion could lead consumers to substantially undervalue future fuel savings relative to their expected value.

Greene, David L [ORNL; Evans, David H [Sewanee, The University of the South; Hiestand, John [Indiana University

2013-01-01T23:59:59.000Z

18

Fuel excise taxes and consumer gasoline demand: comparing average retail price effects and gasoline tax effects.  

E-Print Network (OSTI)

??Interest in using gasoline taxes as a gasoline consumption reduction policy has increased. This study asks three questions to help determine how consumer gasoline consumption (more)

Sauer, William

19

Silicon Based Solid Oxide Fuel Cell Chip for Portable Consumer Electronics -- Final Technical Report  

Science Conference Proceedings (OSTI)

LSIs fuel cell uses efficient Solid Oxide Fuel Cell (SOFC) technology, is manufactured using Micro Electrical Mechanical System (MEMS) fabrication methods, and runs on high energy fuels, such as butane and ethanol. The companys Fuel Cell on a Chip technology enables a form-factor battery replacement for portable electronic devices that has the potential to provide an order-of-magnitude run-time improvement over current batteries. Further, the technology is clean and environmentally-friendly. This Department of Energy funded project focused on accelerating the commercialization and market introduction of this technology through improvements in fuel cell chip power output, lifetime, and manufacturability.

Alan Ludwiszewski

2009-06-29T23:59:59.000Z

20

The Enbridge Consumers Gas "Steam Saver" Program ("As Found" Performance and Fuel Saving Projects from Audits of 30 Steam Plants)  

E-Print Network (OSTI)

In Canada, medium and large sized steam plants consume approximately 442 Billion Cubic Feet (12.5 Billion Cubic Meters) of natural gas annually. This is 25% of all natural gas delivered to all customers. (Small steam plants and Hydronic heating boilers consume another 15%) Enbridge Consumers Gas, a local gas distribution company located in Toronto, has approximately 400 Industrial and Institutional customers who own medium or large sized steam plants. During the past three years, Enbridge has developed a comprehensive steam energy efficiency program called "Steam Saver". This program is aimed at these 400 customers. The heart of this program is the boiler plant audit and performance test. This paper describes the fuel saving results for more than 30 medium and large sized boiler plants where audits have been completed and projects have been implemented. The savings in cubic feet per year of natural gas are broken down according to project or technology type. The financial payback is indicated for each category. Eleven of the larger plants have been "benchmarked". Plant efficiency, fuel consumption, steam costs and other performance variables are tabulated for these plants.

Griffin, B.

2000-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel consumption: Industrial, residential, and general studies. (Latest citations from the NTIS Bibliographic database). Published Search  

SciTech Connect

The bibliography contains citations concerning fuel consumption in industrial and residential sectors. General studies of fuel supply, demand, policy, forecasts, and consumption models are presented. Citations examine fuel information and forecasting systems, fuel production, international economic and energy activities, heating oils, and pollution control. Fuel consumption in the transportation sector is covered in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1994-08-01T23:59:59.000Z

22

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

Science Conference Proceedings (OSTI)

The availability of retail stations can be a significant barrier to the adoption of alternative fuel light-duty vehicles in household markets. This is especially the case during early market growth when retail stations are likely to be sparse and when vehicles are dedicated in the sense that they can only be fuelled with a new alternative fuel. For some bi-fuel vehicles, which can also fuel with conventional gasoline or diesel, limited availability will not necessarily limit vehicle sales but can limit fuel use. The impact of limited availability on vehicle purchase decisions is largely a function of geographic coverage and consumer perception. In this paper we review previous attempts to quantify the value of availability and present results from two studies that rely upon distinct methodologies. The first study relies upon stated preference data from a discrete choice survey and the second relies upon a station clustering algorithm and a rational actor value of time framework. Results from the two studies provide an estimate of the discrepancy between stated preference cost penalties and a lower bound on potential revealed cost penalties.

Melaina, M.; Bremson, J.; Solo, K.

2013-01-01T23:59:59.000Z

23

Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles: Preprint  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Consumer Convenience and the Consumer Convenience and the Availability of Retail Stations as a Market Barrier for Alternative Fuel Vehicles Preprint M. Melaina National Renewable Energy Laboratory J. Bremson University of California Davis K. Solo Lexidyne, LLC Presented at the 31st USAEE/IAEE North American Conference Austin, Texas November 4-7, 2012 Conference Paper NREL/CP-5600-56898 January 2013 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US Government and Alliance retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.

24

Radiological environs study at a fuel fabrication facility. [General Electric Fuel Fabrication Plant at Wilmington, NC  

SciTech Connect

Field studies were conducted to detect environmental contamination from fuel fabrication plant effluents. The plant chosen for study was operated by the General Electric Company, Nuclear Fuel Division, at Wilmington, NC. The facility operates continuously using the ammonium diuranate (ADU) process to convert 2.0 to 2.2% enriched UF/sub 6/ to UO/sub 2/ fuel. Continuous air samplers at five sites measured the concentrations of /sup 234/U and /sup 238/U in air for 36 one-week intervals. River water was sampled at nine locations above and below the plant discharge point during each of three field surveys. The atmospheric concentrations of /sup 234/U and /sup 238/U appeared to vary according to a log-normal distribution. The annual facility release of approximately 2 to 3 mCi uranium to the atmosphere would add from 0.01 to 0.2 fCi/m/sup 3/ uranium in the atmospheric environs. An individual residing continuously at the nearest residence is predicted to receive a 50-year dose commitment of 0.9 mrem to the lung. The approximately 1 Ci/y of uranium liquid effluent released would increase the uranium concentration in Northeast Cape Fear estuary about 3 kilometers downstream by 0.3 pCi/liter. Although this water is not potable and is not used for any potable water supply, ingestion of water containing uranium at this concentration for a year would deliver a 3-mrem dose commitment to the bone.

Lyon, R.J.; Shearin, R.L.; Broadway, J.A.

1978-10-01T23:59:59.000Z

25

Consumers (Consumer Acceptance and Charging Infrastructure) Consumer...  

NLE Websites -- All DOE Office Websites (Extended Search)

CONSUMERS (CONSUMER ACCEPTANCE AND CHARGING INFRASTRUCTURE) EV Everywhere Workshop July 30, 2012 Consumer Acceptance Group A Breakout Session 1 - Brainstorm Consumer Acceptance...

26

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

with the more-polluting fossil fuels being consumed abroaddomestic fuel consumers and fossil fuel suppliers. Numericalequivalent quantity of fossil fuel but may replace more or

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

27

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

28

Processing of FRG high-temperature gas-cooled reactor fuel elements at General Atomic under the US/FRG cooperative agreement for spent fuel elements  

Science Conference Proceedings (OSTI)

The Federal Republic of Germany (FRG) and the United States (US) are cooperating on certain aspects of gas-cooled reactor technology under an umbrella agreement. Under the spent fuel treatment development section of the agreement, both FRG mixed uranium/ thorium and low-enriched uranium fuel spheres have been processed in the Department of Energy-sponsored cold pilot plant for high-temperature gas-cooled reactor (HTGR) fuel processing at General Atomic Company in San Diego, California. The FRG fuel spheres were crushed and burned to recover coated fuel particles suitable for further treatment for uranium recovery. Successful completion of the tests described in this paper demonstrated certain modifications to the US HTGR fuel burining process necessary for FRG fuel treatment. Results of the tests will be used in the design of a US/FRG joint prototype headend facility for HTGR fuel.

Holder, N.D.; Strand, J.B.; Schwarz, F.A.; Drake, R.N.

1981-11-01T23:59:59.000Z

29

List of Other Alternative Fuel Vehicles Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Vehicles Incentives Fuel Vehicles Incentives Jump to: navigation, search The following contains the list of 8 Other Alternative Fuel Vehicles Incentives. CSV (rows 1 - 8) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate Tax Credit Louisiana Commercial Renewable Fuel Vehicles

30

Natural Gas Deliveries to Commercial Consumers (Including Vehicle ...  

U.S. Energy Information Administration (EIA)

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in Wisconsin (Million Cubic Feet)

31

General Circulation Model Calculations of the Direct Radiative Forcing by Anthropogenic Sulfate and Fossil-Fuel Soot Aerosol  

Science Conference Proceedings (OSTI)

A new radiation code within a general circulation model is used to assess the direct solar and thermal radiative forcing by sulfate aerosol of anthropogenic origin and soot aerosol from fossil-fuel burning. The radiative effects of different ...

J. M. Haywood; D. L. Roberts; A. Slingo; J. M. Edwards; K. P. Shine

1997-07-01T23:59:59.000Z

32

General-purpose heat source: Research and development program. Process evaluation, fuel pellet GF-47  

DOE Green Energy (OSTI)

The general-purpose heat source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because the potential for a launch abort or return from orbit exists for any space mission, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions has documented the response of the GPHS heat source to a variety of fragment-impact, aging, atmospheric reentry, and Earth-impact conditions. Although heat sources for previous missions were fabricated by the Westinghouse Savannah River Company (WSRC), GPHS fueled-clads required for the Cassini mission to Saturn will be fabricated by Los Alamos National Laboratory (LANL). This evaluation is part of an ongoing program to determine the similarity of GPHS fueled clads and fuel pellets fabricated at LANL to those fabricated at WSRC. Pellet GF-47, which was fabricated at LANL in late 1994, was submitted for chemical and ceramographic analysis. The results indicated that the pellet had a chemical makeup and microstructure within the range of material fabricated at WSRC in the early 1980s.

Reimus, M.A.H.; George, T.G.

1995-12-01T23:59:59.000Z

33

Advanced Ultrasonic Inspection Techniques for General Purpose Heat Source Fueled Clad Closure Welds  

DOE Green Energy (OSTI)

A radioisotope thermoelectric generator is used to provide a power source for long-term deep space missions. This General Purpose Heat Source (GPHS) is fabricated using iridium clad vent sets to contain the plutonium oxide fuel pellets. Integrity of the closure weld is essential to ensure containment of the plutonium. The Oak Ridge Y-12 Plant took the lead role in developing the ultrasonic inspection for the closure weld and transferring the inspection to Los Alamos National Laboratory for use in fueled clad inspection for the Cassini mission. Initially only amplitude and time-of-flight data were recorded. However, a number of benign geometric conditions produced signals that were larger than the acceptance threshold. To identify these conditions, a B-scan inspection was developed that acquired full ultrasonic waveforms. Using a test protocol the B-scan inspection was able to identify benign conditions such as weld shield fusion and internal mismatch. Tangential radiography was used to confirm the ultrasonic results. All but two of 29 fueled clads for which ultrasonic B-scan data was evaluated appeared to have signals that could be attributed to benign geometric conditions. This report describes the ultrasonic inspection developed at Y-12 for the Cassini mission.

Moyer, M.W.

2001-01-11T23:59:59.000Z

34

Natural Gas Deliveries to Commercial Consumers (Including Vehicle...  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel through 1996) in South Dakota (Million Cubic Feet) Natural Gas Deliveries to Commercial Consumers...

35

Fuel Cell Technologies Office: Fuel Cell Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

36

General Water Quality (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Water Quality (Oklahoma) General Water Quality (Oklahoma) General Water Quality (Oklahoma) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Environmental Regulations Provider Environmental Quality The purpose of this water quality rule is to protect, maintain and improve

37

Alternatives to traditional transportation fuels: An overview  

DOE Green Energy (OSTI)

This report presents the first compilation by the Energy Information Administration (EIA) of information on alternatives to gasoline and diesel fuel. The purpose of the report is: (1) to provide background information on alternative transportation fuels and replacement fuels compared with gasoline and diesel fuel, and (2) to furnish preliminary estimates of alternative transportation fuels and alternative fueled vehicles as required by the Energy Policy Act of 1992 (EPACT), Title V, Section 503, ``Replacement Fuel Demand Estimates and Supply Information.`` Specifically, Section 503 requires the EIA to report annually on: (1) the number and type of alternative fueled vehicles in existence the previous year and expected to be in use the following year, (2) the geographic distribution of these vehicles, (3) the amounts and types of replacement fuels consumed, and (4) the greenhouse gas emissions likely to result from replacement fuel use. Alternative fueled vehicles are defined in this report as motorized vehicles licensed for on-road use, which may consume alternative transportation fuels. (Alternative fueled vehicles may use either an alternative transportation fuel or a replacement fuel.) The intended audience for the first section of this report includes the Secretary of Energy, the Congress, Federal and State agencies, the automobile manufacturing industry, the transportation fuel manufacturing and distribution industries, and the general public. The second section is designed primarily for persons desiring a more technical explanation of and background for the issues surrounding alternative transportation fuels.

Not Available

1994-06-01T23:59:59.000Z

38

Parametric Study of CHF Data, Volume 2: A Generalized Subchannel CHF Correlation for PWR and BWR Fuel Assemblies  

Science Conference Proceedings (OSTI)

This volume describes the development of a generalized subchannel critical heat flux (CHF) correlation for PWR and BWR fuel assemblies. The effects of nonuniform axial heat flux, cold walls, and grid spacers are discussed, and the correlation's performance is compared with a wide range of data.

1983-01-01T23:59:59.000Z

39

Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; George, T.G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States); Moyer, M.W. [Oak Ridge Y-12 Plant, Building 9203, MS-8084, Oak Ridge, Tennessee 37831 (United States); Placr, A. [Westinghouse Savannah River Company, Building 305-A, Aiken, South Carolina 29808 (United States)

1998-01-01T23:59:59.000Z

40

Nondestructive inspection of General Purpose Heat Source (GPHS) fueled clad girth welds  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. The GPHS is fabricated using an iridium-alloy to contain the {sup 238}PuO{sub 2} fuel pellet. GPHS capsules will be utilized in the upcoming Cassini mission to explore Saturn and its moons. The physical integrity of the girth weld is important to mission safety and performance. Because past experience had revealed a potential for initiation of small cracks in the girth weld overlap zone, a nondestructive inspection of each capsule weld is required. An ultrasonic method was used to inspect the welds of capsules fabricated for the Galileo mission. The instrument, transducer, and method used were state of the art at the time (early 1980s). The ultrasonic instrumentation and methods used to inspect the Cassini GPHSs was significantly upgraded from those used for the Galileo mission. GPHSs that had ultrasonic reflectors in excess of the reject specification level were subsequently inspected with radiography to provide additional engineering data used to accept/reject the heat source. This paper describes the Galileo-era ultrasonic instrumentation and methods and the subsequent upgrades made to support testing of Cassini GPHSs. Also discussed is the data obtained from radiographic examination and correlation to ultrasonic examination results.

Reimus, M. A. H.; George, T. G.; Lynch, C.; Padilla, M.; Moniz, P.; Guerrero, A.; Moyer, M. W.; Placr, A. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States); Oak Ridge Y-12 Plant, Building 9203, MS-8084, Oak Ridge, Tennessee 37831 (United States); Westinghouse Savannah River Company, Building 305-A, Aiken, South Carolina 29808 (United States)

1998-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

General analysis of breed-and-burn reactors and limited-separations fuel cycles  

E-Print Network (OSTI)

A new theoretical framework is introduced, the "neutron excess" concept, which is useful for analyzing breed-and-burn (B&B) reactors and their fuel cycles. Based on this concept, a set of methods has been developed which ...

Petroski, Robert C

2011-01-01T23:59:59.000Z

42

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

43

8. Biomass-Derived Liquid Fuels  

U.S. Energy Information Administration (EIA)

8. Biomass-Derived Liquid Fuels B. Fuel Ethanol Production and Market Conditions Ethanol is consumed as fuel in the United States primarily as "gasohol"--a blend ...

44

High performance metal/air fuel cells. Part 1. General review. [Li, Al, Ca, Cd, Mg  

SciTech Connect

Metal/air fuel cells are reviewed in terms of their potential application in electric vehicles. Attention is focused on those metals (light alkali and alkaline earth metals, and aluminum) which, in combination with oxygen, have theoretical energy densities (2--13 kWh/kg-metal) exceeding that of gasoline (utilized in automobiles at 2--3 kWh/kg). Lithium and aluminum have yielded 8- and 4 kWh/kg, respectively, in laboratory experimental cells. The slurry Zn/air system achieves 0.85 kWh/kg-Zn in prototype vehicle cells and is reviewed for comparison. Calcium can probably yield 1.8 kWh/kg-Ca, but its potential as a fuel has not yet been fully explored. The remaining metals appear to be unsuitable for use in aqueous electrolyte fuel cells. The discharge characteristics of lithium, aluminum, and (possibly) calcium/air cells indicate the potential for electric vehicles of the highway performance and minimum range (300 miles) of subcompact automobiles, rapid refueling for unlimited range extension, and the storage in the fuel cell of sufficient metal for ranges in excess of 1000 miles. Barriers to the concept are the economic necessity of recycling cell reaction products (except in the case of calcium), the expansion or creation of vast metal production industries, and the change-over of existing service station infrastructures to allow electric vehicle servicing. The energy efficiency of a transportation system using aluminum was estimated using data on the current aluminum production industry. The total estimated cost of ownership and operation of an aluminum/air cell was 3.0--3.6 cents/km. The relative rarity of lithium would complicate its use. 6 tables.

Cooper, J. F.

1977-08-15T23:59:59.000Z

45

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

46

Small-scale biomass fueled cogeneration systems - A guidebook for general audiences  

Science Conference Proceedings (OSTI)

What is cogeneration and how does it reduce costs? Cogeneration is the production of power -- and useful heat -- from the same fuel. In a typical biomass-fueled cogeneration plant, a steam turbine drives a generator, producing electricity. The plant uses steam from the turbine for heating, drying, or other uses. The benefits of cogeneration can mostly easily be seen through actual samples. For example, cogeneration fits well with the operation of sawmills. Sawmills can produce more steam from their waste wood than they need for drying lumber. Wood waste is a disposal problem unless the sawmill converts it to energy. The case studies in Section 8 illustrate some pluses and minuses of cogeneration. The electricity from the cogeneration plant can do more than meet the in-house requirements of the mill or manufacturing plant. PURPA -- the Public Utilities Regulatory Policies Act of 1978 -- allows a cogenerator to sell power to a utility and make money on the excess power it produces. It requires the utility to buy the power at a fair price -- the utility`s {open_quotes}avoided cost.{close_quotes} This can help make operation of a cogeneration plant practical.

Wiltsee, G.

1993-12-01T23:59:59.000Z

47

Fuel Cell Technologies Office: Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

48

Fuel Cell Technologies Office: Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

49

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

50

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

51

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in target channels and discharged a few times more frequently than the natural-uranium driver fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

52

Vehicle Technologies Office: Fact #418: April 3, 2006 Consumer Preference  

NLE Websites -- All DOE Office Websites (Extended Search)

8: April 3, 2006 8: April 3, 2006 Consumer Preference on Gasoline Tax vs. Fuel Economy Regulation to someone by E-mail Share Vehicle Technologies Office: Fact #418: April 3, 2006 Consumer Preference on Gasoline Tax vs. Fuel Economy Regulation on Facebook Tweet about Vehicle Technologies Office: Fact #418: April 3, 2006 Consumer Preference on Gasoline Tax vs. Fuel Economy Regulation on Twitter Bookmark Vehicle Technologies Office: Fact #418: April 3, 2006 Consumer Preference on Gasoline Tax vs. Fuel Economy Regulation on Google Bookmark Vehicle Technologies Office: Fact #418: April 3, 2006 Consumer Preference on Gasoline Tax vs. Fuel Economy Regulation on Delicious Rank Vehicle Technologies Office: Fact #418: April 3, 2006 Consumer Preference on Gasoline Tax vs. Fuel Economy Regulation on Digg

53

Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 5, 1: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed to someone by E-mail Share Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Facebook Tweet about Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Twitter Bookmark Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Google Bookmark Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Delicious Rank Vehicle Technologies Office: Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel Economy by Speed on Digg Find More places to share Vehicle Technologies Office: Fact #591:

54

Evaluation of Aqueous and Powder Processing Techniques for Production of Pu-238-Fueled General Purpose Heat Sources  

DOE Green Energy (OSTI)

This report evaluates alternative processes that could be used to produce Pu-238 fueled General Purpose Heat Sources (GPHS) for radioisotope thermoelectric generators (RTG). Fabricating GPHSs with the current process has remained essentially unchanged since its development in the 1970s. Meanwhile, 30 years of technological advancements have been made in the fields of chemistry, manufacturing, ceramics, and control systems. At the Department of Energys request, alternate manufacturing methods were compared to current methods to determine if alternative fabrication processes could reduce the hazards, especially the production of respirable fines, while producing an equivalent GPHS product. An expert committee performed the evaluation with input from four national laboratories experienced in Pu-238 handling.

Not Available

2008-06-01T23:59:59.000Z

55

Natural Gas Delivered to Consumers in California (Including ...  

U.S. Energy Information Administration (EIA)

Natural Gas Delivered to Consumers in California (Including Vehicle Fuel) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec; ...

56

Natural Gas Delivered to Consumers in South Dakota (Including...  

Gasoline and Diesel Fuel Update (EIA)

History: Monthly Annual Download Data (XLS File) Natural Gas Delivered to Consumers in South Dakota (Including Vehicle Fuel) (Million Cubic Feet) Natural Gas Delivered to...

57

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

58

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Hydrogen Fuel Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal,...

59

consumer apps list view | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

consumer apps list view consumer apps list view Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer Smart Disclosure Apps This page highlights apps and websites that use Smart Disclosure-style data to empower consumers to make better informed choices. The purpose is to illustrate the kinds of innovative apps-web- and mobile-based-that Smart Disclosure can fuel. The galleries below include both government-produced apps and apps created by innovators outside government that have won Federal challenges. Showing 1 - 19 of 19 results. Resources sort ascending Type Last Updated On Smart Traveler Smart Traveler, the official State Department app for U.S. travelers, invites you to see the world with easy access to frequently updated official country information, travel alerts, travel warnings, maps, U.S. embassy locations, and more. Mobile 09/14/2012

60

Fuel Cell Technologies Office: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel Cell Technologies Office: Hydrogen Infrastructure Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

62

Fuel Cell Technologies Office: Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

63

Fuel Cell Technologies Office: Related Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

64

Fuel Cell Technologies Office: Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

65

Fuel Cell Technologies Office: 2013 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

66

Fuel Cell Technologies Office: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

67

Fuel Cell Technologies Office: Educational Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

68

EERE: Fuel Cell Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

69

Applying augmented reality to consumer garment try-on experience  

Science Conference Proceedings (OSTI)

Experience in this paper refers to the sentimental episode of consumers through service. Through experience or service, consumers can reach their internal sentiment. In terms of the general garment try-on, if consumers cannot experience the practical ... Keywords: augmented reality, consumer, experience, graphical user interface, human-machine interactive system, usability engineering methods

Alfred Chen; Chen-Yuan Kao; Ying-Hsiu Chen; Wen-Cheng Wang

2011-01-01T23:59:59.000Z

70

General Order Ensuring Reliable Electric Service (Louisiana) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Order Ensuring Reliable Electric Service (Louisiana) General Order Ensuring Reliable Electric Service (Louisiana) General Order Ensuring Reliable Electric Service (Louisiana) < Back Eligibility Investor-Owned Utility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Louisiana Program Type Safety and Operational Guidelines Provider Louisiana Public Service Commission The standards set forth herein have been developed to provide consumers, the Louisiana Public Service Commission, and jurisdictional electric utilities with a uniform method of ensuring reliable electric service. The standards shall be applicable to the distribution systems of all electric utilities under the jurisdiction of the Louisiana Public Service

71

List of Fuel Cells Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 1021 Fuel Cells Incentives. CSV (rows 1-500) CSV (rows 501-1000) CSV (rows 1001-1021) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 2003 Climate Change Fuel Cell Buy-Down Program (Federal) Federal Grant Program United States Commercial Nonprofit Schools Local Government State Government Fed. Government Fuel Cells No Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) Environmental Regulations Connecticut Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential

72

Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

A 200 kW, natural gas fired fuel cell was installed at the Richard Stockton College of New Jersey. The purpose of this project was to demonstrate the financial and operational suitability of retrofit fuel cell technology at a medium sized college. Target audience was design professionals and the wider community, with emphasis on use in higher education. ''Waste'' heat from the fuel cell was utilized to supplement boiler operations and provide domestic hot water. Instrumentation was installed in order to measure the effectiveness of heat utilization. It was determined that 26% of the available heat was captured during the first year of operation. The economics of the fuel cell is highly dependent on the prices of electricity and natural gas. Considering only fuel consumed and energy produced (adjusted for boiler efficiency), the fuel cell saved $54,000 in its first year of operation. However, taking into account the price of maintenance and the cost of financing over the short five-year life span, the fuel cell operated at a loss, despite generous subsidies. As an educational tool and market stimulus, the fuel cell attracted considerable attention, both from design professionals and the general public.

Alice M. Gitchell

2006-09-15T23:59:59.000Z

73

Fuel Cell Technologies Office: DOE and FreedomCAR and Fuel Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

74

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Using the Northeast as a regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming that weather is "normal." The previous three winters were warmer than average and generated below normal consumption rates. Last winter, consumers saw large increases over the very low heating oil prices seen during the winter of 1998-1999 but, outside of the cold period in late January/early February they saw relatively low consumption rates due to generally warm weather. Even without particularly sharp cold weather events this winter, we think consumers are likely to see higher average heating oil prices than were seen last winter. If weather is normal, our projections imply New England heating oil

75

What's Up With Fuel Cells? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up With Fuel Cells? Up With Fuel Cells? What's Up With Fuel Cells? June 8, 2010 - 7:30am Addthis Sean Large Intern with the Office of Energy Efficiency and Renewable Energy We hear a lot about renewables like wind and solar these days, but what's the deal with fuel cells and is there a future in them? The truth is, fuel cells have been around for some time now; the idea originated in the 1840's. Though fuel cells come in a variety of forms, they all work in the same general manner: three sandwiched segments - the anode, the electrolyte and the cathode. At each of these segments two different chemical reactions occur. The net result of the two reactions is that fuel is consumed, and an electrical current is created, which can be used to power electrical devices, normally referred to as the load. The only emissions are water or

76

Consumer | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Consumer Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer Welcome to the Smart Disclosure Community This community is a centralized portal to federal government data and resources that can empower consumers to make better informed choices. Access high-value data sets and tools, find data-driven apps, learn about contests, and join the conversation about Smart Disclosure! Check back frequently for updates as we add new data sets, content and resources. Previous Pause Next See winners from smart disclosure apps challenges See winners from smart disclosure apps challenges View More Data that empowers consumers Data that empowers consumers View More Check out new smart disclosure apps Check out new smart disclosure apps View More Consumer Empowerment

77

Fuel Cell Technologies Office: Fuel Cells for Portable Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Session - Fuel Cell Portable Power Perspectives End User Perspective - Industry Consumer Electronics Power (PDF 1.51 MB) Jerry Hallmark, Motorola Portable Power Sources (above...

78

Alternative Fuels Data Center: Natural Gas Fuel Rate Reduction...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Skip to Content Eereheaderlogo U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Alternative Fuels Data...

79

Fuel Cell Technologies Office: Education  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Offices | Consumer Information Education Search Search Help Education EERE Fuel Cell Technologies Office Education Printable Version Share this resource Send a link...

80

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Industrial Consumers (Thousand Gallons)

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

North Carolina No 2 Fuel Oil / Heating Oil Sales/Deliveries to Commercial Consumers (Thousand Gallons)

82

Consumers Energy | Open Energy Information  

Open Energy Info (EERE)

Energy Energy Jump to: navigation, search Name Consumers Energy Place Iowa Utility Id 11788 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighitng Metered Memb Maint Pole HPS 400 W Lighting Outdoor Lighting Metered Existing Pole HPS 100 W Lighting Outdoor Lighting Metered Existing Pole HPS 150 W Lighting Outdoor Lighting Metered Existing Pole HPS 250 W Lighting Outdoor Lighting Metered Existing Pole HPS 400 W Lighting

83

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

This report contains data on the number of onroad alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities and data on the use of alternative fueled vehicles and the amount of fuel they consume.

Information Center

2013-04-08T23:59:59.000Z

84

Natural Gas Delivered to Vehicle Fuel Consumers  

Gasoline and Diesel Fuel Update (EIA)

2,700 2,790 2,700 2,790 2,790 2,700 1997-2013 2,700 2,790 2,700 2,790 2,790 2,700 1997-2013 Alabama 10 10 10 10 18 17 2010-2013 Alaska 2 2 2 2 1 1 2010-2013 Arizona 190 196 190 196 159 154 2010-2013 Arkansas 2 2 2 2 2 2 2010-2013 California 1,278 1,321 1,278 1,321 1,365 1,321 2010-2013 Colorado 23 24 23 24 26 25 2010-2013 Connecticut 4 4 4 4 3 2 2010-2013 Delaware 0 0 0 0 0 0 2010-2013 District of Columbia 83 86 83 86 82 79 2010-2013 Florida 6 6 6 6 8 8 2010-2013 Georgia 86 89 86 89 102 99 2010-2013 Hawaii 0 0 0 0 0 0 2010-2013 Idaho 7 7 7 7 12 12 2010-2013 Illinois 28 29 28 29 24 24 2010-2013 Indiana 5 5 5 5 2 2 2010-2013 Iowa 0 0 0 0 0 0 2010-2013 Kansas 1 1 1 1 1 1 2010-2013 Kentucky 0 0 0 0 0 0 2010-2013 Louisiana

85

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

and even buyers of hybrid vehicles. The interviews unfoldedarticles contended that hybrid vehicles cost $2,000 to $Our small group of hybrid vehicle buyers confessed they had

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

86

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

and even buyers of hybrid vehicles. The interviews unfoldedarticles contended that hybrid vehicles cost $2,000 to $Our small group of hybrid vehicle buyers confessed they had

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

87

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles, Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth; Heffner, Rusty

2007-01-01T23:59:59.000Z

88

Fuel Economy: What Drives Consumer Choice?  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyEarly Market for Hybrid Electric Vehicles, Transportationof the Plug-in Hybrid Electric Vehicle Research Center and

Turrentine, Tom; Kurani, Kenneth S; Heffner, Reid R.

2008-01-01T23:59:59.000Z

89

DOE Fuel Cell Subprogram (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

* By 2010, develop a fuel cell system for consumer electronics (<50 W) with an energy density of 1,000 WhL. * By 2010, develop a fuel cell system for auxiliary power units (3-30...

90

Chapter 50 Division for Air Quality: General Administrative Procedures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Chapter 50 Division for Air Quality: General Administrative Procedures (Kentucky) Chapter 50 Division for Air Quality: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Department for Environmental Protection Chapter 50 of the Division of Air Quality section within Energy and Environment Cabinet Department For Environmental Protection outlines the general administrative procedures for maintaining air quality standards. These procedures are created in adherence to 42 USC 7410 which requires the

91

Waters; General Provisions (North Dakota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waters; General Provisions (North Dakota) Waters; General Provisions (North Dakota) Waters; General Provisions (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Water Buying & Making Electricity Program Info State North Dakota Program Type Siting and Permitting The waters of North Dakota are understood as belonging to the public and may be appropriated for beneficial uses. However, the right to use water in

92

General Conditions Applicable to Water Discharge Permits and Procedures and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Conditions Applicable to Water Discharge Permits and General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut) General Conditions Applicable to Water Discharge Permits and Procedures and Criteria for Issuing Water Discharge Permits (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection

93

Transient three-dimensional thermal-hydraulic analysis of nuclear reactor fuel rod arrays: general equations and numerical scheme  

SciTech Connect

A mathematical model and a numerical solution scheme for thermal- hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media. (auth)

Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.; Hughes, E.D.; Solbrig, C.W.

1975-11-01T23:59:59.000Z

94

Summary report : universal fuel processor.  

DOE Green Energy (OSTI)

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

Coker, Eric Nicholas; Rice, Steven F. (Sandia National Laboratories, Livermore, CA); Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M. (Sandia National Laboratories, Livermore, CA)

2008-01-01T23:59:59.000Z

95

Consumer Apps Page | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Apps Page Apps Page Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer Smart Disclosure Apps This page highlights apps and websites that use Smart Disclosure-style data to empower consumers to make better informed choices. The purpose is to illustrate the kinds of innovative apps-web- and mobile-based-that Smart Disclosure can fuel. The galleries below include both government-produced apps and apps created by innovators outside government that have won Federal challenges. This page highlights only a fraction of the kinds of applications that Smart Disclosure can make possible. Have an app or website you think should be highlighted as an example of Smart Disclosure? Let us know in our Forums. When you click on the images or titles below, you will be leaving the

96

Structural changes between models of fossil-fuel demand by steam-electric power plants  

SciTech Connect

A consumption function for multi-fuel steam-electric power plants is used to investigate fossil-fuel demand behavior. The input consumption equations for a plant's primary and alternate fossil fuels are derived by Shepard's lemma from a generalized Cobb-Douglas cost function reflecting average variable cost minimization constrained by technology and the demand for electricity. These equations are estimated by primary and alternate fuel subsets with ordinary least squares and seemingly unrelated regression techniques for 1974, 1977, and 1980. The results of the regression analysis show the importance of consumer demand in the fossil fuel consumption decision; it has the only significant parameter in all of the estimated equations. The estimated own- and cross-price elasticities are small, when they are statistically significant. The results for the primary fuel equations are better than those for the alternate fuel equations in all of the fuel pair subsets.

Gerring, L.F.

1984-01-01T23:59:59.000Z

97

General-purpose heat source: Research and development program. High-siliocon fuel characterization study: Half module impact tests 1 and 2  

SciTech Connect

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements. Because any space mission could experience a launch abort or return from orbit, the heat source must be designed and constructed to survive credible accident environments. Previous testing conducted in support of the Galileo and Ulysses missions documented the response of GPHSs to a variety of fragment-impact, aging, atmospheric reentry, and earth-impact conditions. The evaluations documented in this report are part of an ongoing program to determine the effect of fuel impurities on the response of the heat source to conditions baselined during the Galileo/Ulysses test program. In the first two tests in this series, encapsulated GPHS fuel pellets containing high levels of silicon were aged, loaded into GPHS module halves, and impacted against steel plates. The results show no significant differences between the response of these capsules and the behavior of relatively low-silicon fuel pellets tested previously.

Reimus, M.A.H.; George, T.G.

1996-03-01T23:59:59.000Z

98

Fuel Cell Technologies Office: Storage Systems Analysis Working...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

99

Fuel Cell Technologies Office: FY 2007 Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

100

Fuel Cell Technologies Office: Hydrogen Systems Analysis Workshop...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuel Cell Technologies Office: DOE Hydrogen Delivery High-Pressure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

102

Fuel Cell Technologies Office: FY 2006 Financial Awards  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

103

Fuel Cell Technologies Office: Past Events EventsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

104

Fuel Cell Technologies Office: DOE Hydrogen Transition Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

105

Fuel Cell Technologies Office: Joint Meeting on Hydrogen Delivery...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

106

Fuel Cell Technologies Office: DOE Announces New Hydrogen Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

107

Fuel Cell Technologies Office: Organization Chart and Contacts  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

108

Fuel Cell Technologies Office: Early Market Applications for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

109

Fuel Cell Technologies Office: Financial Incentives for Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

110

Alternative Fuels Data Center: Natural Gas Fleet Services - Clean...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Alternative Fuels Data Center Search Search Help Alternative Fuels Data Center...

111

Transportation Fuel Basics - Electricity | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Electricity Transportation Fuel Basics - Electricity August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries. Fuel cells are being explored as a way to use electricity generated on board the vehicle to power electric motors. Unlike batteries, fuel cells convert chemical energy from hydrogen into electricity. Vehicles that run on electricity have no tailpipe emissions. Emissions that can be attributed to electric vehicles are generated in the electricity production process at the power plant. Home recharging of electric vehicles is as simple as plugging them into an electric outlet. Electricity fueling costs for electric vehicles are reasonable compared to gasoline, especially if consumers take advantage of

112

Plugging in the consumer  

E-Print Network (OSTI)

of 1,900 energy consumers and nearly 100 industry executives across the globe reveal major changes commercial customers were satisfied with leaving all the decisions about their energy supply to their trustedPlugging in the consumer Innovating utility business models for the future Energy and Utilities IBM

113

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFDC AFDC Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... More in this section... Alternative Fuels Data Center: Page Not Found Skip to Content Eere_header_logo U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Alternative Fuels Data Center Search Search Help Alternative Fuels Data Center Fuels & Vehicles Biodiesel | Diesel Vehicles

114

Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuels Biodiesel Fuels Education in Alabama to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuels Education in Alabama on AddThis.com... May 1, 2012 Biodiesel Fuels Education in Alabama " As Alabama native Helen Keller once said, 'No one has the right to consume happiness without producing it.' The same can be said of

115

1998 Fuel Economy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

purpose vehicles (2-wheel drive and 4-wheel drive). By using this Guide consumers can estimate the average yearly fuel cost for any vehicle. The mileage figures included in...

116

Available Technologies: Nanoporous PEM Fuel Cell for Enhanced ...  

IB-2013-081. APPLICATIONS OF TECHNOLOGY: Fuel cells for aerospace, ground transportation, and consumer electronics; Artificial photosynthesis ; ADVANTAGES:

117

Statistical Analysis of the Factors Influencing Consumer Use of E85  

DOE Green Energy (OSTI)

Evaluating the sales patterns of E85 retail outlets can provide important information about consumer behavior regarding E85, locating future E85 fueling infrastructure, and developing future alternative fuel policies and programs.

Bromiley, P.; Gerlach, T.; Marczak, K.; Taylor, M.; Dobrovolny, L.

2008-07-01T23:59:59.000Z

118

Rapidly refuelable fuel cell  

DOE Patents (OSTI)

This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

Joy, Richard W. (Santa Clara, CA)

1983-01-01T23:59:59.000Z

119

RDI forecasts oil price increase impact on electric consumers  

SciTech Connect

According to a publication by Resource Data International, Inc. (RDI), Boulder, Colorado, the current oil price increases will effect electricity consumers nationwide. While the direct use of fuel oil and natural gas as boiler fuels is expected to decline with rising prices, the cost of alternative energy sources including coal, nuclear, and hydro are also expected to rise, RDI said.

Not Available

1990-10-25T23:59:59.000Z

120

Alternative Fuels Data Center: Strategies to Conserve Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Strategies to Conserve Strategies to Conserve Fuel to someone by E-mail Share Alternative Fuels Data Center: Strategies to Conserve Fuel on Facebook Tweet about Alternative Fuels Data Center: Strategies to Conserve Fuel on Twitter Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Google Bookmark Alternative Fuels Data Center: Strategies to Conserve Fuel on Delicious Rank Alternative Fuels Data Center: Strategies to Conserve Fuel on Digg Find More places to share Alternative Fuels Data Center: Strategies to Conserve Fuel on AddThis.com... Strategies to Conserve Fuel More than 250 million vehicles consume millions of barrels of petroleum every day in the United States. On-road passenger travel alone accounts for more than 2.5 trillion vehicle miles traveled each year. Vehicle fleet

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Heartland Consumers Power Dist | Open Energy Information  

Open Energy Info (EERE)

Dist Dist Jump to: navigation, search Name Heartland Consumers Power Dist Place South Dakota Utility Id 40604 Utility Location Yes Ownership P NERC Location MRO NERC MRO Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.0733/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Heartland_Consumers_Power_Dist&oldid=41081

122

Petroleum Products and Alternative Fuels Tax Law (Tennessee) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Products and Alternative Fuels Tax Law (Tennessee) Petroleum Products and Alternative Fuels Tax Law (Tennessee) Petroleum Products and Alternative Fuels Tax Law (Tennessee) < Back Eligibility Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Tennessee Program Type Fees Rebate Program Siting and Permitting Provider Tennessee Department of Revenue The Petroleum Products and Alternative Fuels Tax Law is relevant to all natural gas and/or biofuel projects. Compressed Natural Gas CNG, petroleum product and/or alternative dealers must apply for and obtain a permit from the Tennessee Department of Revenue. The permit authorizes the dealer to collect and remit taxes on CNG delivered to motor vehicles by means of a

123

Consumer Energy Atlas  

Science Conference Proceedings (OSTI)

This first edition of the Atlas provides, in reference form, a central source of information to consumers on key contacts concerned with energy in the US. Energy consumers need information appropriate to local climates and characteristics - best provided by state and local governments. The Department of Energy recognizes the authority of state and local governments to manage energy programs on their own. Therefore, emphasis has been given to government organizations on both the national and state level that influence, formulate, or administer policies affecting energy production, distribution, and use, or that provide information of interest to consumers and non-specialists. In addition, hundreds of non-government energy-related membership organizations, industry trade associations, and energy publications are included.

Not Available

1980-06-01T23:59:59.000Z

124

Fuel Cell Technologies Office: 2013 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

partnership focused on advancing hydrogen infrastructure to support more transportation energy options for U.S. consumers, including fuel cell electric vehicles. The new...

125

Fuel Cell Technologies Office: Systems Analysis  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Systems Analysis Search Search Help Systems Analysis EERE Fuel Cell Technologies Office Systems Analysis Printable Version Share this resource Send...

126

Fuel Cell Technologies Office: Hydrogen Storage  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Storage Search Search Help Hydrogen Storage EERE Fuel Cell Technologies Office Hydrogen Storage Printable Version Share this resource Send...

127

Fuel Cell Technologies Office: Hydrogen Delivery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Consumer Information Hydrogen Delivery Search Search Help Hydrogen Delivery EERE Fuel Cell Technologies Office Hydrogen Delivery Printable Version Share this resource...

128

Balance of heating fuels varies regionally  

U.S. Energy Information Administration (EIA)

... announced a plan to expand natural gas distribution networks Consumers are also supplementing liquid heating fuels with wood and electricity wood pellet use ...

129

Alternative Fuels Data Center: Maps and Data  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Skip to Content Eereheaderlogo U.S. Department of Energy Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Alternative Fuels Data...

130

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

131

Question of the Week: Do You Use Alternative Fuels? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Alternative Fueling Station Locator to find fueling stations in your area. Do you use alternative fuels? E-mail your responses to the Energy Saver team at consumer.webmaster@nr...

132

A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials  

E-Print Network (OSTI)

produced, is estimated as: DCW = AF ? AW ? ( 1+ FGD ) ? ( 1BTU / TM eq. 98 where: DCW = diesel fuel consumed to

Delucchi, Mark

2003-01-01T23:59:59.000Z

133

consumers | OpenEI  

Open Energy Info (EERE)

51 51 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142280451 Varnish cache server consumers Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by "other consumers". Data is available for Paraguay, the U.S. and Belgium, between 2000 and 2007. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago)

134

Consumer Prices During  

Gasoline and Diesel Fuel Update (EIA)

City Gate City Gate City gate prices represent the total cost paid by gas distribu- tion companies for gas received at the point where the gas is physically transferred from a pipeline company or trans- mission system. This price is intended to reflect all charges for the acquisition, storage, and transportation of gas as well as other charges associated with the LDC's obtaining the gas for sale to consumers. Prices paid at the city gate by local distribution companies rose substantially between 1995 and 1996, climbing from $2.78 per thousand cubic feet to $3.27, an increase of 18 percent. Residential Residential consumers pay the highest price for natural gas. It increased to $6.34 per thousand cubic feet from the 1995 price of $6.06 per thousand cubic feet. However, the 1996 price was 1 percent lower than the 1994 price. In recent years, only modest changes in constant dollars have been

135

Figure HL1. U.S. Sales of Distillate and Residual Fuel Oils by ...  

U.S. Energy Information Administration (EIA)

Sales of Fuel Oil and Kerosene in 2009 . ... the need for electric utilities to consume distillate fuel to meet peak summer generation loads remained ...

136

EV Everywhere Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer/Charging Workshop: Consumer/Charging Workshop: Target-Setting Framework and Consumer Behavior Jacob Ward, Vehicle Technologies Senior Analyst July 30, 2012 LAX Marriot, Los Angeles, California For "EV Everywhere" Analysis, Three Scenarios 1. PHEV40 - reduces battery size while removing range issues, but involves the higher cost of two powertrains 2. AEV100 - minimizes vehicle purchase cost, but introduces range/vehicle use/infrastructure tradeoffs 3. AEV300 - helps to address range issues, but large battery leads to high vehicle cost Vehicle-level analysis provides a starting point for setting EV Everywhere technical targets for these vehicles. Levelized Cost of Driving (LCD) vehicle purchase price + fuel expenditure over 5 years, expressed per mile traveled

137

Fuel Production Fuel producers operate refineries and power plants  

E-Print Network (OSTI)

and if to enter the hydrogen market and how to respond to an increasing demand for electricity from PHEVs and BEVs for vehicle and fuel. Consumers have two goals: firstly, to keep their cars and secondly to own the best

California at Davis, University of

138

Fuel consumption: industrial, residential, and general studies. Volume 2. 1977-October, 1979 (a bibliography with abstracts). Report for 1977-October 1979  

SciTech Connect

Citations of research on fuel supply, demand, shortages, and conservation through effective utilization are presented. A few abstracts pertain to energy consumption in the agricultural sector, fuel substitution, economic studies, and environmental concerns relating to energy consumption. Bibliographies on electric power consumption and fuel consumption by transportation also are available. (This updated bibliography contains 159 abstracts, 29 of which are new entries to the previous edition.)

Hundemann, A.S.

1979-11-01T23:59:59.000Z

139

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Total Total Energy The preceding sections of this documentation describe how the Energy In- formation Administration (EIA) arrives at state end-use consumption esti- mates by individual energy source in the State Energy Data System (SEDS). This section describes how all energy sources are added in Btu to create total energy consumption and end-use consumption estimates. Total Energy Consumption Total energy consumption by state is defined in SEDS as the sum of all en- ergy sources consumed. The total includes all primary energy sources used directly by the energy-consuming sectors (residential, commercial, indus- trial, transportation, and electric power), as well as net interstate flow of electricity (ELISB) and net imports of electricity (ELNIB). Energy sources can be categorized as renewable and non-renewable sources: Non-Renewable Sources Fossil fuels: · coal (CL) · net

140

Hydrogen Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural...

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Table of Consumers Eligible Participating  

U.S. Energy Information Administration (EIA)

State Number of Consumers Eligible Participating Notes: The number of Eligible customers represents those residential customers, regardless of size, ...

142

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to ...  

U.S. Energy Information Administration (EIA)

South Dakota No 2 Fuel Oil / Heating Oil Adj Sales/Deliveries to Commercial Consumers (Thousand Gallons)

143

Waste reduction through consumer education. Final report  

Science Conference Proceedings (OSTI)

The Waste Reduction through Consumer Education research project was conducted to determine how environmental educational strategies influence purchasing behavior in the supermarket. The objectives were to develop, demonstrate, and evaluate consumer education strategies for waste reduction. The amount of waste generated by packaging size and form, with an adjustment for local recyclability of waste, was determined for 14 product categories identified as having more waste generating and less waste generating product choices (a total of 484 products). Using supermarket scan data and shopper identification numbers, the research tracked the purchases of shoppers in groups receiving different education treatments for 9 months. Statistical tests applied to the purchase data assessed patterns of change between the groups by treatment period. Analysis of the data revealed few meaningful statistical differences between study groups or changes in behavior over time. Findings suggest that broad brush consumer education about waste reduction is not effective in changing purchasing behaviors in the short term. However, it may help create a general awareness of the issues surrounding excess packaging and consumer responsibility. The study concludes that the answer to waste reduction in the future may be a combination of voluntary initiatives by manufacturers and retailers, governmental intervention, and better-informed consumers.

Harrison, E.Z.

1996-05-01T23:59:59.000Z

144

Oil and Gas Commission General Rules and Regulations (Arkansas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commission General Rules and Regulations (Arkansas) Commission General Rules and Regulations (Arkansas) Oil and Gas Commission General Rules and Regulations (Arkansas) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Natural Resources The Oil and Gas Commission General Rules and Regulations are the body of rules and regulations that relate to natural gas production in Arkansas. The statutory law is found Arkansas Code Annotated Title 15 chapter 72. Contained in this summary are the rules and regulations most relevant to

145

Consumers Energy Co | Open Energy Information  

Open Energy Info (EERE)

Energy Co Energy Co Jump to: navigation, search Name Consumers Energy Co Place Michigan Utility Id 4254 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes ISO MISO Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying Transmission Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A-1 Residential A-3 Residential Experimental Advanced Renewable Program AR Commercial GP-Dynamic Pricing Pilot-Customer Voltage Level 1 (CVL 1) Commercial

146

Consumer Data Page | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Page Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov Communities Consumer Smart Disclosure Data These federal...

147

residual fuel oil - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

Residual fuel oil: A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter ...

148

UCDavis University of California What consumers teach us  

E-Print Network (OSTI)

UCDavis University of California What consumers teach us about PHEVs, electric-drive and fuel of new car-buyers' knowledge and priorities regarding PHEVs ­ Third stage is placing 12 converted PHEVs, integrated feedback on electricity and gasoline use, emissions etc. ­ Fifth, another large sample survey

California at Davis, University of

149

Alternative Fuels Data Center: Provision for Renewable Fuels Investment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Provision for Provision for Renewable Fuels Investment to someone by E-mail Share Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Facebook Tweet about Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Twitter Bookmark Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Google Bookmark Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Delicious Rank Alternative Fuels Data Center: Provision for Renewable Fuels Investment on Digg Find More places to share Alternative Fuels Data Center: Provision for Renewable Fuels Investment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Provision for Renewable Fuels Investment To create jobs and improve the state's general infrastructure, the Florida

150

Radioactivity in consumer products  

SciTech Connect

Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

1978-08-01T23:59:59.000Z

151

Chapter 11. Fuel Economy: The Case for Market Failure  

Science Conference Proceedings (OSTI)

The efficiency of energy using durable goods, from automobiles to home air conditioners, is not only a key determinant of economy-wide energy use but also of greenhouse gas (GHG) emissions, climate change and energy insecurity. Energy analysts have long noted that consumers appear to have high implicit discount rates for future fuel savings when choosing among energy using durable goods (Howarth and Sanstad, 1995). In modeling consumers choices of appliances, the Energy Information Administration (EIA) has used discount rates of 30 percent for heating systems, 69 percent for choice of refrigerator and up to 111 percent for choice of water heater (U.S. DOE/EIA, 1996). Several explanations have been offered for this widespread phenomenon, including asymmetric information, bounded rationality and transaction costs. This chapter argues that uncertainty combined with loss aversion by consumers is sufficient to explain the failure to adopt cost effective energy efficiency improvements in the market for automotive fuel economy, although other market failures appear to be present as well. Understanding how markets for energy efficiency function is crucial to formulating effective energy policies (see Pizer, 2006). Fischer et al., (2004), for example, demonstrated that if consumers fully value the discounted present value of future fuel savings, fuel economy standards are largely redundant and produce small welfare losses. However, if consumers value only the first three years of fuel savings, then fuel economy standards can significantly increase consumer welfare. The nature of any market failure that might be present in the market for energy efficiency would also affect the relative efficacy of energy taxes versus regulatory standards (CBO, 2003). If markets function efficiently, energy taxes would generally be more efficient than regulatory standards in increasing energy efficiency and reducing energy use. If markets are decidedly inefficient, standards would likely be more effective. The chapter explores the roles of uncertainty and loss-aversion in the market for automotive fuel economy. The focus is on the determination of the technical efficiency of the vehicle rather than consumers choices among vehicles. Over the past three decades, changes in the mix of vehicles sold has played little if any role in raising the average fuel economy of new light-duty vehicles from 13 miles per gallon (mpg) in 1975 to 21 mpg today (Heavenrich, 2006). Over that same time period, average vehicle weight is up 2 percent, horsepower is up 60 percent, passenger car interior volume increased by 2 percent and the market share of light trucks grew by 31 percentage points. Historically, at least, increasing light-duty vehicle fuel economy in the United States has been a matter of manufacturers decisions to apply technology to increase the technical efficiency of cars and light trucks. Understanding how efficiently the market determines the technical fuel economy of new vehicles would seem to be critical to formulating effective policies to encourage future fuel economy improvement. The central issue is whether or not the market for fuel economy is economically efficient. Rubenstein (1998) lists the key assumptions of the rational economic decision model. The decision maker must have a clear picture of the choice problem he or she faces. He should be fully aware of the set of alternatives from which to choose and have the skill necessary to make complicated calculations needed to discover the optimal course of action. Finally, the decision maker should have the unlimited ability to calculate and be indifferent to alternatives and choice sets.

Greene, David L [ORNL; German, John [Environmental and Energy Analysis; Delucchi, Mark A [University of California, Davis

2009-01-01T23:59:59.000Z

152

Fuel Reliability Project: Boiling Water Fuel Performance at Kernkraftwerk Leibstadt  

Science Conference Proceedings (OSTI)

The Kernkraftwerk Leibstadt (KKL) boiling water reactor (BWR), a General Electric BWR/6, performed a lead use assembly (LUA) program with fuel from three fuel suppliers. This program presented a unique opportunity to evaluate fuel performance on advanced 10x10 designs of AREVA, Global Nuclear Fuel (GNF), and Westinghouse Electric Company (Westinghouse). Fuel assemblies from each supplier (vendor) were loaded into the KKL core in 1997 and 1998. A number of fuel inspections have been performed during annua...

2007-05-16T23:59:59.000Z

153

Consumer Resources | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Resources Consumer Resources Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer Welcome to the resources and press page. Check back frequently for updates. New to Smart Disclosure? Start with our About page Key Federal Smart Disclosure Resources WHITE HOUSE & NATIONAL ARCHIVES Summit on Smart Disclosure 3/30/2012 On March 30, 2012, the White House and the National Archives and Records Administration (NARA), with support from ideas42, hosted a summit on Smart Disclosure - a new tool that helps provide consumers with greater access to the information they need to make informed choices. Click here for agenda. WHITE HOUSE US.National Action Plan on Open Government 9/20/2011 Excerpted commitment on Smart Disclosure: "Promote Smart Disclosure. The

154

Grid Strategy 2011: Consumer Engagement  

Science Conference Proceedings (OSTI)

In October 2010, members of the Electric Power Research Institute (EPRI) Smart Grid Demonstration Initiative determined that a comprehensive and accurate evaluation of consumer perspectives toward smart grid technologies is needed to further the understanding of motivators for consumer adoption. The member utilities desired information to help them address what could be interpreted as a lack of interest in the new technology and programs. Understanding the consumer will help coordinate activities ranging...

2011-10-17T23:59:59.000Z

155

Alaska No 2 Diesel Adj Sales/Deliveries to On-Highway Consumers ...  

U.S. Energy Information Administration (EIA)

Alaska No 2 Diesel Adj Sales/Deliveries to On-Highway Consumers (Thousand Gallons) Decade Year-0 Year-1 Year-2 ... Adjusted Sales of Distillate Fuel Oil for On ...

156

Diesel fuel filtration system  

SciTech Connect

The American nuclear utility industry is subject to tight regulations on the quality of diesel fuel that is stored at nuclear generating stations. This fuel is required to supply safety-related emergency diesel generators--the backup power systems associated with the safe shutdown of reactors. One important parameter being regulated is the level of particulate contamination in the diesel fuel. Carbon particulate is a natural byproduct of aging diesel fuel. Carbon particulate precipitates from the fuel`s hydrocarbons, then remains suspended or settles to the bottom of fuel oil storage tanks. If the carbon particulate is not removed, unacceptable levels of particulate contamination will eventually occur. The oil must be discarded or filtered. Having an outside contractor come to the plant to filter the diesel fuel can be costly and time consuming. Time is an even more critical factor if a nuclear plant is in a Limiting Condition of Operation (LCO) situation. A most effective way to reduce both cost and risk is for a utility to build and install its own diesel fuel filtration system. The cost savings associated with designing, fabricating and operating the system inhouse can be significant, and the value of reducing the risk of reactor shutdown because of uncertified diesel fuel may be even higher. This article describes such a fuel filtering system.

Schneider, D. [Wisconsin Fuel and Light, Wausau, WI (United States)

1996-03-01T23:59:59.000Z

157

Anode Materials for Reprocessing of Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

In order to consume current stockpiles, uranium dioxide spent nuclear fuel will be .... and Synthesis of Intermetallic Clathrates for Energy Storage and Recovery.

158

FORM EIA-821 ANNUAL FUEL OIL AND KEROSENE SALES REPORT ...  

U.S. Energy Information Administration (EIA)

An energy-consuming sector that consists of living quarters and ... buildings. EIA-821, Annual Fuel Oil and Kerosene Sales Report Page 3 Commercial Use ...

159

Number of alternative fuel vehicles in vehicle fleets increased in ...  

U.S. Energy Information Administration (EIA)

Gasoline and diesel electric hybrids are not AFVs as defined in the Energy ... Vehicles consuming alternative transportation fuels are primarily part of ...

160

Reference Materials and Standards for Fossil Fuels, Electric ...  

Science Conference Proceedings (OSTI)

... of the energy consumed by the US Along with ... from the specification of fossil fuel raw materials ... relevant reference materials to support the emerging ...

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Consumer's Guide to the economics of electric-utility ratemaking  

SciTech Connect

This guide deals primarily with the economics of electric utilities, although certain legal and organizational aspects of utilities are discussed. Each of the seven chapters addresses a particular facet of public-utility ratemaking. Chapter One contains a discussion of the evolution of the public-utility concept, as well as the legal and economic justification for public utilities. The second chapter sets forth an analytical economic model which provides the basis for the next four chapters. These chapters contain a detailed examination of total operating costs, the rate base, the rate of return, and the rate structure. The final chapter discusses a number of current issues regarding electric utilities, mainly factors related to fuel-adjustment costs, advertising, taxes, construction work in progress, and lifeline rates. Some of the examples used in the Guide are from particular states, such as Illinois and California. These examples are used to illustrate specific points. Consumers in other states can generalize them to their states and not change the meaning or significance of the points. 27 references, 8 tables.

1980-05-01T23:59:59.000Z

162

Energy Conservation Program for Consumer Products and Certain Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

Program for Consumer Products and Certain Program for Consumer Products and Certain Commercial and Industrial Equipment: Proposed Determination of Computer Servers as a Covered Consumer Product, EERE-2013-BT-DET-0034 Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Proposed Determination of Computer Servers as a Covered Consumer Product, EERE-2013-BT-DET-0034 Pursuant to the guidance issued by the Office of General Counsel in its Notice of Guidance on Ex Parte Communications, 74 F.R. 197, this memorandum summarizes a November 22, 2013 meeting between Cisco Systems, Inc. ("Cisco") and Department staff regarding the above-referenced Proposed Determination. Cisco_DOE_Ex Parte.pdf More Documents & Publications Ex Parte Communication, Docket EERE-BT-DET-0033

163

Energy Conservation Program for Consumer Products and Certain Commercial  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Conservation Program for Consumer Products and Certain Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Proposed Determination of Computer Servers as a Covered Consumer Product, EERE-2013-BT-DET-0034 Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Proposed Determination of Computer Servers as a Covered Consumer Product, EERE-2013-BT-DET-0034 Pursuant to the guidance issued by the Office of General Counsel in its Notice of Guidance on Ex Parte Communications, 74 F.R. 197, this memorandum summarizes a November 22, 2013 meeting between Cisco Systems, Inc. ("Cisco") and Department staff regarding the above-referenced Proposed Determination. Cisco_DOE_Ex Parte.pdf More Documents & Publications DOE's Proposed Coverage Determination for Set-Top Boxes

164

Consumer Connection | Open Energy Information  

Open Energy Info (EERE)

Consumer Connection Consumer Connection Jump to: navigation, search Return to Connections to Energy Use Data and Information Page Consumers - please provide comments We are interested in finding out what you, as a residential or commercial consumer, think about gaining access to your energy use data. Please provide us with your thoughts on the results of the Utility data access map, describe how you currently use (or would like to use) energy data to make informed decisions about your energy use, or simply ask us a question. We look forward to hearing from you. Please enable JavaScript to view the comments powered by Disqus.comments powered by Disqus Retrieved from "http://en.openei.org/w/index.php?title=Consumer_Connection&oldid=413979" Category: UAM What links here

165

Consumer About | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov » Communities » Consumer Smart Disclosure is an innovative new tool designed to help consumers make better informed decisions and benefit from new products and services powered by data. It refers to expanding access to data in machine-readable formats so that innovators can create interactive services and tools that allow consumers to make important choices in sectors such as health care, education, finance, energy, transportation, and telecommunications. The United States committed to promoting the use of Smart Disclosure in the U.S. Open Government National Action Plan. In September 2011, the White House Office of Management and Budget released guidance to agencies on

166

EnsemBlue: integrating distributed storage and consumer electronics  

Science Conference Proceedings (OSTI)

EnsemBlue is a distributed file system for personal multimedia that incorporates both general-purpose computers and consumer electronic devices (CEDs). Ensem-Blue leverages the capabilities of a few general-purpose computers to make CEDs first class ...

Daniel Peek; Jason Flinn

2006-11-01T23:59:59.000Z

167

Sold directly to consumers for:  

Annual Energy Outlook 2012 (EIA)

Office Buildings Railroad Companies SchoolsUniversities Trucking Companies Vehicle Refrigeration Units Vessel BunkeringFueling Warehouses Industrial Construction Companies...

168

Autopia: A Game on Long Term Vehicle and Fuel Transitions  

E-Print Network (OSTI)

groups with a single budget for vehicle and fuel. Consumers have two goals: firstly, to keep their cars for electricity from PHEVs and BEVs. Sample fuel data charts. #12;Autopia Status and Goals Autopia is a policy

California at Davis, University of

169

Game-theory approach to consumer incentives for solar energy  

SciTech Connect

Solar energy is currently not competitive with fossil fuels. Fossil fuel price increases may eventually allow solar to compete, but incentives can change the relative price between fossil fuel and solar energy, and make solar compete sooner. Examples are developed of a new type of competitive game using solar energy incentives. Competitive games must have players with individual controls and conflicting objectives, but recent work also includes incentives offered by one of the players to the others. In the incentive game presented here, the Government acts as the leader and offers incentives to consumers, who act as followers. The Government incentives offered in this leader-follower (Stackelberg) game reduce the cost of solar energy to the consumer. Both the Government and consumers define their own objectives with the Government determining an incentive (either in the form of a subsidy or tax) that satisfies its objective. The two hypothetical examples developed show how the Government can achieve a stated solar utilization rate with the proper incentives. In the first example the consumer's utility function guarantees some purchases of solar energy. In the second example, the consumer's utility function allows for no solar purchases because utility is derived only from the amount of energy used and not from the source of the energy. The two examples discuss both subsidy and tax incentives, with the best control over control use coming from fossil fuel taxes dependent upon the amount of solar energy used. Future work will expand this static analysis to develop time varying incentives along a time and quantity dependent learning curve for the solar industry.

Sharp, J.K.

1981-11-01T23:59:59.000Z

170

Oil and Gas Commission General Rules and Regulations Continued(Arkansas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil and Gas Commission General Rules and Regulations Oil and Gas Commission General Rules and Regulations Continued(Arkansas) Oil and Gas Commission General Rules and Regulations Continued(Arkansas) < Back Eligibility Agricultural Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Arkansas Program Type Siting and Permitting Provider Department of Natural Resources The General Rules have been adopted by the Oil and Gas Commission in accordance with applicable state law requirements and are General Rules of state-wide application, applying to the conservation and prevention of waste of crude oil and natural gas in the State of Arkansas and protection

171

Consumer Acceptance Of Smart Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumer Acceptance Of Smart Consumer Acceptance Of Smart Grid Electricity Advisory Committee June 6, 2013 Thanks To * Sonny Popowsky * Sue Kelly * Phyllis Reha * Bob Curry * Paul Centolella * Chris Peters * David Till * Paul Hudson * Tom Sloan * Wanda Reder Paper Objective * End-Use Consumer Acceptance Of Smart Grid Critical To Infrastructure Investments Being Fully Realized * While Utilities & Regulators Have Prime Role In Shaping SG, There Is Role For DOE As Facilitator & Educator * Focus Of This Paper Is On Systems Installed Inside Homes & Businesses Issues Experienced In Early Smart Grid Roll-Outs * Initial Resistance By Some End-Use Consumer Groups To Smart Grid Installation * Early Technology Roll-Outs Were Not Prepared For This Pushback * Since These Initial Efforts, Lessons-Learned

172

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

7 of 18 Notes: Using the Northeast as an appropriate regional focus for heating oil, the typical oil-heated household consumes about 680 gallons of oil during the winter, assuming...

173

Advanced system analysis for indirect methanol fuel cell power plants for transportation applications  

DOE Green Energy (OSTI)

The indirect methanol cell fuel concept actively pursued by the USDOE and General Motors Corporation proposes the development of an electrochemical engine'' (e.c.e.), an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electrical power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen, are under active development. Transportation applications present design challenges that are distinctly different from utility requirements, the thrust of most of previous fuel cell programs. In both cases, high conversion efficiency (fuel to electricity) is essential. However, transportation requirements dictate as well designs for high power densities, rapid transients including short times for system start up, and consumer safety. The e.c.e. system is formed from four interacting components: (1) the fuel processor; (2) the fuel cell stack; (3) the air compression and decompression device; and (4) the condensing cross flow heat exchange device. 2 figs.

Vanderborgh, N.E.; McFarland, R.D.; Huff, J.R.

1990-01-01T23:59:59.000Z

174

Advanced system analysis for indirect methanol fuel cell power plants for transportation applications  

SciTech Connect

The indirect methanol cell fuel concept actively pursued by the USDOE and General Motors Corporation proposes the development of an electrochemical engine'' (e.c.e.), an electrical generator capable for usually efficient and clean power production from methanol fuel for the transportation sector. This on-board generator works in consort with batteries to provide electrical power to drive propulsion motors for a range of electric vehicles. Success in this technology could do much to improve impacted environmental areas and to convert part of the transportation fleet to natural gas- and coal-derived methanol as the fuel source. These developments parallel work in Europe and Japan where various fuel cell powered vehicles, often fueled with tanked or hydride hydrogen, are under active development. Transportation applications present design challenges that are distinctly different from utility requirements, the thrust of most of previous fuel cell programs. In both cases, high conversion efficiency (fuel to electricity) is essential. However, transportation requirements dictate as well designs for high power densities, rapid transients including short times for system start up, and consumer safety. The e.c.e. system is formed from four interacting components: (1) the fuel processor; (2) the fuel cell stack; (3) the air compression and decompression device; and (4) the condensing cross flow heat exchange device. 2 figs.

Vanderborgh, N.E.; McFarland, R.D.; Huff, J.R.

1990-01-01T23:59:59.000Z

175

What is FuelEconomy.gov  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

FuelEconomy.gov? FuelEconomy.gov? FuelEconomy.gov is an Internet resource that helps consumers make informed fuel economy choices when purchasing a vehicle and achieve the best fuel economy possible from the cars they own. FuelEconomy.gov is maintained by the U.S. Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy with data provided by the U.S. Environmental Protection Agency (EPA). The site helps fulfill DOE and EPA's responsibility under the Energy Policy Act of 1992 to provide accurate miles per gallon (MPG) information to consumers. What has FuelEconomy.gov accomplished? In 2011 alone, FuelEconomy.gov is estimated to have helped to

176

Spent Fuel and High-Level Waste Requirements (Maine) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) Spent Fuel and High-Level Waste Requirements (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Safety and Operational Guidelines Provider Public Utilities Commission All proposed nuclear power generation facilities must be certified by the Public Utilities Commission under this statute prior to construction and

177

ConsumTechNotes2012.vp  

Gasoline and Diesel Fuel Update (EIA)

Data: Data: Consumption 109 E L E C T R I C A L E N E R G Y S O U R C E S British Thermal Units (Btu) In order to total all the energy that is used to produce electricity, the energy sources are converted to the common unit of Btu. The methods for calcu- lating the Btu content of coal, natural gas, petroleum, and renewable energy sources consumed for generating electric power are explained in their respective sections of this documentation. Nuclear electric power is described in the following section. Total energy consumed by the electric power sector is the sum of all pri- mary energy used to generate electricity, including net imports of electric- ity across U.S. borders (ELNIBZZ, see page 111). To eliminate the double counting of supplemental gaseous fuels, which are accounted for in the en- ergy sources (such as coal) from which they are derived, and in natural gas, they are removed from the total: TEEIBZZ

178

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Data Data 2011: Consumption 109 E L E C T R I C A L E N E R G Y S O U R C E S British Thermal Units (Btu) In order to total all the energy that is used to produce electricity, the energy sources are converted to the common unit of Btu. The methods for calcu- lating the Btu content of coal, natural gas, petroleum, and renewable energy sources consumed for generating electric power are explained in their respective sections of this documentation. Nuclear electric power is described in the following section. Total energy consumed by the electric power sector is the sum of all pri- mary energy used to generate electricity, including net imports of electric- ity across U.S. borders (ELNIBZZ, see page 111). To eliminate the double counting of supplemental gaseous fuels, which are accounted for in the en- ergy sources (such as coal) from which they are derived, and in natural gas, they are removed from the total:

179

Predicting Individual Fuel Economy  

SciTech Connect

To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2011-01-01T23:59:59.000Z

180

Experimental and Modeling Study of the Flammability of Fuel Tank Headspace Vapors from Ethanol/Gasoline Fuels; Phase 3: Effects of Winter Gasoline Volatility and Ethanol Content on Blend Flammability; Flammability Limits of Denatured Ethanol  

DOE Green Energy (OSTI)

This study assessed differences in headspace flammability for summertime gasolines and new high-ethanol content fuel blends. The results apply to vehicle fuel tanks and underground storage tanks. Ambient temperature and fuel formulation effects on headspace vapor flammability of ethanol/gasoline blends were evaluated. Depending on the degree of tank filling, fuel type, and ambient temperature, fuel vapors in a tank can be flammable or non-flammable. Pure gasoline vapors in tanks generally are too rich to be flammable unless ambient temperatures are extremely low. High percentages of ethanol blended with gasoline can be less volatile than pure gasoline and can produce flammable headspace vapors at common ambient temperatures. The study supports refinements of fuel ethanol volatility specifications and shows potential consequences of using noncompliant fuels. E85 is flammable at low temperatures; denatured ethanol is flammable at warmer temperatures. If both are stored at the same location, one or both of the tanks' headspace vapors will be flammable over a wide range of ambient temperatures. This is relevant to allowing consumers to splash -blend ethanol and gasoline at fueling stations. Fuels compliant with ASTM volatility specifications are relatively safe, but the E85 samples tested indicate that some ethanol fuels may produce flammable vapors.

Gardiner, D. P.; Bardon, M. F.; Clark, W.

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Solar Decathlon: Consumer Workshop Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Workshop Summaries The U.S. Department of Energy Solar Decathlon 2011 consumer workshop presentations are provided below. Benefits of Electric Vehicles: A National...

182

Consumers Energy (Electric)- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Consumers Energy residential electric customers are eligible to apply for a variety of rebates on energy efficient equipment. Customers must install equipment in the Consumers Energy service area...

183

Consumers Energy (Gas)- Residential Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Consumers Energy residential electric customers are eligible to apply for a variety of rebates on energy efficient equipment. Customers must install equipment in the Consumers Energy service area...

184

Electrolysis Technology Development and Fueling Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

production from electrolysis *General electrolysis fueling overview *Near term hydrogen electricity integration *Grid based renewable hydrogen integration Receive feedback from...

185

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Do alternative fuel vehicles Do alternative fuel vehicles (AFVs) improve air quality? How does the use of alternative fuels affect smog formation? You may find answers to these and other questions through the U.S. Department of Energy's (DOE) Alternative Fuels Data Center (AFDC)-the nation's most com- prehensive repository of perfor- mance data and general informa- tion on AFVs. To date, more than 600 vehi- cles-including light-duty cars, trucks, vans, transit buses, and heavy-duty trucks-have been tested on various alternative and conventional fuels with the goal of identifying the potential for alter- native fuels to displace petroleum and improve our nation's air quality. Although comparing regu- lated emissions between fuels may seem straightforward, evaluating emissions is complicated by

186

NREL: Learning - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Fuel cells and their ability to cleanly produce electricity from hydrogen and oxygen are what make hydrogen attractive as a "fuel" for transportation use particularly, but also as a general energy carrier for homes and other uses, and for storing and transporting otherwise intermittent renewable energy. Fuel cells function somewhat like a battery-with external fuel being supplied rather than stored electricity-to generate power by chemical reaction rather than combustion. Hydrogen fuel cells, for instance, feed hydrogen gas into an electrode that contains a catalyst, such as platinum, which helps to break up the hydrogen molecules into positively charged hydrogen ions and negatively charged electrons. The electrons flow from the electrode to a terminal that

187

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EcoCAR Vehicles Get Put to the Test at General Motors' Proving EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions Connie Bezanson Education & Outreach Manager, Vehicle Technologies Program What does this project do? EcoCar challenges students to reduce the environmental impact of vehicles by minimizing the vehicle's fuel consumption and emissions -- while retaining the vehicle's performance, safety and consumer appeal.

188

Transportation Energy Futures Series: Non-Cost Barriers to Consumer Adoption of New Light-Duty Vehicle Technologies  

SciTech Connect

Consumer preferences are key to the adoption of new vehicle technologies. Barriers to consumer adoption include price and other obstacles, such as limited driving range and charging infrastructure; unfamiliarity with the technology and uncertainty about direct benefits; limited makes and models with the technology; reputation or perception of the technology; standardization issues; and regulations. For each of these non-cost barriers, this report estimates an effective cost and summarizes underlying influences on consumer preferences, approximate magnitude and relative severity, and assesses potential actions, based on a comprehensive literature review. While the report concludes that non-cost barriers are significant, effective cost and potential market share are very uncertain. Policies and programs including opportunities for drivers to test drive advanced vehicles, general public outreach and information programs, incentives for providing charging and fueling infrastructure, and development of technology standards were examined for their ability to address barriers, but little quantitative data exists on the effectiveness of these measures. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Stephens, T.

2013-03-01T23:59:59.000Z

189

Proceedings: pellet fuels conference  

DOE Green Energy (OSTI)

The conference brought together professionals from the process- engineered-fuels (PEF), utility, paper, plastics, and boiler industries. Although the last two decades have produced technical breakthroughs, efforts to advance PEF must now focus on increasing commercial breakthroughs. Successful commercialization will depend on increasing supplier, consumer, and regulator confidence and support by demonstrating the performance and value of PEF products. Speakers provided updates on how PEF technology is evolving with respect to technical, economic, and regulatory challenges. Actions critical toward full commercialization of PEF were then considered. Discussion groups addressed materials sourcing, fuel processing and transportation, combustion, and ash handling.

Not Available

1995-12-31T23:59:59.000Z

190

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

191

Consumer.Data.Gov is Live! | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer.Data.Gov is Live Consumer Data Apps Challenges Resources About Blogs Let's Talk Feedback Consumer You are here Data.gov Communities Consumer Blogs...

192

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,032 979 1,003 855 565 457 471 518 560 657 654 1,014 1990 1,195 903 893 857 577 244 413 365 508 587 763 774 1991 1,089 979 864 605 667 414 538 540 555 628 496 895 1992 1,076 1,128 1,103 1,047 676 498 448 479 411 609 654 951 1993 1,140 1,359 1,325 907 429 330 273 364 243 503 1,008 1,324 1994 1,919 1,974 1,626 1,092 653 542 343 599 384 569 1,010 1,338 1995 1,077 1,679 1,883 1,353 901 562 413 582 294 580 1,216 1,523 1996 1,963 1,919 1,606 1,251 757 446 421 443 581 648 972 1,290 1997 1,694 1,744 1,739 1,144 892 537 430 399 460 637 1,211 1,416 1998 1,817 1,642 1,518 1,141 694 506 496 195 483 628 1,019 1,338

193

Natural Gas Delivered to Consumers in Pennsylvania (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 96,012 79,547 77,363 52,992 33,092 26,098 25,208 27,662 29,499 38,457 46,614 63,083 2002 80,458 74,651 70,773 53,368 38,209 33,401 32,700 34,743 30,425 40,462 58,542 83,877 2003 101,975 96,176 79,246 53,759 36,015 29,095 30,298 32,640 26,799 39,895 47,467 78,054 2004 100,298 95,715 73,189 54,937 42,873 33,367 36,047 33,735 32,060 34,578 50,908 74,224 2005 90,958 84,388 85,058 50,137 38,196 34,547 36,133 37,648 32,674 35,439 50,234 80,301 2006 76,519 77,324 76,877 49,039 37,224 36,803 44,307 41,471 31,545 40,867 49,703 63,941 2007 78,283 95,894 81,570 63,089 41,955 37,217 42,996 50,308 38,092 42,936 57,228 82,068

194

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 6,069 7,033 6,197 2,868 1,601 1,279 1,180 1,097 1,241 1,528 2,542 5,873 1990 7,587 5,618 4,176 3,424 2,281 1,519 1,312 1,355 1,235 1,613 2,520 4,567 1991 8,702 6,014 4,265 2,489 1,702 1,330 1,290 1,279 1,299 1,590 3,974 5,653 1992 6,180 5,310 3,653 2,956 1,785 1,540 1,407 1,292 1,240 1,449 2,608 5,771 1993 7,076 6,147 5,910 3,743 2,057 1,439 1,324 1,432 1,345 1,544 3,424 5,327 1994 6,644 6,611 4,717 2,954 1,875 1,384 1,364 1,256 1,384 1,475 2,207 4,632 1995 6,358 6,001 5,160 2,968 2,354 1,794 1,558 1,524 1,903 1,836 3,020 5,164 1996 7,808 7,923 5,595 4,413 2,222 1,770 1,798 1,678 1,759 1,900 3,273 6,014

195

Natural Gas Delivered to Consumers in Ohio (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 136,340 110,078 102,451 66,525 41,541 34,864 34,025 32,667 33,129 48,517 59,935 87,118 2002 106,011 98,576 94,429 70,082 51,854 40,885 40,538 38,774 34,999 51,972 76,275 108,800 2003 140,436 123,688 99,629 65,861 43,326 32,959 33,810 37,562 32,918 52,253 65,617 103,846 2004 137,568 117,976 93,845 67,347 46,827 33,561 34,567 34,689 34,129 47,268 64,279 99,290 2005 122,404 107,459 105,183 63,669 47,239 37,221 35,833 37,060 33,808 42,569 65,578 113,292 2006 95,548 97,666 85,732 52,957 42,766 33,443 36,271 36,307 35,048 54,845 69,951 88,329 2007 105,108 128,279 87,809 70,627 41,797 34,877 33,361 40,637 34,554 41,730 69,858 102,787

196

Natural Gas Delivered to Consumers in Nebraska (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 17,481 15,747 13,983 11,129 7,094 5,429 8,556 6,368 5,506 5,854 10,730 11,012 2002 16,123 14,049 12,938 10,424 6,676 4,984 8,748 7,414 6,786 6,218 9,753 13,269 2003 15,675 15,319 13,354 8,644 6,232 4,472 7,653 7,469 5,904 6,758 8,775 13,011 2004 16,104 16,445 12,058 7,983 6,255 5,830 6,952 6,641 4,338 5,935 8,995 13,129 2005 17,242 14,641 11,440 8,360 6,579 5,853 7,874 8,028 6,345 6,081 8,200 13,733 2006 15,551 13,741 13,940 10,766 7,411 7,500 9,685 9,019 6,665 7,092 10,375 13,432 2007 17,851 19,390 16,040 10,333 9,436 7,602 10,286 11,264 8,529 7,818 10,704 15,974 2008 20,241 20,433 17,488 13,024 9,556 9,390 10,050 10,893 8,126 10,847 13,250 17,360

197

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 23,636 24,435 21,187 13,360 8,237 3,927 3,565 3,735 4,397 8,946 15,949 30,143 1990 25,317 19,642 20,361 13,373 7,446 4,838 3,975 4,165 4,240 7,272 13,757 19,190 1991 26,286 24,481 20,157 11,779 6,341 3,971 3,703 3,933 4,196 8,065 15,488 21,940 1992 26,321 24,820 20,215 15,893 7,455 5,016 4,291 4,260 4,418 9,092 15,094 23,770 1993 25,230 26,706 25,531 15,019 6,359 5,221 3,939 3,860 4,492 9,636 14,979 23,071 1994 33,573 29,301 22,713 14,498 7,933 5,111 4,027 4,287 4,492 7,331 12,594 20,936 1995 28,306 29,814 21,860 14,128 8,132 4,979 4,697 4,406 4,623 7,916 18,650 27,649 1996 33,993 29,732 26,650 16,833 8,960 7,661 4,569 4,401 4,048 8,548 18,274 26,298

198

Natural Gas Delivered to Consumers in Georgia (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 49,414 34,292 35,867 25,368 20,633 20,544 24,229 26,863 21,857 25,679 23,983 34,450 2002 44,041 37,992 33,260 23,775 22,612 24,924 30,113 29,701 24,899 23,785 32,829 47,106 2003 56,470 43,704 31,355 30,232 21,920 20,512 23,789 26,828 21,628 22,981 26,920 45,508 2004 52,486 48,806 31,529 28,718 26,610 24,562 26,132 26,093 22,927 22,025 29,012 49,125 2005 47,756 39,503 39,085 25,191 23,198 26,957 31,619 33,089 28,453 26,199 32,483 52,399 2006 39,904 45,015 35,118 26,670 26,891 30,790 36,980 38,808 25,412 31,321 35,677 40,816 2007 49,163 47,589 32,236 31,955 27,318 31,415 32,039 49,457 31,028 27,420 33,851 41,413

199

Natural Gas Delivered to Consumers in Colorado (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 57,089 50,447 49,042 41,157 30,506 23,904 22,403 22,033 19,905 22,672 30,231 42,797 2002 47,541 44,713 45,909 30,319 24,230 22,105 26,301 21,119 21,764 34,563 38,884 46,826 2003 44,971 47,164 38,292 25,380 24,811 18,484 23,772 23,529 20,981 22,248 39,408 48,023 2004 47,548 44,859 30,853 28,458 23,766 20,408 22,895 21,210 20,651 26,731 39,719 50,977 2005 50,356 41,495 39,617 33,501 25,108 20,725 26,350 23,387 22,698 29,399 38,140 54,566 2006 45,074 45,360 42,614 26,074 20,799 20,115 23,277 22,817 18,928 30,373 38,546 49,332 2007 62,803 46,554 33,579 30,243 25,136 25,014 28,465 26,787 27,444 32,786 39,145 57,263

200

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,567 1,575 1,160 692 409 355 301 249 321 435 785 1,176 1990 1,313 1,283 1,000 610 479 389 293 280 292 459 822 1,315 1991 1,848 1,291 956 822 623 405 316 304 329 424 942 1,321 1992 1,543 1,167 834 643 447 343 345 330 369 465 889 1,557 1993 1,806 1,673 1,294 828 566 387 383 360 381 507 947 1,543 1994 1,510 1,457 1,121 771 480 377 374 306 357 571 1,098 1,667 1995 1,754 1,319 1,154 951 708 487 361 346 392 591 997 1,300 1996 1,734 1,783 1,359 996 710 477 346 354 421 597 1,107 1,621 1997 1,810 1,778 1,341 1,037 684 397 372 354 409 584 979 1,687 1998 1,969 1,564 1,417 1,072 686 535 405 380 386 577 1,045 1,640

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Natural Gas Delivered to Consumers in Maine (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 6,537 6,903 6,950 5,791 7,780 6,957 8,161 9,020 8,835 8,864 9,644 9,127 2002 9,857 10,737 9,131 9,186 10,030 9,602 7,965 10,909 8,186 10,974 12,161 11,924 2003 8,047 5,034 5,581 5,924 4,577 4,916 6,000 5,629 5,606 6,652 5,970 6,036 2004 7,095 8,049 7,635 7,137 6,496 6,314 6,648 7,333 6,100 7,027 7,786 7,858 2005 5,882 5,823 5,955 5,764 4,162 5,163 5,883 6,097 4,936 4,955 4,236 2,234 2006 3,888 4,850 5,239 4,090 5,138 4,996 6,505 5,264 5,580 6,835 5,939 5,217 2007 6,180 5,355 4,869 4,768 4,222 4,680 6,405 6,403 4,340 3,731 4,999 6,480 2008 6,142 5,066 5,389 5,928 5,679 4,545 6,177 5,002 5,965 5,812 6,785 6,712

202

Natural Gas Delivered to Consumers in Vermont (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 1,164 1,003 1,084 834 544 381 304 307 361 438 658 827 2002 1,127 1,149 960 808 575 428 330 336 348 485 803 1,003 2003 1,153 1,191 1,062 906 539 367 293 312 325 502 708 1,029 2004 1,154 1,381 1,072 829 517 421 331 342 365 479 769 1,011 2005 1,211 1,280 1,199 776 558 404 310 298 295 418 666 943 2006 1,112 1,063 1,190 745 501 415 318 318 347 481 658 893 2007 1,104 1,375 1,250 915 536 382 340 331 342 423 696 1,158 2008 1,202 1,217 1,137 865 512 384 331 333 361 480 702 1,084 2009 1,407 1,307 1,076 794 507 409 348 321 337 508 684 922 2010 1,270 1,126 897 685 488 376 344 335 348 581 801 1,177

203

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,133 2,021 2,066 1,635 999 803 692 763 712 775 1,090 2,052 1990 1,986 1,857 1,789 1,384 951 699 514 572 721 574 836 1,589 1991 2,204 2,308 2,131 1,381 1,063 784 705 794 689 658 1,071 1,764 1992 2,300 2,256 2,132 1,774 1,056 764 718 673 653 753 1,103 1,921 1993 2,352 2,438 2,166 1,550 1,150 731 664 703 684 841 1,040 1,909 1994 2,303 1,865 1,483 1,588 979 815 753 692 740 785 1,082 1,658 1995 2,280 2,583 2,089 1,607 1,158 884 820 744 766 794 1,116 2,194 1996 2,147 1,942 1,551 1,925 1,233 824 878 750 774 804 1,195 2,325 1997 2,334 2,315 2,183 1,738 1,372 951 782 853 852 899 1,354 2,379

204

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,156 2,125 1,533 1,100 1,004 890 790 805 811 954 1,257 1,690 1990 1,959 1,963 1,740 1,185 1,006 970 879 782 701 1,157 1,026 1,705 1991 2,447 1,839 1,739 1,593 1,333 1,121 947 1,005 761 1,104 1,095 1,976 1992 2,327 1,873 1,725 1,335 1,012 945 1,015 824 872 982 1,022 2,170 1993 2,271 2,110 2,016 1,314 1,341 1,052 919 939 909 1,047 1,421 2,211 1994 2,334 2,277 1,995 1,456 1,300 1,136 995 909 978 1,146 1,541 2,625 1995 2,551 2,139 1,868 1,784 1,558 1,268 1,082 978 1,009 1,151 1,444 1,871 1996 2,466 2,309 2,268 1,811 1,454 1,286 1,145 1,062 1,116 1,269 1,817 2,417 1997 2,717 2,634 2,447 1,900 1,695 1,412 1,099 1,148 1,195 1,273 1,800 2,638

205

Natural Gas Delivered to Consumers in Wisconsin (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 52,126 51,020 52,466 24,969 17,238 15,421 16,478 16,540 16,716 25,355 26,981 41,400 2002 49,850 43,815 48,646 31,946 24,278 16,100 16,531 15,795 16,659 28,429 39,330 49,912 2003 62,523 55,695 44,756 32,270 20,752 15,502 15,630 18,099 16,485 24,636 36,907 47,677 2004 65,038 48,498 41,599 27,544 21,106 15,420 15,949 14,951 16,063 23,268 33,602 56,693 2005 59,667 45,463 47,647 29,885 23,265 22,788 21,959 22,549 19,566 23,868 35,232 54,600 2006 44,700 49,036 42,628 24,331 20,527 17,607 20,221 19,919 18,038 31,566 36,227 44,483 2007 53,637 61,738 41,274 32,627 19,348 17,305 18,156 21,627 17,044 22,827 36,770 53,091

206

Natural Gas Delivered to Consumers in Kansas (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 35,585 27,368 26,284 16,906 10,552 11,171 18,862 17,962 13,422 11,375 14,263 20,610 2002 28,513 25,068 25,566 17,348 13,424 13,947 18,253 20,062 15,937 13,007 21,946 26,371 2003 31,180 29,594 25,952 16,337 13,386 11,371 15,614 15,421 13,725 13,096 15,980 25,771 2004 30,087 29,036 21,955 15,496 13,148 12,282 11,912 13,013 13,177 13,809 15,207 23,992 2005 29,876 25,291 20,604 15,459 12,953 11,687 13,164 13,264 12,147 11,254 14,924 25,902 2006 25,596 23,451 22,320 16,673 12,748 14,289 18,023 17,171 12,559 13,555 17,451 24,135 2007 29,886 31,709 22,007 16,753 13,449 14,165 16,842 20,565 16,098 15,324 19,705 29,579

207

Natural Gas Delivered to Consumers in Oklahoma (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 45,337 36,026 35,468 29,023 26,153 28,194 41,056 38,697 30,910 29,194 26,719 33,193 2002 42,957 42,546 40,981 36,989 28,784 31,741 39,440 43,092 34,007 26,058 27,197 34,574 2003 44,633 43,363 39,395 32,941 30,147 32,417 46,076 47,914 30,139 28,937 26,588 39,627 2004 44,286 47,720 40,198 35,528 36,608 33,843 39,855 38,791 36,056 30,069 25,036 35,444 2005 42,941 41,516 38,987 36,599 35,972 45,327 48,696 49,698 42,454 32,097 30,402 42,813 2006 42,641 45,534 43,562 45,754 43,689 44,512 51,955 56,344 37,425 35,388 34,881 46,374 2007 55,048 57,329 44,646 43,762 41,758 42,250 47,969 58,650 43,759 42,172 36,392 49,540

208

Natural Gas Delivered to Consumers in Kentucky (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 31,659 23,182 21,670 14,953 9,527 8,890 9,668 9,881 10,024 12,591 16,271 23,216 2002 26,131 24,533 23,241 14,879 12,317 11,623 13,804 10,869 11,129 14,628 21,069 27,646 2003 34,776 29,032 20,580 14,017 10,797 9,334 9,467 10,296 10,390 13,196 16,933 27,218 2004 32,640 27,566 21,630 15,771 12,331 11,249 10,810 11,428 10,883 13,355 17,689 27,203 2005 29,373 24,036 24,578 15,557 13,614 13,693 12,658 14,134 12,122 14,104 19,304 29,050 2006 23,093 23,721 20,380 14,447 13,054 12,108 12,861 13,777 11,131 14,865 17,982 22,930 2007 26,916 29,946 20,044 17,410 12,573 11,418 10,304 16,709 11,848 13,874 18,696 24,799

209

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,176 1,936 2,098 1,489 1,094 891 908 808 866 970 1,324 1,964 1990 2,455 1,649 1,576 1,262 1,040 846 836 830 872 965 1,315 1,749 1991 2,199 2,076 1,746 1,143 908 818 810 859 875 952 1,492 1,917 1992 2,276 2,158 1,745 1,436 1,068 944 820 882 875 1,006 1,345 2,089 1993 2,268 2,155 2,200 1,507 1,007 877 832 840 846 947 1,463 2,070 1994 2,845 2,472 1,910 1,174 1,027 1,342 913 949 947 1,089 1,361 1,843 1995 2,600 2,626 2,111 1,382 1,045 1,013 950 956 1,044 1,054 1,674 2,414 1996 3,136 2,782 2,190 1,884 1,154 997 940 957 1,041 1,157 1,644 2,447 1997 2,378 2,381 1,793 1,202 1,268 1,096 989 1,004 1,884 1,167 1,757 2,639

210

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 4,784 4,016 4,367 3,046 2,022 1,568 1,475 1,454 1,534 1,843 2,639 4,396 1990 5,379 3,690 3,400 2,747 1,820 1,445 1,394 1,480 1,596 1,795 2,715 3,817 1991 4,947 4,647 3,990 2,629 1,928 1,677 1,613 1,679 1,789 2,052 3,200 4,162 1992 5,169 5,066 3,983 3,296 2,205 1,733 1,591 1,607 1,679 2,138 3,010 4,941 1993 5,866 5,566 5,426 3,602 1,988 1,532 1,437 1,539 1,674 2,067 3,379 3,292 1994 7,247 6,269 4,727 2,761 1,844 1,605 1,487 1,647 1,831 2,115 2,817 4,592 1995 5,839 6,031 4,241 3,065 1,766 1,579 1,487 1,475 1,597 1,740 3,263 5,279 1996 6,913 6,421 4,851 3,760 1,970 1,586 1,415 1,575 1,658 1,917 3,240 5,160

211

Natural Gas Delivered to Consumers in Delaware (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 5,014 4,742 5,389 3,439 2,924 3,276 3,324 4,609 4,923 5,078 3,908 3,419 2002 5,258 4,880 4,847 3,830 2,810 2,738 6,396 3,816 4,170 3,843 3,936 5,597 2003 6,397 5,499 5,102 3,399 2,081 2,433 3,570 3,550 2,728 2,949 3,547 4,833 2004 6,827 5,602 4,600 3,387 3,731 2,595 2,620 2,437 2,880 2,484 4,033 6,759 2005 6,870 5,543 5,427 2,696 2,517 2,866 3,287 3,735 2,652 2,870 3,515 4,876 2006 5,025 4,699 4,451 2,549 2,659 3,204 3,812 3,447 2,516 2,972 3,454 4,379 2007 4,855 5,154 4,783 3,486 2,804 3,196 3,833 4,160 3,127 3,346 3,838 5,551 2008 5,197 5,132 4,474 3,574 2,885 3,871 4,077 3,567 3,009 2,937 4,178 5,239

212

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 26,553 25,448 24,717 16,375 10,150 5,954 4,570 4,467 5,047 8,855 15,776 28,269 1990 26,939 22,780 20,870 15,431 9,230 5,638 4,610 4,865 5,117 8,592 14,122 21,237 1991 29,054 24,902 21,321 14,617 9,583 5,601 4,916 4,508 5,510 9,450 12,966 23,131 1992 26,677 24,979 22,443 17,769 10,406 5,883 4,981 4,964 5,431 9,760 16,298 24,211 1993 28,122 27,427 25,623 18,238 9,009 5,968 5,035 4,140 5,767 10,193 16,875 23,833 1994 33,440 31,356 24,263 16,330 10,123 6,207 5,343 5,363 5,719 8,796 14,511 21,617 1995 27,945 29,223 23,980 18,384 11,004 6,372 5,664 5,778 6,417 9,647 19,742 29,922 1996 32,468 30,447 27,914 19,664 12,272 6,343 5,673 5,383 6,146 9,472 19,486 26,123

213

Natural Gas Delivered to Consumers in Arizona (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 19,804 23,088 21,742 19,153 21,113 17,703 18,312 16,919 14,352 14,127 12,164 19,204 2002 19,840 19,954 18,340 14,544 14,463 17,262 23,546 22,088 20,988 19,112 17,712 21,662 2003 20,639 18,895 21,753 16,848 14,559 16,858 28,981 30,940 25,278 24,409 16,317 18,043 2004 25,379 30,143 26,925 23,982 26,878 29,819 35,860 33,244 27,591 23,349 23,090 26,140 2005 24,400 22,209 17,591 20,779 22,660 23,609 35,036 34,587 26,451 24,130 22,651 28,011 2006 26,212 24,177 22,606 21,814 22,339 30,548 34,718 36,448 30,678 32,378 24,493 29,027 2007 34,237 26,857 17,051 20,379 28,959 35,463 43,104 40,305 33,790 29,544 27,001 33,835

214

Natural Gas Delivered to Consumers in Iowa (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 33,183 29,626 26,788 17,172 12,430 10,449 10,249 10,177 10,494 14,476 16,865 23,400 2002 28,527 25,072 25,693 18,706 13,413 10,076 9,731 9,815 10,403 14,561 22,219 27,225 2003 31,445 32,450 25,482 16,870 12,421 10,288 9,892 10,030 10,550 13,644 20,542 26,599 2004 32,639 30,955 23,081 15,569 11,543 10,481 9,546 10,080 10,193 14,132 20,759 27,591 2005 34,272 27,838 24,671 18,370 13,180 12,206 11,888 11,542 11,838 13,551 19,595 30,763 2006 26,997 26,909 23,941 17,158 14,088 12,588 13,244 11,886 12,277 18,360 22,732 25,747 2007 35,848 38,728 28,204 22,726 17,742 14,922 15,363 15,754 14,595 18,051 24,001 35,021

215

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,976 3,700 4,247 2,586 1,701 1,154 968 941 978 1,220 1,801 3,647 1990 4,168 3,115 3,057 2,477 1,557 1,131 1,049 961 1,016 1,095 1,686 2,738 1991 5,709 5,334 4,545 3,320 2,108 1,602 1,545 1,465 1,486 2,289 3,582 5,132 1992 6,323 6,382 5,073 3,807 2,391 1,784 1,553 1,586 1,615 2,491 3,895 5,565 1993 6,273 6,568 6,232 3,772 2,110 1,861 1,507 1,567 1,700 2,231 3,898 5,915 1994 8,122 6,354 5,634 2,844 2,547 1,709 1,732 1,588 2,016 2,531 3,582 5,475 1995 6,743 7,826 4,472 3,736 2,388 1,994 1,612 1,722 2,065 1,907 4,871 7,538 1996 7,648 6,515 5,476 3,766 2,672 1,816 1,608 1,866 1,922 2,427 4,693 5,433

216

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,493 3,435 3,545 3,083 2,670 2,570 2,525 2,369 2,484 2,444 2,868 3,620 1990 4,101 3,305 3,246 3,026 2,860 2,673 2,584 2,497 2,483 2,521 3,285 3,725 1991 3,875 3,770 3,782 3,363 2,978 2,674 2,845 2,708 2,998 2,798 3,519 3,954 1992 4,408 4,364 3,856 3,741 3,382 3,085 2,976 2,881 2,849 2,954 3,317 3,914 1993 3,951 4,078 4,088 3,871 3,362 3,085 2,919 2,830 2,887 2,983 3,336 3,760 1994 4,619 3,941 3,853 3,374 3,078 2,937 2,855 2,909 2,896 2,814 3,089 3,570 1995 4,274 4,361 3,900 3,433 3,055 2,930 2,970 2,751 2,818 2,840 3,171 3,883 1996 4,731 4,272 4,167 3,918 3,336 3,029 2,836 2,716 2,840 2,957 3,179 3,830

217

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,919 4,336 3,961 2,180 1,261 1,357 1,019 1,007 1,096 1,245 1,948 3,942 1990 4,957 3,368 2,807 2,223 1,398 1,065 1,030 1,043 1,081 1,260 1,948 2,949 1991 5,034 4,043 2,848 1,778 1,211 1,027 998 1,023 1,045 1,184 2,497 3,297 1992 4,159 3,861 2,708 2,114 1,358 1,108 1,062 1,022 1,029 1,219 2,078 3,596 1993 4,757 4,174 3,999 2,923 1,540 1,078 1,013 1,047 1,126 1,389 2,480 3,473 1994 5,101 4,707 3,388 2,306 1,360 1,107 990 887 1,253 1,275 1,897 3,136 1995 4,387 4,171 3,478 2,027 1,337 1,156 1,015 1,021 1,060 1,183 2,265 4,311 1996 5,411 5,249 3,895 2,964 1,519 1,052 1,056 1,060 1,106 1,356 2,462 3,876

218

Natural Gas Delivered to Consumers in Arkansas (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 26,139 20,654 21,940 16,528 13,819 12,558 14,779 16,061 15,014 18,239 19,675 22,233 2002 24,431 24,940 22,284 19,166 15,635 16,964 18,741 17,700 16,789 16,932 17,770 21,567 2003 27,116 27,256 22,904 18,625 17,603 17,849 18,208 18,467 15,282 16,402 16,960 20,603 2004 24,746 25,909 21,663 16,382 15,991 14,085 14,456 14,551 11,956 14,094 13,138 18,337 2005 22,386 19,719 19,170 15,597 14,643 15,315 16,703 17,392 13,113 13,511 15,272 20,113 2006 19,984 19,909 19,394 17,499 17,865 19,198 19,107 19,963 16,976 17,107 15,346 19,021 2007 20,936 22,984 17,280 15,779 16,099 17,982 17,998 22,294 15,747 13,225 15,235 18,728

219

Natural Gas Delivered to Consumers in Utah (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 20,043 17,426 13,012 11,173 7,791 7,056 6,214 6,023 6,572 9,189 11,646 18,505 2002 19,727 17,659 15,165 8,453 7,113 5,260 5,915 6,481 7,591 11,589 13,814 16,447 2003 16,474 16,494 12,825 10,664 6,942 5,612 6,174 6,166 6,229 7,898 13,299 16,533 2004 21,414 17,627 10,247 9,033 6,775 5,344 6,398 5,617 6,456 8,714 13,097 17,058 2005 18,357 16,430 13,763 12,951 9,253 7,461 7,380 6,187 6,053 6,449 9,027 16,786 2006 19,708 17,533 16,428 13,496 8,309 8,516 8,734 8,180 8,599 9,422 13,464 19,710 2007 27,918 22,251 16,927 13,476 12,260 11,106 9,771 9,790 10,976 12,425 15,630 20,497 2008 27,371 26,146 20,495 17,995 13,506 10,286 10,157 10,919 10,422 11,249 14,386 19,141

220

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 3,283 3,376 2,280 1,227 653 472 357 346 390 522 1,313 2,304 1990 2,864 2,779 2,272 1,203 860 581 373 364 374 629 1,382 2,540 1991 4,055 3,108 2,282 1,771 1,316 668 405 375 407 551 1,634 2,704 1992 3,330 2,952 1,866 1,155 642 457 410 372 405 545 1,329 3,120 1993 3,922 3,682 2,988 1,839 1,248 707 597 594 606 946 2,023 3,436 1994 3,929 3,846 2,665 2,037 962 814 820 787 882 1,883 3,542 4,335 1995 4,244 3,324 2,948 2,429 1,675 1,122 861 899 1,088 1,905 2,605 3,724 1996 4,549 4,604 3,129 2,479 1,356 892 904 874 1,279 2,073 3,185 4,220 1997 5,030 4,454 3,350 2,664 1,263 942 923 939 1,120 2,012 3,174 5,257

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Natural Gas Delivered to Consumers in Michigan (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 133,140 112,047 111,301 76,191 48,707 41,686 43,845 44,577 40,142 59,283 71,352 92,053 2002 119,902 108,891 104,208 87,138 63,810 52,457 51,899 47,094 40,938 53,419 82,015 114,268 2003 140,545 133,702 114,085 80,651 53,258 37,279 35,261 42,115 32,744 49,901 69,659 99,067 2004 137,906 127,671 102,442 76,978 54,610 41,310 38,001 37,565 37,285 48,239 71,870 107,025 2005 133,079 112,812 108,608 72,884 50,886 47,768 50,667 44,890 35,502 42,661 64,574 111,058 2006 104,803 99,454 96,633 65,814 43,901 35,824 43,332 39,459 31,740 50,167 70,643 85,634 2007 100,406 124,441 98,314 69,491 43,699 33,353 30,415 38,655 30,211 36,831 59,171 97,411

222

Natural Gas Delivered to Consumers in Louisiana (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 90,750 82,773 86,038 87,577 81,223 77,877 93,937 105,743 93,365 92,353 85,277 92,797 2002 102,807 96,945 102,315 94,281 91,511 97,058 107,870 109,348 97,986 94,054 96,857 102,289 2003 106,504 91,821 89,554 89,376 88,426 78,863 91,469 95,243 85,824 84,198 83,677 94,139 2004 101,114 98,005 96,851 86,763 89,143 89,075 96,344 98,583 93,156 94,397 89,577 99,046 2005 102,652 87,403 100,620 97,398 104,027 102,860 104,234 99,244 82,252 75,899 72,958 91,598 2006 80,495 79,755 88,341 86,459 88,047 89,170 97,472 103,508 88,124 89,721 89,141 94,300 2007 100,669 93,075 95,251 91,900 94,668 99,373 92,367 104,606 87,792 91,661 83,575 89,348

223

Natural Gas Delivered to Consumers in Florida (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 34,086 30,338 35,463 39,708 42,466 46,947 53,430 53,352 55,306 52,955 42,205 47,598 2002 50,177 41,302 50,453 55,845 56,767 62,343 67,197 70,144 65,136 64,259 47,600 45,144 2003 53,384 43,538 54,761 51,487 62,575 58,312 64,041 61,764 62,150 59,558 56,488 50,525 2004 50,877 49,866 51,687 53,442 62,663 69,628 72,443 70,540 70,259 66,961 50,122 53,169 2005 59,417 49,956 60,238 55,269 64,436 69,719 90,376 84,114 67,877 63,782 55,683 46,489 2006 54,827 56,557 68,707 73,645 85,346 87,268 88,949 86,772 83,397 76,817 58,594 56,867 2007 57,409 56,412 60,397 70,366 76,461 81,312 93,683 97,040 88,865 89,976 66,512 67,153

224

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 28,465 29,564 21,880 18,656 19,249 21,469 15,319 17,351 19,452 19,856 21,665 26,192 1990 30,798 34,767 27,425 23,423 18,540 17,392 21,030 17,705 23,233 17,384 22,637 30,759 1991 31,793 23,911 26,128 28,375 21,468 20,003 22,080 16,547 23,307 26,510 20,109 27,379 1992 38,234 23,834 24,413 18,379 27,118 22,150 21,150 21,633 19,247 19,112 20,999 28,738 1993 27,151 31,334 21,654 18,276 18,032 15,638 18,341 14,348 16,845 19,708 20,404 28,553 1994 29,342 27,032 23,156 18,463 22,621 18,091 25,752 14,123 14,604 17,844 25,032 25,929 1995 31,883 25,693 23,399 23,976 24,831 19,028 21,954 18,362 19,391 21,272 22,818 26,152

225

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 25,565 24,630 25,344 18,494 12,079 8,747 8,382 8,305 8,812 11,741 16,631 27,650 1990 24,659 23,697 22,939 17,706 11,586 10,272 9,602 9,683 10,261 12,661 17,210 24,715 1991 28,442 25,685 23,462 17,684 11,669 9,641 10,331 9,764 9,195 11,571 17,033 25,121 1992 29,246 29,912 27,748 23,039 13,518 9,915 9,327 9,456 9,582 12,860 16,804 25,808 1993 28,857 29,740 28,926 20,266 11,667 11,221 10,477 10,502 9,972 13,970 18,205 26,928 1994 31,014 32,757 29,376 21,207 13,641 11,207 10,158 10,485 10,002 12,399 16,783 24,226 1995 28,329 29,345 28,182 20,813 14,459 11,501 11,281 10,797 10,619 13,394 22,325 30,309 1996 NA NA NA NA NA NA NA NA NA NA NA NA

226

Natural Gas Delivered to Consumers in Indiana (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 77,275 61,840 57,608 37,045 27,762 26,685 25,473 29,184 25,697 34,650 39,146 51,997 2002 65,893 58,962 58,569 44,882 32,659 27,696 30,899 30,668 28,357 37,204 49,556 68,056 2003 80,534 70,155 52,368 35,903 31,266 25,652 24,580 26,666 27,072 34,914 46,556 64,253 2004 80,680 70,341 53,056 37,842 30,840 25,006 25,592 27,498 26,658 33,102 43,630 65,054 2005 72,775 58,428 61,390 39,473 30,697 28,897 28,628 29,602 26,476 32,838 44,576 70,488 2006 56,899 57,392 54,200 34,311 30,004 26,873 29,579 29,996 27,630 39,210 47,253 56,403 2007 66,914 76,347 49,045 40,498 29,129 27,272 28,150 34,503 29,267 35,013 48,878 63,510

227

Retail Price of No. 2 Fuel Oil to Residential Consumers  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Retail prices and Prime ...

228

Natural Gas Deliveries to Commercial Consumers (Including Vehicle Fuel  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 1,357 1,414 1,111 852 521 368 285 233 268 396 724 1,022 1990 1,305 1,199 1,085 822 628 410 247 234 241 378 759 1,132 1991 1,639 1,249 996 830 680 362 272 248 269 449 873 1,233 1992 1,404 1,078 821 668 438 309 264 269 287 439 760 1,271 1993 1,631 1,376 1,262 882 639 400 362 389 378 667 874 1,407 1994 1,351 1,412 1,065 869 544 369 291 270 308 550 915 1,287 1995 1,671 1,247 1,217 987 873 594 373 258 NA NA NA NA 1996 1,176 1,203 1,030 925 712 342 197 197 250 640 1,301 1,748 1997 1,570 1,309 1,403 1,189 958 491 623 287 316 554 966 1,088 1998 1,628 1,322 1,279 936 597 442 371 253 343 493 927 1,822

229

Natural Gas Delivered to Consumers in Maryland (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 28,398 21,618 21,408 13,900 9,252 8,342 9,046 11,007 9,109 12,662 13,558 17,125 2002 24,221 22,802 20,670 12,534 8,846 8,846 10,514 12,842 10,157 12,911 20,408 28,827 2003 31,739 28,530 21,240 15,685 9,809 8,723 8,128 7,986 7,131 11,863 16,167 27,049 2004 33,576 27,062 20,558 14,623 9,867 8,560 7,704 8,271 7,535 11,725 16,222 26,279 2005 29,469 25,497 24,272 13,414 10,273 10,104 9,641 11,634 8,302 12,060 16,807 28,263 2006 24,101 24,846 19,870 11,807 9,034 9,251 11,438 11,236 8,042 11,895 16,300 21,239 2007 24,841 32,498 20,950 15,805 8,835 9,239 9,540 12,974 9,655 10,242 17,911 25,311 2008 28,394 26,094 20,551 12,340 9,832 9,808 10,778 7,669 8,974 12,394 20,316 25,502

230

Natural Gas Delivered to Consumers in Wyoming (Including Vehicle Fuel)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 7,475 6,484 5,643 5,505 4,182 3,864 3,515 3,541 3,688 4,790 5,518 6,170 2002 6,844 5,846 6,319 5,737 5,034 4,070 4,980 4,124 4,599 6,126 7,421 8,523 2003 7,672 7,313 7,026 5,737 4,976 4,408 4,112 4,164 4,356 5,062 5,554 7,236 2004 7,555 7,180 6,077 5,400 4,775 4,216 4,064 4,187 4,024 5,032 6,153 6,963 2005 7,585 6,443 6,231 5,612 5,092 4,247 4,081 3,903 4,080 4,829 5,360 7,262 2006 7,304 6,824 6,957 5,389 4,762 4,109 4,108 4,063 3,935 5,157 5,893 6,958 2007 7,982 7,322 6,900 5,469 4,958 4,253 3,873 3,944 4,150 5,003 6,095 7,723 2008 8,446 7,443 6,660 5,737 5,057 4,098 3,749 3,805 3,520 4,922 5,595 7,419

231

Technical Consumer Products - Compliance Test Laboratory  

Science Conference Proceedings (OSTI)

Technical Consumer Products - Compliance Test Laboratory. NVLAP Lab Code: 200571-0. Address and Contact Information: ...

2013-09-20T23:59:59.000Z

232

Analysis of Consumer Response to Automobile Regulation and Technological Change in Support of California Climate Change Rulemaking  

E-Print Network (OSTI)

25 Hybrid vehicle sales and consumer valuation of fuelIf a buyer thinks the hybrid vehicle is a good idea, theyemerging markets for hybrid vehicles in California and the

Kurani, Kenneth S; Turrentine, Tom

2004-01-01T23:59:59.000Z

233

The Need for Essential Consumer Protections  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Need for Essential Consumer Protections Need for Essential Consumer Protections THE NEED FOR ESSENTIAL CONSUMER PROTECTIONS SMART METERING PROPOSALS AND THE MOVE TO TIME-BASED PRICING August 2010 NCLC NATIONAL CONSUMER L AW C E N T E R ® ® The Need for Essential Consumer Protections Copyright © 2010 AARP, National Consumer Law Center, National Association of State Utility Consumer Advocates, Consumers Union, and Public Citizen. Reprinting with permission. ACkNOwLEDGMENTS The consumer organizations acknowledge the assistance of Barbara R. Alexander, Consumer Affairs Consultant, in the preparation of this paper. 1 There is widespread consensus that the U.S. distribution and transmission systems for vital electricity service need to be modernized and upgraded. This modernization has been recently promoted under the rubric of the

234

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas and Hydrogen Fuels Workshop Compressed Natural Gas and Hydrogen Fuels Workshop Fuel experts from China, India, and the United States shared lessons learned about deploying CNG- and hydrogen-fueled vehicles in public transit fleets and the consumer sector at the Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles workshop. The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) hosted the workshop on December 10-11, 2009. Here you'll find information about the workshop's focus, agenda and notes, and presentations. Some of the following documents are available as Adobe Acrobat PDFs. Download Adobe Reader. Focus of the Workshop The workshop aimed to: Compare fuel properties-including blends-industries, and applications (e.g., product specifications, tanks, reliability, safety procedures, risk mitigation, and dispensing)

235

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

236

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

237

Neutronic fuel element fabrication  

SciTech Connect

This disclosure describes a method for metallurgically bonding a complete leak-tight enclosure to a matrix-type fuel element penetrated longitudinally by a multiplicity of coolant channels. Coolant tubes containing solid filler pins are disposed in the coolant channels. A leak-tight metal enclosure is then formed about the entire assembly of fuel matrix, coolant tubes and pins. The completely enclosed and sealed assembly is exposed to a high temperature and pressure gas environment to effect a metallurgical bond between all contacting surfaces therein. The ends of the assembly are then machined away to expose the pin ends which are chemically leached from the coolant tubes to leave the coolant tubes with internal coolant passageways. The invention described herein was made in the course of, or under, a contract with the U.S. Atomic Energy Commission. It relates generally to fuel elements for neutronic reactors and more particularly to a method for providing a leak-tight metal enclosure for a high-performance matrix-type fuel element penetrated longitudinally by a multiplicity of coolant tubes. The planned utilization of nuclear energy in high-performance, compact-propulsion and mobile power-generation systems has necessitated the development of fuel elements capable of operating at high power densities. High power densities in turn require fuel elements having high thermal conductivities and good fuel retention capabilities at high temperatures. A metal clad fuel element containing a ceramic phase of fuel intimately mixed with and bonded to a continuous refractory metal matrix has been found to satisfy the above requirements. Metal coolant tubes penetrate the matrix to afford internal cooling to the fuel element while providing positive fuel retention and containment of fission products generated within the fuel matrix. Metal header plates are bonded to the coolant tubes at each end of the fuel element and a metal cladding or can completes the fuel-matrix enclosure by encompassing the sides of the fuel element between the header plates.

Korton, George (Cincinnati, OH)

2004-02-24T23:59:59.000Z

238

Fuel cell stack arrangements  

DOE Patents (OSTI)

Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

Kothmann, Richard E. (Churchill Boro, PA); Somers, Edward V. (Murrysville, PA)

1982-01-01T23:59:59.000Z

239

Hydrogen Storage Requirements for Fuel Cell Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

GENERAL MOTORS GENERAL MOTORS HYDROGEN STORAGE REQUIREMENTS FOR FUEL CELL VEHICLES Brian G. Wicke GM R&D and Planning DOE Hydrogen Storage Workshop August 14-15, 2002 Argonne National Laboratory General Motors Fuel Cell Vehicles * GM fuel cell vehicle Goal - be the first to profitably sell one million fuel cell vehicles * Fuel cell powerplant must be suitable for a broad range of light-duty vehicles (not just niche) * UNCOMPROMISED performance & reliability are REQUIRED * SAFETY IS A GIVEN * Evolutionary and Revolutionary vehicle designs are included-GM AUTONOMY-as long as the customer is (more than) satisfied GENERAL MOTORS AUTONOMY GENERAL MOTORS AUTONOMY General Motors Fuel Cell Vehicles * Focus on PEM fuel cell technology * Must consider entire hydrogen storage & (unique) fuel delivery systems,

240

Alternatives to traditional transportation fuels 1996  

DOE Green Energy (OSTI)

Interest in alternative transportation fuels (ATF`s) has increased in recent years due to the drives for cleaner air and less dependence upon foreign oil. This report, Alternatives to Traditional Transportation Fuels 1996, provides information on ATFs, as well as the vehicles that consume them.

NONE

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dealing with Consumer Default: Bankruptcy vs Garnishment  

E-Print Network (OSTI)

The views expressed in this paper are those of the authors and do not necessarily reflect those of the Federal Reserve Bank of Philadelphia or of the Federal Reserve The goal of this paper is to study, in a quantitative-theoretic fashion, the positive and normative implications of two different approaches to handling consumer default: bankruptcy and garnishment. We find that which of these two legal systems is in place makes a large difference to prices, allocations and welfare. Garnishment increases the level of commitment displayed by debtors toward meeting their obligations and with competition and free entry into intermediation, the added commitment translates into lower interest rates on debt. The result is a very large expansion in unsecured debt, a drop in capital per worker as the additional borrowing crowds out business fixed investment, a significant decrease in wages and a significant increase in interest rates. Nevertheless, despite these apparently adverse general equilibrium effects of credit expansion, every single individual in our baseline economy is better off without the bankruptcy option. The improved ability to borrow against future earnings and the improved risk-sharing afforded by a well-functioning consumer credit market

Satyajit Chatterjee; Grey Gordon

2010-01-01T23:59:59.000Z

242

Fuel performance annual report for 1983. Volume 1  

Science Conference Proceedings (OSTI)

This annual report, the sixth in a series, provides a brief description of fuel performance during 1983 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Dunenfeld, M.S.

1985-03-01T23:59:59.000Z

243

Fuel performance annual report for 1990. Volume 8  

SciTech Connect

This annual report, the thirteenth in a series, provides a brief description of fuel performance during 1990 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience and trends, fuel problems high-burnup fuel experience, and items of general significance are provided . References to additional, more detailed information, and related NRC evaluations are included where appropriate.

Preble, E.A.; Painter, C.L.; Alvis, J.A.; Berting, F.M.; Beyer, C.E.; Payne, G.A. [Pacific Northwest Lab., Richland, WA (United States); Wu, S.L. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology

1993-11-01T23:59:59.000Z

244

Fuel performance: Annual report for 1987  

SciTech Connect

This annual report, the tenth in a series, provides a brief description of fuel performance during 1987 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulator Commission evaluations are included. 384 refs., 13 figs., 33 tabs.

Bailey, W.J.; Wu, S.

1989-03-01T23:59:59.000Z

245

Fuel performance annual report for 1986  

Science Conference Proceedings (OSTI)

This annual report, the ninth in a series, provides a brief description of fuel performance during 1986 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related U.S. Nuclear Regulatory Commission evaluations are included. 550 refs., 12 figs., 31 tabs.

Bailey, W.J.; Wu, S.

1988-03-01T23:59:59.000Z

246

Fuel performance annual report for 1988  

SciTech Connect

This annual report, the eleventh in a series, provides a brief description of fuel performance during 1988 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included. 414 refs., 13 figs., 32 tabs.

Bailey, W.J. (Pacific Northwest Lab., Richland, WA (USA)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (USA). Div. of Engineering and Systems Technology)

1990-03-01T23:59:59.000Z

247

Fuel performance annual report for 1989  

SciTech Connect

This annual report, the twelfth in a series, provides a brief description of fuel performance during 1989 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to more detailed information and related US Nuclear Regulatory Commission evaluations are included.

Bailey, W.J.; Berting, F.M. (Pacific Northwest Lab., Richland, WA (United States)); Wu, S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Systems Technology)

1992-06-01T23:59:59.000Z

248

Fuel performance annual report for 1985  

Science Conference Proceedings (OSTI)

This annual report, the eighth in a series, provides a brief description of fuel performance during 1985 in commercial nuclear power plants and an indication of trends. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included.

Bailey, W.J.; Wu, S.

1987-02-01T23:59:59.000Z

249

general_atomics.cdr  

Office of Legacy Management (LM)

former General former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level.

250

general_atomics.cdr  

NLE Websites -- All DOE Office Websites (Extended Search)

former former General Atomics Hot Cell Facility was constructed in 1959 and operated until 1991. The site encompassed approximately 7,400 square feet of laboratory and remote operations cells. Licensed operations at the facility included receipt, handling, and shipment of radioactive materials; remote handling, examination, and storage of previously irradiated nuclear fuel materials; pilot-scale tritium extraction operations; and development, fabrication, and inspection of uranium oxide-beryllium oxide fuel materials. General Atomics performed most of the work for the federal government. The General Atomics Hot Cell Facility was located in a 60-acre complex 13 miles northwest of downtown San Diego, 1 mile inland from the Pacific Ocean, and approximately 300 feet above sea level. The General Atomics site is in the center of Torrey Mesa Science Center, a 304-acre industrial

251

Home Energy Saver for Consumers  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Energy Saver for Consumers Home Energy Saver for Consumers The Home Energy Saver(tm) (HES) empowers homeowners and renters to save money, live better, and help the earth by reducing energy use in their homes. HES recommends energy-saving upgrades that are appropriate to the home and make sense for the home's climate and local energy prices. The money invested in these upgrades commonly earns "interest" in the form of energy bill savings, at an annual rate of 20% or more. Depending on the type of improvement made, the home can achieve better comfort (warmer in winter, cooler in summer), fewer drafts, lower maintenance costs, and improved security and fire safety-all of which improve life and increase the home's value. HES computes a home's energy use on-line in a matter of seconds based on

252

Micro and Man-Portable Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

& USFCC Fuel Cells Meeting: & USFCC Fuel Cells Meeting: US DOE & USFCC Fuel Cells Meeting: Matching Federal Government Energy Needs Matching Federal Government Energy Needs with Energy Efficient Fuel Cells with Energy Efficient Fuel Cells Micro & Man Micro & Man - - Portable Fuel Cells Portable Fuel Cells Jerry Hallmark Jerry Hallmark Motorola Labs Motorola Labs - - President USFCC President USFCC Hotel Palomar Hotel Palomar Washington, DC Washington, DC April 26th, 2007 April 26th, 2007 US DOE & USFCC Fuel Cells Meeting 1 4/26/2007 U.S. Fuel Cell Council Micro & Man-Portable * Less Than 100 Watts * Consumer electronics, defense (solder power), speciality applications Portable, Backup, APU * 100 Watts to 10 Kilowatts * Battery replacement or charging, defense (platoon power), telecom backup,

253

Consumer bankruptcy: A fresh start  

E-Print Network (OSTI)

We quantitatively analyze the welfare implications of different consumer bankruptcies rules. We look at a dynamic life cycle model where households face idiosyncratic uncertainty. Bankruptcy rules vary in two dimensions: whether discharge of debt is granted to borrowers on demand (fresh start) and the fraction of income garnished from defaulters. We find that the welfare comparison depends critically upon the nature and magnitude of income and expenses uncertainty.

Igor Livshits; James Macgee; Michele Tertilt

2007-01-01T23:59:59.000Z

254

Consumer impacts of mandatory markup laws and related restrictions  

SciTech Connect

The various proposals to mandate markup or gross profit margins or compel specific pricing policies in gasoline marketing are comparable to a variety of laws and/or regulations applied to other industries. Economic studies evaluating the effects of such laws and regulations find that mandatory margins or margin limits generally cause consumer prices to be higher on average because of diminished price competition; promote inefficiency because of reduced competitive pressure and misplaced competitive emphasis; and produce no clear benefits to consumers. On the basis of the analysis and evidence in this report, the author recommends the rejection of proposals to mandate retail or wholesale margins. 83 references, 1 table.

Hogarty, T.F.

1984-01-01T23:59:59.000Z

255

Application of Optical Diagnostics for Fuel Spray Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Optical Diagnostics for Fuel Spray Characterization Scott Parrish General Motors Global Research, 30500 Mound Road, Warren, MI 48090-9055 USA It is well known that fuel spray...

256

Electricity as a Transportation Fuel | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity as a Transportation Fuel Electricity as a Transportation Fuel August 19, 2013 - 5:44pm Addthis Electricity used to power vehicles is generally provided by the...

257

How many gallons of diesel fuel does one barrel of oil ...  

U.S. Energy Information Administration (EIA)

... gasoline, heating oil, diesel, propane, and other liquids including biofuels ... How many gallons of diesel fuel does one ... and consumed in the ...

258

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

259

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

260

Alternative Fuel Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fuel Vehicles Alternative Fuel Vehicles Learn how a local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions. Learn how a local Clean Cities coalition helped Idaho's Valley Regional Transit switch to compressed natural gas buses, allowing the transit authority to maintain its service while reducing harmful emissions. From electric cars and propane vehicles to natural gas-powered buses and trucks that run on biodiesel, today's options for alternative fuel vehicles are vast. Increasing the use of alternative fuels and vehicles will help reduce consumers' fuel costs, minimize pollution and increase

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Onsite fuel cell program-- a status report  

SciTech Connect

The Onsite Fuel Cell Program is designed to produce data for the pioneering of fuel cell use. A fuel cell is an electrochemical device designed to transform the chemical energy of a hydrorich fuel, such as natural gas, into electricity. Under an Energy Service concept, onsite delivery and sale to consumers is promoted. Field test efforts are surveyed--a commercial laundry in Portland, Oregon, for example. Participating utilities in 40 kW cell field tests are mapped out. A project which will define a fuel cell power plant to meet cost requirements is underway.

Flore, V.B.; Cuttica, J.J.

1983-06-01T23:59:59.000Z

262

Market share elasticities for fuel and technology choice in home heating and cooling  

Science Conference Proceedings (OSTI)

A new technique for estimating own- and cross-elasticities of market share for fuel and technology choices in home heating and cooling is presented. We simulate changes in economic conditions and estimate elasticities by calculating predicted changes in fuel and technology market shares. Elasticities are found with respect to household income, equipment capital cost, and equipment capital cost, and equipment operating cost (including fuel price). The method is applied to a revised and extended version of a study by the Electric Power Research Institute (EPRI). Data for that study are drawn primarily from the 1975--1979 Annual Housing Surveys. Results are generally similar to previous studies, although our estimates of elasticities are somewhat lower. We feel the superior formulation of consumer choice and the currency of data in EPRI's work produce reliable estimates of market share elasticities. 18 refs., 1 fig., 6 tabs.

Wood, D.J.; Ruderman, H.; McMahon, J.E.

1989-05-01T23:59:59.000Z

263

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

264

General Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Environment Feature Stories Public Reading Room: Environmental Documents, Reports LANL Home Phonebook Calendar Video Business Small Business General Information General...

265

The Age of the Consumer-Innovator  

E-Print Network (OSTI)

Recent research shows that consumers collectively generate massive amounts of product innovation. These findings are a wake-up call for both companies and consumers and have significant implications for our understanding ...

von Hippel, Eric A

266

Systems analysis of major consumer energy decisions  

E-Print Network (OSTI)

American consumers make a number of decisions that significantly impact their energy use. Some of the most important of these decisions were identified and analyzed for the purpose of including them in a Consumer Energy ...

Sisler, Nicholas Daniel

2011-01-01T23:59:59.000Z

267

Optimizing Consumer Utility Systems to Drive Engagement and Action  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimizing Consumer Utility Systems to Drive Engagement and Action Optimizing Consumer Utility Systems to Drive Engagement and Action Speaker(s): Stephen Malloy V. Rory Jones Date: November 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Christopher Payne This presentation reviews a new software tool that recommends specific actions for homeowners and others to undertake to optimize their utility system configuration and operation. The tool, the "Utility System Optimizer" (USO), may be configured to optimize across all utilities (electricity, gas, water - and other fuels as propane, oil and wood) to meet objectives that are defined by the owner/operator (homeowner, retailer, etc.). Such objectives may be to maximize net wealth over time, to minimize carbon footprint for the best economics, to maximize health

268

Sipping fuel and saving lives: increasing fuel economy withoutsacrificing safety  

SciTech Connect

The public, automakers, and policymakers have long worried about trade-offs between increased fuel economy in motor vehicles and reduced safety. The conclusion of a broad group of experts on safety and fuel economy in the auto sector is that no trade-off is required. There are a wide variety of technologies and approaches available to advance vehicle fuel economy that have no effect on vehicle safety. Conversely, there are many technologies and approaches available to advance vehicle safety that are not detrimental to vehicle fuel economy. Congress is considering new policies to increase the fuel economy of new automobiles in order to reduce oil dependence and reduce greenhouse gas emissions. The findings reported here offer reassurance on an important dimension of that work: It is possible to significantly increase the fuel economy of motor vehicles without compromising their safety. Automobiles on the road today demonstrate that higher fuel economy and greater safety can co-exist. Some of the safest vehicles have higher fuel economy, while some of the least safe vehicles driven today--heavy, large trucks and SUVs--have the lowest fuel economy. At an October 3, 2006 workshop, leading researchers from national laboratories, academia, auto manufacturers, insurance research industry, consumer and environmental groups, material supply industries, and the federal government agreed that vehicles could be designed to simultaneously improve safety and fuel economy. The real question is not whether we can realize this goal, but the best path to get there. The experts' studies reveal important new conclusions about fuel economy and safety, including: (1) Vehicle fuel economy can be increased without affecting safety, and vice versa; (2) Reducing the weight and height of the heaviest SUVs and pickup trucks will simultaneously increase both their fuel economy and overall safety; and (3) Advanced materials can decouple size from mass, creating important new possibilities for increasing both fuel economy and safety without compromising functionality.

Gordon, Deborah; Greene, David L.; Ross, Marc H.; Wenzel, Tom P.

2007-06-11T23:59:59.000Z

269

Saving Money and Fuel with a Click of a Mouse | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Saving Money and Fuel with a Click of a Mouse Saving Money and Fuel with a Click of a Mouse January 10, 2012 - 4:19pm Addthis A look at tools that can help consumers save money and...

270

How do I compare heating fuels? - FAQ - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

How do I compare heating fuels? When choosing a heating system for a new home or replacing an existing system, consumers often want to compare the cost of heating fuels.

271

Administration Announces New Tools to Help Consumers ...  

Science Conference Proceedings (OSTI)

... & Electric and San Diego Gas & Electriclaunched Green ... six million households representing about 17 million electricity consumers download ...

2012-03-05T23:59:59.000Z

272

CleanFleet. Final report: Volume 4, fuel economy  

DOE Green Energy (OSTI)

Fuel economy estimates are provided for the CleanFleet vans operated for two years by FedEx in Southern California. Between one and three vehicle manufacturers (Chevrolet, Dodge, and Ford) supplied vans powered by compressed natural gas (CNG), propane gas, California Phase 2 reformulated gasoline (RFG), methanol (M-85), and unleaded gasoline as a control. Two electric G-Vans, manufactured by Conceptor Corporation, were supplied by Southern California Edison. Vehicle and engine technologies are representative of those available in early 1992. A total of 111 vans were assigned to FedEx delivery routes at five demonstration sites. The driver and route assignments were periodically rotated within each site to ensure that each vehicle would experience a range of driving conditions. Regression analysis was used to estimate the relationships between vehicle fuel economy and factors such as the number of miles driven and the number of delivery stops made each day. The energy adjusted fuel economy (distance per energy consumed) of the alternative fuel vans operating on a typical FedEx duty cycle was between 13 percent lower and 4 percent higher than that of control vans from the same manufacturer. The driving range of vans operating on liquid and gaseous alternative fuels was 1 percent to 59 percent lower than for vans operating on unleaded gasoline. The driving range of the electric G-Vans was less than 50 miles. These comparisons are affected to varying degrees by differences in engine technology used in the alterative fuel and control vehicles. Relative fuel economy results from dynamometer emissions tests were generally consistent with those obtained from FedEx operations.

NONE

1995-12-01T23:59:59.000Z

273

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Digg

274

Information and the solar consumer  

DOE Green Energy (OSTI)

A brief review of the use of solar energy in the US is presented and then the attitude of solar consumer are summarized. Results of research show that information or knowledge of an innovation proceeds at a faster rate than the actual adoption of that innovation. It is noted that until the level of solar knowledge increases to about 30% of the potential end users who have seriously considered the technology and plan to invest in it, adoption of the technology will be limited.

Shoemaker, F.

1981-05-01T23:59:59.000Z

275

Alternative fuels and vehicles choice model  

DOE Green Energy (OSTI)

This report describes the theory and implementation of a model of alternative fuel and vehicle choice (AFVC), designed for use with the US Department of Energy`s Alternative Fuels Trade Model (AFTM). The AFTM is a static equilibrium model of the world supply and demand for liquid fuels, encompassing resource production, conversion processes, transportation, and consumption. The AFTM also includes fuel-switching behavior by incorporating multinomial logit-type equations for choice of alternative fuel vehicles and alternative fuels. This allows the model to solve for market shares of vehicles and fuels, as well as for fuel prices and quantities. The AFVC model includes fuel-flexible, bi-fuel, and dedicated fuel vehicles. For multi-fuel vehicles, the choice of fuel is subsumed within the vehicle choice framework, resulting in a nested multinomial logit design. The nesting is shown to be required by the different price elasticities of fuel and vehicle choice. A unique feature of the AFVC is that its parameters are derived directly from the characteristics of alternative fuels and vehicle technologies, together with a few key assumptions about consumer behavior. This not only establishes a direct link between assumptions and model predictions, but facilitates sensitivity testing, as well. The implementation of the AFVC model as a spreadsheet is also described.

Greene, D.L. [Oak Ridge National Lab., TN (United States). Center for Transportation Analysis

1994-10-01T23:59:59.000Z

276

Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests  

DOE Green Energy (OSTI)

Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

2012-09-01T23:59:59.000Z

277

Commerce study looks at cost of pollution control for fossil-fuel power industry  

SciTech Connect

Environmental controls for fossil-fuel power plants consumed 1.3 percent of the national fuel used in 1974, with the largest demand going for sulfur dioxide emission control. Projections for power plant consumption to meet environmental standards range as high as eight percent in the 1980s. Less-energy-consuming systems include coal blending, tall stacks, and supplementary control systems; while high consumers are using coal washing operations in place of scrubbers, fuel transportation, conversion to acceptable fuels, waste heat disposal, and particulate controls. A summary table presents sulfur dioxide regulations in terms of their goals and their anticipated minimum and maximum fuel consumption. (DCK)

1977-06-01T23:59:59.000Z

278

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

279

Hydrogen Fuel Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen Fuel Basics Hydrogen Fuel Basics Hydrogen Fuel Basics August 14, 2013 - 2:06pm Addthis Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These qualities make it an attractive fuel option for transportation and electricity generation applications. Hydrogen is an energy carrier that can be used to store, move, and deliver energy produced from other sources. The energy in hydrogen fuel is derived from the fuels and processes used to produce the hydrogen. Today, hydrogen fuel can be produced through several methods. The most common methods are thermal, electrolytic, and photolytic processes. Thermal Processes Thermal processes for hydrogen production typically involve steam

280

Alternative Fuels Data Center: Biofuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Promotion to Biofuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Biofuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Biofuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Biofuels Promotion on Google Bookmark Alternative Fuels Data Center: Biofuels Promotion on Delicious Rank Alternative Fuels Data Center: Biofuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Biofuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Promotion The New Jersey Assembly urges the U.S. Congress to maintain the federal Renewable Fuels Standard, which will increase the production of domestic renewable fuel, enhance consumer choice, improve the economy, increase

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

282

Consumer Acceptance and Public Policy - Consumer Acceptance Group B Breakout Session  

NLE Websites -- All DOE Office Websites (Extended Search)

'B' 'B' Consumer Acceptance Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure Scenarios * Consumer Education/Emotion * Vehicle Exposure - butts in seats (ride & drive, car sharing, IT/phones, rental fleets) * Consumers understanding their needs * Range anxiety/opportunity * Customer Personal Value Proposition * Charging Exposure * Start small (battery size and charging level), move complicated * Marketing * Got Milk? * Patriotism, etc., in place of only green focus * Creating Demand * Emphasize fun/cool/patriotism (again) * Make & model availability * Workplace/public Charging * Multi-unit * V2G * Signage * Financial Incentives Consumer Acceptance 'B' July 30, 2012 Consumer Acceptance Breakout Session #1 - Brainstorm Consumer Acceptance Barriers and Infrastructure

283

Alternative Fuels Data Center: Biobutanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biobutanol to someone Biobutanol to someone by E-mail Share Alternative Fuels Data Center: Biobutanol on Facebook Tweet about Alternative Fuels Data Center: Biobutanol on Twitter Bookmark Alternative Fuels Data Center: Biobutanol on Google Bookmark Alternative Fuels Data Center: Biobutanol on Delicious Rank Alternative Fuels Data Center: Biobutanol on Digg Find More places to share Alternative Fuels Data Center: Biobutanol on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Biobutanol Biobutanol is a 4-carbon alcohol (butyl alcohol) produced from the same feedstocks as ethanol including corn, sugar beets, and other biomass feedstocks. Butanol is generally used as an industrial solvent in products such as lacquers and enamels, but it also can be blended with other fuels

284

Response to P-887 Adoption of a Fuel Adjustment Mechanism (FAM) for Nova Scotia Power Incorporated  

E-Print Network (OSTI)

, all are intended to ensure that the cost of the fuel used to generate electricity is reflected associated the electricity reflect the cost of fuel used to generate electricity for each consumer. Two periods. Since fuel costs drive the price of electricity, incorrectly estimated fuel costs can impact both

Hughes, Larry

285

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

286

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

287

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

288

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

289

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

290

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

291

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

292

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

293

Multi-stage fuel cell system method and apparatus  

DOE Patents (OSTI)

A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

George, Thomas J.; Smith, William C.

1997-12-01T23:59:59.000Z

294

Multi-stage fuel cell system method and apparatus  

DOE Patents (OSTI)

A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

George, Thomas J. (Morgantown, WV); Smith, William C. (Morgantown, WV)

2000-01-01T23:59:59.000Z

295

Alternative fuel information: Alternative fuel vehicle outlook  

DOE Green Energy (OSTI)

Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

Not Available

1994-06-01T23:59:59.000Z

296

Renewable & Alternative Fuels - User - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Vehicle Type 2003 2004 2005 2006 2007 2008 2009 2010 2011; Automobiles (Compact) Total Vehicles: Total Fuel Consumed: 8,953 681 14,208 1,015 20,965 ...

297

Consumers 2 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Consumers 2 Wind Farm Consumers 2 Wind Farm Jump to: navigation, search Name Consumers 2 Wind Farm Facility Consumers 2 Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Developer Consumers Energy Energy Purchaser Consumers Energy Location Marshalltown IA Coordinates 42.0518°, -92.9079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0518,"lon":-92.9079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Data Data 2011: Consumption 125 A P P E N D I X A ABICB Aviation gasoline blending components Billion Btu ABICBZZ = ABTCBZZ total consumed by the industrial sector. ABICBUS = ABTCBUS ABICP Aviation gasoline blending components Thousand barrels ABICPZZ = ABTCPZZ total consumed by the industrial sector. ABICPUS = ABTCPUS ABTCB Aviation gasoline blending components total Billion Btu ABTCBZZ = ABTCPZZ * 5.048 consumed. ABTCBUS = SABTCBZZ ABTCP Aviation gasoline blending components total Thousand barrels ABTCPZZ = (COCAPZZ / COCAPUS) * ABTCPUS consumed. ABTCPUS is independent. AICAP Aluminum ingot production capacity. Short tons AICAPZZ is independent. AICAPUS = SAICAPZZ ARICB Asphalt and road oil consumed by the Billion Btu ARICBZZ = ARICPZZ * 6.636 industrial sector. ARICBUS = SARICBZZ ARICP Asphalt and road oil consumed by the Thousand barrels ARICPZZ = ASICPZZ + RDICPZZ industrial

299

ConsumTechNotes2012.vp  

Gasoline and Diesel Fuel Update (EIA)

Data: Data: Consumption 125 A P P E N D I X A ABICB Aviation gasoline blending components Billion Btu ABICBZZ = ABTCBZZ total consumed by the industrial sector. ABICBUS = ABTCBUS ABICP Aviation gasoline blending components Thousand barrels ABICPZZ = ABTCPZZ total consumed by the industrial sector. ABICPUS = ABTCPUS ABTCB Aviation gasoline blending components total Billion Btu ABTCBZZ = ABTCPZZ * 5.048 consumed. ABTCBUS = SABTCBZZ ABTCP Aviation gasoline blending components total Thousand barrels ABTCPZZ = (COCAPZZ / COCAPUS) * ABTCPUS consumed. ABTCPUS is independent. AICAP Aluminum ingot production capacity. Short tons AICAPZZ is independent. AICAPUS = SAICAPZZ ARICB Asphalt and road oil consumed by the Billion Btu ARICBZZ = ARICPZZ * 6.636 industrial sector. ARICBUS = SARICBZZ ARICP Asphalt and road oil consumed by the Thousand barrels ARICPZZ = ASICPZZ + RDICPZZ industrial sector.

300

2009 Fuel Cell Market Report, November 2010  

DOE Green Energy (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Ethanol Labeling Requirement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Labeling Ethanol Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Ethanol Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Ethanol Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Ethanol Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Ethanol Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Ethanol Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Labeling Requirement Any motor vehicle fuel sold at retail containing more than 1% ethanol or methanol must be labeled according to Connecticut Department of Consumer

302

Consumer Engagement: Facts, Myths, and Motivations  

Science Conference Proceedings (OSTI)

In October of 2010, the EPRI Smart Grid Demonstration Initiative determined that a comprehensive evaluation of consumer perspectives toward smart grid technologies is needed to further the industrys understanding of consumer motivators. The member utilities desire the information they need to approach what could be interpreted as a lack of interest in the new technology. Understanding the consumers attitudes towards smart grid technology will help utility activities ranging from the design of information...

2011-10-28T23:59:59.000Z

303

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

304

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

305

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

306

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

307

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

308

Winter fuels report  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

Not Available

1995-02-17T23:59:59.000Z

309

Winter fuels report  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

1990-11-29T23:59:59.000Z

310

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Elgin Sweeper Company - Broom BearCrosswindEaglePelican General Motors - 3.0L Fuel Type: CNG Displacement: 3...

311

Environmental Leaching of Nanoparticles from Consumer ...  

Science Conference Proceedings (OSTI)

... Nanoparticle-based consumer products are becoming available in the market at an increasing rate, but the safety of nanoparticles and the ...

2012-10-02T23:59:59.000Z

312

Mississippi Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Sales consumers buy ...

313

5. Consumer Prices Reflect Benefits of Restructuring  

U.S. Energy Information Administration (EIA)

Energy Information Administration Natural Gas 1996: Issues and Trends 99 5. Consumer Prices Reflect Benefits of Restructuring The restructuring of the natural gas ...

314

DOE Solar Decathlon: 2009 Consumer Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

entry to the Solar Decathlon workshop tent. A sign lists the day's workshop schedule, and a visitor looks inside. Solar Decathlon offers numerous consumer workshops to help...

315

Number of Natural Gas Residential Consumers  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Sales consumers buy ...

316

New Mexico Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Sales consumers buy ...

317

Number of Natural Gas Commercial Sales Consumers  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Sales consumers buy ...

318

Fuel Economy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Fuel Economy Fuel Economy Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. Learn how a revolutionary new tire technology could mean never having to worry about under-inflated tires on your vehicle. The Energy Department is investing in groundbreaking research that will make cars weigh less, drive further and consume less fuel. Featured New Investment in Energy-Efficient Manufacturing The Energy Department is supporting new research and development projects that focus on reducing energy use and costs for U.S. manufacturers. One project is expected to dramatically reduce the cost and lower the energy needed to produce aircrafts. | Photo courtesy of ARM Climate Research Facility.

319

Consumer Winter Heating Oil Costs  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: The outlook for heating oil costs this winter, due to high crude oil costs and tight heating oil supplies, breaks down to an expected increase in heating expenditures for a typical oil-heated household of more than $200 this winter, the result of an 18% increase in the average price and an 11% increase in consumption. The consumption increase is due to the colder than normal temperatures experienced so far this winter and our expectations of normal winter weather for the rest of this heating season. Last winter, Northeast heating oil (and diesel fuel) markets experienced an extremely sharp spike in prices when a severe weather situation developed in late January. It is virtually impossible to gauge the probability of a similar (or worse) price shock recurring this winter,

320

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and stored in the vehicle's batteries....

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Energy Basics: Electricity as a Transportation Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Natural Gas Propane Ultra-Low Sulfur Diesel Vehicles Electricity as a Transportation Fuel Electricity used to power vehicles is generally provided by the electricity grid and...

322

Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Voluntary Vehicle Voluntary Vehicle Retirement Incentives to someone by E-mail Share Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Facebook Tweet about Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Twitter Bookmark Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Google Bookmark Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Delicious Rank Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on Digg Find More places to share Alternative Fuels Data Center: Voluntary Vehicle Retirement Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Voluntary Vehicle Retirement Incentives Through the California Bureau of Automotive Repair's Consumer Assistance

323

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

324

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

325

Preliminary Results of Voloxidation Processing of Kilogram Quantities of Used Nuclear Fuel  

SciTech Connect

Advanced nuclear fuel processing methodologies are being studied as part of the Advanced Fuel Cycle Initiative (AFCI) program at ORNL. To support this initiative, processes and equipment were deployed at ORNL to perform all steps in the recycle process on actual used nuclear fuels, ranging from used fuel receipt to production of products and waste forms at the kilogram-scale (with capacity to process 20 kg of used fuel per year in up to four campaigns). In the first campaign, approximately 4 kg of used fuel was processed. As previously reported, the head-end processing was completed using saw-segmented Dresden fuel in lab-scale equipment in multiple batches. The second processing campaign used a new single pin shear and a new bench-scale voloxidizer to perform the dry head-end treatment prior to fuel dissolution. Approximately ~5 kg of used fuel (heavy metal basis) was processed in the second campaign. Two different fuels were oxidized in three separate batches to provide a range of processing conditions. The material used for each batch and general processing conditions are summarized in Table 1. Progress of the oxidation reaction was monitored continuously by two primary measurements; the concentration of oxygen in the effluent stream which was depressed as the oxygen was consumed, and the concentration of krypton-85 in the effluent stream as measured by a gamma counter on the off-gas pipeline. Table 1. Voloxidation test conditions for second campaign. Batch Fuel Source Burnup (GWd/MT)Batch size (kg*)/(kg**)Segment Length (in) Oxidation GasOperation Temperature ( C) 1Surry-2361.223/1.7041.0Air500 2North Anna63 702.071/2.8850.88Air600 3North Anna63 702.012/2.8030.88Oxygen600 * Heavy metal basis. ** Total fuel (oxide + cladding) basis. Fission product gases evolved from the fuel during the oxidation process were trapped for subsequent chemical and radiochemical analysis. The series of traps included a bed of molecular sieves to recover tritium (as HTO), silver-substituted zeolite to capture iodine (e.g. as AgI), a caustic scrubber to collect carbon dioxide (including 14CO2), a hydrogen-substituted mordenite to capture krypton (e.g. 85Kr) by cryogenic temperature swing adsorption, and a silver-substituted mordenite to capture xenon by cryogenic temperature swing absorption. The quantities of these volatile gases collected were compared to ORIGEN calculations to estimate the effectiveness of the voloxidation process to separate the volatiles from the used fuel. This paper will describe the voloxidation system and present preliminary results from the second processing campaign.

Spencer, Barry B [ORNL; DelCul, Guillermo D [ORNL; Jubin, Robert Thomas [ORNL; Owens, R Steven [ORNL; Ramey, Dan W [ORNL; Collins, Emory D [ORNL

2009-01-01T23:59:59.000Z

326

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Annual Fuel Economy Guide Now Available 10 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

327

2010 Annual Fuel Economy Guide Now Available | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available 2010 Annual Fuel Economy Guide Now Available October 15, 2009 - 12:00am Addthis WASHINGTON, DC - The U.S. Environmental Protection Agency and the Department of Energy today unveiled the 2010 Fuel Economy Guide, which gives consumers important information about estimated fuel costs and mileage standards for model year 2010 vehicles. "Every year, consumers use the Fuel Economy Guide to find clean, efficient, cost-effective vehicles that meets their needs and their budgets," said EPA Administrator Lisa P. Jackson. "It's an easy, accessible resource for everyone, and helps us cut harmful pollution from the air, and save money for American drivers." "Fuel economy is about both saving energy and saving money," said Energy

328

Fuel Mix and Emissions Disclosure  

Energy.gov (U.S. Department of Energy (DOE))

Iowa adopted regulations in 2003 that generally require rate-regulated electric utilities to disclose to customers the fuel mix and estimated emissions, in pounds per megawatt-hour (MWh), of...

329

Web sites related to consumer and professional information Web sites Related to Consumer & Professional Information  

E-Print Network (OSTI)

Web sites related to consumer and professional information Web sites Related to Consumer://ihpr.ubc.ca/ MedWeb Site Directory http://www.MedWeb.Emory.edu/MedWeb National Cancer Institute http

de Lijser, Peter

330

Homeowners: Respond to Fuel Shortages | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Homeowners: Respond to Fuel Shortages Natural disasters and other hazards can impact the energy industry's ability to produce and distribute petroleum products, including gasoline, diesel fuel, and heating oil. At the same time, the demand for fuel may spike due to evacuations, or because consumers are buying more fuel to power backup generators during electrical outages. All these factors may lead to fuel shortages, which will prompt local authorities and fuel suppliers to prioritize getting fuel to key assets such as emergency operations centers, hospitals, food supply dealers, water supply plants, and telecommunication networks. Homeowners should keep the following tips in mind:

331

Winter Fuels Market Assessment 2000  

Gasoline and Diesel Fuel Update (EIA)

September 13, 2000 September 13, 2000 Winter Fuels Market Assessment 2000 09/14/2000 Click here to start Table of Contents Winter Fuels Market Assessment 2000 West Texas Intermediate Crude Oil Prices Perspective on Real Monthly World Oil Prices, 1976 - 2000 U.S. Crude Oil Stocks Total OECD Oil Stocks Distillate and Spot Crude Oil Prices Distillate Stocks Expected to Remain Low Distillate Stocks Are Important Part of East Coast Winter Supply Consumer Winter Heating Oil Costs Natural Gas Prices: Well Above Recent Averages Annual Real Natural Gas Prices by Sector End-of-Month Working Gas in .Underground Storage Residential Prices Do Not Reflect the Volatility Seen in Wellhead Prices Consumer Natural Gas Heating Costs Winter Weather Uncertainty Author: John Cook Email: jcook@eia.doe.gov

332

Diesel fuel oils, 1982  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1982 were submitted for study and compilation under a cooperative agreement between the Department of Energy (DOE), Bartlesville Energy Technology Center (BETC), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 184 samples of diesel fuel oils from 83 refineries throughout the country were made by 27 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the four types of diesel fuels for the years 1960 to 1982. Summaries of the results of the 1982 survey, compared with similar data for 1981, are shown in Tables 1 through 4 of the report. A summary of 1-D and 2-D fuels are presented in Tables 5 and 6 respectively.

Shelton, E.M.

1982-11-01T23:59:59.000Z

333

Fuel Preprocessor (FPP) for a Solid Oxide Fuel Cell Auxiliary Power Unit  

DOE Green Energy (OSTI)

Auxiliary Power Units (APUs), driven by truck engines, consume over 800 million gallon of diesel fuel while idling. Use of separate SOFC based APUs are an excellent choice to reduce the cost and pollution associated with producing auxiliary power. However, diesel fuel is a challenging fuel to use in fuel cell systems because it has heavy hydrocarbons that can transform into carbon deposits and gums that can block passages and deactivate fuel reformer and fuel cell reactor elements. The work reported herein addresses the challenges associated with the diesel fuel sulfur and carbon producing contaminants in a Fuel Preprocessor (FPP). FPP processes the diesel fuel onboard and ahead of the reformer to reduce its carbon deposition tendency and its sulfur content, thus producing a fuel suitable for SOFC APU systems. The goal of this DOE supported Invention and Innovation program was to design, develop and test a prototype Fuel Preprocessor (FPP) that efficiently and safely converts the diesel fuel into a clean fuel suitable for a SOFC APU system. The goals were achieved. A 5 kWe FPP was designed, developed and tested. It was demonstrated that FPP removes over 80% of the fuel sulfur and over 90% of its carbon residues and it was demonstrated that FPP performance exceeds the original project goals.

M. Namazian, S. Sethuraman and G. Venkataraman

2004-12-31T23:59:59.000Z

334

EXC-13-0002 - In the Matter of Technical Consumer Products, Inc. |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 - In the Matter of Technical Consumer Products, Inc. 2 - In the Matter of Technical Consumer Products, Inc. EXC-13-0002 - In the Matter of Technical Consumer Products, Inc. On February 22, 2013, OHA issued a decision granting an Application for Exception filed by Technical Consumer Products, Inc. (TCP) for relief from the provisions of 10 C.F.R. Part 430, Energy Conservation Program: Energy Conservation Standards and Test Procedures for General Service Fluorescent Lamps and Incandescent Reflector Lamps (Lighting Efficiency Standards). In its exception request, TCP asserted that it will suffer a serious hardship, gross inequity and an unfair distribution of burdens if required to adhere to the new Lighting Efficiency Standards, effective July 14, 2012 (2009 Final Rule), with respect to its 700 series T8 General Service

335

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

336

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

337

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

338

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

339

Spent graphite fuel element processing  

SciTech Connect

The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

Holder, N.D.; Olsen, C.W.

1981-07-01T23:59:59.000Z

340

Alcohol fuels bibliography, 1901-March 1980  

DOE Green Energy (OSTI)

This annotated bibliography is subdivided by subjects, as follows: general; feedstocks-general; feedstocks-sugar; feedstocks-starch; feedstocks-cellulose crops and residues; production; coproducts; economics; use as vehicle fuel; government policies; and environmental effects and safety. (MHR)

Not Available

1981-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Overview of Fuel Cell Electric Bus Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Fuel Cell Overview of Fuel Cell Electric Bus Development Leslie Eudy, National Renewable Energy Laboratory September 12, 2013 2 Why Fuel Cells for Transit Buses? * Reduce transit bus emissions * Improve fuel efficiency * Improve vehicle performance * Consumer Acceptance * Transit industry is excellent test-bed for new technologies o Centrally fueled and maintained o Fixed routes with urban stop-go duty cycle o Professional operators and mechanics o Federal Capital Funding Support o High Visibility & High Impact 3 FCEB Development Timeline since 2000 California Air Resources Board Transit Rule Early demonstrations of single prototypes DOE begins funding NREL technology validation for FCEBs First multiple bus fleet demonstrations in California FTA initiates National Fuel Cell Bus Program and

342

Alternative Fuels Data Center: Biofuels Production Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuels Production Biofuels Production Promotion to someone by E-mail Share Alternative Fuels Data Center: Biofuels Production Promotion on Facebook Tweet about Alternative Fuels Data Center: Biofuels Production Promotion on Twitter Bookmark Alternative Fuels Data Center: Biofuels Production Promotion on Google Bookmark Alternative Fuels Data Center: Biofuels Production Promotion on Delicious Rank Alternative Fuels Data Center: Biofuels Production Promotion on Digg Find More places to share Alternative Fuels Data Center: Biofuels Production Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuels Production Promotion The state legislature supports the Federal "25 x 25" initiative, under which 25% of the total energy consumed in the United States by 2025 would

343

2000 Annual Progress Report for Fuels for Advanced CIDI Engines and Fuel Cells  

DOE Green Energy (OSTI)

The Department of Energy's Office of Transportation Technologies Fiscal Year (FY) 2000 Annual Progress Report for the Fuels for Advanced CIDI Engines and Fuel Cells Program highlights progress achieved during FY 2000 and comprises 22 summaries of industry and National Laboratory projects that were conducted. The report provides an overview of the exciting work being conducted to tackle the tough technical challenges associated with developing clean burning fuels that will enable meeting the performance goals of the Emission Control R and D for Advanced CIDI Engines and the Transportation Fuel Cell Power Systems Programs. The summaries cover the effects of CIDI engine emissions and fuel cell power system performance, the effects of lubricants on engine emissions, the effects of fuel and consumed lubricants on exhaust emission control devices and the health and safety, materials compatibility, and economics of advanced petroleum-based fuels.

Chalk, S.

2000-12-11T23:59:59.000Z

344

Modular, High-Volume Fuel Cell Leak-Test Suite and Process  

DOE Green Energy (OSTI)

Fuel cell stacks are typically hand-assembled and tested. As a result the manufacturing process is labor-intensive and time-consuming. The fluid leakage in fuel cell stacks may reduce fuel cell performance, damage fuel cell stack, or even cause fire and become a safety hazard. Leak check is a critical step in the fuel cell stack manufacturing. The fuel cell industry is in need of fuel cell leak-test processes and equipment that is automatic, robust, and high throughput. The equipment should reduce fuel cell manufacturing cost.

Ru Chen; Ian Kaye

2012-03-12T23:59:59.000Z

345

General Engineers  

U.S. Energy Information Administration (EIA) Indexed Site

General Engineers General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or more of the following important functions: * Design modeling systems to represent energy markets and the physical properties of energy industries * Conceive, initiate, monitor and/or conduct planning and evaluation projects and studies of continuing and future

346

ConsumTechNotes2012.vp  

Gasoline and Diesel Fuel Update (EIA)

oxygenate. oxygenate. A small amount of fuel ethanol is used as an alternative fuel, such as E85. It is typ- ically produced chemically from ethylene, or biologically from fermenta- tion of various sugars from carbohydrates found in agricultural crops and cellulosic residues from crops or wood. For 1981 forward, fuel ethanol es- timates are maintained separately from motor gasoline in SEDS and shown in the state energy consumption data tables to illustrate renewable energy use. The U.S. total fuel ethanol consumption in SEDS is a series developed by the U.S. Energy Information Administration (EIA) from annual reports of field production of oxygenated gasoline (prior to 2005), finished motor gasoline and motor gasoline blending components adjustments (2005 for- ward), and refinery and blender net inputs of fuel ethanol (all years). The fuel ethanol series used in SEDS is denatured fuel ethanol,

347

Gasifiers optimized for fuel cell applications  

DOE Green Energy (OSTI)

Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

1992-01-01T23:59:59.000Z

348

Gasifiers optimized for fuel cell applications  

DOE Green Energy (OSTI)

Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

1992-12-01T23:59:59.000Z

349

Fuel performance annual report for 1984. Volume 2  

Science Conference Proceedings (OSTI)

This annual report, the seventh in a series, provides a brief description of fuel performance during 1984 in commercial nuclear power plants. Brief summaries of fuel design changes, fuel surveillance programs, fuel operating experience, fuel problems, high-burnup fuel experience, and items of general significance are provided. References to additional, more detailed information and related NRC evaluations are included. 279 refs., 11 figs., 29 tabs.

Bailey, W.J.; Dunenfeld, M.S.

1986-03-01T23:59:59.000Z

350

Diesel fuel oils, 1983  

Science Conference Proceedings (OSTI)

Properties of diesel fuels produced during 1983 were submitted for study and compilation under a cooperative agreement between the National Institute for Petroleum and Energy Research (NIPER), Bartlesville, Oklahoma and the American Petroleum Institute (API). Tests of 192 samples of diesel fuel oils from 87 refineries throughout the country were made by 31 petroleum groups according to type of diesel fuel. Each group of analyses is subdivided into five tabulations according to five general regions of the country where the fuels are marketed. The regions, containing a total of 16 districts, are shown on a map in the report. Data from 13 laboratory tests on each individual diesel fuel sample are listed and arranged by geographic marketing districts in decreasing order of sales volumes. Charts are included showing trends of averages of certain properties for the two grades of diesel fuels. Summaries of the results of the 1983 survey, compared with similar data for 1982, are shown in Tables 1 and 2 of the report. 3 figures, 4 tables.

Shelton, E.M.

1983-11-01T23:59:59.000Z

351

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

352

Alternative Fuel Vehicles  

DOE Green Energy (OSTI)

This Federal Technology Alert on alternative fuel vehicles (AFVs), prepared for the U.S. Department of Energy's Federal Energy Management Program (FEMP), is intended for fleet managers in government agencies and other government officials who need to use more alternative fuels and AFVs in their fleets of cars and trucks. This publication describes the government's plans and progress in meeting goals for the use of AFVs, which are stated in the Energy Policy Act and various Executive Orders. It describes the types of AFVs available, lists actual and potential federal uses, makes some general recommendations, and presents field experiences to date.

Not Available

2003-09-01T23:59:59.000Z

353

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

354

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

Consumption Consumption Physical Units Coal in the United States is mostly consumed by the electric power sector. Data are collected by the U.S. Energy Information Administration (EIA) on Form EIA-923, "Power Plant Operations Report," and predecessor forms. "ZZ" in the variable name is used to represent the two-letter state code: CLEIPZZ = coal consumed by the electric power sector in each state, in thousand short tons. CLEIPUS = SCLEIPZZ Seven data series are used to estimate state coal consumption for the other sectors. They are derived from various coal consumption and distribution surveys conducted by EIA. Four are U.S.-level consumption data series, available in thousands of short tons: CLACPUS = coal consumed by the transportation sector in the United States; CLHCPUS = coal consumed by the commercial sector (residential and commercial sector prior to 2008) in

355

Mid-West Electric Consumers Association  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mid-West Electric Consumers Association Mid-West Electric Consumers Association 4350 Wadsworth Blvd., Suite 330, Wheat Ridge, CO 80033 Tel: (303) 463-4979 Fax: (303) 463-8876 April 1, 2009 Transmission Infrastructure Program Western Area Power Administration P.O. Box 281213 Lakewood, CO 80228-8213 Comments on the Proposed Adoption of a Transmission Infrastructure Program The Mid-West Electric Consumers Association appreciates the opportunity to comment on the Western Area Power Administration's ("Western" or "WAPA") two Federal Register notices: Notice of Proposed Program and Request for Public Comments, and Notice of Availability of Request for Interest (FRN), published March 4, 2009 (pp. 9392-9393). The Mid-West Electric Consumers Association was founded in 1958 as the regional

356

Consumers Energy (Gas)- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Passage of the Clean, Renewable and Energy Efficiency Act of 2008, paved the way for the Consumers Energy Business Solutions Program to provide incentives for customers who upgrade eligible...

357

Consumer Powerline CPLN | Open Energy Information  

Open Energy Info (EERE)

Zip 10004 Sector Efficiency Product A US-based energy efficiency company with a focus on demand-response technology. References Consumer Powerline (CPLN)1 LinkedIn Connections...

358

Consumer preferences for wool production attributes.  

E-Print Network (OSTI)

??The U.S. wool demand has declined since 1950s due to the increasing demand for synthetic fibers. This research aims to study U.S. consumers' preferences for (more)

Chen, Yun-Ju (Kelly)

2008-01-01T23:59:59.000Z

359

Consumers Energy (Electric)- Commercial Energy Efficiency Program  

Energy.gov (U.S. Department of Energy (DOE))

Passage of the Clean, Renewable and Energy Efficiency Act of 2008 paved the way for the Consumers Energy Business Solutions Program to provide incentives for customers who upgrade facilities with...

360

,"New Mexico Number of Natural Gas Consumers"  

U.S. Energy Information Administration (EIA) Indexed Site

1: Residential" "Sourcekey","NA1501SNM8","NA1508SNM8","NA1509SNM8" "Date","New Mexico Natural Gas Number of Residential Consumers (Count)","New Mexico Natural Gas Number of...

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

INFOGRAPHIC: The Road to Fuel Efficiency | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Road to Fuel Efficiency The Road to Fuel Efficiency INFOGRAPHIC: The Road to Fuel Efficiency November 27, 2012 - 11:01am Addthis This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by Sarah Gerrity. This infographic takes a look at fuel economy standards and how recent improvements in these standards will benefit consumers and the U.S. economy. | Infographic by Sarah Gerrity. Sarah Gerrity Sarah Gerrity Multimedia Editor, Office of Public Affairs The Obama Administration's new national fuel economy standards for passenger vehicles will improve vehicle efficiency and save Americans money at the pump, all while reducing our dependence on foreign oil and growing

362

Hydrogen Fuel Cell Electric Vehicles (Fact Sheet)  

DOE Green Energy (OSTI)

As nations around the world pursue a variety of sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for American consumers and automakers. FCEVs offer a sustainable transportation option, provide a cost-competitive alternative for drivers, reduce dependence on imported oil, and enable global economic leadership and job growth.

Not Available

2011-02-01T23:59:59.000Z

363

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

364

DOE and EPA Release 2011 Annual Fuel Economy Guide | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 Annual Fuel Economy Guide 1 Annual Fuel Economy Guide DOE and EPA Release 2011 Annual Fuel Economy Guide November 3, 2010 - 12:00am Addthis WASHINGTON - The U.S. Environmental Protection Agency (EPA) and the Department of Energy (DOE) today released the 2011 Fuel Economy Guide, providing consumers with information about estimated mileage and fuel costs for model year 2011 vehicles. Choosing the most fuel efficient vehicle in a class will save consumers money and reduce carbon pollution. "Increasing fuel efficiency is important for our environment, our economy and our health - and it helps families save money at the pump," EPA Administrator Lisa P. Jackson said. "This guide will help consumers make the right choice for the environment and for their wallets when buying a

365

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor...

366

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

367

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

368

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

369

Variability of consumer impacts from energy efficiency standards  

SciTech Connect

A typical prospective analysis of the expected impact of energy efficiency standards on consumers is based on average economic conditions (e.g., energy price) and operating characteristics. In fact, different consumers face different economic conditions and exhibit different behaviors when using an appliance. A method has been developed to characterize the variability among individual households and to calculate the life-cycle cost of appliances taking into account those differences. Using survey data, this method is applied to a distribution of consumers representing the U.S. Examples of clothes washer standards are shown for which 70-90% of the population benefit, compared to 10-30% who are expected to bear increased costs due to new standards. In some cases, sufficient data exist to distinguish among demographic subgroups (for example, low income or elderly households) who are impacted differently from the general population. Rank order correlations between the sampled input distributions and the sampled output distributions are calculated to determine which variability inputs are main factors. This ''importance analysis'' identifies the key drivers contributing to the range of results. Conversely, the importance analysis identifies variables that, while uncertain, make so little difference as to be irrelevant in deciding a particular policy. Examples will be given from analysis of water heaters to illustrate the dominance of the policy implications by a few key variables.

McMahon, James E.; Liu, Xiaomin

2000-06-15T23:59:59.000Z

370

Do Producer Prices Lead Consumer Prices?  

E-Print Network (OSTI)

increased rapidly. Excluding food and energy, prices of crude materials and intermediate goods rose at annual rates of 7.2 and 16.7 percent, respectively. At the same time, however, prices of consumer goods and services excluding food and energy increased a more modest 2.9 percent. Many analysts are concerned that recent increases in the prices of crude and intermediate goods may be passed through to consumers, resulting in a higher rate of inflation in consumer prices later this year and perhaps in 1996. This article examines whether price increases at the early stages of production should be expected to move through the production chain, leading to increases in consumer prices. In the first section, a review of basic economic theory suggests there should be a pass-through effectthat is, producer prices should lead and thereby help predict consumer prices. A more sophisticated analysis, though, suggests the pass-through effect may be weak. In the second section, an examination of the empirical evidence indicates that producer prices are not always good predictors of consumer prices. The article Todd E. Clark is an economist at the Federal Reserve Bank of Kansas City. Mangal Goswami, a research associate at the bank, helped prepare the article. concludes that the recent increases in some producer prices do not necessarily signal higher inflation.

E. Clark

1994-01-01T23:59:59.000Z

371

fossil fuels | OpenEI  

Open Energy Info (EERE)

fossil fuels fossil fuels Dataset Summary Description Energy intensity data and documentation published by the U.S. DOE's office of Energy Efficiency and Renewable Energy (EERE). Energy intensity is defined as: amount of energy used in producing a given level of output or activity; expressed as energy per unit of output. This is the energy intensity of the the electricity sector, which is an energy consuming sector that generates electricity. Data are organized to separate electricity-only generators from combined heat and power (CHP) generators. Data is available for the period 1949 - 2004. Source EERE Date Released May 31st, 2006 (8 years ago) Date Updated Unknown Keywords Electricity Energy Consumption energy intensity fossil fuels renewable energy Data application/vnd.ms-excel icon electricity_indicators.xls (xls, 2.1 MiB)

372

Definition: Diesel fuel | Open Energy Information  

Open Energy Info (EERE)

Diesel fuel Diesel fuel Jump to: navigation, search Dictionary.png Diesel fuel A liquid fuel produced from petroleum; used in diesel engines.[1] View on Wikipedia Wikipedia Definition Diesel oil and Gazole (fuel) redirect here. Sometimes "diesel oil" is used to mean lubricating oil for diesel engines. Diesel fuel in general is any liquid fuel used in diesel engines. The most common is a specific fractional distillate of petroleum fuel oil, but alternatives that are not derived from petroleum, such as biodiesel, biomass to liquid (BTL) or gas to liquid (GTL) diesel, are increasingly being developed and adopted. To distinguish these types, petroleum-derived diesel is increasingly called petrodiesel. Ultra-low-sulfur diesel (ULSD) is a standard for defining diesel fuel with substantially lowered sulfur contents. As of 2007, almost

373

Nuclear fuels accounting interface: River Bend experience  

SciTech Connect

This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation.

Barry, J.E.

1986-01-01T23:59:59.000Z

374

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicles: Paving the  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicles: Paving the Way to Commercial Success Vehicles: Paving the Way to Commercial Success August 22, 2013 As nations around the world pursue sustainable transportation solutions, the hydrogen fuel cell electric vehicle (FCEV) presents a promising opportunity for consumers and automakers alike. Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch FCEVs in the U.S. market between 2015 and 2020. Although fuel cell technologies are proven and effective, deployment challenges persist-particularly in terms of further reducing the cost and increasing the durability of fuel cells and getting sufficient infrastructure in place to support widespread consumer use. Researchers at the National Renewable Energy Laboratory are collaborating with industry

375

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester, Dominic Mc on recycled paper #12;1 Market Cost of Renewable Jet Fuel Adoption in the United States Niven Winchester Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation

376

ConsumTechNotes2011.vp  

Gasoline and Diesel Fuel Update (EIA)

oxygenate oxygenate (blended up to 10 percent concentration). A small amount of fuel ethanol is used as an alternative fuel, such as E85. It is typically produced chemically from ethylene, or biologically from fermentation of various sugars from carbo- hydrates found in agricultural crops and cellulosic residues from crops or wood. For 1981 forward, fuel ethanol estimates are maintained separately from motor gasoline in SEDS and shown in the state energy consumption data tables to illustrate renewable energy use. The U.S. total fuel ethanol consumption in SEDS is a series developed by the U.S. Energy Information Administration (EIA) from annual reports of field production of oxygenated gasoline (prior to 2005), finished motor gasoline and motor gasoline blending components adjustments (2005 for- ward), and refinery and blender net inputs of fuel ethanol (all years). The fuel ethanol

377

Micropower chemical fuel-to-electric conversion : a "regenerative flip" hydrogen concentration cell promising near carnot efficiency.  

DOE Green Energy (OSTI)

Although battery technology is relatively mature, power sources continue to impose serious limitations for small, portable, mobile, or remote applications. A potentially attractive alternative to batteries is chemical fuel-to-electric conversion. Chemical fuels have volumetric energy densities 4 to 10 times those of batteries. However, realizing this advantage requires efficient chemical fuel-to-electric conversion. Direct electrochemical conversion would be the ideal, but, for most fuels, is generally not within the state-of-the-science. Next best, chemical-to-thermal-to-electric conversion can be attractive if efficiencies can be kept high. This small investigative project was an exploration into the feasibility of a novel hybrid (i.e., thermal-electrochemical) micropower converter of high theoretical performance whose demonstration was thought to be within near-term reach. The system is comprised of a hydrogen concentration electrochemical cell with physically identical hydrogen electrodes as anode and cathode, with each electrode connected to physically identical hydride beds each containing the same low-enthalpy-of-formation metal hydride. In operation, electrical power is generated by a hydrogen concentration differential across the electrochemical cell. This differential is established via coordinated heating and passive cooling of the corresponding hydride source and sink. Heating is provided by the exothermic combustion (i.e., either flame combustion or catalytic combustion) of a chemical fuel. Upon hydride source depletion, the role of source and sink are reversed, heating and cooling reversed, electrodes commutatively reversed, cell operation reversed, while power delivery continues unchanged. This 'regenerative flip' of source and sink hydride beds can be cycled continuously until all available heating fuel is consumed. Electricity is efficiently generated electrochemically, but hydrogen is not consumed, rather the hydrogen is regeneratively cycled as an electrochemical 'working fluid'.

Wally, Karl

2006-05-01T23:59:59.000Z

378

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

379

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

380

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

382

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

383

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

384

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

385

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

386

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

387

Historic Energy Efficiency Rules Would Save Consumers Money and Cut Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Historic Energy Efficiency Rules Would Save Consumers Money and Cut Historic Energy Efficiency Rules Would Save Consumers Money and Cut Carbon Emissions Historic Energy Efficiency Rules Would Save Consumers Money and Cut Carbon Emissions August 29, 2013 - 4:08pm Addthis If accepted, a new energy efficiency rule on walk-in coolers and freezers proposed by the Energy Department could cut energy bills by up to $24 billion over 30 years. | Photo by Lynn Billman, NREL. If accepted, a new energy efficiency rule on walk-in coolers and freezers proposed by the Energy Department could cut energy bills by up to $24 billion over 30 years. | Photo by Lynn Billman, NREL. Heather Zichal Deputy Assistant to the President for Energy and Climate Change Learn more Read President Obama's Climate Action Plan. Explore Energy.gov's fuel economy resources, including gas mileage

388

Consumer Willingness to Pay for E85.  

E-Print Network (OSTI)

??Concerns regarding energy security, resource sustainability, and environmental protection have heightened interests in renewable fuels and sparked the research and development of ethanol as a (more)

Skahan, Denise A

2010-01-01T23:59:59.000Z

389

Back end of an enduring fuel cycle  

SciTech Connect

An enduring nuclear fuel cycle is an essential part of sustainable consumption, the process whereby world`s riches are consumed in a responsible manner so that future generations can continue to enjoy at least some of them. In many countries, the goal of sustainable development has focused attention on the benefits of nuclear technologies. However, sustenance of the nuclear fuel cycle is dependent on sensible management of all the resources of the fuel cycle, including energy, spent fuels, and all of its side streams. The nuclear fuel cycle for energy production has suffered many traumas since the mid seventies. The common basis of technologies producing nuclear explosives and consumable nuclear energy has been a preoccupation for some, predicament for others, and a perception problem for many. It is essential to reestablish a reliable back end of the nuclear fuel cycle that can sustain the resource requirements of an enduring full cycle. This paper identifies some pragmatic steps necessary to reverse the trend and to maintain a necessary fuel cycle option for the future.

Pillay, K.K.S.

1998-03-01T23:59:59.000Z

390

Fuel oil and kerosene sales, 1989  

Science Conference Proceedings (OSTI)

Despite the rise in petroleum products prices, a colder-than-normal winter in the latter part of 1989 spurred an increase in demand for distillate fuel oils. The shipping and electric utilities industries contributed to a significant rise in demand for both distillate and residual fuels oils in 1989. A total of 72.9 billion gallons of fuel oil and kerosene were sold to consumers in 1989, an increase of 3.0 percent over 1988 sales volumes. Of all fuel oil sold during 1989, distillate fuel oil accounted for 68.3 percent, which was an increase over 1988 when distillate fuel oil accounted for 67.2 percent of all fuel oil products sold in the United States. Residual fuel oil's share of total fuel oil sold fell slightly to 29.9 percent from 30.7 percent in 1988. Kerosene followed with a 1.8 percent share, also falling from the previous year when it accounted for a 2.1 percent share of total fuel oil sold. 3 figs., 24 tabs.

Not Available

1991-01-22T23:59:59.000Z

391

Utah Natural Gas Delivered to Commercial Consumers for the Account...  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Utah Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet)...

392

Consumer Attitudes About Renewable Energy: Trends and Regional...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mexico * Oregon * Utah * Washington * Wyoming 4 2 Consumer Perceptions of Renewable Energy 2.1 Consumer Awareness of Renewable-energy-related Terminology, Trended Figure 1. In...

393

How much gasoline does the United States consume? - FAQ ...  

U.S. Energy Information Administration (EIA)

How much gasoline does the United States consume? In 2012, ... (or 3.18 billion barrels) of gasoline where consumed 2 in the United States, ...

394

Illinois Natural Gas Delivered to Commercial Consumers for the...  

Annual Energy Outlook 2012 (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Illinois Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic...

395

Energy Conservation Program for Consumer Products and Certain...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Computer Servers as a Covered Consumer Product, EERE-2013-BT-DET-0034 Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment:...

396

Rising Electricity Costs: A Challenge For Consumers, Regulators...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities Rising Electricity Costs: A Challenge For Consumers, Regulators, And Utilities Presentation covers...

397

Texas Natural Gas Number of Industrial Consumers (Number of Elements...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Number of Industrial Consumers (Number of Elements) Texas Natural Gas Number of Industrial Consumers (Number of...

398

The Commercial Energy Consumer: About Whom Are We Speaking?  

NLE Websites -- All DOE Office Websites (Extended Search)

The Commercial Energy Consumer: About Whom Are We Speaking? Title The Commercial Energy Consumer: About Whom Are We Speaking? Publication Type Conference Paper LBNL Report Number...

399

How much energy is consumed in residential and commercial ...  

U.S. Energy Information Administration (EIA)

How much energy is consumed in residential and commercial buildings in the United States? Nearly 40% of total U.S. energy consumption in 2012 was consumed in ...

400

DOE Hydrogen Analysis Repository: Consumer Preferences for Refueling...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Preferences for Refueling Availability Project Summary Full Title: Discrete Choice Analysis of Consumer Preferences for Refueling Availability Project ID: 249 Principal...

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

New Energy Efficiency Standards for Microwave Ovens to Save Consumers...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills New Energy Efficiency Standards for Microwave Ovens to Save Consumers on Energy Bills May 31,...

402

DOE Hydrogen Analysis Repository: Consumer Adoption and Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumer Adoption and Infrastructure Development Including Combined Hydrogen, Heat, and Power Project Summary Full Title: Consumer Adoption and Infrastructure Development Including...

403

AARP, National Consumer Law Center, and Public Citizen Comments...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP, National Consumer Law...

404

Consumer Light Bulb Changes: Briefing and Resources for Media...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers Consumer Light Bulb Changes: Briefing and Resources for Media and Retailers This presentation provides...

405

Department of Energy Announces Funding to Help Consumers Better...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Help Consumers Better Manage Their Energy Consumption Department of Energy Announces Funding to Help Consumers Better Manage Their Energy Consumption November 8, 2011 - 1:57pm...

406

Michigan Natural Gas Delivered to Commercial Consumers for the...  

Gasoline and Diesel Fuel Update (EIA)

Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Michigan Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic...

407

Many small consumers, one growing problem: Achieving energy savings...  

NLE Websites -- All DOE Office Websites (Extended Search)

Many small consumers, one growing problem: Achieving energy savings for electronic equipment operating in low power modes Title Many small consumers, one growing problem: Achieving...

408

U.S. residential consumer product information: Validation of...  

NLE Websites -- All DOE Office Websites (Extended Search)

residential consumer product information: Validation of methods for post-stratification weighting of Amazon Mechanical Turk surveys Title U.S. residential consumer product...

409

South Dakota Natural Gas Number of Commercial Consumers (Number...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Commercial Consumers (Number of Elements) South Dakota Natural Gas Number of Commercial Consumers...

410

South Dakota Natural Gas Number of Industrial Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) South Dakota Natural Gas Number of Industrial Consumers (Number of Elements) South Dakota Natural Gas Number of Industrial Consumers...

411

Re: Implementing the National Broadband Plan by Empowering Consumers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Re: Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data...

412

New Mexico Natural Gas Delivered to Industrial Consumers for...  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Consumers for the Account of Others (Million Cubic Feet) New Mexico Natural Gas Delivered to Industrial Consumers for the Account of Others (Million Cubic Feet) Decade...

413

New Mexico Natural Gas Delivered to Residential Consumers for...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers for the Account of Others (Million Cubic Feet) New Mexico Natural Gas Delivered to Residential Consumers for the Account of Others (Million Cubic Feet) Decade...

414

Summary of Utility Studies: Smart Grid Investment Grant Consumer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary of Utility Studies: Smart Grid Investment Grant Consumer Behavior Study Analysis Title Summary of Utility Studies: Smart Grid Investment Grant Consumer Behavior Study...

415

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

416

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

417

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

418

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

419

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

420

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

422

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

423

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

424

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

425

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

426

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

427

Fuel Mix Disclosure | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Mix Disclosure Fuel Mix Disclosure Fuel Mix Disclosure < Back Eligibility Utility Program Info State Delaware Program Type Generation Disclosure Provider Delaware Public Service Commission Delaware's 1999 restructuring law (HB 10) authorized the state Public Service Commission (PSC) to develop environmental disclosure requirements and consumer protection standards for green power marketing. The PSC's rules require all electric suppliers to disclose to the commission aggregate proportions of fuel resource mix for the electricity supplied to customers in Delaware for each quarter. In addition, electric suppliers must disclose their fuel resource mix to retail electric customers annually via bill inserts and "each other quarter' on the supplier's web site or by customer request. A standard label is not required; however, the reports

428

Greenhouse Gas Emissions for Different Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenhouse Gas Emissions for Different Fuels Greenhouse Gas Emissions for Different Fuels This calculator currently focuses on electricity for a number of reasons. The public's interest in vehicles fueled by electricity is high, and as a result consumers are interested in better understanding the emissions created when electricity is produced. For vehicles that are fueled solely by electricity, tailpipe emissions are zero, so electricity production accounts for all GHG emissions associated with such vehicles. Finally, GHG emissions from electricity production vary significantly by region, which makes a calculator like this one-which uses regional data instead of national averages-particularly useful. If you want to compare total tailpipe plus fuel production GHG emissions for an electric or plug-in hybrid electric vehicle to those for a gasoline

429

Fuel cell systems for personal and portable power applications  

SciTech Connect

Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

Fateen, S. A. (Shaheerah A.)

2001-01-01T23:59:59.000Z

430

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, Richard C. (East Hartford, CT)

1986-09-02T23:59:59.000Z

431

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, R.C.

1984-10-17T23:59:59.000Z

432

The Northeast heating fuel market: Assessment and options  

SciTech Connect

In response to a Presidential request, this study examines how the distillate fuel oil market (and related energy markets) in the Northeast behaved in the winter of 1999-2000, explains the role played by residential, commercial, industrial, and electricity generation sector consumers in distillate fuel oil markets and describes how that role is influenced by the structure of tie energy markets in the Northeast. In addition, this report explores the potential for nonresidential users to move away from distillate fuel oil and how this might impact future prices, and discusses conversion of distillate fuel oil users to other fuels over the next 5 years. Because the President's and Secretary's request focused on converting factories and other large-volume users of mostly high-sulfur distillate fuel oil to other fuels, transportation sector use of low-sulfur distillate fuel oil is not examined here.

None

2000-07-01T23:59:59.000Z

433

Method for operating a combustor in a fuel cell system  

DOE Patents (OSTI)

A method of operating a combustor to heat a fuel processor in a fuel cell system, in which the fuel processor generates a hydrogen-rich stream a portion of which is consumed in a fuel cell stack and a portion of which is discharged from the fuel cell stack and supplied to the combustor, and wherein first and second streams are supplied to the combustor, the first stream being a hydrocarbon fuel stream and the second stream consisting of said hydrogen-rich stream, the method comprising the steps of monitoring the temperature of the fuel processor; regulating the quantity of the first stream to the combustor according to the temperature of the fuel processor; and comparing said quantity of said first stream to a predetermined value or range of predetermined values.

Chalfant, Robert W. (West Henrietta, NY); Clingerman, Bruce J. (Palmyra, NY)

2002-01-01T23:59:59.000Z

434

Winter fuels report  

SciTech Connect

The report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: (1) distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; (2) propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; (3) natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; (4) residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; (5) crude oil and petroleum price comparisons for the United States and selected cities; and (6) US total heating degree-days by city.

1990-11-01T23:59:59.000Z

435

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

436

General Information  

NLE Websites -- All DOE Office Websites (Extended Search)

ASD General Information ASD General Information APS Resources & Information A list of useful links for APS staff and users. APS Technical Publications Links to APS technical publications. APS Publications Database The official and comprehensive source of references for APS-related journal articles, conference papers, book chapters, dissertations, abstracts, awards, invited talks, etc. Image Library A collection of APS images. Responsibilities & Interfaces for APS Technical Systems Descriptions of the responsibilities of APS technical groups and how they interface with one another. APS Procedures Operational procedures for the APS. APS Specifications Specifications and approvals for upgrades or changes to existing APS hardware and software. APS Radiation Safety Policy & Procedures Committee Minutes

437

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

438

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

439

Consumers Energy (Electric) - Commercial Energy Efficiency Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumers Energy (Electric) - Commercial Energy Efficiency Program Consumers Energy (Electric) - Commercial Energy Efficiency Program Consumers Energy (Electric) - Commercial Energy Efficiency Program < Back Eligibility Commercial Fed. Government Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Manufacturing Other Construction Commercial Weatherization Heat Pumps Commercial Lighting Lighting Home Weatherization Windows, Doors, & Skylights Maximum Rebate Prescriptive: $100,000 per facility Custom: 50% of project cost and $200,000 per facility (100% of the calculated incentive up to $100,000 and 50% of the calculated incentive above $100,000) Large Gas Customer Incentive Limit: $25,000 Customer Incentive Limit: $500,000

440

An Analysis of Fuel Demand and Carbon Emissions in China  

E-Print Network (OSTI)

Under the Kyoto Protocol to the United Nations Framework Convention on Climate Change, targets have been set for various developed countries to reduce their carbon emissions. China's share of carbon emissions ranked the second highest in the world in 1996, only after the United States. Although China was not formally required to achieve a reduction in its carbon emissions under the protocol, pressures were mounting, especially from the United States, for China to address the issue seriously. Some recent research on China's carbon emissions has largely been carried out in the framework of computable general equilibrium models. For example, Fisher-Vanden (2003) used such models to assess the impact of market reforms on shaping the level and composition of carbon emissions; Garbaccio et al. (1999) and Zhang (1998) studied macroeconomic and sectoral effects of policies and instruments, such as, a carbon tax, on achieving predefined targets of carbon emissions. A common omission in these studies is the role of fuel price changes in determining the amount of carbon emissions. This paper first shows China's total CO2 emissions from burning all types of fossil fuels over the 50 years or so to 2001, with those from burning coal singled out for the purpose of illustrating coal as the major CO2 emitter. Then, using annual data for the period 1985-2000, the study investigates whether changes in the relative prices of various fuels reduce coal consumption. Four sectors in the Chinese economy are selected for the study, namely, the chemical industry, the metal industry, the non-metal materials industry and the residential sector, which are top energy as well as top coal consumers. Five fuels are considered, namely, coal, crude oil, electricity, natural gas and petroleum products, ...

Baiding Hu Department; Baiding Hu

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Petroleum Coke: A Viable Fuel for Cogeneration  

E-Print Network (OSTI)

Petroleum coke is a by-product of the coking process which upgrades (converts) low-valued residual oils into higher-valued transportation, heating and industrial fuels. Pace forecasts that by the year 2000 petroleum coke production will increase from 36 million to 47 million short tons/year. Because the crude pool will continue to become more sour and refiners treat the coker as the "garbage can" the quality of the petroleum cokes will generally degrade- contain higher sulfur and trace metal levels. The U.S. produces nearly 70% of the total and is expected to maintain this share. Domestic markets consumed less than half of the U.S. production; 80% of the high sulfur fuel grade production from the Gulf coast is exported to Japan or Europe. Increasing environmental concerns could disrupt historic markets and threaten coker operations. This would create opportunities for alternate end-uses such as cogeneration projects. The Pace Consultants Inc. continuously monitors and reports on the petroleum coke industry-production and markets-in its multi-client publication The Pace Petroleum Coke Ouarterly. The information presented in this paper is based on this involvement and Pace's experience in single and multi client consulting activities related to the petroleum refining and petroleum coke industries. The purpose is to provide a review of the existing world petroleum coke industry with particular emphasis on the U.S. production and markets. Forecasted production levels and critical factors which could alter the historic market disposition of petroleum coke are addressed.

Dymond, R. E.

1992-04-01T23:59:59.000Z

442

Nuclear reactor composite fuel assembly  

DOE Patents (OSTI)

A core and composite fuel assembly for a liquid-cooled breeder nuclear reactor including a plurality of elongated coextending driver and breeder fuel elements arranged to form a generally polygonal bundle within a thin-walled duct. The breeder elements are larger in cross section than the driver elements, and each breeder element is laterally bounded by a number of the driver elements. Each driver element further includes structure for spacing the driver elements from adjacent fuel elements and, where adjacent, the thin-walled duct. A core made up of the fuel elements can advantageously include fissile fuel of only one enrichment, while varying the effective enrichment of any given assembly or core region, merely by varying the relative number and size of the driver and breeder elements.

Burgess, Donn M. (Richland, WA); Marr, Duane R. (West Richland, WA); Cappiello, Michael W. (Richland, WA); Omberg, Ronald P. (Richland, WA)

1980-01-01T23:59:59.000Z

443

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

444

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

445

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

446

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

447

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

448

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

449

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

450

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

451

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

452

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

453

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

454

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Thomas Built Buses - Minotour Propane Application: Bus - School Fuel Type: Propane Maximum Seating: 30 Power Source(s): General Motors - 6.0L V8 - CleanFUEL USA liquid propane...

455

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Collins Bus Corp. - NexBus Propane Thomas Built Buses - Minotour Propane General Motors - 6.0L V8 - CleanFUEL USA liquid propane injection (LPI) system Fuel Type: Propane...

456

Alternative Fuels Data Center: Heavy-Duty Vehicle and Engine...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Collins Bus Corp. - NexBus Propane Application: Bus - School Fuel Type: Propane Maximum Seating: 30 Power Source(s): General Motors - 6.0L V8 - CleanFUEL USA liquid propane...

457

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

458

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

459

Spent fuel characteristics & disposal considerations  

SciTech Connect

The fuel used in commercial nuclear power reactors is uranium, generally in the form of an oxide. The gas-cooled reactors developed in England use metallic uranium enclosed in a thin layer of Magnox. Since this fuel must be processed into a more stable form before disposal, we will not consider the characteristics of the Magnox spent fuel. The vast majority of the remaining power reactors in the world use uranium dioxide pellets in Zircaloy cladding as the fuel material. Reactors that are fueled with uranium dioxide generally use water as the moderator. If ordinary water is used, the reactors are called Light Water Reactors (LWR), while if water enriched in the deuterium isotope of hydrogen is used, the reactors are called Heavy Water reactors. The LWRs can be either pressurized reactors (PWR) or boiling water reactors (BWR). Both of these reactor types use uranium that has been enriched in the 235 isotope to about 3.5 to 4% total abundance. There may be minor differences in the details of the spent fuel characteristics for PWRs and BWRs, but for simplicity we will not consider these second-order effects. The Canadian designed reactor (CANDU) that is moderated by heavy water uses natural uranium without enrichment of the 235 isotope as the fuel. These reactors run at higher linear power density than LWRs and produce spent fuel with lower total burn-up than LWRs. Where these difference are important with respect to spent fuel management, we will discuss them. Otherwise, we will concentrate on spent fuel from LWRs.

Oversby, V.M.

1996-06-01T23:59:59.000Z

460

Consumer sovereignty: New boundaries for telecommunications and broadband access  

Science Conference Proceedings (OSTI)

Antitrust and consumer protection laws share a common purpose to facilitate the exercise of effective consumer choice. This article uses this concept of consumer sovereignty to frame analysis of the shifting boundaries between the industry-specific and ... Keywords: Antitrust, Broadband, Consumer protection, Deregulation, Regulatory policy

Barbara A. Cherry

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Consumer's Guide: Get Your Power from the Sun  

DOE R&D Accomplishments (OSTI)

Photovoltaics; PV; Grid-Connected; Net Metering; Solar Electricity; Consumer Guides; Solar Energy - Photovoltaics

Starrs, T.; Wenger, H.

2003-12-00T23:59:59.000Z

462

Utah Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

754,554 778,644 794,880 810,442 821,525 830,219 1987-2011 Sales 754,554 821,525 830,219 1997-2011 Commercial Number of Consumers 55,821 57,741 59,502 60,781 61,976 62,885 1987-2011...

463

New York Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

375,603 377,416 378,005 1987-2011 Sales 326,281 263,352 255,460 1998-2011 Transported 71,456 114,064 122,545 1998-2011 Average Consumption per Consumer (Thousand Cubic Ft.) 654 723...

464

Michigan Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

1997-2011 Commercial Number of Consumers 254,923 253,139 252,382 252,017 249,309 249,456 1987-2011 Sales 236,447 217,325 213,995 1998-2011 Transported 18,476 31,984 35,461...

465

Wisconsin Number of Natural Gas Consumers  

Annual Energy Outlook 2012 (EIA)

,611,772 1,632,200 1,646,644 1,656,614 1,663,583 1,671,834 1987-2011 Sales 1,611,772 1,663,583 1,671,834 1997-2011 Transported 0 0 0 1997-2011 Commercial Number of Consumers...

466

Protecting consumer privacy from electric load monitoring  

Science Conference Proceedings (OSTI)

The smart grid introduces concerns for the loss of consumer privacy; recently deployed smart meters retain and distribute highly accurate profiles of home energy use. These profiles can be mined by Non Intrusive Load Monitors (NILMs) to expose much of ... Keywords: load monitor, privacy, smart meter

Stephen McLaughlin; Patrick McDaniel; William Aiello

2011-10-01T23:59:59.000Z

467

Consumer behaviour at multi-channel retailers  

E-Print Network (OSTI)

Consumer behaviour at pure Internet players has been analysed thoroughly in earlier work. When it comes to retailers with multiple distribution channels, however, new behaviour patterns can be observed. Given the fact that multi-channel retailing is much more common than Internet-only, the analysis of consumer behaviour in a multi-channel context constitutes a challenge for the deeper understanding of e-business. The contribution of this research is threefold: first, this study provides an overview of how the 50 largest e-retailers presently coordinate the interaction between sales on their web sites and in physical stores. Second, we present findings from a consumer survey suggesting what consumers like about multi-channel services on retail sites. Finally, user behaviour is empirically evaluated based on transaction and web log data from a large multi-channel retailer. The results indicate a strong demand for multi-channel services and suggest that retailers should expand their multi-channel service spectrum.

Maximilian Teltzrow; Bettina Berendt; Oliver Gnther

2003-01-01T23:59:59.000Z

468

An Intelligent RFID System for Consumer Businesses  

Science Conference Proceedings (OSTI)

A common problem in any large grocery store is to make sure the customers find the right product of their choice quickly. The problem gets worse when large grocery stores hold several thousand products and when customers have time constraints, it becomes ... Keywords: RFID, consumer applications, Internet of Things, case-based reasoning, rule-based reasoning

Subbu Somasundaram; Pawan Khandavilli; Srinivas Sampalli

2010-12-01T23:59:59.000Z

469

New Jersey Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA)

Number of Consumers: 8,245: 8,036: 7,680: 7,871: 7,505: 7,391: 1987-2011: Sales: 7,248 : 6,282: 6,036: 1998-2011: Transported: 997 : 1,223: 1,355: 1998-2011: Average ...

470

Colorado Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

,558,911 1,583,945 1,606,602 1,622,434 1,634,587 1,645,716 1986-2011 Sales 1,558,908 1,634,582 1,645,711 1997-2011 Transported 3 5 5 1997-2011 Commercial Number of Consumers...

471

STATE OF CALIFORNIA CONSUMER POWER AND  

E-Print Network (OSTI)

of California's Energy Future The state's principal energy agencies are committed to active and continuedAdopted 1 STATE OF CALIFORNIA CONSUMER POWER AND CONSERVATION FINANCING AUTHORITY ENERGYRESOURCES crisis in its history, the state is well aware of the need for stable energy markets, reliable

472

Vermont Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

34,081 34,937 35,929 37,242 38,047 38,839 1987-2011 Sales 34,081 38,047 38,839 1997-2011 Commercial Number of Consumers 4,861 4,925 4,980 5,085 5,137 5,256 1987-2011 Sales 4,861...

473

Idaho Number of Natural Gas Consumers  

U.S. Energy Information Administration (EIA) Indexed Site

23,114 336,191 342,277 346,602 350,871 353,963 1987-2012 Sales 346,602 350,871 353,963 1997-2012 Commercial Number of Consumers 33,767 37,320 38,245 38,506 38,912 39,202 1987-2012...

474

Stochastic path tracing on consumer graphics cards  

Science Conference Proceedings (OSTI)

We present a path tracer using the GPU of a consumers graphics card to render images. It is implemented in Java and GLSL using GroIMP as modelling platform and runtime environment. The path tracer is capable of rendering primitives like sphere, cone, ... Keywords: GPU, HDR, global illumination, path tracing, procedural texturing, raytracing, texture mapping

Thomas Huwe; Reinhard Hemmerling

2008-04-01T23:59:59.000Z

475

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

476

Consumer Perceptions and Willingness to Pay for Intrinsically Motivated Online Content  

Science Conference Proceedings (OSTI)

Providing profitable online content has been an elusive goal, challenging many companies such as the New York Times, Disney/ABC/ESPN, and Microsoft/Slate. Charging for content has been hit-or-miss, attributable to a lack of generally applicable ... Keywords: Consumer Assessment, E-Commerce, Information Value, Online Content, Service Quality, Service Value

Alexandre Lopes; Dennis Galletta

2006-10-01T23:59:59.000Z

477

Winter fuels report  

SciTech Connect

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

1990-10-04T23:59:59.000Z

478

Winter fuels report  

Science Conference Proceedings (OSTI)

The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

Not Available

1994-10-01T23:59:59.000Z

479

General Category  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide and Animal Function Carbon Dioxide and Animal Function Name: Lizzy Status: student Grade: 6-8 Location: CA Country: USA Date: Spring 2012 Question: I was wondering, why do humans and other life forms require a balance of carbon dioxide in the atmosphere? Replies: Carbon dioxide is absorbed by plants as part of their metabolism. Their end product is oxygen, which all animal life requires. In addition, some life forms require carbon dioxide to balance their pH (acidity), although mammals can survive in a carbon dioxide - free environment for time periods because the body has a mechanism to control pH. In the long term the level of carbon dioxide in the atmosphere is increasing, largely from the combustion of hydrocarbon fuels. The weight of the experimental evidence leads to the conclusion that if these emissions continue uncontrolled, the temperature of the atmosphere (and the Earth's surface) will increase to levels that will be hazardous to all living species.

480

Roadmap for Development of Natural Gas Vehicle Fueling Infrastructructure and Analysis of Vehicular Natural Gas Consumption by Niche Sector  

SciTech Connect

Vehicular natural gas consumption is on the rise, totaling nearly 200 million GGEs in 2005, despite declines in total NGV inventory in recent years. This may be attributed to greater deployment of higher fuel use medium- and heavy-duty NGVs as compared to the low fuel use of the natural gas-powered LDVs that exited the market through attrition, many of which were bi-fuel. Natural gas station counts are down to about 1100 from their peak of about 1300. Many of the stations that closed were under-utilized or not used at all while most new stations were developed with greater attention to critical business fundamentals such as site selection, projected customer counts, peak and off-peak fueling capacity needs and total station throughput. Essentially, the nation's NGV fueling infrastructure has been--and will continue--going through a 'market correction'. While current economic fundamentals have shortened payback and improved life-cycle savings for investment in NGVs and fueling infrastructure, a combination of grants and other financial incentives will still be needed to overcome general fleet market inertia to maintain status quo. Also imperative to the market's adoption of NGVs and other alternative fueled vehicle and fueling technologies is a clear statement of long-term federal government commitment to diversifying our nation's transportation fuel use portfolio and, more specifically, the role of natural gas in that policy. Based on the current NGV market there, and the continued promulgation of clean air and transportation policies, the Western Region is--and will continue to be--the dominant region for vehicular natural gas use and growth. In other regions, especially the Northeast, Mid-Atlantic states and Texas, increased awareness and attention to air quality and energy security concerns by the public and - more important, elected officials--are spurring policies and programs that facilitate deployment of NGVs and fueling infrastructure. Because of their high per-vehicle fuel use, central fueling and sensitivity to fuel costs, fleets will continue to be the primary target for NGV deployment and station development efforts. The transit sector is projected to continue to account for the greatest vehicular natural gas use and for new volume growth. New tax incentives and improved life-cycle economics also create opportunities to deploy additional vehicles and install related vehicular natural gas fueling infrastructure in the refuse, airport and short-haul sectors. Focusing on fleets generates the highest vehicular natural gas throughout but it doesn't necessarily facilitate public fueling infrastructure because, generally, fleet operators prefer not to allow public access due to liability concerns and revenue and tax administrative burdens. While there are ways to overcome this reluctance, including ''outside the fence'' retail dispensers and/or co-location of public and ''anchor'' fleet dispensing capability at a mutually convenient existing or new retail location, each has challenges that complicate an already complex business transaction. Partnering with independent retail fuel station companies, especially operators of large ''truck stops'' on the major interstates, to include natural gas at their facilities may build public fueling infrastructure and demand enough to entice the major oil companies to once again engage. Garnering national mass media coverage of success in California and Utah where vehicular natural gas fueling infrastructure is more established will help pave the way for similar consumer market growth and inclusion of public accessibility at stations in other regions. There isn't one ''right'' business model for growing the nation's NGV inventory and fueling infrastructure. Different types of station development and ownership-operation strategies will continue to be warranted for different customers in different markets. Factors affecting NGV deployment and station development include: regional air quality compliance status and the state and/or local political climate regarding mandates and/or in

Stephen C. Yborra

2007-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel consumers generally" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

What's New: Spring 2001 Update. EPAct Fleet Information and Regulations, State and Alternative Fuel Provider Program Newsletter  

DOE Green Energy (OSTI)

A general update of things fleet managers and fuel providers need to know regarding the State and Alternative Fuel Provider Program.

Melendez, M.

2001-06-12T23:59:59.000Z

482

Inspector General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of the Under Secretary for Nuclear Security Edward B. Held (Acting) Under Secretary for Nuclear Security DEPARTMENT OF ENERGY Office of the Under Secretary for Management & Performance Vacant Under Secretary for Management and Performance Office of the Under Secretary for Science & Energy Vacant Under Secretary for Science and Energy Southwestern Power Administration Bonneville Power Administration Western Area Power Administration Southeastern Power Administration U.S. Energy Information Administration Loan Programs Office Advanced Research Projects Agency - Energy General Counsel Assistant Secretary for Congressional & Intergovernmental Affairs Chief Human Capital Officer

483

Market Cost of Renewable Jet Fuel Adoption in the United States  

E-Print Network (OSTI)

The US Federal Aviation Administration (FAA) has a goal that one billion gallons of renewable jet fuel is consumed by the US aviation industry each year from 2018. We examine the cost to US airlines of meeting this goal ...

Winchester, N.

484

The Development of Methanol Industry and Methanol Fuel in China  

Science Conference Proceedings (OSTI)

In 2007, China firmly established itself as the driver of the global methanol industry. The country became the world's largest methanol producer and consumer. The development of the methanol industry and methanol fuel in China is reviewed in this article. China is rich in coal but is short on oil and natural gas; unfortunately, transportation development will need more and more oil to provide the fuel. Methanol is becoming a dominant alternative fuel. China is showing the rest of the world how cleaner transportation fuels can be made from coal.

Li, W.Y.; Li, Z.; Xie, K.C. [Taiyuan University of Technology, Taiyuan (China)

2009-07-01T23:59:59.000Z

485

Alternatives to Traditional Transportation Fuels 2009 | Open Energy  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels 2009 Alternatives to Traditional Transportation Fuels 2009 Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternatives to Traditional Transportation Fuels 2009 Focus Area: Propane Topics: Policy Impacts Website: www.eia.gov/renewable/alternative_transport_vehicles/pdf/afv-atf2009.p Equivalent URI: cleanenergysolutions.org/content/alternatives-traditional-transportati Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This report provides data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use and the amount of alternative transportation fuels consumed in the United States in 2009. References Retrieved from "http://en.openei.org/w/index.php?title=Alternatives_to_Traditional_Transportation_Fuels_2009&oldid=514311

486

Alternatives to Traditional Transportation Fuels | Open Energy Information  

Open Energy Info (EERE)

Alternatives to Traditional Transportation Fuels Alternatives to Traditional Transportation Fuels Jump to: navigation, search Tool Summary Name: Alternatives to Traditional Transportation Fuels Agency/Company /Organization: U.S. Energy Information Administration Focus Area: Fuels & Efficiency Topics: Analysis Tools, Policy Impacts Website: www.eia.gov/renewable/afv/index.cfm This report provides annual data on the number of alternative fuel vehicles produced, the number of alternative fuel vehicles in use, and the amount of alternative transportation fuels consumed in the United States. How to Use This Tool This tool is most helpful when using these strategies: Shift - Change to low-carbon modes Improve - Enhance infrastructure & policies Learn more about the avoid, shift, improve framework for limiting air

487

Cryogenic Fuel Tank Draining  

E-Print Network (OSTI)

One of the technological challenges in designing advanced hypersonic aircraft and the next generation of spacecraft is developing reusable flight-weight cryogenic fuel tanks. As an aid in the design and analysis of these cryogenic tanks, a computational fluid dynamics (CFD) model has been developed specifically for the analysis of flow in a cryogenic fuel tank. This model employs the full set of Navier-Stokes equations, except that viscous dissipation is neglected in the energy equation. An explicit finite difference technique in two-dimensional generalized coordinates, approximated to second-order accuracy in both space and time is used. The stiffness resulting from the low Mach number is resolved by using artificial compressibility. The model simulates the transient, two-dimensional draining of a fuel tank cross section. To calculate the slosh wave dynamics the interface between the ullage gas and liquid fuel is modeled as a free surface. Then, experimental data for free convection inside a horizontal cylinder are compared with model results. Finally, cryogenic tank draining calculations are performed with three different wall heat fluxes to demonstrate the effect of wall heat flux on the internal tank flow field.

Analysis Model Donald; Donald Greer

1999-01-01T23:59:59.000Z

488

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General