Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

India Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

India India India Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends India's 2008 total fossil-fuel CO2 emissions rose 8.1% over the 2007 level to 475 million metric tons of carbon. From 1950 to 2008, India experienced dramatic growth in fossil-fuel CO2 emissions averaging 5.7% per year and becoming the world's third largest fossil-fuel CO2-emitting country. Indian total emissions from fossil-fuel consumption and cement production have more than doubled since 1994. Fossil-fuel emissions in India continue to result largely from coal burning with India being the world's third largest producer of coal. Coal contributed 87% of the emissions in 1950 and 71% in 2008; at the same time, the oil fraction increased from 11% to 20%. Indian emissions data reveal little impact from the oil price increases that

2

Poland Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Europe Europe » Poland Poland Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Carbon dioxide emissions from Poland's use of fossil-fuels and cement production climbed at a remarkably steady rate of 3.9% per year from 1800 until 1980, when they dropped abruptly (11.7%). Fossil-fuel CO2 emissions crept back up throughout the 1980s peaking in 1987 at 127 million metric tons of carbon. Since the 1987 high, CO2 emissions have plummeted 32% to early 1970s levels while per capita emissions have dropped to late 1960s levels. Poland is the world's ninth largest producer of coal and emissions are predominantly from coal burning: 97% in 1950 and 68% in 2008. The drop following 1980 is apparent in rates of liquid fuel burning but releases from consumption of petroleum products have returned and surpassed 1980s

3

Japan Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oceania » Japan Oceania » Japan Japan Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The history of fossil-fuel CO2 emissions from Japan is remarkable for the abrupt change that occurred in 1973. With postwar growth at 9.8% per year from 1950 to 1973, total emissions were virtually constant from 1974-1987. From 1987-96, emissions grew 25.3% reaching 329 million metric tons of carbon. Growth during this period was characterized by a return to mid-1970s consumption levels for liquid petroleum products and increased contributions from coal and natural gas use. Since 1996, Japan's fossil-fuel CO2 emissions have vacilated and now total 329 million metric tons of carbon in 2008. Based on United Nations energy trade data for 2008, Japan is the world's largest importer of coal (184 million metric tons) and

4

CO2 Emissions from Fuel Combustion | Open Energy Information  

Open Energy Info (EERE)

CO2 Emissions from Fuel Combustion CO2 Emissions from Fuel Combustion Jump to: navigation, search Tool Summary Name: CO2 Emissions from Fuel Combustion Agency/Company /Organization: International Energy Agency Sector: Energy Topics: Baseline projection, GHG inventory Resource Type: Dataset, Publications Website: www.iea.org/co2highlights/co2highlights.pdf CO2 Emissions from Fuel Combustion Screenshot References: CO2 Emissions from Fuel Combustion[1] Overview "This annual publication contains: estimates of CO2 emissions by country from 1971 to 2008 selected indicators such as CO2/GDP, CO2/capita, CO2/TPES and CO2/kWh CO2 emissions from international marine and aviation bunkers, and other relevant information" Excel Spreadsheet References ↑ "CO2 Emissions from Fuel Combustion"

5

People's Republic of China Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Asia Asia » People's Republic of China People's Republic of China Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends According to reported energy statistics, coal production and use in China has increased ten-fold since the 1960s. As a result, Chinese fossil-fuel CO2 emissions have more than doubled 2000 alone. At 1.92 billion metric tons of carbon in 2008, the People's Republic of China is the world's largest emitter of CO2 due to fossil-fuel use and cement production. Even with the reported decline in Chinese emissions from 1997 to 1999, China's industrial emissions of CO2 have grown phenomenally since 1950, when China stood tenth among nations based on annual fossil-fuel CO2 emissions. From 1970 to 1997, China's fossil-fuel CO2 emissions grew at an annual rate of

6

Global Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data (ASCII, Fixed Format) Data graphic Data (ASCII, Fixed Format) Data graphic Data (ASCII, Comma-delimited) Trends Since 1751 approximately 337 billion metric tonnes of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production. Half of these emissions have occurred since the mid 1970s. The 2007 global fossil-fuel carbon emission estimate, 8365 million metric tons of carbon, represents an all-time high and a 1.7% increase from 2006. Globally, liquid and solid fuels accounted for 76.3% of the emissions from fossil-fuel burning and cement production in 2007. Combustion of gas fuels (e.g., natural gas) accounted for 18.5% (1551 million metric tons of carbon) of the total emissions from fossil fuels in 2007 and reflects a gradually increasing global utilization of natural gas. Emissions from

7

North Korea Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Far East » North Korea Far East » North Korea North Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends The total fossil-fuel CO2 emissions for North Korea, or the Democratic People's Republic of Korea, averaged 11.2% growth from 1950-93, reaching 71 million metric tons of carbon. Since 1993 according to published UN energy statistics, fossil-fuel CO2 emissions have declined 70% to 21.4 million metric tons of carbon. As the world's 14th largest producer of coal, it is no surprise North Korea's fossil-fuel CO2 emissions record is dominated by emissions from coal burning. Coal consumption accounted for 93% of the 2008 CO2 emission total. With no natural gas usage, another 3.4% currently comes from liquid petroleum consumption, and the remainder is from cement

8

South Korea Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Far East » South Korea Far East » South Korea South Korea Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends South Korea, or the Republic of Korea, is the world's tenth largest emitter of CO2 based on 2008 fossil-fuel consumption and cement production with 139 million metric tons of carbon. From 1946-1997 South Korea experienced phenomenal growth in fossil-fuel CO2 emissions with a growth rate that averaged 11.5%. Initial growth in emissions was due to coal consumption, which still accounts for 46.9% of South Korea's fossil-fuel CO2 emissions. Since the late 1960s oil consumption has been a major source of emissions. South Korea is the world's fifth largest importer of crude oil. Natural gas became a significant source of CO2 for the first time in 1987, as South

9

Kyoto-Related Fossil-Fuel CO2 Emission Totals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kyoto-Related Emissions Kyoto-Related Emissions Kyoto-Related Fossil-Fuel CO2 Emission Totals DOI: 10.3334/CDIAC/ffe.007_V2012 world map Kyoto-Related Fossil-Fuel CO2 Emission Totals Year Annex B Countries Non Annex B Countries Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) Fossil-Fuel CO2 Emissions (million metric tonnes C) Bunkers (million metric tonnes C) 1990 3894 90 2111 46 1991 3801 94 2299 38 1992 3750 109 2263 44 1993 3685 107 2339 48 1994 3656 107 2469 54 1995 3681 110 2570 59 1996 3704 111 2657 72 1997 3727 114 2737 74 1998 3746 118 2698 82 1999 3678 124 2718 90 2000 3725 130 2821 90 2001 3781 120 2936 92 2002 3764 128 3013 94 2003 3853 123 3347 98 2004 3888 135 3683 107 2005 3933 142 3926 106

10

Italy (including San Marino) Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Western Europe » Italy Western Europe » Italy (including San Marino) Italy (including San Marino) Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends As occurred in many industrialized nations, CO2 emissions from Italy rose steeply since the late 1940's until the growth was abruptly terminated in 1974. Since 1974, emissions from liquid fuels have vacillated, dropping from 76% to 46% of a static but varying total. Significant increases in natural gas consumption have compensated for the drop in oil consumption. In 2008, 35.8% of Italy's fossil-fuel CO2 emissions were due to natural gas consumption. Coal usage grew steadily until 1985 when CO2 emissions from coal consumption reached 16 million metric tons of carbon. Not until 2004 did coal usage exceed 1985 levels and now accounts for 13.9% of Italy's

11

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...oxygen, or by steam reforming of the fuel to yield...coal beds contain methane adsorbed on...oxygen, or by steam reforming of the...coal beds contain methane adsorbed on...to coal-bed methane production, these...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

12

Russia Federation Fossil-Fuel CO2 Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Centrally Planned Europe Centrally Planned Europe » Russian Federation Russia Federation Fossil-Fuel CO2 Emissions Graph graphic Graphics Data graphic Data Trends Since 1992 total fossil-fuel CO2 emissions from the Russian Federation have dropped 23% to 466 million metric tons of carbon, still the fourth largest emitting country in the world and the largest emitter of the republics comprising the former USSR. Emissions from gas consumption still represent the largest fraction (49.1%) of Russia's emissions and only recently have returned to the 1992 level. Emissions from coal consumption have dropped 25.5% since 1992 and presently account for 26.6% of Russia's emissions. Russia has the largest population of any Eastern European country with a population of 141 million people. From a per capita standpoint, Russia's

13

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...develop a zero-emission electric plant that exploits...moderate marginal cost. In electric plants, even present...decentralized sources as vehicles, home furnaces, or...participate. Unlike the electric sector, the required...sequestrationa tax rebate or creation...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

14

Reducing CO2 Emissions from Fossil Fuel Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 Emissions From Fossil Fuel Power Plants Scott M. Klara - National Energy Technology Laboratory EPGA's 3 rd Annual Power Generation Conference October 16-17, 2002 Hershey, Pennsylvania EPGA - SMK - 10/17/02 * One of DOE's 17 national labs * Government owned/operated * Sites in Pennsylvania, West Virginia, Oklahoma, Alaska * More than 1,100 federal and support contractor employees * FY 02 budget of $750 million National Energy Technology Laboratory EPGA - SMK - 10/17/02 * Diverse research portfolio - 60 external projects - Onsite focus area * Strong industry support - 40% cost share * Portfolio funding $100M 0 10 20 30 40 50 60 1997 1998 1999 2000 2001 2002 2003 2003 2003 Budget (Million $) Fiscal Year Senate House Administration Request Carbon Sequestration: A Dynamic Program Separation & Capture From Power Plants Plays Key Role

15

Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States  

SciTech Connect (OSTI)

Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

Zhou, Yuyu; Gurney, Kevin R.

2011-07-01T23:59:59.000Z

16

Converting CO2 emissions and hydrogen into methanol vehicle fuel  

Science Journals Connector (OSTI)

There are new possibilities for transforming the ecological position of the metal-producing industries by utilizing their green-house gas emissions with electrolytically produced hydrogen to generate methanol ...

Bragi rnason; Thorsteinn I. Sigfsson

1999-05-01T23:59:59.000Z

17

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2012 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2009. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

18

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2013 revision of this database contains estimates of the annual, global mean value of δ 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2010. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric δ 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

19

Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 1 data Data image Documentation Contributors R.J. Andres, T.A. Boden, and G. Marland The 2011 revision of this database contains estimates of the annual, global mean value of del 13C of CO2 emissions from fossil-fuel consumption and cement manufacture for 1751-2008. These estimates of the carbon isotopic signature account for the changing mix of coal, petroleum, and natural gas being consumed and for the changing mix of petroleum from various producing areas with characteristic isotopic signatures. This time series of global fossil-fuel del 13C signature provides an additional constraint for balancing the sources and sinks of the global carbon cycle and complements the atmospheric del 13C measurements that are used to partition the uptake of fossil carbon emissions among the ocean, atmosphere, and terrestrial

20

Update on CO2 emissions  

SciTech Connect (OSTI)

Emissions of CO2 are the main contributor to anthropogenic climate change. Here we present updated information on their present and near-future estimates. We calculate that global CO2 emissions from fossil fuel burning decreased by 1.3% in 2009 owing to the global financial and economic crisis that started in 2008; this is half the decrease anticipated a year ago1. If economic growth proceeds as expected2, emissions are projected to increase by more than 3% in 2010, approaching the high emissions growth rates that were observed from 2000 to 20081, 3, 4. We estimate that recent CO2 emissions from deforestation and other land-use changes (LUCs) have declined compared with the 1990s, primarily because of reduced rates of deforestation in the tropics5 and a smaller contribution owing to forest regrowth elsewhere.

Friedingstein, P. [University of Exeter, Devon, England; Houghton, R.A. [Woods Hole Research Center, Woods Hole, MA; Marland, Gregg [ORNL; Hackler, J. [Woods Hole Research Center, Woods Hole, MA; Boden, Thomas A [ORNL; Conway, T.J. [NOAA, Boulder, CO; Canadell, J.G. [CSIRO Marine and Atmospheric Research; Raupach, Mike [GCP, Canberra, Australia; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Le Quere, Corrine [University of East Anglia, Norwich, United Kingdom

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NETL: CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Home > Technologies > Coal & Power Systems > Innovations for Existing Plants > CO2 Emissions Control Innovations for Existing Plants CO2 Emissions Control RD&D Roadmap Technology Update DOE/NETL Advanced CO2 Capture R&D Program: Technology Update DOE/NETL Advanced CO2 Capture R&D Program Accomplishments DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap 2013 NETL CO2 Capture Technology Meeting Presentations DOE/NETL's Monthly Carbon Sequestration Newsletter Program Goals and Targets Pre-Combustion CO2 Control Post-Combustion CO2 Control Advanced Combustion CO2 Compression Other Systems Analysis Regulatory Drivers Reference Shelf Carbon capture involves the separation of CO2 from coal-based power plant flue gas or syngas. There are commercially available 1st-Generation CO2

22

Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city  

SciTech Connect (OSTI)

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the Hestia Project, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

2012-08-15T23:59:59.000Z

23

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel use and CO2 emissions, has resulted in  

E-Print Network [OSTI]

Policy Choice:Forest or Fuel? The demand for biofuels, driven by the desire to reduce fossil fuel, combined with the expanded demand for biofuels, will result in higher food prices, since less land by using biofuels (vegetable oils). But the use of biofuels may not reduce CO2 emissions, even when

24

Quantification of Fossil Fuel CO2 Emissions on the Building/Street Scale for a Large U.S. City  

Science Journals Connector (OSTI)

In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. ... Ammonia (NH3) is a key precursor species to atmospheric fine particulate matter with strong implications for regional air quality and global climate change. ...

Kevin R. Gurney; Igor Razlivanov; Yang Song; Yuyu Zhou; Bedrich Benes; Michel Abdul-Massih

2012-08-15T23:59:59.000Z

25

Land and Water Use, CO2 Emissions, and Worker Radiological Exposure Factors for the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

The Department of Energy Office of Nuclear Energys Fuel Cycle Technologies program is preparing to evaluate several proposed nuclear fuel cycle options to help guide and prioritize Fuel Cycle Technology research and development. Metrics are being developed to assess performance against nine evaluation criteria that will be used to assess relevant impacts resulting from all phases of the fuel cycle. This report focuses on four specific environmental metrics. land use water use CO2 emissions radiological Dose to workers Impacts associated with the processes in the front-end of the nuclear fuel cycle, mining through enrichment and deconversion of DUF6 are summarized from FCRD-FCO-2012-000124, Revision 1. Impact estimates are developed within this report for the remaining phases of the nuclear fuel cycle. These phases include fuel fabrication, reactor construction and operations, fuel reprocessing, and storage, transport, and disposal of associated used fuel and radioactive wastes. Impact estimates for each of the phases of the nuclear fuel cycle are given as impact factors normalized per unit process throughput or output. These impact factors can then be re-scaled against the appropriate mass flows to provide estimates for a wide range of potential fuel cycles. A companion report, FCRD-FCO-2013-000213, applies the impact factors to estimate and provide a comparative evaluation of 40 fuel cycles under consideration relative to these four environmental metrics.

Brett W Carlsen; Brent W Dixon; Urairisa Pathanapirom; Eric Schneider; Bethany L. Smith; Timothy M. AUlt; Allen G. Croff; Steven L. Krahn

2013-08-01T23:59:59.000Z

26

High resolution fossil fuel combustion CO2 emission fluxes for the United States  

SciTech Connect (OSTI)

Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

2009-03-19T23:59:59.000Z

27

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

Emissions from Alternative Fuel Lifecycles: Scoping theEMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THEACRONYMS and TERMS AF = alternative fuel AFL = alternative-

Delucchi, Mark

2005-01-01T23:59:59.000Z

28

Research on CO2 Emission Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Clean Energy Utilization of Clean Energy Utilization Zhejing University 29 th May, 2008 Status of CCS in China 2 nd U.S.-China Symposium on CO 2 Emission Control Science & Technology, Hangzhou China 28 th -30 th , May, 2008 Prof. Zhongyang Luo Global CO 2 Emissions Country CO 2 Emissions (Million Tons Carbon) 1990 1997 2001 2010 USA 1345 1480 1559 1800 China 620 822 832 1109 Former USSR 1034 646 654 825 Japan 274 297 316 334 World 5836 6175 6522 8512 Source: Energy Information Administration/International Energy Outlook 2001 Global CO 2 Emissions from Fossil Fuel Use in 2006 11.72 3,330 EU-15 5.75 1,620 Russia 4.3 1,210 Japan 20.17 5,680 China 20.42 5,750 USA 100 28,160 Total Percentage (%) CO 2 Emissions (1 million metric tons CO 2 ) Country BP Statistical Review of World Energy, June 2007 (http://www.bp.com/sectiongenericarticle.do?categoryId=6914&contentI

29

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Circle of Measuring Automobile Fuel Use, Energy Policy 21. (M. , Dolan, K. , 1993b, Fuel Prices and Economy: Factors1994. New Car Test and Actual Fuel Economy: Yet Another Gap?

Schipper, Lee

2008-01-01T23:59:59.000Z

30

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

Circle of Measuring Automobile Fuel Use, Energy Policy 21. (1995. Determinants of Automobile Energy Use and Energythe baseline evolution of automobile fuel economy in Europe.

Schipper, Lee

2008-01-01T23:59:59.000Z

31

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

engine itself is more efficient, providing potentially more power for a given average fuel consumption.

Schipper, Lee

2008-01-01T23:59:59.000Z

32

Extracting CO2 from seawater: Climate change mitigation and renewable liquid fuel  

E-Print Network [OSTI]

Photosynthesis Biomass Renewable liquid fuel Fuel synthesis #12;Renewable liquid fuel Combustion CO2 separation emissions from all sectors IEA, 2012; CO2 emissions from fuel combustion: Highlights. · Solar · Wind · CO2. R. Soc. A, 368, 3343, 2010 #12;Biological renewable liquid fuel Combustion Water CO2 in air

Homes, Christopher C.

33

Commitment accounting of CO2 emissions  

Science Journals Connector (OSTI)

The world not only continues to build new coal-fired power plants, but built more new coal plants in the past decade than in any previous decade. Worldwide, an average of 89 gigawatts per year (GW yr1) of new coal generating capacity was added between 2010 and 2012, 23 GW yr1 more than in the 20002009 time period and 56 GW yr1 more than in the 19901999 time period. Natural gas plants show a similar pattern. Assuming these plants operate for 40 years, the fossil-fuel burning plants built in 2012 will emit approximately 19 billion tons of CO2 (Gt CO2) over their lifetimes, versus 14 Gt CO2 actually emitted by all operating fossil fuel power plants in 2012. We find that total committed emissions related to the power sector are growing at a rate of about 4% per year, and reached 307 (with an estimated uncertainty of 192439) Gt CO2 in 2012. These facts are not well known in the energy policy community, where annual emissions receive far more attention than future emissions related to new capital investments. This paper demonstrates the potential for 'commitment accounting' to inform public policy by quantifying future emissions implied by current investments.

Steven J Davis; Robert H Socolow

2014-01-01T23:59:59.000Z

34

Automobile Fuel; Economy and CO2 Emissions in Industrialized Countries: Troubling Trends through 2005/6  

E-Print Network [OSTI]

been if the diesel/gasoline new car market shares had beendiesel and gasoline new car fuel economy in 2005 in two important European markets.diesels is in part responsible for an increase in driving compared to what would have obtained if market

Schipper, Lee

2008-01-01T23:59:59.000Z

35

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nations CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

36

NETL: CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Analysis Systems Analysis DOE/NETL possesses strong systems analysis and policy-support capabilities. Systems analysis in support of the Innovations for Existing Plants Program consists of conducting various energy analyses that provide input to decisions on issues such as national plans and programs, resource use, environmental and energy security policies, technology options for research and development programs, and paths to deployment of energy technology. This work includes technology, benefits, and current situation and trends analyses related to CO2 emissions control. Systems analyses and economic modeling of potential new processes are crucial to providing sound guidance to R&D efforts. Since the majority of new CO2 capture technologies are still at a bench scale level of development, a conceptual design is first generated with emphasis on mass and energy balances. Based on available data and/or engineering estimates, these systems are optimized, and "what-if" scenarios are evaluated to identify barriers to deployment and help the process developers establish system performance targets. Reports that have been generated describing systems analyses in support of carbon capture efforts are shown in the table below.

37

NETL: CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Post-Combustion CO2 Control Post-Combustion CO2 Control Post-combustion CO2 control systems separate CO2 from the flue gas produced by conventional coal combustion in air. The flue gas is at atmospheric pressure and has a CO2 concentration of 10-15 volume percent. Read More! Capturing CO2 under these conditions is challenging because: (1) the low pressure and dilute concentration dictate a high total volume of gas to be treated; (2) trace impurities in the flue gas tend to reduce the effectiveness of the CO2 separation processes; and (3) compressing captured CO2 from atmospheric pressure to pipeline pressure (1,200 - 2,200 pounds per square inch) represents a large parasitic energy load. Plant Picture DOE/NETL's post-combustion CO2 control technology R&D program includes

38

Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China  

Science Journals Connector (OSTI)

Abstract The increasing discrepancy between on-road and type-approval fuel consumption for \\{LDPVs\\} (light-duty passenger vehicles) has attracted tremendous attention. We measured on-road emissions for 60 \\{LDPVs\\} in three China's cities and calculated their fuel consumption and CO2 (carbon dioxide) emissions. We further evaluated the impacts of variations in area-averaged speed on relative fuel consumption of gasoline \\{LDPVs\\} for the UAB (urban area of Beijing). On-road fuel consumption under the average driving pattern is 102% higher than that normalized to the NEDC (new European driving cycle) cycle for all tested vehicles, and the on-road NEDC-normalized fuel consumption is higher by 3012% compared to type-approval values for gasoline vehicles. We observed very strong correlations between relative fuel consumption and average speed. Traffic control applied to \\{LDPVs\\} driving within the UAB during weekdays can substantially reduce total fleet fuel consumption by 235% during restriction hours by limiting vehicle use and improving driving conditions. Our results confirmed that a new cycle for the type approval test for \\{LDPVs\\} with more real-world driving features is of great necessity. Furthermore, enhanced traffic control measures could play an important role in mitigating real-world fuel consumption and CO2 emissions for \\{LDPVs\\} in China.

Shaojun Zhang; Ye Wu; Huan Liu; Ruikun Huang; Puikei Un; Yu Zhou; Lixin Fu; Jiming Hao

2014-01-01T23:59:59.000Z

39

New Automobile Regulations: Double the Fuel Economy, Half the CO2 Emissions, and Even Automakers Like It  

E-Print Network [OSTI]

Lead-Time: The Case of US Automobile Greenhouse Gas EmissionNew Automobile Regulations Double the Fuel Economy, Half thephysics of the modern automobile involve an uphill battle to

Lutsey, Nic

2012-01-01T23:59:59.000Z

40

The supply chain of CO2 emissions  

Science Journals Connector (OSTI)

...secondary fuels (e.g., diesel, gasoline, electricity, etc.), which...Warming and Energy Policy , Free-market approaches to controlling...ofnatural gas (MtCO2) GDP[B$, Market Exchange Rate(MER...ofnatural gas (MtCO2) GDP[B$, Market Exchange Rate(MER...

Steven J. Davis; Glen P. Peters; Ken Caldeira

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Solid Fuel - Oxygen Fired Combustion for Production of Nodular Reduced Iron to Reduce CO2 Emissions and Improve Energy Efficiencies  

SciTech Connect (OSTI)

The current trend in the steel industry is an increase in iron and steel produced in electric arc furnaces (EAF) and a gradual decline in conventional steelmaking from taconite pellets in blast furnaces. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the market demands of the emerging steel industry while utilizing the existing infrastructure and materials handling capabilities. This demand creates opportunity to convert iron ore or other iron bearing materials to Nodular Reduced Iron (NRI) in a recently designed Linear Hearth Furnace (LHF). NRI is a metallized iron product containing 98.5 to 96.0% iron and 2.5 to 4% C. It is essentially a scrap substitute with little impurity that can be utilized in a variety of steelmaking processes, especially the electric arc furnace. The objective of this project was to focus on reducing the greenhouse gas emissions (GHG) through reducing the energy intensity using specialized combustion systems, increasing production and the use of biomass derived carbon sources in this process. This research examined the use of a solid fuel-oxygen fired combustion system and compared the results from this system with both oxygen-fuel and air-fuel combustion systems. The solid pulverized fuels tested included various coals and a bio-coal produced from woody biomass in a specially constructed pilot scale torrefaction reactor at the Coleraine Minerals Research Laboratory (CMRL). In addition to combustion, the application of bio-coal was also tested as a means to produce a reducing atmosphere during key points in the fusion process, and as a reducing agent for ore conversion to metallic iron to capture the advantage of its inherent reduced carbon footprint. The results from this study indicate that the approaches taken can reduce both greenhouse gas emissions and the associated energy intensity with the Linear Hearth Furnace process for converting iron ore to metallic iron nodules. Various types of coals including a bio-coal produced though torrefaction can result in production of NRI at reduced GHG levels. The process results coupled with earlier already reported developments indicate that this process technique should be evaluated at the next level in order to develop parameter information for full scale process design. Implementation of the process to full commercialization will require a full cost production analysis and comparison to other reduction technologies and iron production alternatives. The technical results verify that high quality NRI can be produced under various operating conditions at the pilot level.

Donald R. Fosnacht; Richard F. Kiesel; David W. Hendrickson; David J. Englund; Iwao Iwasaki; Rodney L. Bleifuss; Mathew A. Mlinar

2011-12-22T23:59:59.000Z

42

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

economy as a function of fuel prices, technology prices, andshould be a function of fuel prices, electricity demand, andturn are a function of fuel price, system costs, and other

Delucchi, Mark

2005-01-01T23:59:59.000Z

43

Calculating CO2 Emissions from Mobile Sources | Open Energy Information  

Open Energy Info (EERE)

Calculating CO2 Emissions from Mobile Sources Calculating CO2 Emissions from Mobile Sources Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Calculating CO2 Emissions from Mobile Sources,GHG Protocol Agency/Company /Organization: Aether, Environmental Data Services, Aether, Environmental Data Services Sector: Energy Focus Area: GHG Inventory Development, Industry, Transportation Topics: GHG inventory, Potentials & Scenarios Resource Type: Guide/manual Complexity/Ease of Use: Not Available Website: cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20 Cost: Free References: http://cf.valleywater.org/Water/Where_Your_Water_Comes_From/Water%20Supply%20and%20Infrastructure%20Planning/Climate%20Change/Guidance_for_mobile_emissions_GHG_protocol.pdf Related Tools Tool and Calculator (Transit, Fuel)

44

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

Diesel fuel Steel Aluminum Plastics Concrete Generic chemicals Fertilizer Corn Soybeans Grass Trees Land g/BTU

Delucchi, Mark

2005-01-01T23:59:59.000Z

45

Incorporating the Effect of Price Changes on CO2-Equivalent Emissions From Alternative-Fuel Lifecycles: Scoping the Issues  

E-Print Network [OSTI]

one bushel of corn. Emissions from the use of energy forCORN, SOYBEANS, TREES, AND GRASSES This section of the LEM documentation discusses the energy,energy use. WORKING PAPER DRAFT FOR REVIEW Where will the marginal corn

Delucchi, Mark

2005-01-01T23:59:59.000Z

46

Interactions between reducing CO2 emissions, CO2 removal and solar radiation management  

Science Journals Connector (OSTI)

...World Energy Council. 41 World Energy Council.2009 Survey of energy resources interim update 2009. London, UK: World Energy Council. 42 Haszeldine, R. S...CO2 emissions, CO2 removal and solar radiation management. | We use...

2012-01-01T23:59:59.000Z

47

If Anthropogenic CO2 Emissions Cease, Will Atmospheric CO2 Concentration Continue to Increase?  

Science Journals Connector (OSTI)

If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that the overall ...

Andrew H. MacDougall; Michael Eby; Andrew J. Weaver

2013-12-01T23:59:59.000Z

48

NETL: IEP – Oxy-Combustion CO2 Emissions Control - CANMET CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

– Oxy-Combustion CO2 Emissions Control – Oxy-Combustion CO2 Emissions Control CANMET CO2 Consortium-O2/CO2 Recycle Combustion Project No.: IEA-CANMET-CO2 (International Agreement) Photograph of CANMET's Vertical Combustor Research Facility. Photograph of CANMET’s Vertical Combustor Research Facility. The CANMET carbon dioxide (CO2) consortium will conduct research to further the development of oxy-combustion for retrofit to coal-fired power plants. Research activities include: (1) modeling of an advanced, supercritical pressure oxy-coal plant, including an analysis of the impact of oxygen (O2) purity and O2 partial enrichment, overall process performance, and cost; (2) testing of pilot-scale CO2 capture and compression; (3) investigating CO2 phase change at liquid and supercritical states in gas mixtures

49

NETL - World CO2 Emissions - Projected Trends Tool | Open Energy  

Open Energy Info (EERE)

NETL - World CO2 Emissions - Projected Trends Tool NETL - World CO2 Emissions - Projected Trends Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NETL - World CO2 Emissions - Projected Trends Tool Agency/Company /Organization: National Energy Technology Laboratory Sector: Energy Topics: GHG inventory Resource Type: Software/modeling tools Website: www.netl.doe.gov/energy-analyses/refshelf/results.asp?ptype=Models/Too References: NETL - World CO2 Emissions - Projected Trends Tool [1] NETL - World CO2 Emissions - Projected Trends Tool This interactive tool enables the user to look at both total and power sector CO2 emissions from the use of coal, oil, or natural gas, over the period 1990 to 2030. One can use the tool to compare five of the larger CO2 emitters to each other or to overall world emissions. The data are from the

50

CO2-SELECTIVE MEMBRANE FOR FUEL CELL APPLICATIONS.  

E-Print Network [OSTI]

??We have developed CO2-selective membranes to purified hydrogen and nitrogenfor fuel cell processes. Hydrogen purification impacts other industries such as ammoniaproduction and flue gas purification (more)

El-Azzami, Louei Abdel Raouf

2006-01-01T23:59:59.000Z

51

Biofuel contribution to mitigate fossil fuel CO 2 emissions: Comparing sugar cane ethanol in Brazil with corn ethanol and discussing land use for food production and deforestation  

Science Journals Connector (OSTI)

This paper compares the use of sugar cane and corn for the production of ethanol with a focus on global warming and the current international debate about land use competition for food and biofuel production. The indicators used to compare the products are CO 2 emissions energy consumption sugar cane coproducts and deforestation. The life cycle emission inventory as a methodological tool is taken into account. The sustainability of socioeconomic development and the developing countries need to overcome barriers form the background against which the Brazilian government energy plans are analyzed.

Luiz Pinguelli Rosa

2009-01-01T23:59:59.000Z

52

Optimization Model for Energy Planning with CO2 Emission Considerations  

Science Journals Connector (OSTI)

This paper considers the problem of reducing CO2 emissions from a power grid consisting of a variety of power-generating plants:? coal, natural gas, nuclear, hydroelectric, and alternative energy. ... Approximately 28.5% of OPG electricity is produced through the combustion of fossil fuels, 27% through hydroelectricity, and 44% through nuclear energy, and the remaining 0.5% comes from renewable or other energy sources, such as wind turbines. ... A sensitivity analysis was also performed to evaluate the impact of natural gas prices, coal prices, and retrofit costs on the optimal configuration of the OPG fleet of electricity-generating stations. ...

Haslenda Hashim; Peter Douglas; Ali Elkamel; Eric Croiset

2005-01-12T23:59:59.000Z

53

An Integrated Approach for Oxy-fuel Combustion with CO2 Capture and Compression  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Vent Stream Vent Stream (out) CO 2 Product Stream (out) Flue Gas Stream (in) CO 2 CCU Skid Government of Canada Gouvernement du Canada An Integrated Approach for Oxy An Integrated Approach for Oxy- -fuel Combustion with CO fuel Combustion with CO 2 2 Capture and Capture and Compression Compression Kourosh Zanganeh, Ahmed Shafeen, and Carlos Salvador Zero-Emission Technologies Group, Clean Electric Power Generation CANMET CO 2 R&D Consortium CANMET Energy Technology Centre - Ottawa The capture and storage or reuse of carbon dioxide (CO 2 ) from the combustion of fossil fuels as well as industrial off gases represents an opportunity to achieve a significant reduction in anthropogenic greenhouse gas (GHG) emissions. Fossil fuel combustion is expected to dominate the energy structure in at least the next few decades.

54

Decomposition analysis of CO2 emissions from electricity generation in China  

Science Journals Connector (OSTI)

Electricity generation in China mainly depends on coal and its products, which has led to the increase in CO2 emissions. This paper intends to analyze the current status of CO2 emissions from electricity generation in China during the period 19912009, and apply the logarithmic mean Divisia index (LMDI) technique to find the nature of the factors influencing the changes in CO2 emissions. The main results as follows: (1) CO2 emission from electricity generation has increased from 530.96Mt in 1991 to 2393.02Mt in 2009, following an annual growth rate of 8.72%. Coal products is the main fuel type for thermal power generation, which accounts for more than 90% CO2 emissions from electricity generation. (2) This paper also presents CO2 emissions factor of electricity consumption, which help calculate CO2 emission from final electricity consumption. (3) In China, the economic activity effect is the most important contributor to increase CO2 emissions from electricity generation, but the electricity generation efficiency effect plays the dominant role in decreasing CO2 emissions.

Ming Zhang; Xiao Liu; Wenwen Wang; Min Zhou

2013-01-01T23:59:59.000Z

55

Technological Options for Reducing Non-CO2 GHG Emissions  

Science Journals Connector (OSTI)

A project titled Clearinghouse of Technological Options for Reducing Anthropogenic Non-CO 2 GHG Emissions from All Sectors was recently conducted. The o...

Prof. Dr. Jeff Kuo Ph.D.; P.E.

2012-01-01T23:59:59.000Z

56

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of atmospheric CO2  

E-Print Network [OSTI]

An estimate of monthly global emissions of anthropogenic CO2: Impact on the seasonal cycle of anthropogenic CO2 are presented. Approximating the seasonal CO2 emission cycle using a 2-harmonic Fourier series with regions of strong anthropogenic CO2 emissions. Citation: Erickson, D. J., III, R. T. Mills, J. Gregg, T. J

Hoffman, Forrest M.

57

DOE Hydrogen Analysis Repository: CO2 Reduction Benefits Analysis for Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Reduction Benefits Analysis for Fuel Cell Applications CO2 Reduction Benefits Analysis for Fuel Cell Applications Project Summary Full Title: CO2 Reduction Benefits Analysis for Fuel Cell Applications Project ID: 263 Principal Investigator: Chip Friley Brief Description: This analysis used the 10-region U.S. MARKAL model to quantify the impact of changes in production, distribution and vehicle costs and carbon prices on fuel cell vehicle penetration and overall carbon dioxide emissions. Keywords: Carbon dioxide (CO2); Hydrogen; Fuel cells Purpose Perform analysis of topics of interest to the DOE Fuel Cell Technologies program related to projected carbon dioxide reduction benefits of fuel cell applications. Performer Principal Investigator: Chip Friley Organization: Brookhaven National Laboratory (BNL) Address: Mail Stop 475C

58

High Co2 Emissions Through Porous Media- Transport Mechanisms And  

Open Energy Info (EERE)

Co2 Emissions Through Porous Media- Transport Mechanisms And Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High Co2 Emissions Through Porous Media- Transport Mechanisms And Implications For Flux Measurement And Fractionation Details Activities (1) Areas (1) Regions (0) Abstract: Diffuse emissions of CO2 are known to be large around some volcanoes and hydrothermal areas. Accumulation-chamber measurements of CO2 flux are increasingly used to estimate the total magmatic or metamorphic CO2 released from such areas. To assess the performance of accumulation chamber systems at fluxes one to three orders of magnitude higher than normally encountered in soil respiration studies, a test system was

59

Energy solutions for CO2 emission peak and subsequent decline  

E-Print Network [OSTI]

Energy solutions for CO2 emission peak and subsequent decline Edited by Leif Sønderberg Petersen and Hans Larsen Risø-R-1712(EN) September 2009 Proceedings Risø International Energy Conference 2009 #12;Editors: Leif Sønderberg Petersen and Hans Larsen Title: Energy solutions for CO2 emission peak

60

Definition: Reduced Co2 Emissions | Open Energy Information  

Open Energy Info (EERE)

Co2 Emissions Co2 Emissions Jump to: navigation, search Dictionary.png Reduced Co2 Emissions Functions that provide this benefit can lead to avoided vehicle miles, decrease the amount of central generation needed to their serve load (through reduced electricity consumption, reduced electricity losses, more optimal generation dispatch), and or reduce peak generation. These impacts translate into a reduction in CO2 emissions produced by fossil-based electricity generators and vehicles.[1] Related Terms electricity generation, reduced electricity losses, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reduced_Co2_Emissions&oldid=502618

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Spatial Disaggregation of CO2 Emissions for the State of California  

SciTech Connect (OSTI)

This report allocates California's 2004 statewide carbon dioxide (CO2) emissions from fuel combustion to the 58 counties in the state. The total emissions are allocated to counties using several different methods, based on the availability of data for each sector. Data on natural gas use in all sectors are available by county. Fuel consumption by power and combined heat and power generation plants is available for individual plants. Bottom-up models were used to distribute statewide fuel sales-based CO2 emissions by county for on-road vehicles, aircraft, and watercraft. All other sources of CO2 emissions were allocated to counties based on surrogates for activity. CO2 emissions by sector were estimated for each county, as well as for the South Coast Air Basin. It is important to note that emissions from some sources, notably electricity generation, were allocated to counties based on where the emissions were generated, rather than where the electricity was actually consumed. In addition, several sources of CO2 emissions, such as electricity generated in and imported from other states and international marine bunker fuels, were not included in the analysis. California Air Resource Board (CARB) does not include CO2 emissions from interstate and international air travel, in the official California greenhouse gas (GHG) inventory, so those emissions were allocated to counties for informational purposes only. Los Angeles County is responsible for by far the largest CO2 emissions from combustion in the state: 83 Million metric tonnes (Mt), or 24percent of total CO2 emissions in California, more than twice that of the next county (Kern, with 38 Mt, or 11percent of statewide emissions). The South Coast Air Basin accounts for 122 MtCO2, or 35percent of all emissions from fuel combustion in the state. The distribution of emissions by sector varies considerably by county, with on-road motor vehicles dominating most counties, but large stationary sources and rail travel dominating in other counties.The CO2 emissions data by county and source are available upon request.

de la Rue du Can, Stephane; de la Rue du Can, Stephane; Wenzel, Tom; Fischer, Marc

2008-06-11T23:59:59.000Z

62

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Broader source: Energy.gov (indexed) [DOE]

Six Projects to Convert Captured CO2 Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

63

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Broader source: Energy.gov (indexed) [DOE]

Six Projects to Convert Captured CO2 Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

64

Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from  

Broader source: Energy.gov (indexed) [DOE]

Announces Six Projects to Convert Captured CO2 Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products Secretary Chu Announces Six Projects to Convert Captured CO2 Emissions from Industrial Sources into Useful Products July 22, 2010 - 12:00am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu announced today the selections of six projects that aim to find ways of converting captured carbon dioxide (CO2) emissions from industrial sources into useful products such as fuel, plastics, cement, and fertilizers. Funded with $106 million from the American Recovery and Reinvestment Act -matched with $156 million in private cost-share -today's selections demonstrate the potential opportunity to use CO2 as an inexpensive raw material that can help reduce carbon dioxide emissions while producing useful by-products that Americans

65

THERMOCATALYTIC CO2-FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS  

E-Print Network [OSTI]

THERMOCATALYTIC CO2- FREE PRODUCTION OF HYDROGEN FROM HYDROCARBON FUELS N. Muradov Florida Solar Energy Center 1679 Clearlake Road, Cocoa, Florida 32922 tel. 321-638-1448, fax. 321-638-1010, muradov (except for the start-up operation). This results in the following advantages: (1) no CO/CO2 byproducts

66

The supply chain of CO2 emissions  

Science Journals Connector (OSTI)

...and F Pr. China is an exception...modest net imports of fuels...large net exports of consumer...economies like China, Brazil...combined net imports of fuels...contrast, net export of fuels from...countries by net imports, net exports, and extraction...Australia China Japan US...Wearing Apparel Petroleum and Coal...

Steven J. Davis; Glen P. Peters; Ken Caldeira

2011-01-01T23:59:59.000Z

67

Synthetic fuel concept to steal CO2 from air  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to steal CO2 from air Lab has developed a low-risk, transformational concept, called Green Freedom(tm), for large-scale production of carbon-neutral, sulfur-free fuels and...

68

New Catalyst Converts CO2 to Fuel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Catalyst Converts CO to Fuel Calculations Run at NERSC Help Confirm University of Illinois Breakthrough September 5, 2014 | Tags: Basic Energy Sciences (BES), Carver,...

69

The supply chain of CO2 emissions  

E-Print Network [OSTI]

on GTAP data of energy consumed and trade in each region byper unit of energy. Using trade data, these emissions aretrade, economic inputoutput by sector, GDP, population, energy

Davis, S. J; Peters, G. P; Caldeira, K.

2011-01-01T23:59:59.000Z

70

The supply chain of CO2 emissions  

Science Journals Connector (OSTI)

...analysis is based on fossil energy resources of coal, oil...emissions per unit of energy. Using trade data, these...Russia, China, and Japan together account for 59% of...Imported / y Australia China Japan US France Germany Italy...0.5 Other Direct by Households Food Products nec Textiles...

Steven J. Davis; Glen P. Peters; Ken Caldeira

2011-01-01T23:59:59.000Z

71

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2  

Open Energy Info (EERE)

Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Jump to: navigation, search Tool Summary Name: Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions Agency/Company /Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background analysis Resource Type: Dataset Website: cdiac.ornl.gov/trends/emis/meth_reg.html Country: United States, Canada, Mexico, Argentina, Brazil, Chile, Colombia, Ecuador, Peru, Venezuela, Austria, Azerbaijan, Belarus, Belgium, Luxembourg, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kazakhstan, Lithuania, Netherlands, Norway, Poland, Portugal, Romania, Russia, Slovakia, Spain, Sweden, Switzerland, Turkey, Turkmenistan, Ukraine, United Kingdom, Uzbekistan, Iran, Kuwait, Qatar, Saudi Arabia, United Arab Emirates, Algeria, Egypt, South Africa, Australia, Bangladesh, China, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, Philippines, Singapore, South Korea, Taiwan, Thailand

72

Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 Title Diurnal tracking of anthropogenic CO2 emissions in the Los Angeles basin megacity during spring 2010 Publication Type Journal Article Year of Publication 2012 Authors Newman, Sally, Seongeun Jeong, Marc L. Fischer, Xiaomei Xu, Christine L. Haman, Barry Lefer, Sergio Alvarez, Bernhard Rappenglueck, Eric A. Kort, Arlyn E. Andrews, Jeffrey Peischl, Kevin R. Gurney, Charles E. Miller, and Yuk L. Yung Journal Atmospheric Chemistry and Physics Volume 13 Pagination 4359-4372 Abstract Attributing observed CO2 variations to human or natural cause is critical to deducing and tracking emissions from observations. We have used in situ CO2, CO, and planetary boundary layer height (PBLH) measurements recorded during the CalNex-LA (CARB et al., 2008) ground campaign of 15 May-15 June 2010, in Pasadena, CA, to deduce the diurnally varying anthropogenic component of observed CO2 in the megacity of Los Angeles (LA). This affordable and simple technique, validated by carbon isotope observations and WRF-STILT (Weather Research and Forecasting model - Stochastic Time-Inverted Lagrangian Transport model) predictions, is shown to robustly attribute observed CO2 variation to anthropogenic or biogenic origin over the entire diurnal cycle. During CalNex-LA, local fossil fuel combustion contributed up to ~50% of the observed CO2 enhancement overnight, and ~100% of the enhancement near midday. This suggests that sufficiently accurate total column CO2 observations recorded near midday, such as those from the GOSAT or OCO-2 satellites, can potentially be used to track anthropogenic emissions from the LA megacity.

73

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2)  

E-Print Network [OSTI]

GLOBAL EMISSIONS Greenhouse gas (GHG) emissions, largely carbon dioxide (CO2) from the combustion. Figure 1 Global Carbon Dioxide Emissions: 1850­2030 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940- related CO2 emissions have risen 130-fold since 1850--from 200 million tons to 27 billion tons a year

Green, Donna

74

NETL: IEP - Post-Combustion CO2 Emissions Control - CO2 Capture Membrane  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Capture Membrane Process for Power Plant Flue Gas CO2 Capture Membrane Process for Power Plant Flue Gas Project No.: DE-NT0005313 CLICK ON IMAGE TO ENLARGE Research Triangle Institute (RTI) International is researching fluorinated polymer membranes for carbon dioxide capture. RTI's research effort includes membrane materials development, module design, and process design. RTI is pursuing the development of two hollow-fiber membrane materials. First, RTI is working with Generon to develop a membrane material constructed of polycarbonate-based polymers. Lab-scale membrane modules are being studied with simulated flue-gas mixtures with and without flue gas emission contaminants. Two larger-scale polycarbonate membrane module prototypes are being tested with a slipstream of actual flue gas from the U.S. Environmental Protection Agency's (EPA) Multipollutant

75

Consumption-based accounting of CO2 emissions  

Science Journals Connector (OSTI)

...non-CO 2 greenhouse gases (SI Text...valued at exporter prices. In contrast...Republic, and Egypt are among...economies with limited natural resources...National Greenhouse Gas Inventories ( IPCC WGI...Climate, and the Natural World , Socioeconomic...of greenhouse gas emission responsibilities...

Steven J. Davis; Ken Caldeira

2010-01-01T23:59:59.000Z

76

Energy use, cost and CO2 emissions of electric cars  

Science Journals Connector (OSTI)

We examine efficiency, costs and greenhouse gas emissions of current and future electric cars (EV), including the impact from charging EV on electricity demand and infrastructure for generation and distribution. Uncoordinated charging would increase national peak load by 7% at 30% penetration rate of EV and household peak load by 54%, which may exceed the capacity of existing electricity distribution infrastructure. At 30% penetration of EV, off-peak charging would result in a 20% higher, more stable base load and no additional peak load at the national level and up to 7% higher peak load at the household level. Therefore, if off-peak charging is successfully introduced, electric driving need not require additional generation capacity, even in case of 100% switch to electric vehicles. GHG emissions from electric driving depend most on the fuel type (coal or natural gas) used in the generation of electricity for charging, and range between 0gkm?1 (using renewables) and 155gkm?1 (using electricity from an old coal-based plant). Based on the generation capacity projected for the Netherlands in 2015, electricity for EV charging would largely be generated using natural gas, emitting 3577gCO2eqkm?1. We find that total cost of ownership (TCO) of current EV are uncompetitive with regular cars and series hybrid cars by more than 800year?1. TCO of future wheel motor PHEV may become competitive when batteries cost 400kWh?1, even without tax incentives, as long as one battery pack can last for the lifespan of the vehicle. However, TCO of future battery powered cars is at least 25% higher than of series hybrid or regular cars. This cost gap remains unless cost of batteries drops to 150kWh?1 in the future. Variations in driving cost from charging patterns have negligible influence on TCO. GHG abatement costs using plug-in hybrid cars are currently 4001400tonne?1CO2eq and may come down to ?100 to 300tonne?1. Abatement cost using battery powered cars are currently above 1900tonne?1 and are not projected to drop below 300800tonne?1.

Oscar van Vliet; Anne Sjoerd Brouwer; Takeshi Kuramochi; Machteld van den Broek; Andr Faaij

2011-01-01T23:59:59.000Z

77

CO2 Emission Benefit of Diesel (versus Gasoline) Powered Vehicles  

Science Journals Connector (OSTI)

Increased penetration of diesel powered vehicles into the market is a possible transition strategy toward a more sustainable transportation system. ... We report herein a quantitative analysis of the CO2 emission benefits of diesel vehicles versus their gasoline equivalents for 2001 MY and 2015 MY in European and North American markets. ... However, more stringent tailpipe NOx emissions standards are likely to have a greater negative impact on diesel engines, further reducing the advantages of future diesels relative to gasoline engines. ...

J. L. Sullivan; R. E. Baker; B. A. Boyer; R. H. Hammerle; T. E. Kenney; L. Muniz; T. J. Wallington

2004-05-13T23:59:59.000Z

78

Capturing and Sequestering CO2 from a Coal-Fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capturing and Sequestering CO Capturing and Sequestering CO 2 from a Coal-fired Power Plant - Assessing the Net Energy and Greenhouse Gas Emissions Pamela L. Spath (pamela_spath @nrel.gov; (303) 275-4460) Margaret K. Mann (margaret_mann @nrel.gov; (303) 275-2921) National Renewable Energy Laboratory 1617 Cole Boulevard Golden, CO 80401 INTRODUCTION It is technically feasible to capture CO 2 from the flue gas of a coal-fired power plant and various researchers are working to understand the fate of sequestered CO 2 and its long term environmental effects. Sequestering CO 2 significantly reduces the CO 2 emissions from the power plant itself, but this is not the total picture. CO 2 capture and sequestration consumes additional energy, thus lowering the plant's fuel to electricity efficiency. To compensate for this, more fossil fuel must be

79

Global and regional drivers of accelerating CO2 emissions  

Science Journals Connector (OSTI)

...emissions from fossil-fuel combustion and industrial...flux from fossil fuel combustion and industrial processes...sources: national-level combustion of solid, liquid...oxidation of nonfuel hydrocarbons; and fuel from...renewables, mainly as heat from biomass...

Michael R. Raupach; Gregg Marland; Philippe Ciais; Corinne Le Qur; Josep G. Canadell; Gernot Klepper; Christopher B. Field

2007-01-01T23:59:59.000Z

80

Shell Future Fuels and CO2 | Open Energy Information  

Open Energy Info (EERE)

Shell Future Fuels and CO2 Shell Future Fuels and CO2 Jump to: navigation, search Name Shell Future Fuels and CO2 Place Glasgow, Scotland, United Kingdom Zip G1 9BG Sector Hydro, Hydrogen Product UK-based division of Shell's Oil Products business active in the hydrogen & CCS sectors as a developer of technology. Coordinates 55.857809°, -4.242511° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.857809,"lon":-4.242511,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Options for reducing CO2 emissions from personal travel in Europe  

Science Journals Connector (OSTI)

Personal travel is an increasingly important aspect of European society. Our demand for travel, in terms of time, money and mobility, is steadily increasing. This growth has led to a number of undesirable effects, including a substantial contribution to global warming through the emission of carbon dioxide (CO2). To address this issue, a number of solutions are available. Already the technology is established for highly economical cars, but experience shows that incentives or regulations are required in order to stimulate widespread interest in saving fuel. Similarly, alternative fuels can offer considerable reductions in greenhouse emissions, depending on the source of the energy. In the longer run, it is essential that technological measures are complemented by policies to reduce the need to travel, whilst still maintaining accessibility. This paper presents a list of policies that are being investigated as part of a strategy for reducing CO2 emissions from personal travel in Britain.

P. Hughes; S . Potter

1992-01-01T23:59:59.000Z

82

Offsetting China's CO2 Emissions by Soil Carbon Sequestration  

Science Journals Connector (OSTI)

Fossil fuel emissions of carbon (C) in China in 2000 was ... % or more of the antecedent soil organic carbon (SOC) pool.Some of the depleted ... . A crude estimated potential of soil C sequestration in China is 1...

R. Lal

2004-08-01T23:59:59.000Z

83

Leaf isoprene emission rate as a function of atmospheric CO2 concentration  

E-Print Network [OSTI]

Leaf isoprene emission rate as a function of atmospheric CO2 concentration M I C H A E L J . W I L not show an increase in isoprene emission at the lowest CO2 concentration. However, isoprene emission rates exhibited a 30­40% reduction in isoprene emission rate when grown at 800 ppmv CO2, compared with 400 ppmv CO

Jackson, Robert B.

84

Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results and  

E-Print Network [OSTI]

Infrared emission spectroscopy of CO2 at high temperature. Part II: Experimental results-92322 Ch^atillon, France Abstract Measurements of CO2 emission spectra at high temperature in the 2.7 µm emission measurements using a microwave post-discharge in CO2 flow as emission source. The measurements

Paris-Sud XI, Université de

85

Spatio-temporal changes in CO2 emissions during the second ZERT...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spatio-temporal changes in CO2 emissions during the second ZERT injection, August-September 2008. Spatio-temporal changes in CO2 emissions during the second ZERT injection,...

86

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

way of reducing total energy consumption and CO2 emissions.deducted from the total energy consumption to avoid double-However, total energy consumption and CO2 emissions will

Ke, Jing

2013-01-01T23:59:59.000Z

87

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network [OSTI]

Motor Vehicle Growth, Oil Demand and CO2 Emissions through61 4.3.2 Crude Oil Demand and TradeMotor Vehicle Growth, Oil Demand and CO2 Emissions through

G. Fridley, David

2010-01-01T23:59:59.000Z

88

Energy and Climate Impacts of Producing Synthetic Hydrocarbon Fuels from CO2  

Science Journals Connector (OSTI)

These platforms make the case for (more) research on the conversion of CO2 into synthetic fuels as means to utilize CO2 and thereby mitigate its accumulation in the atmosphere. ... Stechel, E. B.; Miller, J. E.Re-energizing CO2 to fuels with the sun: Issues of efficiency, scale, and economics J. CO2 Util. ... Published analyses suggest these air capture systems may cost a few hundred dollars per ton of CO2, making it cost competitive with mainstream CO2 mitigation options like renewable energy, nuclear power, and carbon dioxide capture and storage from large CO2 emitting point sources. ...

Coen van der Giesen; Ren Kleijn; Gert Jan Kramer

2014-05-15T23:59:59.000Z

89

Allocation of Transportation Cost & CO2 Emission in Pooled Supply Chains Using  

E-Print Network [OSTI]

Allocation of Transportation Cost & CO2 Emission in Pooled Supply Chains Using Cooperative Game and the transport CO2 emissions. In this regard, this paper introduces a scheme to share in a fairly manner the savings. After a summary of the concept of pooled-supply-networks optimization and CO2 emission model, we

Boyer, Edmond

90

Project EARTH-13-TM1: Understanding CO2 emissions from Europe's restless caldera-forming volcanoes  

E-Print Network [OSTI]

Project EARTH-13-TM1: Understanding CO2 emissions from Europe's restless caldera-forming volcanoes the information contained in volcano CO2 emissions is important from both a volcanic hazards perspective into this program. The opportunity will also be taken to map out CO2 emissions at these systems and to review what

Henderson, Gideon

91

A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050  

E-Print Network [OSTI]

1 A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050 Pascal da mitigation targets for CO2 emissions, which reflect their own specific situations. In this article, scenarios for CO2 emissions up to 2050 are set up for three representative countries: the United States of America

Boyer, Edmond

92

Fossil Fuels Without CO2 Emissions  

Science Journals Connector (OSTI)

...from the atmosphere (1). Recent work in carbon...capacity ?200 to 500 GtC), deep coal beds...molar ratio of ?2:1, allowing...sequestrationa tax rebate or creation...global capacity ~200 to 500 GtC), deep coal...molar ratio of ~2:1, allowing...

E. A. Parson; D. W. Keith

1998-11-06T23:59:59.000Z

93

Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials  

Science Journals Connector (OSTI)

Introduction of \\{ZEVs\\} (zero emission vehicles) and lightweight materials in a conventional steel-intensive internal combustion engine vehicle fleet will affect energy consumption and automotive material requirements. We developed a bottom-up dynamic accounting model of the light-duty vehicle fleet, including vehicle production and disposal, with detailed coverage of powertrains and automotive materials. The model was used to study the potential for energy consumption and CO2 emissions reduction of \\{ZEVs\\} and lightweight materials in the Colombian passenger car fleet from 2010 to 2050. Results indicate that passenger car stock in Colombia is increased by 6.6 times between 2010 and 2050. In the base scenario energy consumption and CO2 emissions are increased by 5.5 and 4.9 times respectively. Lightweighting and battery electric vehicles offer the largest tank-to-wheel energy consumption and CO2 emissions reductions, 48 and 61% respectively, compared to 2050 baseline values. Slow stock turnover and fleet size increment prevent larger reductions. Switching to electric powertrains has larger impact than lightweighting on energy consumption and CO2 emissions. Iron and steel remain major materials in new cars. Aluminum consumption increases in all scenarios; while carbon fiber reinforced polymer consumption only increases due to fuel cell hybrid electric vehicle or lightweight vehicle use.

Juan C. Gonzlez Palencia; Takaaki Furubayashi; Toshihiko Nakata

2012-01-01T23:59:59.000Z

94

Investigating the impact of nuclear energy consumption on GDP growth and CO2 emission: A panel data analysis  

Science Journals Connector (OSTI)

Abstract This study investigates the influence of nuclear energy consumption on GDP growth and CO2 emission in 30 major nuclear energy consuming countries. The panel mode was used taking the period 19902010. The results of the study indicated that nuclear energy consumption has a positive long run effect on GDP growth while it has no long run effect on CO2 emission. The Granger causality test results also revealed that nuclear energy consumption has a positive short run causal relationship with GDP growth while it has a negative short run causal relationship with CO2 emission. Based on the results of this study, nuclear energy consumption has an important role in increasing GDP growth in the investigated countries with no effect on CO2 emission. Consequently, unlike fossil fuels which also increase GDP growth, nuclear energy consumption causes less damage to the environment. From the results of the study, a number of recommendations were provided for the investigated countries.

Usama Al-mulali

2014-01-01T23:59:59.000Z

95

Saving Fuel, Reducing Emissions  

E-Print Network [OSTI]

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

96

Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties  

E-Print Network [OSTI]

emissions from electricity consumption. This paper examinesmainly from electricity consumption for cement production,CO 2 emissions from electricity consumption are usually

Ke, Jing

2014-01-01T23:59:59.000Z

97

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

Analysis of Building Energy Costs and CO 2 Emissions WeiAnalysis of Building Energy Costs and CO 2 Emissions Weiwhich minimizes building energy cost or CO 2 emissions, or a

Feng, Wei

2013-01-01T23:59:59.000Z

98

Impact of Aviation Non-CO2 Combustion Effects on the Environmental Feasibility of Alternative Jet Fuels  

Science Journals Connector (OSTI)

Materials and Methods ... The purely paraffinic nature and lack of sulfur present in SPK fuels has been shown to cause changes in the combustion emissions from gas turbine engines;(13-16) hence, the purpose of this paper is 2-fold: (1) develop ratios by which the CO2 from combustion can be scaled to include the climate forcing from non-CO2 combustion effects of conventional jet fuel and SPK, and (2) quantify how including non-CO2 combustion species within the fuel life cycle changes the merit of alternative jet fuels relative to conventional jet fuel from the perspective of climate change. ... We thank Mr. Chris Dorbian, Mrs. Hsin Min Wong, Prof. Steven Barrett, Prof. Jessika Trancik, and Prof. Ian Waitz for their help in improving the quality of the work presented herein as well as Warren Gillette and Lourdes Maurice, of FAA, and Tim Edwards and Bill Harrison, both of AFRL, for their leadership in managing this project. ...

Russell W. Stratton; Philip J. Wolfe; James I. Hileman

2011-11-22T23:59:59.000Z

99

NETL: IEP - Post-Combustion CO2 Emissions Control - Post-Combustion CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Post-Combustion CO2 Capture for Existing PC Boilers by Self-concentrating Amine Absorbent Post-Combustion CO2 Capture for Existing PC Boilers by Self-concentrating Amine Absorbent Project No.: DE-FE0004274 3H Company will evaluate the feasibility of its "Self-Concentrating Absorbent CO2 Capture Process." The process is based on amines in a non-aqueous solvent which, upon reaction with CO2, separate into two distinct phases: a CO2-rich liquid phase and a dilute lean phase. The proposed process offers several potential advantages. Preliminary experimental data show that the process has the potential of reducing the total regeneration energy by as much as 70 percent. The solvent has high working capacity, thus required solvent volume would be lower than that required in a currently available amine system. This results in lower pumping requirements, lower auxiliary power demands, and reduced equipment size. In addition, since the solvent is non-aqueous, corrosion issues would be reduced. During the three-year project, an engineering design supported by laboratory data and economic justification will be developed to construct and operate a slipstream demonstration facility at an E-ON power plant in the United States as a next stage of commercialization development.

100

A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries)  

Science Journals Connector (OSTI)

Abstract Climate change and global warming as the main human societies threats are fundamentally associated with energy consumption and GHG emissions. The residential sector, representing 27% and 17% of global energy consumption and CO2 emissions, respectively, has a considerable role to mitigate global climate change. Ten countries, including China, the US, India, Russia, Japan, Germany, South Korea, Canada, Iran, and the UK, account for two-thirds of global CO2 emissions. Thus, these countries residential energy consumption and GHG emissions have direct, significant effects on the world environment. The aim of this paper is to review the status and current trends of energy consumption, CO2 emissions and energy policies in the residential sector, both globally and in those ten countries. It was found that global residential energy consumption grew by 14% from 2000 to 2011. Most of this increase has occurred in developing countries, where population, urbanization and economic growth have been the main driving factors. Among the ten studied countries, all of the developed ones have shown a promising trend of reduction in CO2 emissions, apart from the US and Japan, which showed a 4% rise. Globally, the residential energy market is dominated by traditional biomass (40% of the total) followed by electricity (21%) and natural gas (20%), but the total proportion of fossil fuels has decreased over the past decade. Energy policy plays a significant role in controlling energy consumption. Different energy policies, such as building energy codes, incentives, energy labels have been employed by countries. Those policies can be successful if they are enhanced by making them mandatory, targeting net-zero energy building, and increasing public awareness about new technologies. However, developing countries, such as China, India and Iran, still encounter with considerable growth in GHG emissions and energy consumption, which are mostly related to the absence of strong, efficient policy.

Payam Nejat; Fatemeh Jomehzadeh; Mohammad Mahdi Taheri; Mohammad Gohari; Muhd Zaimi Abd. Majid

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NETL: IEP – Post-Combustion CO2 Emissions Control - CO2 Capture from Flue  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

from Flue Gas by Phase Transitional Absorption from Flue Gas by Phase Transitional Absorption Project No.: FG26-05NT42488 Basic Illustration of the Phase Transitional Absorption Process. Basic Illustration of the Phase Transitional Absorption Process. Hampton University researched a novel carbon dioxide (CO2) absorption concept, phase transitional absorption, that utilizes a two-part proprietary absorbent consisting of an activated agent dissolved in a solvent. Phase separation of the activated agent from the chemical solvent occurs during CO2 absorption and physical separation of the two phases exiting the absorber reduces the volume of process liquid requiring thermal regeneration. This unique aspect of phase transitional absorption also decreases the amount of energy (i.e., steam) required to liberate the CO2. If the proper liquid

102

Interactions between reducing CO2 emissions, CO2 removal and solar radiation management  

Science Journals Connector (OSTI)

...the geological storage capacity for CO2. For the SRM...reduction in incoming solar radiation that fully...3. Results (a) Solar radiation management...scale set by the heat capacity in the model. For s2030srm2015...reduction in incoming solar radiation in the first...

2012-01-01T23:59:59.000Z

103

On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution, dynamics and  

E-Print Network [OSTI]

: The recent implementation of the EU Emissions Trading Scheme (EU ETS) in January 2005 created new financial of CO2 emissions allowances, valid for compliance under the EU Emissions Trading Scheme (EU ETS

Paris-Sud XI, Université de

104

Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Monthly Isotopic (13C/12C) Estimates Monthly Isotopic (13C/12C) Estimates Estimates of Monthly CO2 Emissions and Associated 13C/12C Values from Fossil-Fuel Consumption in the U.S.A. DOI: 10.3334/CDIAC/ffe.001 Web page graphic Graphics Web page graphic Data (ASCII Fixed Format) Web page graphic Data (ASCII Comma Delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6290, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 Period of Record 1981-2003 Methods The data from which these carbon-emissions estimates were derived are values of fuel consumed: in billions of cubic feet, for natural gas; in

105

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions |  

Broader source: Energy.gov (indexed) [DOE]

Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions Midwest Has Potential to Store Hundreds of Years of CO2 Emissions November 16, 2011 - 12:00pm Addthis Washington, DC - Geologic capacity exists to permanently store hundreds of years of regional carbon dioxide (CO2) emissions in nine states stretching from Indiana to New Jersey, according to injection field tests conducted by the Midwest Regional Carbon Sequestration Partnership (MRCSP). MRCSP's just-released Phase II final report indicates the region has likely total storage of 245.5 billion metric tons of CO2, mostly in deep saline rock formations, a large capacity compared to present day emissions. While distributed sources such as agriculture, transportation, and home heating account for a significant amount of CO2 emissions in the MRCSP

106

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry  

E-Print Network [OSTI]

goal to reduce its carbon intensity (CO2 emissions per unitmeet the national carbon intensity reduction target, Chinasthe leakage issue of carbon intensity targets with trade

Ke, Jing

2013-01-01T23:59:59.000Z

107

E-Print Network 3.0 - atmospheric co2 emissions Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University Collection: Environmental Sciences and Ecology 16 EARTH'S CLIMATE, THE GREENHOUSE EFFECT, AND ENERGY Summary: al. Mauna Loa - Keeling 12;ATMOSPHERIC CO2 EMISSIONS Time...

108

Inventory of China's Energy-Related CO2 Emissions in 2008  

SciTech Connect (OSTI)

Although China became the world's largest emitter of energy-related CO{sub 2} emissions in 2007, China does not publish annual estimates of CO{sub 2} emissions and most published estimates of China's emissions have been done by other international organizations. Undertaken at the request of the Energy Information Administration (EIA) of the US Department of Energy, this study examines the feasibility of applying the EIA emissions inventory methodology to estimate China's emissions from published Chinese data. Besides serving as a proof of concept, this study also helps develop a consistent and transparent method for estimating China's CO{sub 2} emissions using an Excel model and identified China-specific data issues and areas for improvement. This study takes a core set of data from the energy balances published in the China Energy Statistical Yearbook 2009 and China Petrochemical Corporation Yearbook 2009 and applies the EIA's eight-step methodology to estimate China's 2008 CO{sub 2} emissions. First, China's primary and secondary fuel types and consumption by end use are determined with slight discrepancies identified between the two data sources and inconsistencies in product categorization with the EIA. Second, energy consumption data are adjusted to eliminate double counting in the four potential areas identified by EIA; consumption data from China's Special Administrative Regions are not included. Physical fuel units are then converted to energy equivalents using China's standard energy measure of coal equivalent (1 kilogram = 29.27 MJ) and IPCC carbon emissions coefficients are used to calculate each fuel's carbon content. Next, carbon sequestration is estimated following EIA conventions for other petroleum products and non-energy use of secondary fuels. Emissions from international bunker fuels are also subtracted under the 'reference' calculation of estimating apparent energy consumption by fuel type and the 'sectoral' calculation of summing emissions across end-use sectors. Adjustments for the China-specific conventions of reporting foreign bunkers and domestic bunkers fueling abroad are made following IPCC definitions of international bunkers and EIA reporting conventions, while the sequestration of carbon in carbon steel is included as an additional adjustment. Under the sectoral approach, fuel consumption of bunkers and other transformation losses as well as gasoline consumption are reallocated to conform to EIA sectoral reporting conventions. To the extent possible, this study relies on official energy data from primary sources. A limited number of secondary sources were consulted to provide insight into the nature of consumption of some products and to guide the analysis of carbon sequestered in steel. Beyond these, however, the study avoided trying to estimate figures where directly unavailable, such as natural gas flaring. As a result, the basic calculations should be repeatable for other years with the core set of data from National Bureau of Statistics and Sinopec (or a similarly authoritative source of oil product data). This study estimates China's total energy-related CO{sub 2} emissions in 2008 to be 6666 Mt CO{sub 2}, including 234.6 Mt of non-fuel CO{sub 2} emissions and 154 Mt of sequestered CO{sub 2}. Bunker fuel emissions in 2008 totaled 15.9 Mt CO{sub 2}, but this figure is underestimated because fuel use by Chinese ship and planes for international transportation and military bunkers are not included. Of emissions related to energy consumption, 82% is from coal consumption, 15% from petroleum and 3% from natural gas. From the sectoral approach, industry had the largest share of China's energy-related CO{sub 2} emissions with 72%, followed by residential at 11%, transport and telecommunications at 8%, and the other four (commerce, agriculture, construction and other public) sectors having a combined share of 9%. Thermal electricity and (purchased) heat (to a lesser degree) are major sources of fuel consumption behind sectoral emissions, responsible for 2533 Mt CO2 and 321 Mt CO{sub 2}, respec

Fridley, David; Zheng, Nina; Qin, Yining

2011-03-31T23:59:59.000Z

109

Oxy-fuel Combustion and Integrated Pollutant Removal as Retrofit Technologies for Removing CO2 from Coal Fired Power Plants  

SciTech Connect (OSTI)

One third of the US installed capacity is coal-fired, producing 49.7% of net electric generation in 20051. Any approach to curbing CO2 production must consider the installed capacity and provide a mechanism for preserving this resource while meeting CO2 reduction goals. One promising approach to both new generation and retrofit is oxy-fuel combustion. Using oxygen instead of air as the oxidizer in a boiler provides a concentrated CO2 combustion product for processing into a sequestration-ready fluid.... Post-combustion carbon capture and oxy-fuel combustion paired with a compression capture technology such as IPR are both candidates for retrofitting pc combustion plants to meet carbon emission limits. This paper will focus on oxy-fuel combustion as applied to existing coal power plants.

Ochs, T.L.; Oryshchyn, D.B.; Summers, C.A.; Gerdemann, S.J.

2001-01-01T23:59:59.000Z

110

NETL: IEP - Post-Combustion CO2 Emissions Control - Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Membrane/Absorption Process for Post-Combustion CO2 Capture Hybrid Membrane/Absorption Process for Post-Combustion CO2 Capture Project No.: DE-FE0004787 Gas Technology Institute is partnering with PoroGen Corporation and Aker Process Systems in a three-year effort to develop a hybrid technology for CO2 capture from flue gases based on a combination of solvent absorption and hollow fiber membrane technologies. The technology could also apply to removal of numerous other gas pollutants such as NOx and SOx, separation of CO2 from hydrogen in refinery streams, and separation of CO2 from natural gas (natural gas sweetening). The technology increases interfacial gas/liquid area by a factor of ten over conventional packed or tray columns, thus increasing mass transfer. The selectivity is controlled by the chemical affinity of CO2 with a hindered amine. The process results in lower steam regeneration energy, and the CO2 is generated at pressure, reducing compression costs. The project includes bench-scale testing on a 25 kWe-equivalent slipstream at Midwest Generation's Joliet Power Station.

111

NETL-Developed Process for Capturing CO2 Emissions Wins National Award for  

Broader source: Energy.gov (indexed) [DOE]

Process for Capturing CO2 Emissions Wins National Process for Capturing CO2 Emissions Wins National Award for Excellence in Technology Transfer NETL-Developed Process for Capturing CO2 Emissions Wins National Award for Excellence in Technology Transfer February 3, 2011 - 12:00pm Addthis Washington, DC - A process developed by researchers at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) that improves the capture of carbon dioxide (CO2) emissions from power plants while reducing the cost has been selected to receive a 2011 Award for Excellence in Technology Transfer. The Basic Immobilized Amine Sorbent (BIAS) Process separates CO2 from the flue or stack gas of power plants, preventing its release into the air. The captured CO2 can then be permanently stored in a carbon sequestration

112

A Multi-Pollutant Framework for Evaluating CO2 Control Options for Fossil Fuel Power Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Multi-Pollutant Framework for Evaluating CO Multi-Pollutant Framework for Evaluating CO 2 Control Options for Fossil Fuel Power Plants Edward S. Rubin (rubin@cmu.edu; 412-268-5897) Anand B. Rao (abr@andrew.cmu.edu; 412-268-5605) Michael B. Berkenpas (mikeb@cmu.edu; 412-268-1088) Carnegie Mellon University EPP Department, Baker Hall 128A Pittsburgh, PA 15213 Abstract As part of DOE/NETL's Carbon Sequestration Program, we are developing an integrated, multi-pollutant modeling framework to evaluate the costs and performance of alternative carbon capture and sequestration technologies for fossil-fueled power plants. The model calculates emissions, costs, and efficiency on a systematic basis at the level of an individual plant or facility. Both new and existing facilities can be modeled, including coal-based or natural gas-based combustion or gasification systems using air or oxygen.

113

Controlling Power Plant CO2 Emissions: A Long-Range View  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CONTROLLING POWER PLANT CO CONTROLLING POWER PLANT CO 2 EMISSIONS: A LONG RANGE VIEW John Marion (john.l.marion@power.alstom.com; 860-285-4539) Nsakala ya Nsakala (nsakala.y.nsakala@power.alstom.com; 860-285-2018) ALSTOM Power Plant Laboratories 2000 Day Hill Road Windsor, CT 06095, USA Timothy Griffin (timothy.griffin@power.alstom.com; +41 56/486 82 43) Alain Bill (alain.bill@power.alstom.com; +41 56/486 81 07) ALSTOM Power Technology Center 5405 Baden-Daettwil, Switzerland ABSTRACT ALSTOM Power (ALSTOM) is an international supplier of power generation with concern for the environment. We are aware of the present scientific concerns regarding greenhouse gas emissions and the role of fossil fuel use for power generation. Although the scientific and policy dialogue on global climate change is far from conclusive, ALSTOM continues to

114

NETL: IEP-In-House Post Combustion CO2 Emissions Control  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP - In-House Post-Combustion CO2 Emissions Control IEP - In-House Post-Combustion CO2 Emissions Control CO2 Capture Chemical Sorbents Chemical Solvents Membranes Miscellaneous The objective of this National Energy Technology Laboratory Office of Research and Development (ORD) multi-faceted project is to develop carbon dioxide (CO2) capture systems for coal-based power plants that lower the costs and energy penalty associated with those systems. Research and development in the capture area is aimed at developing systems that are low in capital cost, have low parasitic load, can significantly reduce CO2 emissions, and can be integrated within the power generation system. A majority of the research will occur on laboratory- and bench-scale reactors. Further information on ORD's CO2 capture projects can be found by using the links found in the adjacent blue box.

115

NOVEL DATA ANALYSIS TECHNIQUE TO EVALUATE FIELD NOx AND CO2 CONTINUOUS EMISSION DATA, BASED ON THE EVALUATION OF: (1) AN OFF-ROAD DIESEL COMPACTOR RUNNING ON THREE FUEL TYPES AND (2) TWO COMPACTORS RUNNING ON DIESEL FUEL  

E-Print Network [OSTI]

) in percentage. ............................................ 121 1 I. INTRODUCTION I.A. Statement of problem The diesel engine plays a vital role in transportation, power generation, farming, construction and industrial activities. The primary advantages... that are capable of collecting duty-cycle data and yield a more accurate emission profile. Historically the air emission contributions from off-road vehicles have been overlooked since this equipment tends to be small in number and their use is generally...

Guerra, Sergio

2012-12-31T23:59:59.000Z

116

Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review  

Science Journals Connector (OSTI)

Abstract The remediation of carbon dioxide emitted into the atmosphere has become the topic of the day due to the enormous contribution of CO2 to the devastating global warming. The Boudouard reaction, in which solid carbon (char) reacts with CO2 to produce carbon monoxide (CO2 (g)+C(s)?CO (g)), is a straightforward route for the CO2 emission mitigation. Through this reaction, the CO2 coming from variety of combustion plants, including exhaust/flue gas and synthesis gas, can be upgraded to the fuel gas, CO. This work presents a review on the CO2 gasification of char, from coal, biomass, municipal solid wastes, sewage sludge or any co-utilized blend of them, to produce CO through the Boudouard reaction. An outline of the most effective parameters on the char gasification rate is presented. The parameters which affect the char reactivity are reviewed as those related to the char and its structural features (surface area and porosity, active sites, mineral content, structural evolution of char during gasification, pyrolysis condition and carbon source) and operation parameters (use of catalyst, gasification temperature, gasification pressure and CO2 partial pressure, char particle size and gasification heat source). The kinetics of the char gasification reaction is studied and several theoretical or semi-empirical kinetic models used to interpret the reaction rate data and calculation of kinetic parameters, specifically activation energy, are reviewed and discussed.

Pooya Lahijani; Zainal Alimuddin Zainal; Maedeh Mohammadi; Abdul Rahman Mohamed

2015-01-01T23:59:59.000Z

117

CO2 emission and firm heterogeneity: a study of metals and metal-based industries in India  

Science Journals Connector (OSTI)

Industrial energy efficiency has emerged as one of the key issues in India. The increasing demand for energy that leads to growing challenge of climate change has resulted major issues. It is obvious that high-energy intensity leads to high carbon intensity of the economy. This paper is an attempt to estimate the firm level CO2 emissions for the metals and metal-based industries in Indian manufacturing. Calculation of firm level emissions is carried out following IPCC reference approach methodology of carbon dioxide emission from fuel combustion. We tried to find out the inter-firm differences of CO2 emission in the metals and metal-based industries. Data for this study is collated from the CMIE PROWESS online database from 2000-2008, IEA energy statistics and IPCC conversion factors for each of the fuel types. This study found size, age, energy intensity and technology import intensity as the major determinants of CO2 emission intensity of Indian metal and metal-based firms. In addition capital and labour intensity of the firms are also related to the firms' emission intensity.

Santosh Kumar Sahu; K. Narayanan

2013-01-01T23:59:59.000Z

118

Novel Electrochemical CO2 Removal Technology For Combustion of Fossil-Fuels  

SciTech Connect (OSTI)

Electrochemical gas separation concepts are often neglected when discussing options to manage CO2 emissions. Electrochemical approaches are selective and do not require periodic regeneration. This paper will review prior work on electrochemical CO2 separation and compare the parasitic energy penalties of this approach to more conventional approaches of capturing CO2 from flue gas streams. A new concept to reduce the electrochemical parasitic energy penalties will be introduced and a preliminary analysis of the concept will be discussed. Relative to a conventional monoethanolamine (MEA) solvent approach, electrochemical CO2 capture does require less energy on a per-mole-of-CO2 basis. However, there are trade-offs since an electrochemical pumping approach requires electrical energy, instead of lower grade thermal energy. Although there are several issues with electrochemical CO2 capture, efforts to reduce parasitic losses of CO2 separation may need to consider such novel alternatives.

Douglas L. Straub; Maria Salazar-Villalpando

2008-07-14T23:59:59.000Z

119

Technological Potential for CO2 Emission Reductions of Passenger Cars  

Science Journals Connector (OSTI)

Figure 17.1 shows the estimated development of energy demand from car fuel consumption between 2010 and 2050. Car fuel consumption is projected to increase until ... until 2050 in EU27. The share of alternative f...

Michael Krail; Wolfgang Schade

2011-01-01T23:59:59.000Z

120

The nexus of electricity consumption, economic growth and CO2 emissions in the BRICS countries  

Science Journals Connector (OSTI)

Abstract This study reexamines the causal link between electricity consumption, economic growth and CO2 emissions in the BRICS countries (i.e., Brazil, Russia, India, China, and South Africa) for the period 19902010, using panel causality analysis, accounting for dependency and heterogeneity across countries. Regarding the electricityGDP nexus, the empirical results support evidence on the feedback hypothesis for Russia and the conservation hypothesis for South Africa. However, a neutrality hypothesis holds for Brazil, India and China, indicating neither electricity consumption nor economic growth is sensitive to each other in these three countries. Regarding the GDPCO2 emissions nexus, a feedback hypothesis for Russia, a one-way Granger causality running from GDP to CO2 emissions in South Africa and reverse relationship from CO2 emissions to GDP in Brazil is found. There is no evidence of Granger causality between GDP and CO2 emissions in India and China. Furthermore, electricity consumption is found to Granger cause CO2 emissions in India, while there is no Granger causality between electricity consumption and CO2 emissions in Brazil, Russia, China and South Africa. Therefore, the differing results for the BRICS countries imply that policies cannot be uniformly implemented as they will have different effects in each of the BRICS countries under study.

Wendy N. Cowan; Tsangyao Chang; Roula Inglesi-Lotz; Rangan Gupta

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Life cycle assessment of CO2 emissions from wind power plants: Methodology and case studies  

Science Journals Connector (OSTI)

Wind energy plays an increasingly important role in the worlds electricity market with rapid growth projected in the future. In order to evaluate the potential for wind energy to mitigate the effects of climate change by reducing CO2 intensity of the energy sector, this study developed a new direct and simple method for estimating CO2 emissions per kWh produced during the life cycle of four representative wind power plants (three in developed countries and one in China). The life cycle analysis focuses on the wind power plant as the basic functional object instead of a single wind turbine. Our results show that present-day wind power plants have a lifetime emission intensity of 5.08.2gCO2/kWh electricity, a range significantly lower than estimates in previous studies. Our estimate suggests that wind is currently the most desirable renewable energy in terms of minimizing CO2 emissions per kWh of produced electricity. The production phase contributes the most to overall CO2 emissions, while recycling after decommission could reduce emissions by nearly half, representing an advantage of wind when compared with other energy generation technologies such as nuclear. Compared with offshore wind plants, onshore plants have lower CO2 emissions per kWh electricity and require less transmission infrastructure. Analysis of a case in China indicates that a large amount of CO2 emissions could be saved in the transport phase in large countries by using shorter alternative routes of transportation. As the worlds fastest growing market for wind power, China could potentially save 780Mtons of CO2 emissions annually by 2030 with its revised wind development target. However, there is still ample room for even more rapid development of wind energy in China, accompanied by significant opportunities for reducing overall CO2 emissions.

Yuxuan Wang; Tianye Sun

2012-01-01T23:59:59.000Z

122

Mitigating CO2 emissions by adjusting the power generation mix in Taiwan  

Science Journals Connector (OSTI)

In this paper, we employ a multi-objective programming model to estimate the power generation mix trade-off between generation costs and CO2 emissions in Taiwan. Eight policy scenarios are simulated and compared to the reference and base cases. The empirical results show that, for the electricity sector, CO2 emissions in 2010 could be set at 120% of the 1990 level, by way of promoting cogeneration and gas-fired generation capacity. The estimated per unit mitigation cost of CO2 emission would be US$358/ton. The policy implications are discussed and limitation of this study is also presented.

George J.Y. Hsu; Tser-Yieth Chen

2005-01-01T23:59:59.000Z

123

NETL: IEP – Oxy-Combustion CO2 Emissions Control - Oxygen-Based PC Boiler  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

– Oxy-Combustion CO2 Emissions Control – Oxy-Combustion CO2 Emissions Control Oxygen-Based PC Boiler Project No.: FC26-04NT42207 & FC26-03NT41736 Spatial Comparison of an Air-Fired Furnace versus an Oxygen-Fired Furnace. Spatial Comparison of an Air-Fired Furnace versus an Oxygen-Fired Furnace. Foster Wheeler North America Corporation will conduct to two projects to improve carbon dioxide (CO2) capture technology by developing a conceptual pulverized coal-fired boiler system design using oxygen as the combustion medium. Using oxygen instead of air produces a flue gas with a high CO2 concentration, which will facilitate CO2 capture for subsequent sequestration. The first project will develop modeling simulations that will lead to a conceptual design that addresses costs, performance, and emissions, and

124

Estimates of Global, Regional, and National Annual CO2 Emissions from  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 (1995) 0 (1995) (click above to download the data!) Estimates of Global, Regional, and Naitonal Annual CO2 Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring: 1950-1992 NDP-030/R6 Cover T. A. Boden G. Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee R. J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska Environmental Sciences Division Publication No. 4473 Date Published: December 1995 Prepared for the Environmental Sciences Division Office of Biological and Environmental Research Budget Activity Number KP 05 02 00 0 Prepared by the Carbon Dioxide Information Analysis Center World Data Center-A for Atmospheric Trace Gases OAK RIDGE NATIONAL LABORATORY

125

CO2 Utilization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CO2 CO2 Utilization CO2 Utilization Carbon dioxide (CO2) use and reuse efforts focus on the conversion of CO2 to useable products and fuels that will reduce CO2 emissions in areas where geologic storage may not be an optimal solution. These include: Enhanced Oil/Gas Recovery - Injecting CO2 into depleting oil or gas bearing fields to maximize the amount of CO2 that could be stored as well as maximize hydrocarbon production. CO2 as Feedstock - Use CO2 as a feedstock to produce chemicals (including fuels and polymers) and find applications for the end products. Non-Geologic Storage of CO2 - Use CO2 from an effluent stream to immobilize the CO2 permanently by producing stable solid material that are either useful products with economic value or a low cost produced material.

126

Global and regional drivers of accelerating CO2 emissions  

Science Journals Connector (OSTI)

...Humans, Climate, and the Natural World , eds Field CB Raupach...Humans, Climate, and the Natural World , eds Field CB Raupach...Humans, Climate, and the Natural World , eds Field CB Raupach...liquid fuels; and ( c ) gas fuels. Data source...Austria, Belgium, Cyprus, Czech Republic...

Michael R. Raupach; Gregg Marland; Philippe Ciais; Corinne Le Qur; Josep G. Canadell; Gernot Klepper; Christopher B. Field

2007-01-01T23:59:59.000Z

127

Global and regional drivers of accelerating CO2 emissions  

Science Journals Connector (OSTI)

...Climate, and the Natural World , eds Field...Climate, and the Natural World , eds Field CB...Climate, and the Natural World , eds Field CB Raupach...billions of constant-price 2000 U.S. dollars...fuels; and ( c ) gas fuels. Data source...Republic, Ecuador, Egypt...

Michael R. Raupach; Gregg Marland; Philippe Ciais; Corinne Le Qur; Josep G. Canadell; Gernot Klepper; Christopher B. Field

2007-01-01T23:59:59.000Z

128

Global and regional drivers of accelerating CO2 emissions  

Science Journals Connector (OSTI)

...annual time-series data on national...from fossil fuel combustion and industrial processes...national-level combustion of solid, liquid...oxidation of nonfuel hydrocarbons; and fuel from...renewables, mainly as heat from biomass...is evident in two data sets (Materials...

Michael R. Raupach; Gregg Marland; Philippe Ciais; Corinne Le Qur; Josep G. Canadell; Gernot Klepper; Christopher B. Field

2007-01-01T23:59:59.000Z

129

Research Projects to Convert Captured CO2 Emissions to Useful Products |  

Broader source: Energy.gov (indexed) [DOE]

Projects to Convert Captured CO2 Emissions to Useful Projects to Convert Captured CO2 Emissions to Useful Products Research Projects to Convert Captured CO2 Emissions to Useful Products July 6, 2010 - 1:00pm Addthis Washington, DC - Research to help find ways of converting into useful products CO2 captured from emissions of power plants and industrial facilities will be conducted by six projects announced today by the U.S. Department of Energy (DOE). The projects are located in North Carolina, New Jersey, Massachusetts, Rhode Island, Georgia, and Quebec, Canada (through collaboration with a company based in Lexington, Ky.) and have a total value of approximately $5.9 million over two-to-three years, with $4.4 million of DOE funding and $1.5 million of non-Federal cost sharing. The work will be managed by the

130

Diesel Passenger Car Technology for Low Emissions and CO2 Compliance  

Broader source: Energy.gov [DOE]

Cost effective reduction of legislated emissions (including CO2) is a major issue. NOx control must not be a limiting factor to the long term success of Diesel engines.

131

Dynamics of Implementation of Mitigating Measures to Reduce CO2 Emissions from Commercial Aviation  

E-Print Network [OSTI]

Increasing demand for air transportation and growing environmental concerns motivate the need to implement measures to reduce CO2 emissions from aviation. Case studies of historical changes in the aviation industry have ...

Kar, Rahul

2010-07-13T23:59:59.000Z

132

Absolute vs. Intensity Limits for CO2 Emission Control: Performance Under Uncertainty  

E-Print Network [OSTI]

We elucidate the differences between absolute and intensity-based limits of CO2 emission when there is uncertainty about the future. We demonstrate that the two limits are identical under certainty, and rigorously establish ...

Sue Wing, Ian.

133

Implications of CO2 emissions trading for short-run electricity market outcomes in northwest Europe  

Science Journals Connector (OSTI)

We examine the short-run implications of CO2 trading for power production, prices, emissions, and generator profits in northwest Europe in 2005. Simulation results from a transmission-constrained oligopoly model ...

Yihsu Chen; Jos Sijm; Benjamin F. Hobbs; Wietze Lise

2008-12-01T23:59:59.000Z

134

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model  

E-Print Network [OSTI]

Long-term effects of anthropogenic CO2 emissions simulated with a complex earth system model Uwe earth system model con- sisting of an atmospheric general circulation model, an ocean general

Winguth, Arne

135

12 Absolute versus Intensity Limits for CO2 Emission  

E-Print Network [OSTI]

as a component of cli- mate policy in the UK Emissions Trading Scheme (UK DEFRA 2001),2 and in 2001 the Bush

136

NETL: IEP – Post-Combustion CO2 Emissions Control - Coal Direct Chemical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Oxy-Combustion CO2 Emissions Control - Oxy-Combustion CO2 Emissions Control Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO2 Capture Project No.: DE-NT0005289 Ohio State chemical looping metal carrier. Ohio State chemical looping metal carrier. The Ohio State University Research Foundation will further develop coal direct chemical looping (CDCL) technology. CDCL uses a patented iron oxide-based composite oxygen carrier and can be retrofit to existing coal-fired power plants. The development of the CDCL system will be conducted through experimental testing under bench- and sub-pilot scales. Related Papers and Publications: Coal Direct Chemical Looping Retrofit to Pulverized Coal Power Plants for In-Situ CO2 Capture [PDF-2.43MB] (July 2013) Presented by Samuel Bayham of the Ohio State University Research Foundation at the 2013 NETL CO2 Capture Technology Meeting.

137

NETL: IEP – Post-Combustion CO2 Emissions Control - Metal Monolithic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP – Post-Combustion CO2 Emissions Control IEP – Post-Combustion CO2 Emissions Control Metal Monolithic Amine-Grafted Zeolites for CO2 Capture Project No.: FC26-07NT43086 CLICK ON IMAGE TO ENLARGE CO2 capture unit with metal monolithic amine-grafted zeolites. The University of Akron is investigating a new sorbent for carbon dioxide (CO2) capture that involves the novel integration of metallic monolith structures coated with amine-grafted zeolites. This sorbent would eliminate the use of corrosive liquid amine and decrease the energy required for sorbent regeneration. The metal monoliths consist of straight channels: one row of channels coated with amine-grated zeolite and one used for heat transfer media for either cooling for adsorption or heating for regeneration. In combination with the innovative applications of metal monoliths as an

138

Commodity Price Interaction: CO2 Allowances, Fuel Sources and Electricity  

Science Journals Connector (OSTI)

This work anlyses the relationship between the returns for carbon, electricity and fossil fuel price (coal, oil and natural gas), ... in carbon are not strongly reflected in electricity prices. Also, market power...

Mara Madaleno; Carlos Pinho; Cludia Ribeiro

2014-01-01T23:59:59.000Z

139

Peak CO2? China's Emissions Trajectories to 2050  

E-Print Network [OSTI]

demand, bunker fuel (heavy oil) demand will continue to risea gasoline exporter, as demand for other oil products is notgasoline demand by 100 million tonnes of oil equivalent, but

Zhou, Nan

2012-01-01T23:59:59.000Z

140

ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions  

E-Print Network [OSTI]

ORIGINAL PAPER Short-term effect of tillage intensity on N2O and CO2 emissions Pascal Boeckx negative to positive. We studied the short-term effect of tillage intensity on N2O and CO2 emissions. We site, an intermediately aerated Luvisol in Belgium, were similar. Nitrous oxide and CO2 emissions were

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Potential Energy Savings and CO2 Emissions Reduction of China's Cement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Potential Energy Savings and CO2 Emissions Reduction of China's Cement Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry Title Potential Energy Savings and CO2 Emissions Reduction of China's Cement Industry Publication Type Report Year of Publication 2012 Authors Ke, Jing, Nina Zheng, David Fridley, Lynn K. Price, and Nan Zhou Date Published 06/2012 Publisher Lawrence Berkeley National Laboratory Keywords cement industry, china energy, china energy group, emission reduction, energy analysis and environmental impacts department, energy efficiency, industrial energy efficiency, Low Emission & Efficient Industry, policy studies Abstract This study analyzes current energy and carbon dioxide (CO2) emission trends in China's cement industryas the basis for modeling different levels of cement production and rates of efficiency improvement andcarbon reduction in 2011-2030. Three cement output projections are developed based on analyses ofhistorical production and physical and macroeconomic drivers. For each of these three productionprojections, energy savings and CO2 emission reduction potentials are estimated in a best practicescenario and two continuous improvement scenarios relative to a frozen scenario. The results reveal thepotential for cumulative final energy savings of 27.1 to 37.5 exajoules and energy-related directemission reductions of 3.2 to 4.4 gigatonnes in 2011-2030 under the best practice scenarios. Thecontinuous improvement scenarios produce cumulative final energy savings of 6.0 to 18.9 exajoules andreduce CO2 emissions by 1.0 to 2.4 gigatonnes. This analysis highlights that increasing energy efficiencyis the most important policy measure for reducing the cement industry's energy and emissions intensity,given the current state of the industry and the unlikelihood of significant carbon capture and storagebefore 2030. In addition, policies to reduce total cement production offer the most direct way ofreducing total energy consumption and CO2 emissions.

142

Consumption-based accounting of CO2 emissions  

Science Journals Connector (OSTI)

...obtained through exports of machinery (134...Mt), and large exports of intermediate...emissions imported to China are dominated by...plastics, along with petroleum products make up...products represent more exports from India than...emissions embodied in imports and exports of the...

Steven J. Davis; Ken Caldeira

2010-01-01T23:59:59.000Z

143

Effect of Operating Conditions on SO2 and NOx Emissions in Oxy-Fuel Mini-CFB Combustion Tests  

Science Journals Connector (OSTI)

Anthropogenic CO2 production is caused primarily by fossil fuel combustion. In consequence, it is increasingly necessary to find ways to reduce these emissions when fossil fuel is used. CO2 capture and storage (C...

L. Jia; Y. Tan; E. J. Anthony

2010-01-01T23:59:59.000Z

144

The dynamic links between CO2 emissions, economic growth and coal consumption in China and India  

Science Journals Connector (OSTI)

In this study, we employ recent and robust estimation techniques of cointegration to provide more conclusive evidence on the nexus of CO2 emissions, economic growth and coal consumption in China and India. Furthermore, the causal relationships among the variables are further examined using the Granger causality test. Our empirical results suggest that the variables are cointegrated in the case of China but not India. In other words, there is a long-run relationship between CO2 emissions, economic growth and coal consumption in China. Granger causality test for China reveal a strong evidence of uni-directional causality running from economic growth to CO2 emissions. Moreover, there is a bi-directional causality between economic growth and coal consumption as well as CO2 emissions and coal consumption in the short and long run. In the case of India, only a short-run causality is detected. Causality between economic growth and CO2 emissions as well as CO2 emissions and coal consumption are bi-directional. Nonetheless, there is only a uni-directional Granger causality running from economic growth to coal consumption in India. The implications of the results are further discussed.

V.G.R. Chandran Govindaraju; Chor Foon Tang

2013-01-01T23:59:59.000Z

145

Biofuels from Bacteria, Electricity, and CO2: Biofuels from CO2 Using Ammonia or Iron-Oxidizing Bacteria in Reverse Microbial Fuel Cells  

SciTech Connect (OSTI)

Electrofuels Project: Electrofuels Project: Columbia University is using carbon dioxide (CO2) from ambient air, ammoniaan abundant and affordable chemical, and a bacteria called N. europaea to produce liquid fuel. The Columbia University team is feeding the ammonia and CO2 into an engineered tank where the bacteria live. The bacteria capture the energy from ammonia and then use that energy to convert CO2 into a liquid fuel. When the bacteria use up all the ammonia, renewable electricity can regenerate it and pump it back into the systemcreating a continuous fuel-creation cycle. In addition, Columbia University is also working with the bacteria A. ferrooxidans to capture and use energy from ferrous iron to produce liquid fuels from CO2.

None

2010-07-01T23:59:59.000Z

146

An exergy based approach to determine production cost and CO2 allocation for petroleum derived fuels  

Science Journals Connector (OSTI)

Abstract The renewable and non-renewable exergy and CO2 costs of petroleum derived fuels produced in Brazil are evaluated using exergoeconomy to rationally distribute the exergy costs and the CO2 emitted in processes with more than one product. An iterative procedure is used to take into account the cyclic interactions of the processed fuels. The renewable and non-renewable exergy costs together with the CO2 cost provide a reasonable way to compare different fuels and can be used to assess an enormous quantity of processes that make use of petroleum derived products. The system considers Brazilian typical processes and distances: offshore oil and gas production, transportation by shuttle tankers and pipelines, and refining. It was observed that the renewable exergy cost contribution in the total exergy cost of petroleum derived fuels is negligible. On average, the refining process is responsible, for 85% of the total unit exergy cost. Total unit exergy costs of gasoline, liquefied petroleum gas, natural gas and fuel oil were found to be: 1.081MJ/MJ, 1.074MJ/MJ, 1.064MJ/MJ, 1.05MJ/MJ, respectively. The hydrotreatment process increases diesel cost from 1.038MJ/MJ to 1.11MJ/MJ in order to decrease its sulphur content. The CO2 cost reflects the extent of processing as well as the C/H ratio of the used fuel. Hence, coke followed by hydrotreated diesel have the largest CO2 cost among the fuels, 91gCO2/MJ and 79gCO2/MJ, respectively.

J.A.M. Silva; D. Flrez-Orrego; S. Oliveira Jr.

2014-01-01T23:59:59.000Z

147

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld  

E-Print Network [OSTI]

Fuels from Water, CO2, and Solar Energy Prof. Aldo Steinfeld Department of Mechanical and Process fuels make use of concentrated solar radiation as the energy source of high-temperature process heat Engineering, ETH Zurich, Switzerland and Solar Technology Laboratory, Paul Scherrer Institute, Switzerland

Ponce, V. Miguel

148

Modelling and forecasting fossil fuels, CO2 and electricity prices and their volatilities  

Science Journals Connector (OSTI)

In the current uncertain context that affects both the world economy and the energy sector, with the rapid increase in the prices of oil and gas and the very unstable political situation that affects some of the largest raw materials producers, there is a need for developing efficient and powerful quantitative tools that allow to model and forecast fossil fuel prices, CO2 emission allowances prices as well as electricity prices. This will improve decision making for all the agents involved in energy issues. Although there are papers focused on modelling fossil fuel prices, CO2 prices and electricity prices, the literature is scarce on attempts to consider all of them together. This paper focuses on both building a multivariate model for the aforementioned prices and comparing its results with those of univariate ones, in terms of prediction accuracy (univariate and multivariate models are compared for a large span of days, all in the first 4 months in 2011) as well as extracting common features in the volatilities of the prices of all these relevant magnitudes. The common features in volatility are extracted by means of a conditionally heteroskedastic dynamic factor model which allows to solve the curse of dimensionality problem that commonly arises when estimating multivariate GARCH models. Additionally, the common volatility factors obtained are useful for improving the forecasting intervals and have a nice economical interpretation. Besides, the results obtained and methodology proposed can be useful as a starting point for risk management or portfolio optimization under uncertainty in the current context of energy markets.

Carolina Garca-Martos; Julio Rodrguez; Mara Jess Snchez

2013-01-01T23:59:59.000Z

149

Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation  

Science Journals Connector (OSTI)

Abstract In the 11th Five-Year Plan (FYP) (20052010), the Chinese Government initiated a series of energy-saving and emission reduction policies in many key fields in response to environmental pollution and climate change. This paper quantitatively evaluates the performance of energy conservation and CO2 emission reduction in this period, the impact of these policies and potentials, by integrating the contributions of energy conversion efficiency and energy utilization efficiency improvement, industrial restructuring, fuel mix shift and renewable energy development in a unified framework, as a first attempt to introduce energy conversion efficiency improvement into a decomposition approach. Comprehensive and specific policies are summarized as a policy list to be investigated. The results show that energy intensity and conversion efficiency effects were mainly responsible for driving down energy consumption, by 637.4Mtce and 85.4Mtce respectively, and they reduced CO2 emissions by 1345.3Mt and 243.8Mt respectively due to a significant improvement in the 11th FYP period. Most of the contributions made by the conversion efficiency effect (94%) come from thermal power generation, and the emission coefficient effect reduced CO2 emissions by 17.4Mt through developing renewable energy. Economic growth is still the biggest driver of energy consumption and increasing emissions, while industrial restructuring and fuel mix shift effects contributed relatively little. Developing renewable energy and promoting economic restructuring to limit the increase of energy-intensive sectors are still the main challenges and the next policy focus to achieve the targets for energy saving and carbon emission reduction in the 12th Five-Year Plan.

Jin-Hua Xu; Ying Fan; Song-Min Yu

2014-01-01T23:59:59.000Z

150

NETL: IEP - Post-Combustion CO2 Emissions Control - Bench-Scale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP – Post-Combustion CO2 Emissions Control Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO2 Capture Project No.: DE-FE0004360 The University of Illinois at Urbana-Champaign will evaluate the Hot Carbonate Absorption Process (Hot-CAP) process with crystallization-enabled high pressure stripping. The Hot-CAP is an absorption-based, post-combustion CO2 technology that uses a carbonate salt (K2CO3 or Na2CO3) as a solvent. The process integrates a high temperature (70-80°C) CO2 absorption column, a slurry-based high pressure (up to 40atm) CO2 stripping column, a crystallization unit to separate bicarbonate and recover the carbonate solvent, and a reclaimer to recover CaSO4 as the byproduct of the SO2 removal.

151

Cost of energy saving and CO2 emissions reduction in Chinas iron and steel sector  

Science Journals Connector (OSTI)

Abstract This paper estimated the cost curve of energy saving and CO2 emissions reduction in Chinas iron and steel sector. Forty-one energy saving technologies which are widely used or popularized are selected, their investments, operation costs, energy savings and CO2 abatement are collected and the data in 2010 are taken as a baseline. Then energy conservation supply curve and CO2 conservation supply curve under two different discount rates are calculated in the paper. These 41 technologies result in a saving contribution of 4.63GJ/t and a CO2 abatement contribution of 443.21kg/t. Cost-effectiveness of technologies was analyzed based on the fuel price and an estimated CO2 price. When comparing the result with the promoted technologies during the 12th five-year-plan, we found that some promoted technologies are not cost-effective in current situation. Three scenarios are set through changing the diffusion rate of technologies and the share of BOF and EAF, based on this energy saving potentials of technologies in 2020 and 2030 are forecasted. At the same time, we compared the change of the CSC depending on the year and the energy saving potentials in three scenarios of 2020 and 2030, respectively.

Yuan Li; Lei Zhu

2014-01-01T23:59:59.000Z

152

Decarbonization and the time-delay between peak CO2 emissions and concentrations  

E-Print Network [OSTI]

Carbon-dioxide (CO2) is the main contributor to anthropogenic global warming, and the timing of its peak concentration in the atmosphere is likely to govern the timing of maximum radiative forcing. While dynamics of atmospheric CO2 is governed by multiple time-constants, we idealize this by a single time-constant to consider some of the factors describing the time-delay between peaks in CO2 emissions and concentrations. This time-delay can be understood as the time required to bring CO2 emissions down from its peak to a small value, and is governed by the rate of decarbonizaton of economic activity. This decarbonization rate affects how rapidly emissions decline after having achieved their peak, and a rapid decline in emissions is essential for limiting peak radiative forcing. Long-term mitigation goals for CO2 should therefore consider not only the timing of peak emissions, but also the rate of decarbonization. We discuss implications for mitigation of the fact that the emissions peak corresponds to small bu...

Seshadri, Ashwin K

2015-01-01T23:59:59.000Z

153

Co-optimising CO2 storage and enhanced recovery in gas and gas condensate reservoirs.  

E-Print Network [OSTI]

??Burning fossil fuels supply energy and releases carbon dioxide (CO2). Carbon capture and storage (CCS) can reduce CO2 emissions. However, CCS is an expensive process. (more)

Tan, Jo Ann

2012-01-01T23:59:59.000Z

154

Energy intensities and CO2 emissions in Catalonia: a SAM analysis  

Science Journals Connector (OSTI)

In this paper, we estimate sectoral energy intensities and CO2 emissions for the Catalonian economy. In order to evaluate energy intensities, we use the SAM (Social Accounting Matrix) multiplier analysis applied to a SAM of the economy. CO2 emissions are estimated by means of the Leontief input-output submodel of the SAM, together with a table of coefficients of emissions per unit of monetary expenditures. This new methodology allows us to dispense with energy input-output tables for the base period. Our results are of the same order of magnitude as others obtained by physical measurement methods. We also simulate how changes in demand and energy energy efficiency parameters may affect CO2 emissions for the economy.

Antonio Manresa; Ferran Sancho

2004-01-01T23:59:59.000Z

155

NETL: IEP – Post-Combustion CO2 Emissions Control - Development of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Oxy-Combustion CO2 Emissions Control - Oxy-Combustion CO2 Emissions Control Development of Oxygen-Fired Circulating Fluidized Bed Boilers for Greenhouse Gas Control Project No.: FC26-04NT42205 & FC26-01NT41146 CLICK ON IMAGE TO ENLARGE Alstom's Multi-Use Test Facility (MTF). Alstom Power Inc. will conduct two projects using a circulating fluidized bed (CFB) combustor for economic evaluations of the recovery of carbon dioxide (CO2). The projects will involve preparation of the facility and test equipment, conducting the comprehensive pilot-scale testing and analysis, and application of test results in re-evaluation and refinement of commercial oxygen-fired CFB designs. The project goal is to determine if CO2 can be recovered at an avoided cost of no more than $10 per ton of carbon avoided, using a CFB combustor that burns coal with a mixture of

156

Fuel Consumption and Emissions  

Science Journals Connector (OSTI)

Calculating fuel consumption and emissions is a typical offline analysis ... simulations or real trajectory data) and the engine speed (as obtained from gear-shift schemes ... as input and is parameterized by veh...

Martin Treiber; Arne Kesting

2013-01-01T23:59:59.000Z

157

Future CO2 Emissions and Climate Change from Existing Energy Infrastructure  

Science Journals Connector (OSTI)

...comparability of per capita commitments in...persist: The per capita commitment in...only 23 t CO 2 per person means that...emissions per unit GDP in both China...emissions from non-energy sources. Global...satisfying growing demand for energy without...

Steven J. Davis; Ken Caldeira; H. Damon Matthews

2010-09-10T23:59:59.000Z

158

Towards Zero Emissions CO2-Reduction in Mediterranean Social Housing  

E-Print Network [OSTI]

ESL-IC-08-10-47 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 ABSTRACT An in-depth study of the construction, use and deconstruction of a 60 apartment social housing..., and associated emissions. The necessary data were ESL-IC-08-10-47 Proceedings of the Eighth International Conference for Enhanced Building Operations, Berlin, Germany, October 20-22, 2008 mainly extracted from the data bases of the Catalan Technology Institute...

Sabate, J.; Peters, C.; Cuchi, A.; Lopez, F.; Sagrera, A.; Wadel, G.; Vidal, J.; Cantos, S.

159

Low emissions diesel fuel  

DOE Patents [OSTI]

A method and matter of composition for controlling NO.sub.x emissions from existing diesel engines. The method is achieved by adding a small amount of material to the diesel fuel to decrease the amount of NO.sub.x produced during combustion. Specifically, small amounts, less than about 1%, of urea or a triazine compound (methylol melamines) are added to diesel fuel. Because urea and triazine compounds are generally insoluble in diesel fuel, microemulsion technology is used to suspend or dissolve the urea or triazine compound in the diesel fuel. A typical fuel formulation includes 5% t-butyl alcohol, 4.5% water, 0.5% urea or triazine compound, 9% oleic acid, and 1% ethanolamine. The subject invention provides improved emissions in heavy diesel engines without the need for major modifications.

Compere, Alicia L. (Knoxville, TN); Griffith, William L. (Oak Ridge, TN); Dorsey, George F. (Farragut, TN); West, Brian H. (Kingston, TN)

1998-01-01T23:59:59.000Z

160

CO2 emission reduction from natural gas power stations using a precipitating solvent absorption process  

Science Journals Connector (OSTI)

Abstract There has been a rapid increase in the use of natural gas for power generation based on gas turbine technology which elevates the importance of carbon dioxide (CO2) capture technology to reduce CO2 emissions from gas turbine based power stations. The low content of CO2 in the gas turbine exhaust results in low rates of CO2 absorption and larger absorption equipment when compared to studies done on coal fired power stations. Furthermore the high oxygen (O2) content in the exhaust gas adversely affects the solvent stability, particularly for the traditional amine based solvents. This paper describes how exhaust gas recirculation (EGR) along with CO2CRC's low cost UNO MK 3 precipitating potassium carbonate (K2CO3) process can overcome the challenges of CO2 capture from gas turbine power stations. To further bring down the energy requirements of the capture process, heat integration of the UNO MK 3 process with power generation process is carried out. An economic analysis of the various retrofit options is performed. The current study shows that in the case of retrofitting the UNO MK 3 process to a natural gas combined cycle (NGCC), the use of EGR can reduce the energy penalty of CO2 capture by 15%, whilst a reduction of up to 25% can be achieved with the heat integration strategies described. Significantly the study shows that converting an existing open cycle gas turbine (OCGT) to a combined cycle with steam generation along with retrofitting CO2 capture presents a different steam cycle design for the maximum power output from the combined cycle with CO2 capture. Such a conversion actually produces more power and offers an alternative low emission retrofit pathway for gas fired power. Cost analysis shows that inclusion of the UNO MK 3 CO2 capture process with EGR to an existing NGCC is expected to increase the cost of electricity (COE) by 20%. However, retrofit/repowering of an underutilised or peaking OCGT station with the inclusion of CO2 capture can reduce the COE as well as produce low emission power. This is achieved by increasing the load factor and incorporating a purpose built steam generation cycle.

Jai Kant Pandit; Trent Harkin; Clare Anderson; Minh Ho; Dianne Wiley; Barry Hooper

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

State-Level Emission Estimates State-Level Emission Estimates Estimates of Annual Fossil-Fuel CO2 Emitted for Each State in the U.S.A. and the District of Columbia for Each Year from 1960 through 2001 graphics Graphics data Data (ASCII comma-delimited) Investigators T.J. Blasing and Gregg Marland Carbon Dioxide Information Analysis Center, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6335, U.S.A. Christine Broniak Department of Agricultural & Resource Economics, Oregon State University, Corvallis, Oregon 97331-3601 DOI 10.3334/CDIAC/00003 Period of Record 1960-2001 Methods Consumption data for coal, petroleum, and natural gas are multiplied by their respective thermal conversion factors, which are in units of heat energy per unit of fuel consumed (i.e., per cubic foot, barrel, or ton), to

162

Subtask 2.6 - Assessment of Alternative Fuels on CO2 Production  

SciTech Connect (OSTI)

Many coal-based electric generating units use alternative fuels, and this effort assessed the impact of alternative fuels on CO{sub 2} production and other emissions and also assessed the potential impact of changes in emission regulations under the Clean Air Act (CAA) for facilities utilizing alternative fuels that may be categorized as wastes. Information was assembled from publicly available U.S. Department of Energy Energy Information Administration databases that included alternative fuel use for 2004 and 2005. Alternative fuel types were categorized along with information on usage by coal-based electric, number of facilities utilizing each fuel type, and the heating value of solid, liquid, and gaseous alternative fuels. The sulfur dioxide, nitrogen oxide, and carbon dioxide emissions associated with alternative fuels and primary fuels were also evaluated. Carbon dioxide emissions are also associated with the transport of all fuels. A calculation of carbon dioxide emissions associated with the transport of biomass-based fuels that are typically accessed on a regional basis was made. A review of CAA emission regulations for coal-based electric generating facilities from Section 112 (1) and Section 129 (2) for solid waste incinerators was performed with consideration for a potential regulatory change from Section 112 (1) regulation to Section 129 (2). Increased emission controls would be expected to be required if coal-based electric generating facilities using alternative fuels would be recategorized under CAA Section 129 (2) for solid waste incinerators, and if this change were made, it is anticipated that coal-fired electric generating facilities might reduce the use of alternative fuels. Conclusions included information on the use profile for alternative fuels and the impacts to emissions as well as the impact of potential application of emission regulations for solid waste incinerators to electric generating facilities using alternative fuels.

Debra Pflughoeft-Hassett; Darren Naasz

2009-06-16T23:59:59.000Z

163

NETL: IEP – Post-Combustion CO2 Emissions Control - Microporous Metal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP – Post-Combustion CO2 Emissions Control IEP – Post-Combustion CO2 Emissions Control Microporous Metal Organic Frameworks Project No.: FC26-07NT43092 Examples of several MOFs under investigation Examples of several MOFs under investigation UOP LLC is conducting research for separating carbon dioxide (CO2) using novel microporous metal organic frameworks (MOFs). In the first project, NT42121, UOP partnered with the University of Michigan and Northwestern University to evaluate MOFs in both pre-combustion and post-combustion applications. In the second project, NT43092, UOP is collaborating with Vanderbilt University and the University of Edinburgh, as well as the University of Michigan and Northwestern University, in a more focused effort on MOFs in post-combustion applications. MOFs are an extraordinary

164

NETL: IEP - Post-Combustion CO2 Emissions Control - Low Cost Sorbent for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Low Cost Sorbent for Capturing CO2 Emissions Generated by Existing Coal-Fired Power Plants Project No.: DE-NT0005497 TDA sorbent test equipment TDA sorbent test equipment. TDA Research Inc. will produce and evaluate a low-cost solid sorbent developed in prior laboratory testing. The process uses an alkalized alumina adsorbent to capture carbon dioxide (CO2) at intermediate temperature and near ambient pressure. The physical adsorbent is regenerated with low-pressure steam. Although the regeneration is primarily by concentration swing, the adsorption of steam on the sorbent during regeneration also provides approximately 8°C to 10°C of temperature swing, further enhancing the regeneration rate. The sorbent is transferred between two moving bed reactors. Cycling results in gas

165

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Reversible Ionic Liquids as Double-Action Solvents for Efficient CO2 Capture Project No.: DE-NT0005287 In this project, the Georgia Tech Research Corporation is using totally novel chemistryto engender the dramatic changes needed for widespread implementation of CO2 capture in a both environmentally benign and economical process. Current methods of CO2 post-combustion recovery from coal-fired power plants focus on such techniques as absorption in aqueous ethanolamine scrubbers - and this is now a mature technology unlikely to achieve a quantum change in either capacity or cost. The objective of this project is to develop a novel class of solvents for post-combustion recovery of CO2 from fossil fuel-fired power plants which will achieve a substantial increase in CO2 carrying capacity with a concomitant plummet in cost. The project team is a combination of chemical engineers and chemists with extensive experience in working with industrial partners to formulate novel solvents and to develop processes that are both environmentally benign and economically viable. Further, the team has already developed solvents called "reversible ionic liquids," essentially "smart" molecules which change properties abruptly in response to some stimulus, and these have quickly found a plethora of applications.

166

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: Implications for inversion analyses  

E-Print Network [OSTI]

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2 carbon emissions. We used TransCom3 annual mean simulations from three transport models to evaluate carbon emission and oxidation processes in deriving inversion estimates of CO2 surface fluxes. Citation

Krakauer, Nir Y.

167

Monitoring CO2 Emissions in Tree-Kill Areas near the  

E-Print Network [OSTI]

Monitoring CO2 Emissions in Tree-Kill Areas near the Resurgent Dome at Long Valley Caldera-5038 #12;COVER Dead trees and thermal ground at Basalt Canyon, Long Valley Caldera, California. (USGS the Resurgent Dome at Long Valley Caldera, California By Deborah Bergfeld and William C. Evans Scientific

168

The energy and CO2 emissions impact of renewable energy development in China*  

E-Print Network [OSTI]

to provide a solid foundation for the public and private decisions needed to mitigate and adapt targets and subsidies make renewable electricity economically viable in the short term. Cumulative CO2 electricity leads to increases in other sectors, offsetting emissions reductions. The expansion of renewables

169

Carbon dioxide emission reduction using molten carbonate fuel cell systems  

Science Journals Connector (OSTI)

Abstract The contribution of the molten carbonate fuel cell system (MCFCs) to carbon dioxide (CO2) emission reduction in power application is analyzed. \\{MCFCs\\} can separate and concentrate CO2 emitted from traditional thermal power plants (PPs) without reducing the plant's overall energy efficiency. \\{MCFCs\\} can also be used by itself as an effective CO2 separator or concentrator by managing the anode gas stream to increase the heat utilization of the system. The CO2 separated and concentrated by \\{MCFCs\\} is most effectively captured by condensation. \\{MCFCs\\} is currently used as a CO2 separator only to a limited extent due to its high cost and relatively small scale operation. However, \\{MCFCs\\} will substantially contribute to reduce CO2 emissions in power generation applications in the near future.

Jung-Ho Wee

2014-01-01T23:59:59.000Z

170

Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Fossil Fuel Power Innovative Fossil Fuel Power Plants with CO 2 Removal Technical Report EPRI Project Manager N. A. H. Holt EPRI * 3412 Hillview Avenue, Palo Alto, California 94304 * PO Box 10412, Palo Alto, California 94303 * USA 800.313.3774 * 650.855.2121 * askepri@epri.com * www.epri.com Evaluation of Innovative Fossil Fuel Power Plants with CO 2 Removal 1000316 Interim Report, December 2000 Cosponsors U. S. Department of Energy - Office of Fossil Energy 19901 Germantown Road Germantown, Maryland 20874 U.S. Department of Energy/NETL 626 Cochrans Mill Road PO Box 10940 Pittsburgh, Pennsylvania 15236-0940 DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH

171

Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 for the First National Conference on Carbon Sequestration, Washington D.C. May 14-17, 2001 US DoE-NETL Progress in Direct Experiments on the Ocean Disposal of Fossil Fuel CO 2 Peter G. Brewer (brpe@mbari.org; 831-626-6618) Monterey Bay Aquarium Research Institute 7700 Sandholdt Road Moss Landing CA 95039 Introduction. My laboratory has now been engaged in carrying out small scale controlled field experiments on the ocean sequestration of fossil fuel CO 2 for about five years, and the field has changed enormously in that time. We have gone from theoretical assessments to experimental results, and from cartoon sketches of imagined outcomes to high-resolution video images of experiments on the ocean floor shared around the world. It seems appropriate therefore to give a brief review, albeit one very much from a

172

Inventory of non-CO2 GHG and first estimates of emissions of New Gases in Russia  

Science Journals Connector (OSTI)

In the First (1995) and the Second (1998) Russian National Communications to the UNFCCC, estimates of CO2 and non-CO2 emissions for the 1990 and 1994 were presented. Total emissions of CH4 decreased from 557 Mt C...

A. O. Kokorin; A. I. Nakhutin

2000-01-01T23:59:59.000Z

173

Combining indicators of energy consumption and CO2 emissions: a cross-country comparison  

Science Journals Connector (OSTI)

When countries are compared in terms of their carbon emission intensities, carbon emissions are normally considered as a function of either energy consumption, GDP, population or any other suitable variable. These can be termed as partial indicators as they consider emissions as a function of only one variable. Simultaneous consideration of more variables affecting carbon emissions is relatively complex. In this paper, several variables are simultaneously considered in comparing carbon emissions of countries using a new mathematical programming methodology, called the Data Envelopment Analysis. We have illustrated the use of the methodology with four variables representing CO2 emissions, energy consumption and economic activity. The illustrative analysis shows that Luxembourg, Norway, Sudan, Switzerland and Tanzania have been considered the most efficient countries, followed by India and Nigeria. Central European countries such as Poland, Romania, the Czech Republic, and South Africa are the least efficient.

R. Ramanathan

2002-01-01T23:59:59.000Z

174

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network [OSTI]

Emissions from Alternative Fuel Lifecycles: Scoping theEMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THEACRONYMS and TERMS AF = alternative fuel AFL = alternative-

Delucchi, Mark

2005-01-01T23:59:59.000Z

175

Integrated Powertrain and Vehicle Technologies for Fuel Efficiency Improvement and CO2 Reduction  

Broader source: Energy.gov [DOE]

Meeting the most stringent emission standards in the world (EPA2002, EPA2007, EPA2010) required the strength of global organizations EPA2002 emission regulation was associated with a significant drop in engine thermal efficiency; DOE support of R&D program helped avoid further efficiency drop in 2007; EPA2010 will lead to simultaneous improvements in emissions and fuel efficiency for most manufacturers

176

NETL: IEP – Post-Combustion CO2 Emissions Control - Oxy-Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

IEP - Oxy-Combustion CO2 Emissions Control IEP - Oxy-Combustion CO2 Emissions Control Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications Project No.: DE-NT0005290 Alstom oxy-combustion test facility Alstom oxy-combustion test facility. Alstom will develop an oxyfuel firing system design specifically for retrofit to tangential-fired (T-fired) boilers and provide information to address the technical gaps for commercial boiler design. Several oxyfuel system design concepts, such as internal flue gas recirculation and various oxygen injection schemes, will be evaluated for cost-effectiveness in satisfying furnace design conditions in a T-fired boiler. The evaluation will use an array of tools, including Alstom's proprietary models and design codes, along with 3-D computational fluid dynamics modeling. A

177

The effect of natural gas supply on US renewable energy and CO2 emissions  

Science Journals Connector (OSTI)

Increased use of natural gas has been promoted as a means of decarbonizing the US power sector, because of superior generator efficiency and lower CO2 emissions per unit of electricity than coal. We model the effect of different gas supplies on the US power sector and greenhouse gas (GHG) emissions. Across a range of climate policies, we find that abundant natural gas decreases use of both coal and renewable energy technologies in the future. Without a climate policy, overall electricity use also increases as the gas supply increases. With reduced deployment of lower-carbon renewable energies and increased electricity consumption, the effect of higher gas supplies on GHG emissions is small: cumulative emissions 201355 in our high gas supply scenario are 2% less than in our low gas supply scenario, when there are no new climate policies and a methane leakage rate of 1.5% is assumed. Assuming leakage rates of 0 or 3% does not substantially alter this finding. In our results, only climate policies bring about a significant reduction in future CO2 emissions within the US electricity sector. Our results suggest that without strong limits on GHG emissions or policies that explicitly encourage renewable electricity, abundant natural gas may actually slow the process of decarbonization, primarily by delaying deployment of renewable energy technologies.

Christine Shearer; John Bistline; Mason Inman; Steven J Davis

2014-01-01T23:59:59.000Z

178

Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicle Retrofit Emissions Inspection Process to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on AddThis.com...

179

Tool for calculation of CO2 emissions from organisations | Open Energy  

Open Energy Info (EERE)

Tool for calculation of CO2 emissions from organisations Tool for calculation of CO2 emissions from organisations Jump to: navigation, search Tool Summary Name: Tool for calculation of CO2 emissions from organisations Agency/Company /Organization: United Kingdom Department of Environment Food and Rural Affairs (DEFRA) Sector: Energy Focus Area: Buildings, Energy Efficiency, Greenhouse Gas, Transportation Topics: Co-benefits assessment, GHG inventory Resource Type: Online calculator, Software/modeling tools User Interface: Spreadsheet Website: www.decc.gov.uk/assets/decc/Statistics/nationalindicators/ni185emissio Country: United Kingdom Northern Europe Coordinates: 55.378051°, -3.435973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.378051,"lon":-3.435973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

180

Rapid growth in CO2 emissions after the 2008-2009 global financial crisis  

SciTech Connect (OSTI)

Global carbon dioxide emissions from fossil-fuel combustion and cement production grew 5.9% in 2010, surpassed 9 Pg of carbon (Pg C) for the first time, and more than offset the 1.4% decrease in 2009. The impact of the 2008 2009 global financial crisis (GFC) on emissions has been short-lived owing to strong emissions growth in emerging economies, a return to emissions growth in developed economies, and an increase in the fossil-fuel intensity of the world economy.

Peters, Glen P. [Center for International Climate and Energy Research (CICERO), Oslo, Norway; Marland, Gregg [Appalachian State University; Le Quere, Corinne [University of East Anglia, Norwich, United Kingdom; Boden, Thomas A [ORNL; Canadell, Josep [CSIRO Marine and Atmospheric Research; Raupach, Michael [CSIRO Marine and Atmospheric Research

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Carbon Dioxide Recovery from Flue Gas using Carbon-Supported Amine Sorbents Project No.: FG02-04ER83885 SBIR Virtual Depiction of a Carbon-Supported Amine Sorbent Virtual Depiction of a Carbon-Supported Amine Sorbent Advanced Fuel Research, Inc. has completed a small business innovative research (SBIR) project that initiated development of a novel sorbent for the removal of carbon dioxide (CO2) from combustion flue gas. The primary goal of this project wa s to develop a process using a supported amine for CO2 capture that exhibits better system efficiency, lower cost, and less corrosion than current aqueous amine-based processes. The project was to demonstrate performance of carbon-supported amine sorbents under simulated flue gas conditions. Three tasks were undertaken:

182

Energy consumption and related CO2 emissions in five Latin American countries: Changes from 1990 to 2006 and perspectives  

Science Journals Connector (OSTI)

This study examines the primary energy consumption and energy-related CO2 emissions in Argentina, Brazil, Colombia, Mexico and Venezuela during the period 19902006. It also reviews important reforms in the energy sector of these countries as well as the promotion of energy efficiency (EE) and renewable energy sources (RES). Using a decomposition analysis, results indicate that even though significant reductions in energy intensity have been achieved in Colombia, Mexico and in a lesser extent in Brazil and Argentina, the reduction of CO2 emissions in these countries has not been significant due to an increased dependence on fossil fuels in their energy mix. Although the Latin American region has an important experience in the promotion of EE programs and renewable sources, the energy agenda of the examined countries focused mostly on the energy reforms during the analyzed period. The policy review suggests that further governmental support and strong public policies towards a more sustainable energy path are required to encourage a low carbon future in the region.

Claudia Sheinbaum; Belizza J. Ruz; Leticia Ozawa

2011-01-01T23:59:59.000Z

183

Greenhouse Gas Emissions from the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

Since greenhouse gases are a global concern, rather than a local concern as are some kinds of effluents, one must compare the entire lifecycle of nuclear power to alternative technologies for generating electricity. A recent critical analysis by Sovacool (2008) gives a clearer picture. "It should be noted that nuclear power is not directly emitting greenhouse gas emissions, but rather that lifecycle emissions occur through plant construction, operation, uranium mining and milling, and plant decommissioning." "[N]uclear energy is in no way 'carbon free' or 'emissions free,' even though it is much better (from purely a carbon-equivalent emissions standpoint) than coal, oil, and natural gas electricity generators, but worse than renewable and small scale distributed generators" (Sovacool 2008). According to Sovacool, at an estimated 66 g CO2 equivalent per kilowatt-hour (gCO2e/kWh), nuclear power emits 15 times less CO2 per unit electricity generated than unscrubbed coal generation (at 1050 gCO2e/kWh), but 7 times more than the best renewable, wind (at 9 gCO2e/kWh). The U.S. Nuclear Regulatory Commission (2009) has long recognized CO2 emissions in its regulations concerning the environmental impact of the nuclear fuel cycle. In Table S-3 of 10 CFR 51.51(b), NRC lists a 1000-MW(electric) nuclear plant as releasing as much CO2 as a 45-MW(e) coal plant. A large share of the carbon emissions from the nuclear fuel cycle is due to the energy consumption to enrich uranium by the gaseous diffusion process. A switch to either gas centrifugation or laser isotope separation would dramatically reduce the carbon emissions from the nuclear fuel cycle.

Strom, Daniel J.

2010-03-01T23:59:59.000Z

184

THE INCREASING CONCENTRATION OF ATMOSPHERIC CO2: HOW MUCH, WHEN, AND WHY?  

E-Print Network [OSTI]

consequence of the varying ratio of H to C is that different fuels have different rates of CO2 emissions per emissions when fuel consumption is expressed in energy units. Table 1: CO2 Emission Rates for Fossil community has achieved a broad consensus that: 1.) the atmospheric concentration of carbon dioxide (CO2

185

Joining semi-closed gas turbine cycle and tri-reforming: SCGT-TRIREF as a proposal for low CO2 emissions powerplants  

Science Journals Connector (OSTI)

Methane conversion to a rich H2 fuel by reforming reactions is a largely applied industrial process. Recently, it has been considered for applications combined to gas turbine powerplants, as a mean for (I) chemical recuperation (i.e. chemical looping CRGT) and (II) decarbonising the primary fuel and make the related power cycle a low CO2 releaser. The possibility of enhancing methane conversion by the addition of CO2 to the steam reactant flow (i.e. tri-reforming) has been assessed and showed interesting results. When dealing with gas turbines, the possibility of applying tri-reforming is related to the availability of some CO2 into the fluegas going to the reformer. This happens in semi-closed gas turbine cycles (SCGT), where the fluegas has a typical 1415% CO2 mass content. The possibility of joining CRGT and SCGT technologies to improve methane reforming and propose an innovative, low CO2 emissions gas turbine cycle was assessed here. One of the key issues of this joining is also the possibility of greatly reduce the external water consumption due to the reforming, as the SCGT is a water producer cycle. The SCGT-TRIREF cycle is an SCGT cycle where fuel tri-reforming is applied. The steam due to the reformer is generated by the vaporization of the condensed water coming out from the fluegas condensing heat exchanger, upstream the main compressor, where the exhausts are cooled down and partially recirculated. The heat due to the steam generation is recuperated from the turbine exhausts cooling. The reforming process is partially sustained by the heat recovered from the turbine exhausts (which generates superheated steam) and partially by the auto thermal reactions of methane with fresh air, coming from the compressor (i.e. partial combustion). The effect of CO2 on methane reforming (tri-reforming effect) increases with decreasing steam/methane ratio: at very low values, around 30% of methane is converted by reactions with CO2. At high values of steam/methane ratio, the steam reforming reactions are dominant and only a marginal fraction of methane is interested to tri-reforming. Under optimised conditions, which can be reached at relatively high pressure ratios (2530), the power cycle showed a potential efficiency around 46% and specific work at 550kJ/kg level. When the amine CO2 capture is applied, the specific CO2 emissions range between 45 and 55 g CO 2 / kW h .

Daniele Fiaschi; Andrea Baldini

2009-01-01T23:59:59.000Z

186

Environmental Impact Evaluation of Conventional Fossil Fuel Production (Oil and Natural Gas) and Enhanced Resource Recovery with Potential CO2 Sequestration  

Science Journals Connector (OSTI)

The first set of results presented were the inventory of air emissions (CO, CO2, CH4, SOx, NOx, NH3, Pb, Hg, etc.), wastewater-containing acids and sulfides, and solid wastes released because of both fossil fuel production and energy usage from the power plant. ... Gases of SO2 and NOx are reported to pollute the air because of conventional oil production activities,16 but these contributions, as displayed by cases I and II, are less compared to the accumulated impacts coming from the CO2 sequestration chain. ... (1)?McKee, B. Solutions for the 21st Century:? Zero Emissions Technology for Fossil Fuels; Technology Status Report, International Energy Agency, Committee for Energy Research Technology, OECD/IEA:? France, 2002. ...

Hsien H. Khoo; Reginald B. H. Tan

2006-07-26T23:59:59.000Z

187

Microsoft Word - CO2 Supplement.doc  

Gasoline and Diesel Fuel Update (EIA)

Understanding the Decline in Carbon Dioxide Understanding the Decline in Carbon Dioxide Emissions in 2009 1 EIA projects carbon dioxide (CO2) emissions from fossil fuels in 2009 to be 5.9 percent below the 2008 level in the Short-Term Energy Outlook, October 2009 (STEO) (Table 1). Projected coal CO2 emissions fall by 10.1 percent in 2009, primarily because of lower consumption for electricity generation. Coal accounts for 63 percent of the total decline in CO2 emissions from fossil fuels this year. Forecast lower natural gas and petroleum emissions this year make up 7 percent and 30 percent of the projected total decline in CO2 emissions from fossil fuels, respectively. Table 1. Short-Term Energy Outlook CO

188

CO2 EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EMISSION CALCULATIONS AND TRENDS EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6335 Robert J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska 99775-5900 ABSTRACT FEB 05 ZS3 OSTI The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- ACO5-840R21400. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so. for U.S. Government purposes." This paper describes the compilation, calculation, and availability of the most comprehensive CO2 emissions database currently available. The database offers global, regional, and national annual

189

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

As part of the state's 1997 electric utility restructuring legislation, Illinois established provisions for the disclosure of fuel mix and emissions data. All electric utilities and alternative...

190

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Oregon's 1999 electric utility restructuring legislation requires electricity companies and electric service suppliers to disclose details regarding their fuel mix and emissions of electric...

191

CO2 emissions related to the electricity consumption in the european primary aluminium production a comparison of electricity supply approaches  

Science Journals Connector (OSTI)

The objective of this study is to estimate the specific CO2 emissions related to the electricity consumption in the European primary aluminium production and ... compare different choices of system boundaries of ...

Matthias Koch; Jochen Harnisch

2002-09-01T23:59:59.000Z

192

Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Fossil Fuel CO2 Emissions » Gridded Estimates for Benchmark Years Geographic Patterns of Carbon Dioxide Emissions from Fossil-Fuel Burning, Hydraulic Cement Production, and Gas Flaring on a One Degree by One Degree Grid Cell Basis: 1950 to 1990 (NDP-058) data Data image ASCII Text Documentation PDF file PDF file Contributors R. J. Andres, G. Marland, I. Fung, and E. Matthews (contributors) DOI DOI: 10.3334/CDIAC/ffe.ndp058 This data package presents data sets recording 1° latitude by 1° longitude CO2 emissions in units of thousand metric tons of carbon per year from anthropogenic sources for 1950, 1960, 1970, 1980, and 1990. Detailed geographic information on CO2 emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions.

193

Quick Notes on CO2 Diagram and Energy Diagram For the ESRP 285 Website (Spring 2008)  

E-Print Network [OSTI]

(CO2) emissions are the largest source of greenhouse gas emissions, accounting for over 80Quick Notes on CO2 Diagram and Energy Diagram For the ESRP 285 Website (Spring 2008) Carbon dioxide% of the emissions in the USA (EIA 2003, p. 35). CO2 emissions arise from the combustion of carbon fuels

Ford, Andrew

194

Reduction of Emissions from a Syngas Flame Using Micromixing and Dilution with CO2  

Science Journals Connector (OSTI)

Hydrogen-rich syngas can be burned stably in the designed combustor, and each suite of nozzles forms a flame surface. ... The smaller dilution ratio and the higher fuel heating value means the fuel can be burned quickly after it leaves the nozzles, resulting in strong heat release in the frontal section of the burner. ... There are, however, gaps in the fundamental understanding of syngas combustion and emissions, as most previous research has focused on flames burning individual fuel components such as H2 and CH4, rather than syngas mixts. ...

Yongsheng Zhang; Tianming Yang; Xueqi Liu; Long Tian; Zhongguang Fu; Kai Zhang

2012-10-25T23:59:59.000Z

195

Energy taxes and subsidies: their implications for CO2 emissions and abatement costs  

Science Journals Connector (OSTI)

Energy markets are often distorted, with the result that price does not equal the marginal social cost of production. Subsidies encourage consumption of energy and impose welfare losses independent of those arising from global warming. Fossil fuels, especially oil, are already taxed in many countries. The superimposition of a carbon tax on existing taxes could greatly increase the welfare loss from taxation if such taxes do not reflect externalities or user costs. Moreover, existing taxes affect relative fuel prices and may raise emission levels. The removal of subsidies and the restructuring of taxes so that fuel prices are brought into line with marginal social costs could result in emission abatement and lower abatement costs.

Rosemary Clarke

1993-01-01T23:59:59.000Z

196

NETL: IEP – Post-Combustion CO2 Emissions Control - Near-Zero Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Near-Zero Emissions Oxy-Combustion Flue Gas Purification Near-Zero Emissions Oxy-Combustion Flue Gas Purification Project No.: DE-NT0005341 Praxair oxy-combustion test equipment Praxair oxy-combustion test equipment. Praxair Inc. will develop a near-zero emissions flue gas purification technology for existing coal-fired power plants retrofit with oxy-combustion technology. Emissions of sulfur dioxide (SO2) and mercury (Hg) will be reduced by at least 99 percent, and nitrogen oxide (NOx) emissions will be reduced by greater than 90 percent without the need for wet flue gas desulfurization and selective catalytic reduction (SCR). Two separate processes are proposed depending on the sulfur content of the coal. For high-sulfur coal, SO2 and NOx will be recovered as product sulfuric acid and nitric acid, respectively, and Hg will be recovered as

197

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

198

Vehicle Technologies Office: Fuel Efficiency and Emissions |...  

Broader source: Energy.gov (indexed) [DOE]

Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction Emissions Waste Heat Recovery Lightweighting Parasitic Loss Reduction Lubricants...

199

Alternative Fuels Data Center: Emissions Reduction Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Reduction Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Requirements Recognizing the impact of carbon-emitting fuels on climate change and to

200

Abstract--Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused by an increase  

E-Print Network [OSTI]

of this project is to provide the airport manager at major airports, such as Dulles International Airport of emissions offset. The case study of this project will be Washington Dulles International Airport (IAD Abstract-- Historic data shows an increase in carbon dioxide (CO2) emissions at airports caused

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nanofiber Based Carbon Capture Technology to Reduce the CO2 Emissions at GSU Campus PI: Mujibur Rahman Khan, Co-PI: Spencer Harp, Mechanical Engineering Department  

E-Print Network [OSTI]

+ Nanofiber Based Carbon Capture Technology to Reduce the CO2 Emissions at GSU Campus PI: Mujibur. · Installation and performance testing of filters at the CO2 emission sites (automobile catalytic converters), particularly carbon dioxide (CO2), generated from various sources within the GSU campus. Reduction of man

Hutcheon, James M.

202

Microsoft PowerPoint - ECUST Centered Cooperative research efforts to reduce CO2 emission.pptx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

research efforts research efforts d CO i i to reduce CO 2 emission Shan Shan- -Tung Tung Tu Tu East China University of Science and Technology East China University of Science and Technology sttu@ecust.edu.cn 30 30 th th of May, 2008 of May, 2008 P f Y Ji KTH d MdU (CCS) Prof. Yan Jinyue, KTH and MdU (CCS) Prof. Dahlquist Erik, MdU (BL Gasification) Prof Jin Hongguan CAS (Energy systems) Prof. Jin Hongguan, CAS (Energy systems) Prof. Liu Honglai, ECUST (Physic chemistry) Prof. Wang Fucheng, ECUST (Coal Gasification) g g, ( ) Prof. Ling Licheng, ECUST (Carbon materials) Profs. Yan Yongjie and Bao Jie, ECUST (Biomass) A/Prof. Yu Xinhai, ECUST (Biodiesel) China China- -Sweden Program Sweden Program Fundamental studies of thermophysical sciences

203

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

2 abatement using the calcium looping cycle. Energy Environ.the CO 2 captured by the calcium looping system, use of the16. Flow diagram of calcium-looping CO 2 capture and cement

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

204

Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission or Low Emission or Alternative Fuel Bus Acquisition Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Google Bookmark Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Delicious Rank Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Emission or Alternative Fuel Bus Acquisition Requirement on AddThis.com...

205

Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways  

Science Journals Connector (OSTI)

The carbon cycle is a crucial Earth system component affecting climate and atmospheric composition. The response of natural carbon uptake to CO2 and climate change will determine anthropogenic emissions compatible with a target CO2 pathway. For ...

Chris Jones; Eddy Robertson; Vivek Arora; Pierre Friedlingstein; Elena Shevliakova; Laurent Bopp; Victor Brovkin; Tomohiro Hajima; Etsushi Kato; Michio Kawamiya; Spencer Liddicoat; Keith Lindsay; Christian H. Reick; Caroline Roelandt; Joachim Segschneider; Jerry Tjiputra

2013-07-01T23:59:59.000Z

206

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network [OSTI]

worlds largest annual CO 2 emitter in 2007, China has set reduction targets for energy and carbon intensities

G. Fridley, David

2010-01-01T23:59:59.000Z

207

NETL: IEP – Oxy-Combustion CO2 Emissions Control - Pilot-Scale  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pilot-Scale Demonstration Of A Novel, Low-Cost Oxygen Supply Process And Its Integration With Oxy-Fuel Coal-Fired Boilers Pilot-Scale Demonstration Of A Novel, Low-Cost Oxygen Supply Process And Its Integration With Oxy-Fuel Coal-Fired Boilers Project No.: FC26-06NT42748 Schematic of the Ceramic Autothermal Recovery Process. Schematic of the Ceramic Autothermal Recovery Process. The Linde Group (formerly BOC Group, Inc.) will conduct pilot-scale testing of their Ceramic Autothermal Recovery (CAR) oxygen (O2) generation process integrated with a coal-fired combustor to produce a carbon dioxide (CO2) rich flue gas. The CAR process uses the O2 storage properties of perovskites to adsorb O2 from air in a fixed bed and then release the adsorbed O2 into a sweep gas, such as recycled flue gas, that can be sent to the furnace. As shown in the figure below, the process is made continuous by operating multiple beds in a cycle.

208

Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicles Lower Emissions in Columbus, Ohio on AddThis.com...

209

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

210

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

In 2001, Nevada enacted legislation requiring the states electric utilities to provide details regarding the fuel mix and emissions of electric generation to their customers. Utilities must...

211

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Iowa adopted regulations in 2003 that generally require rate-regulated electric utilities to disclose to customers the fuel mix and estimated emissions, in pounds per megawatt-hour (MWh), of...

212

Fuel Mix and Emissions Disclosure  

Broader source: Energy.gov [DOE]

Rhode Island requires all entities that sell electricity in the state to disclose details regarding the fuel mix and emissions of their electric generation to end-use customers. This information...

213

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on AddThis.com... More in this section...

214

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Test Requirement to someone by E-mail Emissions Test Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Test Requirement on AddThis.com... More in this section... Federal State Advanced Search

215

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle (AFV) Emissions Inspection Exemption to someone by E-mail Vehicle (AFV) Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Emissions Inspection Exemption on AddThis.com... More in this section...

216

Modeling Energy Flow in an Integrated Pollutant Removal (IPR) System with CO2 Capture Integrated with Oxy-fuel Combustion  

Science Journals Connector (OSTI)

Oxy-coal combustion is one of the technical solutions for mitigating CO2 in thermal power plants. ... Currently, more than 85% of the energy that drives modern economies comes from fossil fuels, and this has stimulated research and development into more sustainable alternative energy sources. ... Other species, such as SO2, various nitrogen compounds, HCl, and Hg, are also present in quantities dependent upon the fossil fuel composition and the amount of air that leaks into the boiler. ...

Sivaram Harendra; Danylo Oryshcyhn; Stephen Gerdemann; Thomas Ochs; John Clark

2012-10-13T23:59:59.000Z

217

NETL: IEP - Post-Combustion CO2 Emissions Control - Novel High Capacity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel High Capacity Oligomers for Low Cost CO2 Capture Novel High Capacity Oligomers for Low Cost CO2 Capture Project No.: DE-NT0005310 GE Global Research is using both computational and laboratory methods to identify and produce novel oligomeric solvents for the post-combustion capture of carbon dioxide (CO2). An oligomer is a polymer with relatively few structural units. Molecular and system modeling, advanced synthetic methods, and laboratory testing will be used to identify oligomeric solvents that have the potential for high CO2 capture capacity with corresponding low regeneration energy requirements. GE Global Test Equipment GE Global Test Equipment Related Papers and Publications: Aminosilicone Solvents for Low Cost CO2 Capture [PDF-2.0MB] (Sept 2010) Presentation given at the 2010 NETL CO2 Capture Technology Meeting

218

Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

Looping Technology Description: Amine scrubbing carboncarbon capture using absorption technologies Calera process CO 2 sequestration in concrete curing technology Carbonate looping

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

219

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network [OSTI]

75 Figure 60 Planned HVDC Projects inmine-mouth generation with HVDC by 2062 Mtce 4393 Mt CO 2intermittency. Figure 60 Planned HVDC Projects in China

G. Fridley, David

2010-01-01T23:59:59.000Z

220

Optical emission studies of nitrogen plasma generated by IR CO2 laser pulses  

Science Journals Connector (OSTI)

Large-scale plasma produced in nitrogen gas at room temperature and pressures ranging from 4 ? 103 to 1.2 ? 105 Pa by high-power laser-induced dielectric breakdown (LIDB) has been investigated. Time-integrated optical nitrogen gas spectra excited from a CO2 laser have been measured and analysed. The spectrum of the generated plasma is dominated by the emission of strong N+ and N and very weak N2+ atomic lines and molecular features of N+2(B2?+uX2?+g), N+2(D2?gA2?u), N2(C3?uB3?g) and very weak N2(B3?gA3?+u). The relative intensities of the 00 band heads in the N2(CB) and N+2(BX) systems are very weak as compared with the chemiluminescence spectrum of nitrogen formed in a glow discharge. An excitation temperature Texc = 21?000 1300 K was calculated by means of the relative intensity of ionized nitrogen atomic lines assuming local thermodynamic equilibrium. Optical breakdown threshold intensities in N2 at 9.621 m have been determined. The physical processes leading to the LIDB of nitrogen in the power density range 0.4 J ?2 have been analysed. From our experimental observations we can suggest that, although the first electrons must appear via multiphoton ionization or natural ionization, electron cascade is the main mechanism responsible for the LIDB in nitrogen.

J J Camacho; J M L Poyato; L Daz; M Santos

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Development of a Sorption Enhanced Steam Hydrogasification Process for In-situ Carbon Dioxide (CO2) Removal and Enhanced Synthetic Fuel Production  

E-Print Network [OSTI]

J. Different types of gasifiers and their integration withCO 2 in a pressurized-gasifier-based process. Energ Fuel.fluidized bed biomass steam gasifier-bed material and fuel

Liu, Zhongzhe

2013-01-01T23:59:59.000Z

222

Fuel Cell Technologies Overview  

Broader source: Energy.gov (indexed) [DOE]

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * 40 - 60% (electrical) * > 70% (electrical, hybrid fuel...

223

NETL: IEP - Post-Combustion CO2 Emissions Control - Development of Novel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of Novel Carbon Sorbents for CO2 Capture Development of Novel Carbon Sorbents for CO2 Capture Project No.: DE-NT0005578 SRI International will develop a novel, high-capacity, carbon-based carbon dioxide (CO2) sorbent with moderate thermal requirements for regeneration. In the proposed process, CO2 is absorbed in a bed of carbon sorbent pellets and desorbed in a separate reactor that regenerates the sorbent and cycles it back to the absorber. The flue gas stream is cooled in a direct contact cooler (DCC) to decrease its temperature to near ambient conditions. The cooled flue gas from the DCC passes through the sorbent contained in a moving bed reactor, where CO2 is removed by adsorption. The CO2-laden sorbent is transported to a second moving bed reactor, where it is indirectly heated by steam coils to desorb the CO2. Project objectives are to validate the performance of the carbon-based sorbent concept on a bench-scale system, to perform parametric experiments to determine optimum operating conditions, and to evaluate the technical and economic viability of the technology.

224

NETL: IEP - Post-Combustion CO2 Emissions Control - Evaluation of Solid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solid Sorbents as a Retrofit Technology for CO2 Capture Solid Sorbents as a Retrofit Technology for CO2 Capture Project No.: DE-FE0004343 ADA-ES Inc. is refining the conceptual design of a commercial solid sorbent-based, post-combustion CO2 capture technology through slipstream pilot testing and process modeling. A pilot unit (~1 MW) will be designed and constructed to demonstrate solid sorbent-based CO2 capture on actual flue gas. The pilot tests and process modeling will provide the information necessary to complete a techno-economic analysis of the technology. The design will be based on a 1 kW-scale transport reactor system built and demonstrated under an existing DOE/NETL CO2 capture project (Figure). There are several advantages solids offer over aqueous MEA. For example, solids have a working capacity over two times that of MEA, by weight, leading to lower regeneration energy attributable to less material to heat. The increased capacity, in conjunction with the lower heat capacity, results in a theoretical regeneration energy approximately half that of MEA, per kg of CO2. This indicates that solids can dramatically reduce the energy requirements for CO2 capture compared to aqueous systems. In addition, circulating less material in a solid-based system compared to aqueous MEA will likely lead to lower pressure drop, depending on the system configuration. Also, solids have the potential to be less corrosive than the solution used in aqueous MEA systems.

225

CO2?laser?induced deflagration of fuel/oxygen mixtures  

Science Journals Connector (OSTI)

Weakly focused pulsed?CO2?laser radiation has been examined as an ignition source for low?pressure (85100 Torr) near?stoichiometric fuel/oxygen mixtures containing the following fuels: ethylene methyl fluoride methanol ethanol dimethyl ether p?dioxane n?propyl nitrate and iso?propyl nitrate. The data analysis includes characterization of the spatially dependent ir absorption in the test cell calculation of appropriate medium temperatures from the absorbed laser energy and correlation of observed ignition delay times t ig with the calculated temperatures. Effects of hydrodynamic motion on the pressure density and temperature profiles of the irradiated samples were modeled using a computer code for two?dimensional wave propagation. Code predictions are in accordance with experimental pressure?time histories obtained using a piezoelectric transducer. Minimum ignition temperatures ranged from 590 K for the iso?propyl nitrate/O2 system to 1645 K for CH3F/O2. The observed functional relationship between t ig and temperature T was generally of the form ln?t ig =A/T+B where A and B are constants. This relationship follows the form predicted by thermal and degenerate chain ignition theories viz. ln?t ig =E act/ R T+constant where E act corresponds to an overall activation energy. Using this relation derived activation energies are 86 57 42 47 ?40 13 and 12 kcal/mole for the CH3F/O2 CH3OCH3/O2 CH3OH/O2 C2H5OH/O2 C4H8O2/O2 n?propyl nitrate/O2 and iso?propyl nitrate/O2 mixtures respectively. These results are in reasonable agreement with available data from shock?tube and hot air stream injection techniques. In contrast an anomalous threshold?like effect was observed for laser ignition of C2H4/O2. The applicability of ignition schemes of this type to time?resolved kinetic spectroscopic studies is briefly discussed.

Wayne M. Trott

1983-01-01T23:59:59.000Z

226

Study on a gas-steam combined cycle system with CO2 capture by integrating molten carbonate fuel cell  

Science Journals Connector (OSTI)

Abstract This paper studies a gas-steam combined cycle system with CO2 capture by integrating the MCFC (molten carbonate fuel cell). With the Aspen plus software, this paper builds the model of the overall MCFC-GT hybrid system with CO2 capture and analyzes the effects of the key parameters on the performances of the overall system. The result shows that compared with the gas-steam combined cycle system without CO2 capture, the efficiency of the new system with CO2 capture does not decrease obviously and keeps the same efficiency with the original gas steam combined cycle system when the carbon capture percentage is 45%. When the carbon capture percentage reaches up to 85%, the efficiency of the new system is about 54.96%, only 0.67 percent points lower than that of the original gas-steam combined cycle system. The results show that the new system has an obvious superiority of thermal performance. However, its technical economic performance needs be improved with the technical development of MCFC and ITM (oxygen ion transfer membrane). Achievements from this paper will provide the useful reference for CO2 capture with lower energy consumption from the traditional power generation system.

Liqiang Duan; Jingnan Zhu; Long Yue; Yongping Yang

2014-01-01T23:59:59.000Z

227

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends  

Science Journals Connector (OSTI)

Effects of Fuel Injection Timing on Combustion and Emission Characteristics of a Diesel Engine Fueled with Diesel?Propane Blends ... State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China, and College of Vehicle & Motive Power Engineering, Henan University of Science and Technology, Luoyang, 471003, China ... It is the third most widely used vehicle fuel behind the gasoline and diesel fuels.1 Diesel fuel has been widely used in internal combustion engines due to its high thermal efficiency and low CO2 emission. ...

Zhihao Ma; Zuohua Huang; Chongxiao Li; Xinbin Wang; Haiyan Miao

2007-03-07T23:59:59.000Z

228

Alternative Fuels Data Center: Ethanol Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol Vehicle Ethanol Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Ethanol Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Ethanol Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Vehicle Emissions on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Ethanol Vehicle Emissions When blended with gasoline for use as a vehicle fuel, ethanol can offer some emissions benefits over gasoline, depending on vehicle type, engine

229

Alternative Fuels Data Center: Biodiesel Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Biodiesel Vehicle Biodiesel Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Biodiesel Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Vehicle Emissions on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Biodiesel Vehicle Emissions When used as a vehicle fuel, biodiesel offers some tailpipe and considerable greenhouse gas (GHG) emissions benefits over conventional

230

NETL: IEP – Post-Combustion CO2 Emissions Control - Ionic Liquids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ionic Liquids Ionic Liquids Project No.: FC26-07NT43091 Model of CO2 absorption by an ionic liquid. Model of CO2 absorption by an IL. The model shows that the anions are controlling absorption in ILs. The green units represent anions and the grey units represent cations. The University of Notre Dame is conducting the Ionic Liquids: Breakthrough Absorption Technology for Post-Combustion CO2 Capture project (FC26-07NT43091), that builds on the work of its earlier project (FG26-04NT42122), to provide a comprehensive evaluation of the feasibility of using a novel class of compounds - ionic liquids (ILs) - for the capture of carbon dioxide (CO2) from the flue gas of coal-fired power plants. Initial efforts focused on "proof-of-concept" exploration, followed by a laboratory-/bench-scale effort. ILs include a broad category

231

NETL: IEP – Post-Combustion CO2 Emissions Control - Dry Regenerable  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Dry Regenerable Sorbents Dry Regenerable Sorbents Project No.: FC26-07NT43089 CLICK ON IMAGE TO ENLARGE Schematic of RTI’s Dry Carbonate Process Research Triangle Institute (RTI) International completed two projects, NT43089 and NT40923, to investigate the use of sodium carbonate (Na2CO3 or soda ash) as an inexpensive, dry, and regenerable sorbent for carbon dioxide (CO2) capture in the Dry Carbonate Process. In this process, Na2CO3 reacts with CO2 and water to form sodium bicarbonate at the temperature of the flue gas exhaust; the sorbent is then regenerated at modest temperatures (~120°C) to yield a concentrated stream of CO2 for sequestration or other use. The regenerated sorbent is recycled to the absorption step for subsequent CO2 capture. See schematic of RTI's Dry Carbonate Process.

232

Spatial Disaggregation of CO2 Emissions for the State of California  

E-Print Network [OSTI]

Acronyms ATC BTS CALEB CARB CEC CHP CO 2 EEA EIA EMFAC FHWANatural Gas Electricity & CHP Plants On-road vehiclesRail Marine NG: Refining Coal: CHP Coal: Cement P: Cement P:

de la Rue du Can, Stephane

2008-01-01T23:59:59.000Z

233

NETL: IEP - Post-Combustion CO2 Emissions Control - Membrane Process to  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Membrane Process to Capture CO2 from Power Plant Flue Gas Membrane Process to Capture CO2 from Power Plant Flue Gas Project No.: DE-NT0005312 CLICK ON IMAGE TO ENLARGE MTR membrane test skid. Membrane Technology and Research (MTR) Inc. is preparing commercial-scale membrane modules that meet low pressure-drop and high packing-density performance targets using carbon dioxide (CO2) capture membranes developed under FC26-07NT43085, a previous MTR project with the U.S. Department of Energy's National Energy Technology Laboratory. These thin-film membranes utilize Pebax® polyether-polyamide copolymers. The new research will involve the construction of an approximately 1 ton of CO2 per day capacity membrane skid for use in a six-month pilot-scale field test using a slip-stream of flue gas from a coal-fired power plant.

234

Spatial Disaggregation of CO2 Emissions for the State of California  

E-Print Network [OSTI]

TULARE TUOLUMNE VENTURA YOLO YUBA Refining ElectricityTULARE TUOLUMNE VENTURA YOLO YUBA Refining ElectricityTULARE TUOLUMNE VENTURA YOLO YUBA State average 9.8 tCO2 per

de la Rue du Can, Stephane

2008-01-01T23:59:59.000Z

235

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Fuel Cells Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per...

236

Alternative Fuels Data Center: Emissions Reduction Credits  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Reduction Emissions Reduction Credits to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Credits on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Credits on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Credits on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Credits on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Credits on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Credits on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Credits Any state mobile emissions reduction credits program must allow credits for emissions reductions achieved by converting a vehicle to operate on an

237

Can alternative car fuels reduce greenhouse gas emissions?  

Science Journals Connector (OSTI)

There has been controversy in the published literature regarding the scope for alternative fuels to reduce greenhouse gas emissions in passenger transport. This paper aims to resolve this question in an Australian context, and, where possible, to calculate the costs of emission reductions. Fossil-fuel-based alternatives give either marginal or uncertain reductions. Ethanol from sugar cane, the most promising biomass fuel, has high costs per tonne of CO2 reduction, and, when other trace gases are considered, shows no definite improvement over petrol. Electric vehicles, if deployed today in Australia, would exacerbate greenhouse warming. Only if an alternative new energy source such as wind power generated 15% or more of total electricity would emission reductions occur compared to equivalent petrol-fuelled cars.

P. Moriarty

1994-01-01T23:59:59.000Z

238

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

= 29.27 MJ) and IPCC carbon emissions coefficients are used5 Identify carbon emission coefficients and calculate total35 Appendix: Overview of the China Carbon Emissions

Fridley, David

2011-01-01T23:59:59.000Z

239

CO2 Europipe | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » CO2 Europipe Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CO2 Europipe Focus Area: Clean Fossil Energy Topics: Potentials & Scenarios Website: www.co2europipe.eu/ Equivalent URI: cleanenergysolutions.org/content/co2-europipe Language: English Policies: "Deployment Programs,Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Project Development Regulations: "Emissions Mitigation Scheme,Emissions Standards,Enabling Legislation" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

240

Operation of Marine Diesel Engines on Biogenic Fuels: Modification of Emissions and Resulting Climate Effects  

Science Journals Connector (OSTI)

The modification of emissions of climate-sensitive exhaust compounds such as CO2, NOx, hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference ...

Andreas Petzold; Peter Lauer; Uwe Fritsche; Jan Hasselbach; Michael Lichtenstern; Hans Schlager; Fritz Fleischer

2011-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Propane Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicles » Propane Vehicles » Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Emissions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Emissions

242

A Novel CO2 Separation System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Novel CO Novel CO 2 Separation System Robert J. Copeland (copeland@tda.com 303-940-2323) Gokhan Alptekin (galtpekin@tda.com 303 940-2349) Mike Cesario (czar@tda.com 303-940-2336) Yevgenia Gershanovich (ygershan@tda.com 303-940-2346) TDA Research, Inc. 12345 West 52 nd Avenue Wheat Ridge, Colorado 80033-1917 Project Summary NEED Concern over global climate change has led to a need to reduce CO 2 emissions from power plants. Unfortunately, current CO 2 capture processes reduce the efficiency with which fuel can be converted to electricity by 9-37%, and CO 2 capture costs can exceed $70 per tonne 1 of CO 2 (Herzog, Drake, and Adams 1997). OBJECTIVE To generate electricity with little reduction in conversion efficiency while emitting little or no CO 2 to the atmosphere, TDA Research, Inc. (TDA) is developing a Novel CO

243

Alternative Fuels Data Center: Emissions Control Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Control Emissions Control Requirement to someone by E-mail Share Alternative Fuels Data Center: Emissions Control Requirement on Facebook Tweet about Alternative Fuels Data Center: Emissions Control Requirement on Twitter Bookmark Alternative Fuels Data Center: Emissions Control Requirement on Google Bookmark Alternative Fuels Data Center: Emissions Control Requirement on Delicious Rank Alternative Fuels Data Center: Emissions Control Requirement on Digg Find More places to share Alternative Fuels Data Center: Emissions Control Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Control Requirement Heavy-duty diesel vehicles used to perform federally funded state public works contracts must be powered by engines with Level 3 emissions control

244

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Cement Industry  

E-Print Network [OSTI]

vary widely depending on electricity costs. ASDs for clinkerof Conserved Electricity (CCE) and Cost of Conserved Fuel (Analysis for the Cost-Effective Electricity and Fuel Saving

Morrow III, William R.

2014-01-01T23:59:59.000Z

245

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

to estimate military marine vessels fuel consumption. ThisIPCC as fuels sold to and consumed by air or marine vessels

Fridley, David

2011-01-01T23:59:59.000Z

246

Dynamic control of a stand-alone syngas production system with near-zero CO2 emissions  

Science Journals Connector (OSTI)

Abstract A series combination of steam methane reforming (SMR) and dry reforming of methane (DRM) is developed as a stand-alone syngas production (SASP) system in which the heat recovery mechanism can fully replace the hot/cold utilities. The optimum operating conditions can be found by using the optimization algorithm to maximize the syngas yield subject to near-zero CO2 emission constraints. Since the syngas yield and CO2 emissions are strongly affected by process interactions and unknown perturbations, the process control method is utilized to stabilize the SASP system. Through the Hammerstein model identification, nonlinear inversion and model-based control methods, it is verified that the multi-loop nonlinear control strategy can ensure satisfactory control performance.

Wei Wu; Hsiao-Tung Yang; Jenn-Jiang Hwang

2015-01-01T23:59:59.000Z

247

An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions  

Science Journals Connector (OSTI)

Abstract Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as working properly and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO2 emission increase and \\{NOx\\} emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO2 emission and the decrease of \\{NOx\\} emission.

Jerzy Kowalski

2014-01-01T23:59:59.000Z

248

NETL: IEP - Post-Combustion CO2 Emissions Control - Slipstream Testing of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing of a Membrane CO2 Capture Process for Existing Coal-Fired Power Plant Testing of a Membrane CO2 Capture Process for Existing Coal-Fired Power Plant Project No.: DE-FE0005795 MTRs high-permeance membranes MTRs high-permeance membranes Membrane Technology and Research (MTR) is scaling-up their high-permeance membrane and process design. MTR will design and construct a 1 MW equivalent capacity membrane skid. This proof-of-concept system will undergo a six-month slipstream field test at a coal-fired power plant. Field test data and membrane performance data obtained at the National Carbon Capture Center will allow a thorough techno-economic evaluation of the membrane capture process and will clarify the relative potential of the approach. The MTR capture process has two significant advantages over the previous application of membranes to CO2 removal from flue gas. First, the newly

249

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Capture by Absorption with Potassium Carbonate Carbon Dioxide Capture by Absorption with Potassium Carbonate Project No.: FC26-02NT41440 Pilot Plant at the University of Texas Pilot Plant at the University of Texas The University of Texas at Austin investigated an improved process for CO2 capture by alkanolamine absorption that uses an alternative solvent, aqueous potassium carbonate (K2CO3) promoted by piperazine (PZ). If successful, this process would use less energy for CO2 capture than the conventional monoethanolamine (MEA) scrubbing process. An improved capture system would mean a relative improvement in overall power plant efficiency. The project developed models to predict the performance of absorption/stripping of CO2 using the improved solvent and perform a pilot plant study to validate the process models and define the range of feasible

250

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

military marine vessels fuel consumption. This will likelyfuel consumption for international bunkers Chinese vessels

Fridley, David

2011-01-01T23:59:59.000Z

251

The European carbon balance. Part 1: fossil fuel emissions  

SciTech Connect (OSTI)

We analyzed the magnitude, the trends and the uncertainties of fossil-fuel CO2 emissions in the European Union 25 member states (hereafter EU-25), based on emission inventories from energy-use statistics. The stability of emissions during the past decade at EU-25 scale masks decreasing trends in some regions, offset by increasing trends elsewhere. In the recent 4 years, the new Eastern EU-25 member states have experienced an increase in emissions, reversing after a decade-long decreasing trend. Mediterranean and Nordic countries have also experienced a strong acceleration in emissions. In Germany, France and United Kingdom, the stability of emissions is due to the decrease in the industry sector, offset by an increase in the transportation sector. When four different inventories models are compared, we show that the between-models uncertainty is as large as 19% of the mean for EU-25, and even bigger for individual countries. Accurate accounting for fossil CO2 emissions depends on a clear understanding of system boundaries, i.e. emitting activities included in the accounting. We found that the largest source of errors between inventories is the use of distinct systems boundaries (e.g. counting or not bunker fuels, cement manufacturing, nonenergy products). Once these inconsistencies are corrected, the between-models uncertainty can be reduced down to 7% at EU-25 scale. The uncertainty of emissions at smaller spatial scales than the country scale was analyzed by comparing two emission maps based upon distinct economic and demographic activities. A number of spatial and temporal biases have been found among the two maps, indicating a significant increase in uncertainties when increasing the resolution at scales finer than 200 km. At 100km resolution, for example, the uncertainty of regional emissions is estimated to be 60 gCm2 yr1, up to 50% of the mean. The uncertainty on regional fossil-fuel CO2 fluxes to the atmosphere could be reduced by making accurate 14C measurements in atmospheric CO2, and by combining them with transport models.

Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Paris, J. D. [Laboratoire des Sciences du Climat et de l'Environement, France; Peylin, Philippe [National Center for Scientific Research, Gif-sur-Yvette, France; Piao, S. L. [National Center for Scientific Research, Gif-sur-Yvette, France; River, L. [National Center for Scientific Research, Gif-sur-Yvette, France; Marland, Gregg [ORNL; Levin, I. [University of Heidelberg; Pregger, T. [Universitat Stuttgart; Scholz, Y. [Universitat Stuttgart; Friedrich, R. [Universitat Stuttgart; Schulze, E.-D. [Max Planck Institute for Biogeochemistry

2009-05-01T23:59:59.000Z

252

Alternative Fuels Data Center: Emissions Reductions Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Reductions Emissions Reductions Grants to someone by E-mail Share Alternative Fuels Data Center: Emissions Reductions Grants on Facebook Tweet about Alternative Fuels Data Center: Emissions Reductions Grants on Twitter Bookmark Alternative Fuels Data Center: Emissions Reductions Grants on Google Bookmark Alternative Fuels Data Center: Emissions Reductions Grants on Delicious Rank Alternative Fuels Data Center: Emissions Reductions Grants on Digg Find More places to share Alternative Fuels Data Center: Emissions Reductions Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reductions Grants The Carl Moyer Memorial Air Quality Standards Attainment Program (Program) provides incentives to cover the incremental cost of purchasing engines and

253

Fuel Chemistry Division Preprints 2001, 46(1), 217 CO2 ADSORPTION ON CARBONACEOUS SURFACES  

E-Print Network [OSTI]

on cellulose char. In order to compare the theoretical data of CO2 adsorption energy on carbon models, we have for Theoretical Chemistry, Dept. of Chemistry University of Utah, 315 South 1400 East, Room 2020 Salt Lake City the volumetric technique and it is compared to the theoretical prediction. Such comparison allows us to elucidate

Truong, Thanh N.

254

NETL: IEP - Post-Combustion CO2 Emissions Control - Evaluation of Solid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants Evaluation of Solid Sorbents as a Retrofit Technology for CO2 Capture from Coal-Fired Power Plants Project No.: DE-NT0005649 ADA-ES Sorbent Test Equipment. ADA-ES Sorbent Test Equipment. ADA-ES Inc. is developing and scaling-up a sorbent-based, post-combustion carbon dioxide (CO2 ) capture process. Investigators are evaluating the performance of sorbents from laboratory- to bench-scale. Various sorbents are being screened in a fixed-bed contactor in the laboratory on simulated flue gas, as well as in the field on actual flue gas. Bench-scale tests are being performed on slip-streams of simulated and actual flue gas with a moving-bed reactor large enough to treat flue gas containing nominally 1 tons of CO2 per day (~100 acfm). The criteria for optimal sorbents will

255

PASSIVE WIRELESS SURFACE ACOUSTIC WAVE SENSORS FOR MONITORING SEQUESTRATION SITES CO2 EMISSION  

SciTech Connect (OSTI)

University of Pittsburghs Transducer lab has teamed with the U.S. Department of Energys National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient CO2 measuring technologies for geological sequestration sites leakage monitoring. A passive wireless CO2 sensing system based on surface acoustic wave technology and carbon nanotube nanocomposite was developed. Surface acoustic wave device was studied to determine the optimum parameters. Delay line structure was adopted as basic sensor structure. CNT polymer nanocomposite was fabricated and tested under different temperature and strain condition for natural environment impact evaluation. Nanocomposite resistance increased for 5 times under pure strain, while the temperature dependence of resistance for CNT solely was -1375ppm/?. The overall effect of temperature on nanocomposite resistance was -1000ppm/?. The gas response of the nanocomposite was about 10% resistance increase under pure CO2. The sensor frequency change was around 300ppm for pure CO2. With paralyne packaging, the sensor frequency change from relative humidity of 0% to 100% at room temperature decreased from over 1000ppm to less than 100ppm. The lowest detection limit of the sensor is 1% gas concentration, with 36ppm frequency change. Wireless module was tested and showed over one foot transmission distance at preferred parallel orientation.

Wang, Yizhong; Chyu, Minking; Wang, Qing-Ming

2012-11-30T23:59:59.000Z

256

The Future Trajectory of US CO2 Emissions: The Role of State vs. Aggregate Information  

E-Print Network [OSTI]

drives down per capita energy use/carbon emissions. The ?nalreasons why per capita energy use and carbon emissions mayin per capita carbon emissions since the ?rst energy crisis.

Auffhammer, Maximilian; Steinhauser, Ralf

2006-01-01T23:59:59.000Z

257

The effect of anthropogenic emissions corrections on the seasonal cycle of atmospheric CO2  

SciTech Connect (OSTI)

A previous study (Erickson et al. 2008) approximated the monthly global emission estimates of anthropogenic CO{sub 2} by applying a 2-harmonic Fourier expansion with coefficients as a function of latitude to annual CO{sub 2} flux estimates derived from United States data (Blasing et al. 2005) that were extrapolated globally. These monthly anthropogenic CO{sub 2} flux estimates were used to model atmospheric concentrations using the NASA GEOS-4 data assimilation system. Local variability in the amplitude of the simulated CO{sub 2} seasonal cycle were found to be on the order of 2-6 ppmv. Here we used the same Fourier expansion to seasonally adjust the global annual fossil fuel CO{sub 2} emissions from the SRES A2 scenario. For a total of four simulations, both the annual and seasonalized fluxes were advected in two configurations of the NCAR Community Atmosphere Model (CAM) used in the Carbon-Land Model Intercomparison Project (C-LAMP). One configuration used the NCAR Community Land Model (CLM) coupled with the CASA (carbon only) biogeochemistry model and the other used CLM coupled with the CN (coupled carbon and nitrogen cycles) biogeochemistry model. All four simulations were forced with observed sea surface temperatures and sea ice concentrations from the Hadley Centre and a prescribed transient atmospheric CO{sub 2} concentration for the radiation and land forcing over the 20th century. The model results exhibit differences in the seasonal cycle of CO{sub 2} between the seasonally corrected and uncorrected simulations. Moreover, because of differing energy and water feedbacks between the atmosphere model and the two land biogeochemistry models, features of the CO{sub 2} seasonal cycle were different between these two model configurations. This study reinforces previous findings that suggest that regional near-surface atmospheric CO{sub 2} concentrations depend strongly on the natural sources and sinks of CO{sub 2}, but also on the strength of local anthropogenic CO{sub 2} emissions and geographic position. This work further attests to the need for remotely sensed CO{sub 2} observations from space.

Hoffman, Forrest M [ORNL] [ORNL; Erickson III, David J [ORNL] [ORNL; Blasing, T J [ORNL] [ORNL

2009-01-01T23:59:59.000Z

258

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

SciTech Connect (OSTI)

Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies to the energy climate crisis is the simultaneous use of multiple approaches based on available technologies (e.g., 16). Efficiency improvements (e.g., in building energy use), increased use of natural gas relative to coal, and increased development of renewables such as solar, wind, and geothermal, along with nuclear energy, are all available options that will reduce net CO{sub 2} emissions. While improvements in efficiency can be made rapidly and will pay for themselves, the slower pace of change and greater monetary costs associated with increased use of renewables and nuclear energy suggests an additional approach is needed to help bridge the time period between the present and a future when low-carbon energy is considered cheap enough to replace fossil fuels. Carbon dioxide capture and storage (CCS) is one such bridging technology (1). CCS has been the focus of an increasing amount of research over the last 15-20 years and is the subject of a comprehensive IPCC report that thoroughly covers the subject (1). CCS is currently being carried out in several countries around the world in conjunction with natural gas extraction (e.g., 2, 3) and enhanced oil recovery (17). Despite this progress, widespread deployment of CCS remains the subject of research and future plans rather than present action on the scale needed to mitigate emissions from the perspective of climate change. The reasons for delay in deploying CCS more widely are concerns about cost (18), regulatory and legal uncertainty (19), and potential environmental impacts (21). This chapter discusses the long-term (decadal) sustainability and environmental hazards associated with the geologic CO{sub 2} storage (GCS) component of large-scale CCS (e.g., 20). Discussion here barely touches on capture and transport of CO{sub 2} which will occur above ground and which are similar to existing engineering, chemical processing, and pipeline transport activities and are therefore easier to evaluate with respect to risk assessment and feasibility. The focus of this chapter is on the more uncertain part of CCS, namely geologic storage. The primary concern for sustainability of GCS is whether there is sufficient capacity in sedimentary basins worldwide to contain the large of amounts of CO{sub 2} needed to address climate change. But there is also a link between sustainability and environmental impacts. Specifically, if GCS is found to cause unacceptable impacts that are considered worse than its climate-change mitigation benefits, the approach will not be widely adopted. Hence, GCS has elements of sustainability insofar as capacity of the subsurface for CO{sub 2} is concerned, and also in terms of whether the associated environmental risks are acceptable or not to the public.

Oldenburg, C.M.

2011-04-01T23:59:59.000Z

259

The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines  

Science Journals Connector (OSTI)

Abstract As global energy demand rises, natural gas (NG) plays an important strategic role in energy supply. Natural gas is the cleanest fossil fuel that has been investigated extensively for use in spark-ignition (SI) and compression-ignition (CI) engines. This paper reviews the research on the effects of natural gas composition on combustion and emission characteristics of natural gas fueled internal combustion engines (ICEs) and reports the most achievements obtained by researchers in this field. It has been reported that the engine performance and emission are greatly affected by varying compositions of natural gas. The most important NG fuel property is the Wobbe number (WN). Generally, it was agreed by researchers that the fuels with higher hydrocarbons, higher WN, and higher energy content exhibited better fuel economy and carbon dioxide (CO2) emissions. Nitrogen oxides (NOx) emissions were also increased for gases with higher levels of higher WN, while total hydrocarbons (THCs), carbon monoxide (CO), showed some reductions for these gases. On the other hand, particulate matter (PM) emissions did not show any fuel effects. Moreover, adding of small fractions of higher alkanes, such as ethane and propane, significantly improved ignition qualities of natural gas engines. The results presented provide a good insight for researchers to pursue their future research on natural gas fueled ICEs.

Amir-Hasan Kakaee; Amin Paykani; Mostafa Ghajar

2014-01-01T23:59:59.000Z

260

A brief study into the impact University of Bath has had on CO2 emissions and the cost of ownership of passenger cars.  

E-Print Network [OSTI]

to demonstrate fuel economy improvements totalling 4% including: · 3% improvement due to the optimised use of oil needed to protect the engine at any particular time thereby saving energy, fuel and reducing CO2 in fuel economy.[4]. These improvements are now in production in very large volumes. The 2.2L Duratorq

Burton, Geoffrey R.

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NETL: IEP - Post-Combustion CO2 Emissions Control - Development and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process Project No.: DE-NT0005498 ISGS solvent cartoon. ISGS solvent cartoon. The Illinois State Geological Survey is developing an integrated vacuum carbonate absorption process (IVCAP) for post-combustion carbon dioxide (CO2) capture. This process employs potassium carbonate solution as a solvent that can be integrated with the power plant steam cycle by using low-quality steam. Researchers will confirm IVCAP process parameters through laboratory testing, identify an effective catalyst for accelerating CO2 absorption rates, and develop an additive for reducing regeneration energy. Related Papers and Publications: Development and Evaluation of a Novel Integrated Vacuum Carbonate Absorption Process [PDF-1.5MB] (July 2012)

262

NETL: IEP – Post-Combustion CO2 Emissions Control - Carbon Dioxide Capture  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Dioxide Capture from Large Point Sources Carbon Dioxide Capture from Large Point Sources Project No.: FG02-04ER83925 SBIR CLICK ON IMAGE TO ENLARGE Commercial hollow fiber membrane cartridge [6" (D) X 17" (L)] Compact Membrane Systems, Inc. developed and tested a carbon dioxide (CO2) removal system for flue gas streams from large point sources that offers improved mass transfer rates compared to conventional technologies. The project fabricated perfluorinated membranes on hydrophobic hollow fiber membrane contactors, demonstrated CO2 removal from a simulated flue gas mixture via amine absorption using the fabricated membranes, examine chemical compatibility of the membrane with amines, and demonstrate enhanced stability of the perfluoro-coated membranes. In addition, an economic analysis was performed to demonstrate that the perfluoro-coated

263

NETL: IEP – Oxy-Combustion CO2 Emissions Control - OTM-Based Oxycombustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OTM-Based Oxycombustion for CO2 Recovery OTM-Based Oxycombustion for CO2 Recovery Project No.: FC26-01NT41147 & FC26-07NT43088 Praxair Advanced Boiler Praxair Advanced Boiler Praxair, Inc. will conduct two projects to develop and demonstrate the integration of a novel, ceramic oxygen transport membrane (OTM) with the combustion process to enhance boiler efficiency. The economics of oxy-combustion processes are currently limited by the parasitic power required for oxygen (O2) production using cryogenic air separation units (ASU). OTMs can be integrated such that there is minimal need for air compression and the parasitic power consumption required for O2 production is reduced by 70 to 80 percent as compared to a cryogenic ASU. Praxair will design, construct, and operate a bench-scale OTM at the

264

Regional-Scale Estimation of Electric Power and Power Plant CO2 Emissions Using Defense Meteorological Satellite Program Operational Linescan System Nighttime Satellite Data  

Science Journals Connector (OSTI)

For estimation, the relationship between Defense Meteorological Satellite Program Operational Linescan System (DMSP/OLS) annual nighttime stable light product (NSL) for 2006 and statistical data on power generation, power consumption, and power plant CO2 emissions in 10 electric power supply regions of Japan was investigated. ... There are similar linear correlations of electricity consumption for lighting and total electricity consumption at the regional (e.g., state and province) level, but possibly not for CO2 emissions because of regional concentrations of electricity from renewable energy and nuclear power plants, which produce low CO2 emissions. ...

Husi Letu; Takashi Y. Nakajima; Fumihiko Nishio

2014-04-24T23:59:59.000Z

265

Fire emissions from C 3 and C 4 vegetation and their influence on interannual variability of atmospheric CO 2 and δ 13 CO 2  

E-Print Network [OSTI]

of methane from combustion and biomass burning, J. Geophys.2003), Domestic combustion of biomass fuels in developing1996), Fuel biomass and combustion factors associated with

2005-01-01T23:59:59.000Z

266

Biomass torrefaction and CO2 capture using mining wastes A new approach for reducing greenhouse gas emissions of co-firing plants  

E-Print Network [OSTI]

for an efficient biomass/coal co-firing could thus be further enhanced by curbing the overall process CO2 emissions as well as using ionic-liquid-impregnated torrefac- tion to increase birch wood constituents' torrefaction saturation, and carbon monoxide and methane concen- trations on mining residues CO2 uptake was studied

Devernal, Anne

267

Effects of Forest Management on Total Biomass Production and CO2 Emissions from use of Energy Biomass of Norway Spruce and Scots Pine  

Science Journals Connector (OSTI)

The aim of this study was to analyze the effects of forest management on the total biomass production (t ha-1a-1) and CO2 emissions (kg CO2 MWh-1) from use of energy biomass of Norway spruce and Scots pine grown ...

Johanna Routa; Seppo Kellomki; Harri Strandman

2012-09-01T23:59:59.000Z

268

Water Emissions from Fuel Cell Vehicles | Department of Energy  

Energy Savers [EERE]

Water Emissions from Fuel Cell Vehicles Water Emissions from Fuel Cell Vehicles Hydrogen fuel cell vehicles (FCVs) emit approximately the same amount of water per mile as vehicles...

269

Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels Fuel-Flexible, Low-Emissions Catalytic Combustor for Opportunity Fuels This fact sheet provides an overview of the...

270

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

emissions are allocated to that sector accordingly. Biogas.The majority of biogas consumed in China is from rural

Fridley, David

2011-01-01T23:59:59.000Z

271

Inventory of China's Energy-Related CO2 Emissions in 2008  

E-Print Network [OSTI]

Diesel Oil Fuel Oil LPG Refinery Gas Other PetroleumPipelines. All still gas/refinery gas in China is reportedlubricants petroleum coke refinery feedstock still gas/

Fridley, David

2011-01-01T23:59:59.000Z

272

Estimation of CO2 Emissions from China's Cement Production: Methodologies and Uncertainties  

E-Print Network [OSTI]

and the coal-dominated energy mix. We note that Chinasof final energy consumption and fuel mix of Chinas cement

Ke, Jing

2014-01-01T23:59:59.000Z

273

Observation of CH4 and other Non-CO2 Green House Gas Emissions from California  

SciTech Connect (OSTI)

In 2006, California passed the landmark assembly bill AB-32 to reduce California's emissions of greenhouse gases (GHGs) that contribute to global climate change. AB-32 commits California to reduce total GHG emissions to 1990 levels by 2020, a reduction of 25 percent from current levels. To verify that GHG emission reductions are actually taking place, it will be necessary to measure emissions. We describe atmospheric inverse model estimates of GHG emissions obtained from the California Greenhouse Gas Emissions Measurement (CALGEM) project. In collaboration with NOAA, we are measuring the dominant long-lived GHGs at two tall-towers in central California. Here, we present estimates of CH{sub 4} emissions obtained by statistical comparison of measured and predicted atmospheric mixing ratios. The predicted mixing ratios are calculated using spatially resolved a priori CH{sub 4} emissions and surface footprints, that provide a proportional relationship between the surface emissions and the mixing ratio signal at tower locations. The footprints are computed using the Weather Research and Forecast (WRF) coupled to the Stochastic Time-Inverted Lagrangian Transport (STILT) model. Integral to the inverse estimates, we perform a quantitative analysis of errors in atmospheric transport and other factors to provide quantitative uncertainties in estimated emissions. Regressions of modeled and measured mixing ratios suggest that total CH{sub 4} emissions are within 25% of the inventory estimates. A Bayesian source sector analysis obtains posterior scaling factors for CH{sub 4} emissions, indicating that emissions from several of the sources (e.g., landfills, natural gas use, petroleum production, crops, and wetlands) are roughly consistent with inventory estimates, but livestock emissions are significantly higher than the inventory. A Bayesian 'region' analysis is used to identify spatial variations in CH{sub 4} emissions from 13 sub-regions within California. Although, only regions near the tower are significantly constrained by the tower measurements, CH{sub 4} emissions from the south Central Valley appear to be underestimated in a manner consistent with the under-prediction of livestock emissions. Finally, we describe a pseudo-experiment using predicted CH{sub 4} signals to explore the uncertainty reductions that might be obtained if additional measurements were made by a future network of tall-tower stations spread over California. These results show that it should be possible to provide high-accuracy estimates of surface CH{sub 4} emissions for multiple regions as a means to verify future emissions reductions.

Fischer, Marc L.; Zhao, Chuanfeng; Riley, William J.; Andrews, Arlyn C.

2009-01-09T23:59:59.000Z

274

Direct Solar Reduction of CO2 to Fuel:? First Prototype Results  

Science Journals Connector (OSTI)

Alternatively, the process can be used to produce hydrogen from sunlight and water only, using the CO2/CO system as continuously recycled process gases. ... There were fluctuations in the exhaust gas temperature because of imperfect solar tracking, but the exhaust temperature 6 cm downstream of the throat was between 500 and 600 C during most of the full-power running time. ... Most of the 70 kW of waste heat will pass at very high temperatures, enabling the harnessing of 25 kW as electrical power using rather standard steam turbine technology. ...

Ann J. Traynor; Reed J. Jensen

2002-03-08T23:59:59.000Z

275

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

How Exhaust Emissions Drive Diesel Engine Fuel Efficiency How Exhaust Emissions Drive Diesel Engine Fuel Efficiency 2004 Diesel Engine Emissions Reduction (DEER) Conference...

276

Potential energy savings and reduction of CO2 emissions through higher efficiency standards for polyphase electric motors in Japan  

Science Journals Connector (OSTI)

Japan has shut down more than 70% of its nuclear power plants since the March 2011 Tohoku earthquake and the ensuing accident at the Fukushima Daiichi nuclear power plant. The country has been challenged with power shortages in the short-term and faces complex energy security decisions in the long-term. Japan has a long history of implementing energy conservation policies, such as the Top Runner Program, which covers 23 products including appliances and industrial equipment. However, Japan's efficiency policy for polyphase electric motors is considered below international standards. Polyphase electric motors accounted for about 55% of the nation's total power consumption in 2008. The aim of this study is to estimate potential energy savings and reduction in CO2 emissions (20142043) by examining scenarios involving adopting two different polyphase motor efficiency standards and comparing them to a base case and concludes by suggesting pathways for further policy development using the results obtained. The study finds that if level IE2 of the international efficiency standard IEC 60034-30 were implemented, it would save 8.3TWh (or 0.03 quads) per year, which is equivalent to about 0.8% of Japan's total electric power consumption in 2010. If level IE3 of the IEC 60034-30 were implemented instead, it would save about 13.3TWh (or 0.05 quads) per year. The corresponding cumulative energy savings and reduction in CO2 emissions for the IE2 scenario would be 249TWh (or 0.85 quads) and 93Mt. The corresponding cumulative energy savings and reduction in CO2 emissions for the IE3 scenario would be 398TWh (or 1.36 quads) and 149Mt.

Chun Chun Ni

2013-01-01T23:59:59.000Z

277

Cost saving in meeting the commitments of the Kyoto Protocol through the abatement of non-CO2 greenhouse gas emissions  

Science Journals Connector (OSTI)

Reduction of CO2 emissions has proved to he difficult in Finland and it is therefore essential to find the optimal allocation of reduction measures between different greenhouse gases mentioned in the Kyoto Protoc...

S. Tuhkanen; R. Pipatti

2000-01-01T23:59:59.000Z

278

An input-output analysis of regional CO2 emissions from the service sector: an application to Liaoning Province of China  

Science Journals Connector (OSTI)

Based on the input-output tables of Liaoning Province of China for 2007, this paper calculates direct and indirect CO2 emissions from the service sector. Total CO2 emissions of the service sector are decomposed into several effects, of which the spill-over and feedback effects are further decomposed into two parts: Energy Spill-over Effect (ESE) and Remnant Spill-over Effect (RSE); energy feedback effect and remnant feedback effect. The research shows indirect CO2 emissions derived from final demand of the service sector are far more than direct CO2 emissions, the main cause of which is the spill-over effect due to the strong pull effect of the service sector on other sectors. A further decomposition into the ESE reveals that the electricity and heating sector accounts for the largest percentage, with the coal-mining and washing sector second.

Yanqing Xia

2012-01-01T23:59:59.000Z

279

Greenhouse gas emission reduction anticipating CO2 capture. How ready are you?  

Science Journals Connector (OSTI)

The Dutch Ministry of Spatial Planning and the Environment (VROM) engaged Jacobs Consultancy to develop a definition and measuring tool aimed at quantifying the CO2 Capture Readiness of a combustion plant. The tool developed tests the level and completeness of pre-project execution information. The testing of pre-project information is a standard practice in the refining and petrochemical industry and Jacobs Consultancy has adapted and tailored these practices to develop the Capture Readiness tool. The tool was developed in 2008 and was pilot tested on two already permitted coal fired power plant projects in 2009. The Capture Readiness tool is similar in concept to the well known Project Definition Rating Index originally introduced by the Construction Industry Institute for Major Capital Projects. The tool quantifies the readiness of a project to accommodate future CO2 capture and parallels the phased approached to Major Capital Projects used by the Project Definition Rating Index. A short introduction to the application of the PDRI methodology to test the completeness of the project development informationoften also referred to as Front End Loading or FEL, is included in this paper to establish the parallel approach we have used in the development of the Capture Readiness tool. The Jacobs Consultancy Capture Readiness tool is then discussed in more detail.

F.P.J.M. (Bas) Kerkhof; G. van Birgelen

2011-01-01T23:59:59.000Z

280

CO2 emissions, Nuclear energy, Renewable energy and Economic growth in Taiwan.  

E-Print Network [OSTI]

??When the government decided to energy policy, we must first understand the energy and economic growth with a causal link between carbon dioxide emissions, this (more)

Lin, Yi-Ching

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Greenhouse Gas Emissions for Different Fuels  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Greenhouse Gas Emissions for Different Fuels Greenhouse Gas Emissions for Different Fuels This calculator currently focuses on electricity for a number of reasons. The public's interest in vehicles fueled by electricity is high, and as a result consumers are interested in better understanding the emissions created when electricity is produced. For vehicles that are fueled solely by electricity, tailpipe emissions are zero, so electricity production accounts for all GHG emissions associated with such vehicles. Finally, GHG emissions from electricity production vary significantly by region, which makes a calculator like this one-which uses regional data instead of national averages-particularly useful. If you want to compare total tailpipe plus fuel production GHG emissions for an electric or plug-in hybrid electric vehicle to those for a gasoline

282

Carbon sequestration and greenhouse gas emissions in urban turf  

E-Print Network [OSTI]

D. C. Lal, R. (2004), Carbon emission from farm operations,facts: Average carbon dioxide emissions resulting fromcalculation of carbon dioxide (CO 2 ) emissions from fuel

Townsend-Small, Amy; Czimczik, Claudia I

2010-01-01T23:59:59.000Z

283

Will export rebate policy be effective for CO2 emissions reduction in China? A CEEPA-based analysis  

Science Journals Connector (OSTI)

Abstract China has adopted cancellation of export tax rebate policies on many occasions to push ahead energy conservation and emission reduction since 2007. By applying a CEEPA (China Energy & Environmental Policy Analysis system) model, this paper simulates the impacts of the cancellation of export rebates on CO2 emissions and socio-economic consequences in different scenarios so as to figure out whether it works. This paper covers three export rebate scenarios and makes comparisons between the impacts of export rebates on emission reduction effects and that of carbon tax policies. The conclusions are: 1) the current policy which cancels export rebates for key sectors can cut emissions at huge economic cost, yet it is unsustainable; 2) the policy which cancels export rebates for key sectors and meanwhile subsidizes sectoral outputs yields double dividends in the short term, thus can facilitate emission reduction yet the boost is limited; 3) the policy which cancels export rebates and boosts domestic demand helps improving residents' welfare in the short term while it may inflict pronounced social and economic impacts in the long run. So policy of this kind should be adopted with great caution; 4) export rebates generate far more economic costs than carbon tax policies in the long term, and don't contribute to optimizing the energy mix as well as the latter. In summary, canceling export rebates should not be regarded as a priority to encourage emission reduction.

Jing-Li Fan; Qiao-Mei Liang; Qian Wang; Xian Zhang; Yi-Ming Wei

2014-01-01T23:59:59.000Z

284

What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions  

E-Print Network [OSTI]

intensity for diesel and electric freight rail transportFuel Share (% of Fleet) Diesel Electric 40% in 2020 to 36.7%Activity (bil tonne-km) Diesel Electric 1991-2007 average of

G. Fridley, David

2010-01-01T23:59:59.000Z

285

Evaluation of KDOT's Vehicle Fleet's CO2 Emissions and Possible Energy Reductions  

E-Print Network [OSTI]

across all major vehicle types in the fleet. Using more efficient means of transportation can significantly decrease their fuel demand, namely replacing truck travel with car travel. Additionally, increasing biofuel use in their fleet will decrease...

Nielsen, Eric

2012-12-31T23:59:59.000Z

286

A Universal Dual-Fuel Controller for OEM/Aftermarket Diesel Engineswith Comprehensive Fuel & Emission Control  

Broader source: Energy.gov [DOE]

Presents a universal dual fuel ratio controller designed to control the fueling and emissions of dual fuel systems

287

China's Growing CO2 EmissionsA Race between Increasing Consumption and Efficiency Gains  

Science Journals Connector (OSTI)

In 1992 rural households represented over half of household expenditure and emissions and in 1997 the split was roughly equal, but by 2002 urban households spent and emitted about three times more than rural households. ... However, recent research suggests that if China and India strive to have similar income levels as Japan, technological improvements alone are unlikely to stabilize emissions (6). ...

Glen P. Peters; Christopher L. Weber; Dabo Guan; Klaus Hubacek

2007-08-02T23:59:59.000Z

288

Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California  

SciTech Connect (OSTI)

Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

2008-08-13T23:59:59.000Z

289

A Statistical Model to Assess Indirect CO2 Emissions of the UAE Residential Sector  

E-Print Network [OSTI]

. Determination of household energy using ?fingerprints? from energy billing data. Energy Research 10(4), pp: 393?405. [5] Snakin JPA, 2000. An engineering model for heating energy and emission assessment The case of North Karelia, Finland. Applied Energy...

Radhi, H.; Fikry, F.

2010-01-01T23:59:59.000Z

290

The United States Proposal for an International CO2 Emissions Trading System  

Science Journals Connector (OSTI)

This paper will represent the U.S. government approach to climate change, and specifically, the U.S. draft protocol to guide green-house gas emissions reduction efforts in the post-2000 period. Before proceedi...

James Wolfe

1999-01-01T23:59:59.000Z

291

Global CO2 emissions trading: Early lessons from the U.S. acid rain program  

Science Journals Connector (OSTI)

The U.S. Environmental Protection Agency is implementing a program of SO2 emission allowance trading as part of the Acid Rain Program authorized by the Clean Air Act Amendments of 1990. Electric utilities may use...

Barry D. Solomon

1995-05-01T23:59:59.000Z

292

8, 73737389, 2008 Scientists' CO2  

E-Print Network [OSTI]

ACPD 8, 7373­7389, 2008 Scientists' CO2 emissions A. Stohl Title Page Abstract Introduction substantial emissions of carbon dioxide (CO2). In this pa- per, the CO2 emissions of the employees working, the total annual per capita CO2 emissions are 4.5 t worldwide, 1.2 t for India, 3.8 t for China, 5

Paris-Sud XI, Université de

293

National Fuel Cell and Hydrogen Energy Overview  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * > 60% (electrical) * > 70% (electrical, hybrid fuel cell...

294

Fire emissions from C 3 and C 4 vegetation and their influence on interannual variability of atmospheric CO 2 and δ 13 CO 2  

E-Print Network [OSTI]

contrast, agricultural waste burning that occurred in fieldsof biofuel use and burning of agricultural waste in the14 ] Biomass burning of agricultural waste and fuel wood [

2005-01-01T23:59:59.000Z

295

Sharing global CO2 emission reductions among one billion high emitters  

E-Print Network [OSTI]

are deter- mined by ``Business as Usual'' projections of national carbon emissions and in-country income, and use only national income distributions and economy-wide carbon intensities. National responsibilities a global carbon reduction target among nations, in which the concept of ``common but differentiated

296

Ris-R-1203(EN) The Feasibility of Domestic CO2 Emissions  

E-Print Network [OSTI]

feasible in Poland. However, a pilot emissions trading system in the power and Combined Heat and Power (CHP focus on power and heat generation as well as energy intensive industries. Such an approach was found system could be introduced in the professional power and heat sector. Here, awareness concerning

297

Analysis of Strategies for Reducing Multiple Emissions from Electric Power Plants: SO2, Nox, CO2  

Reports and Publications (EIA)

This report responds to a request received from Senator David McIntosh on June 29, 2000 to analyze the impacts on energy consumers and producers of coordinated strategies to reduce emissions of sulfur dioxide, nitrogen oxides, and carbon dioxide at U.S. power plants.

2001-01-01T23:59:59.000Z

298

Relationship between Urbanization and CO2 Emissions Depends on Income Level and Policy  

Science Journals Connector (OSTI)

As urban demand for goods, services, employment, and schools increases, governments and markets may respond with improved public transportation services, roads, and other infrastructure that could reduce total emissions,(29) all potential aspects of energy-efficient urban form. ... GDP/capita, urbanization (%), agricultural land (%), energy use (kg oil equivalent per capita)all variables include population adjustments ...

Diego Ponce de Leon Barido; Julian D. Marshall

2014-01-14T23:59:59.000Z

299

ECOISLAND: A System for Persuading Users to Reduce CO2 Emissions  

Science Journals Connector (OSTI)

A significant portion of the carbon dioxide emissions that have been shown to cause global warming are due to household energy consumption and traffic. EcoIsland is a computer system aimed at persuading and assisting individual families in changing their ... Keywords: Persuasive Technology, Environment Sustainability

Chihiro Takayama; Vili Lehdonvirta; Miyuki Shiraishi; Yasuyuki Washio; Hiroaki Kimura; Tatsuo Nakajima

2009-03-01T23:59:59.000Z

300

Options for Near-Term Phaseout of CO2 Emissions from Coal Use in the United States  

Science Journals Connector (OSTI)

We focus on coal for physical and practical reasons and on the U.S. because it is most responsible for accumulated fossil fuel CO2 in the atmosphere today, specifically targeting electricity production, which is the primary use of coal. ... However, these shortcomings could be significantly overcome by deploying a large fleet of plug-in hybrid electric vehicles (PHEVs) or all-electric vehicles (EVs) (Figure S3). ... The highest use in the U.S. is in the residential sector (i.e., rooftop installations), because for states having a PV rebate, PV can provide a net monthly savings to the homeowner when the cost is folded into a 30-year mortgage. ...

Pushker A. Kharecha; Charles F. Kutscher; James E. Hansen; Edward Mazria

2010-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

CO2 Sequestration Potential of Texas Low-Rank Coals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Co Co 2 SequeStration Potential of texaS low-rank CoalS Background Fossil fuel combustion is the primary source of emissions of carbon dioxide (CO 2 ), a major greenhouse gas. Sequestration of CO 2 by injecting it into geologic formations, such as coal seams, may offer a viable method for reducing atmospheric CO 2 emissions. Injection into coal seams has the potential added benefit of enhanced coalbed methane recovery. The potential for CO 2 sequestration in low-rank coals, while as yet undetermined, is believed to differ significantly from that for bituminous coals. To evaluate the feasibility and the environmental, technical, and economic impacts of CO 2 sequestration in Texas low-rank coal beds, the Texas Engineering Experimental Station is conducting a four-year study

302

Control of CO2 emission through enhancing energy efficiency of auxiliary power equipment in thermal power plant  

Science Journals Connector (OSTI)

Abstract This paper describes the results of energy efficiency enhancement in 23 numbers of 210MW coal fired power plants spread over India. Energy efficiency improvement of major auxiliary equipment with different plant load factors are summarized here with improved performance. The effect of plant load factor on all major auxiliary equipment and improvement in performance of auxiliary equipment are discussed in this paper. Operation of the plant at improved plant load factor reduced the specific auxiliary power from 11.23% at 70% PLF to 8.74% at 100% PLF that reduced the net auxiliary power by 9.1MU/year that is an equivalent reduction of CO2 emission by 9500t/year. Optimizing the excess air, controlling the furnace ingress, enhanced energy efficiency of individual equipment by proper maintenance, etc., improves the plant capacity and reduces the overall auxiliary power by about 1.52.1% of gross energy generation i.e., equivalent CO2 reduction of 23,00032,400t/year and release an additional power of about 3.5MW (for a typical one 210MW power plant) into grid.

Rajashekar P. Mandi; Udaykumar R. Yaragatti

2014-01-01T23:59:59.000Z

303

The Elephant in the Room: Dealing with Carbon Emissions from Synthetic Transportation Fuels Production  

SciTech Connect (OSTI)

Carbon dioxide (CO2), produced by conversion of hydrocarbons to energy, primarily via fossil fuel combustion, is one of the most ubiquitous and significant greenhouse gases (GHGs). Concerns over climate change precipitated by rising atmospheric GHG concentrations have prompted many industrialized nations to begin adopting limits on emissions to inhibit increases in atmospheric CO2 levels. The United Nations Framework Convention on Climate Change states as a key goal the stabilization of atmospheric CO2 at a level that prevents dangerous anthropogenic interference with the planets climate systems. This will require sharply reducing emissions growth rates in developing nations, and reducing CO2 emissions in the industrialized world to half current rates in the next 50 years. And ultimately, stabilization will require that annual emissions drop to almost zero.Recently, there has been interest in producing synthetic transportation fuels via coal-to-liquids (CTL) production, particularly in countries where there is an abundant supply of domestic coal, including the United States. This paper provides an overview of the current state of CTL technologies and deployment, a discussion of costs and technical requirements for mitigating the CO2 impacts associated with a CTL facility, and the challenges facing the CTL industry as it moves toward maturity.

Parker, Graham B.; Dahowski, Robert T.

2007-07-11T23:59:59.000Z

304

Chapter 16 - Fuel Effects on Emissions  

Science Journals Connector (OSTI)

Publisher Summary The majority of fuels consumed by internal combustion engines (ICE) are fossil fuels, mainly gasoline and diesel fuel. Through the fuels' history, their properties have kept changing because of various reasons, such as crude oil prices, progress in refinery technology, changes in vehicle technology, environmental legislation, and political considerations. The environmental legislation has become the most important factor affecting the requirements of automotive fuels, because of: additional limitations caused by changes in vehicle technology (such as the need of unleaded gasoline for catalyst-equipped vehicles); the growing importance of direct fuel effects (their weighting factor rising sharply as a result of very low emission levels mandated in ecological regulations). Numerous research works have been performed to investigate the fuel composition effects on engine exhaust emissions. The effects of different fuel variables on regulated (CO, HC, NOx, PM) and unregulated (benzene, 1,3-butadiene, aldehydes, and PAH) engine exhaust emissions were investigated in the foregoing and in many other research programs. The accumulated knowledge allows main fuel parameters to be defined affecting pollutants emission and fuel/engine/emissions relationships to be revealed with good agreement between different studies.

Yoram Zvirin; Marcel Gutman; Leonid Tartakovsky

1998-01-01T23:59:59.000Z

305

NOx, SOx and CO2 Emissions Reduction from Continuous Commissioning (CC) Measures at the Rent-A-Car Facility in the Dallas-Fort Worth International Airport  

E-Print Network [OSTI]

, and CO2) reduction for year 1999 and the projected ones for 2007 and corresponding OSD periods are presented next. Potential Emissions Reductions for 1999 Potential Emissions Reductions for 2007 Emissions Annual (Tons/yr) OSD (Tons/day) Annual... (Tons/yr) OSD (Tons/day) NOX 3.710320 0.012782 1.64387 0.00554 SO2 N/A N/A 1.11594 0.00362 CO2 N/A N/A 1316.468 4.62669 The potential emissions reduction of SO2 and CO2 for the year 1999 was not evaluated because eGRID tables for that year were...

Baltazar-Cervantes, J. C.; Haberl, J. S.; Yazdani, B.

2006-10-27T23:59:59.000Z

306

NETL: IEP – Post-Combustion CO2 Emissions Control - Characterization and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization and Prediction of Oxy-Combustion Impacts in Existing Coal-fired Boilers Characterization and Prediction of Oxy-Combustion Impacts in Existing Coal-fired Boilers Project No.: DE-NT0005288 Pilot-scale 100 kW oxy-fuel combustor Pilot-scale 100 kW oxy-fuel combustor Reaction Engineering International will conduct multi-scale experiments, coupled with mechanism development and computational fluid dynamics modeling, to evaluate the impacts of retrofitting existing coal-fired boilers for oxy-combustion. Test data will be obtained from oxy-combustion experiments at the 0.1-kilowatt (kW), 100-kW, and 1.2-megawatt scale. Related Papers and Publications: Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers [PDF-9MB] (Nov 2013) Final Project Review Meeting, Pittsburgh, PA, November 6, 2013. Characterization of Oxy-Combustion Impacts in Existing Coal-Fired Boilers [PDF-1.67MB] (July 2013)

307

"1. Carbon Dioxide Emission Factors for Stationary Combustion1"  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Emission Factors" Fuel Emission Factors" "(From Appendix H of the instructions to Form EIA-1605)" "1. Carbon Dioxide Emission Factors for Stationary Combustion1" "Fuel ",,"Emission Factor ",,"Units" "Coal2" "Anthracite",,103.69,,"kg CO2 / MMBtu" "Bituminous",,93.28,,"kg CO2 / MMBtu" "Sub-bituminous",,97.17,,"kg CO2 / MMBtu" "Lignite",,97.72,,"kg CO2 / MMBtu" "Electric Power Sector",,95.52,,"kg CO2 / MMBtu" "Industrial Coking",,93.71,,"kg CO2 / MMBtu" "Other Industrial",,93.98,,"kg CO2 / MMBtu" "Residential/Commercial",,95.35,,"kg CO2 / MMBtu" "Natural Gas3"

308

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

309

The Role of Lubricant Additives in Fuel Efficiency and Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects The Role of Lubricant Additives in Fuel Efficiency and Emission Reductions: Viscosity Effects...

310

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance Results of an...

311

Accurate Predictions of Fuel Effects on Combustion and Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Combustion and Emissions in Engines Using CFD Simulations With Detailed Fuel Chemistry Accurate Predictions of Fuel Effects on Combustion and Emissions in Engines Using...

312

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network [OSTI]

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Milorad Boji?; Dragan Cvetkovi?; Marko Mileti?; Jovan Maleevi?; Harry Boyer

2012-12-18T23:59:59.000Z

313

Energy, cost, and CO 2 emission comparison between radiant wall panel systems and radiator systems  

E-Print Network [OSTI]

The main goal of this paper is to evaluate the possibility of application or replacement of radiators with low-temperature radiant panels. This paper shows the comparison results of operations of 4 space heating systems: the low-temperature radiant panel system without any additional thermal insulation of external walls (PH-WOI), the low-temperature radiant panel system with additional thermal insulation of external walls (PH-WI), the radiator system without any additional thermal insulation of external walls (the classical heating system) (RH-WOI), and the radiator system with additional thermal insulation of external walls (RH-WI). The operation of each system is simulated by software EnergyPlus. The investigation shows that the PH-WI gives the best results. The RH-WOI has the largest energy consumption, and the largest pollutant emission. However, the PH-WI requires the highest investment.

Boji?, Milorad; Mileti?, Marko; Maleevi?, Jovan; Boyer, Harry

2012-01-01T23:59:59.000Z

314

A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.  

SciTech Connect (OSTI)

The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

2013-04-01T23:59:59.000Z

315

An Integrated Hydrogen Production-CO2 Capture Process from Fossil Fuel  

SciTech Connect (OSTI)

The new technology concept integrates two significant complementary hydrogen production and CO{sub 2}-sequestration approaches that have been developed at Oak Ridge National Laboratory (ORNL) and Clark Atlanta University. The process can convert biomass into hydrogen and char. Hydrogen can be efficiently used for stationary power and mobile applications, or it can be synthesized into Ammonia which can be used for CO{sub 2}-sequestration, while char can be used for making time-release fertilizers (NH{sub 4}HCO{sub 3}) by absorption of CO{sub 2} and other acid gases from exhaust flows. Fertilizers are then used for the growth of biomass back to fields. This project includes bench scale experiments and pilot scale tests. The Combustion and Emission Lab at Clark Atlanta University has conducted the bench scale experiments. The facility used for pilot scale tests was built in Athens, GA. The overall yield from this process is 7 wt% hydrogen and 32 wt% charcoal/activated carbon of feedstock (peanut shell). The value of co-product activated carbon is about $1.1/GJ and this coproduct reduced the selling price of hydrogen. And the selling price of hydrogen is estimated to be $6.95/GJ. The green house experimental results show that the samples added carbon-fertilizers have effectively growth increase of three different types of plants and improvement ability of keeping fertilizer in soil to avoid the fertilizer leaching with water.

Zhicheng Wang

2007-03-15T23:59:59.000Z

316

A fast method for updating global fossil fuel carbon dioxide emissions  

Science Journals Connector (OSTI)

We provide a fast and efficient method for calculating global annual mean carbon dioxide emissions from the combustion of fossil fuels by combining data from an established data set with BP annual statistics. Using this method it is possible to retrieve an updated estimate of global CO2 emissions six months after the actual emissions occurred. Using this data set we find that atmospheric carbon dioxide emissions have increased by over 40% from 1990 to 2008 with an annual average increase of 3.7% over the five-year period 2003?2007. In 2008 the growth rate in the fossil fuel carbon dioxide emissions was smaller than in the preceding five years, but it was still over 2%. Global mean carbon dioxide emissions in 2008 were 8.8?GtC? yr?1. For the latter part of the last century emissions of carbon dioxide have been greater from oil than from coal. However during the last few years this situation has changed. The recent strong increase in fossil fuel CO2 emissions is mainly driven by an increase in emissions from coal, whereas emissions from oil and gas to a large degree follow the trend from the 1990s.

G Myhre; K Alterskj?r; D Lowe

2009-01-01T23:59:59.000Z

317

Fuel and Vehicle Technology Choices for Passenger Vehicles in Achieving Stringent CO2 Targets: Connections between Transportation and Other Energy Sectors  

Science Journals Connector (OSTI)

Five fuel options (petroleum, natural gas, synthetic fuels (coal to liquid, CTL; gas to liquid, GTL; biomass to liquid, BTL), electricity, and hydrogen) and five vehicle technologies (ICEV, HEV, BEV, PHEV, and FCV) were considered. ... Petro ICEV, Synth ICEV, NG ICEV, H2 ICEV = internal combustion engine vehicle fueled either by petroleum, synthetic fuel (CTL, GTL, or BTL), natural gas, or gaseous hydrogen; HEV = hybrid electric vehicle; BEV = battery electric vehicle, PHEV = plug-in hybrid electric vehicle; Petro FCV, Synth FCV, H2 FCV = fuel-cell vehicle fueled either by petroleum, synthetic fuel, or gaseous hydrogen. ... In their CO2 reduction scenario (reduction from 1990 of 50% by 2050 and 75% by 2100), the car sector is dominated by gasoline/diesel (first in ICEVs, then HEVs and to a small extent also PHEVs) with hydrogen-fueled FCVs becoming dominant by 2100. ...

M. Grahn; C. Azar; M. I. Williander; J. E. Anderson; S. A. Mueller; T. J. Wallington

2009-03-26T23:59:59.000Z

318

Zhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA-444, Proceedings, 100th  

E-Print Network [OSTI]

the Alternative Fuel Data Center (AFDC) of the U.S. Department of Energy.4 Carbon dioxide (CO2), CO, and nitricZhai, H., H.C. Frey, N.M. Rouphail, G.A. Gonçalves, and T.L. Farias, "Fuel Consumption and Emissions Comparisons between Ethanol 85 and Gasoline Fuels for Flexible Fuel Vehicles," Paper No. 2007-AWMA

Frey, H. Christopher

319

NREL: Transportation Research - Emissions and Fuel Economy Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

greenhouse gas and pollutant emissions by advancing the development of new fuels and engines that deliver both high efficiency and reduced emissions. Emissions that result in...

320

Assessment of the use of oxygenated fuels on emissions and performance of a diesel engine  

Science Journals Connector (OSTI)

Abstract Requirements as torque, power, specific fuel consumption and emitted compounds are highly influenced by the chemical composition of the fuel being burned. Thus, the aim of this study was to assess the use of oxygenated fuels on emissions of NOx, CO, HC, CO2 and particle number and size distribution (11.5diesel engine coupled to a dynamometer bench was used, where three types of fuels were employed, B5 (diesel with 5% of biodiesel); B5E6 (ternary composition containing 89% diesel, 5% of biodiesel and 6% of ethanol); and B100 (100% of biodiesel). The performance of a diesel engine was also evaluated to see the impact of the oxygenated fuels in this kind of engine. The use of ethanol with high latent heat of vaporization and low cetane number added to the binary blend (B5) shown an increase in the HC emissions and a reduction in \\{NOx\\} emissions when compared to B5. The use of pure biodiesel (B100) with high oxygen content showed a reduction in the HC emissions, but presented the highest emissions for both \\{NOx\\} and particle number of smaller diameter among the studied fuels. The use of more oxygenated fuels reduced the power output and increased the fuel consumption, but the exergy analysis showed that the energy efficiency of these fuels could be considered similar to the B5 fuel.

Llian Lefol Nani Guarieiro; Egdio Teixeira de Almeida Guerreiro; Keize Katiane dos Santos Amparo; Victor Bonfim Manera; Ana Carla D. Regis; Aldenor Gomes Santos; Vitor P. Ferreira; Danilo J. Leo; Ednildo A. Torres; Jailson B. de Andrade

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-04-01T23:59:59.000Z

322

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-01-01T23:59:59.000Z

323

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2003-07-01T23:59:59.000Z

324

Emissions from ethanol and LPG fueled vehicles  

SciTech Connect (OSTI)

This paper addresses the environmental concerns of using neat ethanol and liquified petroleum gas (LPG) as transportation fuels in the US Low-level blends of ethanol (10%) with gasoline have been used as fuels in the US for more than a decade, but neat ethanol (85% or more) has only been used extensively in Brazil. LPG, which consists mostly of propane, is already used extensively as a vehicle fuel in the US, but its use has been limited primarily to converted fleet vehicles. Increasing US interest in alternative fuels has raised the possibility of introducing neat ethanol vehicles into the market and expanding the number of LPG vehicles. Use of such vehicles and increased production and consumption of fuel ethanol and LPG will undoubtedly have environmental impacts. If the impacts are determined to be severe, they could act as barriers to the introduction of neat ethanol and LPG vehicles. Environmental concerns include exhaust and evaporative emissions and their impact on ozone formation and global warming, toxic emissions from fuel combustion and evaporation, and agricultural emissions from production of ethanol. The paper is not intended to be judgmental regarding the overall attractiveness of ethanol or LPG compared to other transportation fuels. The environmental concerns are reviewed and summarized, but the only conclusion reached is that there is no single concern that is likely to prevent the introduction of neat ethanol fueled vehicles or the increase in LPG fueled vehicles.

Pitstick, M.E.

1992-01-01T23:59:59.000Z

325

A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

and Resource Saving Technologies in Cement Industry.1:8794. Blue World Crete. 2012. Technology. Available atOakey. 2009. CO 2 Capture Technologies for Cement Industry.

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

326

A Comparison of Combustion and Emissions of Diesel Fuels and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated Fuels in a Modern DI Diesel Engine A Comparison of Combustion and Emissions of Diesel Fuels and Oxygenated...

327

PhD Thesis: Control issues in oxy-fuel combustion  

E-Print Network [OSTI]

attractive concept to achieve CO2 capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle of CO2 resulting from human activities. Emissions of CO2 are considered to be the main cause, the emissions of CO2 must be reduced in a timely fashion. Strategies to achieve this include switching to less

Foss, Bjarne A.

328

Alternative Fuels Data Center: School District Emissions Reduction Policies  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

School District School District Emissions Reduction Policies to someone by E-mail Share Alternative Fuels Data Center: School District Emissions Reduction Policies on Facebook Tweet about Alternative Fuels Data Center: School District Emissions Reduction Policies on Twitter Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Google Bookmark Alternative Fuels Data Center: School District Emissions Reduction Policies on Delicious Rank Alternative Fuels Data Center: School District Emissions Reduction Policies on Digg Find More places to share Alternative Fuels Data Center: School District Emissions Reduction Policies on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School District Emissions Reduction Policies

329

Alternative Fuels Data Center: Vehicle Emissions Reduction Grants -  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Emissions Vehicle Emissions Reduction Grants - Sacramento to someone by E-mail Share Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Facebook Tweet about Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Twitter Bookmark Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Google Bookmark Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Delicious Rank Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on Digg Find More places to share Alternative Fuels Data Center: Vehicle Emissions Reduction Grants - Sacramento on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

330

Alternative Fuels Data Center: Fleet Emissions Reduction Requirements -  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fleet Emissions Fleet Emissions Reduction Requirements - South Coast to someone by E-mail Share Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Facebook Tweet about Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Twitter Bookmark Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Google Bookmark Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Delicious Rank Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on Digg Find More places to share Alternative Fuels Data Center: Fleet Emissions Reduction Requirements - South Coast on AddThis.com... More in this section... Federal State Advanced Search

331

CO2 Abatement in the UK Power Sector: Evidence from the EU ETS Trial Period  

E-Print Network [OSTI]

This paper provides an empirical assessment of CO2 emissions abatement in the UK power sector during the trial period of the EU ETS. Using an econometrically estimated model of fuel switching, it separates the impacts of ...

Ellerman, A. Denny

2008-01-01T23:59:59.000Z

332

Strategic electricity sector assessment methodology under sustainability conditions: a Swiss case study on the costs of CO2 emissions reductions  

Science Journals Connector (OSTI)

Growing concerns about social and environmental sustainability have led to increased interest in planning for the electricity utility sector because of its large resource requirements and production of emissions. A number of conflicting trends combine to make the electricity sector a major concern, even though a clear definition of how to measure progress toward sustainability is lacking. These trends include imminent competition in the electricity industry, global climate change, expected long-term growth in population and pressure to balance living standards (including per capital energy consumption). In order to approach this global problem on a regional level, a project has been established to develop planning methods for electrical power systems related to sustainability called SESAMS (Strategic Electricity Sector Assessment Methodology under Sustainability Conditions), under the Alliance for Global Sustainability formed by the Massachusetts Institute of Technology (MIT), the Swiss Federal Institutes of Technology (ETHZ and EPFL), and the University of Tokyo (UT). SESAMS 97 has brought together multi-attribute, multi-scenario electricity system planning, life-cycle assessment, and multi-criteria decision analysis to create an integrated methodology that has been demonstrated using a case study based on the Swiss electricity system. This case study has simulated system dispatch of the Swiss electricity system for 1296 scenarios over a study period from 1996 to 2025. The results for these scenarios include a wide range of direct and indirect sustainability measures, with conclusions that have focused primarily on cost and CO2 emissions. The pairwise scenario trade-off analysis facilitates searching the strategy option space by identifying the best and most robust options. Decision-makers benefit by being able to focus trade-off discussions on the dominant set of best choices for each trade-off pair, rather than covering the entire decision space.

W. Schenler; Adrian V. Gheorghe; Warren Stephen Connors; Stefan Hirschberg; Pierre-Andre Haldi

2002-01-01T23:59:59.000Z

333

Fuel Flexible, Low Emission Catalytic Combustor for Opportunity Fuel Applications  

SciTech Connect (OSTI)

Limited fuel resources, increasing energy demand and stringent emission regulations are drivers to evaluate process off-gases or process waste streams as fuels for power generation. Often these process waste streams have low energy content and/or highly reactive components. Operability of low energy content fuels in gas turbines leads to issues such as unstable and incomplete combustion. On the other hand, fuels containing higher-order hydrocarbons lead to flashback and auto-ignition issues. Due to above reasons, these fuels cannot be used directly without modifications or efficiency penalties in gas turbine engines. To enable the use of these wide variety of fuels in gas turbine engines a rich catalytic lean burn (RCL) combustion system was developed and tested in a subscale high pressure (10 atm.) rig. The RCL injector provided stability and extended turndown to low Btu fuels due to catalytic pre-reaction. Previous work has shown promise with fuels such as blast furnace gas (BFG) with LHV of 85 Btu/ft3 successfully combusted. This program extends on this work by further modifying the combustor to achieve greater catalytic stability enhancement. Fuels containing low energy content such as weak natural gas with a Lower Heating Value (LHV) of 6.5 MJ/m3 (180 Btu/ft3 to natural gas fuels containing higher hydrocarbon (e.g ethane) with LHV of 37.6 MJ/m3 (1010 Btu/ft3) were demonstrated with improved combustion stability; an extended turndown (defined as the difference between catalytic and non-catalytic lean blow out) of greater than 250oF was achieved with CO and NOx emissions lower than 5 ppm corrected to 15% O2. In addition, for highly reactive fuels the catalytic region preferentially pre-reacted the higher order hydrocarbons with no events of flashback or auto-ignition allowing a stable and safe operation with low NOx and CO emissions.

Eteman, Shahrokh

2013-06-30T23:59:59.000Z

334

Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use  

SciTech Connect (OSTI)

To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO2) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO2 management program to develop technologies capable of reducing the CO2 emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO2 mitigation program focusing on beneficial CO2 reuse and supporting the development of technologies that mitigate emissions by converting CO2 to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO2 reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,

Sun, Xiaolei; Rink, Nancy

2011-04-30T23:59:59.000Z

335

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in the Cement Industry in China  

E-Print Network [OSTI]

Wang, L. , 2008. Alternative fuel using and waste materialPolicy Research on Alternative Fuels for Cement Industry inis very little use of alternative fuels (defined as waste

Hasanbeigi, Ali

2013-01-01T23:59:59.000Z

336

Alternative Fuels Data Center: Employer Invested Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Employer Invested Employer Invested Emissions Reduction Funding - South Coast to someone by E-mail Share Alternative Fuels Data Center: Employer Invested Emissions Reduction Funding - South Coast on Facebook Tweet about Alternative Fuels Data Center: Employer Invested Emissions Reduction Funding - South Coast on Twitter Bookmark Alternative Fuels Data Center: Employer Invested Emissions Reduction Funding - South Coast on Google Bookmark Alternative Fuels Data Center: Employer Invested Emissions Reduction Funding - South Coast on Delicious Rank Alternative Fuels Data Center: Employer Invested Emissions Reduction Funding - South Coast on Digg Find More places to share Alternative Fuels Data Center: Employer Invested Emissions Reduction Funding - South Coast on AddThis.com...

337

Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Greenhouse Gas State Greenhouse Gas (GHG) Emissions Reduction Strategy to someone by E-mail Share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Facebook Tweet about Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Twitter Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Google Bookmark Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Delicious Rank Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on Digg Find More places to share Alternative Fuels Data Center: State Greenhouse Gas (GHG) Emissions Reduction Strategy on AddThis.com... More in this section... Federal

338

Alternative Fuels Data Center: Mobile Source Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Mobile Source Mobile Source Emissions Reduction Requirements to someone by E-mail Share Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Facebook Tweet about Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Twitter Bookmark Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Google Bookmark Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Delicious Rank Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on Digg Find More places to share Alternative Fuels Data Center: Mobile Source Emissions Reduction Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

339

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE-EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE-EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE-EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R and D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the 1st quarterly progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2000 and ending December 31, 2000. The report includes an introduction summarizing the AGC concept, main program tasks, objectives of this program, and provides a summary of initial program activities covering program management and preliminary progress in first year tasks including lab- and bench-scale design, facilities preparation, and process/kinetic modeling. More over, the report presents and discusses preliminary results particularly form the bench-scale design and process modeling efforts including a process flow diagram that incorporates the AGC module with other vision-21 plant components with the objective of maximizing H{sub 2} production and process efficiency.

George Rizeq; Ravi Kumar; Janice West; Vitali Lissianski; Neil Widmer; Vladimir Zamansky

2001-01-01T23:59:59.000Z

340

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending September 30, 2002. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Hana Loreth; Lubor Stonawski; Tomasz Wiltowski; Edwin Hippo; Shashi Lalvani

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2  

SciTech Connect (OSTI)

It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL to develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2001 and ending December 31, 2001. The report includes an introduction summarizing the AGC concept, main program tasks, and program objectives; it also provides a summary of program activities covering program management and progress in tasks including lab- and bench-scale experimental testing, pilot-scale design, and economic studies.

George Rizeq; Janice West; Arnaldo Frydman; Raul Subia; Vladimir Zamansky; Tomasz Wiltowski; Tom Miles; Bruce Springsteen

2002-01-01T23:59:59.000Z

342

Fact #686: August 1, 2011 Emissions and Energy Use Model - GREET...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Well-to-Wheel Emissions for Various Fuels and Vehicle Technologies Fuel Grams of CO2-Equivalent per Mile Vehicle Technology Gasoline (Today's Vehicle) 450 Conventional...

343

The Effect of Diesel Fuel Properties on Emissions-Restrained...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(varying fuel properties and engine control parameters) were used to optimize fuel consumption subject to emissions and engine performance constraints. deer08kumar.pdf More...

344

Rigorous HDD Emissions Capabilities of Shell GTL Fuel | Department...  

Broader source: Energy.gov (indexed) [DOE]

GTL Fuel 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deercherillo.pdf More Documents & Publications Verification of Shell GTL Fuel...

345

Fuel Effects on Emissions Control Technologies | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Fuel Effects on Emissions Control Technologies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation...

346

Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO 2 : Implications for inversion analyses  

E-Print Network [OSTI]

Influence of reduced carbon emissions and oxidation on thedescription of reduced carbon emission and oxidationInfluence of reduced carbon emissions and oxidation on the

Suntharalingam, Parvadha; Randerson, James T; Krakauer, Nir; Logan, Jennifer A; Jacob, Daniel J

2005-01-01T23:59:59.000Z

347

Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model  

E-Print Network [OSTI]

that the diesel engines fuel consumption and emissions doEmissions and Fuel Consumption Model engine manufacturersEmissions and Fuel Consumption Model Connection to engine

Barth, Matthew; Younglove, Theodore; Scora, George

2005-01-01T23:59:59.000Z

348

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network [OSTI]

economy as a function of fuel prices, technology prices, andshould be a function of fuel prices, electricity demand, andturn are a function of fuel price, system costs, and other

Delucchi, Mark

2005-01-01T23:59:59.000Z

349

Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Emissions Optimization of Heavy-Duty Diesel Engines using Model-Based Transient Calibration Fuel Efficiency and Emissions Optimization of Heavy-Duty Diesel Engines using...

350

Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements Fuel Reformer, LNT and SCR Aftertreatment System Meeting Emissions Useful Life Requirements...

351

Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration … Comparing the Energy Balance, Greenhouse Gas Emissions and Economics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* NREL/TP-510-32575 * NREL/TP-510-32575 Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Pamela L. Spath Margaret K. Mann National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 January 2004 * NREL/TP-510-32575 Biomass Power and Conventional Fossil Systems with and without CO 2 Sequestration - Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Pamela L. Spath Margaret K. Mann Prepared under Task No. BB04.4010 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393

352

NETL: IEP – Post-Combustion CO2 Emissions Control - A Low-Energy, Low-Cost  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Low-Energy, Low-Cost Process for Stripping Carbon Dioxide from Absorbents A Low-Energy, Low-Cost Process for Stripping Carbon Dioxide from Absorbents Project No.: FG02-06ER84592 SBIR Glycol Heater, Stripper, MEA Delivery Tank, CO2 and H2O Collection Apparatus Glycol Heater, Stripper, MEA Delivery Tank, CO2 and H2O Collection Apparatus AIL Research, Inc. (AIL) is in the second phase of a small business initiative research (SBIR) project that is assessing the economic and technical feasibility of a carbon dioxide (CO2) stripper that uses an internally heated contactor. The project will determine whether the construction of the internally heated contactor is compatible with the operating conditions of a monoethanolamine stripper and an advanced scrubber (e.g., one that uses a mixture of potassium carbonate and piperazine) and it will also determine the maintenance procedures required

353

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 -- Washington D.C. ft007sluder2010o.pdf More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Fuel Effects on Emissions...

354

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING IN LABORATORY CONDITIONS HEAVY-DUTY TRUCK EMISSIONS AND FUEL CONSUMPTION SIMULATING REAL-WORLD DRIVING...

355

Cold-Start Performance and Emissions Behavior of Alcohol Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Meth Cold-Start Performance and Emissions Behavior of Alcohol Fuels in an SIDI Engine...

356

Building Distributed Energy Performance Optimization for China a Regional Analysis of Building Energy Costs and CO2 Emissions  

E-Print Network [OSTI]

optimizations. Technologies assessed include photovoltaics (PV), solar thermal, gas turbines, microturbines, fuel cells,

Feng, Wei

2013-01-01T23:59:59.000Z

357

Reducing the CO2 emissions and the energy dependence of a large city area with zero-emissionvehicles and nuclear energy  

Science Journals Connector (OSTI)

Abstract This paper aims to study the feasibility of implementing a strategic plan for a gradual introduction of zero-emissionvehicles in the city of Madrid during 20142024. The study estimate the amount of emissions saved if the electrical energy needed for the vehicles is generated with nuclear power plants. The use of zero-emissionvehicles could play an important role in reducing our dependence on oil and, therefore, changing the economy structure of the country. Therefore, as a representing city, Madrid's nowadays situation is studied. The city's vehicle fleet is first considered and classified. An average both daily and annually fuel consumption is made, in order to know the city's gasoline investment. Moreover, the health effects of air pollution, which is largely due to the city's vehicles, are statistically considered in order to analyze the economic impact of treating these effects. Furthermore, noise pollution and it's both direct and indirect consequences are studied. After having analyzed Madrid's situation, a comparison between some international cities and the Spanish capital is made, regarding their vehicle fleet and their environmental and economical consequences. European environmental policy and future criteria are exposed. Regarding the technical feasibility, two types of zero-emission technologies are considered, the battery-electric car and de hydrogen fuel cell vehicle (FCV). After having described the benefits and disadvantages of the use of zero-emissionvehicles, a macroeconomic analysis is done in order to study the economic feasibility of the project. To do this, not only several economic variables, such as gross domestic product in the area, but also survey data, such as the average daily driving time are considered. Finally, a strategic plan for a gradual implementation of zero-emission vehicles in the city of Madrid is proposed, taking into account the quantity of emissions saved if the electrical energy needed is generated with nuclear power plants. In this plan, some policy actions are proposed for a gradual implementation. Policy actions such as special fees for those driving internal combustion engine vehicles, free parking for zero-emission vehicles or even a subsidized car replacement plan.

Gonzalo Jimenez; Jose Miguel Flores

2015-01-01T23:59:59.000Z

358

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov [DOE]

This study presents full quantification of biodiesel's impact on emissions and fuel economy with the inclusion of DPF regeneration events.

359

CO2 | OpenEI  

Open Energy Info (EERE)

CO2 CO2 Dataset Summary Description Emissions from energy use in buildings are usually estimated on an annual basis using annual average multipliers. Using annual numbers provides a reasonable estimation of emissions, but it provides no indication of the temporal nature of the emissions. Therefore, there is no way of understanding the impact on emissions from load shifting and peak shaving technologies such as thermal energy storage, on-site renewable energy, and demand control. Source NREL Date Released April 11th, 2011 (3 years ago) Date Updated April 11th, 2011 (3 years ago) Keywords buildings carbon dioxide emissions carbon footprinting CO2 commercial buildings electricity emission factors ERCOT hourly emission factors interconnect nitrogen oxides NOx SO2 sulfur dioxide emissions

360

Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2  

SciTech Connect (OSTI)

In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOE NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No.

Parag Kulkarni; Jie Guan; Raul Subia; Zhe Cui; Jeff Manke; Arnaldo Frydman; Wei Wei; Roger Shisler; Raul Ayala; om McNulty; George Rizeq; Vladimir Zamansky; Kelly Fletcher

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

QGESS: CO2 Impurity Design Parameters  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10. Shah, Minish. Capturing CO2 from Oxy-Fuel Combustion Flue Gas. Cottbus, Germany : Praxair Inc., 2005. 11. Spitznogle, Gary O. CO2 Impurity Specification at AEP Mountaineer....

362

CO2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

STORAGE & ENHANCED OIL RECOVERY STORAGE & ENHANCED OIL RECOVERY Objective R MOTC can play a signifi cant role in carbon dioxide (CO 2 ) storage and enhanced oil recovery technology development and fi eld demonstra- tions. RMOTC completed a scoping engineering study on Naval Petroleum Reserve No. 3's (NPR-3) CO 2 enhanced oil recovery potential. More recent character- ization studies indicate geologic carbon storage would also be an excellent use of NPR-3 resources beyond their economic life in conventional production. Geologic Storage Fossil fuels will remain the mainstay of energy production well into the 21st century. Availability of these fuels to provide clean, affordable energy is es- sential for the prosperity and security of the United States. However, increased atmospheric concentrations

363

Alternative Fuels Data Center: Natural Gas Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions to someone by E-mail Emissions to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Vehicle Emissions on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Maintenance & Safety Laws & Incentives Natural Gas Vehicle Emissions Natural gas burns cleaner than conventional gasoline or diesel due to its

364

Alternative Fuels Data Center: State Emissions Reductions Requirements  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

State Emissions State Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: State Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: State Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: State Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: State Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: State Emissions Reductions Requirements on Digg Find More places to share Alternative Fuels Data Center: State Emissions Reductions Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type State Emissions Reductions Requirements Washington state must limit greenhouse gas (GHG) emissions to achieve the

365

Alternative Fuels Data Center: School Bus Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Emissions Reduction to someone by E-mail Share Alternative Fuels Data Center: School Bus Emissions Reduction on Facebook Tweet about Alternative Fuels Data Center: School Bus Emissions Reduction on Twitter Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction on Google Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction on Delicious Rank Alternative Fuels Data Center: School Bus Emissions Reduction on Digg Find More places to share Alternative Fuels Data Center: School Bus Emissions Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Emissions Reduction Each full-sized school bus with a Model Year (MY) 1994 or newer engine that transports children in the state must be equipped with specific emissions

366

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Maine has adopted the California motor vehicle emissions standards

367

Alternative Fuels Data Center: Emissions Reduction Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emissions Reduction Emissions Reduction Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Emissions Reduction Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Emissions Reduction Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Emissions Reduction Tax Credit on Google Bookmark Alternative Fuels Data Center: Emissions Reduction Tax Credit on Delicious Rank Alternative Fuels Data Center: Emissions Reduction Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Emissions Reduction Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Emissions Reduction Tax Credit An income tax credit is available to individuals who install diesel particulate emissions reduction technology equipment at any truck stop,

368

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Connecticut Low Emission Vehicles II Program requires that all new

369

Alternative Fuels Data Center: Low Emissions School Bus Grants  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emissions School Low Emissions School Bus Grants to someone by E-mail Share Alternative Fuels Data Center: Low Emissions School Bus Grants on Facebook Tweet about Alternative Fuels Data Center: Low Emissions School Bus Grants on Twitter Bookmark Alternative Fuels Data Center: Low Emissions School Bus Grants on Google Bookmark Alternative Fuels Data Center: Low Emissions School Bus Grants on Delicious Rank Alternative Fuels Data Center: Low Emissions School Bus Grants on Digg Find More places to share Alternative Fuels Data Center: Low Emissions School Bus Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emissions School Bus Grants The Lower-Emission School Bus Program (Program) provides grant funding for

370

Alternative Fuels Data Center: Low Emission Vehicle Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle Standards New vehicles sold or offered for sale in Vermont must meet California emissions and compliance requirements in Title 13 of the California Code of

371

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards New Jersey has adopted California motor vehicle emissions standards as set

372

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Washington adopted the California motor vehicle emission standards in Title

373

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Maryland has adopted the California motor vehicle emission standards in

374

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards California's LEV II exhaust emissions standards apply to Model Year (MY)

375

Reducing CO2 in the transport sector in Japan  

Science Journals Connector (OSTI)

In this paper, we have investigated the cost-effectiveness of alternative fuel vehicles as a measure for CO2 reduction. Computed results indicate that the installation of alternative fuel vehicles is much more expensive than fuel switching in industry or the power generation sector. However, some economic incentives will make the price go down to the level at which alternative fuel vehicles are competitive with conventional vehicles. At the same time, mass production makes their prices go down although it is rather expensive at present. Then, we developed the scenarios in which CO2 emissions could be stabilised at the level in 1990. In the higher demand case (1.2%/yr.), it is indispensable to introduce alternative fuel vehicles into the market. Our model selects electric vehicles and compressed natural gas vehicles as cost-effective options. In the scenario where carbon tax revenue is not offset by subsidy, we have to impose prohibitively high carbon tax to suppress CO2. However, CO2 emission can be suppressed by a reasonable carbon tax if the tax revenue is returned to the market to subsidise alternative fuel vehicles and their infrastructures.

Yoshikuni Yoshida; Hisashi Ishitani; Ryuji Matsuhashi; Osamu Kobayashi; Tetsuo Takeishi

2001-01-01T23:59:59.000Z

376

Carbonation of alkaline paper mill waste to reduce CO2 greenhouse gas1 emissions into the atmosphere2  

E-Print Network [OSTI]

ppm in the pre-industrial revolution to 37942 ppm in 2005, rising faster in the last 10 years (average atmospheric CO2 concentration doubles the pre-industrial revolution concentration (IPCC,49 2007a 36 insu-00351929,version1-12Jan2009 #12;1. Introduction37 38 Coal caused the first industrial

Boyer, Edmond

377

Assessment of Energy Efficiency Improvement and CO2 Emission Reduction Potentials in India's Iron and Steel Industry  

E-Print Network [OSTI]

of Conserved Electricity (CCE) and Cost of Conserved Fuel (6. 2010-2030 Cost-effective Electricity and Electricity-BaseAnalysis for the Cost-Effective Electricity and Fuel Saving

Morrow III, William R.

2014-01-01T23:59:59.000Z

378

Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emissions Bus Zero Emissions Bus Implementation Plan to someone by E-mail Share Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Facebook Tweet about Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Twitter Bookmark Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Google Bookmark Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Delicious Rank Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on Digg Find More places to share Alternative Fuels Data Center: Zero Emissions Bus Implementation Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Zero Emissions Bus Implementation Plan As part of a state effort to identify strategies to expand the availability

379

Alternative Fuels Data Center: Low Emission Vehicle Requirement  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle Requirement to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Requirement on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Requirement on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Requirement on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Requirement on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Requirement on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle Requirement All Model Year (MY) 2007 and later heavy-duty vehicles sold, leased, or

380

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Any new light-duty passenger car, light-duty truck, or medium-duty

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Under the Oregon LEV Program, all new passenger cars, light-duty trucks,

382

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Pennsylvania Clean Vehicles Program requires that all new passenger

383

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Rhode Island Department of Environmental Management has adopted

384

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Zero Emission Vehicle (ZEV) Tax Credit An income tax credit is available to individuals who purchase or lease a

385

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards The Massachusetts LEV Program requires all new passenger cars and

386

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards Under the Clean Cars Act of 2008, the Mayor of the District of Columbia

387

Alternative Fuels Data Center: School Bus Emissions Reduction Funding  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

School Bus Emissions School Bus Emissions Reduction Funding to someone by E-mail Share Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Facebook Tweet about Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Twitter Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Google Bookmark Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Delicious Rank Alternative Fuels Data Center: School Bus Emissions Reduction Funding on Digg Find More places to share Alternative Fuels Data Center: School Bus Emissions Reduction Funding on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Emissions Reduction Funding The New York State Energy Research and Development Authority (NYSERDA)

388

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Standards to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Low Emission Vehicle (LEV) Standards All new passenger vehicles, light-duty trucks, and medium-duty vehicles

389

Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emissions Vehicle Zero Emissions Vehicle (ZEV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Zero Emissions Vehicle (ZEV) Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Zero Emissions Vehicle (ZEV) Tax Exemption

390

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Promotion Plan to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Promotion Plan on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Zero Emission Vehicle (ZEV) Promotion Plan

391

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network [OSTI]

Diesel fuel Steel Aluminum Plastics Concrete Generic chemicals Fertilizer Corn Soybeans Grass Trees Land g/BTU

Delucchi, Mark

2005-01-01T23:59:59.000Z

392

Options for Near-Term Phaseout of CO2 Emissions from Coal Use in the United States  

E-Print Network [OSTI]

unconventional fossil fuels (e.g., oil shale and tar sands) are prohibited. This paper outlines technology

393

A Review of Emerging Energy-efficiency and CO2 Emission-reduction Technologies for Cement and Concrete Production  

E-Print Network [OSTI]

2 per system per year. Algae biomass fuels are predicted toalgae oils suitable for manufacture of high-grade plastics, transport fuel,algae are grown at a facility next to the cement plant to be harvested, dried, and then used as fuel

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

394

Studies on dual fuel engine performance and exhaust emission analysis by response surface methodology  

Science Journals Connector (OSTI)

In this present study a five factor three level Box-Behnken response surface design was used to study the effect of five independent variables such as diesel (40%100%) ethanol (0%-30%) pongamia oil methyl ester (POME) (0%30%) compressed natural gas (CNG) (0%20%) and load of the engine (0%100%) on the performance (brake thermal efficiency brake specific fuel consumption and exhaust gas temperature) and emission characteristics (carbon mono-oxide (CO) carbon dioxides (CO2) unburnt hydrocarbon oxides of nitrogen (NOX) and smoke) of a single cylinder four stroke water cooled diesel engine converted to dual fuel system. It was operated with either diesel fuel or blend with CNG using an electronically controlled solenoid actuated valve mechanism. The experimental results showed that all the process variables have significant effect on the engine performance. The emission characteristics (CO CO2 NOX and Smoke) were significantly lower than the diesel fuel emissions. From the experimental results second order polynomial models were developed to predict the response variables. The optimal conditions were determined and it was found to be: Diesel 70% Ethanol 15% POME 15% CNG 10% and load 50% respectively with a desirability value of 0.894.

R. Senthilraja; V. Sivakumar; J. Prakash Maran

2014-01-01T23:59:59.000Z

395

CO2 Sequestration by Direct Gas?Solid Carbonation of Air Pollution Control (APC) Residues  

Science Journals Connector (OSTI)

CO2 Sequestration by Direct Gas?Solid Carbonation of Air Pollution Control (APC) Residues ... Furthermore, because fossil fuels are projected to be a dominant energy resource in the 21st century,1 technologies for sequestering emissions from fossil fuel combustion in a safe and definitive manner are being developed and implemented. ... According to these authors, the solution containing free calcium could then be used in a carbonation process for capturing CO2 directly from air. ...

Renato Baciocchi; Alessandra Polettini; Raffaella Pomi; Valentina Prigiobbe; Viktoria Nikulshina Von Zedwitz; Aldo Steinfeld

2006-07-07T23:59:59.000Z

396

Wavelet-based reconstruction of fossil-fuel CO2 emissions from sparse measurements  

E-Print Network [OSTI]

, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National every 3 hours ­ main data source ­ Meant for biospheric fluxes (far from cities); about 100 today ­ We · Databases: Vulcan (2002, US-only); EDGAR, CDIAC (ORNL) etc ­ Can provide independent verification in case

Ray, Jaideep

397

Supplement to: The CO2 release and Oxygen uptake from Fossil Fuel Emission  

E-Print Network [OSTI]

, C. Minejima2,4 , H. Mukai2 1 Max Planck Institute for Biogeochemistry, Jena, Germany 2 Center to observations at the station Ochsenkopf in Germany. #12;EDGAR 3.2 usage type Corresponding UN usage type(s) code, refineries, etc.) 0911 0914 0924 121 084 Consumption by mining industry Consumption by biogas plants

Meskhidze, Nicholas

398

Analysis of different control strategies for the simultaneous reduction of CO2 and NOx emissions of a diesel hybrid passenger car  

Science Journals Connector (OSTI)

Different control strategies for a diesel parallel hybrid passenger car were evaluated through numerical simulations. Two different control strategies were analysed: the first focused on fuel consumption minimisation, the second on NOx emissions cuts. Each of these goals was addressed through two different methodologies, the first based on a group of heuristic laws, the second focused on the instantaneous minimisation of a cost function that takes into account both the fuel and battery energies. A first assessment of the potential of a diesel hybrid passenger car as far as fuel consumption and NOx emissions reductions are concerned was obtained.

Federico Millo; Carlo V. Ferraro; Luciano Rolando

2012-01-01T23:59:59.000Z

399

Emissions Characterization from Advanced Combustion & Alternative Fuels -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emissions Characterization from Advanced Combustion & Emissions Characterization from Advanced Combustion & Alternative Fuels Exhaust emissions from engines operating in advanced combustion modes such as PCCI (Premixed Charge Compression Ignition) and HCCI (Homogeneous Charge Compression Ignition) are analyzed with an array of analytical tools. Furthermore, emissions from a variety of alternative fuels and mixtures thereof with conventional gasoline and diesel fuels are also measured. In addition to measuring the criteria pollutants nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HCs) are also measured and categorized based on chemistry. These chemical details of the emissions provide important information for optimizing combustion processes to maximize fuel efficiency while minimizing emissions

400

Alternative Fuels Data Center: Petroleum and Emission Reduction Planning  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool to someone by E-mail Share Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Facebook Tweet about Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Twitter Bookmark Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Google Bookmark Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Delicious Rank Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on Digg Find More places to share Alternative Fuels Data Center: Petroleum and Emission Reduction Planning Tool on AddThis.com... Petroleum Reduction Planning Tool

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

402

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

403

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Production Requirements to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Production Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

404

Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Greenhouse Gas (GHG) Greenhouse Gas (GHG) Emissions Study to someone by E-mail Share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Facebook Tweet about Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Twitter Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Google Bookmark Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Delicious Rank Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on Digg Find More places to share Alternative Fuels Data Center: Greenhouse Gas (GHG) Emissions Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Greenhouse Gas (GHG) Emissions Study By October 13, 2013, the Washington Office of Financial Management must

405

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

406

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

407

Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Wisconsin Reduces Wisconsin Reduces Emissions With Natural Gas Trucks to someone by E-mail Share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Facebook Tweet about Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Twitter Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Google Bookmark Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Delicious Rank Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on Digg Find More places to share Alternative Fuels Data Center: Wisconsin Reduces Emissions With Natural Gas Trucks on AddThis.com... Oct. 2, 2010 Wisconsin Reduces Emissions With Natural Gas Trucks

408

Alternative Fuels Data Center: Transit Emissions and Energy Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Transit Emissions and Transit Emissions and Energy Reduction Assistance to someone by E-mail Share Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Facebook Tweet about Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Twitter Bookmark Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Google Bookmark Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Delicious Rank Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on Digg Find More places to share Alternative Fuels Data Center: Transit Emissions and Energy Reduction Assistance on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

409

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

410

Alternative Fuels Data Center: Support for Low Emission Vehicles  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Support for Low Support for Low Emission Vehicles to someone by E-mail Share Alternative Fuels Data Center: Support for Low Emission Vehicles on Facebook Tweet about Alternative Fuels Data Center: Support for Low Emission Vehicles on Twitter Bookmark Alternative Fuels Data Center: Support for Low Emission Vehicles on Google Bookmark Alternative Fuels Data Center: Support for Low Emission Vehicles on Delicious Rank Alternative Fuels Data Center: Support for Low Emission Vehicles on Digg Find More places to share Alternative Fuels Data Center: Support for Low Emission Vehicles on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Support for Low Emission Vehicles The New Jersey legislature urges the United States Congress and President

411

Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Heavy-Duty Vehicle Heavy-Duty Vehicle Emissions Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Google Bookmark Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Delicious Rank Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Heavy-Duty Vehicle Emissions Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Heavy-Duty Vehicle Emissions Reduction Grants

412

Alternative Fuels Data Center: Voluntary Airport Low Emission (VALE)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Voluntary Airport Low Voluntary Airport Low Emission (VALE) Program to someone by E-mail Share Alternative Fuels Data Center: Voluntary Airport Low Emission (VALE) Program on Facebook Tweet about Alternative Fuels Data Center: Voluntary Airport Low Emission (VALE) Program on Twitter Bookmark Alternative Fuels Data Center: Voluntary Airport Low Emission (VALE) Program on Google Bookmark Alternative Fuels Data Center: Voluntary Airport Low Emission (VALE) Program on Delicious Rank Alternative Fuels Data Center: Voluntary Airport Low Emission (VALE) Program on Digg Find More places to share Alternative Fuels Data Center: Voluntary Airport Low Emission (VALE) Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Voluntary Airport Low Emission (VALE) Program

413

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

414

Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle (LEV) Sales Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Low Emission Vehicle (LEV) Sales Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

415

Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Airport Zero Emission Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Airport Zero Emission Vehicle (ZEV) and Infrastructure Incentives on AddThis.com...

416

Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Zero Emission Vehicle Zero Emission Vehicle (ZEV) Deployment Support to someone by E-mail Share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Facebook Tweet about Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Twitter Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Google Bookmark Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Delicious Rank Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on Digg Find More places to share Alternative Fuels Data Center: Zero Emission Vehicle (ZEV) Deployment Support on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

417

Reading for Thursday Emissions scenario summary  

E-Print Network [OSTI]

emissions, for year 2000 #12;USA ­ CO2 emissions from fossil fuel combustion (2005) US EPA #12 of global rise in sea level red: reconstructed blue: tide gauges black: satellite #12;Other changes GHG emissions #12;

Schweik, Charles M.

418

nature geoscience | VOL 2 | NOVEMBER 2009 | www.nature.com/naturegeoscience 737 CO2 emissions from forest loss  

E-Print Network [OSTI]

emissions from forest loss G. R. van der Werf,D. C. Morton, R. S. DeFries, J. G. J. Olivier, P. S as a notable carbon dioxide source. P rogrammes that aim to reduce the emissions from deforestation and forest degradation are being considered as a cost-effective way to mitigate anthropogenic greenhouse-gas emissions1

Jackson, Robert B.

419

FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL  

SciTech Connect (OSTI)

This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

2003-08-24T23:59:59.000Z

420

Alternative Fuels Data Center: Low Emission Vehicle Incentives and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Low Emission Vehicle Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley to someone by E-mail Share Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Facebook Tweet about Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Twitter Bookmark Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Google Bookmark Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Delicious Rank Alternative Fuels Data Center: Low Emission Vehicle Incentives and Technical Training - San Joaquin Valley on Digg Find More places to share Alternative Fuels Data Center: Low

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Emissions Benefits From Renewable Fuels and Other Alternatives for Heavy-Duty Vehicles  

E-Print Network [OSTI]

Emissions Comparisons from Alternative Fuel Buses and DieselEmissions Comparisons from Alternative Fuel Buses and Dieselof Biodiesel as an Alternative Fuel for Current and Future

Hajbabaei, Maryam

2013-01-01T23:59:59.000Z

422

Technologies for Reducing Carbon Dioxide Emissions from Fossil Fuel Fired Installations  

Science Journals Connector (OSTI)

All mitigation scenarios proposed to date either tend so slow down the rate of atmospheric CO2 emissions or level out the CO2 concentration in the atmosphere. A unique system has been devised which offers a metho...

M. Steinberg

1995-01-01T23:59:59.000Z

423

High pressure conversion of \\{NOx\\} and Hg and their capture as aqueous condensates in a laboratory piston-compressor simulating oxy-fuel CO2 compression  

Science Journals Connector (OSTI)

Abstract Oxy-fuel technology for CO2 capture has largely focused on combustion characteristics as a driver towards demonstration. Impurity removal studies typically centre on the how current environmental control units (FGD, SCR, activated carbon beds) operate in oxy-fuel firing. However, it is expected that some removal of \\{NOx\\} and \\{SOx\\} may occur during compression of flue gas through the lead chamber process. Some commercial systems link the capture of mercury to the formation of acid condensates (as a soluble mercury salt). Mercury in compressed flue gas represents a potential corrosion risk in the processing of CO2 from oxy-fuel combustion processes. Gas phase elemental mercury (Hg0) is difficult to remove from the flue gas and the level of cleaning required to prevent corrosion of cryogenic brazed aluminium heat exchangers is uncertain. This work has investigated the behaviour of gaseous Hg0 in pressurised oxy-fuel systems in terms of the potential capture in acidic condensates, interaction with \\{NOx\\} gases and liquid stability on de-pressurisation. The work was undertaken on an adapted laboratory scale three stage axial-piston compressor with gas and liquid sampling at pressures up to 30bar. The main finding was that gaseous Hg0 reacts readily with NO2 formed from NO oxidation at high pressure. This reaction occurred without the presence of water, either water vapour or liquid water, contrary to speculation in the literature. Without NO2, no capture of Hg0 was observed in the compression system. Overall, the capture of mercury during compression occurred as a consequence of high pressure, longer residence time and concentration of NO2. Capture rates of 100% Hg and 7583% \\{NOx\\} were measured from the compressor exit at 30barg.

Rohan Stanger; Timothy Ting; Terry Wall

2014-01-01T23:59:59.000Z

424

Analytical Estimation of CO2 Storage Capacity in Depleted Oil and Gas Reservoirs Based on Thermodynamic State Functions  

E-Print Network [OSTI]

dimensions. Vertical discretization of grid size allows to improve aquifer influx modeling......................................... 55 Table 4.2? Reservoir model properties. ................................................................ 58 Table 4... fuel dependency will continue in the near future, increasing the need to develop economic and technologically feasible approaches to reduce and capture and dispose CO2 emissions. Geological storage of CO2 in aquifers and depleted oil and gas...

Valbuena Olivares, Ernesto

2012-02-14T23:59:59.000Z

425

EIA - Greenhouse Gas Emissions Overview  

Gasoline and Diesel Fuel Update (EIA)

Environment Environment Emissions of Greenhouse Gases in the U. S. Release Date: March 31, 2011 | Next Release Date: Report Discontinued | Report Number: DOE/EIA-0573(2009) Greenhouse Gas Emissions Overview Diagram Notes [a] CO2 emissions related to petroleum consumption (includes 64 MMTCO2 of non-fuel-related emissions). [b] CO2 emissions related to coal consumption (includes 0.3 MMTCO2 of non-fuel-related emissions). [c] CO2 emissions related to natural gas consumption (includes 13 MMTCO2 of non-fuel-related emissions). [d] Excludes carbon sequestered in nonfuel fossil products. [e] CO2 emissions from the plastics portion of municipal solid waste (11 MMTCO2) combusted for electricity generation and very small amounts (0.4 MMTCO2) of geothermal-related emissions.

426

Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions  

Science Journals Connector (OSTI)

...refrigerants such as hydrocarbons (GWP combustion of fossil fuels and biomass...solar radiation, which heats the surrounding air...2005 Supplement Report Data ( UNEP , Geneva, Switzerland...NOAA's Natl Climatic Data Center , Washington...

Mario Molina; Durwood Zaelke; K. Madhava Sarma; Stephen O. Andersen; Veerabhadran Ramanathan; Donald Kaniaru

2009-01-01T23:59:59.000Z

427

The relationship between policy choice and the size of the policy region: Why small jurisdictions may prefer renewable energy policies to reduce CO2 emissions  

E-Print Network [OSTI]

may prefer renewable energy policies to reduce CO2 emissionsmay prefer renewable energy policies to reduce CO 2www.dsireusa.org Renewable Energy Policy Network, http://

Accordino, Megan H.; Rajagopal, Deepak

2012-01-01T23:59:59.000Z

428

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy Heavy-Duty Truck Engine: 2007 Emissions with Excellent Fuel Economy 2004 Diesel Engine Emissions Reduction...

429

Carbon Dioxide Information Analysis Center (CDIAC)-Fossil Fuel...  

Open Energy Info (EERE)

Analysis Center (CDIAC)-Fossil Fuel CO2 Emissions AgencyCompany Organization: Oak Ridge National Laboratory Sector: Energy, Climate Topics: GHG inventory, Background...

430

Expanding the Use of Biogas with Fuel Cell Technologies  

Broader source: Energy.gov (indexed) [DOE]

Biogas Biogas Very High Efficiency Reduced CO 2 Emissions Reduced Oil Use Reduced Air Pollution Fuel Flexibility * up to 60% (electrical) * up to 70% (electrical, hybrid...

431

CANMET CO2 Consortium - O2/CO2 Recycle Combustion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CANMET CO CANMET CO 2 Consortium - O 2 /CO 2 Recycle Combustion Background The mission of the U.S. Department of Energy/National Energy Technology Laboratory (DOE/NETL) Existing Plants, Emissions & Capture (EPEC) Research & Development (R&D) Program is to develop innovative environmental control technologies to enable full use of the nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental

432

Non-Petroleum-Based Fuels: Effects on Emissions Controls (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Non-Petroleum-Based Fuels: Effects on Emissions Controls (Agreement Number 13425)NPBF Effects on PM OxidationNPBF Effects on EGR System Performance Non-Petroleum-Based Fuels:...

433

Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

May 18-22, 2009 -- Washington D.C. ft07sluder.pdf More Documents & Publications Non-Petroleum-Based Fuels: Effects on Emissions Control Technologies Non-Petroleum-Based Fuels:...

434

A verification study on saving energy cost and reducing CO2 emission with large-scale geothermal heat pump systems in Korea  

Science Journals Connector (OSTI)

This paper presents economic and environmental effects by using monitoring data collected over a 2-yr period in geothermal heating and cooling facilities in Jungwon University Korea. The facility has heating capacity of 7045?kW and cooling capacity of 5947?kW. Such monitoring data are rarely reported in the literature; thus the evaluation based on long-term operational data will contribute greatly to the objective assessment of the geothermal heat pump system (GHPS) as a renewable energy resource. The effects of relative energy cost saving and reductions in CO2 emission were predicted for comparison with conventional heating and cooling systems. The GHPS was estimated to reduce energy costs by 76.4%85.3% and yield a reduction of CO2 emission of 398595 tons annually. We also conducted an economic analysis using the benefit/cost ratio (BCR) method according to scenarios in which the lifespan and discount rate for the GHPS were varied. Since the BCR for the GHPS was in the range of 1.993.58 (case 1) and 1.673.01 (case 2) GHPS is considered to be more economic than other types of heating and cooling systems. These results provide evidentiary data to help overcome skepticism over the applicability of large-scale GHPSs.

Byeong-Hak Park; Hyoung-Soo Kim; Kang-Kun Lee

2013-01-01T23:59:59.000Z

435

Quantifying Regional Economic Impacts of CO2 Intensity Targets in China  

E-Print Network [OSTI]

To address rising energy use and CO2 emissions, Chinas leadership has enacted energy and CO2 intensity

Zhang, Da

2012-09-01T23:59:59.000Z

436

INCORPORATING THE EFFECT OF PRICE CHANGES ON CO2- EQUIVALENT EMSSIONS FROM ALTERNATIVE-FUEL LIFECYCLES: SCOPING THE ISSUES  

E-Print Network [OSTI]

one bushel of corn. Emissions from the use of energy forCORN, SOYBEANS, TREES, AND GRASSES This section of the LEM documentation discusses the energy,energy use. WORKING PAPER DRAFT FOR REVIEW Where will the marginal corn

Delucchi, Mark

2005-01-01T23:59:59.000Z

437

Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions  

Science Journals Connector (OSTI)

...will let more solar radiation penetrate...reflect more solar radiation and cool...estimate that solar heating...emissions and improving cook stoves...improve local air quality and reduce global...source of energy (64). Feedstocks...

Mario Molina; Durwood Zaelke; K. Madhava Sarma; Stephen O. Andersen; Veerabhadran Ramanathan; Donald Kaniaru

2009-01-01T23:59:59.000Z

438

Fuel Mix and Emissions Disclosure | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Massachusetts Program Type Generation Disclosure Provider Executive Office of Energy and Environmental Affairs Massachusetts's 1997 electric utility restructuring legislation authorized the Massachusetts Department of Telecommunications and Energy (DTE)* to require certain electricity providers to disclose details on their fuel mix and emissions to end-use customers. In February 1998, the DTE issued final rules requiring competitive suppliers and distribution companies providing standard offer generation service or default generation service to provide this information to customers quarterly and upon request. * In 2007, the Massachusetts Department of Telecommunications and Energy

439

Fuel Mix and Emissions Disclosure | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure Fuel Mix and Emissions Disclosure < Back Eligibility Utility Program Info State Minnesota Program Type Generation Disclosure Provider Minnesota Department of Commerice In September 2002, the Minnesota Public Utilities Commission (PUC) issued an order requiring the state's regulated electric utilities to disclose to customers details on the fuel mix and emissions of electric generation. Utilities must provide this information to customers in a standard format twice annually. Utilities may distribute this information to customers electronically. Disclosure information must also be filed with the PUC. In addition, in 2009, the Minnesota Pollution Control Agency began to transition to an inventory data management system that consolidates

440

Saving Energy and Reducing Emissions with Fuel-Flexible Burners  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

using biomass-derived liquid fuels, such as glycerin or fatty acids, as a substitute for natural gas, thereby reducing energy consumption, lowering greenhouse gas emissions, and...

Note: This page contains sample records for the topic "fuel co2 emissions" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rigorous HDD Emissions Capabilities of Shell GTL Fuel  

Broader source: Energy.gov (indexed) [DOE]

Rigorous HDD Emissions Capabilities of Shell GTL Fuel Ralph A. Cherrillo & Mary Ann Dahlstrom Shell Global Solutions (US) Inc. Richard H. Clark Shell Global Solutions (UK) 11 th...

442

Effects of Biomass Fuels on Engine & System Out Emissions for...  

Broader source: Energy.gov (indexed) [DOE]

& Aftertreatment Systems -- DEER Conference 1 6 October 2011 Kevin Barnum Effects of Biomass Fuels on Engine & System Out Emissions for Short Term Endurance DEER 2011 Conference...

443

Fuel economy and emissions reduction of HD hybrid truck over...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reduction of HD hybrid truck over transient driving cycles and interstate roads Fuel economy and emissions reduction of HD hybrid truck over transient driving cycles and...

444

Cold-Start Performance and Emissions Behavior of Alcohol Fuels...  

Broader source: Energy.gov (indexed) [DOE]

Emissions Behavior of Alcohol Fuels in an SIDI Engine Using Transient Hardware-In-Loop Test Methods Andrew Ickes & Thomas Wallner Argonne National Laboratory 17 th Directions in...

445

Emission Performance of Modern Diesel Engines Fueled with Biodiesel  

Broader source: Energy.gov (indexed) [DOE]

Emission Performance of Modern Diesel Engines Fueled with Biodiesel Aaron Williams, Jonathan Burton, Xin He and Robert L. McCormick National Renewable Energy Laboratory October 5,...

446

Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions  

Science Journals Connector (OSTI)

...regional levels (64). At household level, fuel-efficient...plants to provide bio-energy followed by...of Major Economies on Energy Security and Climate...of Leaders ( Toyako , Japan ). 23 G8 ( 2009 ) Responsible...Climate Change and Clean Energy ( White House , Washington...

Mario Molina; Durwood Zaelke; K. Madhava Sarma; Stephen O. Andersen; Veerabhadran Ramanathan; Donald Kaniaru

2009-01-01T23:59:59.000Z

447

Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine  

SciTech Connect (OSTI)

With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

2011-04-20T23:59:59.000Z

448

Measurements and analysis of CO and O2 emissions in CH4/CO2/O2 flames  

E-Print Network [OSTI]

or deep saline aquifiers, or used for enhanced oil recovery (EOR) or enhanced coal bed methane recovery the key tradeoffs associated with optimizing these systems, as well as the dependence of emissions concepts (e.g., Graz [4] or Matiant [5] cycles) and integra- tion with gasification processes for coal

Lieuwen, Timothy C.

449

Examination of the effect of system pressure ratio and heat recuperation on the efficiency of a coal based gas turbine fuel cell hybrid power generation system with CO2 capture  

SciTech Connect (OSTI)

This paper examines two coal-based hybrid configurations that employ separated anode and cathode streams for the capture and compression of CO2. One configuration uses a standard Brayton cycle, and the other adds heat recuperation ahead of the fuel cell. Results show that peak efficiencies near 55% are possible, regardless of cycle configuration, including the cost in terms of energy production of CO2 capture and compression. The power that is required to capture and compress the CO2 is shown to be approximately 15% of the total plant power.

VanOsdol, J.G.; Gemmen, R.S.; Liese, E.A

2008-06-01T23:59:59.000Z

450

Influence of Mixing and Fuel Composition on Emissions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mixing and Fuel Composition Mixing and Fuel Composition on Emissions * Lean premixed combustion is effective for emission reduction More sensitive to perturbations including fuel gas composition variability * UC Irvine developed model relating fuel/air mixing and fuel composition to emissions Altering fuel distribution is a strategy to accommodate fuel composition changes * Results were used by 3 OEM's, 1 combustion technology developer and 1 user to help make decisions on how to handle the impact of LNG on combustor stability, and in the case of California installations, on how to respond to regulatory issues * As LNG is used in in