Powered by Deep Web Technologies
Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Solar powered unitized regenerative fuel cell system  

Science Conference Proceedings (OSTI)

Solar hydrogen system is a unique power system that can meet the power requirement for the energy future demand, in such a system the hydrogen used to be the energy carrier which can produced through electrolysis by using the power from the PV during ... Keywords: electrolyzer, fuel cell, hydrogen, photovoltaic, regenerative, solar hydrogen system

Salwan S. Dihrab; , Kamaruzzaman Sopian; Nowshad Amin; M. M. Alghoul; Azami Zaharim

2008-02-01T23:59:59.000Z

2

Solar-Hydrogen Fuel-Cell Vehicles  

E-Print Network (OSTI)

LemonsR. A. ( 1990) Fuel Cells for Transportation. Jour- DC,M. A. (1992). Hydrogen Fuel-Cell Vehicles. Re- koebensteinsolid tember. oxide fuel cell development. Journal of

DeLuchi, Mark A.; Ogden, Joan M.

1993-01-01T23:59:59.000Z

3

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Fuel Cells Photo of...

4

Approaches to Future Generation Photovoltaics and Solar Fuels: Quantum Dots, Arrays, and Quantum Dot Solar Cells  

Science Conference Proceedings (OSTI)

One potential, long-term approach to more efficient and lower cost future generation solar cells for solar electricity and solar fuels is to utilize the unique properties of quantum dots (QDs) to control the relaxation pathways of excited states to enhance multiple exciton generation (MEG). We have studied MEG in close-packed PbSe QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic solution-processable QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies above 5% via nanocrystalline p-n junctions. These solar cells show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy Recent analyses of the major effect of MEG combined with solar concentration on the conversion efficiency of solar cells will also be discussed.

Semonin, O.; Luther, J.; Beard, M.; Johnson, J.; Gao, J.; Nozik, A.

2012-01-01T23:59:59.000Z

5

Applications of Metal Oxide Materials in Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: Let the Molecules do the Work  

Science Conference Proceedings (OSTI)

Solar fuels hold great promise as a permanent, environmentally friendly, long-term renewable energy source, that would be readily available across the globe. In this account, an approach to solar fuels is described based on Dye Sensitized Photoelectrosynthesis Cells (DSPEC) that mimic the configuration used in Dye Sensitized Solar Cells (DSSC), but with the goal of producing oxygen and a high energy solar fuel in the separate compartments of a photoelectrochemical cell rather than a photopotential and photocurrent.

Alibabaei, Leila; Luo, Hanlin; House, Ralph L.; Hoertz, Paul G.; Lopez, Rene; Meyer, Thomas J.

2013-01-01T23:59:59.000Z

6

Fuel from Bacteria, CO2, Water, and Solar Energy: Engineering a Bacterial Reverse Fuel Cell  

Science Conference Proceedings (OSTI)

Electrofuels Project: Harvard is engineering a self-contained, scalable Electrofuels production system that can directly generate liquid fuels from bacteria, carbon dioxide (CO2), water, and sunlight. Harvard is genetically engineering bacteria called Shewanella, so the bacteria can sit directly on electrical conductors and absorb electrical current. This current, which is powered by solar panels, gives the bacteria the energy they need to process CO2 into liquid fuels. The Harvard team pumps this CO2 into the system, in addition to water and other nutrients needed to grow the bacteria. Harvard is also engineering the bacteria to produce fuel molecules that have properties similar to gasoline or diesel fuelómaking them easier to incorporate into the existing fuel infrastructure. These molecules are designed to spontaneously separate from the water-based culture that the bacteria live in and to be used directly as fuel without further chemical processing once theyíre pumped out of the tank.

None

2010-07-01T23:59:59.000Z

7

Microbial Fuel Cells -Solar Times http://solar.rain-barrel.net/microbial-fuel-cells/ 1 of 3 6/28/2006 11:32 AM  

E-Print Network (OSTI)

a microbial fuel cell that digests wastes, instantly producing electricity. Just take a look at Dr. EmittCell.com Hydrogen Fuel Cells Buy Commercial & Educational Stacks PEM, Fuel Cell Generators & More! www a battery that generates electricity from deep sea composting micro-organisms that just love to break down

Lovley, Derek

8

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

9

Energy Basics: Hydrogen and Fuel Cell Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen and Fuel Cell...

10

Solar turbines perspective on advanced fuel cell/gas turbine systems  

SciTech Connect

Solar Turbines Inc. has a vested interest in integrating gas turbines and high-temperature fuel cells(eg, solid oxide fuel cells (SOFCs)). Approach is to develop more efficient recuperated engines, which would be followed by more efficient intercooled and recuperated engines and finally by a humid air turbine cycle system. This engine system would be capable of providing efficiencies on the order of 60% with potentially low exhaust emissions. Because of possible fossil fuel shortages and severe CO{sub 2} emissions regulations, Solar adopted an alternative approach in the development of high efficiency machines; it involves combining SOFCs with recuperated gas turbines. Preliminary results show that the performance of TCPS (Tandem Cycle Unified Power System) is much better than expected, especially the efficiency. Costs are acceptable for the introductory models, and with full production, cost reductions will make the system competitive with all future energy conversion systems of the same power output. Despite the problems that must be overcome in creating a viable control system, it is believed that they are solvable. The efficiency of TCPS would be synergetic, ie, higher than either fuel cell or gas turbine alone.

White, D.J.

1996-12-31T23:59:59.000Z

11

Solar Energy Systems - Research - Biomimetic Solar Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

using renewable resources such as sunlight. They also offer an enticing way to store solar energy in a very compact form. Challenges in solar fuels production lie in...

12

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

13

Hydrogen & Fuel Cells Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Blog Hydrogen & Fuel Cells Blog Bioenergy Buildings Geothermal Government Energy Management Homes Hydrogen & Fuel Cells Manufacturing Solar Vehicles Water Wind Blog Archive Recent...

14

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

15

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

16

Hydrogen & Fuel Cells News and Blog | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen & Fuel Cells News and Blog Hydrogen & Fuel Cells News and Blog Bioenergy Buildings Geothermal Government Energy Management Homes Hydrogen & Fuel Cells Manufacturing Solar...

17

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

18

Fuel Cell Technologies Office: Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office - Education Students learn about solar energy. DOE supports demonstrations and commercialization by providing technically accurate and objective...

19

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

20

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science ¬Ľ Materials Science ¬Ľ Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

22

Design of a power management model for a solar/fuel cell hybrid energy system.  

E-Print Network (OSTI)

??This thesis proposes a Power Management Model (PMM) for optimization of several green power generation systems. A Photovoltaic/Fuel cell Hybrid Energy System (PFHES) consisting ofÖ (more)

Melendez, Rosana.

2010-01-01T23:59:59.000Z

23

Regenerative fuel cells for High Altitude Long Endurance Solar Powered Aircraft  

DOE Green Energy (OSTI)

High Altitude Long Endurance (HALE) unmanned missions appear to be feasible using a lightweight, high efficiency, span-loaded, Solar Powered Aircraft (SPA) which includes a Regenerative Fuel Cell (RFC) system and novel tankage for energy storage. An existing flightworthy electric powered flying wing design was modified to incorporate present and near-term technologies in energy storage, power electronics, aerodynamics, and guidance and control in order to design philosophy was to work with vendors to identify affordable near-term technological opportunities that could be applied to existing designs in order to reduce weight, increase reliability, and maintain adequate efficiency of components for delivery within 18 months. The energy storage subsystem for a HALE SPA is a key driver for the entire vehicle because it can represent up to half of the vehicle weight and most missions of interest require the specific energy to be considerably higher than 200 W-hr/kg for many cycles. This stringent specific energy requirement precludes the use of rechargeable batteries or flywheels and suggests examination of various RFC designs. An RFC system using lightweight tankage, a single fuel cell (FC) stack, and a single electrolyzer (EC) stack separated by the length of a spar segment (up to 39 ft), has specific energy of {approximately}300 W-hr/kg with 45% efficiency, which is adequate for HALE SPA requirements. However, this design has complexity and weight penalties associated with thermal management, electrical wiring, plumbing, and structural weight. A more elegant solution is to use unitized RFC stacks (reversible stacks that act as both FCs and ECs) because these systems have superior specific energy, scale to smaller systems more favorably, and have intrinsically simpler thermal management.

Mitlitsky, F.; Colella, N.J.; Myers, B. [Lawrence Livermore National Lab., CA (United States); Anderson, C.J. [Aero Vironment, Inc., Monrovia, CA (United States)

1993-06-02T23:59:59.000Z

24

DOE Hydrogen and Fuel Cells Program Record 5012a: Well-to-Wheels Analyses for Solar and Wind Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Program Record DOE Hydrogen and Fuel Cells Program Record Record #: 5012a Date: December 21, 2005 Title: Well-to-Wheels Analyses for Solar & Wind Hydrogen Production Originator: Roxanne Garland Approved by: JoAnn Milliken Date: January 6, 2006 Item: This record explains the basis for the differences between the analyses of well-to-wheels energy use and greenhouse gas emissions conducted via Argonne National Laboratory's GREET Model, cited in the U.S. Department of Energy's Solar and Wind Technologies for Hydrogen Production Report to Congress, 1 and those conducted by the National Research Council, cited in the report The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. 2 Well-to-Wheels Energy Use and Greenhouse Gas Emissions - Argonne National

25

Improved Dye-Sensitized Solar Cell (DSSC) for Higher Energy ...  

solar cells to potentially compete with fossil fuels. Improved Dye-Sensitized Solar Cell (DSSC) for Higher Energy Conversion Efficiency Page 1 of 1 Data Update

26

Fuel Cell Technologies Office: Fuel Cell Animation  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

27

Nanocrystal Solar Cells  

E-Print Network (OSTI)

Nov, 2005). Chapter 4 Hybrid solar cells with 3-dimensional5 All-inorganic nanocrystal solar cells 5.1 Introduction Inoperation of organic based solar cells and distinguish them

Gur, Ilan

2006-01-01T23:59:59.000Z

28

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

IEA HIA Hydrogen Safety Stakeholder IEA HIA Hydrogen Safety Stakeholder Workshop Bethesda, Maryland Fuel Cell Technologies Program Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 10/2/2012 2 | Fuel Cell Technologies Program eere.energy.gov Overview Fuel Cells - An Emerging Global Industry Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. * Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung,

29

Clean Energy: Fuel Cells, Batteries, Renewables - Materials ...  

Science Conference Proceedings (OSTI)

Major areas of rapid advancement include fuel cells, wind, solar, and geothermal ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

30

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Fuel cells have the potential to replace the internal-combustion engine in...

31

Solar Cells  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Here we are using microwaves for increasing the surface area of titania nanopowders for energy based applications like dye sensitized solar†...

32

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

33

Connecticut Fuel Cell Programs -From Demonstration to Deployment  

E-Print Network (OSTI)

CCEF Goals 6 #12;Clean Energy Technologies Fuel Cells Solar Biomass Hydro Landfill Gas Wave Wind 7 #12

34

Hybrid solar-fossil fuel power generation  

E-Print Network (OSTI)

In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

Sheu, Elysia J. (Elysia Ja-Zeng)

2012-01-01T23:59:59.000Z

35

NETL: Fuel Cells - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel CellsSolid State Energy Conversion Alliance (SECA) Contacts For information on the Fuel CellsSECA program, contact: Fuel Cells Technology Manager: Shailesh Vora 412-386-7515...

36

Energy Basics: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cells Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for...

37

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Operation of a Solid Polymer Fuel Cell: A Parametric Model,"1991). G. Bronoel, "Hydrogen-Air Fuel Cells Without PreciousG. Abens, "Development of a Fuel Cell Power Source for Bus,"

Delucchi, Mark

1992-01-01T23:59:59.000Z

38

Water Outlet Control Mechanism for Fuel Cell System Operation ...  

Self-Regulating Water Separation System for Fuel Cells Innovators at NASAís Johnson Space ... Solar Thermal; Startup ... The system uses the flow energy of the fuel ...

39

NREL: Energy Analysis - Hydrogen and Fuel Cells Technology Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences Geothermal Hydrogen and Fuel Cells Solar Vehicles and Fuels Research Wind Market Analysis Policy Analysis Sustainability Analysis Key Activities Models & Tools Data &...

40

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Reversible Fuel Cells Reversible Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Twitter Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Google Bookmark Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Delicious Rank Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on Digg Find More places to share Fuel Cell Technologies Office: Reversible Fuel Cells Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FCT Fuel Cells: Fuel Cell R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell R&D Activities to someone by E-mail Share FCT Fuel Cells: Fuel Cell R&D Activities on Facebook Tweet about FCT Fuel Cells: Fuel Cell R&D Activities on Twitter Bookmark...

42

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Technical Cell Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technical Publications on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

43

A fuel cell overview  

SciTech Connect

This paper is an overview of the fuel cell as an efficient and environmentally benign energy conversion technology. The topics of the paper include their physical arrangement, types of fuel cells, status of commercial development, applications of the fuel cell power plants and comparison with existing alternatives, and good design practice for fuel cell safety.

Krumpelt, M. [Argonne National Lab., IL (United States); Reiser, C.

1994-10-01T23:59:59.000Z

44

Silicon solar cell assembly  

DOE Patents (OSTI)

A silicon solar cell assembly comprising a large, thin silicon solar cell bonded to a metal mount for use when there exists a mismatch in the thermal expansivities of the device and the mount.

Burgess, Edward L. (Albuquerque, NM); Nasby, Robert D. (Albuquerque, NM); Schueler, Donald G. (Albuquerque, NM)

1979-01-01T23:59:59.000Z

45

Amorphous silicon solar cells  

SciTech Connect

The fabrication, performance, and applications of a-Si solar cells are discussed, summarizing the results of recent experimental investigations and trial installations. Topics examined include the fundamental principles and design strategies of solar power installations; the characteristics of monocrystalline-Si solar cells; techniques for reducing the cost of solar cells; independent, linked, and hybrid solar power systems; proposed satellite solar power systems; and the use of solar cells in consumer appliances. Consideration is given to the history of a-Si, a-Si fabrication techniques, quality criteria for a-Si films, solar cells based on a-Si, and techniques for increasing the efficiency and lowering the cost of a-Si solar cells. Graphs, diagrams, drawings, and black-and-white and color photographs are provided. 136 references.

Takahashi, K.; Konagai, M.

1986-01-01T23:59:59.000Z

46

Fuel cells seminar  

SciTech Connect

This year`s meeting highlights the fact that fuel cells for both stationary and transportation applications have reached the dawn of commercialization. Sales of stationary fuel cells have grown steadily over the past 2 years. Phosphoric acid fuel cell buses have been demonstrated in urban areas. Proton-exchange membrane fuel cells are on the verge of revolutionizing the transportation industry. These activities and many more are discussed during this seminar, which provides a forum for people from the international fuel cell community engaged in a wide spectrum of fuel cell activities. Discussions addressing R&D of fuel cell technologies, manufacturing and marketing of fuel cells, and experiences of fuel cell users took place through oral and poster presentations. For the first time, the seminar included commercial exhibits, further evidence that commercial fuel cell technology has arrived. A total of 205 papers is included in this volume.

1996-12-01T23:59:59.000Z

47

Solar Cell Silicon  

Science Conference Proceedings (OSTI)

Jul 31, 2011 ... About this Symposium. Meeting, 2012 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon. Sponsorship, The Minerals, Metals†...

48

Economical Pyrite-Based Solar Cells  

compete with fossil fuels (payback time of about 5-7 years). The second generation of solar cells focuses on low production costs using thin film cells, which resulted in much lower efficiency rates. The third generation of solar cells has not yet ...

49

Hydrogen & Fuel Cells - Fuel Cell - Solid Oxide  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolyzer Research and Development Solid Oxide Fuel Cells Solid oxide diagram In an SOFC, oxygen from air is reduced to ions at the cathode, which diffuse through the...

50

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

51

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: November 2012 on Facebook Tweet about Fuel Cell Technologies...

52

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter Archives to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter Archives on Facebook Tweet about Fuel Cell Technologies...

53

Fuel Cell Technologies Office: Subscribe to the Fuel Cell Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to the Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel Cell Technologies Office: Subscribe to the Fuel Cell Technologies Office Newsletter on...

54

Fuel Cell Technologies Office: Fuel Cells for Portable Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

for Portable Power Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells for Portable Power Workshop on Facebook Tweet about Fuel Cell Technologies...

55

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Office: News on Twitter Bookmark Fuel Cell Technologies Office: News on Google Bookmark Fuel Cell Technologies Office: News on Delicious Rank Fuel Cell Technologies...

56

Fuel Cell Technologies Office: Webinars  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Webinars to someone by E-mail Share Fuel Cell Technologies Office: Webinars on Facebook Tweet about Fuel Cell Technologies Office: Webinars on Twitter Bookmark Fuel Cell...

57

California Fuel Cell Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Speaker(s): Bob Knight Date: October 19, 2000 - 12:00pm Location: Bldg. 90 The California Fuel Cell Partnership is a current collaboration among major automakers, fuel cell...

58

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologies on AddThis.com... Early Adoption of Fuel Cells Early Market Applications for Fuel Cells

59

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Pre-Solicitation Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation Workshop on Facebook Tweet about Fuel Cell...

60

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: January 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fuel Cell Technologies Office: 2010 New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 New Fuel Cell Projects Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2010 New Fuel Cell Projects Meeting on Facebook Tweet about Fuel Cell Technologies...

62

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: January 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell...

63

Fuel Cell Technologies Office: 2009 New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

09 New Fuel Cell Projects Meeting to someone by E-mail Share Fuel Cell Technologies Office: 2009 New Fuel Cell Projects Meeting on Facebook Tweet about Fuel Cell Technologies...

64

Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas and Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop on Facebook Tweet about Fuel Cell Technologies Office:...

65

Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells for Buildings Roadmap Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells for Buildings Roadmap Workshop on Facebook Tweet about Fuel Cell...

66

Fuel cell arrangement  

DOE Patents (OSTI)

A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1987-05-12T23:59:59.000Z

67

Fuel cell arrangement  

DOE Patents (OSTI)

A fuel cell arrangement is provided wherein cylindrical cells of the solid oxide electrolyte type are arranged in planar arrays where the cells within a plane are parallel. Planes of cells are stacked with cells of adjacent planes perpendicular to one another. Air is provided to the interior of the cells through feed tubes which pass through a preheat chamber. Fuel is provided to the fuel cells through a channel in the center of the cell stack; the fuel then passes the exterior of the cells and combines with the oxygen-depleted air in the preheat chamber. 3 figs.

Isenberg, A.O.

1987-05-12T23:59:59.000Z

68

Micro fuel cell  

SciTech Connect

An ambient temperature, liquid feed, direct methanol fuel cell device is under development. A metal barrier layer was used to block methanol crossover from the anode to the cathode side while still allowing for the transport of protons from the anode to the cathode. A direct methanol fuel cell (DMFC) is an electrochemical engine that converts chemical energy into clean electrical power by the direct oxidation of methanol at the fuel cell anode. This direct use of a liquid fuel eliminates the need for a reformer to convert the fuel to hydrogen before it is fed into the fuel cell.

Zook, L.A.; Vanderborgh, N.E. [Los Alamos National Lab., NM (United States); Hockaday, R. [Energy Related Devices Inc., Los Alamos, NM (United States)

1998-12-31T23:59:59.000Z

69

Heterojunction solar cell  

DOE Patents (OSTI)

A high-efficiency single heterojunction solar cell is described wherein a thin emitter layer (preferably Ga[sub 0.52]In[sub 0.48]P) forms a heterojunction with a GaAs absorber layer. The conversion efficiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer. 1 fig.

Olson, J.M.

1994-08-30T23:59:59.000Z

70

Heterojunction solar cell  

DOE Patents (OSTI)

A high-efficiency single heterojunction solar cell wherein a thin emitter layer (preferably Ga.sub.0.52 In.sub.0.48 P) forms a heterojunction with a GaAs absorber layer. The conversion effiency of the solar cell is at least 25.7%. The solar cell preferably includes a passivating layer between the substrate and the absorber layer. An anti-reflection coating is preferably disposed over the emitter layer.

Olson, Jerry M. (Lakewood, CO)

1994-01-01T23:59:59.000Z

71

Power from the Fuel Cell  

E-Print Network (OSTI)

Power for Buildings Using Fuel-Cell Cars,Ē Proceedings ofwell as to drive down fuel-cell system costs through productis most likely to be the fuel-cell vehicle. Fuel cells are

Lipman, Timothy E.

2000-01-01T23:59:59.000Z

72

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter to someone by E-mail Share Fuel...

73

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Fuels Printable Version Share this resource Fuels Vehicles Electric Vehicles Flexible Fuel Vehicles Fuel Cell Vehicles Hybrid Electric Vehicles Natural Gas Vehicles Propane...

74

Solar Cell Silicon  

Science Conference Proceedings (OSTI)

... continued and costs have been cut dramatically along the production value chain. The most important feedstock for crystalline solar cells is high purity silicon .

75

Fuel Cells Information at NIST  

Science Conference Proceedings (OSTI)

NIST Home > Fuel Cells Information at NIST. Fuel Cells Information at NIST. (the links below are a compilation of programs ...

2010-08-23T23:59:59.000Z

76

Approaches to Future Generation Photovoltaics and Solar Fuels: Multiple Exciton Generation in Quantum Dots, Quantum Dot Arrays, Molecular Singlet Fission, and Quantum Dot Solar Cells  

DOE Green Energy (OSTI)

One potential, long-term approach to more efficient future generation solar cells is to utilize the unique properties of quantum dots (QDs) and unique molecular chromophores to control the relaxation pathways of excited states to produce enhanced conversion efficiency through efficient multiple electron-hole pair generation from single photons . We have observed efficient multiple exciton generation (MEG) in PbSe, PbS, PbTe, and Si QDs and efficient singlet fission (SF) in molecules that satisfy specific requirements for their excited state energy level structure to achieve carrier multiplication. We have studied MEG in close-packed QD arrays where the QDs are electronically coupled in the films and thus exhibit good transport while still maintaining quantization and MEG. We have developed simple, all-inorganic QD solar cells that produce large short-circuit photocurrents and power conversion efficiencies in the 3-5% range via both nanocrystalline Schottky junctions and nanocrystalline p-n junctions. These solar cells also show QYs for photocurrent that exceed 100% in the photon energy regions where MEG is possible; the photocurrent MEG QYs as a function of photon energy match those determined via time-resolved spectroscopy. We have also observed very efficient SF in thin films of molecular crystals of 1,3 diphenylisobenzofuran with quantum yields of 200% at the optimum SF threshold of 2Eg (HOMO-LUMO for S{sub 0}-S{sub 1}), reflecting the creation of two excited triplet states from the first excited singlet state. Various possible configurations for novel solar cells based on MEG in QDs and SF in molecules that could produce high conversion efficiencies will be presented, along with progress in developing such new types of solar cells. Recent analyses of the effect of MEG or SF combined with solar concentration on the conversion efficiency of solar cells will be discussed.

Nozik, A. J.; Beard, M. C.; Johnson, J. C.; Hanna, M. C.; Luther, J. M.; Midgett, A.; Semonin, O.; Michel, J.

2012-01-01T23:59:59.000Z

77

Fuel Cell Handbook update  

DOE Green Energy (OSTI)

The objective of this work was to update the 1988 version of DOE`s Fuel Cell Handbook. Significant developments in the various fuel cell technologies required revisions to reflect state-of-the-art configurations and performance. The theoretical presentation was refined in order to make the handbook more useful to both the casual reader and fuel cell or systems analyst. In order to further emphasize the practical application of fuel cell technologies, the system integration information was expanded. In addition, practical elements, such as suggestions and guidelines to approximate fuel cell performance, were provided.

Owens, W.R.; Hirschenhofer, J.H.; Engleman, R.R. Jr.; Stauffer, D.B.

1993-11-01T23:59:59.000Z

78

Fuel Cells Team  

NLE Websites -- All DOE Office Websites (Extended Search)

Judith Valerio at one of our 31 single-cell test stands Fuel Cell Team The FC team focus is R&D on polymer electrolyte membrane (PEM) fuel cells for commercial and military applications. Our program has had ongoing funding in the area of polymer electrolyte fuel cells since 1977 and has been responsible for enabling breakthroughs in the areas of thin film electrodes and air bleed for CO tolerance. For more information on the history of fuel cell research at Los Alamos, please click here. Fuel cells are an important enabling technology for the Hydrogen Economy and have the potential to revolutionize the way we power the nation and the world. The FC team is exploring the potential of fuel cells as energy-efficient, clean, and fuel-flexible alternatives that will

79

NIST: NIF - PEM Fuel Cells  

Science Conference Proceedings (OSTI)

... Fuel cells are operationally equivalent to a battery. The reactants or fuel in a fuel cell can be replaced unlike a standard disposable or rechargeable ...

80

Fuel Cell 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell 101 Fuel Cell 101 Don Hoffman Don Hoffman Ship Systems & Engineering Research Division March 2011 Distribution Statement A: Approved for public release; distribution is unlimited. Fuel Cell Operation * A Fuel Cell is an electrochemical power source * It supplies electricity by combining hydrogen and oxygen electrochemically without combustion. * It is configured like a battery with anode and cathode. * Unlike a battery, it does not run down or require recharging and will produce electricity and will produce electricity, heat and water as long as fuel is supplied. 2H + + 2e - O 2 + 2H + + 2e - 2H 2 O H 2 Distribution Statement A: Approved for public release; distribution is unlimited. 2 FUEL FUEL CONTROLS Fuel Cell System HEAT & WATER CLEAN CLEAN EXHAUST EXHAUST

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel cell generator  

DOE Patents (OSTI)

High temperature solid oxide electrolyte fuel cell generators which allow controlled leakage among plural chambers in a sealed housing. Depleted oxidant and fuel are directly reacted in one chamber to combust remaining fuel and preheat incoming reactants. The cells are preferably electrically arranged in a series-parallel configuration.

Isenberg, Arnold O. (Forest Hills, PA)

1983-01-01T23:59:59.000Z

82

Fuel Cells publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science ¬Ľ Materials Science ¬Ľ Fuel Cells ¬Ľ Fuel Cells Publications Fuel Cells publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electorchemical Devices Email Fernando Garzon Sensors & Electorchemical Devices Email Piotr Zelenay Sensors & Electorchemical Devices Email Rod Borup Sensors & Electorchemical Devices Email Karen E. Kippen Chemistry Communications Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

83

Fuel Cells Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION / ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy Pat Davis 2 Fuel Cells Technical Goals & Objectives Goal : Develop and demonstrate fuel cell power system technologies for transportation, stationary, and portable applications. 3 Fuel Cells Technical Goals & Objectives Objectives * Develop a 60% efficient, durable, direct hydrogen fuel cell power system for transportation at a cost of $45/kW (including hydrogen storage) by 2010. * Develop a 45% efficient reformer-based fuel cell power system for transportation operating on clean hydrocarbon or alcohol based fuel that meets emissions standards, a start-up time of 30 seconds, and a projected manufactured cost of $45/kW by

84

Fuel Cell Technologies Office: Early Market Applications for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies to someone by E-mail Share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Facebook Tweet about Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Twitter Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Google Bookmark Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Delicious Rank Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on Digg Find More places to share Fuel Cell Technologies Office: Early Market Applications for Fuel Cell Technologies on AddThis.com...

85

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Joint Fuel Cell Bus Joint Fuel Cell Bus Workshop to someone by E-mail Share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Facebook Tweet about Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Twitter Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Google Bookmark Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Delicious Rank Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on Digg Find More places to share Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars

86

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

87

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

88

NREL: Learning - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Fuel cells and their ability to cleanly produce electricity from hydrogen and oxygen are what make hydrogen attractive as a "fuel" for transportation use particularly, but also as a general energy carrier for homes and other uses, and for storing and transporting otherwise intermittent renewable energy. Fuel cells function somewhat like a battery-with external fuel being supplied rather than stored electricity-to generate power by chemical reaction rather than combustion. Hydrogen fuel cells, for instance, feed hydrogen gas into an electrode that contains a catalyst, such as platinum, which helps to break up the hydrogen molecules into positively charged hydrogen ions and negatively charged electrons. The electrons flow from the electrode to a terminal that

89

NETL: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Coal and Power Systems Fuel Cells SECA Logo Welcome to NETL's Fuel Cells Webpage. In partnership with private industry, educational institutions and national laboratories, we are leading the research, development, and demonstration of high efficiency, fuel flexible solid oxide fuel cells (SOFCs) and coal-based SOFC power generation systems for stationary market large central power plants under the Solid State Energy Conversion Alliance (SECA). The SECA cost reduction goal is to have SOFC systems capable of being manufactured at $400 per kilowatt by 2010. Concurrently, the scale-up, aggregation, and integration of the technology will progress in parallel leading to prototype validation of megawatt (MW)-class fuel flexible products by 2012 and 2015. The SECA coal-based systems goal is the development of large

90

Customizable Fuel Processor Technology Benefits Fuel Cell ...  

Customizable Fuel Processor Technology Benefits Fuel Cell Power Industry (ANL-IN-00-030) Argonne National Laboratory. Contact ANL About This ...

91

Distributed Energy Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Fuel Cells Energy Fuel Cells DOE Hydrogen DOE Hydrogen and and Fuel Cells Fuel Cells Coordination Meeting Fuel Cell Coordination Meeting June 2-3, 2003 Electricity Users Kathi Epping Kathi Epping Objectives & Barriers Distributed Energy OBJECTIVES * Develop a distributed generation PEM fuel cell system operating on natural gas or propane that achieves 40% electrical efficiency and 40,000 hours durability at $400-750/kW by 2010. BARRIERS * Durability * Heat Utilization * Power Electronics * Start-Up Time Targets and Status Integrated Stationary PEMFC Power Systems Operating on Natural Gas or Propane Containing 6 ppm Sulfur 40,000 30,000 15,000 Hours Durability 750 1,250 2,500 $/kWe Cost 40 32 30 % Electrical Efficiency Large (50-250 kW) Systems 40,000 30,000 >6,000 Hours Durability 1,000 1,500 3,000

92

Molten carbonate fuel cell  

DOE Patents (OSTI)

A molten electrolyte fuel cell with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas, the cell enclosures collectively providing an enclosure for the array and effectively avoiding the problems of electrolyte migration and the previous need for compression of stack components, the fuel cell further including an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

Kaun, Thomas D. (New Lenox, IL); Smith, James L. (Lemont, IL)

1987-01-01T23:59:59.000Z

93

Molten carbonate fuel cell  

DOE Patents (OSTI)

A molten electrolyte fuel cell is disclosed with an array of stacked cells and cell enclosures isolating each cell except for access to gas manifolds for the supply of fuel or oxidant gas or the removal of waste gas. The cell enclosures collectively provide an enclosure for the array and effectively avoid the problems of electrolyte migration and the previous need for compression of stack components. The fuel cell further includes an inner housing about and in cooperation with the array enclosure to provide a manifold system with isolated chambers for the supply and removal of gases. An external insulated housing about the inner housing provides thermal isolation to the cell components.

Kaun, T.D.; Smith, J.L.

1986-07-08T23:59:59.000Z

94

Fuel cell market applications  

DOE Green Energy (OSTI)

This is a review of the US (and international) fuel cell development for the stationary power generation market. Besides DOE, GRI, and EPRI sponsorship, the US fuel cell program has over 40% cost-sharing from the private sector. Support is provided by user groups with over 75 utility and other end-user members. Objectives are to develop and demonstrate cost-effective fuel cell power generation which can initially be commercialized into various market applications using natural gas fuel by the year 2000. Types of fuel cells being developed include PAFC (phosphoric acid), MCFC (molten carbonate), and SOFC (solid oxide); status of each is reported. Potential international applications are reviewed also. Fuel cells are viewed as a force in dispersed power generation, distributed power, cogeneration, and deregulated industry. Specific fuel cell attributes are discussed: Fuel cells promise to be one of the most reliable power sources; they are now being used in critical uninterruptible power systems. They need hydrogen which can be generated internally from natural gas, coal gas, methanol landfill gas, or other fuels containing hydrocarbons. Finally, fuel cell development and market applications in Japan are reviewed briefly.

Williams, M.C.

1995-12-31T23:59:59.000Z

95

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

96

Evaluation of concentration solar cells for terrestrial applications  

E-Print Network (OSTI)

Solar energy has become a hot prospect for the future replacement of fossil fuels, which have limited reserves and cause environmental problems. Solar cell is such a device to directly generate electricity from this clean ...

An, Tao, M. Eng. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

97

Modeling & Simulation - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

GCTool Computer Model Helps Focus Fuel Cell Vehicle Research Somewhere near Detroit, an automotive engineer stares at the ceiling, wondering how to squeeze 1% more efficiency out...

98

Opportunities with Fuel Cells  

Reports and Publications (EIA)

The concept for fuel cells was discovered in the nineteenth century. Today, units incorporating this technology are becoming commercially available for cogeneration applications.

Information Center

1994-05-01T23:59:59.000Z

99

Hydrogen Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

The fuel cell ó an energy conversion device that can efficiently capture and use the power of hydrogen ó is the key to making it happen.

100

Fuel Cell Development Status  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and sustainable fuel cell solutions UTC Power About Us PureCell ¬ģ Model 400 Solution Process Overview Power Conditioner Converts DC power to high-quality AC power 3 Fuel Cell Stack Generates DC power from hydrogen and air 2 Fuel Processor Converts natural gas fuel to hydrogen

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Fuel Cell Demonstration Program  

DOE Green Energy (OSTI)

In an effort to promote clean energy projects and aid in the commercialization of new fuel cell technologies the Long Island Power Authority (LIPA) initiated a Fuel Cell Demonstration Program in 1999 with six month deployments of Proton Exchange Membrane (PEM) non-commercial Beta model systems at partnering sites throughout Long Island. These projects facilitated significant developments in the technology, providing operating experience that allowed the manufacturer to produce fuel cells that were half the size of the Beta units and suitable for outdoor installations. In 2001, LIPA embarked on a large-scale effort to identify and develop measures that could improve the reliability and performance of future fuel cell technologies for electric utility applications and the concept to establish a fuel cell farm (Farm) of 75 units was developed. By the end of October of 2001, 75 Lorax 2.0 fuel cells had been installed at the West Babylon substation on Long Island, making it the first fuel cell demonstration of its kind and size anywhere in the world at the time. Designed to help LIPA study the feasibility of using fuel cells to operate in parallel with LIPA's electric grid system, the Farm operated 120 fuel cells over its lifetime of over 3 years including 3 generations of Plug Power fuel cells (Lorax 2.0, Lorax 3.0, Lorax 4.5). Of these 120 fuel cells, 20 Lorax 3.0 units operated under this Award from June 2002 to September 2004. In parallel with the operation of the Farm, LIPA recruited government and commercial/industrial customers to demonstrate fuel cells as on-site distributed generation. From December 2002 to February 2005, 17 fuel cells were tested and monitored at various customer sites throughout Long Island. The 37 fuel cells operated under this Award produced a total of 712,635 kWh. As fuel cell technology became more mature, performance improvements included a 1% increase in system efficiency. Including equipment, design, fuel, maintenance, installation, and decommissioning the total project budget was approximately $3.7 million.

Gerald Brun

2006-09-15T23:59:59.000Z

102

Lateral superlattice solar cells  

DOE Green Energy (OSTI)

A novel structure which comprises of a lateral superlattice as the active layer of a solar cell is proposed. If the alternating regions A and B of a lateral superlattice ABABAB... are chosen to have a Type-II band offset, it is shown that the performance of the active absorbing region of the solar cell is optimized. In essence, the Type-II lateral superlattice region can satisfy the material requirements for an ideal solar cells active absorbing region, i.e. simultaneously having a very high transition probability for photogeneration and a very long minority carrier recombination lifetime.

Mascarenhas, A.; Zhang, Y. [National Renewable Energy Lab., Golden, CO (United States); Millunchick, J.M.; Twesten, R.D.; Jones, E.D. [Sandia National Labs., Albuquerque, NM (United States)

1997-10-01T23:59:59.000Z

103

Thermal Management of Solar Cells  

E-Print Network (OSTI)

Nanostructured Silicon- Based Solar Cells, 2013. X. C. Tong,compact heat exchangers, and solar cells," Sci-Tech News,2011. C. J. Chen, Physics of Solar Energy: Wiley, 2011. M.

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

104

Investigation of Transient Phenomena of Proton Exchange Membrane Fuel Cells  

E-Print Network (OSTI)

and Electric Vehicles · Photovoltaics ­ thin film solar cells, deployment and testing · Fuel Cells­ · Novel System with Fuel Cell #12;Hydrogen Power Park Overview · Test bed for integration and validationHNEI Overview and Fuel Cell Programs SOEST Dean's Advance by HNEI Faculty and Staff Hawaii Natural

Victoria, University of

105

Miniature ceramic fuel cell  

DOE Patents (OSTI)

A miniature power source assembly capable of providing portable electricity is provided. A preferred embodiment of the power source assembly employing a fuel tank, fuel pump and control, air pump, heat management system, power chamber, power conditioning and power storage. The power chamber utilizes a ceramic fuel cell to produce the electricity. Incoming hydro carbon fuel is automatically reformed within the power chamber. Electrochemical combustion of hydrogen then produces electricity.

Lessing, Paul A. (Idaho Falls, ID); Zuppero, Anthony C. (Idaho Falls, ID)

1997-06-24T23:59:59.000Z

106

An analysis of distributed solar fuel systems  

E-Print Network (OSTI)

While solar fuel systems offer tremendous potential to address global clean energy needs, most existing analyses have focused on the feasibility of large centralized systems and applications. Not much research exists on ...

Thomas, Alex, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

107

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

Di Croce, A.M.; Draper, R.

1993-11-02T23:59:59.000Z

108

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

1993-11-02T23:59:59.000Z

109

How Fuel Cells Work  

NLE Websites -- All DOE Office Websites (Extended Search)

How Fuel Cells Work How Fuel Cells Work Diagram: How a PEM fuel cell works. 1. Hydrogen fuel is channeled through field flow plates to the anode on one side of the fuel cell, while oxygen from the air is channeled to the cathode on the other side of the cell. 2. At the anode, a platinum catalyst causes the hydrogen to split into positive hydrogen ions (protons) and negatively charged electrons. 3. The Polymer Electrolyte Membrane (PEM) allows only the positively charged ions to pass through it to the cathode. The negatively charged electrons must travel along an external circuit to the cathode, creating an electrical current. 4. At the cathode, the electrons and positively charged hydrogen ions combine with oxygen to form water, which flows out of the cell.

110

Fuel Cell Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

variety of other fuels, including natural gas and renewable fuels such as methanol or biogas. Hydrogen and fuel cells can provide these benefits and address critical challenges in...

111

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: March 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

112

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: February 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

113

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September 2012 to someone by E-mail September 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

114

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

115

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2013 to someone by E-mail August 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

116

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

October 2012 to someone by E-mail October 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: October 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications

117

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 to someone by E-mail April 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: April 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives

118

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

3 to someone by E-mail 3 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: May 2013 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations

119

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

2 to someone by E-mail 2 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: June 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe

120

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

September/October 2013 to someone by E-mail September/October 2013 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: September/October 2013 on AddThis.com... Publications

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter:  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 to someone by E-mail August 2012 to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Google Bookmark Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Delicious Rank Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cell Technologies Office Newsletter: August 2012 on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter

122

Fuel Cell Technologies Office: Hydrogen and Fuel Cell Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Manufacturing R&D Workshop to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen and Fuel Cell Manufacturing R&D Workshop on Facebook Tweet...

123

Fuel Cell Technologies Office: DOE Hydrogen and Fuel Cells Coordinatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Coordination Meeting to someone by E-mail Share Fuel Cell Technologies Office: DOE Hydrogen and Fuel Cells Coordination Meeting on Facebook Tweet about...

124

Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation)  

DOE Green Energy (OSTI)

Presentation on Fuel Cells Vehicle Systems Analysis (Fuel Cell Freeze Investigation) for the 2005 Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Review held in Arlington, Virginia on May 23-26, 2005.

Pesaran, A.; Kim, G.; Markel, T.; Wipke, K.

2005-05-01T23:59:59.000Z

125

Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Solar Cells: Spin-Cast Bulk Heterojunction Solar Cells: A Dynamical Investigation Print Wednesday,...

126

Solar cell array interconnects  

DOE Patents (OSTI)

Electrical interconnects are disclosed for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value. 4 figs.

Carey, P.G.; Thompson, J.B.; Colella, N.J.; Williams, K.A.

1995-11-14T23:59:59.000Z

127

Photovoltaic solar cell  

DOE Patents (OSTI)

A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

2013-11-26T23:59:59.000Z

128

Solar cell array interconnects  

DOE Patents (OSTI)

Electrical interconnects for solar cells or other electronic components using a silver-silicone paste or a lead-tin (Pb-Sn) no-clean fluxless solder cream, whereby the high breakage of thin (<6 mil thick) solar cells using conventional solder interconnect is eliminated. The interconnects of this invention employs copper strips which are secured to the solar cells by a silver-silicone conductive paste which can be used at room temperature, or by a Pb-Sn solder cream which eliminates undesired residue on the active surfaces of the solar cells. Electrical testing using the interconnects of this invention has shown that no degradation of the interconnects developed under high current testing, while providing a very low contact resistance value.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Colella, Nicolas J. (Livermore, CA); Williams, Kenneth A. (Livermore, CA)

1995-01-01T23:59:59.000Z

129

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and fuel cells offer great  

E-Print Network (OSTI)

and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary fuel cell technol vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated in addition to hydrogen fuel for local demonstration fuel cell vehicles. As advanced vehicles begin to enter

130

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

the batteries, and to power accessories like the air condi- tioner and heater. Hybrid electric cars can exceed#12;#12;Hydrogen Fuel Cell Engines MODULE 8: FUEL CELL HYBRID ELECTRIC VEHICLES CONTENTS 8.1 HYBRID ELECTRIC VEHICLES .................................................................................. 8-1 8

131

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

about $0.50/gJ to the price of biomass-derived hydrogen (biomass (Larson and Katofsky, 1992). The fuel retati pricebiomass instead of from solar power, the production cost would be much lower (Table 5), and the breakeven gasoline price

Delucchi, Mark

1992-01-01T23:59:59.000Z

132

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies and Products Supported by the Fuel Cell Technologies Office, finds DOE funding has led to more than 360 hydrogen and fuel cell patents, 36 commercial...

133

NREL: Hydrogen and Fuel Cells Research - Fuel Cell System Contaminants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell System Contaminants Material Screening Data NREL designed this interactive material selector tool to help fuel cell developers and material suppliers explore the results...

134

Fuel Cell Technologies Office: Reversible Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

of Reversible Fuel Cell Systems at Proton Energy, Mr. Everett Anderson, PROTON ON SITE Regenerative Fuel Cells for Energy Storage, Mr. Corky Mittelsteadt, Giner Electrochemical...

135

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development and Demonstration Plan* to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Technologies Office Multi-Year Research, Development and...

136

Fuel Cell Technologies Office: Early Adoption of Fuel Cell Technologie...  

NLE Websites -- All DOE Office Websites (Extended Search)

Adoption of Fuel Cell Technologies Federal Facilities Guide Read Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers for step-by-step guidance...

137

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

138

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

offices, including Fuel Cell Technologies. Funding Opportunities SBIRSTTR Phase I Release 1 Technical Topics Announced for FY14-Hydrogen and Fuel Cell Topics Include...

139

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45¬į, -45¬į, and dendritic crack patterns. The effort to shift U.S. energy reliance from fossil fuels to renewable sources has spurred companies to reduce the cost and increase the reliability of their solar photovoltaics (SPVs). The use of thinner silicon in SPV technologies is being widely adopted because it significantly reduces costs; however, silicon is brittle, and thinner silicon, coupled with other recent trends in SPV technologies (thinner glass, lighter or no metal frames, increased use of certain polymers for encapsulation of the silicon cells), is more susceptible to stress and cracking. When the thin

140

Fuel cell stack arrangements  

DOE Patents (OSTI)

Arrangements of stacks of fuel cells and ducts, for fuel cells operating with separate fuel, oxidant and coolant streams. An even number of stacks are arranged generally end-to-end in a loop. Ducts located at the juncture of consecutive stacks of the loop feed oxidant or fuel to or from the two consecutive stacks, each individual duct communicating with two stacks. A coolant fluid flows from outside the loop, into and through cooling channels of the stack, and is discharged into an enclosure duct formed within the loop by the stacks and seals at the junctures at the stacks.

Kothmann, Richard E. (Churchill Boro, PA); Somers, Edward V. (Murrysville, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Quantum Dot Solar Cells: Preprint  

DOE Green Energy (OSTI)

Presented at the 2001 NCPV Program Review Meeting: Potential of quantum dot solar cells to increase the maximum attainable thermodynamic conversion efficiency of solar photoconversion to about 66%.

Nozik, A. J.

2001-10-01T23:59:59.000Z

142

Batteries and Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Collage of electric cars, plug, battery research lab Collage of electric cars, plug, battery research lab Batteries and Fuel Cells EETD researchers study the basic science and development of advanced batteries and fuel cells for transportation, electric grid storage, and other stationary applications. This research is aimed at developing more environmentally friendly technologies for generating and storing energy, including better batteries and fuel cells. Li-Ion and Other Advanced Battery Technologies Research conducted here on battery technology is aimed at developing low-cost rechargeable advanced electrochemical batteries for both automotive and stationary applications. The goal of fuel cell research is to provide the technologies for the successful commercialization of polymer-electrolyte and solid oxide fuel

143

DOE Fuel Cell Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

500 2007 2013 Cumulative Number of Patents Fuel Cells ProductionDelivery Storage * DOE funding has led to 40 commercial hydrogen and fuel cell technologies and 65 emerging...

144

Fuel Cell Technologies Office: Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

145

Fuel Cell Technologies Office: Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

146

Fuel Cells | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Fuel Cells Jump to: navigation, search TODO: Add description List of Fuel Cells Incentives...

147

Fuel Cell Technologies Office: Education  

NLE Websites -- All DOE Office Websites (Extended Search)

& Local Governments For Early Adopters For Students & Educators Careers in Hydrogen & Fuel Cells Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells...

148

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 06 · Solar Cell Materials & Structures 1Montana State University: Solar Cells Lecture 6: Solar Cells Solar Cell Technologies · A) Crystalline Silicon · B) Thin Film · C) Group III-IV Cells 2Montana State University: Solar Cells Lecture 6: Solar

Kaiser, Todd J.

149

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

4/3/2012 4/3/2012 eere.energy.gov Fuel Cell Technologies Overview Flow Cell Workshop Washington, DC Dr. Sunita Satyapal & Dr. Dimitrios Papageorgopoulos U.S. Department of Energy Fuel Cell Technologies Program 3/7/2011 Flow Cells for Energy Storage Workshop Purpose To understand the applied research and development needs and the grand challenges for the use of flow cells as energy-storage devices. Objectives 1. Understand the needs for applied research from stakeholders. 2. Gather input for future development of roadmaps and technical targets for flow cells for various applications. 3. Identify grand challenges and prioritize R&D needs. Flow cells combine the unique advantages of batteries and fuel cells and can offer benefits for multiple energy storage applications.

150

Fuel processing for fuel cell powered vehicles.  

DOE Green Energy (OSTI)

A number of auto companies have announced plans to have fuel cell powered vehicles on the road by the year 2004. The low-temperature polymer electrolyte fuel cells to be used in these vehicles require high quality hydrogen. Without a hydrogen-refueling infrastructure, these vehicles need to convert the available hydrocarbon fuels into a hydrogen-rich gas on-board the vehicle. Earlier analysis has shown that fuel processors based on partial oxidation reforming are well suited to meet the size and weight targets and the other performance-related needs of on-board fuel processors for light-duty fuel cell vehicles (1).

Ahmed, S.; Wilkenhoener, R.; Lee, S. H. D.; Carter, J. D.; Kumar, R.; Krumpelt, M.

1999-01-22T23:59:59.000Z

151

Broad spectrum solar cell  

DOE Patents (OSTI)

An alloy having a large band gap range is used in a multijunction solar cell to enhance utilization of the solar energy spectrum. In one embodiment, the alloy is In.sub.1-xGa.sub.xN having an energy bandgap range of approximately 0.7 eV to 3.4 eV, providing a good match to the solar energy spectrum. Multiple junctions having different bandgaps are stacked to form a solar cell. Each junction may have different bandgaps (realized by varying the alloy composition), and therefore be responsive to different parts of the spectrum. The junctions are stacked in such a manner that some bands of light pass through upper junctions to lower junctions that are responsive to such bands.

Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA); Wu, Junqiao (Richmond, CA); Schaff, William J. (Ithaca, NY)

2007-05-15T23:59:59.000Z

152

Thermal Management of Solar Cells  

E-Print Network (OSTI)

of the valence band. Solar radiation enters the p-n junctiona fraction of absorbed solar radiation energy is turned intoenclosure, the radiation energy from the solar cell light

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

153

Fuel cell generator energy dissipator  

DOE Patents (OSTI)

An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

2000-01-01T23:59:59.000Z

154

Enabling Thin Silicon Solar Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Enabling Thin Silicon Solar Cell Technology Enabling Thin Silicon Solar Cell Technology Print Friday, 21 June 2013 10:49 Generic silicon solar cells showing +45, -45, and...

155

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

States Energy Advisory Board (STEAB) States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel cells - convert chemical energy directly into electrical energy, bypassing inefficiencies associated with thermal energy conversion. Available energy is equal to the Gibbs free energy. Combustion Engines - convert chemical energy into thermal energy and

156

Hydrogen & Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is the lead federal agency for applied research and development (R&D) of cutting edge hydrogen and fuel cell technologies. DOE supports R&D that makes it...

157

Hydrogen and Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) is the lead federal agency for applied research and development (R&D) of cutting edge hydrogen and fuel cell technologies. DOE supports R&D that makes it...

158

Rapidly refuelable fuel cell  

DOE Patents (OSTI)

This invention is directed to a metal-air fuel cell where the consumable metal anode is movably positioned in the cell and an expandable enclosure, or bladder, is used to press the anode into contact with separating spacers between the cell electrodes. The bladder may be depressurized to allow replacement of the anode when consumed.

Joy, Richard W. (Santa Clara, CA)

1983-01-01T23:59:59.000Z

159

Heterojunction solar cells  

DOE Green Energy (OSTI)

A qualitative description of semiconductor/semiconductor heterojunction solar cells is given. The two groups of heterojunctions of greatest economic potential, very highly efficient cells for concentrator applications and moderately efficient thin film cells for flat plates, are described with examples. These examples illustrate the role of heterojunctions in surface passivation, monolithic multijunction devices, devices with semiconductors of only one conductivity type, and low-temperature fabrication techniques.

Wagner, S.

1978-01-01T23:59:59.000Z

160

Energy Basics: Fuel Cell Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Energy Basics Fuel Cell Vehicles Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel cell vehicles, powered by...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Composite fuel cell membranes  

DOE Patents (OSTI)

A bilayer or trilayer composite ion exchange membrane is described suitable for use in a fuel cell. The composite membrane has a high equivalent weight thick layer in order to provide sufficient strength and low equivalent weight surface layers for improved electrical performance in a fuel cell. In use, the composite membrane is provided with electrode surface layers. The composite membrane can be composed of a sulfonic fluoropolymer in both core and surface layers.

Plowman, K.R.; Rehg, T.J.; Davis, L.W.; Carl, W.P.; Cisar, A.J.; Eastland, C.S.

1997-08-05T23:59:59.000Z

162

Monolithic tandem solar cell  

DOE Patents (OSTI)

It is an object of the invention to provide a monolithic tandem photovoltaic solar cell which is highly radiation resistant and efficient; in which the energy bandgap of the lower subcell can be tailored for specific applications; solar cell comprising layers of InP and GaInAsP (or GaInAs), where said photovoltaic cell is useful, for example, in space power applications; having an improved power-to-mass ratio; in which subcells are lattice-matches; and are both two terminal and three terminal monolithic tandem photovoltaic solar cells. To achieve the foregoing and other objects and in accordance with the purpose of the present invention, as embodied and broadly described herein, the monolithic tandem photovoltaic solar cell may comprise; (a) an InP substrate having an upper surface; (b) a first photoactive subcell on the upper surface of the InP substrate; wherein the first subcell comprises GaInAs (which could include GaInAsP) and includes a homojunction; and (c) a second photoactive subcell on the first subcell; wherein the second subcell comprises InP and includes a homojunction. The cell is described in detail. 5 figs., 2 tabs.

Wanlass, M.W.

1989-11-03T23:59:59.000Z

163

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, and (c) a second photoactive subcell on the first subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. The solar cell can be provided as a two-terminal device or a three-terminal device.

Wanlass, Mark W. (Golden, CO)

1991-01-01T23:59:59.000Z

164

Seventh Edition Fuel Cell Handbook  

DOE Green Energy (OSTI)

Provides an overview of fuel cell technology and research projects. Discusses the basic workings of fuel cells and their system components, main fuel cell types, their characteristics, and their development status, as well as a discussion of potential fuel cell applications.

NETL

2004-11-01T23:59:59.000Z

165

Breakthrough Vehicle Development - Fuel Cells  

Fuel Cell Technologies Publication and Product Library (EERE)

Document describing research and development program for fuel cell power systems for transportation applications.

166

FUEL CELL TECHNOLOGIES PROGRAM Technologies  

E-Print Network (OSTI)

.eere.energy.gov/informationcenter hydrogen and electricity for fuel cell and plug-in hybrid electric vehicles while using proven stationary vehicles with its own fuel cell technology. Currently, advanced vehicle technologies are being evalu- ated and fuel cells offer great promise for our energy future. Fuel cell vehicles are not yet commercially

167

Argonne TDC: Fuel Cell Technologies  

Emergency Response. Engineering. Environmental Research. Fuel Cells. Imaging Technology. Material Science. Nanotechnology. Physical Sciences. Sensor ...

168

Fuel Cell Technologies Program Overview  

E-Print Network (OSTI)

Cell TypesFuel Cell Types Note: ITSOFC is intermediate temperature SOFC and TSOFC is tubular SOFC #12

169

Fuel Cell Technologies Office: Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations to Presentations to someone by E-mail Share Fuel Cell Technologies Office: Presentations on Facebook Tweet about Fuel Cell Technologies Office: Presentations on Twitter Bookmark Fuel Cell Technologies Office: Presentations on Google Bookmark Fuel Cell Technologies Office: Presentations on Delicious Rank Fuel Cell Technologies Office: Presentations on Digg Find More places to share Fuel Cell Technologies Office: Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells

170

Fuel Cell Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary to someone by Glossary to someone by E-mail Share Fuel Cell Technologies Office: Glossary on Facebook Tweet about Fuel Cell Technologies Office: Glossary on Twitter Bookmark Fuel Cell Technologies Office: Glossary on Google Bookmark Fuel Cell Technologies Office: Glossary on Delicious Rank Fuel Cell Technologies Office: Glossary on Digg Find More places to share Fuel Cell Technologies Office: Glossary on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Glossary

171

Biomass Fuel Cell Systems - DOE Hydrogen and Fuel Cells Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Utilize ceramic microchannel reactor technology for * reforming of natural gas and biogas fuels for subsequent electrochemical oxidation within a solid-oxide fuel cell (SOFC)....

172

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& & Renewable Energy Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership Working Group April 14 th , 2010 2 * DOE Fuel Cell Market Transformation Overview * Overview of CHP Concept * Stationary Fuel Cells for CHP Applications * Partnering and Financing (Sam Logan) * Example Project Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power)

173

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell devices to charge electronics such as cell phones and audio players. EERE funding for hydrogen and fuel cells has led to more than 450 patents, 60 commercial...

174

Amorphous semiconductor solar cell  

SciTech Connect

A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

Dalal, Vikram L. (Newark, DE)

1981-01-01T23:59:59.000Z

175

Fuel cell system  

DOE Patents (OSTI)

A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

Early, Jack (Perth Amboy, NJ); Kaufman, Arthur (West Orange, NJ); Stawsky, Alfred (Teaneck, NJ)

1982-01-01T23:59:59.000Z

176

Nanostructured plasmonics silicon solar cells  

Science Conference Proceedings (OSTI)

We report a plasmonics silicon solar cell design, with the possibility of lower cost and higher efficiency. The proposed solar cell consists of a radial p-n junction silicon nanopillar arrays in combination with metallic nanoparticles resolved at the ... Keywords: Antireflection coating, Optical absorption, Power conversion efficiency, Solar cells

Pushpa Raj Pudasaini, Arturo A. Ayon

2013-10-01T23:59:59.000Z

177

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

#12;#12;Hydrogen Fuel Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS CONTENTS 11.1 GLOSSARY Cell Engines MODULE 11:GLOSSARY AND CONVERSIONS OBJECTIVES This module is for reference only. Hydrogen MODULE 11: GLOSSARY AND CONVERSIONS PAGE 11-1 11.1 Glossary This glossary covers words, phrases

178

Fuel cell and advanced turbine power cycle  

SciTech Connect

Solar has a vested interest in integration of gas turbines and high temperature fuels (particularly solid oxide fuel cells[SOFC]); this would be a backup for achieving efficiencies on the order of 60% with low exhaust emissions. Preferred cycle is with the fuel cell as a topping system to the gas turbine; bottoming arrangements (fuel cells using the gas turbine exhaust as air supply) would likely be both larger and less efficient unless complex steam bottoming systems are added. The combined SOFC and gas turbine will have an advantage because it will have lower NOx emissions than any heat engine system. Market niche for initial product entry will be the dispersed or distributed power market in nonattainment areas. First entry will be of 1-2 MW units between the years 2000 and 2004. Development requirements are outlined for both the fuel cell and the gas turbine.

White, D.J.

1996-12-31T23:59:59.000Z

179

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

180

Hawaii Fuel Cell Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Test Facility presented to DOE Hydrogen Codes and Standards Coordinating Committee Fuel Purity Specifications Workshop Renaissance Hollywood Hotel by Rick Rocheleau...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fuel cell system combustor  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode and cathode effluents. The combustor includes a turbulator section at its input end for intimately mixing the anode and cathode effluents before they contact the combustors primary catalyst bed. The turbulator comprises at least one porous bed of mixing media that provides a tortuous path therethrough for creating turbulent flow and intimate mixing of the anode and cathode effluents therein.

Pettit, William Henry (Rochester, NY)

2001-01-01T23:59:59.000Z

182

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 08 · Solar Cell Characterization 1Montana State University: Solar Cells Lecture 8: Characterization Solar Cell Operation n Emitter p Base Rear completing the circuit 2Montana State University: Solar Cells Lecture 8: Characterization Solar Cell

Kaiser, Todd J.

183

Fuel Cells & Renewable Portfolio Standards  

E-Print Network (OSTI)

.....................................................12 SOFC Battery Range Extender Auxiliary Power Unit (SOFC) as Military APU Replacements" (presentation, DOD-DOE Workshop on Fuel Cells in Aviation cell plasma lighting demonstration, a solid oxide fuel cell (SOFC) battery range extender APU

184

Third-Generation Solar Cells Using Optical Rectenna  

compete with fossil fuels (Payback time of about 5-7 years). The second generation of solar cells focuses on low production costs using thin film cells, which resulted in much lower efficiency rates. The third†generation of solar cells has not yet ...

185

Fabrication and Characterization of Organic Solar Cells  

E-Print Network (OSTI)

8? WŁrfel†P. †Physics†of†solar†cells†:†from†principles†to†Photocell†for†Converting† Solar†Radiation†into†Electrical†generation† photovoltaics:† solarcells† for† 2020† and†

Yengel, Emre

2010-01-01T23:59:59.000Z

186

Nanowire-based All Oxide Solar Cells  

E-Print Network (OSTI)

photovoltaic performance is widely applicable to any nanowire solar cellfilm solar cells. The principal photovoltaic (PV) materialphotovoltaic performance is widely applicable to any nanowire solar cell

Yang, Peidong

2009-01-01T23:59:59.000Z

187

Handbook of fuel cell performance  

DOE Green Energy (OSTI)

The intent of this document is to provide a description of fuel cells, their performances and operating conditions, and the relationship between fuel processors and fuel cells. This information will enable fuel cell engineers to know which fuel processing schemes are most compatible with which fuel cells and to predict the performance of a fuel cell integrated with any fuel processor. The data and estimates presented are for the phosphoric acid and molten carbonate fuel cells because they are closer to commercialization than other types of fuel cells. Performance of the cells is shown as a function of operating temperature, pressure, fuel conversion (utilization), and oxidant utilization. The effect of oxidant composition (for example, air versus O/sub 2/) as well as fuel composition is examined because fuels provided by some of the more advanced fuel processing schemes such as coal conversion will contain varying amounts of H/sub 2/, CO, CO/sub 2/, CH/sub 4/, H/sub 2/O, and sulfur and nitrogen compounds. A brief description of fuel cells and their application to industrial, commercial, and residential power generation is given. The electrochemical aspects of fuel cells are reviewed. The phosphoric acid fuel cell is discussed, including how it is affected by operating conditions; and the molten carbonate fuel cell is discussed. The equations developed will help systems engineers to evaluate the application of the phosphoric acid and molten carbonate fuel cells to commercial, utility, and industrial power generation and waste heat utilization. A detailed discussion of fuel cell efficiency, and examples of fuel cell systems are given.

Benjamin, T.G.; Camara, E.H.; Marianowski, L.G.

1980-05-01T23:59:59.000Z

188

Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery  

SciTech Connect

HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

None

2011-12-19T23:59:59.000Z

189

Available Technologies:Improved Amorphous Silicon Solar Cells  

Solar cells; Large solar panels; ADVANTAGES. Increased performance ; Less expensive than crystalline silicon solar cells; Enables thinner, lighter solar panels;

190

Coaxial silicon nanowires as solar cells and nanoelectronic power sources  

E-Print Network (OSTI)

(EERE) Fuel Cell Technologies Program (FCT) Solar Thermochemical Hydrogen Production R&D portfolioSANDIA REPORT SAND2011-3622 Unlimited Release Printed May 2011 Solar Thermochemical Hydrogen://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online #12;3 SAND2011-3622 Unlimited Release Printed May 2011 Solar Thermochemical Hydrogen

Marcus, Charles

191

Internal reforming fuel cell assembly with simplified fuel feed  

DOE Patents (OSTI)

A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

2001-01-01T23:59:59.000Z

192

FUEL CELL TECHNOLOGIES PROGRAM Hydrogen and Fuel  

E-Print Network (OSTI)

- tions, distributed power generation, and cogeneration (in which excess heat released during electricity the imported petroleum we currently use in our cars and trucks. Why Fuel Cells? Fuel cells directly convert the chemical energy in hydrogen to electricity, with pure water and potentially useful heat as the only

193

Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure  

NLE Websites -- All DOE Office Websites (Extended Search)

International Hydrogen International Hydrogen Fuel and Pressure Vessel Forum to someone by E-mail Share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Facebook Tweet about Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Twitter Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Google Bookmark Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Delicious Rank Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on Digg Find More places to share Fuel Cell Technologies Office: International Hydrogen Fuel and Pressure Vessel Forum on AddThis.com... Publications Program Publications Technical Publications

194

Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Delivery and Delivery and Fueling (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Delivery and Fueling (Text Alternative Version) on AddThis.com... Publications Program Publications

195

PEM FUEL CELL TURBOCOMPRESSOR  

DOE Green Energy (OSTI)

The objective is to assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2004-04-01T23:59:59.000Z

196

Solar Cells Hellas SA | Open Energy Information  

Open Energy Info (EERE)

Cells Hellas SA Jump to: navigation, search Name Solar Cells Hellas SA Place Athens, Greece Product Greek manufacturer of PV wafers, cells and modules. References Solar Cells...

197

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

with Photovoltaic Cells Contains initial work for the current PV kit experiments o Solar Cells o Solar Electric Arrays o Photovoltaics in Arrays: Solar Cells Generating Electricity http://www.californiasolarcenter.org/history_pv and the Solar Radiation Monitoring Laboratory

Kaiser, Todd J.

198

Fuel Cell Technologies Office: Joint Fuel Cell Bus Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Bus Workshop Fuel Cell Bus Workshop The U.S. Department of Energy (DOE) and the U.S. Department of Transportation (DOT) held a Fuel Cell Bus Workshop on June 7, 2010 in Washington, D.C. in conjunction with the DOE Hydrogen and Fuel Cell Program Annual Merit Review. The workshop plenary and breakout session brought together technical experts from industry, end users, academia, DOE national laboratories, and other government agencies to address the status and technology needs of fuel cell powered buses. Meeting Summary Joint Fuel Cell Bus Workshop Summary Report Presentations Fuel Cell Bus Workshop Overview & Purpose, Dimitrios Papageorgopoulos, DOE Users Perspective on Advanced Fuel Cell Bus Technology, Nico Bouwkamp, CaFCP and Leslie Eudy, NREL Progress and Challenges for PEM Transit Fleet Applications, Tom Madden, UTC Power, LLC

199

DOE Hydrogen and Fuel Cells Program: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office FY2014 Budget Request Briefing on April 12 Apr 9, 2013 The Fuel Cell Technologies Office will hold a budget briefing for stakeholders on Friday, April...

200

Fuel Cell Technologies Office: Hydrogen and Fuel Cell Manufacturing...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Fuel Cell Manufacturing R&D Workshop The National Renewable Energy Laboratory (NREL) hosted a Hydrogen and Fuel Cell Manufacturing R&D Workshop August 11-12, 2011, in...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Cell Technologies Office: Biogas and Fuel Cells Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Biogas and Fuel Cells Workshop The U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in...

202

Fuel Cell Technologies Office: New Fuel Cell Projects Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Agenda (PDF 83 KB) New Fuel Cell Projects Overview (PDF 1.2 MB), P. Davis, DOE New Fuel Cell Projects Overview (PDF 609 KB), N. Garland, DOE Membranes Membranes and MEAs for Dry,...

203

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market...

204

DOE Hydrogen and Fuel Cells Program: Hydrogen and Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Program Presents Annual Merit Review Awards May 21, 2013 The U.S. Department of Energy's (DOE's) Hydrogen and Fuel Cells Program presented its annual awards...

205

Compact fuel cell  

DOE Patents (OSTI)

A novel electrochemical cell which may be a solid oxide fuel cell (SOFC) is disclosed where the cathodes (144, 140) may be exposed to the air and open to the ambient atmosphere without further housing. Current collector (145) extends through a first cathode on one side of a unit and over the unit through the cathode on the other side of the unit and is in electrical contact via lead (146) with housing unit (122 and 124). Electrical insulator (170) prevents electrical contact between two units. Fuel inlet manifold (134) allows fuel to communicate with internal space (138) between the anodes (154 and 156). Electrically insulating members (164 and 166) prevent the current collector from being in electrical contact with the anode.

Jacobson, Craig (Moraga, CA); DeJonghe, Lutgard C. (Lafayette, CA); Lu, Chun (Richland, WA)

2010-10-19T23:59:59.000Z

206

Fuel Cell Technologies Office: Technology Validation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Technology Validation to someone by E-mail Share Fuel Cell Technologies Office: Technology Validation on Facebook Tweet about Fuel Cell Technologies...

207

Hydrogen, Fuel Cells, & Infrastructure - Program Areas - Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel cell Welcome> Program Areas> Program Areas Hydrogen, Fuel Cells & Infrastructure Production & Delivery | Storage | Fuel Cell R&D | Systems Integration & Analysis | Safety...

208

Microfluidic Microbial Fuel Cells for Microstructure Interrogations  

E-Print Network (OSTI)

Sediment microbial fuel cells demonstrating marine (left)Model of hydrogen fuel cell kinetic losses including5 FutureWork 5.1 Microfluidic Microbial Fuel Cell Continued

Parra, Erika Andrea

2010-01-01T23:59:59.000Z

209

Canadian Fuel Cell Commercialization Roadmap Update: Progress...  

Open Energy Info (EERE)

Fuel Cell Commercialization Roadmap Update: Progress of Canada's Hydrogen and Fuel Cell Industry Jump to: navigation, search Name Canadian Fuel Cell Commercialization Roadmap...

210

Air Breathing Direct Methanol Fuel Cell  

DOE Patents (OSTI)

A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

Ren; Xiaoming (Los Alamos, NM)

2003-07-22T23:59:59.000Z

211

Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Vehicle Tax Fuel Cell Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Vehicle Tax Credit South Carolina residents that claim the federal fuel cell vehicle tax credit are eligible for a state income tax credit equal to 20% of the

212

Organic fuel cells and fuel cell conducting sheets  

DOE Patents (OSTI)

A passive direct organic fuel cell includes an organic fuel solution and is operative to produce at least 15 mW/cm.sup.2 when operating at room temperature. In additional aspects of the invention, fuel cells can include a gas remover configured to promote circulation of an organic fuel solution when gas passes through the solution, a modified carbon cloth, one or more sealants, and a replaceable fuel cartridge.

Masel, Richard I. (Champaign, IL); Ha, Su (Champaign, IL); Adams, Brian (Savoy, IL)

2007-10-16T23:59:59.000Z

213

Fuel Cell Technologies Office: Multimedia  

NLE Websites -- All DOE Office Websites (Extended Search)

uses of fuel cell technologies. MotorWeek H2 on the Horizon Video Learn how car makers, energy suppliers, and the government are bringing fuel cell electric vehicles and hydrogen...

214

Fuel Cell Technologies Office: Databases  

NLE Websites -- All DOE Office Websites (Extended Search)

Efficiency and Renewable Energy Fuel Cell Technologies Office Databases The Fuel Cell Technologies Office is developing databases to make it easier for users to find up-to-date...

215

Fuel Cell Projects Kickoff Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

of Cost-Competitive Fuel Cell Stacks James Cross, Nuvera 4:30 Fuel Cell Fundamentals at Low and Subzero Temperatures Adam Weber, LBNL 4:50 Development and Validation of...

216

Fuel Cell Technologies Office: Events  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Events to someone by E-mail Share Fuel Cell Technologies Office: Events on Facebook Tweet...

217

DOE Fuel Cell Subprogram (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

* By 2010, develop a fuel cell system for consumer electronics (<50 W) with an energy density of 1,000 WhL. * By 2010, develop a fuel cell system for auxiliary power units (3-30...

218

2009 Fuel Cell Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

219

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

220

Fuel Cell Technologies Office: Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Fuel cell sub-assembly  

DOE Patents (OSTI)

A fuel cell sub-assembly comprising a plurality of fuel cells, a first section of a cooling means disposed at an end of the assembly and means for connecting the fuel cells and first section together to form a unitary structure.

Chi, Chang V. (Brookfield, CT)

1983-01-01T23:59:59.000Z

222

Commercialization of fuel-cells  

DOE Green Energy (OSTI)

This report is an abbreviated version of the ''Report of the DOE Advanced Fuel Cell Commercialization Working Group (AFC2WG),'' released January 1995. We describe fuel-cell commercialization for stationary power applications of phosphoric acid, molten carbonate, solid oxide, and polymer electrolyte membrane fuel cells.

Penner, S.S.; Appleby, A.J.; Baker, B.S.; Bates, J.L.; Buss, L.B.; Dollard, W.J.; Farris, P.J.; Gillis, E.A.; Gunsher, J.A.; Khandkar, A.; Krumpelt, M.; O'Sullivan, J.B.; Runte, G.; Savinell, R.F.; Selman, J.R.; Shores, D.A.; Tarman, P.

1995-03-01T23:59:59.000Z

223

Fuel Cell Handbook, Fourth Edition  

SciTech Connect

Robust progress has been made in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in January 1994. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultra high efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 6 describe the four major fuel cell types and their performance based on cell operating conditions. The section on polymer electrolyte membrane fuel cells has been added to reflect their emergence as a significant fuel cell technology. Phosphoric acid, molten carbonate, and solid oxide fuel cell technology description sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

224

Fuel Cell Handbook, Fourth Edition  

DOE Green Energy (OSTI)

sections have been updated from the previous edition. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 7, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 8 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Stauffer, D.B; Hirschenhofer, J.H.; Klett, M.G.; Engleman, R.R.

1998-11-01T23:59:59.000Z

225

Third-Generation Solar Cells Using Optical Rectenna Vaccine ...  

but resulted in a price too high to compete with fossil fuels (Payback time of about 5-7 years). The second generation of solar cells focuses on low production costs

226

Fuel cell membrane humidification  

DOE Patents (OSTI)

A polymer electrolyte membrane fuel cell assembly has an anode side and a cathode side separated by the membrane and generating electrical current by electrochemical reactions between a fuel gas and an oxidant. The anode side comprises a hydrophobic gas diffusion backing contacting one side of the membrane and having hydrophilic areas therein for providing liquid water directly to the one side of the membrane through the hydrophilic areas of the gas diffusion backing. In a preferred embodiment, the hydrophilic areas of the gas diffusion backing are formed by sewing a hydrophilic thread through the backing. Liquid water is distributed over the gas diffusion backing in distribution channels that are separate from the fuel distribution channels.

Wilson, Mahlon S. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

227

Fuel Cell Handbook, Fifth Edition  

DOE Green Energy (OSTI)

Progress continues in fuel cell technology since the previous edition of the Fuel Cell Handbook was published in November 1998. Uppermost, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells have been demonstrated at commercial size in power plants. The previously demonstrated phosphoric acid fuel cells have entered the marketplace with more than 220 power plants delivered. Highlighting this commercial entry, the phosphoric acid power plant fleet has demonstrated 95+% availability and several units have passed 40,000 hours of operation. One unit has operated over 49,000 hours. Early expectations of very low emissions and relatively high efficiencies have been met in power plants with each type of fuel cell. Fuel flexibility has been demonstrated using natural gas, propane, landfill gas, anaerobic digester gas, military logistic fuels, and coal gas, greatly expanding market opportunities. Transportation markets worldwide have shown remarkable interest in fuel cells; nearly every major vehicle manufacturer in the U.S., Europe, and the Far East is supporting development. This Handbook provides a foundation in fuel cells for persons wanting a better understanding of the technology, its benefits, and the systems issues that influence its application. Trends in technology are discussed, including next-generation concepts that promise ultrahigh efficiency and low cost, while providing exceptionally clean power plant systems. Section 1 summarizes fuel cell progress since the last edition and includes existing power plant nameplate data. Section 2 addresses the thermodynamics of fuel cells to provide an understanding of fuel cell operation at two levels (basic and advanced). Sections 3 through 8 describe the six major fuel cell types and their performance based on cell operating conditions. Alkaline and intermediate solid state fuel cells were added to this edition of the Handbook. New information indicates that manufacturers have stayed with proven cell designs, focusing instead on advancing the system surrounding the fuel cell to lower life cycle costs. Section 9, Fuel Cell Systems, has been significantly revised to characterize near-term and next-generation fuel cell power plant systems at a conceptual level of detail. Section 10 provides examples of practical fuel cell system calculations. A list of fuel cell URLs is included in the Appendix. A new index assists the reader in locating specific information quickly.

Energy and Environmental Solutions

2000-10-31T23:59:59.000Z

228

Solar cell module lamination process  

DOE Patents (OSTI)

A solar cell module lamination process using fluoropolymers to provide protection from adverse environmental conditions and thus enable more extended use of solar cells, particularly in space applications. A laminate of fluoropolymer material provides a hermetically sealed solar cell module structure that is flexible and very durable. The laminate is virtually chemically inert, highly transmissive in the visible spectrum, dimensionally stable at temperatures up to about 200.degree. C. highly abrasion resistant, and exhibits very little ultra-violet degradation.

Carey, Paul G. (Mountain View, CA); Thompson, Jesse B. (Brentwood, CA); Aceves, Randy C. (Tracy, CA)

2002-01-01T23:59:59.000Z

229

Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Market Transformation Market Transformation Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects to someone by E-mail Share Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Facebook Tweet about Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Twitter Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Google Bookmark Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Delicious Rank Fuel Cell Technologies Office: Financial Incentives for Hydrogen and Fuel Cell Projects on Digg Find More places to share Fuel Cell Technologies Office: Financial

230

Thermal Management of Solar Cells.  

E-Print Network (OSTI)

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in oneÖ (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

231

TUTORIALS: Solar Cell Operation - TMS  

Science Conference Proceedings (OSTI)

Jan 21, 2008 ... This animated tutorial describes the basics of solar cell operation. It defines the photovoltaic effect, discusses electron and current flow within a†...

232

Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen and Fuel Cell Hydrogen and Fuel Cell Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Google Bookmark Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Delicious Rank Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Hydrogen and Fuel Cell Tax Exemption on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen and Fuel Cell Tax Exemption The following are exempt from state sales tax: 1) any device, equipment, or

233

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Credit A tax credit of up to $4,000 is available for the purchase of qualified

234

Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

National Fuel Cell Bus National Fuel Cell Bus Program (NFCBP) to someone by E-mail Share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Facebook Tweet about Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Twitter Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Google Bookmark Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Delicious Rank Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on Digg Find More places to share Alternative Fuels Data Center: National Fuel Cell Bus Program (NFCBP) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type National Fuel Cell Bus Program (NFCBP) The goal of the NFCBP is to facilitate the development of commercially

235

Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Cell Motor Fuel Cell Motor Vehicle Tax Deduction to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Google Bookmark Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Delicious Rank Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Motor Vehicle Tax Deduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Cell Motor Vehicle Tax Deduction A taxpayer is eligible for a $2,000 tax deduction for the purchase of a

236

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched. 9 figs.

Wanlass, M.W.

1994-06-21T23:59:59.000Z

237

Monolithic tandem solar cell  

DOE Patents (OSTI)

A single-crystal, monolithic, tandem, photovoltaic solar cell is described which includes (a) an InP substrate having upper and lower surfaces, (b) a first photoactive subcell on the upper surface of the InP substrate, (c) a second photoactive subcell on the first subcell; and (d) an optically transparent prismatic cover layer over the second subcell. The first photoactive subcell is GaInAsP of defined composition. The second subcell is InP. The two subcells are lattice matched.

Wanlass, Mark W. (Golden, CO)

1994-01-01T23:59:59.000Z

238

Fuel cell generator with fuel electrodes that control on-cell fuel reformation  

Science Conference Proceedings (OSTI)

A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

2011-10-25T23:59:59.000Z

239

Nanocrystal Solar Cells  

E-Print Network (OSTI)

absorption of the solar spectrum. Also, like branched CdSeonly a fraction of the solar spectrum may be utilized for PVonly part of the solar spectrum. As such, blends should

Gur, Ilan

2006-01-01T23:59:59.000Z

240

Carbonate fuel cell matrix  

DOE Patents (OSTI)

A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

Farooque, M.; Yuh, C.Y.

1996-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Carbonate fuel cell matrix  

DOE Patents (OSTI)

A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

Farooque, Mohammad (Huntington, CT); Yuh, Chao-Yi (New Milford, CT)

1996-01-01T23:59:59.000Z

242

Fuel cell oxygen electrode  

DOE Patents (OSTI)

An oxygen electrode for a fuel cell utilizing an acid electrolyte has a substrate of an alkali metal tungsten bronze of the formula: A.sub.x WO.sub.3 where A is an alkali metal and x is at least 0.2, which is covered with a thin layer of platinum tungsten bronze of the formula: Pt.sub.y WO.sub.3 where y is at least 0.8.

Shanks, Howard R. (Ames, IA); Bevolo, Albert J. (Ames, IA); Danielson, Gordon C. (Ames, IA); Weber, Michael F. (Wichita, KS)

1980-11-04T23:59:59.000Z

243

State of the States: Fuel Cells in America 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells in America 2012 Cells in America 2012 State OF THE States September 2012 i Authors and Acknowledgements This report was written and compiled by Sandra Curtin, Jennifer Gangi and Ryan Skukowski of Fuel Cells 2000, an activity of Breakthrough Technologies Institute in Washington, DC. Support was provided by the U.S. Department of Energy's Energy Efficiency and Renewable Energy Fuel Cell Technologies Program. About This Report The information contained in this report was collected from public records, websites, and contact with state and industry representatives as of August 2012, particularly Fuel Cells 2000's State Fuel Cell and Hydrogen Database and North Carolina Solar Center's Database of State Incentives for Renewables &

244

Reformate fuel cell system durability  

DOE Green Energy (OSTI)

The goal of this research is to identify the factors limiting the durability of fuel cells and fuel processors. This includes identifying PEM fuel cell durability issues for operating on pure hydrogen, and those that arise from the fuel processing of liquid hydrocarbons (e.g., gasoline) as a function of fuel composition and impurity content. Benchmark comparisons with the durability of fuel cells operating on pure hydrogen are used to identify limiting factors unique to fuel processing. We describe the design, operation and operational results of the durability system, including the operating conditions for the system, fuel processor sub-section operation over 1000 hours, post-mortem characterization of the catalysts in the fuel processor, and single cell operation.

Borup, R. L. (Rodney L.); Inbody, M. A. (Michael A.); Uribe, F. A. (Francisco A.); Tafoya, J. (Jose I.)

2002-01-01T23:59:59.000Z

245

Fuel Cell Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Fuel Cell Technologies Office About the Fuel Cell Technologies Office The Fuel Cell Technologies Office conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. The office is aligned with the strategic vision and goals of the U.S. Department of Energy (DOE). The office's efforts will help secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. What We Do DOE is the lead federal agency for directing and integrating activities in hydrogen and fuel cell R&D as authorized in the Energy Policy Act of 2005. The Fuel Cell Technologies Office is responsible for coordinating the R&D activities for DOE's Hydrogen and Fuel Cells Program, which includes activities within four DOE offices (Office of Energy Efficiency and Renewable Energy [EERE], Office of Fossil Energy, Office of Nuclear Energy, and Office of Science).

246

Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

8/5/2011 eere.energy.gov 8/5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with biogas) * 55-90% reductions for light- duty vehicles * up to 60% (electrical) * up to 70% (electrical, hybrid fuel cell / turbine) * up to 85% (with CHP) Reduced Oil Use * >95% reduction for FCEVs (vs. today's gasoline ICEVs)

247

Alternative Fuels Data Center: Fuel Cell Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Cell Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Fuel Cell Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Fuel Cell Electric Vehicles on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Vehicles Availability Emissions Laws & Incentives Fuel Cell Electric Vehicles

248

Ambient pressure fuel cell system  

DOE Patents (OSTI)

An ambient pressure fuel cell system is provided with a fuel cell stack formed from a plurality of fuel cells having membrane/electrode assemblies (MEAs) that are hydrated with liquid water and bipolar plates with anode and cathode sides for distributing hydrogen fuel gas and water to a first side of each one of the MEAs and air with reactant oxygen gas to a second side of each one of the MEAs. A pump supplies liquid water to the fuel cells. A recirculating system may be used to return unused hydrogen fuel gas to the stack. A near-ambient pressure blower blows air through the fuel cell stack in excess of reaction stoichiometric amounts to react with the hydrogen fuel gas.

Wilson, Mahlon S. (Los Alamos, NM)

2000-01-01T23:59:59.000Z

249

Major Government-Supported Fuel Cell Vehicle Projects Government support for fuel cell projects is critical to the development of fuel cell technology.  

E-Print Network (OSTI)

provide most of its power. In the future, there are plans to use fuel cells, a solar-thermal system. The Centre also will house a "National Research Flagship," entitled "Energy Transformed," that will focus sustainable energy technologies, including solar, gas micro-turbines, and wind generators that will initially

250

Fuel Cell Power Plant Experience Naval Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

clean clean Fuel Cell Power Plant Experience Naval Applications US Department of Energy/ Office of Naval Research Shipboard Fuel Cell Workshop Washington, DC March 29, 2011 FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (¬ģ) of FuelCell Energy, Inc. *FuelCell Energy, Inc. *Renewable and Liquid Fuels Experience *HTPEM Fuel Cell Stack for Shipboard APU *Solid Oxide Experience and Applications DOE-ONR Workshop FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (¬ģ) of FuelCell Energy, Inc. FuelCell Energy, Inc. * Premier developer of fuel cell technology - founded in 1969 * Over 50 power installations in North America, Europe, and Asia * Industrial, commercial, utility

251

The challenges of organic polymer solar cells  

E-Print Network (OSTI)

The technical and commercial prospects of polymer solar cells were evaluated. Polymer solar cells are an attractive approach to fabricate and deploy roll-to-roll processed solar cells that are reasonably efficient (total ...

Saif Addin, Burhan K. (Burhan Khalid)

2011-01-01T23:59:59.000Z

252

Nontoxic quantum dot research improves solar cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Nontoxic quantum dot research improves solar cells Nontoxic quantum dot research improves solar cells Solar cells made with low-cost, nontoxic copper-based quantum dots can achieve...

253

NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

National Fuel Cell Technology Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team, which analyzes detailed data and reports on fuel cell technology status, progress, and technical challenges. Graphic representing NREL's Hydrogen Secure Data Center and the variety of applications from which it gathers data, including fuel cell (FC) stacks, FC backup power, FC forklifts, FC cars, FC buses, and FC prime power, and hydrogen infrastructure.

254

Liquid Fuels from CO2, Water, and Solar Energy  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title, Liquid Fuels from CO2, Water, and Solar Energy. Author(s), Aldo†...

255

Mimicking Photosynthesis for Production of Solar Fuels | U.S...  

Office of Science (SC) Website

Science Highlights 2012 Mimicking Photosynthesis for Production of Solar Fuels Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of...

256

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multi-Year Research, Development and Demonstration Plan* The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan* describes the goals,...

257

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

with a focus on improving the performance and durability and reducing the cost of fuel cell components and systems. Research efforts involve: Developing advanced catalysts,...

258

DOE Hydrogen and Fuel Cells Program: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

portable power and auxiliary power applications in a limited fashion where earlier market entry would assist in the development of a fuel cell manufacturing base. This DOE...

259

Fuel Cell Technologies Office: Alkaline Membrane Fuel Cell Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Renewable Energy Laboratory Anion Exchange Membranes for Fuel Cells, Prof. Andrew Herring, Colorado School of Mines Electrocatalysis in Alkaline Electrolytes, Prof. Sanjeev...

260

NREL: Hydrogen and Fuel Cells Research - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

high conductivity) for this application include tin oxide, indium tin oxide, and zinc oxide. Contact: Bryan Pivovar 303-275-3809 Printable Version Hydrogen & Fuel Cells Research...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletter: August 2013 The August 2013 issue of the Fuel Cell Technologies Office newsletter includes stories in these categories: In the News Funding Opportunities Webinars and...

262

Fuel Cell Technologies Office: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

hydrogen and fuel cells. This information is provided in documents such as technical and project reports, conference proceedings and journal articles, technical presentations, and...

263

Fuel Cell Technologies Office: Fuel Cells for Portable Power...  

NLE Websites -- All DOE Office Websites (Extended Search)

Session - Fuel Cell Portable Power Perspectives End User Perspective - Industry Consumer Electronics Power (PDF 1.51 MB) Jerry Hallmark, Motorola Portable Power Sources (above...

264

Renewable Energy: Solar Fuels GRC and GRS  

DOE Green Energy (OSTI)

This Gordon Research Conference seeks to bring together chemists, physicists, materials scientists and biologists to address perhaps the outstanding technical problem of the 21st Century - the efficient, and ultimately economical, storage of energy from carbon-neutral sources. Such an advance would deliver a renewable, environmentally benign energy source for the future. A great technological challenge facing our global future is energy. The generation of energy, the security of its supply, and the environmental consequences of its use are among the world's foremost geopolitical concerns. Fossil fuels - coal, natural gas, and petroleum - supply approximately 90% of the energy consumed today by industrialized nations. An increase in energy supply is vitally needed to bring electric power to the 25% of the world's population that lacks it, to support the industrialization of developing nations, and to sustain economic growth in developed countries. On the geopolitical front, insuring an adequate energy supply is a major security issue for the world, and its importance will grow in proportion to the singular dependence on oil as a primary energy source. Yet, the current approach to energy supply, that of increased fossil fuel exploration coupled with energy conservation, is not scaleable to meet future demands. Rising living standards of a growing world population will cause global energy consumption to increase significantly. Estimates indicate that energy consumption will increase at least two-fold, from our current burn rate of 12.8 TW to 28 - 35 TW by 2050. - U.N. projections indicate that meeting global energy demand in a sustainable fashion by the year 2050 will require a significant fraction of the energy supply to come carbon free sources to stabilize atmospheric carbon dioxide levels at twice the pre-anthropogenic levels. External factors of economy, environment, and security dictate that this global energy need be met by renewable and sustainable sources from a carbon-neutral source. Sunlight is by far the most abundant global carbon-neutral energy resource. More solar energy strikes the surface of the earth in one hour than is obtained from all of the fossil fuels consumed globally in a year. Sunlight may be used to power the planet. However, it is intermittent, and therefore it must be converted to electricity or stored chemical fuel to be used on a large scale. The 'grand challenge' of using the sun as a future energy source faces daunting challenges - large expanses of fundamental science and technology await discovery. A viable solar energy conversion scheme must result in a 10-50 fold decrease in the cost-to-efficiency ratio for the production of stored fuels, and must be stable and robust for a 20-30 year period. To reduce the cost of installed solar energy conversion systems to $0.20/peak watt of solar radiation, a cost level that would make them economically attractive in today's energy market, will require revolutionary technologies. This GRC seeks to present a forum for the underlying science needed to permit future generations to use the sun as a renewable and sustainable primary energy source. Speakers will discuss recent advances in homoogeneous and heterogeneous catalysis of multi-electron transfer processes of importance to solar fuel production, such as water oxidation and reduction, and carbon dioxide reduction. Speakers will also discuss advances in scaleably manufacturable systems for the capture and conversion of sunlight into electrical charges that can be readily coupled into, and utilized for, fuel production in an integrated system.

Nathan Lewis

2010-02-26T23:59:59.000Z

265

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Availability on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations

266

Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Cell Vehicle Emissions on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations

267

An advanced fuel cell simulator  

E-Print Network (OSTI)

Fuel cell power generation systems provide a clean alternative to the conventional fossil fuel based systems. Fuel cell systems have a high e?ciency and use easily available hydrocarbons like methane. Moreover, since the by-product is water, they have a very low environmental impact. The fuel cell system consists of several subsystems requiring a lot of e?ort from engineers in diverse areas. Fuel cell simulators can provide a convenient and economic alternative for testing the electrical subsystems such as converters and inverters. This thesis proposes a low-cost and an easy-to-use fuel cell simulator using a programmable DC supply along with a control module written in LabVIEW. This simulator reproduces the electrical characteristics of a 5kW solid oxide fuel cell (SOFC) stack under various operating conditions. The experimental results indicate that the proposed simulator closely matches the voltage-current characteristic of the SOFC system under varying load conditions. E?ects of non-electrical parameters like hydrogen ?ow rate are also modeled and these parameters are taken as dynamic inputs from the user. The simulator is customizable through a graphical user interface and allows the user to model other types of fuel cells with the respective voltage-current data. The simulator provides an inexpensive and accurate representation of a solid oxide fuel cell under steady state and transient conditions and can replace an actual fuel cell during testing of power conditioning equipment.

Acharya, Prabha Ramchandra

2004-08-01T23:59:59.000Z

268

Research highlights potential for improved solar cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for improved solar cells Research highlights potential for improved solar cells Research has shown that carrier multiplication is a real phenomenon in tiny semiconductor...

269

ELECTROSPUN POLYMER-FIBER SOLAR CELL.  

E-Print Network (OSTI)

??A study of fabricating the first electrospun polymer-fiber solar cell with MEHPPV is presented. Motivation for the work and a brief history of solar cellÖ (more)

Nagata, Shinobu

2011-01-01T23:59:59.000Z

270

Ideal Configuration For Nanoscale Solar Cells - Energy ...  

Technology Marketing Summary The standard design of excitonic solar cells, which includes most organic-based solar cells, is ideal in only two out of ...

271

Available Technologies: Thinner Film Silicon Solar Cells  

Berkeley Lab scientists have designed a new approach to create highly efficient thin film silicon solar cells. This technology promises to lower solar cell material ...

272

Bulb mounting of solar cell  

SciTech Connect

An energy converting assembly is provided for parasiting of light from a fluorescent light bulb utilizing a solar cell. The solar cell is mounted on a base member elongated in the dimension of elongation of the fluorescent bulb, and electrical interconnections to the cell are provided. A flexible sheet of opaque material having a flat white interior reflective surface surrounds the fluorescent bulb and reflects light emitted from the bulb back toward the bulb and the solar cell. The reflective sheet is tightly held in contact with the bottom of the bulb by adhesive, a tie strap, an external clip, or the like.

Thompson, M.E.

1983-04-05T23:59:59.000Z

273

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation to someone by E-mail Share Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Facebook Tweet about Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Twitter Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Google Bookmark Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Delicious Rank Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell Market Transformation on Digg

274

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network (OSTI)

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

275

Kick Off Meeting for New Fuel Cell Projects - Golden Field Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

financial assistance awards for EERE Programs - Fuel Cell Technologies - Biomass - S l Solar - WindWater - Geothermal - Industrial Technologies - State Energ State Energy * GO...

276

Hybrid Fuel Cell Technology Overview  

SciTech Connect

For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

None available

2001-05-31T23:59:59.000Z

277

What's Up With Fuel Cells? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up With Fuel Cells? Up With Fuel Cells? What's Up With Fuel Cells? June 8, 2010 - 7:30am Addthis Sean Large Intern with the Office of Energy Efficiency and Renewable Energy We hear a lot about renewables like wind and solar these days, but what's the deal with fuel cells and is there a future in them? The truth is, fuel cells have been around for some time now; the idea originated in the 1840's. Though fuel cells come in a variety of forms, they all work in the same general manner: three sandwiched segments - the anode, the electrolyte and the cathode. At each of these segments two different chemical reactions occur. The net result of the two reactions is that fuel is consumed, and an electrical current is created, which can be used to power electrical devices, normally referred to as the load. The only emissions are water or

278

Fuel cell gas management system  

SciTech Connect

A fuel cell gas management system including a cathode humidification system for transferring latent and sensible heat from an exhaust stream to the cathode inlet stream of the fuel cell; an anode humidity retention system for maintaining the total enthalpy of the anode stream exiting the fuel cell equal to the total enthalpy of the anode inlet stream; and a cooling water management system having segregated deionized water and cooling water loops interconnected by means of a brazed plate heat exchanger.

DuBose, Ronald Arthur (Marietta, GA)

2000-01-11T23:59:59.000Z

279

Improved electrolytes for fuel cells  

DOE Green Energy (OSTI)

Present day fuel cells based upon hydrogen and oxygen have limited performance due to the use of phosphoric acid as an electrolyte. Improved performance is desirable in electrolyte conductivity, electrolyte management, oxygen solubility, and the kinetics of the reduction of oxygen. Attention has turned to fluorosulfonic acids as additives or substitute electrolytes to improve fuel cell performance. The purpose of this project is to synthesize and electrochemically evaluate new fluorosulfonic acids as superior alternatives to phosphoric acid in fuel cells. (VC)

Gard, G.L.; Roe, D.K.

1991-06-01T23:59:59.000Z

280

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, Richard C. (East Hartford, CT)

1986-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Molten carbonate fuel cell separator  

DOE Patents (OSTI)

In a stacked array of molten carbonate fuel cells, a fuel cell separator is positioned between adjacent fuel cells to provide isolation as well as a conductive path therebetween. The center portion of the fuel cell separator includes a generally rectangular, flat, electrical conductor. Around the periphery of the flat portion of the separator are positioned a plurality of elongated resilient flanges which form a gas-tight seal around the edges of the fuel cell. With one elongated flange resiliently engaging a respective edge of the center portion of the separator, the sealing flanges, which are preferably comprised of a noncorrosive material such as an alloy of yttrium, iron, aluminum or chromium, form a tight-fitting wet seal for confining the corrosive elements of the fuel cell therein. This arrangement permits a good conductive material which may be highly subject to corrosion and dissolution to be used in combination with a corrosion-resistant material in the fuel cell separator of a molten carbonate fuel cell for improved fuel cell conductivity and a gas-tight wet seal.

Nickols, R.C.

1984-10-17T23:59:59.000Z

282

LADWP FUEL CELL DEMONSTRATION PROJECT  

SciTech Connect

Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

Thai Ta

2003-09-12T23:59:59.000Z

283

Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

as high as 90% is achievable. This high efficiency operation saves money, saves energy, and reduces greenhouse gas emissions. Regenerative or Reversible Fuel Cells This...

284

CLIMATE CHANGE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

This report discusses the first year of operation of a fuel cell power plant located at the Sheraton Edison Hotel, Edison, New Jersey. PPL EnergyPlus, LLC installed the plant under a contract with the Starwood Hotels & Resorts Worldwide, Inc. A DFC{reg_sign}300 fuel cell, manufactured by FuelCell Energy, Inc. of Danbury, CT was selected for the project. The fuel cell successfully operated from June 2003 to May 2004. This report discusses the performance of the plant during this period.

Steven A. Gabrielle

2004-12-03T23:59:59.000Z

285

Fuel Cell Technologies Office: Education  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Offices | Consumer Information Education Search Search Help Education EERE Fuel Cell Technologies Office Education Printable Version Share this resource Send a link...

286

EERE Fuel Cell Technologies Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Results will be documented in a report by Pacific Northwest National Lab: "Pathways to Commercial Success: Technologies and Products Supported by the Hydrogen, Fuel Cells and...

287

LADWP FUEL CELL DEMONSTRATION PROJECT  

DOE Green Energy (OSTI)

Los Angeles Department of Water and Power (LADWP) is currently one of the most active power utility companies in researching fuel cell technology. Fuel cells offer many benefits and are now used as an alternative to traditional internal combustion engines in power generation. In continuing it's role as the leader in fuel cell research, LADWP has installed a pre-commercial molten carbonate fuel cell on August 2001 at its headquarter, the John Ferraro Building (JFB). The goal of this project is to learn more about the actual behavior of the fuel cell running under real world conditions. The fuel cell ran smoothly through the first year of operation with very high efficiency, but with some minor setbacks. The JFB fuel cell project is funded by the City of Los Angeles Department of Water and Power with partial grant funding from the Department of Defense's Climate Change Fuel Cell Buydown Program. The technical evaluation and the benefit-cost evaluation of the JFB fuel cell are both examined in this report.

Thai Ta

2003-09-12T23:59:59.000Z

288

Module level solutions to solar cell polarization  

Science Conference Proceedings (OSTI)

A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.

Xavier, Grace (Fremont, CA), Li; Bo (San Jose, CA)

2012-05-29T23:59:59.000Z

289

Fuel Cell Technologies Office: News  

NLE Websites -- All DOE Office Websites (Extended Search)

News News Recent news stories and press releases related to the Fuel Cell Technologies Office are presented below. To see past news items, refer to the news archives for 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, and 2003. Subscribe to Fuel Cell Technologies Office updates. January 10, 2014 Upcoming Live Discussion on Energy 101: Fuel Cells Join the Energy Department at 2:00 p.m. ET on Thursday, January 16 for the first Energy 101 Google+ Hangout, which will focus on fuel cells. More January 10, 2014 Help Design the Hydrogen Fueling Station of Tomorrow The Energy Department posted a blog yesterday about the Hydrogen Education Foundation's Hydrogen Student Design Contest. More December 20, 2013 Your Holidays...Brought to You by Fuel Cells

290

Fuel Cell Power PlantsFuel Cell Power Plants Renewable and Waste Fuels  

E-Print Network (OSTI)

for Safety and Grid Interface Direct Fuel Cell Module: FuelCell Energy, the FuelCell Energy logo, Direct Fuel generation of combined heat andcombined heat and power ­Clean Power with natural gas f lfuel ­Renewable Power with biofuels ·Grid connected power generationgeneration ­High Efficiency Grid support

291

Nanowire-based All Oxide Solar Cells  

E-Print Network (OSTI)

1999; 7: 471. 6) Rai, B.P. Solar Cells, 1988, 25, 265. 7)Paul, G.K. , Sakurai, T. , Solar Energy, 2006, 80, 715. 9)1999, 2) Green, M.A. , Solar Cells, 1982, Prentice-Hall,

Yang, Peidong

2009-01-01T23:59:59.000Z

292

Fuel Cell Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Vehicles Fuel Cell Vehicles August 20, 2013 - 9:11am Addthis Photo of a blue car with 'The Road to Hydrogen' written on it, filling up at a hydrogen fueling station. Fuel...

293

Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Compressed Natural Gas Compressed Natural Gas and Hydrogen Fuels Workshop to someone by E-mail Share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Facebook Tweet about Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Twitter Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Google Bookmark Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Delicious Rank Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on Digg Find More places to share Fuel Cell Technologies Office: Compressed Natural Gas and Hydrogen Fuels Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

294

Fuel Cell Technologies Program Record 12012: Fuel Cell Bus Targets  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Program Record Fuel Cell Technologies Program Record Record #: 12012 Date: March 2, 2012 Title: Fuel Cell Bus Targets Originator: Jacob Spendelow and Dimitrios Papageorgopoulos Approved by: Sunita Satyapal * Date: September 12, 2012 Item: Performance, cost, and durability targets for fuel cell transit buses are presented in Table 1. These market-driven targets represent technical requirements needed to compete with alternative technologies. They do not represent expectations for the status of the technology in future years. Table 1. Performance, cost, and durability targets for fuel cell transit buses. Units 2012 Status 2016 Target Ultimate Target Bus Lifetime years/miles 5/100,000 1 12/500,000 12/500,000 Power Plant Lifetime 2,3 hours 12,000 18,000 25,000

295

Energy Basics: Hydrogen Fuel  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydrogen Fuel Fuel Cells Hydropower Ocean Solar Wind Hydrogen Fuel Hydrogen...

296

Hydrogen and Fuel Cells R&D  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids --Hydrogen Storage Materials --Hydrogen Storage Systems Modeling and Analysis --Thermochemical Hydrogen * Fuel Cells --Polymer Electrolyte --Modeling & Analysis --Fuel...

297

SAVANNAH RIVER NATIONAL LABORATORYREGENERATIVE FUEL CELL PROJECT  

DOE Green Energy (OSTI)

A team comprised of governmental, academic and industrial partners led by the Savannah River National Laboratory developed and demonstrated a regenerative fuel cell system for backup power applications. Recent market assessments have identified emergency response and telecommunication applications as promising near-term markets for fuel cell backup power systems. The Regenerative Fuel Cell System (RFC) consisted of a 2 kg-per-day electrolyzer, metal-hydride based hydrogen storage units and a 5 kW fuel cell. Coupling these components together created a system that can produce and store its own energy from the power grid much like a rechargeable battery. A series of test were conducted to evaluate the performance of the RFC system under both steady-state and transit conditions that might be encountered in typical backup power applications. In almost all cases the RFC functioned effectively. Test results from the demonstration project will be used to support recommendations for future fuel cell and hydrogen component and system designs and support potential commercialization activities. In addition to the work presented in this report, further testing of the RFC system at the Center for Hydrogen Research in Aiken County, SC is planned including evaluating the system as a renewable system coupled with a 20kW-peak solar photovoltaic array.

Motyka, T

2008-11-11T23:59:59.000Z

298

Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

Solid oxide fuel cell (SOFC) technology, which offers many advantages over traditional energy conversion systems including low emission and high efficiency, has become increasingly attractive to the utility, automotive, and defense industries (as shown in Figure 1). As an all solid-state energy conversion device, the SOFC operates at high temperatures (700-1,000 C) and produces electricity by electrochemically combining the fuel and oxidant gases across an ionically conducting oxide membrane. To build up a useful voltage, a number of cells or PENs (Positive cathode-Electrolyte-Negative anode) are electrically connected in series in a stack through bi-polar plates, also known as interconnects. Shown in Figure 2 (a) is a schematic of the repeat unit for a planar stack, which is expected to be a mechanically robust, high power-density and cost-effective design. In the stack (refer to Figure 2 (b)), the interconnect is simultaneously exposed to both an oxidizing (air) environment on the cathode side and a reducing (fuels such as hydrogen or natural gas) environment on the anode side for thousands of hours at elevated temperatures (700-1,000 C). Other challenges include the fact that water vapor is likely to be present in both of these environments, and the fuel is likely to contain sulfide impurities. Also, the interconnect must be stable towards any sealing materials with which it is in contact, under numerous thermal cycles. Furthermore, the interconnect must also be stable towards electrical contact materials that are employed to minimize interfacial contact resistance, and/or the electrode materials. Considering these service environments, the interconnect materials should possess the following properties: (1) Good surface stability (resistance to oxidation and corrosion) in both cathodic (oxidizing) and anodic (reducing) atmospheres. (2) Thermal expansion matching to the ceramic PEN and other adjacent components, all of which typically have a coefficient of thermal expansion (CTE) in the range of 10.5-12.0 x 10{sup -6} K{sup -1}. (3) High electrical conductivity through both the bulk material and in-situ formed oxide scales. (4) Satisfactory bulk and interfacial mechanical/thermomechanical reliability and durability at the SOFC operating temperatures. (5) Good compatibility with other materials in contact with interconnects such as seals and electrical contact materials. Until recently, the leading candidate material for the interconnect was doped lanthanum chromite (LaCrO3), which is a ceramic material which can easily withstand the traditional 1000 C operating temperature. However, the high cost of raw materials and fabrication, difficulties in obtaining high-density chromite parts at reasonable sintering temperatures, and the tendency of the chromite interconnect to partially reduce at the fuel gas/interconnect interface, causing the component to warp and the peripheral seal to break, have plagued the commercialization of planar SOFCs for years. The recent trend in developing lower temperature, more cost-effective cells which utilize anode-supported, several micron-thin electrolytes and/or new electrolytes with improved conductivity make it feasible for lanthanum chromite to be supplanted by metals or alloys as the interconnect materials. Compared to doped lanthanum chromite, metals or alloys offer significantly lower raw material and fabrication costs.

Yang, Z Gary; Stevenson, Jeffry W.; Singh, Prabhakar

2003-06-15T23:59:59.000Z

299

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Workshop to someone by E-mail Share Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells Workshop on Facebook Tweet about Fuel Cell...

300

Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells...  

NLE Websites -- All DOE Office Websites (Extended Search)

Waste-to-Energy using Fuel Cells Webinar to someone by E-mail Share Fuel Cell Technologies Office: Waste-to-Energy using Fuel Cells Webinar on Facebook Tweet about Fuel Cell...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Manufacturing Fuel Cell Manhattan Project  

NLE Websites -- All DOE Office Websites (Extended Search)

to to DOE Fuel Cell Manufacturing Workshop 2011 John Christensen, PE NREL Consultant DOE Fuel Cell Market Transformation Support August 11, 2011 Manufacturing Fuel Cell Manhattan Project ‚ąö Identify manufacturing cost drivers to achieve affordability ‚ąö Identify best practices in fuel cell manufacturing technology ‚ąö Identify manufacturing technology gaps ‚ąö Identify FC projects to address these gaps MFCMP Objectives Completed Final Report due out Nov 2010 B2PCOE Montana Tech SME's Industry Academia Government FC Consortiums Power ranges * <0.5 kW (man portable / man wearable) * 0.5 kW< Power range < 10 kW (mobile power) Fuels: Hydrogen and reformed hydrocarbons *Packaged Fuels < 0.5 kW * Near term solution * Move through the supply chain like batteries

302

Fuel cell electric power production  

DOE Patents (OSTI)

A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

Hwang, Herng-Shinn (Livingston, NJ); Heck, Ronald M. (Frenchtown, NJ); Yarrington, Robert M. (Westfield, NJ)

1985-01-01T23:59:59.000Z

303

Solid oxide fuel cell generator  

DOE Patents (OSTI)

A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

1993-01-01T23:59:59.000Z

304

Definition: Solar cell | Open Energy Information  

Open Energy Info (EERE)

Solar cell Solar cell (Redirected from Definition:PV cell) Jump to: navigation, search Dictionary.png Solar cell Converts light into electrical energy. Traditional solar cells are made from silicon; second-generation solar cells (thin-film solar cells) are made from amorphous silicon or nonsilicon materials such as cadmium telluride; and third-generation solar cells are being made from variety of new materials, including solar inks, solar dyes, and conductive plastics.[1][2] View on Wikipedia Wikipedia Definition A solar cell (also called a photovoltaic cell) is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. It is a form of photoelectric cell (in that its electrical characteristics-e.g. current, voltage, or resistance-vary

305

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 10 · Summary 1Montana State University: Solar Cells Lecture 10: Summary Summer 2010 Class Montana State University: Solar Cells Lecture 10: Summary 2 Solar Cell Operation n Emitter p Base Rear Contact Antireflection coating Absorption of photon

Kaiser, Todd J.

306

Solar cell with back side contacts  

SciTech Connect

A III-V solar cell is described herein that includes all back side contacts. Additionally, the positive and negative electrical contacts contact compoud semiconductor layers of the solar cell other than the absorbing layer of the solar cell. That is, the positive and negative electrical contacts contact passivating layers of the solar cell.

Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J; Wanlass, Mark Woodbury; Clews, Peggy J

2013-12-24T23:59:59.000Z

307

Fuel Cells for Robots  

NLE Websites -- All DOE Office Websites (Extended Search)

For Robots For Robots Fuel Cells For Robots Pavlo Rudakevych iRobot Pavlo Rudakevych iRobot Product Needs Product Needs * Military/Police/Search and Rescue - PackBot - Gladiator - ThrowBot/UGCV * Industrial and Oil - CoWorker - MicroRig * Military/Police/Search and Rescue - PackBot - Gladiator - ThrowBot/UGCV * Industrial and Oil - CoWorker - MicroRig PackBot PackBot * Mission capable robots * Rugged, portable tools for minimal casualty engagements * Assisting behaviors * Small size and weight * Mission capable robots * Rugged, portable tools for minimal casualty engagements * Assisting behaviors * Small size and weight System Concept System Concept System Concept System Concept System Concept Continued System Concept Continued * Modular payload bays - 3 primary - 1 head - 4 side pods * Each payload socket supports - Ethernet

308

Thermal Management of Solar Cells  

E-Print Network (OSTI)

as a source of photovoltaic energy is rapidly increasingphotovoltaic cells under concentrated illumination: a critical review," Solar Energyphotovoltaic/thermal collector, PV/T, and it utilizes both electrical and heat energies

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

309

Bronx Zoo Fuel Cell Project  

DOE Green Energy (OSTI)

A 200 kW Fuel Cell has been installed in the Lion House, Bronx Zoo, NY. The Fuel Cell is a 200 kW phosphoric acid type manufactured by United Technologies Corporation (UTC) and will provide thermal energy at 725,000 Btu/hr.

Hoang Pham

2007-09-30T23:59:59.000Z

310

Heated transportable fuel cell cartridges  

DOE Patents (OSTI)

A fuel cell stack protective system is made where a plurality of fuel cells, each containing liquid electrolyte subject to crystallization, is enclosed by a containing vessel, and where at least one electric heater is placed in the containing vessel and is capable of preventing electrolyte crystallization.

Lance, Joseph R. (N. Huntingdon, PA); Spurrier, Francis R. (Whitehall, PA)

1985-01-01T23:59:59.000Z

311

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office  

E-Print Network (OSTI)

to demonstrate: World's first tri-generation station World's first fuel cell forklifts World's first fuel cell

312

Hydrogen & Fuel Cells - Fuel Cell - Polymer Electrolyte  

NLE Websites -- All DOE Office Websites (Extended Search)

Polymer Electrolyte Fuel Cell Research Polymer Electrolyte Fuel Cell Research Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. Xiaoping Wang measures the stability of a platinum cathode electrocatalyst. One of the main barriers to the commercialization of polymer electrolyte fuel cell (PEFC) systems, especially for automotive use, is the high cost of the platinum electrocatalysts. Aside from the cost of the precious metal, concern has also been raised over the adequacy of the world supply of platinum, if fuel cell vehicles were to make a significant penetration into the global automotive fleet. At Argonne, chemists are working toward the development of low-cost nonplatinum electrocatalysts for the oxygen reduction reaction--durable materials that would be stable in the fuel

313

State of the States: Fuel Cells in America 2013  

NLE Websites -- All DOE Office Websites (Extended Search)

and Acknowledgements and Acknowledgements This report was written and compiled by Sandra Curtin and Jennifer Gangi of Fuel Cells 2000, an activity of Breakthrough Technologies Institute in Washington, DC. Support was provided by the U.S. Department of Energy's Energy Efficiency and Renewable Energy Fuel Cell Technologies Office. About This Report The information contained in this report was collected from public records, websites, and contact with state and industry representatives as of September 2013, particularly Fuel Cells 2000's State Fuel Cell and Hydrogen Database and North Carolina Solar Center's Database of State Incentives for Renewables & Efficiency (DSIRE). It is a follow-up to Fuel Cells 2000's 2012, 2011 and 2010 reports, State of the States: Fuel Cells in

314

Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

A 200 kW, natural gas fired fuel cell was installed at the Richard Stockton College of New Jersey. The purpose of this project was to demonstrate the financial and operational suitability of retrofit fuel cell technology at a medium sized college. Target audience was design professionals and the wider community, with emphasis on use in higher education. ''Waste'' heat from the fuel cell was utilized to supplement boiler operations and provide domestic hot water. Instrumentation was installed in order to measure the effectiveness of heat utilization. It was determined that 26% of the available heat was captured during the first year of operation. The economics of the fuel cell is highly dependent on the prices of electricity and natural gas. Considering only fuel consumed and energy produced (adjusted for boiler efficiency), the fuel cell saved $54,000 in its first year of operation. However, taking into account the price of maintenance and the cost of financing over the short five-year life span, the fuel cell operated at a loss, despite generous subsidies. As an educational tool and market stimulus, the fuel cell attracted considerable attention, both from design professionals and the general public.

Alice M. Gitchell

2006-09-15T23:59:59.000Z

315

Fuel Cell Technologies Office: International Partnership for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership for Hydrogen and Fuel Cells in the Economy to someone by E-mail Share Fuel Cell Technologies Office: International Partnership for Hydrogen and Fuel Cells in the...

316

NETL: Fuel Cells/SECA News - Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells/Solid State Energy Conversion Alliance (SECA) Fuel Cells/Solid State Energy Conversion Alliance (SECA) News Archive SECA Workshop Proceedings, Peer Reviews, and Annual Reports 2013 Archive 2012 Archive 2011 Archive Previous Highlights FuelCell Energy's Stack Boosts Power and Minimizes Degradation FuelCell Energy has developed a new solid oxide fuel cell stack design that boosts the overall power output of the fuel cell stack by nearly 50%. FuelCell Energy also achieved a voltage degradation rate of 1.3% per 1000 hours after testing the fuel cells for 26,000 hours of operation. This breakthrough by FuelCell Energy of greater power from the fuel cell stack while minimizing fuel cell degradation pushes it further towards meeting SECA's goal of a market ready, affordable solid oxide fuel cell ready by the year 2010. (5/05)

317

Fuel Cell Today | Open Energy Information  

Open Energy Info (EERE)

Today Jump to: navigation, search Name Fuel Cell Today Place London, United Kingdom Zip EC1N 8EE Product Fuel Cell Today is a online information service for the global fuel cell...

318

Fuel Cell Technologies Office: NewsDetail  

NLE Websites -- All DOE Office Websites (Extended Search)

Office: NewsDetail on Twitter Bookmark Fuel Cell Technologies Office: NewsDetail on Google Bookmark Fuel Cell Technologies Office: NewsDetail on Delicious Rank Fuel Cell...

319

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network (OSTI)

post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and Technology of Ceramic Fuel Cells, p. 209, Elsevier, NewI. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

320

Characterization of Fuel-Cell Diffusion Media  

E-Print Network (OSTI)

electrolyte membrane fuel cells, 2009. C. Lim and C. Y.directly into full fuel-cell simulations to predictFCgen1020ACS, www.ballard.com/fuel-cell-products, Accessed

Gunterman, Haluna Penelope Frances

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fuel Cell Markets Ltd | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Markets Ltd Place Buckinghamshire, United Kingdom Zip SL0 9AQ Sector Hydro, Hydrogen Product Fuel Cell Markets was set up to assist companies in the fuel cell and...

322

Hydrocarbon Reformers for Fuel Cell Systems  

Science Conference Proceedings (OSTI)

Several new or emerging technologies are vying to compete in the distributed resources market; notably, fuel cells and microturbines. Fuel cells represent an idealized power generation technology with tremendous long-term promise. As a hydrogen-fueled system, however, fuel cells need either a hydrogen fuel supply infrastructure or fuel processing (reforming and clean-up) technology to convert conventional fossil fuels to a hydrogen-rich energy source. This report provides an overview of fuel processing t...

2000-11-30T23:59:59.000Z

323

Evaluation of Stationary Fuel Cell Deployments, Costs, and Fuels (Presentation)  

SciTech Connect

This presentation summarizes NREL's technology validation of stationary fuel cell systems and presents data on number of deployments, system costs, and fuel types.

Ainscough, C.; Kurtz, J.; Peters, M.; Saur, G.

2013-10-01T23:59:59.000Z

324

Fuel Cells using Renewable Fuels | Open Energy Information  

Open Energy Info (EERE)

Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon Fuel Cells using Renewable Fuels Jump to: navigation, search TODO: Add description List of...

325

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies Program Overview Program Overview Richard Farmer Richard Farmer Acting Acting Program Program Manager Manager Acting Acting Program Program Manager Manager 2010 Annual Merit Review and Peer Evaluation Meeting 2010 Annual Merit Review and Peer Evaluation Meeting (7 June 2010) (7 June 2010) The Administration's Clean Energy Goals 9 9 Double Renewable Double Renewable Energy Capacity by 2012 9 Invest $150 billion over ten years i in energy R&D to transition to a clean energy economy clean energy economy 9 Reduce GHG emissions 83% by 2050 2 t t Æ Æ F l ll ff hi hl ffi i di f l d Fuel Cells Address Our Key Energy Challenges Increasing Energy Increasing Energy Ef ficiency and Resource Diversity Efficiency and Resource Diversity Æ Æ Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

326

Navy fuel cell demonstration project.  

DOE Green Energy (OSTI)

This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

Black, Billy D.; Akhil, Abbas Ali

2008-08-01T23:59:59.000Z

327

fuel cells | OpenEI  

Open Energy Info (EERE)

cells cells Dataset Summary Description Developed for the U.S. Department of Energy's Office of Fuel Cell Technologies by Argonne National Laboratory and RCF Economic and Financial Consulting, Inc., JOBS and economic impacts of Fuel Cells (JOBS FC) is a spreadsheet model that estimates economic impacts from the manufacture and use of select types of fuel cells. Source Argonne Date Released Unknown Date Updated Unknown Keywords fuel cells Job Creation Data application/vnd.openxmlformats-officedocument.spreadsheetml.sheet icon File without Macros. Full version at official link. (xlsx, 2.8 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment From Argonne National Lab

328

Corrugated Membrane Fuel Cell Structures  

DOE Green Energy (OSTI)

By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

Grot, Stephen [President, Ion Power Inc.

2013-09-30T23:59:59.000Z

329

Fuel cell with internal flow control  

SciTech Connect

A fuel cell stack is provided with a plurality of fuel cell cassettes where each fuel cell cassette has a fuel cell with an anode and cathode. The fuel cell stack includes an anode supply chimney for supplying fuel to the anode of each fuel cell cassette, an anode return chimney for removing anode exhaust from the anode of each fuel cell cassette, a cathode supply chimney for supplying oxidant to the cathode of each fuel cell cassette, and a cathode return chimney for removing cathode exhaust from the cathode of each fuel cell cassette. A first fuel cell cassette includes a flow control member disposed between the anode supply chimney and the anode return chimney or between the cathode supply chimney and the cathode return chimney such that the flow control member provides a flow restriction different from at least one other fuel cell cassettes.

Haltiner, Jr., Karl J. (Fairport, NY); Venkiteswaran, Arun (Karnataka, IN)

2012-06-12T23:59:59.000Z

330

Transpired Solar Collector - Energy Innovation Portal  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; ... including laser perforating or hot ...

331

Success Stories: Solexant Nanocrystal Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Rolling Out Affordable Solar Energy The high cost of producing photovoltaic cells has been cited as the main obstacle in expanding solar energy's reach. Lawrence Berkeley National...

332

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Market Analysis Reports to someone by E-mail Share Fuel Cell Technologies Office: Market Analysis Reports on Facebook Tweet about Fuel Cell Technologies Office: Market Analysis Reports on Twitter Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Google Bookmark Fuel Cell Technologies Office: Market Analysis Reports on Delicious Rank Fuel Cell Technologies Office: Market Analysis Reports on Digg Find More places to share Fuel Cell Technologies Office: Market Analysis Reports on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards Market Analysis Educational Publications Newsletter

333

DOE Hydrogen and Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

eere.energy.gov eere.energy.gov Fuel Cell Technologies Program DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program January 5, 2011 2 | Fuel Cell Technologies Program eere.energy.gov * Overview - Goals & Objectives - Technology Status & Key Challenges * Progress - Research & Development - Deployments - Recovery Act Projects * Budget * Key Publications Agenda: DOE Fuel Cell Technologies Program 3 | Fuel Cell Technologies Program eere.energy.gov Program Mission The mission of the Hydrogen and Fuel Cells Program is to enable the widespread commercialization of a portfolio of hydrogen and fuel cell technologies through basic and applied research, technology development and demonstration, and

334

Fuel Cell Technologies Office: Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

supporting the role that fuel cells play in our nation's energy portfolio. Through its market transformation efforts, the Fuel Cell Technologies Office seeks to accelerate the...

335

Fuel Cell Technologies Office: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration to someone by E-mail Share Fuel Cell Technologies Office: Systems Integration on Facebook Tweet about Fuel Cell Technologies Office: Systems Integration on...

336

Fuel Cell Technologies Office: Hydrogen Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Hydrogen Technical Publications to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Technical Publications on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Technical Publications on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Google Bookmark Fuel Cell Technologies Office: Hydrogen Technical Publications on Delicious Rank Fuel Cell Technologies Office: Hydrogen Technical Publications on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Technical Publications on AddThis.com... Publications Program Publications Technical Publications Hydrogen Fuel Cells Safety, Codes & Standards

337

NREL: Hydrogen and Fuel Cells Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects NREL's hydrogen and fuel cell research projects focus on developing, integrating, and demonstrating advanced hydrogen production, hydrogen storage, and fuel cell...

338

Fuel Cell Technologies Office: Hydrogen Sensor Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

CSA Standards DOE Fuel Cell Technologies Office Element One, Inc. EmersonTherm-O-Disc FM Global Fuel Cell & Hydrogen Energy Association H2scan Honeywell Analytics Intelligent...

339

Fuel Cell Power Electronics Ė Status & Challenges Tejinder ...  

Science Conference Proceedings (OSTI)

... Fuel cell powered critical refrigeration loads, preventing ... Ref. CL&P Connecticut Outage Map for October 2011 Fuel Cells: Power Through the Storm ...

2012-07-27T23:59:59.000Z

340

Joint Fuel Cell Bus Workshop Summary Report  

NLE Websites -- All DOE Office Websites (Extended Search)

equipment is heavy and costly * Slow response time of the fuel cell adversely affects regenerative energy recovery potential and efficiency Barriers to full fuel cell bus...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Energy Conversion Devices Fuel Cell Electrocatalyst Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell(tm) Texaco Ovonic Fuel Cell Company, LLC non-precious metal catalysts regenerative braking energy absorption capability wide temperature range instant...

342

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Presentations The Fuel Cell Technologies Office staff members give presentations about fuel cells and hydrogen at a variety of conferences. Some of their presentations are below....

343

Fuel Cell Technologies Office: Durability Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Durability Working Group to someone by E-mail Share Fuel Cell Technologies Office:...

344

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

used. Technology Solicitation Title Open Date Close Date Hydrogen and Fuel Cells Fuel Cell Hybrid Electric Medium Duty Trucks, Roof-top Backup Power, and Advanced Hydrogen...

345

Fuel Cell Technologies Office: Annual Progress Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

Progress Reports to someone by E-mail Share Fuel Cell Technologies Office: Annual Progress Reports on Facebook Tweet about Fuel Cell Technologies Office: Annual Progress Reports on...

346

Battery-Size Regenerative Fuel Cells  

ORNL 2010-G01073/jcn UT-B ID 201002378 Battery-Size Regenerative Fuel Cells Technology Summary A battery-size regenerative fuel cell with energy ...

347

Fuel Cell Technologies Office: Recovery Act  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

348

Fuel Cell Technologies Office: Hydrogen Infrastructure Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

349

Fuel Cell Technologies Office: Market Transformation  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

350

Fuel Cell Technologies Office: Related Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

351

Fuel Cell Technologies Office: Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

352

Fuel Cell Technologies Office: 2013 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

353

Fuel Cell Technologies Office: Market Analysis Reports  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy - Energy Efficiency and Renewable Energy Fuel Cell Technologies Office Market Analysis Reports Reports about fuel cell and hydrogen technology market analysis...

354

Fuel Cell Technologies Office: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

355

Technology Validation: Fuel Cell Bus Evaluations (Poster)  

DOE Green Energy (OSTI)

Poster discusses hydrogen fuel cell transit bus evaluations conducted for the Hydrogen, Fuel Cells, & Infrastructure Technologies Program (HFCIT). It was presented at the 2006 HFCIT Program Review.

Eudy, L.

2006-05-01T23:59:59.000Z

356

Fuel Cell Technologies Office: IPHE Infrastructure Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

IPHE Infrastructure Workshop to someone by E-mail Share Fuel Cell Technologies Office: IPHE Infrastructure Workshop on Facebook Tweet about Fuel Cell Technologies Office: IPHE...

357

Fuel Cell Technologies Office: Educational Publications  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

358

EERE: Fuel Cell Technologies Office Home Page  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

359

EERE: Fuel Cell Technologies Office - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Webmaster Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office - Webmaster to someone by E-mail Share EERE: Fuel Cell Technologies Office -...

360

EERE: Fuel Cell Technologies Office - Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office - Contacts to someone by E-mail Share EERE: Fuel Cell Technologies Office -...

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Fuel Cell Store Inc | Open Energy Information  

Open Energy Info (EERE)

search Name Fuel Cell Store, Inc Place San Diego, California Zip 92154 Sector Hydro, Hydrogen Product San Diego-based firm selling fuel cell stacks, components, and hydrogen...

362

Solar cells with a twist Comments ( 35)  

E-Print Network (OSTI)

Solar cells with a twist Article Comments ( 35) JULIE STEENHUYSEN REUTERS OCTOBER 7, 2008 AT 9:58 AM EDT CHICAGO -- U.S. researchers have found a way to make efficient silicon-based solar cells of buildings as opportunities for solar energy," Prof. Rogers said in a telephone interview. Solar cells, which

Rogers, John A.

363

Climate Change Fuel Cell Program  

DOE Green Energy (OSTI)

Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

Paul Belard

2006-09-21T23:59:59.000Z

364

Nanocrystal Solar Cells  

E-Print Network (OSTI)

research on organic photovoltaic cells since small molecule10 years prior (4). Photovoltaic cells with an active layerof the associated photovoltaic cells. 2.4 Charge transport

Gur, Ilan

2006-01-01T23:59:59.000Z

365

Calling All Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

366

Calling All Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Calling All Fuel Cells Calling All Fuel Cells Calling All Fuel Cells December 7, 2012 - 4:31pm Addthis Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Altergy had more than 60 fuel cells in the immediate Hurricane Sandy disaster area that acted as backup power for cell phone towers. | Photo courtesy of Altergy. Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program What is a fuel cell? A fuel cell is a device that uses a fuel and oxygen to create electricity by an electrochemical process. A fuel cell can provide energy for systems as large as a utility power station and as small as a laptop computer. During Hurricane Sandy, fuel cells were instrumental in providing backup

367

Overview of Hydrogen Fuel Cell Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

Budget Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cells: For Diverse Applications 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov INTRODUCTION: FY 2012 Budget in Brief Continues New Sub-programs for: * Fuel Cell Systems R&D - Consolidates four sub-programs: Fuel Cell Stack Components R&D, Transportation Fuel Cell Systems, Distributed Energy Fuel Cell Systems, and Fuel Processor R&D - Technology-neutral fuel cell systems R&D for diverse applications * Hydrogen Fuel R&D - Consolidates Hydrogen Production & Delivery and Hydrogen Storage activities

368

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the DOE Hydrogen Program (PDF 1.1 MB), JoAnn Milliken, DOE Hydrogen Program Manager SOFC Technology R&D Needs (PDF 1.7 MB), Steven Shaffer, Delphi Chief Engineer, Fuel Cell...

369

NREL: Hydrogen and Fuel Cells Research - Fuel Cell Electric Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch FCEVs in the U.S. market between 2015 and 2020....

370

Fuel Cell Technologies Office: Fuel Cells Today: Early Market...  

NLE Websites -- All DOE Office Websites (Extended Search)

Here (music) Hydrogen and fuel cell technologies are beginning to enter the market and learning demonstrations are spreading to various parts of the country. As you begin to see...

371

Mathematical modeling of solid oxide fuel cells using hydrocarbon fuels  

E-Print Network (OSTI)

Solid oxide fuel cells (SOFCs) are high efficiency conversion devices that use hydrogen or light hydrocarbon (HC) fuels in stationary applications to produce quiet and clean power. While successful, HC-fueled SOFCs face ...

Lee, Won Yong, Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

372

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Webinar Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol U.S. DOE WEBINAR ON H2 FUELING PROTOCOLS: PARTICIPANTS Rob Burgess Moderator Jesse Schneider TIR J2601,...

373

Fuel Station of the Future- Innovative Approach to Fuel Cell...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Fuel Cell Technology Program Imagine pulling-up to a fuel station that supplies your car with clean, renewable fuel. Now imagine that, while you're filling up, this same...

374

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Natural Gas Fueled 3 kWe SOFC Generator Test Results,"a design for a monolithic SOFC stack with an energy density

Delucchi, Mark

1992-01-01T23:59:59.000Z

375

Fabrication and Characterization of Organic Solar Cells  

E-Print Network (OSTI)

5† Figure 1-3 The Solar Spectrum at the Top of thesolar cells. Figure 1-3 The Solar Spectrum at the Top of thenarrow range of solar spectrum, as they are commonly known

Yengel, Emre

2010-01-01T23:59:59.000Z

376

Fuel Cell Power Plants Renewable and Waste Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Plants Power Plants Fuel Cell Power Plants Renewable and Waste Fuels DOE-DOD Workshop Washington, DC. January 13, 2011 reliable, efficient, ultra-clean FuelCell Energy, Inc. * Premier developer of stationary fuel Premier developer of stationary fuel cell technology - founded in 1969 * Over 50 installations in North America, Europe, and Asia * Industrial, commercial, utility products products * 300 KW to 50 MW and beyond FuelCell Energy, the FuelCell Energy logo, Direct FuelCell and "DFC" are all registered trademarks (¬ģ) of FuelCell Energy, Inc. g Product Line Based on Stack Building Block Cell Package and Stack Four-Stack Module DFC3000 Two 4-Stack Modules 2.8 MW Single-Stack Module Single Stack Module DFC1500 One 4-Stack Module 1.4 MW DFC300

377

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen & Hydrogen & Fuel Cells Hydrogen & Fuel Cells Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Meet Brian Larsen, a materials scientist who is helping lower fuel cell costs by developing the next generation of fuel cell catalysts. Fuel cells produce electricity from a number of domestic fuels, including hydrogen and renewables, and can provide power for virtually any application -- from cars and buses to commercial buildings. This technology, which is similar to a battery, has the potential to revolutionize the way we power the nation while reducing carbon pollution and oil consumption.

378

Fuel Cell Technologies Office: Fuel Cell Technical Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Publications Technical Publications Technical information about fuel cells published in technical reports, conference proceedings, journal articles, and Web sites is provided here. General Transportation Stationary/Distributed Power Auxiliary & Portable Power Manufacturing General Economic Impact of Fuel Cell Deployment in Forklifts and for Backup Power under the American Recovery and Reinvestment Act-This report by Argonne National Laboratory presents estimates of economic impacts associated with expenditures under the American Recovery and Reinvestment Act, also known as the Recovery Act, by the U.S. Department of Energy for the deployment of fuel cells in forklift and backup power applications. (April 2013). An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment-This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of supporting infrastructure, maintenance costs, warehouse space costs, and labor costs. (April 2013).

379

Fuel Cell and Hydrogen Energy Association | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell and Hydrogen Energy Association Fuel Cell and Hydrogen Energy Association Alternative Fuels Quadrennial Review Workshop e-mail from FCHEA Fuel Cell and Hydrogen Energy...

380

Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells: How They Fuel Cells: How They Work and How They're Used (Text Alternative Version) to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Twitter Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Google Bookmark Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Delicious Rank Fuel Cell Technologies Office: Fuel Cells: How They Work and How They're Used (Text Alternative Version) on Digg Find More places to share Fuel Cell Technologies Office: Fuel Cells:

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version)  

NLE Websites -- All DOE Office Websites (Extended Search)

MotorWeek Fuel Cell MotorWeek Fuel Cell Video (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Google Bookmark Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Delicious Rank Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: MotorWeek Fuel Cell Video (Text Version) on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings

382

Powering the Planet with Solar Fuel  

Science Conference Proceedings (OSTI)

... Researchers are trying to design solar-driven molecular machines that could be used on a global scale to store solar energy by splitting water into ...

2012-11-13T23:59:59.000Z

383

Double interconnection fuel cell array  

DOE Patents (OSTI)

A fuel cell array (10) is made, containing number of tubular, elongated fuel cells (12) which are placed next to each other in rows (A, B, C, D), where each cell contains inner electrodes (14) and outer electrodes (18 and 18'), with solid electrolyte (16 and 16') between the electrodes, where the electrolyte and outer electrode are discontinuous, having two portions, and providing at least two opposed discontinuities which contain at least two oppositely opposed interconnections (20 and 20') contacting the inner electrode (14), each cell (12) having only three metallic felt electrical connectors (22) which contact surrounding cells, where each row is electrically connected to the other.

Draper, Robert (Churchill Boro, PA); Zymboly, Gregory E. (Murrysville, PA)

1993-01-01T23:59:59.000Z

384

Organic Solar Cells: Absolute Measurement of Domain Composition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Organic Solar Cells: Absolute Measurement of Domain Composition and Nanoscale Size Distribution Explains Performance in Solar Cells Organic Solar Cells: Absolute Measurement of...

385

Fuel Cell Technologies Office Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production Workshop Hydrogen Production Workshop Sara Dillich U.S Department of Energy Office of Energy Efficiency & Renewable Energy Fuel Cell Technologies Office National Renewable Energy Laboratory Golden, Colorado September 24, 2013 2 Hydrogen and Fuel Cells Program Overview Nearly 300 projects currently funded at companies, national labs, and universities/institutes Mission: Enable widespread commercialization of a portfolio of hydrogen and fuel cell technologies through applied research, technology development and demonstration, and diverse efforts to overcome institutional and market challenges. Key Goals : Develop hydrogen and fuel cell technologies for early markets (stationary power, lift trucks, portable power), mid-term markets (CHP, APUs, fleets and buses), and long-term markets (light duty vehicles).

386

Fuel-Cell Technology Overview  

Science Conference Proceedings (OSTI)

...Fuel cell Approximate operating temperature ¬įC ¬įF Polymer electrolyte (PEFC) 80 175 Alkaline (AFC) 100 212 Phosphoric acid (PAFC) 200 390 Molten carbonate (MCFC) 650 1200 Solid oxide (SOFC) 600‚??1000 1110‚??1830...

387

Just the Basics - Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

and portable power applications. As of 2009, more than 200 buses and several hundred cars powered by fuel cells are navigating cities around the world, and more than 100...

388

PEM/SPE fuel cell  

DOE Patents (OSTI)

A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.

Grot, S.A.

1998-01-13T23:59:59.000Z

389

DOE Hydrogen & Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE 2010 Waste To Energy Example Los Alamitos Joint Forces Training Base (JFTB) Urban Compost 25 tonday Gasifier & Cleanup Los Alamitos JFTB Fuel Cells 1,600 kW Resource...

390

CLIMATE CHANGE FUEL CELL PROGRAM  

DOE Green Energy (OSTI)

ChevronTexaco has successfully operated a 200 kW PC25C phosphoric acid fuel cell power plant at the corporate data center in San Ramon, California for the past two years and seven months following installation in December 2001. This site was chosen based on the ability to utilize the combined heat (hot water) and power generation capability of this modular fuel cell power plant in an office park setting . In addition, this project also represents one of the first commercial applications of a stationary fuel cell for a mission critical data center to assess power reliability benefits. This fuel cell power plant system has demonstrated outstanding reliability and performance relative to other comparably sized cogeneration systems.

Mike Walneuski

2004-09-16T23:59:59.000Z

391

Fuel Cell Technical Team Roadmap  

NLE Websites -- All DOE Office Websites (Extended Search)

voltage degradation, as reported in K. Wipke et al., National Fuel Cell Electric Vehicle Learning Demonstration Final Report, NRELTP -5600-54860, July 2012, http:www.nrel.gov...

392

Polybenzimidazole: Phosphoric Acid Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Polybenzimidazole: Phosphoric Acid Fuel Cells Speaker(s): Dave Sopchak Date: May 1, 2013 - 3:00pm - 4:00pm Location: 90-3122 Seminar HostPoint of Contact: Max Wei The PBI...

393

Fuel Cell Technologies Program Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

cepgi.typepad.comfilescepgi-4th-quarter-2011-1.pdf United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents...

394

PEM/SPE fuel cell  

DOE Patents (OSTI)

A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.

Grot, Stephen Andreas (Henrietta, NY)

1998-01-01T23:59:59.000Z

395

DOE Hydrogen & Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Market Readiness Workshop DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program February 16, 2011 2 | Fuel Cell Technologies Program eere.energy.gov Fuel Cells - Where are we today? Fuel Cells for Transportation In the U.S., there are currently: > 200 fuel cell vehicles ~ 20 active fuel cell buses ~ 60 fueling stations In the U.S., there are currently: ~9 million metric tons of H 2 produced annually > 1200 miles of H 2 pipelines Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts. The largest markets for fuel cells today are in

396

Silicon concentrator solar cell research  

DOE Green Energy (OSTI)

This report describes work conducted between December 1990 and May 1992 continuing research on silicon concentrator solar cells. The objectives of the work were to improve the performance of high-efficiency cells upon p-type substrates, to investigate the ultraviolet stability of such cells, to develop concentrator cells based on n-type substrates, and to transfer technology to appropriate commercial environments. Key results include the identification of contact resistance between boron-defused areas and rear aluminum as the source of anomalously large series resistance in both p- and n-type cells. A major achievement of the present project was the successful transfer of cell technology to both Applied Solar Energy Corporation and Solarex Corporation.

Green, M.A.; Zhao, J.; Wang, A.; Dai, X.; Milne, A.; Cai, S.; Aberle, A.; Wenham, S.R. [Univ. of New South Wales, Kensington, NSW (AU). Centre for Photovoltaic Devices and Systems

1993-06-01T23:59:59.000Z

397

Definition: Solar cell | Open Energy Information  

Open Energy Info (EERE)

cell cell Jump to: navigation, search Dictionary.png Solar cell Converts light into electrical energy. Traditional solar cells are made from silicon; second-generation solar cells (thin-film solar cells) are made from amorphous silicon or nonsilicon materials such as cadmium telluride; and third-generation solar cells are being made from variety of new materials, including solar inks, solar dyes, and conductive plastics.[1][2] View on Wikipedia Wikipedia Definition A solar cell (also called a photovoltaic cell) is an electrical device that converts the energy of light directly into electricity by the photovoltaic effect. It is a form of photoelectric cell (in that its electrical characteristics-e.g. current, voltage, or resistance-vary when light is incident upon it) which, when exposed to light, can generate

398

Stationary Fuel Cell Evaluation (Presentation)  

DOE Green Energy (OSTI)

This powerpoint presentation discusses its objectives: real world operation data from the field and state-of-the-art lab; collection; analysis for independent technology validation; collaboration with industry and end users operating stationary fuel cell systems and reporting on technology status, progress and technical challenges. The approach and accomplishments are: A quarterly data analysis and publication of first technical stationary fuel cell composite data products (data through June 2012).

Kurtz, J.; Wipke, K.; Sprik, S.; Ramsden, T.; Ainscough, C.

2012-05-01T23:59:59.000Z

399

Corrosion resistant PEM fuel cell  

DOE Patents (OSTI)

The present invention contemplates a PEM fuel cell having electrical contact elements (including bipolar plates/septums) comprising a titanium nitride coated light weight metal (e.g., Al or Ti) core, having a passivating, protective metal layer intermediate the core and the titanium nitride. The protective layer forms a barrier to further oxidation/corrosion when exposed to the fuel cell's operating environment. Stainless steels rich in CR, Ni, and Mo are particularly effective protective interlayers.

Li, Yang (Troy, MI); Meng, Wen-Jin (Okemos, MI); Swathirajan, Swathy (West Bloomfield, MI); Harris, Stephen J. (Bloomfield, MI); Doll, Gary L. (Orion Township, Oakland County, MI)

1997-01-01T23:59:59.000Z

400

Variable area fuel cell cooling  

DOE Patents (OSTI)

A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

Kothmann, Richard E. (Churchill Borough, PA)

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Reduced Temperature Range for the Solar To Fuel Energy ...  

Science Conference Proceedings (OSTI)

... Active Titania-Based Nanoparticles for Composite Propellant Combustion ... of Novel Nanostructured Electrolytes for Low Temperature Solid Oxide Fuel Cells†...

402

Development of concentrator solar cells  

DOE Green Energy (OSTI)

A limited pilot production run on PESC silicon solar cells for use at high concentrations (200 to 400 suns) is summarized. The front contact design of the cells was modified for operation without prismatic covers. The original objective of the contract was to systematically complete a process consolidation phase, in which all the, process improvements developed during the contract would be combined in a pilot production run. This pilot run was going to provide, a basis for estimating cell costs when produced at high throughput. Because of DOE funding limitations, the Photovoltaic Concentrator Initiative is on hold, and Applied Solar`s contract was operated at a low level of effort for most of 1993. The results obtained from the reduced scope pilot run showed the effects of discontinuous process optimization and characterization. However, the run provided valuable insight into the technical areas that can be optimized to achieve the original goals of the contract.

Not Available

1994-08-01T23:59:59.000Z

403

Turning Bacteria into Fuel: Cyanobacteria Designed for Solar-Powered Highly Efficient Production of Biofuels  

SciTech Connect

Broad Funding Opportunity Announcement Project: ASU is engineering a type of photosynthetic bacteria that efficiently produce fatty acidsóa fuel precursor for biofuels. This type of bacteria, called Synechocystis, is already good at converting solar energy and carbon dioxide (CO2) into a type of fatty acid called lauric acid. ASU has modified the organism so it continuously converts sunlight and CO2 into fatty acidsóoverriding its natural tendency to use solar energy solely for cell growth and maximizing the solar-to-fuel conversion process. ASUís approach is different because most biofuels research focuses on increasing cellular biomass and not on excreting fatty acids. The project has also identified a unique way to convert the harvested lauric acid into a fuel that can be easily blended with existing transportation fuels.

2010-01-01T23:59:59.000Z

404

Assessment of Direct Carbon Fuel Cells  

Science Conference Proceedings (OSTI)

Fuel cells have been under development for stationary power applications because of their high fuel efficiency and low emission characteristics. Research and development of direct carbon fuel cells (DCFC) that can use carbon as a fuel have been identified as an emerging option that needs further assessment and test validation. This project is one of several EPRI fuel cell projects that is investigating the technical and performance characteristics of fuel cells and their potential to impact electric util...

2005-02-16T23:59:59.000Z

405

Fuel Cell-Fuel Cell Hybrid System Contact NETL Technology Transfer...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell-Fuel Cell Hybrid System Contact NETL Technology Transfer Group techtransfer@netl.doe.gov November 2012 Opportunity Research on the patented technology "Fuel Cell-Fuel Cell...

406

2009 Fuel Cell Market Report, November 2010  

DOE Green Energy (OSTI)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of fuel is supplied. Moreover, fuel cells do not burn fuel, making the process quiet, pollution-free and two to three times more efficient than combustion. Fuel cell systems can be a truly zero-emission source of electricity, if the hydrogen is produced from non-polluting sources. Global concerns about climate change, energy security, and air pollution are driving demand for fuel cell technology. More than 630 companies and laboratories in the United States are investing $1 billion a year in fuel cells or fuel cell component technologies. This report provides an overview of trends in the fuel cell industry and markets, including product shipments, market development, and corporate performance. It also provides snapshots of select fuel cell companies, including general.

Not Available

2010-11-01T23:59:59.000Z

407

2008 FUEL CELL TECHNOLOGIES MARKET REPORT  

E-Print Network (OSTI)

electricity and hot water from a 400 kW fuel cell. Gills Onions' processing facility captures waste biogas2008 FUEL CELL TECHNOLOGIES MARKET REPORT JUNE 2010 #12;2008 FUEL CELL TECHNOLOGIES MARKET REPORT i and the fuel cell industry. The authors especially wish to thank Sunita Satyapal, Nancy Garland, and the staff

408

Fuel Cell Technologies Office: 2011 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2011 Webinar Archives 2011 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2011 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2011 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2011 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2011 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2011 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

409

Fuel Cell Technologies Office: Catalysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

410

Fuel Cell Technologies Office: 2012 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Webinar Archives 2 Webinar Archives to someone by E-mail Share Fuel Cell Technologies Office: 2012 Webinar Archives on Facebook Tweet about Fuel Cell Technologies Office: 2012 Webinar Archives on Twitter Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Google Bookmark Fuel Cell Technologies Office: 2012 Webinar Archives on Delicious Rank Fuel Cell Technologies Office: 2012 Webinar Archives on Digg Find More places to share Fuel Cell Technologies Office: 2012 Webinar Archives on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Archives Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

411

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

412

Fuel Cell Technologies Office: Program Presentations  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Presentations Program Presentations to someone by E-mail Share Fuel Cell Technologies Office: Program Presentations on Facebook Tweet about Fuel Cell Technologies Office: Program Presentations on Twitter Bookmark Fuel Cell Technologies Office: Program Presentations on Google Bookmark Fuel Cell Technologies Office: Program Presentations on Delicious Rank Fuel Cell Technologies Office: Program Presentations on Digg Find More places to share Fuel Cell Technologies Office: Program Presentations on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

413

Fuel Cell Technologies Office: Past Financial Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

Financial Opportunities Financial Opportunities Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Past Financial Opportunities to someone by E-mail Share Fuel Cell Technologies Office: Past Financial Opportunities on Facebook Tweet about Fuel Cell Technologies Office: Past Financial Opportunities on Twitter Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Google Bookmark Fuel Cell Technologies Office: Past Financial Opportunities on Delicious Rank Fuel Cell Technologies Office: Past Financial Opportunities on Digg Find More places to share Fuel Cell Technologies Office: Past Financial Opportunities on AddThis.com... Current Opportunities Past Opportunities Recovery Act Selected Awards Requests for Information Related Opportunities

414

Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Automotive and MHE Automotive and MHE Fuel Cell System Cost Analysis (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Google Bookmark Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Delicious Rank Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on Digg Find More places to share Fuel Cell Technologies Office: Automotive and MHE Fuel Cell System Cost Analysis (Text Version) on AddThis.com...

415

Low contaminant formic acid fuel for direct liquid fuel cell  

Science Conference Proceedings (OSTI)

A low contaminant formic acid fuel is especially suited toward use in a direct organic liquid fuel cell. A fuel of the invention provides high power output that is maintained for a substantial time and the fuel is substantially non-flammable. Specific contaminants and contaminant levels have been identified as being deleterious to the performance of a formic acid fuel in a fuel cell, and embodiments of the invention provide low contaminant fuels that have improved performance compared to known commercial bulk grade and commercial purified grade formic acid fuels. Preferred embodiment fuels (and fuel cells containing such fuels) including low levels of a combination of key contaminants, including acetic acid, methyl formate, and methanol.

Masel, Richard I. (Champaign, IL); Zhu, Yimin (Urbana, IL); Kahn, Zakia (Palatine, IL); Man, Malcolm (Vancouver, CA)

2009-11-17T23:59:59.000Z

416

Fuel Cell Technologies Office: 2012 Webinar Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Webinar Archives 2 Webinar Archives Increase your H2IQ Learn about Fuel Cell Technologies Office webinars and state and regional initiatives webinars held in 2012 through the descriptions and linked materials below. Also view webinar archives from other years. Webinars presented in 2012: DOE Updates JOBS and economic impacts of Fuel Cells (JOBS FC 1.1) Model Hydrogen and Fuel Cell Manufacturing R&D Opportunities Fuel Cell Mobile Lighting California Fuel Cell Partnership's Roadmap to the Commercialization of Hydrogen Fuel Cell Electric Vehicles 2011-2012 Hydrogen Student Design Contest Winners: On-Campus Tri-Generation Fuel Cell Systems Material Characterization of Storage Vessels for Fuel Cell Forklifts Fuel Cells for Portable Power BNL's Low-Platinum Electrocatalysts for Fuel Cell Electric Vehicles (FCEVs)

417

TUTORIALS: Semiconductors & Electroceramics - Solar cell ... - TMS  

Science Conference Proceedings (OSTI)

Jan 21, 2008 ... This tutorial introduces the operation of p-n junction solar cells, discusses the CdS/CdTe solar cell in detail, and describes several deposition†...

418

Biomimetic Dye Molecules for Solar Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

provide opportunities for solid-state physicists and chemists to solve a major challenge: solar cell adoption. Though solar cells can use energy directly from the Sun to produce...

419

Cermet layer for amorphous silicon solar cells  

DOE Patents (OSTI)

A transparent high work function metal cermet forms a Schottky barrier in a Schottky barrier amorphous silicon solar cell and adheres well to the P+ layer in a PIN amorphous silicon solar cell.

Hanak, Joseph J. (Lawrenceville, NJ)

1979-01-01T23:59:59.000Z

420

1990 fuel cell seminar: Program and abstracts  

DOE Green Energy (OSTI)

This volume contains author prepared short resumes of the presentations at the 1990 Fuel Cell Seminar held November 25-28, 1990 in Phoenix, Arizona. Contained herein are 134 short descriptions organized into topic areas entitled An Environmental Overview, Transportation Applications, Technology Advancements for Molten Carbonate Fuel Cells, Technology Advancements for Solid Fuel Cells, Component Technologies and Systems Analysis, Stationary Power Applications, Marine and Space Applications, Technology Advancements for Acid Type Fuel Cells, and Technology Advancement for Solid Oxide Fuel Cells.

Not Available

1990-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hydrogen Fuel Cell Engines  

E-Print Network (OSTI)

.......................................................................................... 2-36 2.2.1 HIGH PRESSURE GAS by using energy that is easily brought to the facility, such as electricity, natural gas or solar currently costs from 3 to 15 times more than natural gas, and from 1.5 to 9 times more than gasoline

422

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 05 · P-N Junction 1Montana State University: Solar Cells Lecture 5: P-N Junction P-N Junction · Solar Cell is a large area P-N junction electron (hole) positive) 2Montana State University: Solar Cells Lecture 5: P-N Junction p-n Junction p n P

Kaiser, Todd J.

423

Process of making solar cell module  

DOE Patents (OSTI)

A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.

Packer, M.; Coyle, P.J.

1981-03-09T23:59:59.000Z

424

Solar Cell Silicon - Programmaster.org  

Science Conference Proceedings (OSTI)

Jul 31, 2012 ... About this Symposium. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium, Solar Cell Silicon. Sponsorship, TMS Extraction and†...

425

Improving the design of solar cells  

Science Conference Proceedings (OSTI)

Improving the design of solar cells. Photovoltaic (PV) systems convert the sun's light directly to electrical power by absorption ...

2012-10-02T23:59:59.000Z

426

Electron-Beam Irradiation of Solar Cells  

Science Conference Proceedings (OSTI)

Electron-Beam Irradiation of Solar Cells. Summary: The Dosimetry Group operates a system capable of performing electron ...

2013-02-27T23:59:59.000Z

427

Key Physical Mechanisms in Nanostructured Solar Cells  

DOE Green Energy (OSTI)

The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

Dr Stephan Bremner

2010-07-21T23:59:59.000Z

428

Compensated amorphous silicon solar cell  

DOE Patents (OSTI)

An amorphous silicon solar cell incorporates a region of intrinsic hydrogenated amorphous silicon fabricated by a glow discharge wherein said intrinsic region is compensated by P-type dopants in an amount sufficient to reduce the space charge density of said region under illumination to about zero.

Carlson, David E. (Yardley, PA)

1980-01-01T23:59:59.000Z

429

Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems  

DOE Green Energy (OSTI)

The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel processor subsystems (fuel reformer, CO cleanup, and exhaust cleanup) that were small enough to integrate on a vehicle and (2) evaluating the fuel processor system performance for hydrogen production, efficiency, thermal integration, startup, durability and ability to integrate with fuel cells. Nuvera carried out a three-part development program that created multi-fuel (gasoline, ethanol, natural gas) fuel processing systems and investigated integration of fuel cell / fuel processor systems. The targets for the various stages of development were initially based on the goals of the DOE's Partnership for New Generation Vehicles (PNGV) initiative and later on the Freedom Car goals. The three parts are summarized below with the names based on the topic numbers from the original Solicitation for Financial Assistance Award (SFAA).

Nuvera Fuel Cells

2005-04-15T23:59:59.000Z

430

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 02 Microfabrication ­ A combination · Photolithograpy · Depostion · Etching 1 Montana State University: Solar Cells Lecture 2: Microfabrication Flow Montana State University: Solar Cells Lecture 2: Microfabrication Questions · What is heat? · Heat

Kaiser, Todd J.

431

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 07 · EE Fundamentals 1Montana State University: Solar Cells Lecture 7: EE Fundamentals What is Electrical Engineering · Opposite of lightning · Symbolic information: electronics Montana State University: Solar Cells Lecture 7: EE Fundamentals 2 Review

Kaiser, Todd J.

432

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 03 · Nature of Sunlight 1Montana State University: Solar Cells Lecture 3: Nature of Sunlight Wave-Particle Duality · Light acts as ­ Waves University: Solar Cells Lecture 3: Nature of Sunlight Properties of Light · Sunlight contains photons of many

Kaiser, Todd J.

433

EE580 Solar Cells Todd J. Kaiser  

E-Print Network (OSTI)

7/21/2010 1 EE580 ­ Solar Cells Todd J. Kaiser · Lecture 04 · Semiconductor Materials · Chapter 1 1Montana State University: Solar Cells Lecture 4: Semiconductor Materials Semiconductor Bond Model · Bohr electrons interact to form bonds 2Montana State University: Solar Cells Lecture 4: Semiconductor Materials

Kaiser, Todd J.

434

Conversion system overview assessment. Volume III. Solar thermal/coal or biomass derived fuels  

SciTech Connect

The three volumes of this report cover three distinct areas of solar energy research: solar thermoelectrics, solar-wind hybrid systems, and synthetic fuels derived with solar thermal energy. Volume III deals with the conversion of synthetic fuels with solar thermal heat. The method is a hybrid combination of solar energy with either coal or biomass. A preliminary assessment of this technology is made by calculating the cost of fuel produced as a function of the cost of coal and biomass. It is shown that within the projected ranges of coal, biomass, and solar thermal costs, there are conditions when solar synthetic fuels with solar thermal heat will become cost-competitive.

Copeland, R. J.

1980-02-01T23:59:59.000Z

435

2011 RENEWABLE ENERGY: SOLAR FUELS GORDON RESEARCH CONFERENCE  

DOE Green Energy (OSTI)

The conference will present and discuss current science that underlies solar fuels production, and will focus on direct production pathways for production. Thus, recent advances in design and understanding of molecular systems and materials for light capture and conversion of relevance for solar fuels will be discussed. An important set of topics will be homogeneous, heterogeneous and biological catalysts for the multi-electron processes of water oxidation, hydrogen production and carbon dioxide reduction to useful fuels. Also, progress towards integrated and scalable systems will be presented. Attached is a copy of the formal schedule and speaker program and the poster program.

Joseph Hupp

2011-01-21T23:59:59.000Z

436

Alloys and Compounds for Thermoelectric and Solar Cell Applications  

Science Conference Proceedings (OSTI)

Alloys and Compounds for Thermoelectric and Solar Cell Applications II: Alloys and Compounds for Thermoelectric and Solar Cell Applications: Thermoelectric†...

437

Hydrogen & Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dredged and Fill Material Disposal (North Dakota) Dredged and Fill Material Disposal (North Dakota) This chapter provides regulations for the disposal of dredged and fill material. Any entity desiring to dispose of such material must first obtain a permit, and the State Engineer has the responsibility to specify a disposal site for each permit application. General permits may be issued on a regional basis. October 16, 2013 Dover Public Utilities - Green Energy Program Incentives Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited to systems that are intended to supply on-site energy needs. The green energy programs offered by the state's municipal utilities occasionally vary from city to city.

438

EERE: Fuel Cell Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

The Fuel Cell Technologies Office is a comprehensive portfolio of activities that address the full range of barriers facing the development and deployment of hydrogen and fuel...

439

Direct Carbon Fuel Cell Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct Carbon Fuel Cell Workshop Direct Carbon Fuel Cell Workshop July 30, 2003 Table of Contents Disclaimer Papers and Presentations Carbon Anode Electrochemistry Carbon Conversion Fuel Cells Coal Preprocessing Prior to Introduction Into the Fuel Cell Potential Market Applications for Direct Carbon Fuel Cells Discussion of Key R&D Needs Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government or any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

440

Carbonate fuel cell system with thermally integrated gasification  

DOE Patents (OSTI)

A fuel cell system employing a gasifier for generating fuel gas for the fuel cell of the fuel cell system and in which heat for the gasifier is derived from the anode exhaust gas of the fuel cell.

Steinfeld, George (Southbury, CT); Meyers, Steven J. (Huntington Beach, CA); Lee, Arthur (Fishkill, NY)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

California Fuel Cell Partnership Alternative Fuels Research  

E-Print Network (OSTI)

and maintenance are both important. Propane and CNG are NOT "cleaner burning". RSD is a very good tool but ... Measured grams pollutant per kg of fuel from RSD -quantifiable uncertainty Fuel sales from tax department inventories · Only need one week of work and fuel sales to get fuel based emissions inventories · RSD

442

Fuel Cell Technologies Office: Fuel Cell Operations at Sub-Freezing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Operations at Sub-Freezing Temperatures Workshop to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Operations at Sub-Freezing Temperatures Workshop on...

443

Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A  

NLE Websites -- All DOE Office Websites (Extended Search)

Procuring Fuel Cells Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Google Bookmark Fuel Cell Technologies Office: Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers (Text Version) on Delicious Rank Fuel Cell Technologies Office: Procuring Fuel Cells for

444

Diffraction: Enhanced Light Absorption of Solar Cells and ...  

Solar and Renewable Energy Photovoltaic Thin-film Solar Cells Space Solar Cells Polarization-Dependent Photodetectors BENEFITS Improved performance of

445

Fuel Cell Portable Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Power Power Department of Energy Workshop January 17, 2002 2 Portable Markets - Table of Contents 1. Opportunity Summary for Portable Markets 2. Commercialization Path and Resource Map 3. Value Chain Issues 4. Ballard "State of the Art" 5. Fuel Options and Issues 6. Where can the D.O.E. Help 3 Opportunity Summary - Portable Markets Infrequent Frequent Typical Applications Backup - Batteries & Gensets Peaking power and seasonal use; mobile power Preferred Fuels Hydrocarbon & Hydrogen Hydrocarbon (H2?) Total Available Market Large - But Fractured into many apps Moderate Price Target Low (Pockets willing to pay high $ for certain attributes) Moderate (Lifecycle) Environmental Impact Low Moderate Timing Short term Mid term 4 Technical Challenge Low High Micro Markets H2 Backup Power HC Frequent

446

Fuel Cell Technologies Office: Educational Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Publications Educational Publications Increase your H2IQ Access easy-to-understand fact sheets and other information designed to introduce hydrogen and fuel cell technologies to non-technical audiences. DOE Hydrogen and Fuel Cells Program Fact Sheets Fuel Cell Technologies Office Fact Sheet Progress and Accomplishments in Hydrogen and Fuel Cells Highlights from U.S. Department of Energy's Fuel Cell Recovery Act Projects World's First Tri-Generation Energy Station - Fountain Valley Fuel Cell Financing for Tax-Exempt Entities Jobs in Fuel Cell Technologies Hydrogen Fuel Cells Hydrogen Production Hydrogen Distribution and Delivery Hydrogen Market Transformation Hydrogen Storage Hydrogen Safety Hydrogen Technology Validation Comparison of Fuel Cell Technologies Hydrogen-Powered Buses

447

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

448

Overview of Hydrogen & Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Source: US DOE 2/25/2011 Source: US DOE 2/25/2011 eere.energy.gov Overview of Hydrogen & Fuel Cell Activities FUEL CELL TECHNOLOGIES PROGRAM IPHE - Stationary Fuel Cell Workshop Rick Farmer U.S. Department of Energy Fuel Cell Technologies Program Deputy Program Manager March 1, 2011 2 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov * Overview * R&D Progress * Market Transformation * Budget * Policies * Collaborations Agenda 3 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov Fuel Cells: Addressing Energy Challenges 4 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov Technology Barriers* Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Stationary Systems: $750 per kW,

449

Micro and Man-Portable Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

& USFCC Fuel Cells Meeting: & USFCC Fuel Cells Meeting: US DOE & USFCC Fuel Cells Meeting: Matching Federal Government Energy Needs Matching Federal Government Energy Needs with Energy Efficient Fuel Cells with Energy Efficient Fuel Cells Micro & Man Micro & Man - - Portable Fuel Cells Portable Fuel Cells Jerry Hallmark Jerry Hallmark Motorola Labs Motorola Labs - - President USFCC President USFCC Hotel Palomar Hotel Palomar Washington, DC Washington, DC April 26th, 2007 April 26th, 2007 US DOE & USFCC Fuel Cells Meeting 1 4/26/2007 U.S. Fuel Cell Council Micro & Man-Portable * Less Than 100 Watts * Consumer electronics, defense (solder power), speciality applications Portable, Backup, APU * 100 Watts to 10 Kilowatts * Battery replacement or charging, defense (platoon power), telecom backup,

450

Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Green Energy Program Incentives Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed...

451

Fuel Cell Technologies Office: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Glossary Glossary This glossary contains terms and acronyms related to hydrogen and fuel cell technologies. A B C D E F G H I J K L M N O P Q R S T U V W X Y Z - Acronyms A AC Generator (or Alternator) An electric device that produces an electric current that reverses direction many times per second. Also called a synchronous generator. Adsorption The adhesion of the molecules of gases, dissolved substances, or liquids to the surface of the solids or liquids with which they are in contact. Air The mixture of oxygen, nitrogen, and other gases that, with varying amounts of water vapor, forms the atmosphere of the earth. Alkaline Fuel Cell (AFC) A type of hydrogen/oxygen fuel cell in which the electrolyte is concentrated potassium hydroxide (KOH) and the hydroxide ions (OH-) are transported from the cathode to the anode.

452

International Stationary Fuel Cell Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

STATIONARY FUEL CELL DEMONSTRATION STATIONARY FUEL CELL DEMONSTRATION John Vogel, Plug Power Inc. Yu-Min Tsou, PEMEAS E-TEK 14 February, 2007 Clean, Reliable On-site Energy SAFE HARBOR STATEMENT This presentation contains forward-looking statements, including statements regarding the company's future plans and expectations regarding the development and commercialization of fuel cell technology. All forward-looking statements are subject to risks, uncertainties and assumptions that could cause actual results to differ materially from those projected. The forward-looking statements speak only as of the date of this presentation. The company expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any such statements to reflect any change in the company's expectations or any change in

453

Carbon-based Fuel Cell  

DOE Green Energy (OSTI)

The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

Steven S. C. Chuang

2005-08-31T23:59:59.000Z

454

Advanced fuel cells and their future market  

Science Conference Proceedings (OSTI)

The advantages of fuel cells over competing technologies are outlined. These include higher fuel-efficiency (and thus lower fuel costs) and financial credits that may help reduce the effective introductory capital costs and thus help broaden the market. The credits for fuel cells result from their modularity, relative independence of efficiency on size and load, dispersibility, and rapid installation time. The fuel cell of primary interest in the United States and Japan is the PAFC (whose operation is limited by materials problems to ca. 200{degrees}C), because it is the most highly developed for use with natural gas or clean light distillate fuels. Competing fuel cell (FC) technologies are the alkaline fuel cell (AFC, limited to 80{degrees}C if inexpensive construction materials are used), the molten carbonate fuel cell (MCFC, 650{degrees}C), and the solid oxide fuel cell (SOFC, 1000{degrees}C). The author focuses on the MCFC in this paper.

Appleby, A.J. (Electric Power Research Inst., Palo Alto, CA (US))

1988-01-01T23:59:59.000Z

455

Mixed ternary heterojunction solar cell  

SciTech Connect

A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

Chen, Wen S. (Seattle, WA); Stewart, John M. (Seattle, WA)

1992-08-25T23:59:59.000Z

456

Fuel Cell Applied Research Project  

DOE Green Energy (OSTI)

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

457

Fuel Cell Applied Research Project  

SciTech Connect

Since November 12, 2003, Northern Alberta Institute of Technology has been operating a 200 kW phosphoric acid fuel cell to provide electrical and thermal energy to its campus. The project was made possible by funding from the U.S. Department of Energy as well as by a partnership with the provincial Alberta Energy Research Institute; a private-public partnership, Climate Change Central; the federal Ministry of Western Economic Development; and local natural gas supplier, ATCO Gas. Operation of the fuel cell has contributed to reducing NAIT's carbon dioxide emissions through its efficient use of natural gas.

Lee Richardson

2006-09-15T23:59:59.000Z

458

DIGESTER GAS - FUEL CELL - PROJECT  

DOE Green Energy (OSTI)

GEW has been operating the first fuel cell in Europe producing heat and electricity from digester gas in an environmentally friendly way. The first 9,000 hours in operation were successfully concluded in August 2001. The fuel cell powered by digester gas was one of the 25 registered ''Worldwide projects'' which NRW presented at the EXPO 2000. In addition to this, it is a key project of the NRW State Initiative on Future Energies. All of the activities planned for the first year of operation were successfully completed: installing and putting the plant into operation, the transition to permanent operation as well as extended monitoring till May 2001.

Dr.-Eng. Dirk Adolph; Dipl.-Eng. Thomas Saure

2002-03-01T23:59:59.000Z

459

NREL: Hydrogen and Fuel Cells Research - NREL Fuel Cell and Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

codes and standards for buildings, components, systems, and vehicles. NREL's hydrogen and fuel cell research supports the Fuel Cell Technologies Office at the U.S. Department of...

460

Solar Hydrogen Production with a Metal Oxide-Based Thermochemical Cycle - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Anthony McDaniel (Primary Contact), Ivan Ermanoski Sandia National Laboratories (SNL) MS9052 PO Box 969 Livermore, CA 94550 Phone: (925) 294-1440 Email: amcdani@sandia.gov DOE Manager HQ: Sara Dillich Phone: (202) 586-7925 Email: Sara.Dillich@ee.doe.gov Subcontractors: * Nathan Siegel, Bucknell University, Lewisburg, PA. * Alan Weimer, University of Colorado, Boulder, CO. Project Start Date: October 1, 2008 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Discover and characterize suitable materials for two- *

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solar cell emulator and solar cell characteristics measurements in dark and illuminated conditions  

Science Conference Proceedings (OSTI)

This paper describes a novel data acquisition system designed and implemented with facilities for measuring and monitoring the characteristics of a PV solar cell, module and/or system. The functioning of the equipment is based on the so-called virtual ... Keywords: AVR microcontroller, I-V curve measurements, LabVIEW, solar cell emulator, solar cells & solar array

Yousry Atia; Mohamed Zahran; Abdullah Al-Hossain

2011-04-01T23:59:59.000Z

462

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization  

E-Print Network (OSTI)

Solar cells Improved Hybrid Solar Cells via in situ UV Polymerization Sanja Tepavcevic, Seth B-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples mobility of the photoactive layer can be enhanced. 1. Introduction Hybrid solar cells have been developed

Sibener, Steven

463

Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials  

E-Print Network (OSTI)

Solar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using Propulsion Laboratory, California Institute of Technology, Mail Stop T1714 106, 4800 Oak Grove Drive and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

Dowling, Jonathan P.

464

Ceramic Fuel Cells (SOFC)  

NLE Websites -- All DOE Office Websites (Extended Search)

in hot box included Anode Electrolyte Key cost drivers identified for tubular designs * Cell * Current Collectors * Seals BOP in hot box: * Insulation (thermal) * Recuperator *...

465

Fuel Cell Seminar, 1992: Program and abstracts  

DOE Green Energy (OSTI)

This year`s theme, ``Fuel Cells: Realizing the Potential,`` focuses on progress being made toward commercial manufacture and use of fuel cell products. Fuel cell power plants are competing for market share in some applications and demonstrations of market entry power plants are proceeding for additional applications. Development activity on fuel cells for transportation is also increasing; fuel cell products have potential in energy and transportation industries, with very favorable environmental impacts. This Seminar has the purpose of fostering communication by providing a forum for the international community interested in development, application, and business opportunities related fuel cells. Over 190 technical papers are included, the majority being processed for the data base.

Not Available

1992-12-31T23:59:59.000Z

466

Fuel Cell Technologies Office: Educational Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Educational Educational Publications to someone by E-mail Share Fuel Cell Technologies Office: Educational Publications on Facebook Tweet about Fuel Cell Technologies Office: Educational Publications on Twitter Bookmark Fuel Cell Technologies Office: Educational Publications on Google Bookmark Fuel Cell Technologies Office: Educational Publications on Delicious Rank Fuel Cell Technologies Office: Educational Publications on Digg Find More places to share Fuel Cell Technologies Office: Educational Publications on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage

467

Fuel Cell Technologies Office: November 2013 Newsletter  

NLE Websites -- All DOE Office Websites (Extended Search)

November 2013 November 2013 Newsletter to someone by E-mail Share Fuel Cell Technologies Office: November 2013 Newsletter on Facebook Tweet about Fuel Cell Technologies Office: November 2013 Newsletter on Twitter Bookmark Fuel Cell Technologies Office: November 2013 Newsletter on Google Bookmark Fuel Cell Technologies Office: November 2013 Newsletter on Delicious Rank Fuel Cell Technologies Office: November 2013 Newsletter on Digg Find More places to share Fuel Cell Technologies Office: November 2013 Newsletter on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Archives Subscribe Program Presentations Multimedia Conferences & Meetings Webinars Data Records Databases Glossary Quick Links Hydrogen Production Hydrogen Delivery

468

Corrugated Membrane Fuel Cell Structures  

SciTech Connect

One of the most challenging aspects of traditional PEM fuel cell stacks is the difficulty achieving the platinum catalyst utilization target of 0.2 gPt/kWe set forth by the DOE. Good catalyst utilization can be achieved with state-of-the-art catalyst coated membranes (CCM) when low catalyst loadings (<0.3 mg/cm2) are used at a low current. However, when low platinum loadings are used, the peak power density is lower than conventional loadings, requiring a larger total active area and a larger bipolar plate. This results in a lower overall stack power density not meeting the DOE target. By corrugating the fuel cell membrane electrode structure, Ion Power?s goal is to realize both the Pt utilization targets as well as the power density targets of the DOE. This will be achieved by demonstrating a fuel cell single cell (50 cm2) with a twofold increase in the membrane active area over the geometric area of the cell by corrugating the MEA structure. The corrugating structure must be able to demonstrate the target properties of < 10 mOhm-cm2 electrical resistance at > 20 psi compressive strength over the active area, in combination with offering at least 80% of power density that can be achieved by using the same MEA in a flat plate structure. Corrugated membrane fuel cell structures also have the potential to meet DOE power density targets by essentially packaging more membrane area into the same fuel cell volume as compared to conventional stack constructions.

Grot, Stephen [President, Ion Power Inc.] President, Ion Power Inc.

2013-09-30T23:59:59.000Z

469

Overview of Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

& Deputy Program Manager & Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA 2 1. Overview, Challenges & Technology Status 2. DOE Program Activities and Progress 3. Market Transformation Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power) Auxiliary & Portable Power Transportation Benefits * Efficiencies can be 60% (electrical)

470

Compensated amorphous silicon solar cell  

SciTech Connect

An amorphous silicon solar cell including an electrically conductive substrate, a layer of glow discharge deposited hydrogenated amorphous silicon over said substrate and having regions of differing conductivity with at least one region of intrinsic hydrogenated amorphous silicon. The layer of hydrogenated amorphous silicon has opposed first and second major surfaces where the first major surface contacts the electrically conductive substrate and an electrode for electrically contacting the second major surface. The intrinsic hydrogenated amorphous silicon region is deposited in a glow discharge with an atmosphere which includes not less than about 0.02 atom percent mono-atomic boron. An improved N.I.P. solar cell is disclosed using a BF.sub.3 doped intrinsic layer.

Devaud, Genevieve (629 S. Humphrey Ave., Oak Park, IL 60304)

1983-01-01T23:59:59.000Z

471

Energy Department Launches National Fuel Cell Technology Evaluation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance...

472

Fuel Cell Technologies Office: Matching Government Needs with...  

NLE Websites -- All DOE Office Websites (Extended Search)

Government Needs with Energy Efficient Fuel Cells to someone by E-mail Share Fuel Cell Technologies Office: Matching Government Needs with Energy Efficient Fuel Cells on...

473

Fuel Cell Comparison of Distributed Power Generation Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than...

474

Optimum Performance of Direct Hydrogen Hybrid Fuel Cell Vehicles  

E-Print Network (OSTI)

in batteries, ultracapacitors, fuel cells and hybrid vehicleBattery, Hybrid and Fuel Cell Electric Vehicle SymposiumBattery, Hybrid and Fuel Cell Electric Vehicle Symposium

Zhao, Hengbing; Burke, Andy

2009-01-01T23:59:59.000Z

475

Societal lifetime cost of hydrogen fuel cell vehicles  

E-Print Network (OSTI)

Comparative Assessment of Fuel Cell Cars, Massachusettselectric and hydrogen fuel cell vehicles, Journal of PowerTransition to Hydrogen Fuel Cell Vehicles & the Potential

Sun, Yongling; Ogden, J; Delucchi, Mark

2010-01-01T23:59:59.000Z

476

Annular feed air breathing fuel cell stack  

DOE Patents (OSTI)

A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

Wilson, Mahlon S. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

477

Fuel Cell Technologies Office: Recovery Act Projects Funded for Fuel Cell  

NLE Websites -- All DOE Office Websites (Extended Search)

Act Projects Funded for Fuel Cell Market Transformation Act Projects Funded for Fuel Cell Market Transformation Following the fuel cell funding announcement, DOE funded the fuel cell market transformation projects listed below. These projects focus on fuel cell systems in emergency backup power, material handling, and combined heat and power applications, with the goal of improving the potential of fuel cells to provide power in stationary, portable, and specialty vehicles. The Fuel Cell Technologies Office is collecting and analyzing data from these projects to show potential adopters the benefits and real-world performance of fuel cells. These data are aggregated across industries and sites as composite data products to provide relevant technology status results and fuel cell performance data without revealing proprietary information. These publicly available data products build the business case for fuel cells and help fuel cell developers understand the state of technologies while identifying ways to improve them.

478

Sensible Solar Fueling Energy Revolution in Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia May 14, 2010 - 3:35pm Addthis Joshua DeLung During his recent commencement address at the Georgia Institute of Technology, Energy Secretary Steven Chu hailed the ingenuity of the engineers responsible for the Industrial Revolution. He noted, however, that the carbon emissions from that pivotal era have caused the world's climate to change drastically. "More frequent heat waves and increased water stress in many areas of the world are predicted," he said. "Rising sea levels and the severity of hurricanes and cyclones will threaten low-lying coastal areas. The climate will change so rapidly that many species, including many people, will have

479

Sensible Solar Fueling Energy Revolution in Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia May 14, 2010 - 3:35pm Addthis Joshua DeLung During his recent commencement address at the Georgia Institute of Technology, Energy Secretary Steven Chu hailed the ingenuity of the engineers responsible for the Industrial Revolution. He noted, however, that the carbon emissions from that pivotal era have caused the world's climate to change drastically. "More frequent heat waves and increased water stress in many areas of the world are predicted," he said. "Rising sea levels and the severity of hurricanes and cyclones will threaten low-lying coastal areas. The climate will change so rapidly that many species, including many people, will have

480

Corrosion resistant PEM fuel cell  

DOE Patents (OSTI)

A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. (North Chili, NY); Cunningham, Kevin M. (Romeo, MI)

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "fuel cells solar" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Corrosion resistant PEM fuel cell  

DOE Patents (OSTI)

A PEM fuel cell having electrical contact elements comprising a corrosion-susceptible substrate metal coated with an electrically conductive, corrosion-resistant polymer containing a plurality of electrically conductive, corrosion-resistant filler particles. The substrate may have an oxidizable metal first layer (e.g., stainless steel) underlying the polymer coating.

Fronk, Matthew Howard (Honeoye Falls, NY); Borup, Rodney Lynn (East Rochester, NY); Hulett, Jay S. (Rochester, NY); Brady, Brian K. NY); Cunningham, Kevin M. (Romeo, MI)

2011-06-07T23:59:59.000Z

482

PEM fuel cell monitoring system  

DOE Patents (OSTI)

Method and apparatus are disclosed for monitoring the performance of H{sub 2}--O{sub 2} PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H{sub 2} sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken. 2 figs.

Meltser, M.A.; Grot, S.A.

1998-06-09T23:59:59.000Z

483

PEM fuel cell monitoring system  

DOE Patents (OSTI)

Method and apparatus for monitoring the performance of H.sub.2 --O.sub.2 PEM fuel cells. Outputs from a cell/stack voltage monitor and a cathode exhaust gas H.sub.2 sensor are corrected for stack operating conditions, and then compared to predetermined levels of acceptability. If certain unacceptable conditions coexist, an operator is alerted and/or corrective measures are automatically undertaken.

Meltser, Mark Alexander (Pittsford, NY); Grot, Stephen Andreas (West Henrietta, NY)

1998-01-01T23:59:59.000Z

484

Carbon fuel particles used in direct carbon conversion fuel cells  

SciTech Connect

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F.; Cherepy, Nerine

2012-10-09T23:59:59.000Z

485

Carbon fuel particles used in direct carbon conversion fuel cells  

SciTech Connect

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2012-01-24T23:59:59.000Z

486

Carbon fuel particles used in direct carbon conversion fuel cells  

Science Conference Proceedings (OSTI)

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2011-08-16T23:59:59.000Z

487

Spectral sensitization of nanocrystalline solar cells  

DOE Patents (OSTI)

This invention relates to dye sensitized polycrystalline photoelectrochemical solar cells for use in energy transduction from light to electricity. It concerns the utility of highly absorbing organic chromophores as sensitizers in such cells and the degree to which they may be utilized alone and in combination to produce an efficient photoelectrochemical cell, e.g., a regenerative solar cell.

Spitler, Mark T. (Concord, MA); Ehret, Anne (Malden, MA); Stuhl, Louis S. (Bedford, MA)

2002-01-01T23:59:59.000Z

488

2007 Fuel Cell Technologies Market Report  

SciTech Connect

The fuel cell industry, which has experienced continued increases in sales, is an emerging clean energy industry with the potential for significant growth in the stationary, portable, and transportation sectors. Fuel cells produce electricity in a highly efficient electrochemical process from a variety of fuels with low to zero emissions. This report describes data compiled in 2008 on trends in the fuel cell industry for 2007 with some comparison to two previous years. The report begins with a discussion of worldwide trends in units shipped and financing for the fuel cell industry for 2007. It continues by focusing on the North American and U.S. markets. After providing this industry-wide overview, the report identifies trends for each of the major fuel cell applications -- stationary power, portable power, and transportation -- including data on the range of fuel cell technologies -- polymer electrolyte membrane fuel cell (PEMFC), solid oxide fuel cell (SOFC), alkaline fuel cell (AFC), molten carbonate fuel cell (MCFC), phosphoric acid fuel cell (PAFC), and direct-methanol fuel cell (DMFC) -- used for these applications.

McMurphy, K.

2009-07-01T23:59:59.000Z

489

Three-junction solar cell  

SciTech Connect

A photovoltaic solar cell is formed in a monolithic semiconductor. The cell contains three junctions. In sequence from the light-entering face, the junctions have a high, a medium, and a low energy gap. The lower junctions are connected in series by one or more metallic members connecting the top of the lower junction through apertures to the bottom of the middle junction. The upper junction is connected in voltage opposition to the lower and middle junctions by second metallic electrodes deposited in holes 60 through the upper junction. The second electrodes are connected to an external terminal.

Ludowise, Michael J. (Cupertino, CA)

1986-01-01T23:59:59.000Z

490

NREL: Vehicles and Fuels Research - Fuel Cell Electric Vehicle Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies in the Media Spotlight Vehicle Technologies in the Media Spotlight August 19, 2013 Automakers have made steady progress reducing the cost and increasing the performance of fuel cell propulsion systems, and most major vehicle manufacturers are geared to launch fuel cell electric vehicles in the U.S. market between 2015 and 2020. A recent Denver Post article highlights the National Renewable Energy Laboratory's contribution to the progress that automakers have made in getting their fuel cell electric vehicles ready for production. "When I started working on fuel cells in the '90s, people said it was a good field because a solution would always be five years away," said Brian Pivovar, who leads NREL's fuel cell research. "Not anymore." The article references a variety of NREL's hydrogen and fuel cell

491

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities to Key Activities to someone by E-mail Share Fuel Cell Technologies Office: Key Activities on Facebook Tweet about Fuel Cell Technologies Office: Key Activities on Twitter Bookmark Fuel Cell Technologies Office: Key Activities on Google Bookmark Fuel Cell Technologies Office: Key Activities on Delicious Rank Fuel Cell Technologies Office: Key Activities on Digg Find More places to share Fuel Cell Technologies Office: Key Activities on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Key Activities The Fuel Cell Technologies Office conducts work in several key areas to

492

Solid Oxide Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Oxide Fuel Cells Solid Oxide Fuel Cells Solid Oxide Fuel Cells FE researchers at NETL have developed a unique test platform, called the multi-cell array (MCA), to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. FE researchers at NETL have developed a unique test platform, called the multi-cell array (MCA), to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. Fuel cells are an energy user's dream: an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions that runs almost silently and has few

493

Regenerative Fuel Cells for Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

11 1 Regenerative Fuel Cells for Energy Storage April 2011 Corky Mittelsteadt April 2011 2 Outline 1. Regenerative Fuel Cells at Giner 2. Regenerative Systems for Energy Storage 1....

494

2007 Fuel Cell Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

membrane R&D research and development RD&D research, development, and demonstration SOFC solid oxide fuel cell UPS uninterruptible power supply USFCC U.S. Fuel Cell Council 2...

495

EERE: Fuel Cell Technologies Office Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Printable Version Share this resource Send a link to EERE: Fuel Cell Technologies Office Home Page to someone by E-mail Share EERE: Fuel Cell Technologies Office Home Page...

496

Fuel Cell Handbook - Seventh Edition (DOE FE)  

Fuel Cell Technologies Publication and Product Library (EERE)

This handbook is a technical explanation of the science of the fuel cell. Descriptions and explanations of the many different types of fuel cells are also included. Explanations of the chemistry, phys

497

2008 Fuel Cell Technologies Market Report  

Fuel Cell Technologies Publication and Product Library (EERE)

Fuel cells are electrochemical devices that combine hydrogen and oxygen to produce electricity, water, and heat. Unlike batteries, fuel cells continuously generate electricity, as long as a source of

498

Progress in fuel cells for transportation applications  

DOE Green Energy (OSTI)

The current and projected states of development of fuel cells are described in terms of availability, performance, and cost. The applicability of various fuel cell types to the transportation application is discussed, and projections of power densities, weights, and volumes of fuel cell systems are made into the early 1990s. Research currently being done to advance fuel cells for vehicular application is described. A summary of near-term design parameters for a fuel cell transit line is given, including bus performance requirements, fuel cell power plant configuration, and battery peaking requirements. The objective of this paper is to determine a fuel cell technology suitable for near-term use as a vehicular power plant. The emphasis of the study is on indirect methanol fuel cell systems.

Murray, H.S.

1986-01-01T23:59:59.000Z

499

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network (OSTI)

in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal and J.create connected nanostructured SOFC electrodes is reviewed.of Solid Oxide Fuel Cells (SOFC) to directly and efficiently

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

500